WO2023035673A1 - 不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法 - Google Patents

不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法 Download PDF

Info

Publication number
WO2023035673A1
WO2023035673A1 PCT/CN2022/094938 CN2022094938W WO2023035673A1 WO 2023035673 A1 WO2023035673 A1 WO 2023035673A1 CN 2022094938 W CN2022094938 W CN 2022094938W WO 2023035673 A1 WO2023035673 A1 WO 2023035673A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfacing
surfacing welding
welding
head
welding head
Prior art date
Application number
PCT/CN2022/094938
Other languages
English (en)
French (fr)
Inventor
郑建能
刘玉平
李厚彬
朱永有
张�林
徐常顺
何宏宇
李禛
刘红梅
李莉
常旭
王黎
Original Assignee
二重(德阳)重型装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 二重(德阳)重型装备有限公司 filed Critical 二重(德阳)重型装备有限公司
Publication of WO2023035673A1 publication Critical patent/WO2023035673A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track

Definitions

  • the invention relates to the field of surfacing welding technology for corrosion-resistant layers of main nuclear power equipment, and in particular to a method for acquiring a surfacing welding trajectory of an irregular rotary cavity wall and a fully automatic surfacing welding method.
  • a workpiece with an irregular rotary cavity wall is a key component of the coolant pump casing in the nuclear island equipment.
  • the working conditions are harsh and the comprehensive performance requirements are high.
  • it needs to be A surfacing layer with a thickness of not less than 5mm is formed on the surface of the inner cavity of the workpiece, and the material of the bottom layer of the surfacing layer is different from that of the rest of the layers;
  • Chinese invention patent CN102275027A discloses a surfacing device for the inner wall of an irregular circular cavity And its surfacing method, which involves the same type of previous products of the above-mentioned workpieces, adopts a strip surfacing process, and cooperates with a strip surfacing equipment to surfacing the inner wall of a circular cavity. During the surfacing process, cooperate with a position adjustment mechanism to The early product is adjusted in multiple directions to realize the automatic surfacing of this early product.
  • the inner cavity wall of the workpiece is mainly composed of a spherical surface, a conical surface and the intersecting surface of the spherical conical surface, which is extremely irregular.
  • the welding torch The running trajectory of the welding torch is complex and changeable, and it is impossible to maintain a stable distance between the welding torch and the irregular cavity wall and surfacing welding speed.
  • the strip surfacing welding If the strip surfacing welding is still used, it needs to cooperate with large-area manual electrode arc welding surfacing welding, and the operator needs to enter the workpiece Internal operation, harsh operating environment, high labor intensity, low welding efficiency, and difficult to guarantee welding quality, prone to dot-like display defects in the surfacing layer, resulting in workpieces that do not meet the requirements for use.
  • the weight of the workpiece exceeds 30 tons, the shape is irregular , multi-directional adjustment through the position adjustment mechanism requires multiple liftings, the assembly alignment is difficult, the cycle is long, and there is a large safety risk.
  • the object of the present invention is to provide a method for acquiring the surfacing welding trajectory of the irregular rotary cavity wall and a fully automatic surfacing welding method for the problems existing in the background technology.
  • the method for obtaining the surfacing welding trajectory of the irregular rotary cavity wall includes the following steps: Step 1, dividing the cavity wall area surface: dividing the cavity wall into a plurality of area surfaces, each of which includes a cylindrical surface, a spherical surface, and a conical surface Any one; Step 2, establish a coordinate system: establish a coordinate system for each of the area faces, the Z axis of the coordinate system coincides with the center line of rotation corresponding to the area surface; Step 3, set the center of rotation: in Set the center of rotation in the Z-axis direction of the coordinate system; step 4, obtain the area surface trajectory: rotate the surfacing welding head around the rotation center, so that the surfacing welding head moves along the corresponding area surface, and each movement corresponds to the limit of the area surface range, move the overlay welding head along the area surface by a lane change amount; step five, adjust the rotational angular speed: adjust the overlay welding machine according to the overlay welding line speed, initial position coordinates and the lane change amount of the overlay welding head The rotational angular
  • the irregular rotary cavity wall is divided into a plurality of regional surfaces, and surfacing welding is performed on each regional surface, so that the surfacing welding machine head in the surfacing welding process It is easier to move along the regular path, and it is convenient to realize the control of the surfacing welding trajectory.
  • steps 2 and 3 the connection line between the surfacing welding head and the rotation center is rotated around the Z axis to match the rotation characteristics of the area to be welded.
  • the surfacing trajectory is more controllable, the surfacing efficiency is higher, and the surfacing quality is easy to control.
  • step 6 since the surfacing welding line speed of the surfacing head is consistent in all areas, the surfacing quality of all areas is the same, and the combination of all areas can ensure the overall surfacing quality of the irregular rotary cavity wall , and because the surfacing trajectory of all areas is highly controllable, it is easier to drive the surfacing head to move along the pre-calculated surfacing trajectory through the external mechanism of the cavity, so as to realize the automatic surfacing of the irregular rotary cavity wall Welding does not require operators to enter the rotary cavity, which reduces the labor intensity of surfacing welding.
  • V surfacing welding line speed of surfacing welding head
  • R Cylindrical radius
  • the radius of gyration of the surfacing welding head can remain unchanged during the surfacing of the cylindrical surface, it is only necessary to measure the inner diameter of the cylindrical surface, and the rotational angular velocity of the surfacing welding head can be obtained according to the preset surfacing welding line speed , that is, only need to control the rotational angular velocity of the surfacing welding head around the rotation center line and the height coordinate value of the surfacing welding head's rotation center on the Z axis, to obtain the surfacing welding trajectory of the surfacing welding head on the cylindrical surface , to facilitate the adjustable and controllable surfacing trajectory in the cylindrical surface.
  • V surfacing welding line speed of surfacing welding head
  • R spherical radius
  • ⁇ n The real-time angle value between the line connecting the rotation center and the surfacing head and the Z axis;
  • ⁇ 0 the initial angle between the line connecting the center of rotation and the surfacing head and the Z axis
  • ⁇ L the single lane change amount of the surfacing welding head moving within the boundary of the area surface
  • n The number of times the surfacing welding head moves within the limits of the area surface.
  • the vertical distance between the surfacing head and the Z axis that is, the radius of gyration of the surfacing head
  • the rotational angular speed according to the position of the surfacing welding head so that the surfacing welding line speed of the surfacing welding head is always constant, realize the stability of the welding quality in the spherical surface, and ensure the quality of the spherical surface surfacing layer , and is conducive to ensuring the consistency of the surfacing quality of each area, and the quality of the surfacing layer on the wall of the irregular rotary cavity.
  • V surfacing welding line speed of surfacing welding head
  • R cone radius of the initial surfacing position
  • ⁇ L the single lane change amount of the surfacing welding head moving within the boundary of the area surface
  • n the number of times the surfacing welding head moves within the limits of the area
  • The angle between the Z axis and the cone surface.
  • the vertical distance between the surfacing head and the Z axis that is, the radius of gyration of the surfacing head, will change with the position, and the center of rotation of the surfacing head also needs to be along the Z axis. Only by moving can the surfacing welding head maintain a vertical relationship with the area to be welded, which affects the linear speed of the surfacing welding head.
  • the rotational angular velocity is adjusted according to the position of the surfacing welding head , so that the surfacing welding line speed of the surfacing welding head is always kept constant, realizing the stability of the welding quality in the conical surface, ensuring the quality of the surfacing welding layer in the conical surface, and is conducive to ensuring the consistency of the surfacing welding quality in each area, ensuring that there is no The quality of the surfacing layer on the wall of the regular rotary cavity.
  • the automatic surfacing welding method for irregular rotary cavity walls adopts the above-mentioned surfacing trajectory acquisition method to obtain the surfacing welding trajectory of the surfacing welding head, and controls the surfacing welding head to move along the surfacing welding trajectory through the PLC control system to realize irregular Fully automatic surfacing welding of the rotary cavity wall.
  • the automatic surfacing welding method for the irregular rotary cavity wall of the present invention can be easily adjusted by the PLC control system because the precise surfacing trajectory and the rotational angular speed of the surfacing welding head in each area are obtained before the surfacing welding.
  • the rotary angular speed of the surfacing welding head realizes the surfacing welding of the surfacing head at the same linear speed in each area, ensures the quality and uniformity of the surfacing layer on the wall of the irregular rotary cavity, and makes the surfacing process do not require operators to enter the rotary cavity
  • the labor intensity of surfacing welding is reduced, and the surfacing welding trajectory is controllable, the surfacing welding efficiency is high, and the surfacing welding quality is high, which ensures the overall quality of the surfacing welding layer on the wall of the irregular rotary cavity.
  • the surfacing welding is carried out by adopting non-MIG shielded welding process, and the non-MIG shielded welding includes single tungsten argon arc welding or double tungsten argon arc welding.
  • the surfacing welding head is connected with an AVC arc voltage tracking system, and the AVC arc voltage tracking system is used to drive the surfacing welding head to profiling surfacing welding along the area surface.
  • the AVC arc voltage tracking system can continuously monitor the welding voltage during the surfacing process, and use its own motion mechanism to ensure the consistency of the welding voltage during welding, that is, to ensure that the surfacing welding head is in the same position as the welding head before and after changing lanes.
  • the distance between the welding surfaces is consistent, that is, to ensure that the arc length is always consistent during welding, so that the surfacing welding quality before and after the surfacing welding head changes lanes is consistent, and the overall surfacing layer quality and uniformity of the irregular rotary cavity wall are guaranteed.
  • the surfacing welding head is connected with an infinite rotation mechanism, the infinite rotation mechanism is connected with the PLC control system, and the infinite rotation mechanism is used to drive the surfacing welding head to rotate around the center of rotation .
  • the infinite slewing mechanism can drive the surfacing welding head to rotate 360° around the slewing center.
  • the surfacing welding head is connected with an angle axis, and the angle axis is used to adjust the angle between the line connecting the rotation center and the surfacing welding head and the Z axis.
  • One end of the angle axis is connected to the surfacing head, and the other end is connected to the center of rotation. Adjusting the angle between the angle axis and the Z axis can change the angle between the line connecting the rotation center and the surfacing head and the Z axis.
  • the irregular rotating cavity wall includes a cylindrical surface, a spherical surface, a conical surface and an intersecting surface, and includes the following steps:
  • A Keep the angle between the angle axis and the Z-axis direction at 90°, and keep the Z-axis set in the vertical direction, so that the surfacing welding head is perpendicular to the surface of the area to be welded, and the rotation center of the surfacing welding head is located in the Z-axis direction. Adjust the height coordinate of the center of rotation of the surfacing head on the Z axis, and automatically surfacing the inner cavity of the cylindrical surface;
  • Overlay welding spherical surface keep the angular axis coincident with the radius direction of the spherical surface, make the overlay welding head perpendicular to the surface of the area to be welded, the rotation center of the overlay welding head is located at the center of the sphere, and adjust the rotation angular speed and angle axis of the overlay welding head synchronously Relative to the included angle of the Z-axis direction, the inner cavity of the spherical surface is automatically surfacing;
  • C Surfacing cone surface: Keep the angle between the angle axis and the Z-axis direction less than 90°, make the surfacing welding head perpendicular to the surface of the area to be welded, and adjust the rotation of the surfacing welding head in the Z-axis direction of the surfacing welding head synchronously Angular speed and the height coordinate of the center of rotation of the surfacing welding head on the Z axis, and the inner cavity of the automatic surfacing welding cone;
  • Overlay welding intersecting surface The center of rotation is set on the center line of the cone surface, and the inner cavity of the overlay welding intersecting surface is copied by the AVC arc voltage tracking system.
  • the intersecting surface is a curved surface formed by chamfering after the intersecting spherical and conical surfaces.
  • the mathematical model of this surface is relatively complicated, and it is difficult to set the surfacing trajectory through a simple curve.
  • the surface centerline not only simplifies the surfacing welding trajectory, but also ensures the surfacing welding quality of the intersecting surface.
  • step 1 the irregular rotary cavity wall is divided into multiple area surfaces, and each area surface is surfacing separately, so that the surfacing welding head can move along the regular path more easily during the surfacing welding process, and it is convenient to realize the surfacing welding Control of surfacing welding trajectory;
  • steps 2 and 3 rotate the connection line between the surfacing head and the center of rotation around the Z axis, and cooperate with the rotation characteristics of the area to be welded to make the surfacing welding track more controllable, the surfacing welding efficiency is higher, and it is easy to control Surfacing quality;
  • steps 4 and 5 realize the independent acquisition of the surfacing welding track of each area, and ensure the quality and efficiency of surfacing welding for each area;
  • step 6 since the surfacing welding line speed of the surfacing welding head is consistent in all areas, the surfacing welding quality of all areas is the same;
  • the combination of all area surfaces can ensure the overall surfacing welding quality of the irregular rotary cavity wall, and because the surfacing welding trajectory of all area surfaces is highly controllable, it is easier to drive the surfacing welding head along the
  • the surfacing trajectory movement obtained by pre-calculation realizes the automatic surfacing welding of various irregular rotary cavity walls, and does not require operators to enter the rotary cavity, which reduces the labor intensity of surfacing welding.
  • the equal linear speed surfacing welding of each area ensures the quality and uniformity of the surfacing layer on the wall of the irregular rotary cavity, so that the operator does not need to enter the rotary cavity during the surfacing process, which reduces the labor intensity of the surfacing welding, and the surfacing welding track can be control, high surfacing efficiency and high surfacing quality, which ensures the overall quality of the surfacing layer on the wall of the irregular rotary cavity.
  • Fig. 1 is a schematic structural view of a workpiece with an irregular wall of a revolving cavity.
  • Fig. 2 is a schematic diagram of the coordinate system of the cylindrical surface in embodiment 2.
  • Fig. 3 is a schematic diagram of the coordinate system of the spherical surface in Embodiment 2.
  • Embodiment 4 is a schematic diagram of the coordinate system of the tapered surface in Embodiment 2.
  • the acquisition method of the surfacing welding trajectory of the irregular rotary cavity wall is applied to the irregular rotary cavity wall including the cylindrical surface, the spherical surface or the conical surface.
  • the heap welding trajectory of each area surface is obtained respectively.
  • the complete surfacing trajectory includes the surfacing welding path of the surfacing welding head.
  • the complete surfacing welding trajectory needs to match the uniform surfacing welding line speed of the surfacing welding head. The consistency of the surfacing welding quality can be guaranteed, and the surfacing welding line speed of the surfacing welding head is different due to the influence of the position of the surfacing welding head relative to the area surface.
  • the rotational angular velocity of the surfacing welding head corresponding to the surfacing path around the corresponding rotation center enables the surfacing welding head to carry out equal linear velocity surfacing on each area of the irregular rotary cavity wall during the rotation process, which can realize multiple High-quality and high-efficiency surfacing welding of irregular rotary cavity walls in different types of areas, and ensure that the overall surfacing layer quality of irregular rotary cavity walls is the same, and realize automatic surfacing welding of irregular rotary cavity walls without operators Entering the rotary cavity reduces the labor intensity of surfacing welding.
  • Step 1 Dividing the area surface of the cavity wall: Dividing the cavity wall into a cylindrical surface, a spherical surface, a conical surface, and an intersecting surface of each area surface.
  • the intersecting surface is a curved surface formed by rounding after adjacent area surfaces intersect.
  • Step 2 establish a coordinate system: establish a coordinate system for the cylindrical surface, spherical surface and conical surface respectively, wherein the coordinate system Z axis corresponding to the cylindrical surface coincides with the center line of the cylindrical surface; the origin of the coordinate system corresponding to the spherical surface coincides with the center of the sphere; the cone The Z-axis of the coordinate system corresponding to the surface coincides with the centerline of the cone surface.
  • Step 3 set the center of rotation: set the center of rotation in the Z-axis direction of the coordinate system, and make the Z-axis extension line be the center line of rotation of the surfacing welding head, so that the surfacing welding head can be kept perpendicular to the surface of the area to be welded Rotate around the center line of rotation in the state of rotation, and move along the surface of the area to be welded during the rotation process to realize the surfacing of the corresponding area.
  • the Z-axis of the coordinate system is kept in a vertical direction, so that the center line of rotation extends into the workpiece from top to bottom, and the surfacing operation is performed on each area surface from bottom to top.
  • every time the surfacing head rotates around the center line of rotation it can surfacing a continuous ring-shaped surfacing track within the limit of any area to be welded, and then move the surfacing head up or down along the center line of rotation.
  • the center of rotation of the surfacing welding machine head can be moved along the surface to be surfacing by a change of lane, and a continuous surfacing welding trajectory adjacent to it can be surfacing. Repeat the operation to obtain the surfacing welding trajectory of the corresponding area surface, and adjust the coordinate system and surfacing
  • the area surface corresponding to the welding head realizes the complete surfacing of the irregular rotary cavity wall and obtains the complete surfacing trajectory of the irregular rotary cavity wall.
  • the lane change amount is the vertical distance between the centerlines of adjacent surfacing welding trajectories, which is affected by the welding process and welding parameters. After the welding process and welding parameters are selected, the lane change amount can be determined to avoid The distance between the welding tracks is too wide to ensure the overall protection of the surfacing layer on the workpiece.
  • the rotational angular velocity of the surfacing head is adjusted according to the position of the surfacing head, so that the surfacing linear speed of the surfacing head remains unchanged, ensuring that each area The quality of the overlay welding on the surface is the same.
  • the pre-calculation and acquisition of the surfacing trajectory can be adaptively carried out, so that the surfacing welding results of the same quality can be obtained on each area surface under the condition of equal surfacing welding line speed , to ensure the quality requirements of the surfacing layer of the workpiece, the surfacing efficiency is high, and it is easier to use mechanical structures such as mechanical arms to drive the surfacing head to move along the pre-acquired surfacing track, so that the operator does not need to enter the workpiece , It reduces the high labor intensity of surfacing welding, realizes the inner cavity surfacing welding of workpieces with different types of complex rotary surfaces, and has good adaptability.
  • the full-automatic surfacing welding method for the irregular rotary cavity wall of the present invention adopts the surfacing welding trajectory acquisition method as described in Embodiment 1 to obtain the surfacing welding trajectory of the surfacing welding head, and controls the surfacing welding head along the surfacing welding through the PLC control system. Trajectory movement, using non-melting electrode gas shielded welding process, fully automatic surfacing welding for workpieces with irregular rotary cavity walls as shown in Figure 1.
  • the above-mentioned workpiece is a shell workpiece with an irregular wall of the rotary cavity having a cylindrical surface 1, a spherical surface 2, a conical surface 3, and the intersecting surface 4 of each area surface at the same time. It is a pump casing of a nuclear power main pump.
  • the workpiece has three Two openings, wherein the inner walls of the two opposite openings correspond to the area surface of the cylindrical surface 1, another independent opening corresponds to the area surface of the conical surface 3, and the inner cavity of the workpiece corresponds to the area surface of the spherical surface 2, between the conical surface 3 and the spherical surface 2
  • An intersecting surface 4 is formed, and the intersecting surface 4 is a curved surface formed by inverting R200 rounded corners after the conical surface 3 intersects with the spherical surface 2 .
  • double argon tungsten arc welding and an AVC arc voltage tracking system are used to carry out the surfacing operation of the wall of the revolving cavity inside the workpiece.
  • adjusting the tungsten electrode spacing within a certain range can control the penetration depth of the surfacing layer.
  • the preferred tungsten electrode spacing is 1.0mm-1.5mm, and the tungsten electrode connection line is parallel to the welding direction, and the material ER308L is used, the specification Welding wire of ⁇ 1.2mm, with the welding parameters of any rated value in the wire feed rate of 5000mm/min-12000mm/min, realizes the automatic surfacing welding of the inner cavity of the workpiece, and the preferred wire feed rate is 6000mm/min.
  • the cylindrical surface 1 and the spherical surface 2 of this embodiment establish the same coordinate system
  • the Z axis of the coordinate system coincides with the central axis of the cylindrical surface 1
  • the origin of the coordinate system coincides with the center of the sphere
  • the cone surface 3 establishes a single
  • the coordinate system, the Z axis of the coordinate system coincides with the 3 rotation centerlines of the cone surface
  • the rotation center of the surfacing welding head is located on the Z axis, and can move along the Z axis for adaptive adjustment.
  • an angle axis is set between the surfacing head and the center of rotation, and the angle axis is used to adjust the angle between the line between the surfacing head and the center of rotation and the Z axis, and to realize the distance between the surfacing head and the center of rotation.
  • the surfacing welding head is driven by an infinite slewing mechanism that can drive a 360° rotation around the center line of the slewing, which is set outside the workpiece.
  • the infinite rotation mechanism may be a multi-axis linkage mechanical structure with a 360° rotation function such as a mechanical arm and a rotary connecting rod.
  • the angle between the line connecting the angular axis and the center of rotation and the Z axis is 90°, so that the surfacing welding head is perpendicular to the surface of the area to be welded, and the Z axis is used as Rotate the center line, every time the surfacing welding head welds around the rotating center line, the turning center of the surfacing welding head moves ⁇ L along the Z-axis direction, so that the surfacing welding head is raised by a lane change amount ⁇ L on the area to be welded.
  • the lane change between two adjacent surfacing tracks The front and rear angle axes rotate at the angle of ⁇ a, and the corresponding rotation radii L1 and L2 before and after the lane change of the surfacing welding head are not equal.
  • the surfacing welding head before and after the lane change is adjusted according to the formula to make the rotation center unchanged.
  • the equilinear velocity surfacing operation on the spherical surface 2 is realized.
  • the range of ⁇ L is 3mm-3.5mm.
  • the centerline of rotation is set along the centerline of the cone surface 3 , and the inner cavity of the surfacing intersecting surface 4 is copied by the AVC arc voltage tracking system. Since the AVC arc voltage tracking system can only be applied to profiling surfacing welding of curved surfaces whose undulations change continuously within 50mm-60mm and the undulations are small, in this embodiment, the spherical surface 2 and the conical surface 3 intersect and then the R200 inverted
  • the intersecting surface 4 formed by the corner and the center line of the cone surface 3 make the AVC arc voltage tracking system continuously monitor the voltage during welding during the surfacing process, and use the servo motor and worm of the AVC arc voltage tracking system to control
  • the machine head ensures the same welding voltage during welding, that is, ensures that the arc length is always consistent during welding, and ensures the consistency of surfacing welding quality in each area.
  • this embodiment provides a fully automatic surfacing welding method for the irregular rotary cavity wall in the pump casing of the main pump of nuclear power.
  • the surfacing can be obtained before surfacing
  • the PLC numerical control system to set the relevant parameter data of the surfacing welding trajectory obtained in advance, cooperate with the infinite rotation mechanism and the arc voltage tracking system, and select double tungsten argon arc welding to realize the Fully automatic surfacing of cavity walls.
  • the orientation is adjusted to avoid the safety risk caused by multiple liftings of the pump casing of the nuclear power main pump.
  • the assembly alignment is easier and the cycle is short, which is conducive to improving the processing efficiency.
  • each placement direction is preheated at 150°C, relying on the trajectory parameters set by the PLC program to automatically complete the surfacing work in the corresponding area, and finally the surfacing welding is completed.
  • the surfacing layer of the inner cavity of the pump casing is set. During the whole surfacing welding process, the operator only needs to observe the weld through the camera without entering the inside of the pump casing. The degree of automation is high and the work intensity can be greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法,其中堆焊轨迹获取方法包括步骤一,划分腔壁区域面;步骤二,建立坐标系;步骤三,设置回转中心;步骤四,获取区域面轨迹;步骤五,调整回转角速度;步骤六,获取堆焊轨迹;全自动堆焊方法包括通过PLC控制系统控制堆焊机头沿所述堆焊轨迹移动,采用非熔化极气体保护焊工艺,实现不规则回转腔壁的全自动堆焊,堆焊过程不需要操作人员进入回转腔内,降低了堆焊劳动强度,且堆焊轨迹更可控,堆焊效率较高,堆焊质量容易控制,保证了不规则回转腔壁的整体堆焊质量。

Description

不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法 技术领域
本发明涉及核电主设备的耐蚀层堆焊工艺领域,特别涉及不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法。
背景技术
如图1所示,一种具有不规则回转腔壁的工件,该工件为核岛设备中作为冷却剂泵壳的关键部件,工况条件苛刻,综合性能要求高,按产品技术要求,需要在工件内腔壁表面成型不低于5mm厚度的堆焊层,且堆焊层最底层材料与其余层材料需要不同;中国发明专利CN102275027A,公开了一种不规则圆形腔体内壁的堆焊装置及其堆焊方法,涉及上述工件的同类型前期产品,其采用带极堆焊工艺,配合带极堆焊设备对圆形腔体内壁进行堆焊,在堆焊过程中,配合位置调节机构对该前期产品进行多方位调整,实现该前期产品的自动堆焊。
但是,由于上述工件在结构上相对于前期产品存在较大的调整,工件内腔壁主要由球面、锥面以及球面锥面的相贯面组成,极不规则,在堆焊过程中,焊炬的运行轨迹复杂多变,无法使焊炬与不规则腔壁保持稳定的距离和堆焊速度,若依然采用带极堆焊,需要配合大面积的手工焊条电弧焊堆焊,需要操作人员进入工件内操作,操作环境恶劣、劳动强度高、焊接效率低,且焊接质量难以保证,堆焊层容易出现点状显示缺陷,导致工件不符合使用要求,同时,由于工件重量超过30吨,外形不规则,通过位置调节机构进行多方位调整,需要多次起吊,装配找正难度大、周期长,且存在较大的安全风险。
所以,目前亟需要一种技术方案,以解决现有具有不规则回转腔壁的工件,在使用现有工艺时,无法满足堆焊要求质量,且堆焊劳动强度高、堆焊效率低的技术问题。
发明内容
本发明的目的在于:针对背景技术中存在的问题,提供不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法。
为了实现上述目的,本发明采用的技术方案为:
不规则回转腔壁堆焊轨迹获取方法,包括如下步骤:步骤一,划分腔壁区域面:将腔壁划分为多个区域面,每一所述区域面包括圆柱面、球面、锥面中的任意一种;步骤二,建立坐标系:对每个所述区域面分别建立坐标系,所述坐标系的Z轴与对应所述区域面的回转中心线重合;步骤三,设置回转中心:在所述坐标系的Z轴方向设置回转中心;步骤四,获取区域 面轨迹:将堆焊机头绕回转中心旋转,使堆焊机头沿对应区域面移动,每移动对应所述区域面的界限范围,将堆焊机头沿所述区域面移动一个变道量;步骤五,调整回转角速度:根据堆焊机头的堆焊线速度、初始位置坐标和所述变道量,调整堆焊机头的回转角速度,保持堆焊机头的移动线速度不变,获取单个区域面的堆焊轨迹;步骤六,获取堆焊轨迹:重复步骤四和步骤五,获取所有区域面组成的不规则回转腔壁的堆焊轨迹。
本发明的不规则回转腔壁堆焊轨迹获取方法,通过步骤一,将不规则回转腔壁划分为多个区域面,对每一个区域面分别进行堆焊,使堆焊过程中堆焊机头能够更容易的沿规则路径移动,方便实现对堆焊轨迹的控制,通过步骤二和步骤三,将堆焊机头与回转中心的连线绕Z轴旋转,配合待焊区域面的回转特性,使堆焊轨迹更可控,堆焊效率更高,容易控制堆焊质量,通过步骤四和步骤五,实现每个区域面堆焊轨迹的独立获取,保证每个区域面堆焊质量和堆焊效率,通过步骤六,由于堆焊机头在所有区域面的堆焊线速度保持一致,使得所有区域面的堆焊质量相同,所有区域面组合,能够保证不规则回转腔壁的整体堆焊质量,且由于所有区域面的堆焊轨迹可控度较高,能够较容易的通过腔体外部机构带动堆焊机头沿预先计算获得的堆焊轨迹移动,实现对不规则回转腔壁的自动堆焊,不需要操作人员进入回转腔内,降低了堆焊劳动强度。
作为本发明的优选方案,当所述区域面为圆柱面时,所述步骤二中,坐标系Z轴与圆柱面中心线重合;所述步骤五中,所述堆焊机头的回转角速度为θ,θ=V/R,
式中:
V:堆焊机头的堆焊线速度;
R:圆柱面半径。
由于圆柱面在堆焊时,堆焊机头的回转半径能够保持不变,仅需要测量获得圆柱面的内径尺寸,根据预先设定的堆焊线速度,即可获取堆焊机头的回转角速度,即,只需要控制堆焊机头绕回转中心线的回转角速度和堆焊机头的回转中心在Z轴的高度坐标值,即可获取堆焊机头在圆柱面进行堆焊的堆焊轨迹,方便实现圆柱面内堆焊轨迹的可调可控。
作为本发明的优选方案,当所述区域面为球面时,所述步骤二中,坐标系原点与球面球心重合;所述步骤三中,所述回转中心与球面球心重合;所述步骤五中,所述堆焊机头的回转角速度为θ,θ=V/R·sinα n=V/R·sin[α 0+360°·(△L/2πR)·n],
式中:
V:堆焊机头的堆焊线速度;
R:球面半径;
α n:回转中心与堆焊机头的连线与Z轴之间的实时夹角值;
α 0:回转中心与堆焊机头的连线与Z轴之间的初始夹角值;
△L:堆焊机头在所述区域面的界限范围内移动的单个变道量;
n:堆焊机头在所述区域面的界限范围内移动的变道次数。
由于球面在堆焊时,堆焊机头与Z轴之间垂直距离,即堆焊机头的回转半径,会随位置的不同而改变,影响堆焊机头的线速度稳定,所以,结合球面特征,在堆焊球面时,根据堆焊机头的位置进行回转角速度的调整,使堆焊机头的堆焊线速度始终保持恒定,实现球面内焊接质量的稳定性,保证球面堆焊层质量,且有利于保证各区域面堆焊质量的一致性,保证不规则回转腔壁的堆焊层质量。
作为本发明的优选方案,当所述区域面为锥面时,所述步骤二中,坐标系Z轴与锥面中心线重合;所述步骤五中,所述堆焊机头的回转角速度为θ,θ=V/(R-n·△L·sinα),
式中:
V:堆焊机头的堆焊线速度;
R:初始堆焊位置的锥面半径;
△L:堆焊机头在所述区域面的界限范围内移动的单个变道量;
n:堆焊机头在所述区域面的界限范围内移动的变道次数;
α:Z轴与锥面之间夹角。
由于锥面在堆焊时,堆焊机头与Z轴之间垂直距离,即堆焊机头的回转半径,会随位置的不同而改变,且堆焊机头的回转中心也需要沿Z轴移动,才能保持堆焊机头与待焊区域面保持垂直关系,影响堆焊机头的线速度,结合锥面特征,在堆焊锥面时,根据堆焊机头的位置进行回转角速度的调整,使堆焊机头的堆焊线速度始终保持恒定,实现锥面内焊接质量的稳定性,保证锥面内堆焊层质量,且有利于保证各区域面堆焊质量的一致性,保证不规则回转腔壁的堆焊层质量。
不规则回转腔壁全自动堆焊方法,采用如上所述堆焊轨迹获取方法获取堆焊机头的堆焊轨迹,通过PLC控制系统控制堆焊机头沿所述堆焊轨迹移动,实现不规则回转腔壁的全自动堆焊。
本发明的不规则回转腔壁全自动堆焊方法,由于在堆焊前就获得了精确的堆焊轨迹和堆焊机头在各区域面的回转角速度,使得能够较容易的通过PLC控制系统调整堆焊机头的回转角速度,实现堆焊机头在各区域面的等线速度堆焊,保证不规则回转腔壁的堆焊层质 量和统一性,使堆焊过程不需要操作人员进入回转腔内,降低了堆焊劳动强度,且堆焊轨迹可控,堆焊效率较高,堆焊质量较高,保证了不规则回转腔壁的整体堆焊层质量。
作为本发明的优选方案,采用非熔化极气体保护焊工艺进行堆焊,所述非熔化极气体保护焊包括单钨极氩弧焊或双钨极氩弧焊。
作为本发明的优选方案,所述堆焊机头连接有AVC弧压跟踪系统,所述AVC弧压跟踪系统用于带动所述堆焊机头沿所述区域面仿形堆焊。AVC弧压跟踪系统能够在堆焊过程中,不断监测焊接时的电压大小,利用其自身的运动机构,保证焊接时焊接电压的一致性,即保证堆焊机头在进行变道前后与待堆焊面之间的距离一致,即,保证焊接时电弧长度始终一致,使堆焊机头变道前后的堆焊质量保持一致,保证不规则回转腔壁的整体堆焊层质量和统一性。
作为本发明的优选方案,所述堆焊机头连接有无限回转机构,所述无限回转机构与所述PLC控制系统连接,所述无限回转机构用于驱动所述堆焊机头绕回转中心转动。无限回转机构能够驱动堆焊机头绕回转中心进行360°旋转。
作为本发明的优选方案,所述堆焊机头连接有角度轴,所述角度轴用于调整回转中心与堆焊机头的连线与Z轴之间夹角。角度轴一端与堆焊机头连接,另一端与回转中心连接,调整角度轴相对Z轴的夹角,即可改变回转中心与堆焊机头的连线与Z轴之间夹角。
作为本发明的优选方案,所述不规则回转腔壁包括圆柱面、球面、锥面和相贯面,并包括如下步骤:
A:保持角度轴与Z轴方向夹角为90°,并保持Z轴沿竖直方向设置,使堆焊机头垂直于待焊区域面,堆焊机头的回转中心位于Z轴方向上,调整堆焊机头的回转中心在Z轴的高度坐标,自动堆焊圆柱面的内腔体;
B:堆焊球面:保持角度轴与球面半径方向重合,使堆焊机头垂直于待焊区域面,堆焊机头的回转中心位于球心,同步调整堆焊机头的回转角速度和角度轴相对Z轴方向的夹角,自动堆焊球面的内腔体;
C:堆焊锥面:保持角度轴与Z轴方向夹角小于90°,使堆焊机头垂直于待焊区域面,堆焊机头的Z轴方向上,同步调整堆焊机头的回转角速度和堆焊机头的回转中心在Z轴的高度坐标,自动堆焊锥面的内腔体;
D:堆焊相贯面:在锥面中心线上设置回转中心,由AVC弧压跟踪系统,仿形堆焊相贯面的内腔体。相贯面为球面、锥面相贯后倒角形成的曲面,该面数学模型较为复杂,难以通过简单曲线来设置堆焊轨迹,因此,借助于AVC弧压跟踪系统进行仿形堆焊,配合锥面中心 线,不仅简化了堆焊轨迹,而且能够保证相贯面的堆焊质量。
综上所述,由于采用了上述技术方案,本发明的不规则回转腔壁堆焊轨迹获取方法的有益效果是:
1、通过步骤一,将不规则回转腔壁划分为多个区域面,对每一个区域面分别进行堆焊,使堆焊过程中堆焊机头能够更容易的沿规则路径移动,方便实现对堆焊轨迹的控制;
2、通过步骤二和步骤三,将堆焊机头与回转中心的连线绕Z轴旋转,配合待焊区域面的回转特性,使堆焊轨迹更可控,堆焊效率更高,容易控制堆焊质量;
3、通过步骤四和步骤五,实现每个区域面堆焊轨迹的独立获取,保证每个区域面堆焊质量和堆焊效率;
4、通过步骤六,由于堆焊机头在所有区域面的堆焊线速度保持一致,使得所有区域面的堆焊质量相同;
5、所有区域面组合,能够保证不规则回转腔壁的整体堆焊质量,且由于所有区域面的堆焊轨迹可控度较高,能够较容易的通过腔体外部机构带动堆焊机头沿预先计算获得的堆焊轨迹移动,实现对各种不规则回转腔壁的自动堆焊,不需要操作人员进入回转腔内,降低了堆焊劳动强度。
本发明的不规则回转腔壁全自动堆焊方法的有益效果是:
由于在堆焊前就获得了精确的堆焊轨迹和堆焊机头在各区域面的回转角速度,使得能够较容易的通过PLC控制系统调整堆焊机头的回转角速度,实现堆焊机头在各区域面的等线速度堆焊,保证不规则回转腔壁的堆焊层质量和统一性,使堆焊过程不需要操作人员进入回转腔内,降低了堆焊劳动强度,且堆焊轨迹可控,堆焊效率较高,堆焊质量较高,保证了不规则回转腔壁的整体堆焊层质量。
附图说明
图1是一种具有不规则回转腔壁的工件的结构示意图。
图2是实施例2中圆柱面的坐标系示意图。
图3是实施例2中球面的坐标系示意图。
图4是实施例2中锥面的坐标系示意图。
图标:
1-圆柱面,2-球面,3-锥面,4-相贯面。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
不规则回转腔壁堆焊轨迹获取方法,应用于包括圆柱面、球面或锥面的不规则回转腔壁,通过对圆柱面、球面或锥面分别建立坐标系,分别获取每个区域面的堆焊轨迹,进而获取不规则回转腔壁的完整堆焊轨迹,该完整堆焊轨迹包括堆焊机头的堆焊路径,该完整堆焊轨迹需要匹配统一的堆焊机头的堆焊线速度,才能保证堆焊质量的一致性,而堆焊机头的堆焊线速度受堆焊机头相对区域面位置的影响而不同,所以,使堆焊过程中,通过预先获取的堆焊路径、调整堆焊路径对应的堆焊机头绕对应的回转中心的回转角速度,使堆焊机头在转动过程中对不规则回转腔壁的各个区域面分别进行等线速度堆焊,能够实现包括多个不同类型区域面的不规则回转腔壁的高质量、高效率堆焊,且保证不规则回转腔壁的整体堆焊层质量相同,实现对不规则回转腔壁的自动堆焊,不需要操作人员进入回转腔内,降低了堆焊劳动强度。
具体的,以同时具有圆柱面、球面和锥面的不规则回转腔壁的工件为例,按照如下步骤进行:
步骤一,划分腔壁区域面:将腔壁划分为圆柱面、球面、锥面,以及各区域面的相贯面,所述相贯面为相邻区域面相贯后倒圆角形成的曲面。
步骤二,建立坐标系:分别对圆柱面、球面和锥面建立坐标系,其中,圆柱面对应的坐标系Z轴与圆柱面中心线重合;球面对应的坐标系原点与球心重合;锥面对应的坐标系Z轴与锥面中心线重合。
步骤三,设置回转中心:在所述坐标系的Z轴方向设置回转中心,使Z轴方向延线作为堆焊机头的回转中心线,使堆焊机头能够在保持与待焊区域面垂直的状态下绕回转中心线旋转,在旋转过程中沿待焊区域面移动,实现相应区域面的堆焊。
优选的,通过调整工件的摆放方位,使坐标系Z轴保持竖直方向,使回转中心线由上往下的伸入工件内,对各区域面进行由下往上的堆焊操作。
具体的,堆焊机头每绕回转中心线旋转一周,能够在任一待焊区域面的界限范围内堆焊一条连续的环形堆焊轨迹,再沿回转中心线上移或下移堆焊机头的回转中心,使堆焊机头沿待堆焊面移动一个变道量,即可堆焊相邻一条连续的堆焊轨迹,重复操作,获取对应区域面的堆焊轨迹,调整坐标系和堆焊机头对应的区域面,实现不规则回转腔壁的完整堆焊, 获取不规则回转腔壁的完整堆焊轨迹。
具体的,所述变道量为相邻堆焊轨迹中心线的垂直距离,受焊接工艺和焊接参数的影响,在焊接工艺和焊接参数选定后,变道量即可确定,避免相邻堆焊轨迹之间间距过宽,以保证堆焊层对工件的整体防护作用。
优选的,对于球面或锥面的不规则回转腔壁,根据堆焊机头的位置进行堆焊机头旋转角速度的调整,以使堆焊机头的堆焊线速度维持不变,保证各区域面的堆焊质量相同。
具体的,堆焊机头的回转角速度为θ,对于圆柱面,θ=V/R,R为圆柱面半径;对于球面,堆焊机头的回转角速度为θ=V/R·sinα n=V/R·sin[α 0+360°·(△L/2πR)·n],R为球面半径;对于锥面,堆焊机头的回转角速度为θ=V/(R-n·△L·sinα),R为堆焊机头的初始堆焊位置对应的锥面回转半径;其中,V为堆焊机头的堆焊线速度,均保持一致,△L为变道量,为相邻堆焊轨迹之间的间距,根据焊接参数的实际情况进行确定,n为变道次数,各参数均能够在实际堆焊作业前通过测量或试验获得,实现在堆焊作业前获取不规则回转腔壁的具有精确堆焊路径、完整堆焊参数的堆焊轨迹。
具体的,可根据工件内不规则回转腔壁的具体结构类型,适应性的进行堆焊轨迹的预先计算获取,使各区域面能够在相等堆焊线速度的条件下获取同等质量的堆焊结果,保证工件堆焊层质量要求,堆焊效率较高,且可较容易的采用例如机械臂等机械结构,带动堆焊机头沿预先获取的堆焊轨迹移动,使操作人员不需要进入工件内,降低了堆焊劳动强度高,实现对具有不同类型的复杂回转曲面工件的内腔堆焊,适应性较好。
实施例2
本发明的不规则回转腔壁全自动堆焊方法,采用如实施例1所述堆焊轨迹获取方法获取堆焊机头的堆焊轨迹,通过PLC控制系统控制堆焊机头沿所述堆焊轨迹移动,采用非熔化极气体保护焊工艺,对如图1所示的具有不规则回转腔壁的工件进行全自动堆焊。
具体的,上述工件为同时具有圆柱面1、球面2、锥面3以及各区域面的相贯面4的不规则回转腔壁的壳体工件,为一种核电主泵泵壳,工件具有三个开口,其中相对设置的两个开口内壁对应圆柱面1的区域面,另一独立开口对应锥面3的区域面,工件内腔对应球面2的区域面,在锥面3和球面2之间形成有相贯面4,所述相贯面4为锥面3和球面2相贯后倒R200圆角所形成的曲面。
优选的,本实施例采用双钨极氩弧焊配合AVC弧压跟踪系统进行工件内回转腔壁的堆焊操作。
具体的,在一定范围内调节钨极间距能够控制堆焊层的熔深,本实施例优选钨极间 距为1.0mm-1.5mm,且钨极连线平行于焊接方向,并采用材质ER308L,规格φ1.2mm的焊丝,以送丝量5000mm/min-12000mm/min中任一额定值的焊接参数,实现对工件内腔的全自动堆焊,优选送丝量6000mm/min。
具体的,针对上述工件的结构特征,本实施例的圆柱面1和球面2建立同一坐标系,坐标系Z轴与圆柱面1中心轴线重合,坐标系原点与球心重合,锥面3建立单一坐标系,坐标系Z轴与锥面3回转中心线重合,堆焊机头的回转中心均位于Z轴上,能够沿Z轴移动,进行适应性调整。
具体的,堆焊机头和回转中心之间设置角度轴,角度轴用于调整堆焊机头与回转中心的连线与Z轴之间夹角,并实现堆焊机头与回转中心之间直线距离的适应性调整,堆焊机头通过设置在工件外能够带动绕回转中心线360°旋转的无限回转机构驱动。
具体的,无限回转机构可以是机械手臂、回转连杆等具有360°回转功能的多轴联动的机械结构。
具体的,如图2所示,堆焊圆柱面1时,角度轴与回转中心的连线与Z轴之间夹角为90°,使堆焊机头垂直于待焊区域面,Z轴作为回转中心线,堆焊机头每绕回转中心线焊接一圈,堆焊机头的回转中心沿Z轴方向移动△L,使堆焊机头在待焊区域面提升一个变道量△L,根据公式θ=V/R,只需要保持堆焊机头绕回转中心线以恒定的回转角速度转动,即可保证堆焊机头的堆焊线速度不变,进而保证圆柱面1的堆焊质量一致性。
具体的,如图3所示,堆焊球面2时,堆焊机头的回转中心下移至与坐标系原点重合,通过角度轴调整堆焊机头与球面2垂直,Z轴作为回转中心线,堆焊机头每绕回转中心线焊接一圈,角度轴绕坐标系原点转动角度△a,使堆焊机头在待焊区域面提升一个变道量△L,在保持堆焊机头线速度不变的情况下,根据公式V/R·sin[α 0+360°·(△L/2πR)·n]调整回转角速度,由AVC弧压跟踪系统适应性的微调堆焊机头与球面2之间距离,实现对球面2的堆焊,且能够实现圆柱面1与球面2的堆焊质量一致。
具体的,本实施例中a 0受工件开口位置设置的影响,设置为24°,初始角速度θ=V/R·sin24°,在堆焊过程中,相邻两条堆焊轨迹之间变道前后角度轴旋转△a的角度,堆焊机头变道前后对应的旋转半径L1和L2不相等,对变道前后的堆焊机头根据公式进行回转角速度调整,使在不改变回转中心的情况下,实现对球面2的等线速度堆焊操作。
具体的,堆焊锥面时,调整工件摆放方位,使锥面3的回转中心线保持竖直方向,并建立坐标系,通过角度轴调整堆焊机头与锥面3垂直,Z轴作为回转中心线,堆焊机头每绕回转中心线焊接一圈,堆焊机头的回转中心沿Z轴方向移动,使堆焊机头在待焊区域面提 升一个变道量△L,在保持堆焊机头线速度不变的情况下,根据公式θ=V/(R-n·△L·sinα)调整回转角速度,由AVC弧压跟踪系统适应性的微调堆焊机头与锥面3之间距离,实现对锥面3的堆焊,且能够实现圆柱面1、球面2和锥面3的堆焊质量一致。
具体的,优选△L取值范围为3mm-3.5mm。
具体的,堆焊相贯面4时,沿锥面3中心线设置回转中心线,由AVC弧压跟踪系统,仿形堆焊相贯面4的内腔体。由于AVC弧压跟踪系统仅能适用于起伏在50mm-60mm内连续变化的、起伏状态较小的曲面仿形堆焊,所以,对本实施例中由球面2和锥面3相贯后倒R200倒角形成的相贯面4,配合锥面3回转中心线,使AVC弧压跟踪系统在堆焊过程中,不断监测焊接时的电压大小,利用AVC弧压跟踪系统自身的伺服电机和蜗杆来控制机头,保证焊接时焊接电压一致,即保证焊接时电弧长度始终一致,保证各区域面的堆焊质量一致性。
具体的,本实施例提供的针对一种核电主泵泵壳内的不规则回转腔壁全自动堆焊方法,通过实施例1的堆焊轨迹获取方法中的轨迹算法,在堆焊前获取堆焊轨迹相关的参数数据,通过使用PLC数控系统设置预先获取的堆焊轨迹相关参数数据,配合无限回转机构、弧压跟踪系统,选用双钨极氩弧焊,实现对该核电主泵泵壳内腔壁的全自动堆焊。
具体的,该核电主泵泵壳的全自动堆焊,在堆焊轨迹获取过程中,由于坐标系根据其开口特性进行建立,使其能够在相对容易固定的方位上进行稳定摆放,减少了堆焊过程中进行摆放方位的调整,避免了对该核电主泵泵壳的多次起吊造成的安全风险,装配找正较容易,周期短,有利于提高处理效率。
具体的,该核电主泵泵壳进行堆焊时,每个摆放方向下分别在预热150℃下依靠PLC程序设定的轨迹参数,自动完成对应区域的堆焊工作,最终堆焊完成整个泵壳内腔的堆焊层设置,整个堆焊过程操作人员仅需通过摄像头观察焊缝,无需进入泵壳内部,自动化程度高,能够极大地降低工作强度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 不规则回转腔壁堆焊轨迹获取方法,其特征在于,包括如下步骤:
    步骤一,划分腔壁区域面:将腔壁划分为多个区域面,每一所述区域面包括圆柱面、球面、锥面中的任意一种;
    步骤二,建立坐标系:对每个所述区域面分别建立坐标系,所述坐标系的Z轴与对应所述区域面的回转中心线重合;
    步骤三,设置回转中心:在所述坐标系的Z轴方向设置回转中心;
    步骤四,获取区域面轨迹:将堆焊机头绕回转中心旋转,使堆焊机头沿对应区域面移动,每移动对应所述区域面的界限范围,将堆焊机头沿所述区域面移动一个变道量;
    步骤五,调整回转角速度:根据堆焊机头的堆焊线速度、初始位置坐标和所述变道量,调整堆焊机头的回转角速度,保持堆焊机头的移动线速度不变,获取单个区域面的堆焊轨迹;
    步骤六,获取堆焊轨迹:重复步骤四和步骤五,获取所有区域面组成的不规则回转腔壁的堆焊轨迹。
  2. 如权利要求1所述的不规则回转腔壁堆焊轨迹获取方法,其特征在于,当所述区域面为圆柱面时,所述步骤二中,坐标系Z轴与圆柱面中心线重合;所述步骤五中,所述堆焊机头的回转角速度为θ,θ=V/R,
    式中:
    V:堆焊机头的堆焊线速度;
    R:圆柱面半径。
  3. 如权利要求1所述的不规则回转腔壁堆焊轨迹获取方法,其特征在于,当所述区域面为球面时,所述步骤二中,坐标系原点与球面球心重合;所述步骤三中,回转中心与球面球心重合;所述步骤五中,所述堆焊机头的回转角速度为θ,θ=V/R·sinα n=V/R·sin[α 0+360°·(△L/2πR)·n],
    式中:
    V:堆焊机头的堆焊线速度;
    R:球面半径;
    α n:回转中心与堆焊机头的连线与Z轴之间的实时夹角值;
    α 0:回转中心与堆焊机头的连线与Z轴之间的初始夹角值;
    △L:堆焊机头在所述区域面的界限范围内移动的单个变道量;
    n:堆焊机头在所述区域面的界限范围内移动的变道次数。
  4. 如权利要求1所述的不规则回转腔壁堆焊轨迹获取方法,其特征在于,当所述区域面为 锥面时,所述步骤二中,坐标系Z轴与锥面中心线重合;所述步骤五中,所述堆焊机头的回转角速度为θ,θ=V/(R-n·△L·sinα),
    式中:
    V:堆焊机头的堆焊线速度;
    R:初始堆焊位置的锥面回转半径;
    L:堆焊机头在所述区域面的界限范围内移动的单个变道量;
    n:堆焊机头在所述区域面的界限范围内移动的变道次数;
    α:Z轴与锥面之间夹角。
  5. 不规则回转腔壁全自动堆焊方法,其特征在于,采用如权利要求1-4所述堆焊轨迹获取方法获取堆焊机头的堆焊轨迹,通过PLC控制系统控制堆焊机头沿所述堆焊轨迹移动,实现不规则回转腔壁的全自动堆焊。
  6. 如权利要求5所述的不规则回转腔壁全自动堆焊方法,其特征在于,采用非熔化极气体保护焊工艺进行堆焊,所述非熔化极气体保护焊包括单钨极氩弧焊或双钨极氩弧焊。
  7. 如权利要求5所述的不规则回转腔壁全自动堆焊方法,其特征在于,所述堆焊机头连接有AVC弧压跟踪系统,所述AVC弧压跟踪系统用于带动所述堆焊机头沿所述区域面仿形堆焊。
  8. 如权利要求5所述的不规则回转腔壁全自动堆焊方法,其特征在于,所述堆焊机头连接有无限回转机构,所述无限回转机构与所述PLC控制系统连接,所述无限回转机构用于驱动所述堆焊机头绕回转中心转动。
  9. 如权利要求5所述的不规则回转腔壁全自动堆焊方法,其特征在于,所述堆焊机头连接有角度轴,所述角度轴用于调整回转中心与堆焊机头的连线与Z轴之间夹角。
  10. 如权利要求5所述的不规则回转腔壁全自动堆焊方法,其特征在于,所述不规则回转腔壁包括圆柱面、球面、锥面和相贯面,并包括如下步骤:
    A:堆焊圆柱面
    保持角度轴与Z轴方向夹角为90°,并保持Z轴沿竖直方向设置,使堆焊机头垂直于待焊区域面,堆焊机头的回转中心位于Z轴方向上,调整堆焊机头的回转中心在Z轴的高度坐标,自动堆焊圆柱面的内腔体;
    B:堆焊球面
    保持角度轴与球面半径方向重合,使堆焊机头垂直于待焊区域面,堆焊机头的回转中心位于球心,同步调整堆焊机头的回转角速度和角度轴相对Z轴方向的夹角,自动堆焊球面的内腔 体;
    C:堆焊锥面
    保持角度轴与Z轴方向夹角小于90°,使堆焊机头垂直于待焊区域面,堆焊机头的回转中心位于Z轴方向上,同步调整堆焊机头的回转角速度和堆焊机头的回转中心在Z轴的高度坐标,自动堆焊锥面的内腔体;
    D:堆焊相贯面
    在锥面中心线上设置堆焊机头的回转中心,由AVC弧压跟踪系统,仿形堆焊相贯面的内腔体。
PCT/CN2022/094938 2021-09-07 2022-05-25 不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法 WO2023035673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111043765.XA CN113649738B (zh) 2021-09-07 2021-09-07 不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法
CN202111043765.X 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023035673A1 true WO2023035673A1 (zh) 2023-03-16

Family

ID=78482956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094938 WO2023035673A1 (zh) 2021-09-07 2022-05-25 不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法

Country Status (2)

Country Link
CN (1) CN113649738B (zh)
WO (1) WO2023035673A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117359015A (zh) * 2023-10-31 2024-01-09 江苏荣圣汽车零部件有限公司 一种汽车配件生产加工设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113649738B (zh) * 2021-09-07 2022-07-26 二重(德阳)重型装备有限公司 不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法
CN114131278A (zh) * 2021-12-22 2022-03-04 一重集团大连核电石化有限公司 球形封头内壁焊接线速度自动设置方法
CN117206633B (zh) * 2023-11-09 2024-02-20 二重(德阳)重型装备有限公司 堆焊设备以及核电主泵泵壳堆焊方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294397A (ja) * 1999-04-07 2000-10-20 Toshiba Corp 高周波加速空胴及びその製造方法
JP2003185784A (ja) * 2001-12-19 2003-07-03 Toshiba Corp 原子炉内構造物の保全・補修装置
JP2005052878A (ja) * 2003-08-06 2005-03-03 Daihatsu Motor Co Ltd シーム溶接方法およびシーム溶接装置
CN101458508A (zh) * 2008-12-17 2009-06-17 昆山华恒工程技术中心有限公司 一种管管相交的马鞍形曲面焊接、切割方法
CN101885100A (zh) * 2010-07-28 2010-11-17 上海中船三井造船柴油机有限公司 船用柴油机气缸盖的镍铬钼合金自动堆焊工艺方法
CN102049685A (zh) * 2009-10-27 2011-05-11 鞍钢重型机械有限责任公司 一种转轮体的自动堆焊装置及方法
CN102275027A (zh) * 2011-07-14 2011-12-14 中国第一重型机械集团大连加氢反应器制造有限公司 一种不规则圆形腔体内壁的堆焊装置及其堆焊方法
CN204997214U (zh) * 2015-09-25 2016-01-27 南宁宜阆工贸有限责任公司 矿石输送管道接头内腔耐磨层自动堆焊装置
US20160151833A1 (en) * 2014-11-29 2016-06-02 National Tsing Hua University Flexible 3D Freeform Techniques
CN107378201A (zh) * 2017-07-07 2017-11-24 上海工业自动化仪表研究院有限公司 相贯线多层多道焊焊缝轨迹实时规划方法
CN209452968U (zh) * 2019-01-25 2019-10-01 二重(德阳)重型装备有限公司 用于狭小空间的带极堆焊操作架
CN111151845A (zh) * 2020-01-10 2020-05-15 中国联合工程有限公司 一种核主泵试验台主回路及其内壁堆焊和环缝对接焊方法
CN112935605A (zh) * 2021-01-22 2021-06-11 东方电气集团东方汽轮机有限公司 异型截面环形件耐蚀层自动堆焊方法
CN113649738A (zh) * 2021-09-07 2021-11-16 二重(德阳)重型装备有限公司 不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102218578B (zh) * 2011-05-26 2013-09-18 东南大学 基于径向偏置的机器人堆焊复杂外形工件的轨迹规划方法
CN104289841A (zh) * 2014-10-22 2015-01-21 东方电气集团东方汽轮机有限公司 汽轮机导流环内曲面自动堆焊装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294397A (ja) * 1999-04-07 2000-10-20 Toshiba Corp 高周波加速空胴及びその製造方法
JP2003185784A (ja) * 2001-12-19 2003-07-03 Toshiba Corp 原子炉内構造物の保全・補修装置
JP2005052878A (ja) * 2003-08-06 2005-03-03 Daihatsu Motor Co Ltd シーム溶接方法およびシーム溶接装置
CN101458508A (zh) * 2008-12-17 2009-06-17 昆山华恒工程技术中心有限公司 一种管管相交的马鞍形曲面焊接、切割方法
CN102049685A (zh) * 2009-10-27 2011-05-11 鞍钢重型机械有限责任公司 一种转轮体的自动堆焊装置及方法
CN101885100A (zh) * 2010-07-28 2010-11-17 上海中船三井造船柴油机有限公司 船用柴油机气缸盖的镍铬钼合金自动堆焊工艺方法
CN102275027A (zh) * 2011-07-14 2011-12-14 中国第一重型机械集团大连加氢反应器制造有限公司 一种不规则圆形腔体内壁的堆焊装置及其堆焊方法
US20160151833A1 (en) * 2014-11-29 2016-06-02 National Tsing Hua University Flexible 3D Freeform Techniques
CN204997214U (zh) * 2015-09-25 2016-01-27 南宁宜阆工贸有限责任公司 矿石输送管道接头内腔耐磨层自动堆焊装置
CN107378201A (zh) * 2017-07-07 2017-11-24 上海工业自动化仪表研究院有限公司 相贯线多层多道焊焊缝轨迹实时规划方法
CN209452968U (zh) * 2019-01-25 2019-10-01 二重(德阳)重型装备有限公司 用于狭小空间的带极堆焊操作架
CN111151845A (zh) * 2020-01-10 2020-05-15 中国联合工程有限公司 一种核主泵试验台主回路及其内壁堆焊和环缝对接焊方法
CN112935605A (zh) * 2021-01-22 2021-06-11 东方电气集团东方汽轮机有限公司 异型截面环形件耐蚀层自动堆焊方法
CN113649738A (zh) * 2021-09-07 2021-11-16 二重(德阳)重型装备有限公司 不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "The World's First Pump Casing with Tiger How Wire Cladding Technology--the Innovative Application of Nuclear Power Petrochemical Company", 27 February 2019 (2019-02-27), XP093045035, Retrieved from the Internet <URL:http://www.polysoude.com.cn/news/86.html> [retrieved on 20230508] *
LIU ZHENG JIANNENG, LI YUPING, ZHU HOUBIN, HE YONGYOU, XU CHANGSHUN HONGYU, | 、 。, | |, CR C, MO NI, SI MN, CU P S, CB6 CO, FE N: "Application of Fully Automatic Double Tungsten Argon Arc Welding in the Build-up Welding of the Inner Wall of the Coolant Pump Shell of the Reactor Pressure Vessel", HEAVY CASTINGS AND FORGINGS, vol. 5, 30 September 2021 (2021-09-30), pages 1 - 6, XP093045031, DOI: 10.14147/j.cnki.51-1396/tg.2021.05.001 *
WANG XINHUI, YU DAN, YANG KEFEI, MENG ZHAOLIN: "Analysis of Intersection Surface Welding Motion Simulation Based on Pro/Engineer", TRANSACTIONS OF THE CHINA WELDING INSTITUTION, vol. 32, no. 2, 27 February 2019 (2019-02-27), XP093045040, ISSN: 0253-874x *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117359015A (zh) * 2023-10-31 2024-01-09 江苏荣圣汽车零部件有限公司 一种汽车配件生产加工设备
CN117359015B (zh) * 2023-10-31 2024-05-14 江苏荣圣汽车零部件有限公司 一种汽车配件生产加工设备

Also Published As

Publication number Publication date
CN113649738B (zh) 2022-07-26
CN113649738A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023035673A1 (zh) 不规则回转腔壁堆焊轨迹获取方法及其全自动堆焊方法
CN104498943B (zh) 核电重型毛坯成型工艺及lcd‑ebam集成打印设备
CN203209831U (zh) 90°等径弯管内壁堆焊装置
CN112372108B (zh) 一种自动焊机的相贯线角焊缝堆焊实现机构
JPS6127175A (ja) 回転対称な物理的曲面をもつ部材を溶接材料から製造する方法
CN102581452B (zh) 用于二氧化碳气体保护焊的焊接工装架及其焊接方法
CN206253789U (zh) 熔化极气体保护焊3d增材修补装置
CN105983802B (zh) 一种焊接机器人控制系统和方法
CN102091889A (zh) 一种堆焊方法及其装置
CN206869309U (zh) 激光电弧复合焊接装置
CN111702293A (zh) 一种针对高铁枕梁工艺孔的焊枪自动轨迹避让方法
CN110773356B (zh) 一种仿形喷涂方法
CN207668767U (zh) 用于焊接罐箱内的防波板的装置
CN104084705B (zh) 气体灌装瓶焊接摆动架及其工作方法
CN116921908A (zh) 一种用于回转件的焊接方法以及焊接设备
CN204431246U (zh) 一种水平式五轴联动工业机器人
CN109986256A (zh) 用于焊接罐箱内的防波板的装置和方法
CN216227906U (zh) 电弧3d打印-铣削-毫克能复合增减材制造系统
CN206484132U (zh) 一种焊枪调整机构以及埋弧焊机
JPS5832578A (ja) ア−ク溶接方法
CN206509681U (zh) 一种气动翻转型机器人焊接变位机
CN114309930A (zh) 一种对称双工位喷管激光焊接装备
US20230150031A1 (en) Oscillating nozzle for sinusoidal direct metal deposition
CN214392752U (zh) 新型双钨极堆焊系统
CN203973069U (zh) 气体灌装瓶焊接摆动架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE