WO2023036269A1 - 微镜芯片封装结构、激光设备以及汽车 - Google Patents

微镜芯片封装结构、激光设备以及汽车 Download PDF

Info

Publication number
WO2023036269A1
WO2023036269A1 PCT/CN2022/117939 CN2022117939W WO2023036269A1 WO 2023036269 A1 WO2023036269 A1 WO 2023036269A1 CN 2022117939 W CN2022117939 W CN 2022117939W WO 2023036269 A1 WO2023036269 A1 WO 2023036269A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
micromirror chip
micromirror
packaging structure
vibration isolation
Prior art date
Application number
PCT/CN2022/117939
Other languages
English (en)
French (fr)
Inventor
吴佳豪
曾理
周吴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22866730.9A priority Critical patent/EP4386466A1/en
Publication of WO2023036269A1 publication Critical patent/WO2023036269A1/zh
Priority to US18/599,907 priority patent/US20240208803A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0016Protection against shocks or vibrations, e.g. vibration damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Definitions

  • the embodiment of the present application relates to the technical field of micro-electro-mechanical systems, and in particular to a micromirror chip packaging structure, a laser device including the micromirror chip packaging structure, and an automobile with the laser device.
  • Micro-electro-mechanical system (MEMS) micromirrors can realize one-dimensional or two-dimensional scanning of beams by twisting, and MEMS micromirrors are based on mature semiconductor processing technology, which can realize miniaturization and integration
  • the optimized beam scanning method has been widely used in 3D scanning, laser display, laser radar and other fields because of its characteristics of low cost, low energy consumption, high precision, large rotation angle and high reliability.
  • Figure 1a shows a MEMS micromirror chip structure that can realize two-dimensional beam scanning, mainly including a frame 101, a driving coil 1021, a micromirror 1023, a first torsion arm 103, and a second torsion arm 1022, wherein the driving coil 1021 is connected to the frame 101 through the first torsion arm 103 extending along the X direction in the figure, and the micromirror 1023 is connected to the driving coil 1021 through the second torsion arm 1022 extending along the Y direction in the figure.
  • the driving coil 1021 can drive the micromirror 1023 to rotate around the perpendicular first torsion arm 103 and the second torsion arm 1022 under the action of the Loren magnetic force to realize two-dimensional scanning of the light beam.
  • the MEMS micromirror chip in FIG. 1a is used for lidar and can be configured on the vehicle body.
  • the vehicle body When the vehicle is running, the vehicle body is prone to vibration and is affected by the vibration of the vehicle body.
  • the driving coil 1021 and The micromirror 1023 will have a relatively large displacement in the Z direction relative to the frame 101, and the stress on the first torsion arm 103 may be much higher than the yield stress of the material.
  • the first torsion arm 103 is prone to fracture and damage due to force, which affects the MEMS micro-mirror. The performance of the mirror chip.
  • the present application provides a micromirror chip packaging structure, a laser device containing the micromirror chip packaging structure, and an automobile with the laser device.
  • the main purpose is to provide a micromirror chip packaging structure capable of suppressing the vibration amplitude of the micromirror chip.
  • the present application provides a micromirror chip packaging structure, which can be applied in a laser radar device.
  • the micromirror chip packaging structure includes a micromirror chip (also called a MEMS micromirror chip), a stacked first substrate and a second substrate; the micromirror chip is arranged on a side of the first substrate away from the second substrate side; the micromirror chip includes a frame, a movable part and a first torsion arm, and the movable part is connected to the frame through the first torsion arm; the first substrate includes a vibration isolation platform, an elastic beam and a support frame, and the micromirror chip is arranged on an isolation On the vibration platform, the vibration isolation platform is connected to the support frame through elastic beams; and, the support frame is fixedly connected to the second substrate, and a gap is formed between the vibration isolation platform and the second substrate; in addition, the vibration isolation platform and the second substrate There are hollow areas on the substrates, and the hollow areas are opposite to the movable parts to accommodate the movable parts.
  • the frame in the micromirror chip, the movable part and the first torsion arm form a single degree of freedom system
  • the micromirror chip packaging structure also includes The vibration isolation platform, the support frame, and the elastic beam used to connect the vibration isolation platform and the support frame, that is, the vibration isolation platform carrying the micromirror chip, the elastic beam, and the support frame form another single-degree-of-freedom system.
  • the The micromirror chip packaging structure given in the application is a two-degree-of-freedom system.
  • the first torsion arm can absorb part of the vibration energy transmitted to the movable part, but the elastic The beam can further attenuate the vibration energy transmitted to the movable part, thereby reducing the vibration amplitude of the movable part and reducing the possibility of the movable part being damaged.
  • the vibration isolation platform carrying the micromirror chip produces a larger pressure film damping during motion, so as to suppress the vibration amplitude of the vibration isolation platform, Further reduce the vibration of movable parts.
  • a hollowed-out area is provided at the position opposite to the movable part on the vibration isolation platform and the second substrate.
  • the hollowed-out area can avoid space for the moving movable part and can make the movable part move Damping is produced in the process to reduce the vibration amplitude of the moving parts.
  • the gap is filled with a damping medium.
  • the filled damping medium can further dissipate the motion energy of the movable part, thereby further reducing the vibration amplitude of the movable part.
  • the damping medium includes a liquid damping medium and/or a solid damping medium.
  • a liquid damping medium such as grease
  • a solid damping medium such as rubber, anisotropic conductive film (anisotropic conductive film, ACF ) shock-absorbing material, silica gel, Parylene vacuum coating (Parylene), plastic, etc. at least one vibration-isolation and energy-absorbing material
  • another example is not only filled with a liquid damping medium, but also filled with a solid damping medium.
  • the damping ratio of the package structure can be further improved, and the vibration isolation effect can be improved.
  • grooves are formed on the surfaces of the vibration isolation platform and the elastic beam facing the second substrate, and the grooves form gaps.
  • grooves may be provided on the surface of the first substrate facing the second substrate, so that there is a damping gap capable of absorbing energy between the vibration isolation platform and the second substrate.
  • the thickness of the vibration isolation platform can be reduced, the elastic modulus of the vibration isolation platform can be increased, the vibration energy absorbed by the first substrate can be further increased, and the vibration of the movable parts can be further reduced.
  • the second substrate is made of glass and the first substrate is made of semiconductor materials, compared with making grooves on the glass substrate, opening grooves on the semiconductor substrate , it is easier to realize in the process, and it is easier to control the size of the groove to meet the designed damping coefficient.
  • the elastic beam is symmetrically arranged on the periphery of the vibration isolation platform with respect to the micromirror chip.
  • the elastic beams are arranged symmetrically with respect to the micromirror chip, compared with asymmetrical arrangements, it is possible to avoid generating a mode that is more likely to cause the first torsion arm to break. Therefore, if the elastic beams are arranged symmetrically about the micromirror chip, no other Messy modal.
  • first electrode on the surface of the frame away from the first substrate
  • second electrode on the surface of the vibration isolation platform facing the micromirror chip
  • the first electrode and the second electrode are electrically connected through a lead wire. connect.
  • the first electrode here may be connected to the movable component, for example, may be electrically connected to the driving coil in the movable component, and is used to transmit the driving signal to the driving coil and to transmit the feedback signal of the driving coil outward.
  • the vibration direction of the vibration isolation platform and the frame is basically the same, so that In this case, even if the first electrode and the second electrode are electrically connected through a lead formed by a wire-bonding process, the lead will basically not be disconnected due to multiple vibrations, thereby improving the performance of the lead.
  • the first aspect there is a third electrode on the surface of the support frame facing the micromirror chip, and a first metal wiring is formed on the first substrate, and the first metal wiring is laid along the elastic beam , the second electrode and the third electrode are electrically connected through a first metal wire.
  • the third electrode here can be electrically connected with the electronic components outside the packaging structure of the micromirror chip, and then, the movable part is connected with the external electrode through the first electrode, the lead wire, the second electrode, the first metal wiring and the third electrode. electrical connection of the electronic components.
  • the first metal wiring for electrically connecting the second electrode and the third electrode is laid along the elastic beam, so that the vibration isolation effect of the elastic beam will not be affected, and the implementation process is simple, so as to realize the first Signal transmission between the second electrode and the third electrode.
  • At least one sensor is arranged on the elastic beam, and the sensor is used to detect the deformation of the elastic beam; there is a fourth electrode on the surface of the first substrate facing the micromirror chip, and the first substrate A second metal wire is also formed on the sensor, and the sensor and the fourth electrode are electrically connected through the second metal wire.
  • the elastic beam will produce a large stress due to elastic deformation, so a sensor for detecting its deformation is arranged on the elastic beam, and the second metal wiring and the fourth The electrodes are electrically connected to the controller placed in the micromirror chip packaging structure to monitor the vibration magnitude of the vibration applied to the micromirror chip packaging structure or to monitor the structural state of the elastic beam, that is, whether the elastic beam is in a damaged state or in a good state .
  • the multiple sensors are symmetrically arranged on the elastic beam with respect to the micromirror chip.
  • these multiple sensors can be arranged symmetrically along the elastic beam to detect the deformation of multiple vulnerable areas.
  • the micromirror chip and the first substrate are independent structures, and the micromirror chip is arranged on the vibration isolation platform through the connection structure.
  • the micromirror chip and the first substrate are two structural parts. Furthermore, when the micromirror chip is packaged in the package structure, the micromirror chip can be placed on the vibration isolation platform by using an adhesive layer or a bonding structure.
  • first electrode on the surface of the frame away from the first substrate
  • second electrode on the surface of the vibration isolation platform facing the micromirror chip
  • first electrode and the second electrode are connected by wires
  • the second substrate is provided with a support hole at a position opposite to the lead, and the support hole penetrates the second substrate along the stacking direction of the first substrate and the second substrate, and the support hole is used for the support table to pass through, so as to Make the support table support the frame and the portion of the vibration isolation platform for setting the leads.
  • the support table can be used to pass through the support hole to support the wire-bonded part of the micromirror chip and the first substrate, so that the degree of warping and deformation can be suppressed. After the wire bonding process is completed, the support table can be removed.
  • the alignment mark is used to position the micromirror chip so that the micromirror chip is arranged on the surface of the first substrate. Central region.
  • the micromirror chip when the micromirror chip is packaged, the micromirror chip can be positioned according to the alignment mark, so that the micromirror chip is fixed at the designed position.
  • the micromirror chip is arranged in the central area of the first substrate. If the micromirror chip deviates from the central area, a mode that prompts the first torsion arm to break may be generated.
  • the alignment mark can be formed by etching, electroplating and other processes.
  • the micromirror chip and the first substrate are integrally formed.
  • micromirror chips are formed on a substrate, but also structures such as elastic beams, support frames, and vibration isolation platforms are formed, which can reduce the number of structural parts, improve integration, and reduce manufacturing costs.
  • the support frame is connected to the second substrate through a bonding structure.
  • the bonding process is used to connect the support frame and the second substrate, the size of the gap between the vibration isolation platform and the second substrate can be controlled more accurately, so that the formed gap meets the design requirements, and the flexibility of the two-degree-of-freedom system The coefficients meet the design requirements.
  • the dimension of the gap along the stacking direction of the first substrate and the second substrate is 10 ⁇ m to 30 ⁇ m.
  • it can be 10 ⁇ m to 20 ⁇ m; for another example, it can be 15 ⁇ m to 30 ⁇ m;
  • the first substrate includes a glass substrate, a ceramic substrate, or a semiconductor substrate
  • the second substrate includes a glass substrate, a ceramic substrate, or a semiconductor substrate.
  • the materials of the first substrate and the second substrate may be the same or different.
  • the movable part includes: a micromirror and a driving coil, the micromirror is connected to the driving coil through a second torsion arm, and the driving coil is connected to the frame through a first torsion arm; wherein, the first torsion arm are perpendicular to the second torsion arm, and are respectively perpendicular to the stacking direction.
  • the movable part includes a micromirror, a driving coil, and a second torsion arm
  • the formed micromirror chip can realize two-dimensional beam scanning.
  • the micromirror here may be at least one of a magnetoelectric micromirror, an electrostatic micromirror, and a piezoelectric micromirror.
  • the present application provides a laser device, which includes a circuit board and a micromirror chip packaging structure in any implementable manner in the first aspect, and the circuit board and the micromirror in the micromirror chip packaging structure The chip is electrically connected.
  • the micromirror chip packaging structure of the first aspect above is included, then, on the basis of realizing laser scanning, when the external vibration is applied to the laser device, because the micromirror The chip packaging structure is a two-degree-of-freedom system.
  • the laser device further includes a laser, and the micromirror chip packaging structure is used to reflect the laser light emitted by the laser.
  • the present application provides a car, which includes a vehicle body and the laser device in any possible implementation manner of the second aspect, and the laser device is arranged on the vehicle body.
  • the automobile provided by the embodiment of the third aspect of the present application includes the laser device of the embodiment of the second aspect, so the automobile provided by the embodiment of the present application and the laser device of the above technical solution can solve the same technical problems and achieve the same expected effect.
  • Fig. 1 a is the structural diagram of a kind of micromirror chip of prior art
  • Fig. 1 b is the structural diagram when a kind of micromirror chip of prior art is in vibration mode
  • Fig. 2 is a structural diagram of a laser device
  • FIG. 3 is a structural diagram of a micromirror chip that realizes one-dimensional beam scanning
  • Fig. 4 is a structural diagram of a micromirror chip
  • Fig. 5 is a simple schematic diagram when a micromirror chip is in a torsional mode
  • Fig. 6 is a simple schematic diagram when a micromirror chip is in a vibration mode
  • FIG. 7 is an exploded schematic diagram of a micromirror chip packaging structure provided by an embodiment of the present application.
  • FIG. 8 is an exploded schematic diagram of a micromirror chip packaging structure provided by an embodiment of the present application.
  • FIG. 9 is a cross-sectional view of a micromirror chip packaging structure provided by an embodiment of the present application.
  • FIG. 10 is a simple schematic diagram of a two-degree-of-freedom system provided by the embodiment of the present application for reflecting the packaging structure of the micromirror chip;
  • FIG. 11 is a cross-sectional view of a micromirror chip packaging structure provided by an embodiment of the present application.
  • FIG. 12 is a cross-sectional view of a micromirror chip packaging structure provided by an embodiment of the present application.
  • Fig. 13a is a simulation diagram of a vibration mode of a micromirror chip packaging structure provided in the embodiment of the present application;
  • Fig. 13b is a simulation diagram of another vibration mode of a micromirror chip packaging structure provided by the embodiment of the present application.
  • Fig. 14 is a graph comparing the displacement amplitudes of a micromirror chip provided by an embodiment of the present application and an existing micromirror chip;
