WO2023035876A1 - 一种全氟烯烃齐聚物的制备方法及应用 - Google Patents

一种全氟烯烃齐聚物的制备方法及应用 Download PDF

Info

Publication number
WO2023035876A1
WO2023035876A1 PCT/CN2022/112748 CN2022112748W WO2023035876A1 WO 2023035876 A1 WO2023035876 A1 WO 2023035876A1 CN 2022112748 W CN2022112748 W CN 2022112748W WO 2023035876 A1 WO2023035876 A1 WO 2023035876A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetrafluoroethylene
preparation
hexafluoropropylene
perfluoroolefin
oligomer
Prior art date
Application number
PCT/CN2022/112748
Other languages
English (en)
French (fr)
Inventor
李宏峰
王宗令
周黎旸
王树华
徐晓波
Original Assignee
浙江巨化技术中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江巨化技术中心有限公司 filed Critical 浙江巨化技术中心有限公司
Publication of WO2023035876A1 publication Critical patent/WO2023035876A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation

Definitions

  • This application relates to the technical field of fluorine chemical industry, in particular to a preparation method and application of a perfluoroolefin oligomer.
  • perfluoroolefins Due to its carbon-carbon double bond structure, perfluoroolefins are a class of fluorine-containing organic intermediates with excellent performance. They are widely used and have a short environmental life, so they have low global warming potential and are a new type of Ideal replacement for chlorofluorocarbons (CFCs). Perfluoroolefins with carbon-carbon double bonds at the end groups are generally used for copolymerization of polymers, while perfluoroolefins with carbon-carbon double bonds at non-terminal groups can prepare a variety of derivatives, such as fluorocarbon surfactants, fluorine-containing ketones , Fluorine-containing ethers and other fluorocarbons.
  • perfluoroolefins are perfluoroolefin oligomers prepared from tetrafluoroethylene or hexafluoropropylene as monomers, mainly including tetrafluoroethylene oligomers with a degree of polymerization of 3-6, hexafluoropropylene dimers, Hexafluoropropylene trimer.
  • it is difficult to synthesize perfluoroolefin oligomers with longer carbon chains the conversion rate is low and there are many side reactions, and it is difficult to obtain long-chain perfluoroolefin oligomers with high selectivity.
  • the purpose of this application is to provide a preparation method and application of perfluoroolefin oligomers, through which the problem of high-selectivity preparation of high carbon number perfluoroolefin oligomers can be solved.
  • the inventors have found that the combination of tetrafluoroethylene or its oligomers and hexafluoropropylene or its oligomers is used as the raw material monomer, and the reaction conditions of the oligomerization reaction are adjusted to control the perfluoroolefin raw material. Depending on the degree of polymerization of monomers, perfluoroolefin oligomers with appropriate carbon chain lengths can be obtained with high selectivity.
  • the preparation method provided in this application can prepare perfluoroolefin oligomers containing two or more olefin structures, which have many branched chain structures and can be applied to various purposes.
  • the present invention mainly provides the following technical solutions:
  • the embodiment of the present application provides a method for preparing perfluoroolefin oligomers.
  • the combination of two or more raw material monomers selected from the following (i) and (ii) is catalyzed by a metal fluoride salt Oligomerization reaction is carried out to obtain perfluoroolefin oligomer products with a total carbon number of not less than 7, wherein (i) is tetrafluoroethylene, tetrafluoroethylene oligomers or mixtures thereof, (ii) is hexafluoropropylene, hexafluoroethylene Propylene oligomers or mixtures thereof.
  • the tetrafluoroethylene oligomer is selected from tetrafluoroethylene dimer, tetrafluoroethylene trimer, tetrafluoroethylene tetramer, tetrafluoroethylene pentamer, tetrafluoroethylene hexamer and tetrafluoroethylene At least one of ethylene heptamers; the hexafluoropropylene oligomer is selected from at least one of hexafluoropropylene dimers and hexafluoropropylene trimers.
  • the perfluoroolefin oligomer is an olefinic compound having the following general structural formula:
  • R f1 , R f2 , R f3 , and R f4 are independently selected from F or perfluoroalkyl groups with 1-8 carbon atoms.
  • the perfluoroolefin oligomer is an olefinic compound having the following general structural formula:
  • R f1 , R f2 , R f3 , and R f4 are independently selected from F, -CF 3 , -CF 2 CF 3 , -CF(CF 3 ) 2 , -C(CF 3 ) 3 , -CF 2 CF 2 CF 3 , -CF 2 CF 2 CF 3 , -CF 2 CF(CF 3 ) 2 , -C(CF 2 CF 3 ) 2 CF 3 , -C(CF 2 CF 3 ) 3 or -C(CF 3 ) 2 CF(CF 3 ) 2 group.
  • the oligomerization reaction is carried out in an aprotic polar solvent at a reaction temperature of 60-200°C.
  • the aprotic polar solvent is selected from ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dimethylformamide, Dimethylacetamide, acetonitrile or mixtures thereof.
  • the ratio of the total mass of the raw material monomers to the mass of the metal fluoride salt is 1: (0.01-0.5).
  • the metal fluoride salt is selected from one or more of cesium fluoride, potassium fluoride and sodium fluoride.
  • the reaction system of the oligomerization reaction further includes a phase transfer catalyst; the phase transfer catalyst is selected from quaternary ammonium salts, crown ether catalysts or mixtures thereof.
  • the mass proportion of the phase transfer catalyst in the reaction raw material is not higher than 30%.
