WO2023035450A1 - 金属加工废液净化回用方法及金属加工回收液 - Google Patents
金属加工废液净化回用方法及金属加工回收液 Download PDFInfo
- Publication number
- WO2023035450A1 WO2023035450A1 PCT/CN2021/137132 CN2021137132W WO2023035450A1 WO 2023035450 A1 WO2023035450 A1 WO 2023035450A1 CN 2021137132 W CN2021137132 W CN 2021137132W WO 2023035450 A1 WO2023035450 A1 WO 2023035450A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal processing
- purifying
- solution
- waste liquid
- processing waste
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 44
- 239000002184 metal Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000011084 recovery Methods 0.000 title claims abstract description 7
- 238000001704 evaporation Methods 0.000 claims abstract description 14
- 230000008020 evaporation Effects 0.000 claims abstract description 14
- 238000001914 filtration Methods 0.000 claims abstract description 10
- 239000003381 stabilizer Substances 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 8
- 239000013556 antirust agent Substances 0.000 claims abstract description 6
- 238000000926 separation method Methods 0.000 claims abstract description 5
- 239000002518 antifoaming agent Substances 0.000 claims abstract description 4
- 239000000706 filtrate Substances 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims description 74
- 238000004064 recycling Methods 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000002360 preparation method Methods 0.000 claims description 13
- 230000005484 gravity Effects 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 8
- 239000013530 defoamer Substances 0.000 claims description 6
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 claims description 6
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 claims description 5
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical group OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 5
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical group CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 claims description 5
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 3
- 238000004062 sedimentation Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 7
- 239000008399 tap water Substances 0.000 abstract description 3
- 235000020679 tap water Nutrition 0.000 abstract description 3
- 238000007792 addition Methods 0.000 abstract description 2
- 238000007667 floating Methods 0.000 abstract description 2
- 238000004821 distillation Methods 0.000 abstract 1
- 238000012388 gravitational sedimentation Methods 0.000 abstract 1
- 239000002120 nanofilm Substances 0.000 abstract 1
- 238000004065 wastewater treatment Methods 0.000 abstract 1
- 238000000746 purification Methods 0.000 description 12
- 238000005555 metalworking Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000013043 chemical agent Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002920 hazardous waste Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005374 membrane filtration Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/40—Devices for separating or removing fatty or oily substances or similar floating material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/442—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F2001/007—Processes including a sedimentation step
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/16—Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/06—Pressure conditions
- C02F2301/063—Underpressure, vacuum
Definitions
- the invention relates to the technical field of metal processing waste liquid treatment, in particular to a method for purifying and recycling metal processing waste liquid and metal processing recovered liquid.
- Metalworking fluid waste liquid is a high-concentration organic hazardous waste, with COD as high as more than 100,000.
- the existing membrane filtration, chemical treatment, biochemical degradation and other processes all have their own defects.
- Membrane filtration cannot remove soluble impurities (salt, soluble organic matter, etc.), the overall service life of membrane elements at all levels is low, and there are high cost of consumables and solid waste problems.
- Chemical cleaning of membrane elements will generate cleaning wastewater, which is easy to produce Secondary hazardous waste; chemical treatment requires the addition of a large amount of chemicals to high COD wastewater and produces a large amount of sludge solid waste. The reduction effect is poor, and a large amount of salt is introduced into the produced water.
- the COD is too high, which can neither be reused nor discharged.
- the present invention provides a method for purifying and recycling metal processing waste liquid.
- the invention also provides a metal processing recovery liquid.
- a method for purifying and recycling metal processing waste liquid comprising the following steps:
- the waste liquid is subjected to gravity sedimentation treatment to remove oil slicks and large particles of impurities to obtain a pretreatment liquid;
- the preparation solution includes a pH stabilizer, an antirust agent and a defoamer.
- the above-mentioned metal processing waste liquid purification and reuse method fully separates the oil residue salt in the water with low energy consumption, and after deployment and treatment, a purified liquid with performance equivalent to that of tap water is obtained.
- the purified liquid can be reused in production, saving Water resources are saved; the whole purification process is purely physical purification, without any chemical agents added, to avoid secondary pollution.