  • Fig. 15 is a graph comparing displacement amplitudes of micromirror chips in a different system provided by an embodiment of the present application.
  • FIG. 16 is a structural diagram of an elastic beam in a micromirror chip packaging structure provided by an embodiment of the present application.
  • FIG. 17 is a structural diagram of another elastic beam in a micromirror chip packaging structure provided by an embodiment of the present application.
  • FIG. 18 is an assembly diagram of a micromirror chip packaging structure provided by the embodiment of the present application.
  • Fig. 19 is a partial assembly diagram of a micromirror chip packaging structure provided by the embodiment of the present application.
  • FIG. 20 is a structural diagram of a first substrate in a micromirror chip packaging structure provided by an embodiment of the present application.
  • Figure 21 is an enlarged view of A1 in Figure 20;
  • Figure 22 is an enlarged view of A2 in Figure 20;
  • Fig. 23 is an exploded view of a micromirror chip packaging structure provided by the embodiment of the present application.
  • Fig. 24 is an exploded view of a micromirror chip packaging structure provided by the embodiment of the present application.
  • Fig. 25 is a block flow diagram of a method for preparing a micromirror chip packaging structure provided by an embodiment of the present application.
  • Fig. 26a to Fig. 26l are process structure diagrams after the corresponding steps are completed in the preparation method of a micromirror chip packaging structure provided by the embodiment of the present application.
  • 2011-vibration isolation platform 2012, 20121, 20122-elastic beam; 2013-support frame; 2014-second electrode; 2015-third electrode; 2016-first metal wiring; 2017-sensor; 2018-fourth electrode; 2019-Second metal trace;
  • Modes are the natural vibration characteristics of a structural system.
  • the free vibration of the linear system is decoupled into N (N is a positive integer greater than or equal to 1) orthogonal single-degree-of-freedom vibration systems, corresponding to the N modes of the system.
  • N is a positive integer greater than or equal to 1
  • orthogonal single-degree-of-freedom vibration systems corresponding to the N modes of the system.
  • Each mode has a specific natural frequency, damping ratio and mode shape.
  • Laser equipment can be included in intelligent systems such as self-driving cars, intelligent robots, virtual reality devices (virtual reality, VR), and augmented reality (augmented reality, AR).
  • intelligent systems such as self-driving cars, intelligent robots, virtual reality devices (virtual reality, VR), and augmented reality (augmented reality, AR).
  • VR virtual reality
  • AR augmented reality
  • a laser device can provide a complete 360-degree panoramic view, which uses the form of laser pulses to visualize the surrounding environment of the vehicle.
  • Fig. 2 is a schematic structural diagram of a laser device.
  • the laser device includes: a laser 002 and a micromirror chip 001.
  • the pulsed light signal sent by the laser 002 is collimated and shaped by the collimator 003, and then irradiates on the micromirror 1023 of the micromirror chip 001.
  • the micromirror 1023 Rotate quickly to scan and emit the light signal to the surrounding target object 004.
  • the scanning light is reflected by the target object 004 and converged by the lens 005, and then received by the receiver 006 to complete the detection of the surrounding environment.
  • the micromirror 1023 can realize two-dimensional beam scanning. Specifically, as shown in FIG. 2, the micromirror 1023 can rotate around a straight line L1, and can also rotate around a straight line L2 perpendicular to the straight line L1, so as to realize two-dimensional scanning.
  • the structure of the micromirror chip 001 shown in Figure 2 can be explained in detail with reference to Figure 1a and Figure 1b, that is, the micromirror 1023 is connected with the drive coil 1021 by the second torsion arm 1022, and the drive coil 1021 is connected with the frame 101 by the first torsion arm 103 connect.
  • Fig. 3 shows the structural diagram of another kind of micromirror chip 001, in this structure, comprise micromirror 1023, first torsion arm 103, driving coil 1021 and frame 101; It is connected with the driving coil 1021 , and the driving coil 1021 is fixedly connected with the frame 101 .
  • the driving coil 1021 can drive the micromirror 1023 to rotate around the first torsion arm 103 relative to the frame 100 under the action of the Loren magnetic force, so as to realize one-dimensional scanning of the light beam.
  • the structure of the micromirror chip 001 shown in Figure 2 and Figure 3 can be summarized as the structure shown in Figure 4, that is, the micromirror chip 001 mainly includes a frame 101, a movable part 102 and a first torsion arm 103, and the movable part 102 is connected to the frame 101 through a first torsion arm 103 .
  • the movable part 102 here can include a micromirror 1023; In addition to 1023 , a driving coil 1021 and a second torsion arm 1022 connecting the driving coil 1021 and the micromirror 1023 may also be included.
  • its motion modes may include torsional modes and vibration modes.
  • FIG. 4 is a schematic diagram of the working state of the micromirror chip 001 in the torsion mode
  • FIG. 5 is a simplified structural diagram in FIG. 4 .
  • the movable part 102 rotates around the first torsion arm 103 (ie, along the direction P in the figure), and the angle of rotation is related to the torsional force received by the micromirror chip 001 .
  • FIG. 6 is a schematic diagram of a simplified structure of the micromirror chip in a vibration mode. As shown in FIG. 6 , in the vibration mode, the movable part 102 and the first torsion arm 103 vibrate relative to the frame 101 , and the amplitude of the vibration is related to the vibration strength of the micromirror chip.
  • the micromirror chip 001 is a symmetrical structure, under the torsional mode, the torque generated by the acceleration of rotation is symmetrical about the micromirror chip 001, which can cancel each other out, and the micromirror itself is designed to work in the rotation mode, and the micromirror chip is resistant to torsion.
  • the degree of acceptance is high, and the micromirror chip is not easy to produce excessive deformation or rotation.
  • the force generated by the acceleration of the shock vibration will completely act on the micromirror chip 001 and cannot cancel each other out.
  • the magnitude of the shock vibration is relatively large, it is easy to cause excessive deformation and damage to the first torsion arm 103 .
  • the car or smart machine is likely to generate low-frequency vibrations in the working state. Due to the influence of the upper and lower vibration modes, the Z in the shock and vibration test will be shown in Figure 6. There will be a large deformation and displacement in the direction, and the stress on the first torsion arm 103 will be much higher than the yield stress of the material. The first torsion arm 103 may be broken and damaged, and cannot pass the vehicle specification test or the intelligent robot shockproof test.
  • the embodiment of the present application provides a micromirror chip packaging structure including the micromirror chip 10 , which solves the problem that the micromirror chip 10 is damaged due to excessive stress during impact and vibration without affecting the beam scanning of the micromirror chip 10 .
  • FIG. 7 is an exploded schematic diagram of a micromirror chip packaging structure provided by an embodiment of the present application
  • FIG. 8 is a schematic diagram after further decomposition of FIG. 7 .
  • this micromirror chip package structure also includes the vibration isolation substrate 20 that is stacked with the micromirror chip 10 in addition to the micromirror chip 10, that is, the micromirror chip 10 is packaged in a vibration isolation substrate. on the substrate 20.
  • the micromirror chip 10 may include a frame 101 and a movable part 102 as shown in FIG.
  • the structure included in the movable component 102 has been explained above, and will not be repeated here.
  • Fig. 9 is a cross-sectional view of the package structure of the micromirror chip provided in the present application. 8 and 9, the vibration isolation substrate 20 includes a first substrate 201 and a second substrate 202, the first substrate 201 and the second substrate 202 are stacked along the Q direction shown in FIG. 9, and the micromirror chip 10 is disposed on the side of the first substrate 201 away from the second substrate 202 , that is to say, the micromirror chip 10 , the first substrate 201 and the second substrate 202 are stacked sequentially along the Q direction.
  • the first substrate 201 includes a vibration isolation platform 2011, an elastic beam 2012 and a support frame 2013, the micromirror chip 10 is arranged on the vibration isolation platform 2011, and the vibration isolation platform 2011 passes through the elastic beam 2012 and the support frame 2013 connect.
  • the micromirror chip 10 shown in FIG. 8 since the movable part 102 is connected to the frame 101 through the first torsion arm 103 , the micromirror chip 10 is a single-degree-of-freedom system.
  • the vibration isolation platform 2011 carrying the micromirror chip 10 is connected with the support frame 2013 by the elastic beam 2012, thereby, the vibration isolation platform 2011, the elastic beam 2012 and the support frame 2013 carrying the micromirror chip 10 form a structure again single degree of freedom system.
  • the micromirror chip package structure that the present application provides is a kind of two degrees of freedom system, m2 in Fig.
  • the first torsion arm 103, m1 includes the sum of the mass of the micromirror chip 10 and the vibration isolation platform 2011, and the elastic member T1 connected to m1 is shown as an elastic beam 2012 in FIG. 9 .
  • the micromirror chip packaging structure of the present application is a two-degree-of-freedom system as shown in FIG.
  • Part of the vibration energy can be absorbed, and the elastic beam 2012 can also absorb part of the vibration energy.
  • the vibration amplitude of the movable part 102 will be significantly reduced, the possibility of damage to the first torsion arm 103 will be reduced, and the impact resistance of the micromirror chip will be improved. and vibration performance.
  • the introduction of a vibration isolation substrate can reduce the cost of the micromirror during packaging and use. Residual stress is generated between the mirror chip packaging structure and the outside, so that the reliability performance of the micromirror chip packaging structure can be improved.
  • this application only needs to improve the vibration isolation substrate 20 used to package the micromirror chip 10, and does not need to introduce other vibration isolation devices. Therefore, on the basis of realizing the vibration isolation effect, the The packaging structure of the entire micromirror chip is complicated, and in addition, more modes will not be introduced.
  • the reduction of the vibration amplitude of the movable part 102 involved in the present application not only includes the vibration amplitude along the Z direction as shown in FIG. 8 , but also includes the vibration along the X direction and the Y direction as shown in FIG. 8 magnitude.
  • the vibration of the movable member 102 in the Z direction includes not only the vibration in the positive direction in FIG. 8 , but also the vibration in the negative direction opposite to the positive direction.
  • the vibration of the movable component 102 along the X direction and the Y direction can be explained with reference to the vibration along the Z direction.
  • gap D between the second substrate 202 and the vibration-isolation platform 2011 of first substrate 201, like this, when the first substrate 201 that bears the micromirror chip 10 vibrates, through gap D
  • the die-film damping of the entire micromirror chip packaging structure can be improved, for example, the damping ratio of the entire two-degree-of-freedom system can reach 0.5 to 0.7, thereby further suppressing the vibration amplitude of the movable component 102 .
  • the thickness of the gap D along the stacking direction is 10 ⁇ m to 30 ⁇ m.
  • it may be 10 ⁇ m to 20 ⁇ m; for another example, it may be 15 ⁇ m to 30 ⁇ m.
  • other numerical ranges may also be selected.
  • the specific value of the gap D can be selected according to the final damping ratio of the entire two-degree-of-freedom system.
  • the gap D in FIG. 9 may contain gas, or a damping medium may be filled in the gap D, so as to further increase the damping coefficient.
  • the gap D can be filled with a liquid damping medium 301, for example, the liquid damping medium 301 can include grease (can be water-based acrylic emulsion, damping lubricating oil, etc.); another example, as shown in Figure 12
  • the gap D can be filled with a solid damping medium 302, for example, the solid damping medium 302 can include rubber, anisotropic conductive film (anisotropic conductive film, ACF) shock absorbing material, silica gel, Parylene vacuum coating (Parylene) , plastic, etc., for example, specifically, it can be butyl, acrylate, polysulfide, nitrile and silicone rubber, polyurethane, polyvinyl chloride and epoxy resin, etc., or it can be the above-mentioned solid damping medium
  • Other solid damping media are mixed in, examples include
  • gap D There are many possible ways to form the gap D.
  • FIG. 9, FIG. 11 and FIG. gap D For another example, in other optional implementation manners, grooves may be formed on the surface of the second substrate 202 facing the vibration isolation platform 2011 and the elastic beam 2012 , and the grooves form the gap D mentioned above.
  • the vibration along the stack Q direction of the vibration isolation platform 2011 for carrying the micromirror chip 10 can be reduced.
  • the first substrate 201 adopts a silicon substrate grooves can be easily opened on the silicon substrate, which is easier to realize in the process, and more It is easy to control the size of the groove to meet the design damping coefficient requirement.
  • the stacked first substrate 201 and second substrate 202 can be fixedly connected to the second substrate 202 by using the support frame 2013 of the first substrate 201, so that the first A substrate 201 and a second substrate 202 are relatively fixed.
  • the support frame 2013 and the second substrate 202 may be fixedly connected by an adhesive layer or by a bonding structure.
  • the size of the gap D along the stacking Q direction can be controlled more precisely. Because the size of the gap D along the stacking Q direction affects the damping ratio of the entire two-degree-of-freedom system, it is necessary to strictly make the size of the gap D along the stacking direction meet the design requirements during the process, otherwise the two-degree-of-freedom after assembly The system may not meet the design requirements.
  • the vibration isolation platform 2011 of the first substrate 201 and the second substrate 202 there are hollow areas on the bottom 202 , and the hollow areas are opposite to the movable part 102 to accommodate the movable part 102 .
  • the hollow area opened on the vibration isolation platform 2011 can be called the first hollow area 201a, and the first hollow area 201a penetrates the vibration isolation platform 2011;
  • the hollow area opened on the second substrate 202 can be called the second hollow area region 202 a , and the second hollowed out region 202 a penetrates through the second substrate 202 , and the second hollowed out region 202 a is opposite to the first hollowed out region 201 a , and the first hollowed out region 201 a is opposite to the movable component 102 .
  • the first hollow area 201a and the second hollow area 202a can avoid space for the moving movable part 102, preventing the first substrate 201 and the second substrate 202 from interfering with the movable part. Part 102 moves.
  • Fig. 13a and Fig. 13b show the simulation result diagram of the micromirror chip package structure of the present application
  • Fig. 13a and Fig. 13b are vibration mode diagrams in the simulation result.
  • the vibration mode provided in the present application increases the vibration mode shown in FIG. 13b.
  • what Fig. 13 a shows is that when the frequency is 905 Hz, the direction of motion of the micromirror chip 10 and the vibration isolation substrate 20, known from Fig.
  • the motion direction of the micromirror chip 10 and the vibration isolation substrate 20 is the same, because this The application introduces a vibration isolation substrate 20, and most of the vibration energy can be absorbed by the vibration isolation substrate 20, so that the deformation of the first torsion arm in the micromirror chip 10 becomes smaller.
  • What Fig. 13 b shows is that when the frequency is 1525Hz, the direction of motion of the micromirror chip 10 and the vibration isolation substrate 20, as seen from Fig.
  • the direction of motion of the micromirror chip 10 and the vibration isolation substrate 20 is opposite, the same, due to The present application introduces the vibration isolation substrate 20 , most of the vibration energy can be absorbed by the vibration isolation substrate 20 , and the deformation of the first torsion arm in the micromirror chip 10 is relatively small.
  • FIG. 14 shows the micromirror chip of the present application and the existing micromirror chip packaged without a vibration-isolation substrate, and the relationship between vibration frequency and displacement amplitude under 50G frequency sweep vibration simulation.
  • the curve Q1 is the curve of the relationship between the vibration frequency and the displacement amplitude of the micromirror chip in the prior art
  • the curve Q2 is the curve of the relationship between the vibration frequency and the displacement amplitude of the micromirror chip of the present application. From the comparison of curve Q1 and curve Q2, it can be seen that the vibration isolator can achieve an attenuation effect of -20db in the micromirror sensitive mode. Therefore, in this application, the vibration amplitude of the micromirror chip 20 can be significantly reduced by introducing the vibration isolation substrate 20 , reducing the probability of the first torsion arm 102 being damaged.
  • the shape of the micromirror chip 10, the first substrate 201 and the second substrate 202 can be a rectangular structure; The shape can be a circular structure. Of course, other shapes may also be used, which will not be exhaustive here.
  • the shapes of the micromirror chip 10 , the first substrate 201 and the second substrate 202 may be different. In other embodiments, the micromirror chip 10 , the first substrate 201 and the second substrate 202 may have the same shape as shown in FIG. 8 .
  • the elastic beams 2012 of the first substrate 201 can be arranged symmetrically with respect to the micromirror chip 10 ; for another example, it can also be arranged asymmetrically with respect to the micromirror chip 10 .
  • the elastic beam 2012 is arranged symmetrically with respect to the micromirror chip 10
  • the elastic beam 2012 can be formed in a variety of ways. As shown in FIG. 15 and FIG. 16 , one of the formation methods of the elastic beam 2012 is provided. Specifically, multiple beams can be formed on the first substrate 201 and outside the mounting position of the micromirror chip 10 through an etching process. a hollowed out area 40 , and the part of the first substrate 201 beside the hollowed out area 40 can form an elastic beam 2012 .
  • the arrangement position of the elastic beam 2012 has various situations.
  • the four corners of the rectangular first substrate 201 have elastic beams 2012.
  • elastic beams 2012 are also formed at the sides of the rectangular first substrate 201.
  • elastic beams 2012 may be disposed on some sides of the rectangular first substrate 201 , or elastic beams 2012 may be disposed on each side of the rectangular first substrate 201 .
  • no elastic beams 2012 are provided at the four corners of the rectangular first substrate 201 , but elastic beams 2012 are provided on each side of the rectangular first substrate 201 .
  • the present application does not limit the shape of the elastic beam 2012.
  • it includes the elastic beam 20121 in an "L" shape, and also includes the elastic beam 20122 in a straight line; for another example,
  • a "U"-shaped elastic beam 2012 is included, and the two "U"-shaped elastic beams 2012 can be arranged opposite to each other, that is, the opening parts of the "U"-shaped structure are arranged back to back.
  • the width dimension of the elastic beam 2012 can be unique and constant, or it can be the width dimension d1 of the elastic beam 20121 of the "L" type structure as shown in Figure 16, which is smaller than that of a straight line.
  • the width dimension d2 of the elastic beam 20122, that is, the width dimension of the elastic beam 2012 can be changed.
  • the present application does not make special restrictions on the shape, position, and formation method of the elastic beam 2012, and only needs to ensure that the elastic coefficient of the final two-degree-of-freedom system meets the design requirements.
  • the damping ratio of the two-degree-of-freedom system can be adjusted by changing the shape and position of the elastic beam, and changing the size of the gap, so that the isolation substrate 20 is suitable for different types of micromirror chips.
  • Figure 17 shows the comparison of vibration isolation effects of three vibration isolation substrates with different damping ratios.
  • the difference is that the curve Q11 is when no vibration isolation substrate is set.
  • the micromirror chip 10 needs to be electrically connected with the electronic components arranged on the outside of the micromirror chip packaging structure.
  • the micromirror chip 10 needs to be electrically connected with the controller on the circuit board, that is, through the controller
  • the micromirror in the micromirror chip 10 is controlled to rotate around the first torsion arm 103 or around the second torsion arm 1022 .
  • Fig. 18 shows the assembly structure diagram of micromirror chip 10 and vibration isolation substrate 20
  • Fig. 19 is the enlarged view of the partial structure of Fig.
  • micromirror chip 10 A first electrode 104 is arranged on the surface of the frame 101 away from the first substrate 201, and there is a second electrode 2014 on the surface of the vibration isolation platform 2011 of the first substrate 201 towards the micromirror chip 10, and the first electrode 104 It is electrically connected with the second electrode 2014 through the lead wire 30 .
  • the frame 101 and the vibration isolation platform 2011 are basically There will be no relative movement, thus, basically no large pulling force will be caused to the lead wire 30 connecting the first electrode 104 and the second electrode 2014 , so as to avoid damage to the lead wire 30 .
  • Figure 20 is a structural diagram of the first substrate 201
  • Figure 21 is an enlarged view of A1 in Figure 20, as shown in Figure 20 and Figure 21, the supporting frame 2013 of the first substrate 201
  • a third electrode 2015 on the surface facing the micromirror chip 10
  • a first metal wiring 2016 is also formed on the first substrate 201, and the first metal wiring 2016 is laid along the elastic beam 2012, the second electrode 2014 and The third electrode 2015 is electrically connected through the first metal wire 2016, and the third electrode 2015 is electrically connected with the external electronic components through the lead wire. In this way, the signal intercommunication between the micromirror chip and the external electronic components is realized.
  • the first metal trace 2016 is arranged along the elastic beam 2012. It can be understood that, for example, a hollow area for forming the elastic beam 2012 can be etched out on the first substrate 201. Then, the first metal trace 2016 can be The first substrate 201 is arranged along the side of the hollow area to electrically connect the second electrode 2014 and the third electrode 2015 .
  • Figure 22 is an enlarged view of A2 in Figure 20 Figure, can be provided with sensor 2017 on elastic beam 2012, and sensor 2017 is used for detecting the deformation amount of elastic beam 2012, so, in optional embodiment, sensor 2017 is arranged on the elastic beam 2012 that has larger deformation amount
  • the elastic beams 2012 located at the four corners of the first substrate 201 have a relatively large amount of deformation, that is, areas that are easily damaged. In this way, the sensor 2017 can be arranged in the corner area .
  • the present application does not limit the number of sensors 2017, for example, there may be one sensor, or there may be multiple sensors.
  • these multiple sensors 2017 may be arranged at different positions with larger deformation amounts.
  • two sensors 2017 are arranged, and the two sensors 2017 are arranged at two different corners.
  • the sensor 2017 for detecting the deformation of the elastic beam 2012 may be a piezoresistive sensor, or a capacitive sensor, or a sensor of other structures.
  • a piezoresistive sensor when used, it can be formed by ion implantation on the first substrate 201, or when a capacitive sensor is used, it can be formed by etching on the first substrate 201.
  • the sensor formed in this way is not only simple in structure, From a technological point of view, it is also easy to realize.
  • the senor needs to be electrically connected to the electronic components arranged outside the micromirror chip packaging structure, so, as shown in Figure 22, there can be a fourth electrode on the surface of the first substrate 201 towards the micromirror chip 10
  • a second metal wiring 2019 is formed on the first substrate 201
  • the sensor 2017 and the fourth electrode 2018 are electrically connected through the second metal wiring 2019, and the fourth electrode 2018 is electrically connected to an external electronic component, such as , is electrically connected to the controller.
  • an external electronic component such as
  • the installation position of the fourth electrode 2018 and the above-mentioned second electrode 2014 can be arranged on opposite sides of the first substrate 201 as shown in FIG. 20 , or they can be arranged on the same side of the first substrate 201 On the other hand, the arrangement positions of the fourth electrode 2018 and the second electrode 2014 are not limited here.
  • the fourth electrode 2018 can be set on the vibration isolation platform 2011 of the first substrate 201, or can be set on the support frame 2013 as shown in FIG. 22.
  • the second metal wire 2019 can be laid along the elastic beam 2012.
  • FIG. 23 shows an exploded schematic view of the packaging structure of the micromirror chip.
  • the first electrode 104 of the micromirror chip 10 needs to be electrically connected to the second electrode 2014 on the first substrate 201 using a lead wire 30 as described above.
  • the lead 30 is formed by a wire-bonding process, that is, two ends of the wire are respectively welded to the corresponding first electrode 104 and the second electrode 2014 .
  • the welding makes the first substrate 201 and the micromirror chip 10 larger warpage, as shown in FIG.
  • a support hole 202b is opened at the position, and the support hole 202b penetrates the second substrate 202 along the stacking direction Q, and the support hole 202b is used for the support platform to pass through, so that the support platform supports the frame 101 of the micromirror chip 10 and the first substrate 202.
  • the portion of the vibration isolation platform 2013 of the substrate 201 for setting the lead 30 that is to say, during the process, the most support point of the support table passing through the support hole 202b can be used to facilitate wire bonding, and to improve the distance between the lead wire 30 and the first electrode 104, and between the lead wire 30 and the second electrode 2014. electrical connection performance.
  • the micromirror chip 10 shown in FIG. 23 and the first substrate 201 are two mutually independent structural parts.
  • the micromirror chip 10 can be integrated on the first substrate 201 by using a connection structure.
  • a connection structure For example, it can be The micromirror chip 10 and the first substrate 201 are connected by adhesive, or the micromirror chip 10 and the first substrate 201 are connected by a bonding structure.
  • the micromirror chip 10 In order to make the micromirror chip 10 be arranged on the central area of the first substrate 201, as shown in Figure 23, there is an alignment mark 50 on the surface of the vibration isolation platform 2011 towards the micromirror chip 10, and the alignment mark 50 is used to align the micromirror chip 10 is positioned so that the micromirror chip 10 is disposed in the central area of the first substrate 201 . If the micromirror chip 10 deviates from the central area of the first substrate 201, a mode that prompts the first torsion arm 103 to break may be generated. Therefore, the alignment mark 50 provided by the present application can also more accurately position the micromirror. The chip 10 is disposed on the central area of the first substrate 201 .
  • the micromirror chip 10 is arranged in the central area of the first substrate 201 here, which can be understood as: the center of the micromirror chip 10 coincides with the center of the first substrate 201, or can be understood as shown in FIG. 23 As shown, when the micromirror chip 10 and the first substrate 201 are rectangular structures, the distances between the four sides of the micromirror chip 10 and the middle of the four corresponding sides of the first substrate 201 are equal, That is, the micromirror chip 10 with a rectangular structure is disposed in the central area of the first floor 201 .
  • the alignment mark 50 here can be formed by etching, electroplating and other processes. Of course, it can also be formed in other ways.
  • the alignment mark 50 can be set according to the shape of the micromirror chip 10, for example, when the micromirror chip 10 is a rectangular structure, it can be placed at the four corners of the corresponding micromirror chip 10 on the first substrate 201.
  • An alignment mark 50 is provided at each of the positions, and the alignment mark 50 can be an L-shaped alignment mark shown in FIG. 23 ; Corresponding to the circumferential direction of the micromirror chip 10, there are at least two alignment marks 50 arranged at intervals.
  • the micromirror chip 10 and the first substrate 201 are two structural components independent of each other.
  • the present application also provides another micromirror chip packaging structure.
  • the micromirror chip 10 and the first substrate 201 are integrally formed, and the integrated micromirror chip 10 , the first substrate 201 and the second substrate 202 are stacked.
  • the micromirror chip 10 and the first substrate 201 are integrally formed. It can be understood that the movable part 102, the first torsion arm 103 can be formed on the first substrate 201 through an etching process, and the The elastic beam 2012 is etched on it. If designed in this way, it can be compatible with the MEMS micromirror process, reduce the thickness dimension of the entire micromirror chip packaging structure, and can also reduce the processing and manufacturing cost of the micromirror chip packaging structure.
  • the wire bonding process may not be required. In this way, the support hole 202b needs to be opened on the second substrate 202 . Instead, the second electrode 2014 in FIG. 24 is electrically connected to the micromirror chip (for example, electrically connected to the driving coil), and the second electrode 2014 is electrically connected to the third electrode 2015 through the first metal wire 2016 .
  • the second substrate 202 can adopt a glass substrate, a ceramic substrate or a semiconductor substrate (for example, a silicon substrate, a silicon carbide substrate, etc.);
  • the first substrate 201 also can adopt glass substrate, ceramic substrate or semiconductor substrate etc.;
  • the first substrate 201 may be a semiconductor substrate.
  • first substrate 201 and the second substrate 202 may have substrate structures of the same material, or may adopt substrate structures of different materials.
  • the present application also provides a preparation method of a micromirror chip packaging structure, as shown in Figure 25, the preparation method mainly includes the following steps:
  • S11 Opening a groove and a first hollow area on the first substrate, and opening a second hollow area on the second substrate; wherein, the first hollow area penetrates the first substrate along the thickness direction of the first substrate, and the second hollow area penetrates the first substrate along the thickness direction of the first substrate.
  • the two hollow areas penetrate the second substrate along the thickness direction of the second substrate.
  • S12 stacking and connecting the first substrate and the second substrate, and the side surface of the first substrate having the groove is opposite to the second substrate, and the first hollowed out area is penetrated by the second hollowed out area.
  • 26a to 26l show the cross-sectional views of the process structure after each step in the process of manufacturing the micromirror chip package structure involved in the present application.
  • a photoresist layer 61 is formed on the second substrate 202 of glass material.
  • the photoresist layer 61 here may be a metal layer, for example, the photoresist layer 61 may be made of gold material.
  • the second substrate 202 of glass material may be cleaned, dried, etc. before forming the photoresist layer 61 .
  • the photoresist layer 61 is exposed and developed, and the photoresist layer 61 is etched by a chemical solution. That is, the photoresist layer 61 is patterned.
  • the second substrate 202 made of glass material is etched to form a second hollow area 202 a and a support hole 202 b penetrating through the second substrate 202 .
  • the photoresist layer 61 on the surface of the second substrate 202 is removed.
  • a groove 62 and a first hollow area 201 a are formed on a silicon-on-insulator (SOI) 201 , and the first hollow area 201 a penetrates through the silicon-on-insulator 201 .
  • SOI silicon-on-insulator
  • the first substrate 201 and the second substrate 202 are bonded, and the surface having the groove 62 of the first substrate 201 is opposite to the second substrate 202, the first hollowed out area 201a and the second hollowed out area The regions 202a are connected.
  • the insulating silicon wafer 201 is thinned, and a metal layer 63 is formed on the surface of the thinned insulating silicon wafer 201 away from the second substrate 202 .
  • the metal layer 63 here can also be made of gold material.
  • the metal layer 63 is exposed and developed, and the metal layer 63 is etched with a chemical solution to form the alignment mark 50 , the second electrode 2014 and the third electrode 2015 .
  • the elastic beam 2012 is etched on the second substrate 201 .
  • the micromirror chip 10 and the first substrate 201 are mounted in alignment. That is, the micromirror chip 10 is disposed on the first substrate 201 by using an adhesive layer.
  • the micromirror chip 10 shown in FIG. 26 j it includes a movable part 102 and a frame 101 , and a first torsion arm 103 connecting the movable part 102 and the frame 101 .
  • the movable component 102 needs to be opposite to the first hollowed out area 201 a of the first substrate 201 and the second hollowed out area 202 a of the second substrate 202 .
  • the support platform 64 is passed through the support hole 202b of the second substrate 202, and the lead wire 30 is electrically connected to the first electrode 104 and the second electrode 2014 of the micromirror chip 10 using a wire bonding process.
  • the support platform 61 can prevent the micromirror chip 10 or the first substrate 201 from warping or even damage to the micromirror chip 10 or the first substrate 201 caused by excessive stress during the wire bonding process.
  • the support platform 64 is removed to obtain a micromirror chip packaging structure.
  • Figures 26a to 26l may be part of the process structure diagram of the micromirror chip packaging structure, and in some process flows, more process flows may be added on the basis of Figure 26a to Figure 26l, or Some of the technological processes, or further refinement of some of the technological processes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本申请实施例提供一种微镜芯片封装结构、激光设备和汽车。涉及微机电技术领域。主要用于提供一种能够抑制微镜芯片振动幅度的微镜芯片封装结构。该微镜芯片封装结构包括微镜芯片、堆叠的第一衬底和第二衬底;微镜芯片设置在第一衬底的背离第二衬底的一侧;微镜芯片包括框架、可动部件和第一扭转臂,可动部件通过第一扭转臂与框架连接;第一衬底包括隔振平台、弹性梁和支撑框,微镜芯片设置在隔振平台上,隔振平台通过弹性梁与支撑框连接;支撑框与第二衬底固定连接,隔振平台和第二衬底之间形成有间隙;隔振平台和第二衬底上均存在镂空区域,镂空区域与可动部件相对。该微镜芯片封装结构是一种二自由度系统,用于隔振,提升微镜芯片性能。