  • the preparation method uses tetrafluoroethylene or/and tetrafluoroethylene dimer and hexafluoropropylene or/and hexafluoropropylene dimer as raw material monomers to carry out oligomerization reaction to prepare carbon atoms of 7-16
  • the perfluoroolefin oligomer the reaction temperature is 60-100 °C, the reaction time is 2-12h, the ratio of the total mass of raw material monomers to the mass of metal fluoride salt is 1: (0.02-0.1)
  • phase transfer catalyst is benzo18-crown-6, 4-aminobenzyl-15-crown-5, 1-aza-18-crown-5, dicyclohexane-18-crown-6 or 1-aza-15- Crown-5
  • the mass proportion of the phase transfer catalyst in the reaction raw materials is not more than 10%.
  • the embodiment of the present application also provides the application of the perfluoroolefin oligomer prepared by the above preparation method in fluorocarbon surfactants, cleaning agents for electronic products, leak detection fluids, inert media or diluents for polymerization reactions.
  • This application uses the combination of tetrafluoroethylene or its oligomers and hexafluoropropylene or its oligomers as raw material monomers, and by adjusting the reaction conditions, perfluoroalkenes with a carbon number of not less than 7 can be prepared with high selectivity.
  • Polymers can not only prepare a certain high-carbon perfluoroolefin with high selectivity, but also prepare a mixture of perfluoroolefins within a certain boiling range with high selectivity for direct application, or prepare a perfluoroolefin with a wider boiling range.
  • Perfluoroolefin mixtures are applied after separation, thus solving the problem of high-selectivity preparation of high-carbon perfluoroolefin oligomers. It has the advantages of simple process, economical and environmental protection. These high-carbon perfluoroolefin oligomer Polymers can be used in fluorocarbon surfactants, cleaning agents for electronic products, leak detection fluids, inert media or diluents for polymerization reactions, etc., and have significant industrial application prospects.
  • perfluoroolefins In the application field of fluorocarbons, currently commonly used perfluoroolefins are tetrafluoroethylene oligomers, hexafluoropropylene dimers, and hexafluoropropylene trimers with a degree of polymerization of 3-6, and tetrafluoroolefins with longer carbon chains are prepared. Vinyl fluoride oligomers or hexafluoropropylene oligomers are relatively difficult, with low conversion rates and many side reactions, and it is difficult to obtain long-chain perfluoroolefin oligomers with high selectivity.
  • the present application uses the combination of tetrafluoroethylene or its oligomers and hexafluoropropylene or its oligomers as raw material monomers, and controls the polymerization degree of olefin raw material monomers by adjusting the reaction conditions of the oligomerization reaction, Perfluoroolefin oligomers with high carbon chain length can be obtained with high selectivity.
  • the application provides a method for preparing a perfluoroolefin oligomer, wherein the combination of two or more raw material monomers selected from the following (i) and (ii) is catalyzed by a metal fluoride salt Oligomerization reaction under the action of perfluoroolefin oligomer products with a total carbon number of not less than 7, wherein (i) is tetrafluoroethylene, tetrafluoroethylene oligomers or mixtures thereof, (ii) is hexafluoropropylene, Hexafluoropropylene oligomers or mixtures thereof.
  • the tetrafluoroethylene oligomer is selected from tetrafluoroethylene dimer, tetrafluoroethylene trimer, tetrafluoroethylene tetramer, tetrafluoroethylene pentamer, tetrafluoroethylene hexa At least one of hexafluoropropylene heptamer and tetrafluoroethylene heptamer; the hexafluoropropylene oligomer is at least one selected from hexafluoropropylene dimer and hexafluoropropylene trimer.
  • the types of raw material monomers can be freely combined, and different monomers can be mixed in arbitrary proportions.
  • the combination of raw material monomers can be: the combination of tetrafluoroethylene and hexafluoropropylene, the combination of tetrafluoroethylene and hexafluoropropylene dimer, the combination of tetrafluoroethylene and hexafluoropropylene trimer, the combination of tetrafluoroethylene dimer combination of tetrafluoroethylene dimer and hexafluoropropylene dimer, combination of tetrafluoroethylene dimer and hexafluoropropylene trimer, tetrafluoroethylene trimer and hexafluoropropylene trimer.
  • tetrafluoroethylene or/and tetrafluoroethylene dimer and hexafluoropropylene or/and hexafluoropropylene dimer are combined as raw material monomers, including the combination of tetrafluoroethylene and hexafluoropropylene, tetrafluoroethylene and hexafluoropropylene Combination of propylene dimer, combination of tetrafluoroethylene dimer and hexafluoropropylene, combination of tetrafluoroethylene dimer and hexafluoropropylene dimer, tetrafluoroethylene, hexafluoropropylene and hexafluoropropylene dimer A combination of tetrafluoroethylene, hexafluoropropylene and tetrafluoroethylene dimer, a combination of tetrafluoroethylene, tetrafluoroethylene dimer and hexafluoro
  • tetrafluoroethylene In the process of telomerization with tetrafluoroethylene or tetrafluoroethylene dimer as raw material monomer and hexafluoropropylene, hexafluoropropylene dimer or hexafluoropropylene trimer, tetrafluoroethylene will first self-polymerize or Polymerize with tetrafluoroethylene dimer to form tetrafluoroethylene oligomer with a polymerization degree of 2-7, and then react with hexafluoropropylene dimer or hexafluoropropylene trimer. In the reaction process, the temperature has a great influence on the length of different carbon chains.
  • R f1 , R f2 , R f3 , and R f4 are independently selected from F or perfluoroalkyl groups with 1-8 carbon atoms.
  • R f1 , R f2 , R f3 , and R f4 are independently selected from F, -CF 3 , -CF 2 CF 3 , -CF(CF 3 ) 2 , -C(CF 3 ) 3 , -CF 2 CF 2 CF 3 , -CF 2 CF 2 CF 3 , -CF 2 CF(CF 3 ) 2 , -C(CF 2 CF 3 ) 2 CF 3 , -C(CF 2 CF 3 ) 3 or -C(CF 3 ) 2 CF(CF 3 ) 2 group.
  • the above preparation method provided in the present application is more suitable for preparing perfluoroolefin oligomers with 7-16 carbon atoms.
  • the oligomerization reaction in the above preparation method is carried out in an aprotic polar solvent at a reaction temperature of 60-200°C.
  • the aprotic polar solvent is preferably ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dimethylformamide, dimethylacetamide , acetonitrile or their mixtures.
  • the reaction temperature has a great influence on the structure and distribution of the products of the perfluoroolefin oligomerization reaction. If the reaction temperature is too high, more by-products will be formed, which will reduce the selectivity of the target product.
  • reaction temperature is too low, the reaction rate will be low.
  • the conversion of raw materials is incomplete, and the yield of target product decreases.
  • different combinations of raw material monomers can adopt different reaction temperatures.
  • the preferred reaction temperature is 60-100°C.
  • the preferred reaction time is 2-12h.
  • the ratio of the total mass of the raw material monomers to the mass of the metal fluoride salt in the above preparation method is 1: (0.01-0.5). More preferably, the ratio of the total mass of the raw material monomers to the mass of the metal fluoride salt is 1: (0.02-0.1).
  • the metal fluoride salt is selected from one or more of cesium fluoride, potassium fluoride, and sodium fluoride.
  • the above oligomerization reaction system further includes a phase transfer catalyst; the phase transfer catalyst is preferably a quaternary ammonium salt, a crown ether catalyst or a mixture thereof.
  • the quaternary ammonium salt can be selected from methyltrialkyl(C 8 -C 10 )ammonium chloride, methyltrialkyl(C 8 -C 10 )ammonium fluoride or (C 8 H 17 ) 3 N+CH 3 - OSO 3 CH 3 ; crown ether catalysts may be selected from 4-aminobenzyl-15-crown-5, 1-aza-12-crown-5, 1-aza-15-crown-5, 1-aza- 18-crown-5, bis[(benzo-15-crown-5)-15-ylmethyl]pimelate, dicyclohexane-18-crown-6, 4-formylbenzo-15- Crown-5, 2-(hydroxymethyl)-15-crown-5, 4-nitrobenzo-15-crown-5,
  • the mass proportion of the phase transfer catalyst in the reaction raw materials is not higher than 30%. More preferably, the mass proportion of the phase transfer catalyst in the reaction raw materials is not more than 10%.
  • the raw material monomers contain gaseous monomers
  • the monomer is used, only the metal fluoride salt, phase transfer catalyst and additives are added to the reactor
  • the temperature is raised to the reaction temperature with stirring, and then the gaseous monomer is introduced to react
  • separate liquid treatment to obtain a fluorine phase layer, which is subjected to fractional distillation and purification to obtain high-purity perfluoroolefin oligomer products;
  • the raw material monomers do not contain gaseous monomers
  • reaction product is an organic fluorine phase, it is generally immiscible with the solvent, catalyst, and phase transfer catalyst promoter in the reaction system. It can be separated by conventional standing and layering. If it is subjected to conventional water washing or rectification , the target product with higher purity can be obtained.
  • the above-mentioned preparation method provided by this application can prepare perfluoroolefin oligomers with a carbon number of not less than 7 with high selectivity by adjusting the reaction conditions, and can prepare perfluoroolefins with a certain high carbon number with high selectivity , It is also possible to prepare a perfluoroalkene mixture within a certain boiling range for direct application, or prepare a perfluoroalkene mixture with a wider boiling range, and then use it after separation.