- the pressure of the heat pump evaporation equipment is -25KPa to -5KPa; the temperature of the heat pump evaporation equipment is 91°C-98°C.
- the pore size of the ultra-precise nano-membrane is 10nm-40nm.
- the preparation solution includes the following components in parts by weight: 0.5-2 parts of a pH stabilizer, 0.5-2 parts of a rust inhibitor, and 0.1-0.5 parts of an antifoaming agent.
- the preparation solution includes AMP95 and/or diglycolamine as a pH stabilizer.
- the rust inhibitor is triethanolamine and/or dodecanedioic acid.
- the defoamer is three-dimensional siloxane.
- the gravity settling is carried out in a three-phase separator.
- a step S10 is further included between the step S1 and the step S2, and the step S10 is: filtering the pretreatment liquid.
- the invention also provides a metal processing recovery liquid, which is obtained by treating the waste liquid after metal processing through the method for purifying and recycling the metal processing waste liquid.
- the invention provides a method for purifying and reusing metal processing waste liquid, which is used for processing and reusing the waste liquid generated after metal processing to save water resources.
- the method for purifying and reusing metal processing waste liquid includes the following steps:
- the waste liquid is subjected to gravity sedimentation treatment to remove slick oil and large particles of impurities to obtain a pretreatment liquid.
- the preparation solution includes a pH stabilizer, an antirust agent and a defoamer.
- the preparation solution includes the following components in parts by weight: 0.5-2 parts of pH stabilizer, 0.5-2 parts of anti-rust agent and 0.1-0.5 parts of defoaming agent.
- the pH stabilizer in the preparation solution is AMP95 and/or diglycolamine.
- the rust inhibitor is triethanolamine and/or dodecanedioic acid.
- the defoamer is three-dimensional silicone. The use of these several components can stably exert its effect and ensure the effect of recycling the working fluid.
- step S1 the gravity settling treatment is to use the density difference of the oil residue liquid to remove floating oil and large particles of impurities, so as to facilitate subsequent further treatment.
- the gravity settling adopts the oil residue liquid three-phase separation device, which can remove the slick oil and large particles of impurities in the waste liquid, leaving the treated pretreatment liquid.
- the waste liquid is pretreated prior to gravity settling.
- Pretreatment may be steps of preliminary precipitation, filtration, and the like.
- Heat pump evaporation uses the boiling point difference of the emulsion itself to evaporate and separate the water in the waste liquid to remove most of the emulsified oil, inorganic salts and mechanical impurities.
- the pressure of the heat pump evaporation equipment is -25KPa to -5KPa, and the temperature is 91°C-98°C. Controlling the pressure and temperature conditions within this range can ensure that the emulsified oil, inorganic salt and mechanical impurities and other pollutants remain in the equipment without overflowing into the steam, ensuring the water quality index of the purified liquid.
- the filtration step is to use the particle size difference between oil and water in the distillate itself, and use ultra-precision nano-membrane filtration technology to further completely separate the small molecule oily substances in the distillate.
- the pore diameter of the ultra-precise nano-membrane is 10nm-40nm. This filtration precision can realize the thorough separation of residual oily substances.
- step S10 is also included between step S1 and step S2, and the step S10 is: filtering the pretreatment liquid. After preliminary filtration, large particles can be filtered out first, so that the waste liquid can be purified more efficiently in subsequent steps.
- the above-mentioned metal processing waste liquid purification and reuse method fully separates the oil residue salt in the water with low energy consumption, and after deployment and treatment, a purified liquid with performance equivalent to that of tap water is obtained.
- the purified liquid can be reused in production, saving Water resources are saved; the whole purification process is purely physical purification, without any chemical agents added, to avoid secondary pollution.
- the metalworking fluid waste liquid can be reduced by more than 80%, and only less than 20% of the concentrated liquid needs to be outsourced, which saves the cost of hazardous waste disposal; the obtained purified liquid can be redeployed and reused It is more convenient for production and saves water resources; the whole process is purely physical purification, without adding any chemical agents, to avoid secondary pollution.
- the present invention also provides a metal processing recovery liquid, which is obtained by treating waste liquid after metal processing through the above-mentioned method for purifying and recycling metal processing waste liquid.