Description

微镜芯片封装结构、激光设备以及汽车
本申请要求于2021年9月10日提交国家知识产权局、申请号为202111063339.2、发明名称为“微镜芯片封装结构、激光设备以及汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及微机电系统技术领域,尤其涉及一种微镜芯片封装结构、包含该微镜芯片封装结构的激光设备、具有激光设备的汽车。
背景技术
微机电系统(micro-electro-mechanical system,MEMS)微镜可以通过扭转来实现光束的一维或者二维扫描,并且,MEMS微镜是一种基于成熟的半导体加工工艺,可实现小型化和集成化的光束扫描方式,因其具有低成本、低能耗、高精度、大转角和高可靠性等特点,已被广泛应用于3D扫描、激光显示、激光雷达等领域。
图1a示出了一种可以实现二维光束扫描的MEMS微镜芯片结构,主要包括框架101、驱动线圈1021、微镜1023和第一扭转臂103,以及第二扭转臂1022,其中,驱动线圈1021通过沿图中X方向延伸的第一扭转臂103与框架101连接,微镜1023通过沿图中Y方向延伸的第二扭转臂1022与驱动线圈1021连接。这样的话,驱动线圈1021在洛伦磁力的作用下,可以带动微镜1023围绕相垂直的第一扭转臂103和第二扭转臂1022转动来实现光束的二维扫描。
在一些使用中,比如,图1a的MEMS微镜芯片用于激光雷达,可以配置在车身上,在车辆行驶中,车身容易产生振动,受车身振动影响,如图1b所示,驱动线圈1021和微镜1023会相对框架101在Z方向上发生较大位移,第一扭转臂103受到的应力可能会远高于材料屈服应力,进而,第一扭转臂103容易受力发生断裂损坏,影响MEMS微镜芯片的使用性能。
发明内容
本申请提供一种微镜芯片封装结构、包含该微镜芯片封装结构的激光设备,以及具有激光设备的汽车,主要目的提供一种能够抑制微镜芯片振动幅度的微镜芯片封装结构。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供了一种微镜芯片封装结构,该微镜芯片封装结构可以被应用在激光雷达的设备中。
该微镜芯片封装结构包括微镜芯片(也可以称为MEMS微镜芯片)、堆叠的第一衬底和第二衬底;微镜芯片设置在第一衬底的背离第二衬底的一侧;微镜芯片包括框 架、可动部件和第一扭转臂,可动部件通过第一扭转臂与框架连接;第一衬底包括隔振平台、弹性梁和支撑框,微镜芯片设置在隔振平台上,隔振平台通过弹性梁与支撑框连接;并且,支撑框与第二衬底固定连接,隔振平台和第二衬底之间形成有间隙;还有,隔振平台和第二衬底上均存在镂空区域,镂空区域与可动部件相对,以容纳活动的可动部件。
基于上述对本申请给出的微镜芯片封装结构的描述,可以看出,微镜芯片中的框架、可动部件和第一扭转臂形成一单自由度系统,由于该微镜芯片封装结构还包括隔振平台和支撑框,以及用于连接隔振平台和支撑框的弹性梁,即承载有微镜芯片的隔振平台、弹性梁和支撑框又形成另一单自由度系统,如此的话,本申请给出的微镜芯片封装结构是一种二自由度系统,那么,当微镜芯片封装结构受到外界的振动干扰时,不仅第一扭转臂可以吸收传递至可动部件的一部分振动能量,弹性梁还可以进一步的衰减传递至可动部件的振动能量,从而可以降低可动部件的振动幅度,降低可动部件被损坏的可能性。
还有,由于在隔振平台和第二衬底之间具有间隙,进而使得承载有微镜芯片的隔振平台在运动过程中产生较大的压膜阻尼,以抑制隔振平台的振动幅度,进一步的降低可动部件的振动量。
除此之外,在隔振平台和第二衬底的与可动部件相对的位置处均开设有镂空区域,该镂空区域可以为运动的可动部件避让空间,且可以使得可动部件在运动过程中产生阻尼,以降低可动部件的振动幅度。
在第一方面可能的实现方式中,间隙内填充有阻尼介质。
即通过填充的阻尼介质可以进一步的耗散可动部件的运动能量,从而,进一步降低可动部件的振动幅度。
在第一方面可能的实现方式中,阻尼介质包括液态阻尼介质和/或固态阻尼介质。一种示例是间隙内仅填充有液态阻尼介质,比如,可以是油脂;再一种示例是间隙内填充有固态阻尼介质,比如,可以是橡胶、异方性导电胶膜(anisotropic conductive film,ACF)减震材料、硅胶、派瑞林真空镀膜(Parylene)、塑胶等中的至少一种隔振吸能材料;又一种示例是不仅填充有液态阻尼介质,还填充有固态阻尼介质。
通过在间隙内填充具有隔振吸能作用的液态介质或者固态介质,可以进一步提升该封装结构的阻尼比,提升隔振效果。
在第一方面可能的实现方式中,隔振平台和弹性梁的朝向第二衬底的表面形成有凹槽,凹槽形成间隙。
也就是说,在可实现的工艺中,可以在第一衬底的朝向第二衬底的面上开设凹槽,以使得隔振平台和第二衬底之间具有可以吸收能量的阻尼间隙。这样设计的话,可以减薄隔振平台的厚度尺寸,提升隔振平台的弹性模量,可以进一步的提高该第一衬底吸收的振动能量,进而,进一步的减少可动部件的振动量。还有,从工艺角度讲,比如,当第二衬底选择玻璃制得,第一衬底选择半导体材料制得时,相比在玻璃衬底上开设凹槽,在半导体衬底上开设凹槽,在工艺上更容易实现,并且更容易控制凹槽的尺寸大小,以满足设计的阻尼系数。
在第一方面可能的实现方式中,弹性梁关于微镜芯片对称设置在隔振平台的外围。
若将弹性梁关于微镜芯片对称布设,相比不对称设置,可以避免生成更容易使得第一扭转臂断裂的模态,所以,通过将弹性梁关于微镜芯片对称布设的话,不会引入其他杂乱的模态。
在第一方面可能的实现方式中,框架背离第一衬底的表面上存在第一电极,隔振平台的朝向微镜芯片的表面上存在第二电极,第一电极与第二电极通过引线电连接。
这里的第一电极可以是与可动部件连接,比如,可以是与可动部件中的驱动线圈电连接,用于给驱动线圈传输驱动信号和用于将驱动线圈的反馈信号朝外传输。
由于第一电极设置在框架上,将与第一电极电连接的第二电极设置在与框架固定连接的隔振平台上,在具体使用过程中,隔振平台和框架的振动方向基本一致,这样的话,即使第一电极与第二电极通过打线(wire-bonding)工艺形成的引线电连接,引线基本也不会因为多次振动,出现断线现象,提升该引线的使用性能。
在第一方面可能的实现方式中,支撑框的朝向微镜芯片的表面上存在第三电极,第一衬底上还形成有第一金属走线,且第一金属走线沿着弹性梁布设,第二电极和第三电极通过第一金属走线电连接。
这里的第三电极可以与外置于微镜芯片封装结构外部的电子元器件电连接,进而,可动部件通过第一电极、引线、第二电极、第一金属走线和第三电极与外置的电子元器件电连接。
在该实施例中,用于电连接第二电极和第三电极的第一金属走线沿着弹性梁布设,这样,既不会影响弹性梁的隔振效果,实施工艺还简单,以实现第二电极和第三电极之间的信号传输。
在第一方面可能的实现方式中,弹性梁上设置有至少一个传感器,传感器用于检测弹性梁的形变量;第一衬底的朝向微镜芯片的表面上存在第四电极,第一衬底上还形成有第二金属走线,传感器和第四电极通过第二金属走线电连接。
在该微镜芯片封装结构的工作过程中,弹性梁因为弹性变形会产生较大的应力,那么,在弹性梁上设置用于检测其形变量的传感器,并通过第二金属走线和第四电极与置于微镜芯片封装结构的控制器电连接,以监测给该微镜芯片封装结构施加振动的振动量级或者可以监测弹性梁的结构状态,即弹性梁处于被破坏状态还是处于完好状态。
在第一方面可能的实现方式中,传感器具有多个,且多个传感器关于微镜芯片对称设置在弹性梁上。
若传感器具有多个时,这些多个传感器可以沿着弹性梁对称布设,以检测多个易损坏区域的形变量。
在第一方面可能的实现方式中,微镜芯片和第一衬底为彼此独立的结构,且微镜芯片通过连接结构设置在隔振平台上。
即微镜芯片和第一衬底是两个结构件,进而,在微镜芯片封装结构封装时,可以采用粘结胶层或者键合结构将微镜芯片设置在隔振平台上。
在第一方面可能的实现方式中,框架背离第一衬底的表面上存在第一电极,隔振平台的朝向微镜芯片的表面上存在第二电极,第一电极与第二电极通过引线连接;第二衬底的与引线相对的位置处开设有支撑孔,且支撑孔沿第一衬底和第二衬底的堆叠 方向贯通第二衬底,支撑孔用于供支撑台穿过,以使得支撑台支撑框架和隔振平台的用于设置引线的部分。
当微镜芯片和第一衬底为两个相独立的结构时,需要采用打线工艺将第一电极和第二电极电连接,又由于微镜芯片和第一衬底的厚度都比较薄,若直接进行打线,可以会引起微镜芯片或者第一衬底翘曲,甚至微镜芯片或者第一衬底被损坏,那么,由于本申请给出了支撑孔,进而,在进行打线时,可以采用支撑台穿过支撑孔,将微镜芯片和第一衬底的打线的部分支撑住,这样的话,就可以抑制翘曲、变形程度。在完成打线工艺后,就可以将支撑台去掉。
在第一方面可能的实现方式中,隔振平台的朝向微镜芯片的表面上存在对位标记,对位标记用于对微镜芯片进行定位,以使得微镜芯片设置在第一衬底的中心区域。
也就是封装微镜芯片时,可以依照对位标记将微镜芯片定位,促使微镜芯片固定在设计的位置处。使得微镜芯片设置在第一衬底的中心区域,若微镜芯片偏离中心区域,可能会滋生出促使第一扭转臂断裂的模态。
在第一方面可能的实现方式中,该对位标记可以采用刻蚀、电镀等工艺形成。
在第一方面可能的实现方式中,微镜芯片和第一衬底为一体成型结构。
从工艺角度讲,就是在一个衬底上不仅形成微镜芯片,还要形成弹性梁和支撑框、隔振平台等结构,这样可以减少结构件数量,提升集成度,降低制造成本。
在第一方面可能的实现方式中,支撑框与第二衬底通过键合结构连接。
采用键合工艺连接支撑框和第二衬底,可以比较精准的控制隔振平台和第二衬底之间的间隙的大小,以使得形成的间隙满足设计要求,使得该二自由度系统的弹性系数符合设计要求。
在第一方面可能的实现方式中,间隙沿第一衬底和第二衬底的堆叠方向的尺寸为10μm至30μm。比如,可以为10μm至20μm;再比如,可以为15μm至30μm;
在第一方面可能的实现方式中,第一衬底包括玻璃衬底、陶瓷衬底或者半导体衬底;所述第二衬底包括玻璃衬底、陶瓷衬底或者半导体衬底。
这里的第一衬底和第二衬底的材料可以是相同的,也可以是不同的。
在第一方面可能的实现方式中,可动部件包括:微镜和驱动线圈,微镜通过第二扭转臂与驱动线圈连接,驱动线圈通过第一扭转臂与框架连接;其中,第一扭转臂和第二扭转臂相垂直,且分别垂直于堆叠方向。
也就是说,当可动部件包括微镜和驱动线圈、以及第二扭转臂时,形成的微镜芯片可以实现二维光束扫描。
在第一方面可能的实现方式中,这里的微镜可以是磁电微镜、静电微镜、压电微镜中的至少一种。
第二方面,本申请提供了一种激光设备,该激光设备包括电路板和第一方面任一可实现方式中的微镜芯片封装结构,并且,电路板与微镜芯片封装结构中的微镜芯片电连接。本申请给出的激光设备中,由于包含了上述第一方面的微镜芯片封装结构,那么,该激光设备在实现激光扫描的基础上,当外界给该激光设备施加振动时,因为该微镜芯片封装结构是一种二自由度系统,不仅第一扭转臂可以吸收一部分振动能量,弹性梁还可以进一步的衰减振动能量,从而可以降低可动部件的振动幅度,降低可动 部件被损坏的可能性,提升该激光设备的使用性能。在第二方面可能的实现方式中,激光设备还包括激光器,微镜芯片封装结构用于反射激光器发射的激光。
第三方面,本申请提供了一种汽车,该汽车包括车辆本体和第二方面任一可实现方式中的激光设备,并且,激光设备设置在车辆本体上。
本申请第三方面实施例提供的汽车包括第二方面实施例的激光设备,因此本申请实施例提供的汽车与上述技术方案的激光设备能够解决相同的技术问题,并达到相同的预期效果。
附图说明
图1a为现有技术的一种微镜芯片的结构图;
图1b为现有技术的一种微镜芯片处于振动模态时的结构图;
图2为一种激光设备的结构图;
图3为一种实现一维光束扫描的微镜芯片的结构图;
图4为一种微镜芯片的结构图;
图5为一种微镜芯片处于扭转模态时的简单示意图;
图6为一种微镜芯片处于振动模态时的简单示意图;