  • the high-carbon perfluoroolefin oligomer prepared by the above preparation method is hydrophobic and oleophobic, and has chemical inertness, hydrolytic stability and thermal stability, and can be applied in many fields, such as for fluorocarbon surface active Solvents for precision or metal cleaning of electronics (such as discs or circuit boards), for leak detection fluids, for cell size in the manufacture of foam insulation (such as thermoplastic foams of polyurethane, phenolic resin, etc.) Conditioners, carrier fluids or solvents for literature or specimen preservation materials and lubricants, inert media or diluents for polymerization reactions, polishing abrasives for removing polishing abrasive compounds from polished surfaces such as metals, above
  • the perfluoroolefin oligomer prepared by the preparation method can azeotrope with water, and can be used as a displacement desiccant for removing water, such as removing water from jewelry or metal parts; as an anti-coloring agent in traditional circuit manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种全氟烯烃齐聚物的制备方法及应用,涉及氟化工技术领域,该制备方法包括:选自下述(i)和(ii)中的两种或多种原料单体的组合在金属氟化盐的催化作用下进行齐聚反应得到碳原子总数不低于7的全氟烯烃齐聚物产物,其中(i)为四氟乙烯、四氟乙烯低聚体或其混合物,(ii)为六氟丙烯、六氟丙烯低聚体或其混合物。本申请解决了高碳数全氟烯烃齐聚物高选择性制备的难题。

Description

一种全氟烯烃齐聚物的制备方法及应用
相关申请的交叉引用
本申请要求2021年09月07日提交的中国专利申请202111045203.9的权益,该申请的内容通过引用被合并于本文。
技术领域
本申请涉及氟化工技术领域,具体涉及一种全氟烯烃齐聚物的制备方法及应用。
背景技术
全氟烯烃由于具有碳碳双键结构,是一类性能非常优异的含氟有机中间体,其用途非常广泛,且具有短的环境寿命,因此具有低全球变暖潜能值,是一种新型的理想的氯氟烃(CFCs)替代品。碳碳双键在端基的全氟烯烃一般用于聚合物的共聚,而碳碳双键在非端基的全氟烯烃可制备出多种衍生物,如氟碳表面活性剂,含氟酮、含氟醚等氟碳化合物。
目前常用的全氟烯烃是以四氟乙烯或六氟丙烯为单体制备的全氟烯烃齐聚物,主要包括聚合度为3-6的四氟乙烯低聚物、六氟丙烯二聚体、六氟丙烯三聚体。而对于碳链更长的全氟烯烃齐聚物较难合成,转化率低且副反应较多,很难得到高选择性的长链全氟烯烃齐聚物。
发明内容
鉴于以上情况,本申请的目的在于提供一种全氟烯烃齐聚物的制备方法及应用,通过该制备方法解决高碳数全氟烯烃齐聚物高选择性制备的难题。
为了解决上述问题,经发明人研究发现,以四氟乙烯或其低聚物与六氟丙烯或其低聚物的组合为原料单体,并调整齐聚反应的反应条件来控制全氟烯烃原料单体的聚合程度,可以高选择性地得到合适碳链长度的全氟烯烃齐聚物。
本申请提供的制备方法能制备得到含有两种或多种烯烃结构的全氟烯烃齐聚物,其支链结构多,可应用于多种用途。
为达到上述目的,本发明主要提供如下技术方案:
本申请实施例提供了一种全氟烯烃齐聚物的制备方法,选自下述(i)和(ii)中的两种或多种原料单体的组合在金属氟化盐的催化作用下进行齐聚反应得到碳原子总数不低于7的全氟烯烃齐聚物产物,其中(i)为四氟乙烯、四氟乙烯低聚体或其混合物,(ii)为六氟丙烯、六氟丙烯低聚体或其混合物。
作为优选,所述四氟乙烯低聚体选自四氟乙烯二聚体、四氟乙烯三聚体、四氟乙烯四聚体、四氟乙烯五聚体、四氟乙烯六聚体和四氟乙烯七聚体中的至少一种;所述六氟丙烯低聚体选自六氟丙烯二聚体和六氟丙烯三聚体中的至少一种。
作为优选,所述全氟烯烃齐聚物为具有以下结构通式的烯烃类化 合物:
Figure PCTCN2022112748-appb-000001
其中,R f1、R f2、R f3、R f4独立地选自F或碳原子数为1-8的全氟烷基基团。
作为优选,所述全氟烯烃齐聚物为具有以下结构通式的烯烃类化合物:
Figure PCTCN2022112748-appb-000002
其中,R f1、R f2、R f3、R f4独立地选自F、-CF 3、-CF 2CF 3、-CF(CF 3) 2、-C(CF 3) 3、-CF 2CF 2CF 3、-CF 2CF 2CF 2CF 3、-CF 2CF(CF 3) 2、-C(CF 2CF 3) 2CF 3、-C(CF 2CF 3) 3或-C(CF 3) 2CF(CF 3) 2基团。
作为优选,所述齐聚反应在非质子性极性溶剂中且在反应温度为60-200℃的条件下进行。
作为优选,所述非质子性极性溶剂选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、二甲基甲酰胺、二甲基乙酰胺、乙腈或它们的混合物。
作为优选,所述原料单体的总质量与金属氟化盐的质量的比值为1:(0.01-0.5)。
作为优选,所述金属氟化盐选自氟化铯、氟化钾、氟化钠中的一种或多种。
作为优选,所述齐聚反应的反应体系中还包括相转移催化剂;所述相转移催化剂选自季铵盐、冠醚类催化剂或其混合物。
作为优选,所述相转移催化剂在反应原料中的质量占比不高于30%。
作为优选,所述制备方法以四氟乙烯或/和四氟乙烯二聚体与六氟丙烯或/和六氟丙烯二聚体为原料单体组合进行齐聚反应制备碳原子数为7-16的全氟烯烃齐聚物,反应温度为60-100℃,反应时间为2-12h,原料单体的总质量与金属氟化盐的质量的比值为1:(0.02-0.1),相转移催化剂为苯并18-冠-6、4-氨基苄基-15-冠-5、1-氮杂-18-冠-5、二环己烷-18-冠-6或1-氮杂-15-冠-5,相转移催化剂在反应原料中的质量占比不超过10%。
本申请实施例还提供了由上述制备方法制备得到的全氟烯烃齐聚物在氟碳表面活性剂、电子产品清洗剂、检漏液、聚合反应的惰性介质或稀释剂中的应用。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请以四氟乙烯或其低聚物与六氟丙烯或其低聚物的组合为原料单体,通过调整反应条件,可高选择性地制备碳原子数不低于7的全氟烯烃齐聚物,既可高选择性的制备出某一高碳数的全氟烯烃,也可高选择性的制备出一定沸程范围内的全氟烯烃混合物进行直接应用,或制备沸程较宽的全氟烯烃混合物,经过分离后再进行应用,从而解决了高碳数全氟烯烃齐聚物高选择性制备的难题,具有工艺简单、经济环保的优点,这些高碳原子数的全氟烯烃齐聚物可用于氟碳表面活性剂、电子产品清洗剂、检漏液、聚合反应的惰性介质或稀释 剂等,有显著的工业化应用前景。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在氟碳化合物应用领域,目前常用的全氟烯烃是聚合度为3-6的四氟乙烯低聚物、六氟丙烯二聚体、六氟丙烯三聚体,而制备碳链更长的四氟乙烯齐聚物或六氟丙烯齐聚物比较困难,转化率低且副反应较多,很难得到高选择性的长链全氟烯烃齐聚物。
为了解决上述问题,本申请以四氟乙烯或其低聚物与六氟丙烯或其低聚物的组合为原料单体,通过调整齐聚反应的反应条件来控制烯烃原料单体的聚合程度,可以高选择性地得到高碳链长度的全氟烯烃齐聚物。
具体而言,本申请提供了一种全氟烯烃齐聚物的制备方法,选自下述(i)和(ii)中的两种或多种原料单体的组合在金属氟化盐的催化作用下进行齐聚反应得到碳原子总数不低于7的全氟烯烃齐聚物产物,其中(i)为四氟乙烯、四氟乙烯低聚体或其混合物,(ii)为六氟丙烯、六氟丙烯低聚体或其混合物。
在本申请的一些优选实施例中,四氟乙烯低聚体选自四氟乙烯二 聚体、四氟乙烯三聚体、四氟乙烯四聚体、四氟乙烯五聚体、四氟乙烯六聚体和四氟乙烯七聚体中的至少一种;六氟丙烯低聚体选自六氟丙烯二聚体和六氟丙烯三聚体中的至少一种。
为了得到不同烯烃结构和不同碳数的全氟烯烃齐聚物,原料单体的种类可进行自由组合,且不同单体可以任意比例的用量进行混合。如原料单体的组合可为:四氟乙烯和六氟丙烯的组合,四氟乙烯和六氟丙烯二聚体的组合,四氟乙烯和六氟丙烯三聚体的组合,四氟乙烯二聚体和六氟丙烯的组合,四氟乙烯二聚体和六氟丙烯二聚体的组合,四氟乙烯二聚体和六氟丙烯三聚体的组合,四氟乙烯三聚体和六氟丙烯的组合,四氟乙烯三聚体和六氟丙烯二聚体的组合,四氟乙烯三聚体和六氟丙烯三聚体的组合,四氟乙烯五聚体和六氟丙烯的组合,四氟乙烯五聚体和六氟丙烯二聚体的组合,四氟乙烯五聚体和六氟丙烯三聚体的组合,四氟乙烯七聚体和六氟丙烯的组合,四氟乙烯七聚体和六氟丙烯二聚体的组合,四氟乙烯七聚体和六氟丙烯三聚体的组合,四氟乙烯、四氟乙烯二聚体和六氟丙烯的组合,四氟乙烯、六氟丙烯和六氟丙烯二聚体的组合,四氟乙烯、六氟丙烯和六氟丙烯三聚体的组合,四氟乙烯、四氟乙烯三聚体和六氟丙烯的组合等。更优选四氟乙烯或/和四氟乙烯二聚体与六氟丙烯或/和六氟丙烯二聚体为原料单体组合,包括四氟乙烯和六氟丙烯的组合,四氟乙烯和六氟丙烯二聚体的组合,四氟乙烯二聚体和六氟丙烯的组合,四氟乙烯二聚体和六氟丙烯二聚体的组合,四氟乙烯、六氟丙烯和六氟丙烯二聚体的组合,四氟乙烯、六氟丙烯和四氟乙烯二聚体的组合,四氟乙烯、四氟乙烯 二聚体和六氟丙烯二聚体的组合。在以四氟乙烯或四氟乙烯二聚体为原料单体与六氟丙烯、六氟丙烯二聚体或六氟丙烯三聚体进行调聚反应的过程中,四氟乙烯会先自聚或与四氟乙烯二聚体聚合生成聚合度为2-7的四氟乙烯低聚体,再与六氟丙烯二聚体或六氟丙烯三聚体进行反应。在该反应过程中,温度对不同碳链长度影响较大,低温条件下基本得到的是五碳及以下产物,而得不到长链产物,温度过高得到的基本是四氟乙烯的高聚物,通过调整反应温度控制四氟乙烯低聚体的链长,从而提高一定碳数范围内全氟烯烃产物的选择性。
本申请提供的上述制备方法适于制备具有以下结构通式的烯烃类化合物:
Figure PCTCN2022112748-appb-000003
其中,R f1、R f2、R f3、R f4独立地选自F或碳原子数为1-8的全氟烷基基团。
本申请提供的上述制备方法更适于制备具有以下结构通式的烯烃类化合物:
Figure PCTCN2022112748-appb-000004
其中,R f1、R f2、R f3、R f4独立地选自F、-CF 3、-CF 2CF 3、-CF(CF 3) 2、-C(CF 3) 3、-CF 2CF 2CF 3、-CF 2CF 2CF 2CF 3、-CF 2CF(CF 3) 2、-C(CF 2CF 3) 2CF 3、-C(CF 2CF 3) 3或-C(CF 3) 2CF(CF 3) 2基团。
本申请提供的上述制备方法更适于制备碳原子数为7-16的全氟烯烃齐聚物。
在本申请的一些优选实施例中,上述制备方法中齐聚反应在非质子性极性溶剂中且在反应温度为60-200℃的条件下进行。该非质子性极性溶剂优选乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、二甲基甲酰胺、二甲基乙酰胺、乙腈或它们的混合物。反应温度对全氟烯烃齐聚反应的产物的结构和分布有较大影响,反应温度太高会有较多副产物的生成,使得目标产物选择性降低,反应温度太低,则反应速率低,原料转化不完全,目标产物收率降低。从提高原料单体转化率和全氟烯烃齐聚物产物的选择性的角度出发,不同的原料单体组合,可采用不同的反应温度。优选反应温度为60-100℃。优选反应时间为2-12h。
在本申请的一些优选实施例中,上述制备方法中原料单体的总质量与金属氟化盐的质量的比值为1:(0.01-0.5)。更优选原料单体的总质量与金属氟化盐的质量的比值为1:(0.02-0.1)。
在本申请的一些优选实施例中,金属氟化盐选自氟化铯、氟化钾、氟化钠中的一种或多种。
在本申请的一些优选实施例中,上述齐聚反应的反应体系中还包括相转移催化剂;相转移催化剂优选季铵盐、冠醚类催化剂或其混合物。季铵盐可选自甲基三烷基(C 8-C 10)氯化铵,甲基三烷基(C 8-C 10)氟化铵或(C 8H 17) 3N+CH 3-OSO 3CH 3;冠醚类催化剂可选自4-氨基苄基-15-冠-5、1-氮-12-冠-5、1-氮杂-15-冠-5、1-氮杂-18-冠-5、双[(苯并-15-冠-5)-15-基甲基]庚二酸盐、二环己烷-18-冠-6、4-甲酰基苯并-15-冠-5、2-(羟甲基)-15-冠-5、4-硝基苯并-15-冠-5、聚[(二苯并-18-冠-6)-共甲醛]、 苯并18-冠-6、二苯并18-冠-6、18-冠-6或它们的混合物。更优选相转移催化剂为苯并18-冠-6、4-氨基苄基-15-冠-5、1-氮杂-18-冠-5、二环己烷-18-冠-6或1-氮杂-15-冠-5。
在本申请的一些优选实施例中,相转移催化剂在反应原料中的质量占比不高于30%。更优选相转移催化剂在反应原料中的质量占比不超过10%。
具体地,上述全氟烯烃齐聚物的制备步骤为:
当原料单体含有气态单体时,先将原料中的非气态单体、金属氟化盐、相转移催化剂和助剂(可根据实际情况不加助剂)加入反应釜中(如全部为气态单体时,仅将金属氟化盐、相转移催化剂和助剂加入反应釜中),排除反应釜中的氧气后,搅拌升温至反应温度,然后通入气态单体进行反应;反应结束后分液处理,得到氟相层,进行分馏提纯,即得到高纯度的全氟烯烃齐聚物产物;
当原料单体不含有气态单体时,将原料单体、金属氟化盐、相转移催化剂和助剂(可根据实际情况不加助剂)加入反应釜中,排除反应釜中的氧气后,搅拌升温至反应温度进行反应;反应结束后分液处理,得到氟相层,进行分馏提纯,即得到高纯度的全氟烯烃齐聚物产物。
由于反应产物为有机氟相,一般与反应体系中的溶剂、催化剂、相转移催化助剂不互溶,通过常规静置分层即可对其进行分离,若对其进行常规的水洗或精馏操作,则能够得到纯度更高的目标产物。
本申请提供的上述制备方法通过调整反应条件,可高选择性地制 备碳原子数不低于7的全氟烯烃齐聚物,既能高选择性的制备出某一高碳数的全氟烯烃,也可制备出一定沸程范围内的全氟烯烃混合物进行直接应用,或制备沸程较宽的全氟烯烃混合物,经过分离后再进行应用。
上述制备方法制备得到的高碳数的全氟烯烃齐聚物具有疏水性和疏油性、且具有化学惰性、水解稳定性和热稳定性,能够在诸多领域得到应用,比如用于氟碳表面活性剂,用于电子制品(如碟盘或电路板)的精度或金属清洁的溶剂,用于检漏液,在制造泡沫绝缘(例如聚氨酯的、酚醛树脂等的热塑性泡沫)中用作泡孔尺寸调节剂,用作文献或标本保存材料和润滑剂的载流体或溶剂,用于聚合反应的惰性介质或稀释剂,用作从抛光的表面(如金属)除去抛光研磨化合物的抛光研磨剂,上述制备方法制备的全氟烯烃齐聚物能够与水共沸,能够用作除水的置换干燥剂,例如从珠宝或金属零件中除去水;用作传统电路制造技术中的抗显色剂等。
为了便于本领域技术人员对本申请方案的理解,下面结合具体实施例对本申请方案进行进一步阐述,应当理解,本申请实施例是对本申请方案的解释说明,不作为对本申请保护范围的限定。
以下实施例和对比例中未注明具体条件者,按照常规条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购途径获得的常规产品。
实施例1
将50g二乙二醇二甲醚,1.5g(0.035mol)氟化钠,0.15g相转移催 化剂苯并18-冠-6混合加入反应釜中,排出体系中的氧气后搅拌升温至60℃,然后通入总量为20g(0.2mol)的四氟乙烯和30g(0.2mol)的六氟丙烯的混合气体,反应3h。反应结束后进行分液处理,得到下层氟相层,对其进行GC测试,溶解的四氟乙烯和六氟丙烯完全转化,其中C7-C16的全氟烯烃齐聚物的选择性为94%。
实施例2
将30g(0.1mol)六氟丙烯二聚体、1.5g(0.026mol)氟化钾、50g三乙二醇二甲醚、5g相转移催化剂4-氨基苄基-15-冠-5加入反应釜中,排出体系中的氧气后将反应釜温度控制在70℃,向其中通入总量为20g(0.2mol)的四氟乙烯,通好后继续搅拌10h。反应结束后进行分液处理,得到氟相层,对其进行GC测试,六氟丙烯二聚体的转化率为82%,C8-C12的全氟烯烃齐聚物的选择性为89%。
实施例3
将7.5g(0.0375mol)四氟乙烯二聚体、15g(0.05mol)六氟丙烯二聚体、3g(0.05mol)氟化钾、50g乙腈、7g相转移催化剂1-氮杂-18-冠-5加入反应釜中,排出体系中的氧气后将反应釜温度控制在100℃,向其中通入总量为90g(0.6mol)的六氟丙烯,通好后继续搅拌反应2h。反应结束后进行分液处理,得到氟相层,对其进行GC测试,四氟乙烯二聚体和六氟丙烯二聚体的总转化率为77%,C7-C14的全氟烯烃齐聚物的选择性为95%。
实施例4