- a preparation solution includes 1 part of AMP95, 1 part of triethanolamine, and 0.3 part of three-dimensional siloxane. These ingredients are mixed evenly.
- a preparation solution includes 2 parts of diglycolamine, 2 parts of dodecanedibasic acid, and 0.5 part of three-dimensional siloxane. These ingredients are mixed evenly.
- a preparation solution includes 0.25 part of diglycolamine, 0.25 part of AMP95, 0.5 part of triethanolamine, and 0.1 part of three-dimensional siloxane. These ingredients are mixed evenly.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Water Treatments (AREA)
Abstract
本发明涉及废水处理技术领域,尤其涉及一种金属加工废液净化回用方法及金属加工回收液,该金属加工废液净化回用方法为:S1、将废液进行重力沉降处理,以去除浮油与大颗粒杂质,得预处理液;S2、将预处理液加入热泵蒸发设备中进行水分蒸发分离,取蒸馏液,得第一处理液;S3、将第一处理液采用超精密纳米膜进行过滤,取滤液,得第二处理液;S4、在所述第二处理液中加入调配液,搅拌处理第一时间;所述调配液包括pH稳定剂、防锈剂及消泡剂;金属加工回收液,由金属加工后的废液经所述的金属加工废液净化回用方法处理而得。本发明所述的金属加工废液净化回用方法,可得到与自来水性能相当的净化液,能耗低、无化学添加、避免了二次污染。
Description
本发明涉及金属加工废液处理技术领域,特别是涉及金属加工废液净化回用方法及金属加工回收液。
金属加工液废液属于高浓度有机危废,COD高达十几万以上,现有的膜法过滤、化学处理、生化降解等工艺都存在各自的缺陷。膜法过滤无法去除可溶性杂质(盐分、可溶性有机物等),各级膜元件的综合使用寿命较低,存在较高的耗材成本与固体危废问题,膜元件需要化学清洗会产生清洗废水,易产生二次危废;化学处理对于高COD废水需要添加大量的化学药剂同时产生大量的油泥固废,减量效果较差,产水引入了大量盐分,同时COD过高,既不能回用也无法排放;金属加工液使用过程中出于工况和提高使用寿命的考虑需要添加一定的杀菌剂,这对于生化降解工艺是一个难题,同时如此体量的COD导致难以直接采用生化降解的方式进行处理,需要采用复合工艺,增加了整体造价成本。
金属加工液废液净化后产生的净化液如果要回用,存在体系适配性的问题,这就需要掌握各种金属加工液的配方体系,结合现场实际应用工况对净化液进行调配以满足其回用性能。目前很多环保公司只侧重于废液处理工艺,而无法掌握原产品配方体系以及其应用原理,故难以将净化与回用有效的结合。
发明内容
基于此,本发明提供一种金属加工废液净化回用方法。
本发明还提供一种金属加工回收液。
一种金属加工废液净化回用方法,包括如下步骤:
S1、将废液进行重力沉降处理,以去除浮油与大颗粒杂质,得预处理液;
S2、将预处理液加入热泵蒸发设备中进行水分蒸发分离,取蒸馏液,得第一处理液;
S3、将第一处理液采用超精密纳米膜进行过滤,取滤液,得第二处理液;
S4、在所述第二处理液中加入调配液,搅拌处理第一时间;
其中,所述调配液包括pH稳定剂、防锈剂及消泡剂。
上述的金属加工废液净化回用方法,以较低的能耗将水中的油渣盐全面分离,并通过调配处理后,得到与自来水性能相当的净化液,净化液可回用于生产,节约了水资源;整个净化过程纯物理净化,无任何化学药剂添加,避免产生二次污染。
一实施例中,所述热泵蒸发设备的压力为-25KPa至-5KPa;所述热泵蒸发设备的温度为91℃-98℃。
一实施例中,所述超精密纳米膜的孔径为10nm-40nm。
一实施例中,所述调配液包括如下重量份的组分:pH稳定剂0.5-2份、防锈剂0.5-2份及消泡剂0.1-0.5份。
一实施例中,所述调配液包括pH稳定剂为AMP95和/或二甘醇胺。
一实施例中,所述防锈剂为三乙醇胺和/或十二碳二元酸。
一实施例中,所述消泡剂为三维硅氧烷。
一实施例中,所述重力沉降在三相分离器中进行。
一实施例中,所述步骤S1与所述步骤S2之间还包括步骤S10,所述步骤S10为:将所述预处理液进行过滤。
本发明还提供一种金属加工回收液,由金属加工后的废液经所述的金属加工废液净化回用方法处理而得。
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明提供一种金属加工废液净化回用方法,用于处理金属加工后产生的废液并进行回用,以节省水资源,金属加工废液净化回用方法,包括如下步骤:
S1、将废液进行重力沉降处理,以去除浮油与大颗粒杂质,得预处理液。
S2、将预处理液加入热泵蒸发设备中进行水分蒸发分离,取蒸馏液,得第一处理液。
S3、将第一处理液采用超精密纳米膜进行过滤,取滤液,得第二处理液。
S4、在所述第二处理液中加入调配液,搅拌处理第一时间。
其中,调配液包括pH稳定剂、防锈剂及消泡剂。
进一步地,调配液包括如下重量份的组分:pH稳定剂0.5-2份、防锈剂0.5-2份及消泡剂0.1-0.5份。
其中的调配液中的pH稳定剂为AMP95和/或二甘醇胺。防锈剂为三乙醇胺和/或十二碳二元酸。消泡剂为三维硅氧烷。采用该几种成分能够稳定地发挥其作用,保证加工液回用的效果。
其中,步骤S1中,重力沉降处理是利用油渣液的密度差,去除浮油与大颗粒杂质,从而方便后续进行进一步处理。
一实施例中,重力沉降采用油渣液三相分离装置,三相分离装置可以除去废液中的浮油和大颗粒杂质,留下处理后的预处理液。
一实施例中,在重力沉降之前,对废液进行预处理。预处理可以是初步沉淀、过滤等等步骤。
热泵蒸发是采用乳化液自身油水的沸点差,将废液中的水分蒸发分离出来以此去除绝大部分乳化油分、无机盐分与机械杂质。
其中,热泵蒸发设备压力为-25KPa至-5KPa,温度为91℃-98℃。将压力和温度条件控制在该范围内,可以保证乳化油分、无机盐分与机械杂质等污染物质留存在设备中而不溢出到蒸汽中,确保净化液的水质指标。
其中,过滤步骤是利用蒸馏液自身油水的粒径差,采用超精密纳米膜过滤技术进一步将蒸馏液中的小分子油性物质彻底分离出来。
一实施例中,超精密纳米膜的孔径为10nm-40nm。该过滤精度可实现残留油性物质的彻底分离。
进一步地,步骤S1与步骤S2之间还包括步骤S10,该步骤S10为:将预处理液进行过滤。初步过滤后可以先滤出大颗粒物质,以使后续的步骤中可以更高效地进行废液净化。
上述的金属加工废液净化回用方法,以较低的能耗将水中的油渣盐全面分离,并通过调配处理后,得到与自来水性能相当的净化液,净化液可回用于生产,节约了水资源;整个净化过程纯物理净化,无任何化学药剂添加,避免产生二次污染。
试验证明,利用上述方法,可将金属加工液废液减量超过80%以上,仅余下 小于20%的浓缩液需要做委外处理,节约了危废处置费用;所得净化液可重新调配回用于生产,节约了水资源;整个过程纯物理净化,无任何化学药剂添加,避免产生二次污染。
本发明还提供一种金属加工回收液,由金属加工后的废液经上述的金属加工废液净化回用方法处理而得。
为了进一步说明其中的调配液,以下将通过几个实施例来进一步说明本发明的实施方式。
例如,一种调配液,包括AMP95 1份、三乙醇胺1份、三维硅氧烷0.3份。该几种成分混合均匀即可。
再例如,一种调配液,包括二甘醇胺2份、十二碳二元酸2份、三维硅氧烷0.5份。该几种成分混合均匀即可。
再例如,一种调配液,包括二甘醇胺0.25份、AMP95 0.25份、三乙醇胺0.5份、三维硅氧烷0.1份。该几种成分混合均匀即可。
以下将对上述金属加工废液净化回用方法处理前后的废液进行测试,结果见表一。
表一
由上表可以看出,经处理后的液体达到排放标准,也可以直接作为回收水使用。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种金属加工废液净化回用方法,其特征在于,包括如下步骤:S1、将废液进行重力沉降处理,以去除浮油与大颗粒杂质,得预处理液;S2、将预处理液加入热泵蒸发设备中进行水分蒸发分离,取蒸馏液,得第一处理液;S3、将第一处理液采用超精密纳米膜进行过滤,取滤液,得第二处理液;S4、在所述第二处理液中加入调配液,搅拌处理第一时间;其中,所述调配液包括pH稳定剂、防锈剂及消泡剂。
- 根据权利要求1所述的金属加工废液净化回用方法,其特征在于,所述热泵蒸发设备的压力为-25KPa至-5KPa;所述热泵蒸发设备的温度为91℃-98℃。
- 根据权利要求1所述的金属加工废液净化回用方法,其特征在于,所述超精密纳米膜的孔径为10nm-40nm。
- 根据权利要求1所述的金属加工废液净化回用方法,其特征在于,所述调配液包括如下重量份的组分:pH稳定剂0.5-2份、防锈剂0.5-2份及消泡剂0.1-0.5份。
- 根据权利要求1或4所述的金属加工废液净化回用方法,其特征在于,所述pH稳定剂为AMP95和/或二甘醇胺。
- 根据权利要求1或4所述的金属加工废液净化回用方法,其特征在于,所述防锈剂为三乙醇胺和/或十二碳二元酸。
- 根据权利要求1或4所述的金属加工废液净化回用方法,其特征在于,所述消泡剂为三维硅氧烷。
- 根据权利要求1所述的金属加工废液净化回用方法,其特征在于,所述重力沉降在三相分离器中进行。
- 根据权利要求1所述的金属加工废液净化回用方法,其特征在于,所述 步骤S1与所述步骤S2之间还包括步骤S10,所述步骤S10为:将所述预处理液进行过滤。
- 一种金属加工回收液,其特征在于,由金属加工后的废液经权利要求1-9任一项所述的金属加工废液净化回用方法处理而得。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111047884.2A CN113816552A (zh) | 2021-09-08 | 2021-09-08 | 金属加工废液净化回用方法及金属加工回收液 |
CN202111047884.2 | 2021-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023035450A1 true WO2023035450A1 (zh) | 2023-03-16 |
Family
ID=78914202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/137132 WO2023035450A1 (zh) | 2021-09-08 | 2021-12-10 | 金属加工废液净化回用方法及金属加工回收液 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113816552A (zh) |
WO (1) | WO2023035450A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101240221A (zh) * | 2008-02-29 | 2008-08-13 | 益田润石(北京)化工有限公司 | 水溶性全合成金属加工液组合物 |
CN107162301A (zh) * | 2017-06-01 | 2017-09-15 | 冯合生 | 切削液回收处理系统及处理方法 |
CN206886886U (zh) * | 2017-06-01 | 2018-01-16 | 冯合生 | 切削液回收处理系统 |
CN109809618A (zh) * | 2019-04-01 | 2019-05-28 | 安洁行方流体管理技术有限公司 | 一种机械行业含油废液处理工艺 |
CN110697998A (zh) * | 2019-11-12 | 2020-01-17 | 东江环保股份有限公司 | 氧化铜生产废水的处理方法 |
KR102165275B1 (ko) * | 2019-05-15 | 2020-10-14 | 주식회사 에이치엔 | 리튬이차전지 원료 제조 공정의 폐액으로부터 리튬 화합물 회수 방법 및 리튬 화합물 회수 장치 |
CN112194320A (zh) * | 2020-10-09 | 2021-01-08 | 伸荣(上海)水处理环保工程有限公司 | 一种切削液废水的处理工艺 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8915301B1 (en) * | 2011-04-26 | 2014-12-23 | Mansour S. Bader | Treatment of saline streams |
CN106479657B (zh) * | 2016-09-18 | 2019-07-12 | 清华大学天津高端装备研究院 | 一种水基全合成钛合金切削液 |
CN107555692A (zh) * | 2017-10-25 | 2018-01-09 | 江苏天航水处理有限公司 | 一种乳化液废液的水油分离方法 |
CN108840500A (zh) * | 2018-06-27 | 2018-11-20 | 西安禹智环保科技有限公司 | 一种废乳化液处理方法及装置 |
CN110104810A (zh) * | 2019-04-24 | 2019-08-09 | 常州润成环境科技有限公司 | 含油清洗废水的处理方法 |
-
2021
- 2021-09-08 CN CN202111047884.2A patent/CN113816552A/zh active Pending
- 2021-12-10 WO PCT/CN2021/137132 patent/WO2023035450A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101240221A (zh) * | 2008-02-29 | 2008-08-13 | 益田润石(北京)化工有限公司 | 水溶性全合成金属加工液组合物 |
CN107162301A (zh) * | 2017-06-01 | 2017-09-15 | 冯合生 | 切削液回收处理系统及处理方法 |
CN206886886U (zh) * | 2017-06-01 | 2018-01-16 | 冯合生 | 切削液回收处理系统 |
CN109809618A (zh) * | 2019-04-01 | 2019-05-28 | 安洁行方流体管理技术有限公司 | 一种机械行业含油废液处理工艺 |
KR102165275B1 (ko) * | 2019-05-15 | 2020-10-14 | 주식회사 에이치엔 | 리튬이차전지 원료 제조 공정의 폐액으로부터 리튬 화합물 회수 방법 및 리튬 화합물 회수 장치 |
CN110697998A (zh) * | 2019-11-12 | 2020-01-17 | 东江环保股份有限公司 | 氧化铜生产废水的处理方法 |
CN112194320A (zh) * | 2020-10-09 | 2021-01-08 | 伸荣(上海)水处理环保工程有限公司 | 一种切削液废水的处理工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN113816552A (zh) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2675018C (en) | A system and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water | |
CN107082526B (zh) | 一种废乳化液的预处理方法 | |
CN111807617A (zh) | 一种水性漆废液处理回用系统及处理回用方法 | |
CN117186979A (zh) | 一种切削液废液免排放再生环保处理添加剂及处理方法 | |
JP2024028377A (ja) | 廃水処理方法 | |
KR20190119563A (ko) | 수용성 폐절삭유의 처리방법 | |
US9815711B2 (en) | Systems for waste oil recovery | |
CN104045200B (zh) | 工业废水综合处理系统及工艺 | |
CN109607927B (zh) | 一种含油危废的炼化油品再利用的方法 | |
CN109609251B (zh) | 一种用于轧制废液零排放的回收处理剂及处理方法 | |
CN104649482B (zh) | 一种用于处理废乳化液的方法 | |
JP6618612B2 (ja) | 含油廃液の処理方法及びその装置 | |
KR101067835B1 (ko) | 관형 mf 멤브레인 및 ro 멤브레인을 이용한 산업폐수 방류수 재이용 장치 및 재이용 방법 | |
WO2023035450A1 (zh) | 金属加工废液净化回用方法及金属加工回收液 | |
KR20190018316A (ko) | 수용성 폐절삭유의 처리방법 | |
CN211847562U (zh) | 切削液废水处理装置 | |
CN107176770A (zh) | 一种陶瓷膜处理乳化油废水工艺 | |
CN103964544A (zh) | 一种煤化工领域废水除油的方法 | |
CN103801149B (zh) | 一种有关无机膜蒸馏应用于废旧油品的处理设备及方法 | |
US20160107907A1 (en) | Systems and Methods for Waste Oil Recovery | |
CN111499070A (zh) | 一种含油乳化废液减量化处理系统及其处理方法 | |
CN203904134U (zh) | 工业废水综合处理系统 | |
JP7468849B2 (ja) | 廃水処理方法 | |
CN111533311B (zh) | 一种切削液化学结合膜过滤处理及有价金属回收的方法 | |
CN112920884B (zh) | 一种用于金属加工液的净化剂及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.07.2024) |