图7为本申请实施例提供的一种微镜芯片封装结构的分解示意图;
图8为本申请实施例提供的一种微镜芯片封装结构的分解示意图;
图9为本申请实施例提供的一种微镜芯片封装结构的剖面图;
图10为本申请实施例提供的一种用于体现微镜芯片封装结构为二自由度系统的简单示意图;
图11为本申请实施例提供的一种微镜芯片封装结构的剖面图;
图12为本申请实施例提供的一种微镜芯片封装结构的剖面图;
图13a为本申请实施例提供的一种微镜芯片封装结构的一种振动模态的仿真图;
图13b为本申请实施例提供的一种微镜芯片封装结构的另一种振动模态的仿真图;
图14为本申请实施例提供的一种微镜芯片和现有的微镜芯片的位移幅值对比曲线图;
图15为本申请实施例提供的一种不同系统中的微镜芯片的位移幅值对比曲线图;
图16为本申请实施例提供的一种微镜芯片封装结构中一种弹性梁的结构图;
图17为本申请实施例提供的一种微镜芯片封装结构中另一种弹性梁的结构图;
图18为本申请实施例提供的一种微镜芯片封装结构的装配图;
图19为本申请实施例提供的一种微镜芯片封装结构的部分装配图;
图20为本申请实施例提供的一种微镜芯片封装结构中第一衬底的结构图;
图21为图20的A1处放大图;
图22为图20的A2处放大图;
图23为本申请实施例提供的一种微镜芯片封装结构的分解图;
图24为本申请实施例提供的一种微镜芯片封装结构的分解图;
图25为本申请实施例提供的一种微镜芯片封装结构的制备方法的流程框图;
图26a至图26l为本申请实施例提供的一种微镜芯片封装结构的制备方法中相对 应的步骤完成后的工艺结构图。
附图标记:
10、001-微镜芯片;
101-框架;102-可动部件;103-第一扭转臂;104-第一电极;
1021-驱动线圈;1022-第二扭转臂;1023-微镜;
20-隔振衬底;
201-第一衬底、绝缘硅片;
2011-隔振平台;2012、20121、20122-弹性梁;2013-支撑框;2014-第二电极;2015-第三电极;2016-第一金属走线;2017-传感器;2018-第四电极;2019-第二金属走线;
202-第二衬底;
201a-第一镂空区域;
202a-第二镂空区域;
202b-支撑孔;
30-引线;
301-液态阻尼介质;
302-固态阻尼介质;
40-镂空区域;
50-对位标记;
61-光刻胶层;
62-凹槽;
63-金属层;
002-激光器;
003-准直器;
004-目标物体;
005-透镜;
006-接收器。
具体实施方式
在介绍本申请涉及的实施例之前,先介绍下本申请涉及的技术术语。
模态:是结构系统的固有振动特性。线性系统的自由振动被解耦合为N(N为大于或者等于1的正整数)个正交的单自由度振动系统,对应系统的N个模态。每一个模态具有特定的固有频率、阻尼比和模态振型。
下面结合本申请实施例中的附图对本申请以下各个实施例进行描述。
在自动驾驶汽车、智能机器人、虚拟现实设备(virtual reality,VR)、增强现实(augmented reality,AR)等智能系统中,均可以包括激光设备。比如,将激光设备设置在自动驾驶汽车上,该激光设备可以提供一个完整的360度全景视图,它使用激光脉冲的形式实现车辆周边环境的可视化。
图2为一种激光设备的结构示意图。如图2所示,该激光设备包括:激光器002和微镜芯片001,激光器002发出的脉冲光信号经过准直器003准直整形,照射在微 镜芯片001的微镜1023上,微镜1023快速转动,将光信号扫描发射到周围的目标物体004上,扫描光经目标物体004反射后通过透镜005汇聚,接着被接收器006所接收,完成对周围环境的探测。
在图2所示的激光设备中,微镜1023可以实现二维光束扫描。具体的,见图2,微镜1023可以绕直线L1转动,以及还可以绕与直线L1相垂直的直线L2转动,以实现二维扫描。图2所示微镜芯片001的结构可以参照图1a和图1b详细解释,也就是,微镜1023通过第二扭转臂1022与驱动线圈1021连接,驱动线圈1021通过第一扭转臂103与框架101连接。
图3示出了另一种微镜芯片001的结构图,在该结构中,包括微镜1023、第一扭转臂103、驱动线圈1021和框架101;其中,微镜1023通过第一扭转臂103与驱动线圈1021连接,驱动线圈1021与框架101固定连接。这样的话,驱动线圈1021在洛伦磁力的作用下,可以促使微镜1023围绕第一扭转臂103相对框架100转动,来实现光束的一维扫描。
可以这样理解,图2和图3所示微镜芯片001的结构可以概括为图4所示结构,即微镜芯片001主要包括框架101、可动部件102和第一扭转臂103,可动部件102通过第一扭转臂103与框架101连接。当微镜芯片001为一维扫描微镜芯片时,这里的可动部件102可以包括微镜1023;当微镜芯片001为二维扫描微镜芯片时,这里的可动部件102除包括微镜1023之外,还可以包括驱动线圈1021,以及连接驱动线圈1021和微镜1023的第二扭转臂1022。
无论是图2所示的二维扫描微镜芯片001,还是图3所示的一维扫描微镜芯片001,在工作时,其运动模态可以包括扭转模态与振动模态。
其中,图4为微镜芯片001在扭转模态下的工作状态示意图,图5为图4中的简化结构示意图。结合图4和图5所示,在扭转模态下,可动部件102绕第一扭转臂103(即沿图中的P方向)转动,转动的角度与微镜芯片001受到的扭转力有关。
另外,图6为微镜芯片在振动模态下的简化结构示意图。如图6所示,在振动模态下,可动部件102和第一扭转臂103相对框架101发生振动,振动的幅值与微镜芯片的振动力度有关。
由于微镜芯片001为对称结构,在扭转模态下,转动的加速度产生的力矩关于微镜芯片001对称,可以相互抵消,并且微镜本身设计是工作于转动模式,微镜芯片对于扭转的耐受程度较高,微镜芯片不易产生过大的形变或转动。
对于振动模态,冲击振动的加速度产生的力会完全作用于微镜芯片001,无法互相抵消,当冲击振动量级比较大时,很容易导致第一扭转臂103发生过大形变、损坏。比如,当激光设备设置在汽车或智能机器人上时,在工作状态下,汽车或智能机器容易产生低频的振动,受上下振动模态影响,在冲击、振动测试中会如图6所示的Z方向上会发生较大形变位移,第一扭转臂103受到的应力会远高于材料屈服应力,第一扭转臂103可能会发生断裂损坏,无法通过车规测试或智能机器人防震测试。
本申请实施例提供一种包含微镜芯片10的微镜芯片封装结构,在不影响微镜芯片10光束扫描的情形下,解决冲击震动时,微镜芯片10受到过大应力发生损坏的问题。
图7为本申请实施例提供的一种微镜芯片封装结构的分解示意图,图8为将图7 进一步分解后的示意图。如图7和图8所示,该微镜芯片封装结构除包括微镜芯片10之外,还包括与微镜芯片10堆叠设置的隔振衬底20,即微镜芯片10被封装在隔振衬底20上。
其中,微镜芯片10可以包括图8所示的框架101和可动部件102,以及第一扭转臂103,并且,可动部件102通过第一扭转臂103与框架101连接。上述已经对这里的可动部件102所包含的结构进行了解释,在此不再赘述。
如图9,图9是本申请给出的微镜芯片封装结构的剖面图。结合图8和图9,隔振衬底20包括第一衬底201和第二衬底202,第一衬底201和第二衬底202沿图9所示的Q方向堆叠,且微镜芯片10设置在第一衬底201的背离第二衬底202的一侧,也就是说,微镜芯片10、第一衬底201和第二衬底202沿Q方向依次堆叠设置。
另外,再如图9,第一衬底201包括隔振平台2011、弹性梁2012和支撑框2013,微镜芯片10设置在隔振平台2011上,隔振平台2011通过弹性梁2012与支撑框2013连接。
由图8所示的微镜芯片10可以看出,由于可动部件102通过第一扭转臂103与框架101连接,这样的话,微镜芯片10为一个单自由度系统。再如图9,承载有微镜芯片10的隔振平台2011通过弹性梁2012与支撑框2013连接,从而,承载有微镜芯片10的隔振平台2011、弹性梁2012和支撑框2013又形成一单自由度系统。所以,参照图10,本申请给出的微镜芯片封装结构为一种二自由度系统,图10中的m2包含可动部件102的质量,与m2连接的弹性件T2示为图8中的第一扭转臂103,m1包含微镜芯片10的质量和隔振平台2011的质量之和,与m1连接的弹性件T1示为图9中的弹性梁2012。
本申请的微镜芯片封装结构如图10所示的为一种二自由度系统时,那么,当外界使得该微镜芯片封装结构振动时,不仅与可动部件102连接的第一扭转臂103可以吸收一部分振动能量,弹性梁2012还可以吸收一部分振动能量,这样的话,就会明显的降低可动部件102的振动幅度,降低第一扭转臂103损坏的可能性,提高微镜芯片的抗冲击和振动性能。另外,在封装工艺中,比如,将该微镜芯片封装结构与磁铁(用于给驱动线圈提供磁性)通过外部结构封装时,通过引入的隔振衬底,可以降低封装及使用过程中在微镜芯片封装结构与外部产生残余应力,从而可以提高该微镜芯片封装结构的可靠性能。
除此之外,本申请只需对用于封装微镜芯片10的隔振衬底20做改进,不需要引入其他的隔振器件,从而,在实现隔振效果的基础上,还不会将整个微镜芯片封装结构复杂化,除此之外,也不会引入较多的模态。
需要解释的是,本申请涉及的降低可动部件102的振动幅度,不仅包含了如图8所示的沿Z方向的振动幅度,还可以包括图8所示的沿X方向和Y方向的振动幅度。
在图8所示的X-Y-Z坐标系中,可动部件102的沿Z方向的振动不仅包括沿图8的正方向的振动,也包括沿与正方向相反的负方向的振动。同理的,可动部件102的沿X方向和Y方向的振动,可以参照沿Z方向振动的解释。
继续参照图9,第二衬底202和第一衬底201的隔振平台2011之间形成有间隙D,这样的话,当承载有微镜芯片10的第一衬底201振动时,通过间隙D可以提高整个 微镜芯片封装结构的压膜阻尼,比如,可以使得整个二自由度系统的阻尼比达到0.5至0.7,从而进一步的抑制可动部件102的振动幅度。
在一些实施方式中,间隙D的沿堆叠方向的厚度为10μm至30μm。比如,可以为10μm至20μm;再比如,可以为15μm至30μm。当然,也可以选择其他数值范围。间隙D的具体数值可以根据最终整个二自由度系统的阻尼比选择。
图9中的间隙D中可以包含气体,也可以在间隙D内填充阻尼介质,以进一步的增大阻尼系数。示例的,如图11所示,可以在间隙D中填充液态阻尼介质301,比如,液态阻尼介质301可以包括油脂(可以是水性丙烯酸乳液、阻尼润滑油等);再示例的,如图12所示,可以在间隙D中填充固态阻尼介质302,比如,固态阻尼介质302可以包括橡胶、异方性导电胶膜(anisotropic conductive film,ACF)减震材料、硅胶、派瑞林真空镀膜(Parylene)、塑胶等中的至少一种,例如,具体的可以是丁基、丙烯酸酯、聚硫、丁腈和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂等,或者可以是在上述的固态阻尼介质中掺入其他固态阻尼介质,示例的,包括铜-锌-铝系、铁-铬-钼系和锰-铜系合金等;又示例的,可以在间隙D中填充包含液态阻尼介质301和固态阻尼介质302的混合阻尼介质。
形成间隙D的可实现方式具有多种。比如,在一些可选择的实施方式中,如图9、图11和图12所示,隔振平台2011和弹性梁2012的朝向第二衬底202的表面形成有凹槽,凹槽形成所述的间隙D。再比如,在另外一些可选择的实施方式中,可以在第二衬底202的朝向隔振平台2011和弹性梁2012的表面上形成凹槽,该凹槽形成所述的间隙D。
当采用图9所示的在隔振平台2011和弹性梁2012的朝向第二衬底202的表面形成凹槽时,可以减少用于承载微镜芯片10的隔振平台2011的沿堆叠Q方向的厚度尺寸,提升隔振平台2011的弹性模量,可以进一步的提高该第一衬底201吸收的振动能量,进而,进一步的减少可动部件102的振动量;另外,从工艺角度讲,在第一衬底201上更容易开槽,以形成凹槽,比如,第一衬底201采用硅衬底时,可以很容易的在硅衬底上开设凹槽,在工艺上更容易实现,并且更容易控制凹槽的尺寸大小,以满足设计的阻尼系数要求。
再结合图9、图11和图12所示,堆叠的第一衬底201和第二衬底202,可以采用第一衬底201的支撑框2013与第二衬底202固定连接,以使得第一衬底201和第二衬底202相对固定。
支撑框2013与第二衬底202固定连接的方式可以采用粘结胶层连接,也可以采用键合结构连接。例如,当采用键合结构连接支撑框2013和第二衬底202时,可以比较精准的控制间隙D的沿堆叠Q方向的尺寸。因为间隙D的沿堆叠Q方向的尺寸大小影响整个二自由度系统的阻尼比,所以,在工艺过程中,需要严格使间隙D沿堆叠方向的尺寸大小符合设计要求,否则装配后的二自由度系统可能就会不符合设计要求。
为了避免第一衬底201和第二衬底202干涉活动的可动部件102,如图8、图9、图11和图12所示,第一衬底201的隔振平台2011和第二衬底202上均存在镂空区域,镂空区域与可动部件102相对,以容纳活动的可动部件102。开设在隔振平台2011上的镂空区域可以被称为第一镂空区域201a,且第一镂空区域201a贯通隔振平台2011; 开设在第二衬底202上的镂空区域可以被称为第二镂空区域202a,且第二镂空区域202a贯通第二衬底202,还有,第二镂空区域202a与第一镂空区域201a相对,第一镂空区域201a与可动部件102相对。如此的话,当可动部件102在活动时,第一镂空区域201a和第二镂空区域202a可以为活动的可动部件102避让出空间,防止第一衬底201和第二衬底202干涉可动部件102运动。
图13a和图13b给出了本申请的微镜芯片封装结构的仿真结果图,并且,图13a和图13b均是仿真结果中的振动模态图。相比现有技术的单自由度微镜芯片封装结构,本申请给出的振动模态增加了图13b示出的振动模态。其中,图13a示出的是频率为905Hz时,微镜芯片10与隔振衬底20的运动方向,由图13a得知,微镜芯片10与隔振衬底20的运动方向相同,由于本申请引入了隔振衬底20,大部分的振动能量可以被隔振衬底20吸收,从而使得微镜芯片10中的第一扭转臂的变形量变小。图13b示出的是频率为1525Hz时,微镜芯片10与隔振衬底20的运动方向,由图13b看出,微镜芯片10与隔振衬底20的运动方向相反,同样的,由于本申请引入了隔振衬底20,大部分的振动能量可以被隔振衬底20吸收,微镜芯片10中的第一扭转臂的变形量较小。
图14示出了本申请的微镜芯片及现有的没有隔振衬底封装的微镜芯片,在50G的扫频振动仿真下振动频率和位移幅值之间的关系。其中,曲线Q1为现有技术的微镜芯片的振动频率和位移幅值之间关系的曲线,曲线Q2为本申请的微镜芯片的振动频率和位移幅值之间关系的曲线。从曲线Q1和曲线Q2对比可以看出,看到隔振器在微镜敏感模态可以实现-20db的衰减效果。所以,在本申请中,通过引入隔振衬底20可以明显的降低微镜芯片20的振幅,降低第一扭转臂102被破坏的几率。
微镜芯片10、第一衬底201和第二衬底202的形状具有多种情况。示例的,如图8,微镜芯片10、第一衬底201或者第二衬底202的形状可以为矩形结构;再示例的,微镜芯片10、第一衬底201或者第二衬底202的形状可以为圆形结构。当然,也可以为其他形状,在此不再穷举。
在一些实施方式中,微镜芯片10、第一衬底201和第二衬底202的形状可以不相同。在另外一些实施方式中,微镜芯片10、第一衬底201和第二衬底202可以如图8所示的形状相同。
第一衬底201的弹性梁2012的布设方式具有多种。比如,可以关于微镜芯片10对称布设;再比如,也可以关于微镜芯片10不对称布设。当弹性梁2012关于微镜芯片10对称布设时,可以避免生成容易使得第一扭转臂103断裂的模态,即不会引入其他杂乱的模态,不会使得整个二自由度系统的模态复杂化。
弹性梁2012具有多种可以形成的方式。如图15和图16所示的,给出了弹性梁2012的其中一种形成方式,具体的,可以在第一衬底201上且位于微镜芯片10安装位置的外部通过刻蚀工艺形成多个镂空区域40,第一衬底201的位于镂空区域40旁侧的部分可以形成弹性梁2012。
弹性梁2012的布设位置具有多种情形。在一些实施方式中,如图15,矩形的第一衬底201的四个角落均具有弹性梁2012,除此之外,矩形的第一衬底201的侧边位置也形成有弹性梁2012,在一些设计中,可以在矩形的第一衬底201的部分侧边设置 弹性梁2012,也可以在矩形的第一衬底201的每一侧边设置弹性梁2012。在另一些实施方式中,如图16,矩形的第一衬底201的四个角落均没有设置弹性梁2012,而是在矩形的第一衬底201的每一侧边均设置弹性梁2012。
还有,本申请对弹性梁2012的形状也不做限定,比如,在图15中,包含了呈“L”型结构的弹性梁20121,还包括了呈直线状的弹性梁20122;再比如,在图16中,包含了呈“U”型结构的弹性梁2012,并且,这里的两个“U”型结构的弹性梁2012可以相背设置,即“U”型结构的开口部分背靠背设置。
在一个微镜芯片封装结构中,弹性梁2012的宽度尺寸可以是唯一的、不变的,也可以是如图16所示的“L”型结构的弹性梁20121的宽度尺寸d1,小于直线状的弹性梁20122的宽度尺寸d2,即弹性梁2012的宽度尺寸是可以变化的。
基于上述描述,本申请对弹性梁2012的形状、位置、形成方式等不做特殊限定,只需要保障最终的二自由度系统的弹性系数符合设计要求即可。
在设计时,可以通过改变弹性梁的形状、位置,以及改变间隙大小来调整二自由度系统的阻尼比,使得隔离衬底20适用于不同类型的微镜芯片。
图17给出的三种具有不同阻尼比的隔振衬底的隔振效果对比。其中,这三种不同系统相同的是在劲度系数K=4500N/m,一阶固有频率为861Hz,二阶固有频率为1348Hz条件下,不同的是曲线Q11是没有设置隔振衬底时,微镜芯片的位移幅值曲线;曲线Q12是具有隔振衬底,且阻尼比C1=0.1Kg/S时,微镜芯片的位移幅值曲线;曲线Q13是具有隔振衬底,且阻尼比C1=0.5Kg/S时,微镜芯片的位移幅值曲线;由三条曲线Q11、Q12和Q13对比可以看出,通过改变弹性梁结构、位置或者间隙大小使得阻尼比越大时,隔振效果越好,比如,当阻尼比C1=0.5Kg/S时,相比没有设置隔振衬底的二自由度系统可以实现-18dB的衰减。
在具体实施时,微镜芯片10是需要与设置在该微镜芯片封装结构外部的电子元器件电连接的,比如,微镜芯片10需要与电路板上的控制器电连接,即通过控制器控制微镜芯片10中的微镜围绕第一扭转臂103或者围绕第二扭转臂1022转动。这样的话,如图18和图19所示,图18示出了微镜芯片10和隔振衬底20的装配结构图,图19是图18的部分结构的放大图,其中,微镜芯片10的框架101的背离第一衬底201的表面上设置有第一电极104,在第一衬底201的隔振平台2011的朝向微镜芯片10的表面上存在第二电极2014,第一电极104与第二电极2014通过引线30电连接。
由于微镜芯片10设置在隔振平台2011上,并且微镜芯片10的框架101与隔振平台2011相对固定,这样,外界对微镜芯片封装结构施加振动时,框架101与隔振平台2011基本不会产生相对移动,从而,基本不会对连接第一电极104和第二电极2014的引线30造成较大的拉力,避免对引线30造成破坏。
还有,再如图20和图21,图20是第一衬底201的结构图,图21是图20的A1处放大图,如图20和图21,第一衬底201的支撑框2013的朝向微镜芯片10的表面上存在第三电极2015,第一衬底201上还形成有第一金属走线2016,且第一金属走线2016沿着弹性梁2012布设,第二电极2014和第三电极2015通过第一金属走线2016电连接,第三电极2015再通过引线与外置的电子元器件电连接。这样的话,就实现了微镜芯片与外置的电子元器件的信号互通。
这里的第一金属走线2016沿着弹性梁2012布设,可以理解为,比如,可以在第一衬底201刻蚀出用于形成弹性梁2012的镂空区域,那么,第一金属走线2016可以沿着镂空区域的旁侧的第一衬底201布设,以电连接第二电极2014和第三电极2015。
该微镜芯片封装结构在使用时,为了能够检测到弹性梁2012的形态,即是处于被破坏、断裂的形态,还是完好的形态,如图22所示,图22是图20的A2处放大图,可以在弹性梁2012上设置有传感器2017,传感器2017用于检测弹性梁2012的形变量,所以,在可选择的实施方式中,将传感器2017设置在弹性梁2012的具有较大变形量的位置处,如图22所示的,位于第一衬底201的四个角落的弹性梁2012具有较大的变形量,也就是容易损坏的区域,这样的话,就可以将传感器2017设置在角落区域。
本申请对传感器2017的数量不做限定,例如,可以是一个,或者,也可以是多个。当具有多个传感器2017时,这些多个传感器2017可以布设在不同的具有较大变形量的位置处。如图22所示的结构中,设置了两个传感器2017,并且该两个传感器2017均设置在两个不同的角落处。
这里的用于检测弹性梁2012形变量的传感器2017可以是压阻传感器,或者可以是电容传感器,也可以是其他结构的传感器。
例如,当采用压阻传感器时,可以在第一衬底201上通过离子注入方式形成,或者采用电容传感器时,可以通过在第一衬底201上刻蚀形成,这样形成的传感器不仅结构简单,从工艺角度讲,也便于实现。
在具体实施时,需要将传感器与设置在微镜芯片封装结构外部的电子元器件电连接,那么,如图22,可以在第一衬底201的朝向微镜芯片10的表面上存在第四电极2018,第一衬底201上还形成有第二金属走线2019,传感器2017和第四电极2018通过第二金属走线2019电连接,第四电极2018与外置的电子元器件电连接,比如,与控制器电连接,这样话,通过检测弹性梁2012的形变量,以监测外界的振动量级和弹性梁2012的形态。
第四电极2018的设置位置和上述的第二电极2014的设置位置可以是图20所示的布设在第一衬底201相对的两侧边,也可以是设置在第一衬底201的同一侧边,在此不对第四电极2018和第二电极2014的设置位置限定。
还有,第四电极2018可以设置在第一衬底201的隔振平台2011上,也可以如图22所示的设置在支撑框2013上,当设置在支撑框2013上时,第二金属线2019可以沿着弹性梁2012布设。
图23示出了微镜芯片封装结构的分解示意图,如图23,上述阐述了微镜芯片10的第一电极104需要采用引线30与第一衬底201上的第二电极2014电连接,这里的引线30是通过打线(wire-bonding)工艺形成,也就是采用导线将其两端分别与相对应的第一电极104和第二电极2014焊接。为了避免在进行打线工艺,造成焊接不良,或者因为焊接使得第一衬底201和微镜芯片10发生较大翘曲,如图23,可以在第二衬底202的与引线30相对的位置处开设有支撑孔202b,且支撑孔202b沿堆叠方向Q方向贯通第二衬底202,该支撑孔202b用于供支撑台穿过,以使得支撑台支撑微镜芯片10的框架101和第一衬底201的隔振平台2013的用于设置引线30的部分。也就是 说,在工艺过程中,可以利用穿过支撑孔202b的支撑台最为支撑点,以便于打线,提升引线30与第一电极104之间,和引线30与第二电极2014之间的电连接性能。
图23所示的微镜芯片10和第一衬底201是两个相互独立的结构件,在制造过程中,可以采用连接结构将微镜芯片10集成在第一衬底201上,比如,可以采用粘结胶连接微镜芯片10和第一衬底201,或者采用键合结构连接微镜芯片10和第一衬底201。
为了使得微镜芯片10设置在第一衬底201的中心区域,如图23,隔振平台2011的朝向微镜芯片10的表面上存在对位标记50,对位标记50用于对微镜芯片10进行定位,以使得微镜芯片10设置在第一衬底201的中心区域。若微镜芯片10偏离第一衬底201的中心区域的话,可能会滋生出促使第一扭转臂103断裂的模态,所以,本申请通过设置的对位标记50也可以更加准确的将微镜芯片10设置在第一衬底201的中心区域。
需要说明的是,这里的微镜芯片10设置在第一衬底201的中心区域可以理解为:微镜芯片10的中心与第一衬底201的中心相重合,或者可以理解为如图23所示的,当微镜芯片10和第一衬底201均为矩形结构时,微镜芯片10的四个侧边至第一衬底201的四个相对应的侧边中间的距离是相等的,即矩形结构的微镜芯片10设置在第一陈埭201的中心区域内。
这里的对位标记50可以采用刻蚀、电镀等工艺形成。当然,也可以采用其他方式形成。
另外,如图23所示,对位标记50可以依据微镜芯片10的形状设置,例如,当微镜芯片10为矩形结构时,可以在第一衬底201的对应微镜芯片10四个角落的位置处各设置一个对位标记50,该对位标记50可以是图23所示的L型对位标记;再例如,当微镜芯片10为圆形结构时,可以在第一衬底201的对应微镜芯片10的周向设置至少两个间隔布设的对位标记50。
上述的图23中,微镜芯片10和第一衬底201是两个彼此独立的结构件,另外,如图24,本申请还提供了另一种微镜芯片封装结构,在图24中,微镜芯片10和第一衬底201为一体成型结构,呈一体的微镜芯片10和第一衬底201与第二衬底202堆叠设置。
微镜芯片10和第一衬底201为一体成型结构,可以理解为,在第一衬底201上可以通过刻蚀工艺形成可动部件102、第一扭转臂103,以及在第一衬底201上刻蚀出弹性梁2012。如此设计的话,可以与MEMS微镜工艺相兼容,降低了整个微镜芯片封装结构的厚度尺寸,以及还可以降低微镜芯片封装结构的加工制造成本。
由于微镜芯片10与第一衬底201为一体成型结构,进而,如图24,可以不需要进行打线工艺,这样一来,也就需要在第二衬底202上开设支撑孔202b。而是,图24中的第二电极2014与微镜芯片电连接(比如,与驱动线圈电连接),第二电极2014通过第一金属走线2016与第三电极2015电连接。
在上述的不同结构的微镜芯片封装结构中,第二衬底202可以采用玻璃衬底、陶瓷衬底或者半导体衬底(例如,硅衬底、碳化硅衬底等);在第一衬底201和第二衬底202为相互独立的结构时,第一衬底201也可以采用玻璃衬底、陶瓷衬底或者半导体衬底等;在第一衬底201和微镜芯片10为一体成型结构时,第一衬底201可以采用 半导体衬底。
其中,第一衬底201和第二衬底202可以相同材料的衬底结构,也可以采用不同材料的衬底结构。
本申请还给出了一种微镜芯片封装结构的制备方法,见图25,该制备方法主要包括以下步骤:
S11:在第一衬底上开设凹槽和第一镂空区域,在第二衬底上开设第二镂空区域;其中,第一镂空区域沿第一衬底的厚度方向贯通第一衬底,第二镂空区域沿第二衬底的厚度方向贯通第二衬底。
S12:将第一衬底和第二衬底堆叠并连接,且第一衬底的具有凹槽的侧面与第二衬底相对,第一镂空区域与第二镂空区域相贯通。
S13:在第一衬底上且沿第一衬底的周向形成弹性梁,使得第一衬底的位于弹性梁外部的部分形成支撑框,第一衬底的位于弹性梁内部的部分形成隔振平台;
S14:将微镜芯片设置在隔振平台的背离第二衬底的一侧,并且,微镜芯片的可动部件与第一镂空区域和第二镂空区域相对。
图26a至图26l给出了制得本申请涉及的微镜芯片封装结构工艺过程中每一步骤完成后的工艺结构剖面图。
如图26a,在玻璃材料的第二衬底202上形成光刻胶层61。这里的光刻胶层61可以是金属层,比如可以是金材料制得的光刻胶层61。
在一些工艺中,可以在形成光刻胶层61之间,将玻璃材料的第二衬底202进行清洗、烘干等。
如图26b,对光刻胶层61进行曝光显影,并通过化学溶液对光刻胶层61进行刻蚀。即对光刻胶层61进行图案化处理。
如图26c,对玻璃材料的第二衬底202进行刻蚀,以形成贯通第二衬底202的第二镂空区域202a和支撑孔202b。
如图26d,去除第二衬底202表面的光刻胶层61。
如图26e,在绝缘硅片(silicon-on-insulator,SOI)201上形成凹槽62和第一镂空区域201a,且第一镂空区域201a贯通绝缘硅片201。
如图26f,键合第一衬底201和第二衬底202,并且,使得第一衬底201的具有凹槽62的面与第二衬底202相对,第一镂空区域201a和第二镂空区域202a相贯通。
如图26g,对绝缘硅片201进行减薄处理,并在减薄的绝缘硅片201的背离第二衬底202的表面上形成金属层63。比如,这里的金属层63也可以是采用金材料制得。
如图26h,对金属层63进行曝光显影,并通过化学溶液对金属层63进行刻蚀,以形成对位标记50、第二电极2014和第三电极2015。
如图26i,在第二衬底201上刻蚀出弹性梁2012。
如图26j,将微镜芯片10与第一衬底201进行对位贴装。也就是采用粘结胶层将微镜芯片10设置在第一衬底201上。
在图26j所示的微镜芯片10中,包含可动部件102和框架101,以及连接可动部件102和框架101的第一扭转臂103。还有在完成微镜芯片10的贴装后,需要使得可动部件102与第一衬底201的第一镂空区域201a和第二衬底202的第二镂空区域202a 相对。
如图26k,将支撑台64穿过第二衬底202的支撑孔202b,并采用打线工艺将引线30与微镜芯片10的第一电极104和第二电极2014电连接。
这样的话,通过支撑台61可以防止打线过程中应力过大造成微镜芯片10或者第一衬底201翘曲,甚至微镜芯片10或者第一衬底201损坏的现象。
如图26l,移除支撑台64,以制得微镜芯片封装结构。
需要注意的是,上述的图26a至图26l可以是微镜芯片封装结构的部分工艺结构图,在一些工艺流程中,可以在图26a至图26l的基础上增加更多的工艺流程,或者减少其中一些工艺流程,或者将一些工艺流程进一步的细化。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种微镜芯片封装结构,其特征在于,包括:
    微镜芯片;
    堆叠的第一衬底和第二衬底,所述微镜芯片设置在所述第一衬底的背离所述第二衬底的一侧;
    其中,所述微镜芯片包括:框架、可动部件和第一扭转臂,所述可动部件通过所述第一扭转臂与所述框架连接;
    所述第一衬底包括隔振平台、弹性梁和支撑框,所述微镜芯片设置在所述隔振平台上,所述隔振平台通过所述弹性梁与所述支撑框连接;
    所述支撑框与所述第二衬底固定连接,所述隔振平台和所述第二衬底之间形成有间隙;
    所述隔振平台和所述第二衬底上均存在镂空区域,所述镂空区域与所述可动部件相对,以容纳活动的所述可动部件。
  2. 根据权利要求1所述的微镜芯片封装结构,其特征在于,所述间隙内填充有阻尼介质。
  3. 根据权利要求2所述的微镜芯片封装结构,其特征在于,所述阻尼介质包括液态阻尼介质和/或固态阻尼介质。
  4. 根据权利要求1-3中任一项所述的微镜芯片封装结构,其特征在于,所述隔振平台和所述弹性梁的朝向所述第二衬底的表面形成有凹槽,所述凹槽形成所述间隙。
  5. 根据权利要求1-4中任一项所述的微镜芯片封装结构,其特征在于,所述框架背离所述第一衬底的表面上存在第一电极,所述隔振平台的朝向所述微镜芯片的表面上存在第二电极,所述第一电极与所述第二电极通过引线电连接。
  6. 根据权利要求5所述的微镜芯片封装结构,其特征在于,所述支撑框的朝向所述微镜芯片的表面上存在第三电极,所述第一衬底上还形成有第一金属走线,且所述第一金属走线沿着所述弹性梁布设,所述第二电极和所述第三电极通过所述第一金属走线电连接。
  7. 根据权利要求1-6中任一项所述的微镜芯片封装结构,其特征在于,所述弹性梁上设置有传感器,所述传感器用于检测所述弹性梁的形变量;
    所述第一衬底的朝向所述微镜芯片的表面上存在第四电极,所述第一衬底上还形成有第二金属走线,所述传感器和所述第四电极通过所述第二金属走线电连接。
  8. 根据权利要求1-7中任一项所述的微镜芯片封装结构,其特征在于,所述微镜芯片和所述第一衬底为彼此独立的结构,且所述微镜芯片通过连接结构设置在所述隔振平台上。
  9. 根据权利要求8所述的微镜芯片封装结构,其特征在于,所述框架背离所述第一衬底的表面上存在第一电极,所述隔振平台的朝向所述微镜芯片的表面上存在第二电极,所述第一电极与所述第二电极通过引线连接;
    所述第二衬底的与所述引线相对的位置处开设有支撑孔,且所述支撑孔沿所述第一衬底和所述第二衬底的堆叠方向贯通所述第二衬底,所述支撑孔用于供支撑台穿过,以使得所述支撑台支撑所述框架和所述隔振平台的用于设置所述引线的部分。
  10. 根据权利要求8或9所述的微镜芯片封装结构,其特征在于,所述隔振平台的朝向所述微镜芯片的表面上存在对位标记,所述对位标记用于对所述微镜芯片进行定位,以使得所述微镜芯片设置在所述第一衬底的中心区域。
  11. 根据权利要求1-7中任一项所述的微镜芯片封装结构,其特征在于,所述微镜芯片和所述第一衬底为一体成型结构。
  12. 根据权利要求1-11中任一项所述的微镜芯片封装结构,其特征在于,所述支撑框通过键合结构与所述第二衬底连接。
  13. 根据权利要求1-12中任一项所述的微镜芯片封装结构,其特征在于,所述间隙沿所述第一衬底和所述第二衬底的堆叠方向的尺寸为10μm至30μm。
  14. 根据权利要求1-13中任一项所述的微镜芯片封装结构,其特征在于,所述第一衬底包括玻璃衬底、陶瓷衬底或者半导体衬底;
    所述第二衬底包括玻璃衬底、陶瓷衬底或者半导体衬底。
  15. 根据权利要求1-14中任一项所述的微镜芯片封装结构,其特征在于,所述可动部件包括:微镜和驱动线圈,所述微镜通过第二扭转臂与所述驱动线圈连接,所述驱动线圈通过所述第一扭转臂与所述框架连接;
    其中,所述第一扭转臂和所述第二扭转臂相垂直,且分别垂直于所述第一衬底和所述第二衬底的堆叠方向。
  16. 一种激光设备,其特征在于,
    如权利要求1至15任一项所述的微镜芯片封装结构;
    电路板,所述微镜芯片与所述电路板电连接。
  17. 一种汽车,其特征在于,
    如权利要求16所述的激光设备,
    车辆本体,所述激光设备设置在所述车辆本体上。
PCT/CN2022/117939 2021-09-10 2022-09-08 微镜芯片封装结构、激光设备以及汽车 WO2023036269A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22866730.9A EP4386466A1 (en) 2021-09-10 2022-09-08 Micromirror chip packaging structure, laser apparatus, and automobile
US18/599,907 US20240208803A1 (en) 2021-09-10 2024-03-08 Micromirror chip package structure, laser device, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111063339.2 2021-09-10
CN202111063339.2A CN115784144A (zh) 2021-09-10 2021-09-10 微镜芯片封装结构、激光设备以及汽车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/599,907 Continuation US20240208803A1 (en) 2021-09-10 2024-03-08 Micromirror chip package structure, laser device, and vehicle

Publications (1)

Publication Number Publication Date
WO2023036269A1 true WO2023036269A1 (zh) 2023-03-16

Family

ID=85417188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117939 WO2023036269A1 (zh) 2021-09-10 2022-09-08 微镜芯片封装结构、激光设备以及汽车

Country Status (4)

Country Link
US (1) US20240208803A1 (zh)
EP (1) EP4386466A1 (zh)
CN (1) CN115784144A (zh)
WO (1) WO2023036269A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050063038A1 (en) * 2003-09-08 2005-03-24 Fabien Filhol Oscillating micromirror with bimorph actuation
JP2007058107A (ja) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd マイクロミラー素子及び可動構造
CN102798386A (zh) * 2011-05-25 2012-11-28 上海飞恩微电子有限公司 三自由度谐振硅微机械陀螺仪
CN105607249A (zh) * 2015-12-21 2016-05-25 西安励德微系统科技有限公司 一种单侧不等高梳齿驱动的微扭转镜
CN107539945A (zh) * 2016-06-28 2018-01-05 华为技术有限公司 微镜单元及制备方法、微镜阵列和光交叉连接模块
CN111830701A (zh) * 2019-04-19 2020-10-27 华为技术有限公司 电磁微镜及激光设备
CN112305750A (zh) * 2019-08-02 2021-02-02 上海汽车集团股份有限公司 一种mems振镜及光学系统
CN112645274A (zh) * 2020-12-14 2021-04-13 北京理工大学 一种具有柔性连接结构的电热mems微动平台
CN213182194U (zh) * 2020-08-31 2021-05-11 东莞理工学院 一种电磁式mems扭转微镜
CN112909729A (zh) * 2019-11-19 2021-06-04 青岛海信激光显示股份有限公司 激光器
CN113031247A (zh) * 2019-12-09 2021-06-25 觉芯电子(无锡)有限公司 一种具有镜面振幅放大功能的微镜

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050063038A1 (en) * 2003-09-08 2005-03-24 Fabien Filhol Oscillating micromirror with bimorph actuation
JP2007058107A (ja) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd マイクロミラー素子及び可動構造
CN102798386A (zh) * 2011-05-25 2012-11-28 上海飞恩微电子有限公司 三自由度谐振硅微机械陀螺仪
CN105607249A (zh) * 2015-12-21 2016-05-25 西安励德微系统科技有限公司 一种单侧不等高梳齿驱动的微扭转镜
CN107539945A (zh) * 2016-06-28 2018-01-05 华为技术有限公司 微镜单元及制备方法、微镜阵列和光交叉连接模块
CN111830701A (zh) * 2019-04-19 2020-10-27 华为技术有限公司 电磁微镜及激光设备
CN112305750A (zh) * 2019-08-02 2021-02-02 上海汽车集团股份有限公司 一种mems振镜及光学系统
CN112909729A (zh) * 2019-11-19 2021-06-04 青岛海信激光显示股份有限公司 激光器
CN113031247A (zh) * 2019-12-09 2021-06-25 觉芯电子(无锡)有限公司 一种具有镜面振幅放大功能的微镜
CN213182194U (zh) * 2020-08-31 2021-05-11 东莞理工学院 一种电磁式mems扭转微镜
CN112645274A (zh) * 2020-12-14 2021-04-13 北京理工大学 一种具有柔性连接结构的电热mems微动平台

Also Published As

Publication number Publication date
EP4386466A1 (en) 2024-06-19
US20240208803A1 (en) 2024-06-27
CN115784144A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
US8143083B2 (en) Physical quantity sensor device and method for producing the same
US8646332B2 (en) Inertia force sensor
US9666787B2 (en) Sensor device and electronic apparatus
JP6289364B2 (ja) システムインパッケージデバイスを製造する方法、および、システムインパッケージデバイス
JP5860270B2 (ja) 振動絶縁インターポーザ・ダイ
US8659101B2 (en) Physical quantity detector
JP2007509346A5 (zh)
US9632105B2 (en) Angular velocity sensor for suppressing fluctuation of detection sensitivity
WO2011102121A1 (ja) 角速度センサおよび角速度および加速度検出用複合センサ
JP2006308543A (ja) 角速度センサ
WO2008001908A1 (fr) Gyro-capteur d'oscillations
TWI730094B (zh) 壓電式封裝積體感測裝置
JP4337099B2 (ja) 加速度センサ
JP2007212174A (ja) 角速度センサ装置
US20170074653A1 (en) Physical quantity sensor
JP2019203904A (ja) センサーユニット、電子機器、および移動体
JP5257418B2 (ja) 防振対象部材の接続構造
WO2023036269A1 (zh) 微镜芯片封装结构、激光设备以及汽车
JP2006133004A (ja) 角速度センサ
JP2007093329A (ja) 角速度センサ装置
WO2018131404A1 (ja) センサデバイス及び電子機器
US11693023B2 (en) Inertial sensor and inertial measurement unit
US20230266359A1 (en) Physical Quantity Sensor And Inertial Measurement Unit
JP2008145150A (ja) 角速度センサ及び電子機器
CN115343837A (zh) 微镜组件及激光设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866730

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022866730

Country of ref document: EP

Effective date: 20240313

NENP Non-entry into the national phase

Ref country code: DE