WO2023035541A1 - 电极组件、电池单体、电池以及用电装置 - Google Patents

电极组件、电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2023035541A1
WO2023035541A1 PCT/CN2022/073265 CN2022073265W WO2023035541A1 WO 2023035541 A1 WO2023035541 A1 WO 2023035541A1 CN 2022073265 W CN2022073265 W CN 2022073265W WO 2023035541 A1 WO2023035541 A1 WO 2023035541A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
separator
electrode assembly
spacer
isolation layer
Prior art date
Application number
PCT/CN2022/073265
Other languages
English (en)
French (fr)
Inventor
郭锁刚
付成华
叶永煌
张辰辰
常雯
朱畅
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280005318.1A priority Critical patent/CN116114095A/zh
Priority to JP2023543459A priority patent/JP2024503520A/ja
Priority to KR1020237024948A priority patent/KR20230121906A/ko
Priority to EP22866021.3A priority patent/EP4325623A1/en
Publication of WO2023035541A1 publication Critical patent/WO2023035541A1/zh
Priority to US18/353,679 priority patent/US20230361429A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and more specifically, relates to an electrode assembly, a manufacturing method and system thereof, a battery cell, a battery, and an electrical device.
  • Battery cells are widely used in electronic equipment, such as mobile phones, laptop computers, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • the present application provides an electrode assembly, a manufacturing method thereof, a manufacturing system, a battery cell, a battery and an electrical device, which can improve safety.
  • the embodiment of the present application provides an electrode assembly, including a first pole piece, a second pole piece and a first separator, the polarity of the first pole piece and the second pole piece are opposite, and the first separator uses To separate the first pole piece and the second pole piece, the first pole piece, the second pole piece and the first separator are wound along the winding direction.
  • the electrode assembly has a bending area, the bending area is provided with a second separator, the second separator is stacked with the first separator and is used to separate the adjacent first pole piece and the second pole piece; at least Part of the ions can pass through the first separator and the second separator and be embedded in the second pole piece.
  • the first separator and the second separator jointly separate the first pole piece and the second pole piece in the bending area, even if there is a problem of lithium deposition in the bending area, or the pole piece is in the process of bending Burrs are generated, and it is difficult for lithium dendrites or burrs to pierce the first separator and the second separator at the same time, thereby reducing the probability of conduction between the first pole piece and the second pole piece, and effectively reducing the damage of the electrode assembly due to the separator.
  • the resulting short circuit problem can effectively reduce the risk of failure of the electrode assembly and improve the service life and safety of the electrode assembly.
  • Both the first separator and the second separator can permeate ions, which can reduce the barrier to ions and ensure the capacity of the electrode assembly.
  • the thickness of the second spacer is greater than the thickness of the first spacer.
  • the second spacer is more difficult to be punctured than the first spacer, which can effectively reduce the risk of damage to the second spacer and improve safety.
  • the second spacer includes a plurality of spacer layers stacked in a thickness direction of the second spacer.
  • the multi-layer structure can increase the strength of the second spacer, increase the difficulty of the second spacer being punctured, and improve safety.
  • adjacent barrier layers are bonded to each other.
  • a plurality of isolation layers are bonded together, which can reduce the risk of offset between the plurality of isolation layers during the winding process of the electrode assembly, and ensure the protective effect of the second separator in the bending area .
  • the plurality of isolation layers includes a first isolation layer and a second isolation layer disposed adjacently, and the first isolation layer is located between the second isolation layer and the first isolation member. In the winding direction, the end of the second isolation layer is dislocated from the end of the first isolation layer.
  • the end of the second isolation layer and the end of the first isolation layer are dislocated, so that the end of the second isolation layer and the end of the first isolation layer can be pressed against different regions of the pole piece, Reduce stress concentration, reduce the risk of pole piece cracking, and improve the performance of the pole piece.
  • both ends of the second isolation layer protrude from the first isolation layer and are attached to the first isolation member in the winding direction.
  • the second separator is attached to the first separator, and can restrict the movement of the first separator in the winding direction, so that the first separator and the second separator can be lowered during the charging and discharging process.
  • the risk of deviation and dislocation along the winding direction ensures the protective effect of the second spacer in the bending area and improves safety.
  • the electrode assembly further includes a straight region connected to the bent region.
  • the whole of the first isolation layer is located in the bending area.
  • the two ends of the second isolation layer along the winding direction are located in the straight region.
  • the first isolation layer and the second isolation layer can simultaneously play a protective role in the bending area, so as to reduce the risk of short circuit and improve safety.
  • the first isolation layer is entirely located in the bending area, so that the first isolation layer can prevent the ion transmission in the flat area from being affected, and ensure the charging and discharging performance of the flat area.
  • the two ends of the second isolation layer along the winding direction are located in the straight region, so that the end of the second isolation layer can be dislocated from the end of the first isolation layer, and stress concentration can be reduced.
  • the first isolation layer is attached to the first isolation member.
  • the above implementation manner can reduce the risk of offset and dislocation of the first isolation layer along the winding direction, ensure the protective effect of the first isolation layer in the bending area, and improve safety.
  • the material of the isolation layer is the same as that of the first isolation member, and the thickness of the isolation layer is equal to the thickness of the first isolation member.
  • the first spacer and the second spacer can be made of spacers of the same specification, which can simplify the process and reduce the cost.
  • the porosity of the second spacer is greater than or equal to the porosity of the first spacer.
  • the second separator has better ion permeability, so as to reduce the barrier of the second separator to ions and ensure the capacity of the electrode assembly.
  • At least a second spacer is provided between the innermost adjacent first pole piece and the second pole piece.
  • the above embodiment can set the second separator in the area where the problem of lithium analysis is serious, so as to effectively reduce the short circuit problem of the electrode assembly caused by the damage of the separator, and improve the service life and safety of the electrode assembly.
  • a plurality of second separators are provided in the bending region, and adjacent second separators are separated by the first pole piece or the second pole piece. Among the adjacent second spacers, the thickness of the inner second spacer is greater than the thickness of the outer second spacer.
  • the inner second spacer has a greater thickness to minimize the risk of being punctured; the outer second spacer has a low risk of being punctured, so it can have a smaller thickness , so as to save the usage amount of the second separator and improve the energy density of the electrode assembly.
  • the electrode assembly further includes a straight region connected to the bent region, and both ends of the second separator along the winding direction are located in the straight region.
  • the second spacer can completely separate the first pole piece from the second pole piece, so as to improve safety.
  • the second spacer is attached to the outer surface of the first spacer.
  • the second separator is attached to the outer surface of the first separator, which can reduce the risk of the second separator being shifted and dislocated along the winding direction during the charging and discharging process, and can also make the second separator
  • the spacer stretches under the action of the first spacer to reduce the risk of creasing the second spacer.
  • the second pole piece is a negative pole piece
  • the second separator is attached to the outer surface of the second pole piece.
  • the second separator is attached to the outer surface of the second pole piece, and the second separator is stretched under the action of the second pole piece, so that the risk of wrinkles of the second separator can be reduced.
  • an embodiment of the present application provides a battery cell, including a casing and the electrode assembly according to any embodiment of the first aspect, and the electrode assembly is housed in the casing.
  • the embodiment of the present application provides a battery, including a plurality of battery cells according to the second aspect.
  • an embodiment of the present application provides an electric device, including the battery cell according to the second aspect, and the battery cell is used to provide electric energy.
  • the embodiment of the present application provides a method for manufacturing a battery assembly, including:
  • the polarity of the first pole piece and the second pole piece are opposite, and the first separator is used to separate the first pole piece and the second pole piece;
  • the separators are laminated and used to separate adjacent first and second pole pieces; at least part of the ions released from the first pole piece can pass through the first and second separators and be embedded in the second pole piece.
  • the embodiment of the present application provides a battery assembly manufacturing system, including a supply device and a winding device.
  • Means are provided for providing a first pole piece, a second pole piece, a first spacer and a second spacer.
  • the winding device is used to wind the first pole piece, the second pole piece and the first separator along the winding direction, and form the bending area.
  • the polarity of the first pole piece and the second pole piece are opposite, and the first spacer is used to separate the first pole piece and the second pole piece; the second spacer is provided in the bending area, and the second spacer and the first spacer stacked and used to separate the adjacent first pole piece and the second pole piece; at least part of the ions released from the first pole piece can pass through the first spacer and the second spacer and be embedded in the second pole piece.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • Fig. 3 is a schematic explosion diagram of a battery cell provided by some embodiments of the present application.
  • Fig. 4 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • FIG. 5 is a partially enlarged schematic diagram of the electrode assembly shown in FIG. 4;
  • Fig. 6 is a partial structural schematic diagram of an electrode assembly provided by another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a partial structure of an electrode assembly provided in some other embodiments of the present application.
  • FIG. 8 is a schematic diagram of a partial structure of an electrode assembly provided in some further embodiments of the present application.
  • Fig. 9 is a schematic flowchart of a method for manufacturing a battery assembly provided by some embodiments of the present application.
  • Fig. 10 is a schematic block diagram of an electrode assembly manufacturing system provided by some embodiments of the present application.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • Multiple appearing in this application refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two groups), and “multi-piece” refers to more than two (Includes two pieces).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, The current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the current collector not coated with the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, The current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the spacer can be PP (polypropylene) or PE (polyethylene).
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the separator has electronic insulation, and it is arranged between the positive pole piece and the negative pole piece, and its main function is to prevent the positive pole piece and the negative pole piece from contacting, thereby causing an internal short circuit of the electrode assembly.
  • the separator has a large number of penetrating micropores, which can ensure the free passage of electrolyte ions.
  • the separator has good permeability to lithium ions.
  • the spacer includes an isolation base layer and a functional layer located on the surface of the isolation base layer.
  • the isolation base layer can be at least one of polypropylene, polyethylene, ethylene-propylene copolymer, polybutylene terephthalate, etc., and the function
  • the layer may be a mixture layer of ceramic oxide and binder.
  • the separator occupies a very important position in the electrode assembly, which can directly lead to short circuit, performance and life reduction of the electrode assembly.
  • metal ions are extracted from the positive electrode active material layer and inserted into the negative electrode active material layer, but some abnormalities may occur, resulting in the precipitation of metal ions.
  • the extracted lithium ions cannot wait.
  • a large amount of negative electrode active material layer embedded in the negative electrode sheet the lithium ions that cannot be embedded in the negative electrode sheet can only get electrons on the surface of the negative electrode sheet, thereby forming a simple metal lithium, which is the phenomenon of lithium precipitation.
  • the inventor also found that the winding-type electrode assembly is more prone to lithium deposition in its bending area.
  • the reason for the lithium deposition phenomenon is mainly because it is located in the bending area.
  • the positive pole piece and the negative pole piece need to be bent, and the positive active material layer and the negative active material layer are prone to stress concentration during the bending process and cause the respective active materials to fall off. Due to the shedding of the active material, especially the shedding of the active material on the negative electrode sheet, the lithium intercalation sites of the negative electrode active material layer of the negative electrode sheet may be less than the lithium ions that can be provided by the positive electrode active material layer of its adjacent positive electrode sheet. amount, thus triggering the phenomenon of lithium precipitation.
  • the extracted lithium ions can form lithium crystals on the surface of the negative electrode sheet; and because the separator is thin, the lithium crystals are easy to pierce the separator, causing the risk of short circuit between the adjacent positive electrode sheet and the negative electrode sheet. cause safety hazards.
  • the separator is easy to be punctured under the action of large stress, which makes the electrode assembly short circuit. In turn, it is easy to cause thermal runaway phenomena such as fire and explosion of the battery cell.
  • the inventors of the present application have proposed an electrode assembly, which increases the number of layers of separators in the bending area, thereby reducing the probability of damage to the separators in the electrode assembly, and reducing the The risk of internal short circuit of the pole piece increases the service life and safety.
  • the electrode assembly described in the embodiments of the present application is suitable for battery cells, batteries, and electrical devices using batteries.
  • Electric devices can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and electric tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiment of the present application does not impose special restrictions on the above-mentioned electrical devices.
  • the electric device is taken as an example for description.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is arranged inside the vehicle 1 , and the battery 2 can be arranged at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4 , the controller 3 is used to control the battery 2 to supply power to the motor 4 , for example, for the starting, navigation and working power requirements of the vehicle 1 during driving.
  • the battery 2 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 to provide driving power for the vehicle 1 instead of or partially replacing fuel oil or natural gas.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a case body 5 and a battery cell 6 , and the battery cell 6 is accommodated in the case body 5 .
  • the box body 5 is used to accommodate the battery cells 6, and the box body 5 may have various structures.
  • the box body 5 may include a first box body part 51 and a second box body part 52, the first box body part 51 and the second box body part 52 cover each other, the first box body part 51 and the second box body part 51
  • the two box parts 52 jointly define an accommodating space 53 for accommodating the battery cells 6 .
  • the second box part 52 can be a hollow structure with one end open, the first box part 51 is a plate-shaped structure, and the first box part 51 covers the opening side of the second box part 52 to form an accommodating space 53
  • the box body 5; the first box body portion 51 and the second box body portion 52 also can be a hollow structure with one side opening, and the opening side of the first box body portion 51 is covered on the opening side of the second box body portion 52 , to form a box body 5 with an accommodation space 53 .
  • the first box body part 51 and the second box body part 52 can be in various shapes, such as a cylinder, a cuboid, and the like.
  • a sealing member may also be provided between the first box body portion 51 and the second box body portion 52, such as sealant, sealing ring, etc. .
  • the first box part 51 covers the top of the second box part 52
  • the first box part 51 can also be called an upper box cover
  • the second box part 52 can also be called a lower box.
  • battery 2 there are a plurality of battery cells 6 .
  • the plurality of battery cells 6 can be connected in series, in parallel or in parallel.
  • the mixed connection means that the plurality of battery cells 6 are both connected in series and in parallel.
  • a plurality of battery cells 6 can be directly connected in series or in parallel or mixed together, and then the whole composed of a plurality of battery cells 6 is contained in the box body 5; of course, a plurality of battery cells 6 can also be connected in series first Or parallel or mixed connection to form a battery module, multiple battery modules are then connected in series or parallel or mixed to form a whole, and accommodated in the box 5 .
  • FIG. 3 is an exploded schematic diagram of a battery cell provided by some embodiments of the present application.
  • the battery cell 6 refers to the smallest unit constituting the battery 2 .
  • the battery cell 6 includes a casing, an electrode assembly 100 and other functional components, and the electrode assembly 100 is accommodated in the casing.
  • the housing includes an end cap 61 and a housing 62 .
  • the end cap 61 refers to a component that covers the opening of the casing 62 to isolate the internal environment of the battery cell 6 from the external environment.
  • the shape of the end cap 61 can be adapted to the shape of the housing 62 to fit the housing 62 .
  • the end cap 61 can be made of a material (such as aluminum alloy) with a certain hardness and strength, so that the end cap 61 is not easy to deform when being squeezed and collided, so that the battery cell 6 can have a higher Structural strength and safety performance can also be improved.
  • Functional components such as electrode terminals may be provided on the end cap 61 . The electrode terminals can be used for electrical connection with the electrode assembly 100 for outputting or inputting electric energy of the battery cells 6 .
  • the end cover 61 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 6 reaches a threshold value.
  • the material of the end cap 61 may also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can also be provided inside the end cover 61 , and the insulator can be used to isolate the electrical connection components in the housing 62 from the end cover 61 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the casing 62 is a component for matching with the end cap 61 to form the internal environment of the battery cell 6 , wherein the formed internal environment can be used to accommodate the electrode assembly 100 , electrolyte and other components.
  • the housing 62 and the end cover 61 can be independent components, and an opening can be provided on the housing 62 , and the internal environment of the battery cell 6 can be formed by making the end cover 61 cover the opening at the opening.
  • the end cover 61 and the housing 62 can also be integrated.
  • the end cover 61 and the housing 62 can form a common connection surface before other components are inserted into the housing. When the inside of the housing 62 needs to be encapsulated , then make the end cover 61 cover the housing 62 .
  • the housing 62 can be in various shapes and sizes, such as cuboid, cylinder, hexagonal prism and so on. Specifically, the shape of the casing 62 may be determined according to the specific shape and size of the electrode assembly 100 .
  • the housing 62 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the electrode assembly 100 is a part of the battery cell 6 that is soaked in an electrolyte solution to undergo an electrochemical reaction.
  • One or more electrode assemblies 100 may be contained within the housing 62 .
  • the electrode assembly 100 is mainly formed by winding a positive pole piece and a negative pole piece, and a separator is usually provided between the positive pole piece and the negative pole piece.
  • the parts of the positive pole piece and the negative pole piece with the active material constitute the main body of the electrode assembly 100 , and the parts of the positive pole piece and the negative pole piece without the active material respectively form tabs.
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at two ends of the main body respectively.
  • the positive active material and the negative active material react with the electrolyte, and the tabs are connected to the electrode terminals to form a current loop.
  • FIG. 4 is a schematic structural view of an electrode assembly provided by some embodiments of the present application
  • FIG. 5 is a partially enlarged schematic view of the electrode assembly shown in FIG. 4 .
  • the electrode assembly 100 of the embodiment of the present application includes a first pole piece 110, a second pole piece 120 and a first separator 131, the polarity of the first pole piece 110 and the second pole piece 120
  • the first separator 131 is used to separate the first pole piece 110 and the second pole piece 120
  • the first pole piece 110 , the second pole piece 120 and the first separator 131 are wound along the winding direction X.
  • the electrode assembly 100 has a bending area B, and the bending area B is provided with a second separator 132, the second separator 132 is laminated with the first separator 131 and is used to separate the adjacent first pole piece 110 and the second pole piece 120 ; At least part of the ions released from the first pole piece 110 can pass through the first separator 131 and the second separator 132 and be embedded in the second pole piece 120 .
  • the winding direction X is the circumferential winding direction of the first pole piece 110 , the second pole piece 120 and the first separator 131 from inside to outside.
  • the winding direction X is counterclockwise.
  • One of the first pole piece 110 and the second pole piece 120 is a positive pole piece, and the other is a negative pole piece.
  • Both the first separator 131 and the second separator 132 have a large number of penetrating micropores, which can ensure the free passage of metal ions; for example, the first separator 131 and the second separator 132 have good permeability to lithium ions, Basically, it cannot block the passage of lithium ions.
  • the material of the first isolator 131 and the second isolator 132 may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the first spacer 131 and the second spacer 132 can be made of the same material or different materials. In this embodiment, the thicknesses of the first spacer 131 and the second spacer 132 are not limited.
  • the spacer mentioned in this application can also be called a spacer, which is represented by a line in the figure, but actually the spacer also has a thickness.
  • the first pole piece 110 , the second pole piece 120 and the first separator 131 are all strip-shaped structures. In some embodiments, two first separators 131 are provided, and the present application may first stack the first pole piece 110, one first separator 131, the second pole piece 120 and another first separator 131 in sequence, It is then wound more than two times to form a wound structure.
  • the winding equipment winds the first pole piece 110, the second pole piece 120, and the first separator 131 into several turns, and each turn can be constructed with several layers, and one turn refers to the number of layers on the electrode assembly 100.
  • a certain point is used as the starting point to start calculation, and one circle along the winding direction X reaches another point to locate the end end.
  • the end end, the starting end and the center of the circle are on a straight line, and the starting end is between the end end and the center of the circle.
  • Each circle includes the first pole piece layer, the first spacer layer, the second pole piece layer and the first spacer layer in turn, and the first spacer 131 is used to isolate the first pole piece layer of the adjacent circle or the adjacent layer in the same circle.
  • a pole piece 110 and a second pole piece 120 is used to isolate the first pole piece layer of the adjacent circle or the adjacent layer in the same circle.
  • the first separator 131 should be understood as a layer of separator between the first pole piece 110 and the second pole piece 120 in the related art, that is, the basic separator, and the second separator 132 should be understood as an increased separator, namely Additional spacers.
  • the electrode assembly 100 can be in various shapes, for example, the electrode assembly 100 can be in the shape of a cylinder, a flat body, a prism (such as a triangular prism, a quadrangular prism, or a hexagonal prism) or other shapes.
  • a prism such as a triangular prism, a quadrangular prism, or a hexagonal prism
  • Both the first pole piece 110 and the second pole piece 120 include a plurality of bending portions 150 located in the bending area B.
  • the bending area B is the area where the electrode assembly 100 has a bending structure, the part of the first pole piece 110 located in the bending area B (ie the bent portion 150 of the first pole piece 110 ) and the part of the second pole piece 120 located in the bending area Parts of the bending area B (ie, the bending portion 150 of the second pole piece 120 ) are all bent.
  • the bent portion 150 of the first pole piece 110 and the bent portion 150 of the second pole piece 120 are generally bent into an arc shape.
  • the bending region B may be provided with one second spacer 132 , or may be provided with multiple second spacers 132 .
  • the second separator 132 is stacked between the pole piece and the first separator 131 , wherein the pole piece can be the first pole piece 110 or the second pole piece 120 .
  • the second spacer 132 can be independently arranged between the pole piece and the first spacer 131, that is, the second spacer 132 is separately laminated with the pole piece and the first spacer 131, and the second spacer 132 and the pole piece and between the second separator 132 and the first separator 131 have no connection relationship such as adhesion.
  • the second spacer 132 can also be attached to the surface of the pole piece or to the surface of the first spacer 131; attaching refers to an adhesive connection, for example, the second spacer 132 can be attached to the surface of the first spacer 131; are attached to the pole piece or the first spacer 131 in a similar manner.
  • the second separator 132 may be located entirely in the bending area B of the electrode assembly 100 , or may be only partially located in the bending area B of the electrode assembly 100 .
  • the first spacer 131 and the second spacer 132 jointly separate the first pole piece 110 and the second pole piece 120 in the bending area B, even if the bending area B produces a problem of lithium deposition, or the pole piece
  • the burrs are generated during the bending process of the sheet, and lithium dendrites or burrs are also difficult to pierce the first separator 131 and the second separator 132 at the same time, thereby reducing the probability of conduction between the first pole piece 110 and the second pole piece 120 , effectively reducing the short circuit problem of the electrode assembly 100 caused by the damage of the separator, thereby effectively reducing the failure risk of the electrode assembly 100 and improving the service life and safety of the electrode assembly 100 .
  • Both the first separator 131 and the second separator 132 are permeable to ions, which can reduce the barrier to ions and ensure the capacity of the electrode assembly 100 .
  • the thickness of the second spacer 132 is greater than the thickness of the first spacer 131 .
  • the second spacer 132 is more difficult to be punctured than the first spacer 131 , which can effectively reduce the risk of damage to the second spacer 132 and improve safety.
  • the porosity of the second spacer 132 is greater than or equal to the porosity of the first spacer 131 .
  • Porosity refers to the percentage of pore volume in a bulk material to the total volume of the material in its natural state.
  • the test method of porosity is the true density test method.
  • the second separator 132 has better ion permeability, so as to reduce the blocking of ions by the second separator 132 and ensure the capacity of the electrode assembly 100 .
  • the porosity of the second spacer 132 is greater than that of the first spacer 131 .
  • At least the second spacer 132 is provided between the innermost adjacent first pole piece 110 and the second pole piece 120 .
  • the innermost first pole piece 110 and the second pole piece 120 are more prone to lithium deposition and burrs.
  • the curvature of the innermost bent portion 150 of the first pole piece 110 is larger, and the stress it receives is also larger. Therefore, the first pole piece The phenomenon that the active material of the innermost bending portion 150 of 110 falls off is relatively serious, and burrs are more likely to be generated.
  • the curvature of the innermost bent portion 150 of the second pole piece 120 is larger, and the stress it receives is also larger. Therefore, the second pole piece The phenomenon that the active material of the innermost bending portion 150 of 120 falls off is relatively serious, and burrs are more likely to be generated.
  • the second separator 132 can be installed in the area where the problem of lithium analysis is serious, so as to effectively reduce the short circuit problem of the electrode assembly 100 caused by the damage of the separator, and improve the service life and safety of the electrode assembly 100 .
  • the bending region B is provided with a plurality of second spacers 132 , and adjacent second spacers 132 are separated by the first pole piece 110 or the second pole piece 120 .
  • the thickness of the inner second spacer 132 is greater than the thickness of the outer second spacer 132 .
  • the curvature of the bending portion 150 gradually decreases from the inside to the outside, and the stress on the bending portion 150 also gradually decreases; that is, in the bending area B, the inner bending portion 150 appears
  • the problem of lithium deposition is more serious than the problem of lithium deposition at the outer bending portion 150 .
  • the inner second spacer 132 has a greater thickness to minimize the risk of being punctured; the outer second spacer 132 has a low risk of being punctured, so it can have a smaller thickness.
  • the thickness of the second spacer 132 is reduced to increase the energy density of the electrode assembly 100 .
  • the plurality of second spacers 132 are independently disposed.
  • the position of each second spacer 132 can be freely set as required.
  • the electrode assembly 100 further includes a straight region C connected to the bent region B, and both ends of the second separator 132 along the winding direction X are located in the straight region C.
  • the straight region C is a region where the electrode assembly 100 has a straight structure, and both the first pole piece 110 and the second pole piece 120 include a plurality of straight portions 160 located in the straight region C.
  • the straight portion 160 in the straight region C is substantially straight, for example, the straight portion 160 is generally flat.
  • At least one bending area B is provided with a second spacer 132 ; optionally, both bending areas B are provided with a second spacer 132 .
  • the second spacer 132 can completely separate the first pole piece 110 from the second pole piece 120 to improve safety.
  • the second spacer 132 is attached to the outer surface of the first spacer 131 .
  • the second spacer 132 may be entirely attached to the first spacer 131 , or may be only partially attached to the first spacer 131 . Exemplarily, both ends of the second spacer 132 along the winding direction X are attached to the first spacer 131 .
  • the second spacer 132 is attached to the first spacer 131, which can reduce the risk of second spacer 132 shifting and dislocation along the winding direction X during the charging and discharging process, and ensure that the second spacer 132
  • the protective effect of 132 in the bending area B improves safety.
  • the first spacer 131 When the first spacer 131 is bent, its inner surface is compressed and its outer surface is stretched. If the second spacer 132 is attached to the inner surface of the first spacer 131, the second spacer 132 may be in the first spacer. Wrinkles appear under the influence of the spacer 131, affecting the transmission of ions. In this embodiment, the second spacer 132 is attached to the outer surface of the first spacer 131 , and the second spacer 132 is stretched under the action of the first spacer 131 , so that the risk of wrinkling of the second spacer 132 can be reduced.
  • the inside and the outside are relative to the winding center of the electrode assembly 100 , the side facing the winding center is the inside, and the side away from the winding center is the outside. That is to say, the surface of the first spacer 131 facing the winding center is an inner surface, and the surface facing away from the winding center is an outer surface.
  • the second spacer 132 is bonded to the outer surface of the first spacer 131 by thermocompression.
  • the material of the first spacer 131 and the second spacer 132 can be PP (polypropylene) or PE (polyethylene).
  • PP polypropylene
  • PE polyethylene
  • the first separator 131 can be PP (polypropylene) or PE (polyethylene), and the second separator 132 can be polypropylene/UHMWPE diaphragm/epoxy resin composite diaphragm, porous One of poly-coagulation separators, coaxial composite nanofiber membranes, porous separators, glass fiber battery separators, and PVDF-HFP polymer electrolyte separators.
  • the polypropylene/UHMWPE diaphragm/epoxy resin composite diaphragm can improve the porosity and heat resistance of the diaphragm.
  • Porous polymeric membranes can combine gas permeability and puncture strength.
  • the coaxial composite nanofiber membrane is composed of composite nanofibers containing fluorine-containing desperate skin layer and polyimide core layer, which can not only ensure excellent wettability, liquid retention and ion conductivity, but also have high mechanical strength and heat resistance performance.
  • Porous membranes prepared by mixing polyolefins with silica or other inorganic substances.
  • Glass fiber battery separator composed of alkali-free glass fiber, PET (polyester), PA (polyamide). With this setting, the puncture resistance and mechanical strength of the second separator 132 are greater, and the inhibitory effect on lithium dendrites is stronger.
  • the second spacer 132 includes a plurality of spacer layers 1321 stacked along the thickness direction of the second spacer 132 .
  • the multi-layer structure can increase the strength of the second spacer 132, increase the difficulty of the second spacer 132 being punctured, and improve safety.
  • adjacent isolation layers 1321 are bonded to each other.
  • the isolation layers 1321 are represented by lines; although there are gaps between the isolation layers 1321 in the figure, actually adjacent isolation layers 1321 can be attached and bonded.
  • the plurality of isolation layers 1321 are bonded together, which can reduce the risk of offset between the plurality of isolation layers 1321 during the winding process of the electrode assembly 100, and ensure that the second separator 132 is bent Protective effect of area B.
  • the plurality of isolation layers 1321 may be bonded together by heat and pressure.
  • the material of the isolation layer 1321 is the same as that of the first isolation member 131 , and the thickness of the isolation layer 1321 is equal to the thickness of the first isolation member 131 .
  • first spacer 131 and the second spacer 132 can be made of spacers of the same specification, which can simplify the process and reduce the cost.
  • FIG. 6 is a schematic diagram of a partial structure of an electrode assembly provided by another embodiment of the present application.
  • the plurality of isolation layers include a first isolation layer 132a and a second isolation layer 132b adjacently arranged, and the first isolation layer 132a is located between the second isolation layer 132b and the first isolation member 131. between. In the winding direction X, the end of the second isolation layer 132b is offset from the end of the first isolation layer 132a.
  • the dislocation means that the end of the second isolation layer 132 b does not overlap with the end of the first isolation layer 132 a in the thickness direction of the second isolation member 132 .
  • two isolation layers in the plurality of isolation layers are respectively the first isolation layer 132a and the second isolation layer 132b.
  • Both ends of the first isolation layer 132a along the winding direction X are respectively defined as a first end and a second end, and both ends of the second isolation layer 132b along the winding direction X are respectively defined as a third end and a fourth end.
  • the third end is closer to the first end than the fourth end, and the fourth end is closer to the second end than the third end.
  • first end and the third end are arranged in an offset along the winding direction X.
  • the second end and the fourth end can be arranged in alignment along the winding direction X, or can be arranged in a dislocation along the winding direction X.
  • the first pole piece 110 and the second pole piece 120 expand and press the first isolation layer 132a and the second isolation layer 132b. If the end of the first isolation layer 132a and the end of the second isolation layer 132b are aligned, then the end of the first isolation layer 132a and the end of the second isolation layer 132b will press the same position of the pole piece, causing stress concentration , affecting the performance of the pole piece.
  • the end of the second isolation layer 132b and the end of the first isolation layer 132a are dislocated, so that the end of the second isolation layer 132b and the end of the first isolation layer 132a can press different regions of the pole piece , reduce stress concentration, reduce the risk of pole piece cracking, and improve the performance of the pole piece.
  • both ends of the second isolation layer 132b exceed the first isolation layer 132a and are attached to the first isolation member 131 .
  • the first isolation layer 132a may be independently disposed between the second isolation layer 132b and the first isolation member 131 , or may be attached to the second isolation layer 132b or the first isolation member 131 .
  • the second isolation layer 132b is attached to the first isolation member 131, and can restrict the movement of the first isolation layer 132a in the winding direction X, so that the first isolation layer 132a can be lowered during the charging and discharging process.
  • the risk of displacement and dislocation of the second isolation layer 132b along the winding direction X ensures the protective effect of the second isolation member 132 in the bending area B and improves safety.
  • the first isolation layer 132a is attached to the first isolation member 131 .
  • the first isolation layer 132a may be attached to the first isolation member 131 as a whole, or only partially attached to the first isolation member 131 . Exemplarily, both ends of the first isolation layer 132 a along the winding direction X are attached to the first isolation member 131 .
  • This embodiment can reduce the risk of displacement and dislocation of the first isolation layer 132a along the winding direction X, ensure the protective effect of the first isolation layer 132a in the bending area B, and improve safety.
  • Fig. 7 is a schematic diagram of a partial structure of an electrode assembly provided by some other embodiments of the present application.
  • the electrode assembly 100 further includes a straight region C connected to the bent region B.
  • the first isolation layer 132a is located in the bending area B as a whole. Both ends of the second isolation layer 132b along the winding direction X are located in the straight region C.
  • the first isolation layer 132a and the second isolation layer 132b can play a protective role in the bending area B at the same time, so as to reduce the risk of short circuit and improve safety.
  • the first isolation layer 132a is entirely located in the bending region B, which can prevent the first isolation layer 132a from affecting the transmission of ions in the flat region C, and ensure the charging and discharging performance of the flat region C.
  • Both ends of the second isolation layer 132b along the winding direction X are located in the straight region C, so that the ends of the second isolation layer 132b and the ends of the first isolation layer 132a can be misaligned to reduce stress concentration.
  • the end of the first isolation layer 132 a along the winding direction X is located at the junction of the straight region C and the bent region B.
  • Fig. 8 is a schematic diagram of a partial structure of an electrode assembly provided in some further embodiments of the present application.
  • the second pole piece 120 is a negative pole piece, and the second separator 132 is attached to the outer surface of the second pole piece 120 .
  • the second spacer 132 is attached to the outer surface of the second pole piece 120, and the second spacer 132 is stretched under the action of the second pole piece 120, which can reduce the wrinkle of the second spacer 132. risk.
  • the diameter of the positive pole piece outside the negative pole piece is greater than the diameter of the negative pole piece, so the area of the positive active material layer of the positive pole piece outside the negative pole piece is greater than the area of the negative active material layer of the negative pole piece , which causes the outer surface of the negative pole piece to be prone to lithium precipitation.
  • the second separator 132 is attached to the outer surface of the negative pole piece to reduce the risk of short circuit and improve safety.
  • FIG. 9 is a schematic flowchart of a method for manufacturing a battery assembly provided by some embodiments of the present application.
  • the manufacturing method of the battery assembly of the embodiment of the present application includes:
  • the polarity of the first pole piece and the second pole piece are opposite, and the first separator is used to separate the first pole piece and the second pole piece;
  • the separators are laminated and used to separate adjacent first and second pole pieces; at least part of the ions released from the first pole piece can pass through the first and second separators and be embedded in the second pole piece.
  • Fig. 10 is a schematic block diagram of an electrode assembly manufacturing system provided by some embodiments of the present application.
  • a battery assembly manufacturing system 90 includes a providing device 91 and a winding device 92 .
  • the providing device 91 is used for providing the first pole piece, the second pole piece, the first spacer and the second spacer.
  • the winding device 92 is used to wind the first pole piece, the second pole piece and the first separator along the winding direction, and form a bending area.
  • the polarity of the first pole piece and the second pole piece are opposite, and the first spacer is used to separate the first pole piece and the second pole piece; the second spacer is provided in the bending area, and the second spacer and the first spacer stacked and used to separate the adjacent first pole piece and the second pole piece; at least part of the ions released from the first pole piece can pass through the first spacer and the second spacer and be embedded in the second pole piece.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)

Abstract

本申请实施例提供一种电极组件及其制造方法和制造系统、电池单体、电池以及用电装置。本申请实施例的电极组件包括第一极片、第二极片和第一隔离件,第一极片和第二极片的极性相反,第一隔离件用于分隔第一极片和第二极片,第一极片、第二极片和第一隔离件沿卷绕方向卷绕。电极组件具有弯折区域,弯折区域设有第二隔离件,第二隔离件与第一隔离件层叠并用于分隔相邻的第一极片和第二极片;第一极片脱出的至少部分离子能够穿过第一隔离件和第二隔离件并嵌入第二极片。第一隔离件和第二隔离件共同将弯折区域的第一极片和第二极片隔开,以降低了电极组件因隔离件破损而造成的短路问题。

Description

电极组件、电池单体、电池以及用电装置
相关申请的交叉引用
本申请要求享有于2021年09月10日提交的名称为“电极组件及与其相关的电池单体、电池、装置和制造方法”的中国专利申请202111062600.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电极组件及其制造方法和制造系统、电池单体、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,除了提高电池单体的性能外,安全问题也是一个不可忽视的问题。如果电池单体的安全问题不能保证,那该电池单体就无法使用。因此,如何增强电池单体的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电极组件及其制造方法和制造系统、电池单体、电池以及用电装置,其能提高安全性。
第一方面,本申请实施例提供了一种电极组件,包括第一极片、第二极片和第一隔离件,第一极片和第二极片的极性相反,第一隔离件用于分隔第一极片和第二极片,第一极片、第二极片和第一隔离件沿卷绕方向卷绕。电极组件具有弯折区域,弯折区域设有第二隔离件,第二隔离件与第一隔离件层叠并用于分隔相邻的第一极片和第二极片;第一极片脱出的至少部分离子能够穿过第一隔离件和第二隔离件并嵌入第二极片。
在本申请中,第一隔离件和第二隔离件共同将弯折区域的第一极片和第二极片隔开,即使弯折区域产生析锂问题,或者极片在弯折的过程中产生毛刺,锂枝晶或毛刺也难以同时刺破第一隔离件和第二隔离件,从而降低了第一极片和第二极片导通的概率,有效地降低了电极组件因隔离件破损而造成的短路问题,进而能够有效地降低 电极组件失效的风险,提高了电极组件的使用寿命和安全性。第一隔离件和第二隔离件均能够透过离子,这样可以降低对离子的阻挡,保证电极组件的容量。
在一些实施方式中,第二隔离件的厚度大于第一隔离件的厚度。
在上述实施方式中,第二隔离件相较于第一隔离件更难被刺破,这样可以有效地降低第二隔离件破损的风险,提高安全性。
在一些实施方式中,第二隔离件包括多个隔离层,多个隔离层沿第二隔离件的厚度方向层叠。
在上述实施方式中,多层结构可以提高第二隔离件的强度,增大第二隔离件被刺破的难度,提高安全性。
在一些实施方式中,相邻的隔离层彼此粘接。
在上述实施方式中,多个隔离层粘接在一起,这样可以在电极组件的卷绕过程中降低多个隔离层之间发生偏移的风险,保证第二隔离件在弯折区域的防护效果。
在一些实施方式中,多个隔离层包括相邻设置的第一隔离层和第二隔离层,第一隔离层位于第二隔离层和第一隔离件之间。在卷绕方向上,第二隔离层的端部与第一隔离层的端部错位设置。
在上述实施方式中,将第二隔离层的端部与第一隔离层的端部错位设置,可以使第二隔离层的端部和第一隔离层的端部挤压极片的不同区域,减小应力集中,降低极片开裂的风险,改善极片的性能。
在一些实施方式中,在卷绕方向上,第二隔离层的两端均超出第一隔离层并附接于第一隔离件。
在上述实施方式中,第二隔离层附接于第一隔离件,且能够在卷绕方向上限制第一隔离层的移动,这样可以在充放电过程中降低第一隔离层和第二隔离层沿卷绕方向偏移、错位的风险,保证第二隔离件在弯折区域的防护效果,提高安全性。
在一些实施方式中,电极组件还包括连接于弯折区域的平直区域。第一隔离层整体位于弯折区域。第二隔离层的沿卷绕方向的两端位于平直区域。
在上述实施方式中,第一隔离层和第二隔离层可以同时在弯折区域起到防护作用,以降低短路风险,提高安全性。第一隔离层整体位于弯折区域,这样可以避免第一隔离层影响平直区域的离子的传输,保证平直区域的充放电性能。第二隔离层的沿卷绕方向的两端位于平直区域,这样可以使第二隔离层的端部与第一隔离层的端部错位,降低应力集中。
在一些实施方式中,第一隔离层附接于第一隔离件。
上述实施方式可以降低第一隔离层沿卷绕方向偏移、错位的风险,保证第一隔离层在弯折区域的防护效果,提高安全性。
在一些实施方式中,隔离层的材质与第一隔离件的材质相同,且隔离层的厚度等于第一隔离件的厚度。
在上述实施方式中,第一隔离件和第二隔离件可使用同种规格的隔离件制成,这样可以简化工艺,降低成本。
在一些实施方式中,第二隔离件的孔隙率大于或等于第一隔离件的孔隙率。
在上述实施方式中,第二隔离件具有较好的离子透过性,以降低第二隔离件对离子的阻挡,保证电极组件的容量。
在一些实施方式中,在弯折区域内,至少最内侧的相邻第一极片和第二极片之间设有第二隔离件。
上述实施方式能够在析锂问题严重的区域设置第二隔离件,以有效地降低了电极组件因隔离件破损而造成的短路问题,提高了电极组件的使用寿命和安全性。
在一些实施方式中,弯折区域设有多个第二隔离件,相邻的第二隔离件被第一极片或第二极片隔开。在相邻的第二隔离件中,内侧的第二隔离件的厚度大于外侧的第二隔离件的厚度。
在上述实施方式中,内侧的第二隔离件具有更大的厚度,以尽可能的降低被刺破的风险;外侧的第二隔离件被刺破的风险低,所以其可以具有较小的厚度,以节省第二隔离件的使用量,提高电极组件的能量密度。
在一些实施方式中,电极组件还包括连接于弯折区域的平直区域,第二隔离件沿卷绕方向的两端均位于平直区域。
在上述实施方式中,第二隔离件能够将第一极片和第二极片完全隔开,以提高安全性。
在一些实施方式中,第二隔离件附接于第一隔离件的外表面。
在上述实施方式中,第二隔离件附接于第一隔离件的外表面,这样既可以在充放电过程中降低第二隔离件沿卷绕方向偏移、错位的风险,还能使第二隔离件在第一隔离件的作用下拉伸,以降低第二隔离件褶皱的风险。
在一些实施方式中,第二极片为负极极片,第二隔离件附接于第二极片的外表面。
在上述实施方式中,第二隔离件附接于第二极片的外表面,第二隔离件在第二极片的作用下拉伸,这样可以降低第二隔离件褶皱的风险。
第二方面,本申请实施例提供了一种电池单体,包括外壳和第一方面任一实施例的电极组件,电极组件容纳于外壳内。
第三方面,本申请实施例提供了一种电池,包括多个根第二方面的电池单体。
第四方面,本申请实施例提供了一种用电装置,包括根第二方面的电池单体,电池单体用于提供电能。
第五方面,本申请实施例提供了一种电池组件的制造方法,包括:
提供第一极片、第二极片、第一隔离件和第二隔离件;
沿卷绕方向卷绕第一极片、第二极片和第一隔离件,并形成弯折区域;
其中,第一极片和第二极片的极性相反,第一隔离件用于分隔第一极片和第二极片;弯折区域设有第二隔离件,第二隔离件与第一隔离件层叠并用于分隔相邻的第一极片和第二极片;第一极片脱出的至少部分离子能够穿过第一隔离件和第二隔离件并嵌入第二极片。
第六方面,本申请实施例提供了一种电池组件的制造系统,包括提供装置和卷绕装置。提供装置用于提供第一极片、第二极片、第一隔离件和第二隔离件。卷绕装 置用于沿卷绕方向卷绕第一极片、第二极片和第一隔离件,并形成弯折区域。第一极片和第二极片的极性相反,第一隔离件用于分隔第一极片和第二极片;弯折区域设有第二隔离件,第二隔离件与第一隔离件层叠并用于分隔相邻的第一极片和第二极片;第一极片脱出的至少部分离子能够穿过第一隔离件和第二隔离件并嵌入第二极片。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为本申请一些实施例提供的电池单体的爆炸示意图;
图4为本申请一些实施例提供的电极组件的结构示意图;
图5为图4所示的电极组件的局部的放大示意图;
图6为本申请另一些实施例提供的电极组件的局部结构示意图;
图7为本申请又一些实施例提供的电极组件的局部结构示意图;
图8为本申请再一些实施例提供的电极组件的局部结构示意图;
图9为本申请一些实施例提供的电池组件的制造方法的流程示意图;
图10为本申请一些实施例提供的电极组件的制造系统的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的 方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括电极组件和电解质,电极组件由正极极片、负极极片和隔离件组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离件的材质可以为PP(聚丙烯)或PE(聚乙烯)等。电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异 物影响电池单体的充电或放电。
隔离件具有电子绝缘性,其设置于正极极片和负极极片之间,其主要作用是防止正极极片和负极极片相接触,进而造成电极组件发生内部短路。隔离件具有大量的贯通的微孔,能够保证电解质离子自由通过,特别地,隔离件对锂离子有很好的透过性。示例性地,隔离件包括隔离基层和位于隔离基层表面的功能层,隔离基层可以是聚丙烯、聚乙烯、乙烯-丙烯共聚物、聚对苯二甲酸丁二醇酯等的至少一种,功能层可以是陶瓷氧化物和粘结剂的混合物层。
隔离件在电极组件中占有十分重要的地位,可以直接导致电极组件发生短路、性能及寿命降低等现象。
电池单体在充电时,金属离子从正极活性物质层脱出并嵌入负极活性物质层,但是可能会发生一些异常情况,导致金属离子的析出。以锂离子电池单体为例,由于负极活性物质层嵌锂空间不足、锂离子嵌入负极活性物质层阻力太大或锂离子过快的从正极活性物质层脱出等原因,脱出的锂离子无法等量的嵌入负极极片的负极活性物质层,无法嵌入负极极片的锂离子只能在负极极片表面得电子,从而形成金属锂单质,这就是析锂现象。
发明人在研发过程中还发现,卷绕式的电极组件在其弯折区更容易出现析锂现象,经过进一步研究发现,发明人找到了造成该析锂现象的原因主要是因为位于弯折区的正极极片和负极极片需要进行折弯,而正极活性物质层和负极活性物质层容易在折弯过程中产生应力集中并导致各自的活性物质脱落。由于活性物质的脱落,尤其是负极极片上活性物质的脱落,可能导致该负极极片的负极活性物质层的嵌锂位少于其相邻的正极极片的正极活性物质层能够提供的锂离子数量,从而引发析锂现象。
析锂严重时,脱出的锂离子可以在负极极片表面形成锂结晶;而由于隔离件较薄,所以锂结晶容易刺破隔离件,造成相邻的正极极片和负极极片短路的风险,引发安全隐患。
此外,由于正极极片或负极极片在卷绕、弯折的过程中易产生一定的微裂纹和毛刺,在较大的应力作用下,隔离件易被刺破,从而使得电极组件发生短路,进而容易导致电池单体发生起火爆炸等热失控现象。
鉴于此,本申请的发明人提出了一种电极组件,该电极组件在弯折区域增加了隔离件的层数,从而减小电极组件中隔离件破损的概率,降低第一极片和第二极片发生内部短路的风险,提高使用寿命和安全性。
本申请实施例描述的电极组件适用于电池单体、电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电 装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。如图2所示,电池2包括箱体5和电池单体6,电池单体6容纳于箱体5内。
箱体5用于容纳电池单体6,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部51和第二箱体部52,第一箱体部51与第二箱体部52相互盖合,第一箱体部51和第二箱体部52共同限定出用于容纳电池单体6的容纳空间53。第二箱体部52可以是一端开口的空心结构,第一箱体部51为板状结构,第一箱体部51盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5;第一箱体部51和第二箱体部52也均可以是一侧开口的空心结构,第一箱体部51的开口侧盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5。当然,第一箱体部51和第二箱体部52可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部51与第二箱体部52连接后的密封性,第一箱体部51与第二箱体部52之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部51盖合于第二箱体部52的顶部,第一箱体部51亦可称之为上箱盖,第二箱体部52亦可称之为下箱体。
在电池2中,电池单体6为多个。多个电池单体6之间可串联或并联或混联,混联是指多个电池单体6中既有串联又有并联。多个电池单体6之间可直接串联或并联或混联在一起,再将多个电池单体6构成的整体容纳于箱体5内;当然,也可以是多个电池单体6先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为本申请一些实施例提供的电池单体的爆炸示意图。电池单体6是指组成电池2的最小单元。如图3所示,电池单体6包括外壳、电极组件100以及其他的功能性部件,电极组件100容纳于外壳内。
在一些实施例中,外壳包括端盖61和壳体62。
端盖61是指盖合于壳体62的开口处以将电池单体6的内部环境隔绝于外部环境的部件。不限地,端盖61的形状可以与壳体62的形状相适应以配合壳体62。可选地,端盖61可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖61在受挤压碰撞时就不易发生形变,使电池单体6能够具备更高的结构强度,安全性能也可以有所提高。端盖61上可以设置有如电极端子等的功能性部件。电极端子可以用于与电极组件100电连接,以用于输出或输入电池单体6的电能。
在一些实施例中,端盖61上还可以设置有用于在电池单体6的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖61的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
在一些实施例中,在端盖61的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体62内的电连接部件与端盖61,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体62是用于配合端盖61以形成电池单体6的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件100、电解液以及其他部件。壳体62和端盖61可以是独立的部件,可以于壳体62上设置开口,通过在开口处使端盖61盖合开口以形成电池单体6的内部环境。不限地,也可以使端盖61和壳体62一体化,具体地,端盖61和壳体62可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体62的内部时,再使端盖61盖合壳体62。壳体62可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体62的形状可以根据电极组件100的具体形状和尺寸大小来确定。壳体62的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件100是电池单体6中浸润于电解液以发生电化学反应的部件。壳体62内可以包含一个或多个电极组件100。电极组件100主要由正极极片和负极极片卷绕形成,并且通常在正极极片与负极极片之间设隔离件。正极极片和负极极片具有活性物质的部分构成电极组件100的主体部,正极极片和负极极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池单体的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子以形成电流回路。
图4为本申请一些实施例提供的电极组件的结构示意图;图5为图4所示的电极组件的局部的放大示意图。
如图4和图5所示,本申请实施例的电极组件100包括第一极片110、第二极片120和第一隔离件131,第一极片110和第二极片120的极性相反,第一隔离件131用于分隔第一极片110和第二极片120,第一极片110、第二极片120和第一隔离件131沿卷绕方向X卷绕。电极组件100具有弯折区域B,弯折区域B设有第二隔离件132,第二隔离件132与第一隔离件131层叠并用于分隔相邻的第一极片110和第二极片120;第一极片110脱出的至少部分离子能够穿过第一隔离件131和第二隔离件132并嵌入第二极片120。
在本实施例中,卷绕方向X为第一极片110、第二极片120和第一隔离件131从内向外周向卷绕的方向。示例性地,在图中,卷绕方向X为逆时针方向。
第一极片110和第二极片120中的一者为正极极片,另一者为负极极片。
第一隔离件131和第二隔离件132均具有大量贯通的微孔,能够保证金属离子自由通过;例如,第一隔离件131和第二隔离件132对锂离子有很好的透过性,基本上不能阻挡锂离子通过。示例性地,第一隔离件131和第二隔离件132的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
第一隔离件131和第二隔离件132可以由相同的材料制成,也可以由不同的材料制成。在本实施例中,对第一隔离件131和第二隔离件132的厚度不作限定。
本申请中所提到的隔离件也可以称之为隔离膜,在图中以线表示,但实际上隔离件同样具有厚度。
第一极片110、第二极片120和第一隔离件131均为带状结构。在一些实施例中,第一隔离件131设置为两个,本申请可以先将第一极片110、一个第一隔离件131、第二极片120和另一个第一隔离件131依次层叠,然后再卷绕两圈以上以形成卷绕结构。
本申请中,卷绕设备将第一极片110、第二极片120以及第一隔离件131卷绕成若干圈,每一圈可以构造有几层,一圈指的是电极组件100上的某个点作为起始端开始计算,沿着卷绕方向X一周到达另一个点定位结束端,结束端与起始端以及此圈的中心在一条直线上,起始端在结束端与此圈中心之间。每一圈依次包括第一极片层、第一隔离件层、第二极片层以及第一隔离件层,第一隔离件131用以隔离相邻圈或同一圈中相邻层的第一极片110和第二极片120。
第一隔离件131应当理解为相关技术中的第一极片110和第二极片120之间的一层隔离件,即基础隔离件,第二隔离件132应当理解为增加的隔离件,即附加隔离件。
电极组件100可以是多种形状,例如,电极组件100可呈圆柱体、扁平体、棱柱体(例如三棱柱、四棱柱或六棱柱)或其它形状。
第一极片110和第二极片120均包括位于弯折区域B的多个弯折部150。弯折区域B为电极组件100具有弯折结构的区域,第一极片110的位于弯折区域B的部分(即第一极片110的弯折部150)和第二极片120的位于弯折区域B的部分(即第二极片120的弯折部150)均弯折设置。示例性地,第一极片110的弯折部150和第二极片120的弯折部150大体弯折为圆弧形。
在本实施例中,弯折区域B可以设有一个第二隔离件132,也可以设有多个第二隔离件132。
第二隔离件132层叠于极片和第一隔离件131之间,其中,该极片可以是第一极片110,也可以是第二极片120。在一些示例中,第二隔离件132可以独立地设置于极片和第一隔离件131之间,即第二隔离件132分别与极片和第一隔离件131分离式层叠,第二隔离件132与极片之间以及第二隔离件132与第一隔离件131之间均不具有粘附等连接关系。在另一些示例中,第二隔离件132也可以附接于极片的表面或附接于第一隔离件131的表面;附接是指贴附连接,例如,第二隔离件132可通过粘接等方式附接到极片或第一隔离件131。
第二隔离件132可以整体位于电极组件100的弯折区域B,也可以仅部分位于电极组件100的弯折区域B。
在本实施例中,第一隔离件131和第二隔离件132共同将弯折区域B的第一极片110和第二极片120隔开,即使弯折区域B产生析锂问题,或者极片在弯折的过程中产生毛刺,锂枝晶或毛刺也难以同时刺破第一隔离件131和第二隔离件132,从而降低 了第一极片110和第二极片120导通的概率,有效地降低了电极组件100因隔离件破损而造成的短路问题,进而能够有效地降低电极组件100失效的风险,提高了电极组件100的使用寿命和安全性。第一隔离件131和第二隔离件132均能够透过离子,这样可以降低对离子的阻挡,保证电极组件100的容量。
在一些实施例中,第二隔离件132的厚度大于第一隔离件131的厚度。
在本实施例中,第二隔离件132相较于第一隔离件131更难被刺破,这样可以有效地降低第二隔离件132破损的风险,提高安全性。
在一些实施例中,第二隔离件132的孔隙率大于或等于第一隔离件131的孔隙率。
孔隙率是指块状材料中孔隙体积与材料在自然状态下总体积的百分比。一般情况下,孔隙率的测试方法为真密度测试方法。
在本实施例中,第二隔离件132具有较好的离子透过性,以降低第二隔离件132对离子的阻挡,保证电极组件100的容量。
在一些实施例中,第二隔离件132的孔隙率大于第一隔离件131的孔隙率。
在一些实施例中,在弯折区域B内,至少最内侧的相邻第一极片110和第二极片120之间设有第二隔离件132。
在弯折区域B,最内侧的第一极片110和第二极片120更容易出现析锂问题和毛刺问题。具体地,与第一极片110的其它弯折部150相比,第一极片110最内侧的一个弯折部150的曲率较大,所受的应力也较大,因此,第一极片110最内侧的一个弯折部150的活性物质脱落的现象比较严重,也更容易产生毛刺。同样地,与第二极片120的其它弯折部150相比,第二极片120最内侧的一个弯折部150的曲率较大,所受的应力也较大,因此,第二极片120最内侧的一个弯折部150的活性物质脱落的现象比较严重,也更容易产生毛刺。
本实施例能够在析锂问题严重的区域设置第二隔离件132,以有效地降低了电极组件100因隔离件破损而造成的短路问题,提高了电极组件100的使用寿命和安全性。
在一些实施例中,弯折区域B设有多个第二隔离件132,相邻的第二隔离件132被第一极片110或第二极片120隔开。在相邻的第二隔离件132中,内侧的第二隔离件132的厚度大于外侧的第二隔离件132的厚度。
在弯折区域B,弯折部150的曲率从内到外逐渐减小,弯折部150受到的应力也逐渐减小;也就是说,在弯折区域B,内侧的弯折部150出现的析锂问题要比外侧的弯折部150出现的析锂问题要严重。
在本实施例中,内侧的第二隔离件132具有更大的厚度,以尽可能的降低被刺破的风险;外侧的第二隔离件132被刺破的风险低,所以其可以具有较小的厚度,以节省第二隔离件132的使用量,提高电极组件100的能量密度。
在一些实施例中,多个第二隔离件132均独立设置。各第二隔离件132的位置可根据需要自由设定。
在一些实施例中,电极组件100还包括连接于弯折区域B的平直区域C,第二 隔离件132沿卷绕方向X的两端均位于平直区域C。
平直区域C为电极组件100具有平直结构的区域,第一极片110和第二极片120均包括位于平直区域C的多个平直部160。平直区域C内的平直部160基本平直设置,例性地,平直部160大体为平板状。
示例性地,弯折区域B为两个且分别连接于平直区域C的两端。至少一个弯折区域B设置有第二隔离件132;可选地,两个弯折区域B均设有第二隔离件132。
在本实施例中,第二隔离件132能够将第一极片110和第二极片120完全隔开,以提高安全性。
在一些实施例中,第二隔离件132附接于第一隔离件131的外表面。
第二隔离件132可以整体附接于第一隔离件131,也可以仅部分附接于第一隔离件131。示例性地,第二隔离件132沿卷绕方向X的两端附接于第一隔离件131。
在本实施例中,第二隔离件132附接于第一隔离件131,这样可以在充放电过程中降低第二隔离件132沿卷绕方向X偏移、错位的风险,保证第二隔离件132在弯折区域B的防护效果,提高安全性。
第一隔离件131在弯折时,其内表面压缩而外表面拉伸,如果将第二隔离件132附接于第一隔离件131的内表面,那么第二隔离件132可能会在第一隔离件131的影响下出现褶皱,影响离子的传输。本实施例将第二隔离件132附接于第一隔离件131的外表面,第二隔离件132在第一隔离件131的作用下拉伸,这样可以降低第二隔离件132褶皱的风险。
在本申请中,内侧和外侧是相对于电极组件100的卷绕中心而言,面向卷绕中心的一侧为内侧,背离卷绕中心的一侧为外侧。也就是说,第一隔离件131的面向卷绕中心的表面为内表面,背离卷绕中心的表面为外表面。
在一些实施例中,第二隔离件132通过热压粘接于第一隔离件131的外表面。
在一些实施例中,第一隔离件131和第二隔离件132的材料均可为PP(聚丙烯)或PE(聚乙烯)。通过该设置,材料的选择使得加工更方便、成本更低,利于商业化考虑。
在一些实施例中,第一隔离件131可为PP(聚丙烯)或PE(聚乙烯),第二隔离件132可为聚丙烯/超高分子量聚乙烯隔膜/环氧树脂复合隔膜、多孔性聚并析隔膜、同轴复合纳米纤维膜、多孔隔膜、玻璃纤维电池隔膜、PVDF-HFP聚合物电解质隔膜中的一种。其中,聚丙烯/超高分子量聚乙烯隔膜/环氧树脂复合隔膜能够提高隔膜的孔隙率和耐热性。多孔性聚并析隔膜能够兼具透气特性和穿刺强度。同轴复合纳米纤维膜由含氟绝望皮层和聚酰亚胺芯层的复合纳米纤维构成,既能够保证优良的浸润性、保液性和导离子性,又具有较高的机械强度和耐热性能。多孔隔膜,由聚烯烃与二氧化硅或其他无机物混合制备。玻璃纤维电池隔膜,由无碱玻璃纤维、PET(聚酯)、PA(聚酰胺)组成。通过该设置,第二隔离件132的抗穿刺强度、机械强度更大,对锂枝晶的抑制作用更强。
在一些实施例中,第二隔离件132包括多个隔离层1321,多个隔离层1321沿第二隔离件132的厚度方向层叠。
在本实施例中,多层结构可以提高第二隔离件132的强度,增大第二隔离件132被刺破的难度,提高安全性。
在一些实施例中,相邻的隔离层1321彼此粘接。
在图4和图5中,隔离层1321以线表示;虽然图中的隔离层1321之间有间隙,实际上相邻的隔离层1321是可以贴合粘接的。
在本实施例中,多个隔离层1321粘接在一起,这样可以在电极组件100的卷绕过程中降低多个隔离层1321之间发生偏移的风险,保证第二隔离件132在弯折区域B的防护效果。
在一些实施例中,多个隔离层1321可通过热压粘接在一起。
在一些实施例中,隔离层1321的材质与第一隔离件131的材质相同,且隔离层1321的厚度等于第一隔离件131的厚度。
在本实施例中,第一隔离件131和第二隔离件132可使用同种规格的隔离件制成,这样可以简化工艺,降低成本。
图6为本申请另一些实施例提供的电极组件的局部结构示意图。
如图6所示,在一些实施例中,多个隔离层包括相邻设置的第一隔离层132a和第二隔离层132b,第一隔离层132a位于第二隔离层132b和第一隔离件131之间。在卷绕方向X上,第二隔离层132b的端部与第一隔离层132a的端部错位设置。
错位设置是指第二隔离层132b的端部与第一隔离层132a的端部在第二隔离件132的厚度方向上不重叠。
示例性地,多个隔离层中的两个隔离层分别为第一隔离层132a和第二隔离层132b。
第一隔离层132a沿卷绕方向X的两端分别定义为第一端和第二端,第二隔离层132b沿卷绕方向X的两端分别定义为第三端和第四端。第三端相对于第四端更靠近第一端,第四端相对于第三端更靠近第二端。
在本实施例中,第一端和第三端沿卷绕方向X错位设置。第二端和第四端可以沿卷绕方向X对齐设置,也可以沿卷绕方向X错位设置。
在充放电的过程中,第一极片110和第二极片120膨胀并挤压第一隔离层132a和第二隔离层132b。如果第一隔离层132a的端部和第二隔离层132b的端部对齐,那么第一隔离层132a的端部和第二隔离层132b的端部会挤压极片的同一个位置,造成应力集中,影响极片的性能。
本实施例将第二隔离层132b的端部与第一隔离层132a的端部错位设置,可以使第二隔离层132b的端部和第一隔离层132a的端部挤压极片的不同区域,减小应力集中,降低极片开裂的风险,改善极片的性能。
在一些实施例中,在卷绕方向X上,第二隔离层132b的两端均超出第一隔离层132a并附接于第一隔离件131。
第一隔离层132a可以独立地设置于第二隔离层132b和第一隔离件131之间,也可以附接于第二隔离层132b或第一隔离件131。
在本实施例中,第二隔离层132b附接于第一隔离件131,且能够在卷绕方向X 上限制第一隔离层132a的移动,这样可以在充放电过程中降低第一隔离层132a和第二隔离层132b沿卷绕方向X偏移、错位的风险,保证第二隔离件132在弯折区域B的防护效果,提高安全性。
在一些实施例中,第一隔离层132a附接于第一隔离件131。
第一隔离层132a可以整体附接于第一隔离件131,也可以仅部分附接于第一隔离件131。示例性地,第一隔离层132a沿卷绕方向X的两端附接于第一隔离件131。
本实施例可以降低第一隔离层132a沿卷绕方向X偏移、错位的风险,保证第一隔离层132a在弯折区域B的防护效果,提高安全性。
图7为本申请又一些实施例提供的电极组件的局部结构示意图。
如图7所示,在一些实施例中,电极组件100还包括连接于弯折区域B的平直区域C。第一隔离层132a整体位于弯折区域B。第二隔离层132b的沿卷绕方向X的两端位于平直区域C。
在本实施例中,第一隔离层132a和第二隔离层132b可以同时在弯折区域B起到防护作用,以降低短路风险,提高安全性。第一隔离层132a整体位于弯折区域B,这样可以避免第一隔离层132a影响平直区域C的离子的传输,保证平直区域C的充放电性能。第二隔离层132b的沿卷绕方向X的两端位于平直区域C,这样可以使第二隔离层132b的端部与第一隔离层132a的端部错位,降低应力集中。
在一些实施例中,第一隔离层132a沿卷绕方向X的端部位于平直区域C和弯折区域B的交界处。
图8为本申请再一些实施例提供的电极组件的局部结构示意图。
如图8所示,第二极片120为负极极片,第二隔离件132附接于第二极片120的外表面。
在本实施例中,第二隔离件132附接于第二极片120的外表面,第二隔离件132在第二极片120的作用下拉伸,这样可以降低第二隔离件132褶皱的风险。
在弯折区域B,负极极片外侧的正极极片的直径大于负极极片的直径,所以负极极片外侧的正极极片的正极活性物质层的面积大于负极极片的负极活性物质层的面积,这造成负极极片的外表面容易出现析锂。本实施例将第二隔离件132附接于负极极片的外表面,以降低短路风险,提高安全性。
图9为本申请一些实施例提供的电池组件的制造方法的流程示意图。
如图9所示,本申请实施例的电池组件的制造方法包括:
S100、提供第一极片、第二极片、第一隔离件和第二隔离件;
S200、沿卷绕方向卷绕第一极片、第二极片和第一隔离件,并形成弯折区域;
其中,第一极片和第二极片的极性相反,第一隔离件用于分隔第一极片和第二极片;弯折区域设有第二隔离件,第二隔离件与第一隔离件层叠并用于分隔相邻的第一极片和第二极片;第一极片脱出的至少部分离子能够穿过第一隔离件和第二隔离件并嵌入第二极片。
需要说明的是,通过上述电池组件的制造方法制造出的电池组件的相关结构,可参见上述各实施例提供的电池组件。
图10为本申请一些实施例提供的电极组件的制造系统的示意性框图。
如图10所示,本申请实施例的电池组件的制造系统90包括提供装置91和卷绕装置92。提供装置91用于提供第一极片、第二极片、第一隔离件和第二隔离件。卷绕装置92用于沿卷绕方向卷绕第一极片、第二极片和第一隔离件,并形成弯折区域。第一极片和第二极片的极性相反,第一隔离件用于分隔第一极片和第二极片;弯折区域设有第二隔离件,第二隔离件与第一隔离件层叠并用于分隔相邻的第一极片和第二极片;第一极片脱出的至少部分离子能够穿过第一隔离件和第二隔离件并嵌入第二极片。
通过上述制造系统制造出的电极组件的相关结构,可参见上述各实施例提供的电极组件。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种电极组件,包括第一极片、第二极片和第一隔离件,所述第一极片和所述第二极片的极性相反,所述第一隔离件用于分隔所述第一极片和所述第二极片,所述第一极片、所述第二极片和所述第一隔离件沿卷绕方向卷绕;
    其中,所述电极组件具有弯折区域,所述弯折区域设有第二隔离件,所述第二隔离件与所述第一隔离件层叠并用于分隔相邻的所述第一极片和所述第二极片;所述第一极片脱出的至少部分离子能够穿过所述第一隔离件和所述第二隔离件并嵌入所述第二极片。
  2. 根据权利要求1所述的电极组件,其中,所述第二隔离件的厚度大于所述第一隔离件的厚度。
  3. 根据权利要求1或2所述的电极组件,其中,所述第二隔离件包括多个隔离层,所述多个隔离层沿所述第二隔离件的厚度方向层叠。
  4. 根据权利要求3所述的电极组件,其中,相邻的所述隔离层彼此粘接。
  5. 根据权利要求3或4所述的电极组件,其中,所述多个隔离层包括相邻设置的第一隔离层和第二隔离层,所述第一隔离层位于所述第二隔离层和所述第一隔离件之间;
    在所述卷绕方向上,所述第二隔离层的端部与所述第一隔离层的端部错位设置。
  6. 根据权利要求5所述的电极组件,其中,在所述卷绕方向上,所述第二隔离层的两端均超出所述第一隔离层并附接于所述第一隔离件。
  7. 根据权利要求6所述的电极组件,其中,所述电极组件还包括连接于所述弯折区域的平直区域;
    所述第一隔离层整体位于所述弯折区域;所述第二隔离层的沿所述卷绕方向的两端位于所述平直区域。
  8. 根据权利要求5-7任一项所述的电极组件,其中,所述第一隔离层附接于所述第一隔离件。
  9. 根据权利要求3-8任一项所述的电极组件,其中,所述隔离层的材质与所述第一隔离件的材质相同,且所述隔离层的厚度等于所述第一隔离件的厚度。
  10. 根据权利要求1-9任一项所述的电极组件,其中,所述第二隔离件的孔隙率大于或等于所述第一隔离件的孔隙率。
  11. 根据权利要求1-10任一项所述的电极组件,其中,在所述弯折区域内,至少最内侧的相邻所述第一极片和所述第二极片之间设有所述第二隔离件。
  12. 根据权利要求1-11任一项所述的电极组件,其中,所述弯折区域设有多个所述第二隔离件,相邻的所述第二隔离件被所述第一极片或所述第二极片隔开;
    在相邻的所述第二隔离件中,内侧的所述第二隔离件的厚度大于外侧的所述第二隔离件的厚度。
  13. 根据权利要求1-12任一项所述的电极组件,其中,所述电极组件还包括连接于所述弯折区域的平直区域,所述第二隔离件沿所述卷绕方向的两端均位于所述平直区 域。
  14. 根据权利要求1-13任一项所述的电极组件,其中,所述第二隔离件附接于所述第一隔离件的外表面。
  15. 根据权利要求1-13任一项所述的电极组件,其中,所述第二极片为负极极片,所述第二隔离件附接于所述第二极片的外表面。
  16. 一种电池单体,包括:
    外壳;
    根据权利要求1-15任一项所述的电极组件,容纳于所述外壳内。
  17. 一种电池,包括多个根据权利要求16所述的电池单体。
  18. 一种用电装置,包括根据权利要求16所述的电池单体,所述电池单体用于提供电能。
  19. 一种电池组件的制造方法,包括:
    提供第一极片、第二极片、第一隔离件和第二隔离件;
    沿卷绕方向卷绕所述第一极片、所述第二极片和所述第一隔离件,并形成弯折区域;
    其中,所述第一极片和所述第二极片的极性相反,所述第一隔离件用于分隔所述第一极片和所述第二极片;所述弯折区域设有第二隔离件,所述第二隔离件与所述第一隔离件层叠并用于分隔相邻的所述第一极片和所述第二极片;所述第一极片脱出的至少部分离子能够穿过所述第一隔离件和所述第二隔离件并嵌入所述第二极片。
  20. 一种电池组件的制造系统,包括:
    提供装置,用于提供第一极片、第二极片、第一隔离件和第二隔离件;
    卷绕装置,用于沿卷绕方向卷绕所述第一极片、所述第二极片和所述第一隔离件,并形成弯折区域;
    其中,所述第一极片和所述第二极片的极性相反,所述第一隔离件用于分隔所述第一极片和所述第二极片;所述弯折区域设有第二隔离件,所述第二隔离件与所述第一隔离件层叠并用于分隔相邻的所述第一极片和所述第二极片;所述第一极片脱出的至少部分离子能够穿过所述第一隔离件和所述第二隔离件并嵌入所述第二极片。
PCT/CN2022/073265 2021-09-10 2022-01-21 电极组件、电池单体、电池以及用电装置 WO2023035541A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280005318.1A CN116114095A (zh) 2021-09-10 2022-01-21 电极组件、电池单体、电池以及用电装置
JP2023543459A JP2024503520A (ja) 2021-09-10 2022-01-21 電極アセンブリ、電池セル、電池及び電力消費装置関連出願の相互参照
KR1020237024948A KR20230121906A (ko) 2021-09-10 2022-01-21 전극 조립체, 전지 셀, 전지 및 전기 장치
EP22866021.3A EP4325623A1 (en) 2021-09-10 2022-01-21 Electrode assembly, battery cell, battery and electric apparatus
US18/353,679 US20230361429A1 (en) 2021-09-10 2023-07-17 Electrode assembly, battery cell, battery, and electrical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111062600.7A CN115799656B (zh) 2021-09-10 2021-09-10 电极组件及与其相关的电池单体、电池、装置和制造方法
CN202111062600.7 2021-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/353,679 Continuation US20230361429A1 (en) 2021-09-10 2023-07-17 Electrode assembly, battery cell, battery, and electrical apparatus

Publications (1)

Publication Number Publication Date
WO2023035541A1 true WO2023035541A1 (zh) 2023-03-16

Family

ID=85417145

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2022/073265 WO2023035541A1 (zh) 2021-09-10 2022-01-21 电极组件、电池单体、电池以及用电装置
PCT/CN2022/094253 WO2023035668A1 (zh) 2021-09-10 2022-05-20 电极组件、电池单体、电池以及用电装置
PCT/CN2022/094258 WO2023035669A1 (zh) 2021-09-10 2022-05-20 电极组件、电池单体、电池以及用电装置
PCT/CN2022/104991 WO2023035763A1 (zh) 2021-09-10 2022-07-11 电极组件及与其相关的电池单体、电池、装置和制造方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/094253 WO2023035668A1 (zh) 2021-09-10 2022-05-20 电极组件、电池单体、电池以及用电装置
PCT/CN2022/094258 WO2023035669A1 (zh) 2021-09-10 2022-05-20 电极组件、电池单体、电池以及用电装置
PCT/CN2022/104991 WO2023035763A1 (zh) 2021-09-10 2022-07-11 电极组件及与其相关的电池单体、电池、装置和制造方法

Country Status (6)

Country Link
US (4) US20230361429A1 (zh)
EP (4) EP4325623A1 (zh)
JP (1) JP2024503520A (zh)
KR (3) KR20230121906A (zh)
CN (4) CN115799656B (zh)
WO (4) WO2023035541A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244952A (zh) * 1997-11-19 2000-02-16 三菱电机株式会社 锂离子二次电池和其制造方法
JP2011008929A (ja) * 2009-06-23 2011-01-13 Panasonic Corp 非水系二次電池用電極群およびこれを用いた非水系二次電池
CN205992575U (zh) * 2016-07-21 2017-03-01 中航锂电(洛阳)有限公司 正极片和卷绕式锂离子动力电池电芯及锂离子动力电池
CN110249473A (zh) * 2017-02-24 2019-09-17 三洋电机株式会社 非水电解质二次电池
CN110364769A (zh) * 2019-07-31 2019-10-22 瑞浦能源有限公司 一种卷绕电芯及电池
CN214706007U (zh) * 2021-03-25 2021-11-12 瑞浦能源有限公司 卷绕电芯及电池

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229970A (ja) * 2000-02-16 2001-08-24 Shin Kobe Electric Mach Co Ltd 円筒形リチウムイオン電池
CN100429822C (zh) * 2005-01-14 2008-10-29 比亚迪股份有限公司 锂离子电池的电极片芯及含有该电极片芯的锂离子电池
KR100646535B1 (ko) * 2005-03-23 2006-11-23 삼성에스디아이 주식회사 리튬 이온 전지용 전극조립체와 이를 이용한 리튬 이온이차전지
CN2798320Y (zh) * 2005-04-18 2006-07-19 比亚迪股份有限公司 碱性二次电池的电极芯及含有该电极芯的碱性二次电池
JP5147206B2 (ja) * 2006-08-11 2013-02-20 三洋電機株式会社 非水電解質二次電池
JP5274059B2 (ja) * 2008-03-13 2013-08-28 日立ビークルエナジー株式会社 捲回式電池の製造方法
CN102487150B (zh) * 2010-12-03 2014-10-08 比亚迪股份有限公司 电池电芯的卷绕方法及装置
JP6095961B2 (ja) * 2011-12-06 2017-03-15 株式会社半導体エネルギー研究所 角形リチウム二次電池
JP6139072B2 (ja) * 2012-07-31 2017-05-31 太陽誘電株式会社 電気化学デバイス及びその製造方法
JP6094807B2 (ja) * 2013-04-26 2017-03-15 株式会社Gsユアサ 渦巻状電極群を備える電池
JP2015153454A (ja) * 2014-02-10 2015-08-24 トヨタ自動車株式会社 非水電解質二次電池
CN106129483B (zh) * 2016-08-23 2019-04-19 宁德新能源科技有限公司 一种卷绕式电芯
JP6183526B2 (ja) * 2016-09-23 2017-08-23 株式会社Gsユアサ 蓄電素子
WO2018061971A1 (ja) * 2016-09-30 2018-04-05 ブラザー工業株式会社 電池
CN206379432U (zh) * 2016-12-27 2017-08-04 宁德时代新能源科技股份有限公司 二次电池卷绕式电芯
JP6510573B2 (ja) * 2017-02-10 2019-05-08 太陽誘電株式会社 蓄電素子
CN109802164B (zh) * 2017-11-17 2021-10-01 青海时代新能源科技有限公司 卷绕式电极组件制造装置
CN207572477U (zh) * 2017-12-12 2018-07-03 宁德时代新能源科技股份有限公司 电极组件和二次电池
US20200036034A1 (en) * 2018-07-24 2020-01-30 Michael Wang High-capacity polymer lithium-ion battery structure
CN209389153U (zh) * 2019-03-20 2019-09-13 三星(天津)电池有限公司 一种卷绕结构的锂离子电池
CN212810367U (zh) * 2020-08-21 2021-03-26 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池和用电装置
CA3171539A1 (en) * 2020-08-21 2022-02-24 Contemporary Amperex Technology Co., Limited Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly
CN214254496U (zh) * 2021-01-19 2021-09-21 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN112467231B (zh) * 2021-02-04 2021-09-14 江苏时代新能源科技有限公司 电极组件、电池单体、电池及电极组件的制造方法和设备
CN112803081B (zh) * 2021-04-14 2021-08-06 江苏时代新能源科技有限公司 一种电池单体及其制备方法、电池及用电装置
CN216773319U (zh) * 2022-01-27 2022-06-17 宁波容百新能源科技股份有限公司 一种裸电芯及锂电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244952A (zh) * 1997-11-19 2000-02-16 三菱电机株式会社 锂离子二次电池和其制造方法
JP2011008929A (ja) * 2009-06-23 2011-01-13 Panasonic Corp 非水系二次電池用電極群およびこれを用いた非水系二次電池
CN205992575U (zh) * 2016-07-21 2017-03-01 中航锂电(洛阳)有限公司 正极片和卷绕式锂离子动力电池电芯及锂离子动力电池
CN110249473A (zh) * 2017-02-24 2019-09-17 三洋电机株式会社 非水电解质二次电池
CN110364769A (zh) * 2019-07-31 2019-10-22 瑞浦能源有限公司 一种卷绕电芯及电池
CN214706007U (zh) * 2021-03-25 2021-11-12 瑞浦能源有限公司 卷绕电芯及电池

Also Published As

Publication number Publication date
WO2023035763A1 (zh) 2023-03-16
US20240204265A1 (en) 2024-06-20
CN116114095A (zh) 2023-05-12
US20240213620A1 (en) 2024-06-27
EP4297144A1 (en) 2023-12-27
WO2023035668A1 (zh) 2023-03-16
EP4383435A1 (en) 2024-06-12
CN116114115A (zh) 2023-05-12
KR20230121906A (ko) 2023-08-21
EP4325623A1 (en) 2024-02-21
KR20240042503A (ko) 2024-04-02
WO2023035669A1 (zh) 2023-03-16
CN117378085A (zh) 2024-01-09
KR20240039043A (ko) 2024-03-26
JP2024503520A (ja) 2024-01-25
CN115799656A (zh) 2023-03-14
CN115799656B (zh) 2023-12-15
US20230361429A1 (en) 2023-11-09
EP4401226A1 (en) 2024-07-17
US20240014434A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
CN212810367U (zh) 电极组件、电池单体、电池和用电装置
EP4075563A1 (en) Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly
EP4131631A1 (en) Electrode assembly, battery cell, battery and power-consuming apparatus
CN214254496U (zh) 电极组件、电池单体、电池以及用电装置
CN217158290U (zh) 电极组件、电池单体、电池及用电装置
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
CN116686159A (zh) 电池单体及其制造方法和装置、电池、用电装置
US20220416360A1 (en) Battery cell, manufacturing method and manufacturing system therefor, battery and electric device
WO2023159507A1 (zh) 绝缘件、端盖组件、电池单体、电池及用电设备
CN215896616U (zh) 电极组件、电池单体、电池及用电设备
CN214588915U (zh) 电极组件、电池单体、电池以及用电装置
CN112563560B (zh) 电池单体、电池、用电装置及电池单体的制造方法
CN116569378A (zh) 电极组件及加工方法和装置、电池单体、电池和用电装置
CN217768478U (zh) 电池单体、电池、用电装置以及卷绕设备
CN217740616U (zh) 单体电池、电池及用电装置
WO2023035541A1 (zh) 电极组件、电池单体、电池以及用电装置
CN114069167B (zh) 二次电池、电池模块、电池包和用电装置
CN212277261U (zh) 电极组件、电池、电池模块、电池组、使用电池的装置和电极组件的制造装置
CN114467205A (zh) 电极组件及其相关电池、装置、制造方法和制造装置
US11978910B2 (en) Electrode assembly, battery cell, battery, and electrical device
WO2023173414A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023184422A1 (zh) 电池单体、电池及用电设备
WO2022236736A1 (zh) 电极组件、电池单体、电池以及用电装置
CN218498135U (zh) 电池单体、电池以及用电装置
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866021

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543459

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237024948

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022866021

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022866021

Country of ref document: EP

Effective date: 20231117

NENP Non-entry into the national phase

Ref country code: DE