将15g(0.075mol)四氟乙烯二聚体、5g(0.033mol)氟化铯、50g乙腈、1g相转移催化剂二环己烷-18-冠-6加入反应釜中,排出体系中的氧气后将反应釜温度控制在80℃,向其中通入总量为90g(0.6mol)的六氟丙烯,通好后继续搅拌反应4h。反应结束后进行分液处理,得到氟相层,对其进行GC测试,四氟乙烯二聚体的转化率为95%,C7-C13的全氟烯烃齐聚物的选择性为96%。
实施例5
将30g(0.1mol)六氟丙烯二聚体、3g(0.052mol)氟化钾、50g二甲基甲酰胺、5g相转移催化剂1-氮杂-15-冠-5加入反应釜中,排出体系中的氧气后将反应釜温度控制在90℃,向其中通入总量为20g(0.2mol)的四氟乙烯和30g(0.2mol)的六氟丙烯,通好后继续搅拌反应5h。反应结束后进行分液处理,得到氟相层,对其进行GC测试,六氟丙烯二聚体的转化率为95%,C8-C16的全氟烯烃齐聚物的选择性为92%。
实施例6
将15g(0.075mol)四氟乙烯二聚体、5g(0.033mol)氟化铯、50g乙腈、2g相转移催化剂1-氮杂-15-冠-5加入反应釜中,排出体系中的氧气后将反应釜温度控制在80℃,向其中通入总量为20g(0.2mol)的四 氟乙烯和30g(0.2mol)的六氟丙烯,通好后继续搅拌反应3h。反应结束后进行分液处理,得到氟相层,对其进行GC测试,四氟乙烯二聚体的转化率为85%,C7-C16的全氟烯烃齐聚物的选择性为94%。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (12)

  1. 一种全氟烯烃齐聚物的制备方法,其特征在于,选自下述(i)和(ii)中的两种或多种原料单体的组合在金属氟化盐的催化作用下进行齐聚反应得到碳原子总数不低于7的全氟烯烃齐聚物产物,其中(i)为四氟乙烯、四氟乙烯低聚体或其混合物,(ii)为六氟丙烯、六氟丙烯低聚体或其混合物。
  2. 根据权利要求1所述的制备方法,其特征在于,所述四氟乙烯低聚体选自四氟乙烯二聚体、四氟乙烯三聚体、四氟乙烯四聚体、四氟乙烯五聚体、四氟乙烯六聚体和四氟乙烯七聚体中的至少一种;所述六氟丙烯低聚体选自六氟丙烯二聚体和六氟丙烯三聚体中的至少一种。
  3. 根据权利要求1所述的制备方法,其特征在于,所述全氟烯烃齐聚物为具有以下结构通式的烯烃类化合物:
    Figure PCTCN2022112748-appb-100001
    其中,R f1、R f2、R f3、R f4独立地选自F或碳原子数为1-8的全氟烷基基团。
  4. 根据权利要求1所述的制备方法,其特征在于,所述全氟烯烃齐聚物为具有以下结构通式的烯烃类化合物:
    Figure PCTCN2022112748-appb-100002
    其中,R f1、R f2、R f3、R f4独立地选自F、-CF 3、-CF 2CF 3、-CF(CF 3) 2、-C(CF 3) 3、-CF 2CF 2CF 3、-CF 2CF 2CF 2CF 3、-CF 2CF(CF 3) 2、 -C(CF 2CF 3) 2CF 3、-C(CF 2CF 3) 3或-C(CF 3) 2CF(CF 3) 2基团。
  5. 根据权利要求1所述的制备方法,其特征在于,包括:所述齐聚反应在非质子性极性溶剂中且在反应温度为60-200℃的条件下进行。
  6. 根据权利要求5所述的制备方法,其特征在于,所述非质子性极性溶剂选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、二甲基甲酰胺、二甲基乙酰胺、乙腈或它们的混合物。
  7. 根据权利要求1所述的制备方法,其特征在于,所述原料单体的总质量与金属氟化盐的质量的比值为1:(0.01-0.5)。
  8. 根据权利要求1所述的制备方法,其特征在于,所述金属氟化盐选自氟化铯、氟化钾、氟化钠中的一种或多种。
  9. 根据权利要求1所述的制备方法,其特征在于,所述齐聚反应的反应体系中还包括相转移催化剂;所述相转移催化剂选自季铵盐、冠醚类催化剂或其混合物。
  10. 根据权利要求9所述的制备方法,其特征在于,所述相转移催化剂在反应原料中的质量占比不高于30%。
  11. 根据权利要求10所述的制备方法,其特征在于,所述制备方法以四氟乙烯或/和四氟乙烯二聚体与六氟丙烯或/和六氟丙烯二聚体为原料单体组合进行齐聚反应制备碳原子数为7-16的全氟烯烃齐聚物,反应温度为60-100℃,反应时间为2-12h,原料单体的总质量与金属氟化盐的质量的比值为1:(0.02-0.1),相转移催化剂为苯并18-冠-6、4-氨基苄基-15-冠-5、1-氮杂-18-冠-5、二环己烷-18-冠-6或 1-氮杂-15-冠-5,相转移催化剂在反应原料中的质量占比不超过10%。
  12. 权利要求1-11任一项所述的制备方法制备得到的全氟烯烃齐聚物在氟碳表面活性剂、电子产品清洗剂、检漏液、聚合反应的惰性介质或稀释剂中的应用。
PCT/CN2022/112748 2021-09-07 2022-08-16 一种全氟烯烃齐聚物的制备方法及应用 WO2023035876A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111045203.9A CN113816824B (zh) 2021-09-07 2021-09-07 一种全氟烯烃齐聚物的制备方法及应用
CN202111045203.9 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023035876A1 true WO2023035876A1 (zh) 2023-03-16

Family

ID=78922183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112748 WO2023035876A1 (zh) 2021-09-07 2022-08-16 一种全氟烯烃齐聚物的制备方法及应用

Country Status (2)

Country Link
CN (1) CN113816824B (zh)
WO (1) WO2023035876A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816824B (zh) * 2021-09-07 2023-03-10 浙江巨化技术中心有限公司 一种全氟烯烃齐聚物的制备方法及应用
CN115403443A (zh) * 2022-07-29 2022-11-29 齐鲁中科光物理与工程技术研究院 一种含氟烯烃制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061399A (zh) * 1990-10-11 1992-05-27 纳幕尔杜邦公司 多氟链烯的生产方法
CN109574812A (zh) * 2018-12-24 2019-04-05 天津长芦新材料研究院有限公司 高选择性制备全氟烯烃的方法
CN110577460A (zh) * 2019-09-24 2019-12-17 浙江诺亚氟化工有限公司 一种六氟丙烯三聚体的制备方法
CN113035288A (zh) * 2021-04-22 2021-06-25 杭州聚庸科技有限公司 一种四氟乙烯与六氟丙烯共聚反应的数学建模方法
CN113816824A (zh) * 2021-09-07 2021-12-21 浙江巨化技术中心有限公司 一种全氟烯烃齐聚物的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061399A (zh) * 1990-10-11 1992-05-27 纳幕尔杜邦公司 多氟链烯的生产方法
CN109574812A (zh) * 2018-12-24 2019-04-05 天津长芦新材料研究院有限公司 高选择性制备全氟烯烃的方法
CN110577460A (zh) * 2019-09-24 2019-12-17 浙江诺亚氟化工有限公司 一种六氟丙烯三聚体的制备方法
CN113035288A (zh) * 2021-04-22 2021-06-25 杭州聚庸科技有限公司 一种四氟乙烯与六氟丙烯共聚反应的数学建模方法
CN113816824A (zh) * 2021-09-07 2021-12-21 浙江巨化技术中心有限公司 一种全氟烯烃齐聚物的制备方法及应用

Also Published As

Publication number Publication date
CN113816824A (zh) 2021-12-21
CN113816824B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2023035876A1 (zh) 一种全氟烯烃齐聚物的制备方法及应用
KR101610009B1 (ko) 1230xa에서 1234yf로의 촉매식 기체상 불소화
EP1879841B1 (en) Method for producing fluorinated organic compounds
JP3889039B2 (ja) フッ素化オレフィンの製造方法およびフッ素化オレフィンを用いるヒドロフルオロカーボンの製造方法
AU639220B2 (en) Direct fluorination process for making perfluorinated organic substances
KR101595196B1 (ko) 2,3,3,3-테트라플루오로프로펜의 제조 방법
US4788352A (en) Trifluoroalkenes and a method for their preparation
EP3301083A1 (en) Method for producing fluorinated olefins
JPH0859816A (ja) 水素末端化ポリオキシペルフルオロアルカンの製造方法
EP2348007A1 (en) Method for producing fluorinated organic compounds
CN109574812B (zh) 高选择性制备全氟烯烃的方法
KR20180071383A (ko) 2,3,3,3-테트라플루오로프로펜 및/또는 비닐리덴 플루오라이드의 제조 방법
CN1161952A (zh) 生产全氟化碳的方法
CN112830863A (zh) 连续可控制备六氟丙烯二聚体/三聚体的方法
EP1380557B1 (en) Method for continuous production of a perfluoroalkyl iodide telomer
KR100854982B1 (ko) 1,1,1,2-테트라플루오로에탄 및/또는 펜타플루오로에탄의제조방법 및 그 용도
WO2007077174A1 (en) Preparation of compounds having a perfluoroalkylcarbonyl group
JP4688427B2 (ja) (ペル)フルオロハロゲンエーテルの製造方法
CN102381929B (zh) 一种氟气引发连续化生产短链全氟碘代烷的方法
US5994599A (en) Halogenated ethers containing fluorine and processes for their manufacture
JP4526826B2 (ja) フルオロハロゲンエーテルの製造方法
EP3728177B1 (en) Methods of making polyfunctional polyfluorinated compounds
JP2022528745A (ja) 1,2-ビス(ペルフルオロアルキル)エチレンのルイス酸触媒合成
KR100569245B1 (ko) 불화 금속계 촉매를 이용한 펜타플루오로에틸요오다이드의 제조방법
JPH02172944A (ja) ヘキサフルオロプロペン酸化物のオリゴマーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE