WO2023032698A1 - エポキシ樹脂系発泡体、二酸化炭素吸収剤、エポキシ樹脂系発泡体の製造方法、多層構造体並びにその製造方法 - Google Patents

エポキシ樹脂系発泡体、二酸化炭素吸収剤、エポキシ樹脂系発泡体の製造方法、多層構造体並びにその製造方法 Download PDF

Info

Publication number
WO2023032698A1
WO2023032698A1 PCT/JP2022/031250 JP2022031250W WO2023032698A1 WO 2023032698 A1 WO2023032698 A1 WO 2023032698A1 JP 2022031250 W JP2022031250 W JP 2022031250W WO 2023032698 A1 WO2023032698 A1 WO 2023032698A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
amine compound
outer layer
carbon dioxide
mass
Prior art date
Application number
PCT/JP2022/031250
Other languages
English (en)
French (fr)
Inventor
和起 河野
裕貴 川島
孝介 池内
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202280058022.6A priority Critical patent/CN117881728A/zh
Priority to JP2023545440A priority patent/JPWO2023032698A1/ja
Priority to KR1020247004098A priority patent/KR20240066246A/ko
Publication of WO2023032698A1 publication Critical patent/WO2023032698A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0271Epoxy resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the present invention relates to an epoxy resin foam, a carbon dioxide absorbent, a method for producing an epoxy resin foam, a multilayer structure, and a method for producing the same.
  • Epoxy resins for example, are excellent in heat resistance, chemical resistance, adhesion, adhesiveness, corrosion resistance, electrical insulation, flexibility, etc., and are widely used in various fields such as paints, civil engineering, electrical materials, and adhesive applications. ing. It is also being studied to add functions such as heat insulation, sound insulation, and lightness to epoxy resin by foaming the epoxy resin. Techniques related to epoxy resin foams include those described in Patent Documents 1 and 2, for example.
  • Patent Document 1 (A) per 100 parts by weight of a liquid epoxy resin containing one or more epoxy groups in one molecule, (B) 10 to 200 parts by weight of a methacrylic resin having an average particle size of 300 ⁇ m or less, ( C) 10 to 200 parts by weight of a polyethylene resin having a melt index of 100 or less and an average particle size of 300 ⁇ m or less, (D) 0.5 to 20 parts by weight of a latent curing agent for epoxy resins, and (E) decomposition gas generation temperature.
  • An epoxy resin-based foaming composition characterized by comprising 0.5 to 20 parts by weight of a foaming agent having a temperature of 100 to 220° C. and 0.05 to 5 parts by weight of (F) a surfactant is lightweight and highly rigid. It is described that, in addition to providing a dense foam having the properties, it can be strongly adhered to oil-surface metals, and has good heat resistance.
  • Patent Document 2 when curing an epoxy resin composition obtained by blending an epoxy resin (A) and a curing agent (B), a low-molecular-weight compound is formed by a reaction between the epoxy resin (A) and the curing agent (B).
  • a method for producing an epoxy resin foam is described, which is characterized in that the low-molecular-weight compound is generated and foamed by vaporizing the low-molecular-weight compound with the heat of reaction. Further, it is described that an epoxy resin foam having a uniform and dense cell structure can be easily produced at a site work level in an atmosphere of normal temperature to around the freezing point without applying external heating.
  • Patent Documents 1 and 2 do not discuss the carbon dioxide absorption capacity of epoxy resin foams.
  • the present invention has been made in view of the above circumstances, and provides an epoxy resin-based foam having improved carbon dioxide absorption capacity.
  • the amine-based curing agent is a reaction product of an amine compound including a cyclic amine compound and carbon dioxide. and having an amino group bonded to a primary carbon atom in the cyclic amine compound can improve the carbon dioxide absorption capacity of the epoxy resin foam, and completed the present invention.
  • the following epoxy resin foam, carbon dioxide absorbent, method for producing the epoxy resin foam, multilayer structure, and method for producing the same are provided.
  • the amine-based curing agent (A) contains a reaction product (a2) of an amine compound containing a cyclic amine compound (a1) and carbon dioxide, and the cyclic amine compound (a1) is bonded to a primary carbon atom.
  • Epoxy resin-based foam having an amino group.
  • each of R 1 to R 4 is independently a hydrogen atom, or has 1 to 10 carbon atoms optionally having at least one substituent selected from an amino group, a cyano group and a phenyl group.
  • R 5 to R 10 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms
  • x and y each independently represent an integer of 0 to 6
  • x + y is 1 or more and 6 or less
  • p and q are each independently an integer of 0 or more and 4 or less
  • at least one of p and q is 1 or more.
  • the amine-based curing agent (A) contains a reaction product (a2) of an amine compound containing a cyclic amine compound (a1) and carbon dioxide, and the cyclic amine compound (a1) is bonded to a primary carbon atom.
  • a method for producing an epoxy resin-based foam having an amino group [12] Before the step of foaming the epoxy resin composition (C), the amine compound and the carbon dioxide are brought into contact with a gas having a carbon dioxide concentration of 0.01% by volume or more and 10% by volume or less.
  • the outer layer (Ib) or its precursor is sequentially laminated to produce a laminate (i), and then the foamable layer (II) is foamed
  • the core layer and the outer layer (Ib) or its precursor are laminated in order to produce a laminate (ii), and then the outer layer (Ia) or its precursor, the core layer and the outer layer (Ib ) or a step of integrating its precursor
  • the outer layer (Ia) or its precursor and the core layer are laminated and integrated to produce a laminate (iii), and then the laminate A step of laminating (iii) and the outer layer (Ib) or its precursor and integrating them
  • an epoxy resin foam with improved carbon dioxide absorption capacity.
  • the foams are also useful as core materials for multi-layer structures.
  • this embodiment The form for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described in detail.
  • the following embodiments are exemplifications for explaining the present invention, and do not limit the content of the present invention.
  • the present invention can be appropriately modified and implemented within the scope of the gist thereof.
  • the rules that are considered preferable can be arbitrarily adopted, and it can be said that a combination of preferable ones is more preferable.
  • the description “XX to YY” means “XX or more and YY or less”.
  • the epoxy resin foam of the present invention is an epoxy resin foam (D) obtained by foaming an epoxy resin composition (C) containing an amine curing agent (A) and an epoxy resin (B).
  • the system curing agent (A) contains a reaction product (a2) of an amine compound containing a cyclic amine compound (a1) and carbon dioxide, and the cyclic amine compound (a1) is an amino group bonded to a primary carbon atom.
  • the epoxy resin-based foam of the present invention is a foam with improved carbon dioxide absorption capacity.
  • improved carbon dioxide absorption capacity means that the amount of absorption of carbon dioxide at a low concentration (about 0.04% by volume) in the air is greater
  • primary carbon atoms means a carbon atom bonded to one other carbon atom.
  • Repeated usability means the maintenance rate of the amount of carbon dioxide absorbed when a cycle test of carbon dioxide absorption and dissociation is carried out.
  • the epoxy resin-based foam (D) is an amine-based cured product containing a reaction product (a2) of an amine compound containing a cyclic amine compound (a1) and carbon dioxide as a curing agent for curing the epoxy resin (B).
  • the agent (A) By using the agent (A), the carbon dioxide absorption capacity can be improved.
  • the reason is not clear, it is considered as follows. First, by heating the epoxy resin composition (C), an amine compound including the cyclic amine compound (a1) and carbon dioxide are produced from the reactant (a2). At this time, the generated carbon dioxide causes the epoxy resin composition (C) to foam, and the generated amine compound reacts with the epoxy resin (B) to cure the epoxy resin composition (C), thereby curing the epoxy resin composition (C).
  • a resin foam (D) is obtained. That is, the foamed structure in the epoxy resin-based foam (D) has a large surface area because it is a porous structure, and is a structure formed by dissociation of carbon dioxide, so it has a structure that easily absorbs carbon dioxide. it is conceivable that. Moreover, the cyclic amine compound (a1) has an amino group bonded to a primary carbon atom. Such an amino group has little steric hindrance and is thought to readily absorb carbon dioxide. For the above reasons, the epoxy resin foam (D) is considered to be able to improve the carbon dioxide absorption capacity.
  • the amine-based curing agent (A) contains a reactant (a2) of an amine compound including a cyclic amine compound (a1) and carbon dioxide.
  • the cyclic amine compound (a1) is an amine compound having a cyclic structure.
  • Examples of the cyclic structure of the cyclic amine compound (a1) include an alicyclic hydrocarbon structure, an aromatic hydrocarbon structure, and a heterocyclic structure containing a heteroatom in the ring. From the viewpoint of further improving the dissociation of carbon dioxide from a1), it preferably contains an alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure refers to a cyclic structure composed of saturated or unsaturated carbon and hydrogen having no aromaticity, and a heterocyclic ring containing a heteroatom in the ring Formula structures are excluded.
  • a heterocyclic structure means a heterocyclic structure containing a heteroatom in the ring.
  • the cyclic structure of the cyclic amine compound (a1) preferably contains at least one selected from a 5-membered ring and a 6-membered ring from the viewpoint of further improving the reactivity with carbon dioxide and foamability. It is more preferable to include
  • the cyclic amine compound (a1) containing a saturated 6-membered ring may be cis, trans, or a mixture of cis and trans.
  • the cyclic amine compound (a1) preferably has one cyclic structure from the viewpoint of further improving the reactivity with carbon dioxide and the foamability. That is, the cyclic amine compound (a1) is preferably a monocyclic compound.
  • the alicyclic hydrocarbon structure of the cyclic amine compound (a1) includes, for example, cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring and the like.
  • a cyclopentane ring and a cyclohexane ring are preferred, a cyclohexane ring is more preferred, and a 1,3-substituted cyclohexane ring is even more preferred.
  • the number of amino groups in the cyclic amine compound (a1) is preferably 2 or more, and preferably 6 or less, more preferably 6 or less, from the viewpoint of further improving reactivity with carbon dioxide, curability and foamability. It is 4 or less, more preferably 3 or less, and still more preferably 2.
  • the amino group is preferably an amino group having a nitrogen-hydrogen bond from the viewpoint of further improving reactivity with carbon dioxide, curability and foamability, and consists of a primary amino group and a secondary amino group. At least one amino group selected from the group is more preferred, and a primary amino group is even more preferred.
  • the cyclic amine compound (a1) preferably includes a compound represented by the following formula (1), more preferably a compound represented by the following formula (1).
  • R 1 to R 4 each independently have 1 to 10 carbon atoms which may have at least one substituent selected from a hydrogen atom or an amino group, a cyano group and a phenyl group. is a hydrocarbon group
  • R 5 to R 10 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms
  • x and y each independently represent an integer of 0 to 6
  • x+y is 1 or more and 6 or less
  • p and q are each independently an integer of 0 or more and 4 or less
  • at least one of p and q is 1 or more.
  • R 1 to R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, optionally having at least one substituent selected from an amino group, a cyano group and a phenyl group; is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms optionally having at least one substituent selected from an amino group, a cyano group and a phenyl group, more preferably a hydrogen atom, or an alkyl group having 1 to 4 carbon atoms optionally having at least one substituent selected from an amino group and a cyano group, more preferably a hydrogen atom, or an amino group and a cyano group It is an alkyl group having 2 to 4 carbon atoms which may have at least one substituent, more preferably a hydrogen atom.
  • the number of carbon atoms in the hydrocarbon groups of R 1 to R 4 is each independently 1 or more, preferably 2 or more, and 10 or less, preferably 5 or less, more preferably 4 or
  • R 5 to R 10 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom or It is an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, still more preferably a hydrogen atom.
  • the number of carbon atoms in the hydrocarbon groups of R 5 to R 10 is each independently 1 or more and 4 or less, preferably 1 or 2, more preferably 1.
  • p and q are each independently 0 or more, preferably 1 or more, and 4 or less, preferably 2 or less, more preferably 1. However, at least one of p and q is 1 or more.
  • x and y each independently represent an integer of 0 or more and 6 or less, and x+y is 1 or more and 6 or less.
  • x + y is preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more, and from the viewpoint of further improving carbon dioxide absorption and foamability, It is preferably 5 or less, more preferably 4. That is, the alicyclic hydrocarbon structure is preferably a 5- or 6-membered ring, more preferably a 6-membered ring.
  • x+y is 4, preferably x is 1 and y is 3.
  • cyclic amine compound (a1) o-xylylenediamine and its derivatives, m-xylylenediamine and its derivatives, p-xylylene diamine and its derivatives, bis(aminomethyl)cyclohexane and its derivatives, N-(2-aminoethyl)piperazine and its derivatives, limonenediamine and its derivatives, isophoronediamine and its derivatives, 2,5-bisaminomethylfuran and It preferably contains at least one selected from the group consisting of derivatives thereof, and 2,5-bis(aminomethyl)tetrahydrofuran and derivatives thereof, m-xylylenediamine and its derivatives, bis(aminomethyl)cyclohexane and its more preferably at least one selected from the group consisting of derivatives, N-(2-aminoethyl)piperazine and its derivatives, limonenediamine and its derivatives, and isophoronediamine and its derivative
  • At least one hydrogen atom of the amino group has at least one substituent selected from the group consisting of an amino group, a cyano group and a phenyl group.
  • a compound substituted with an alkyl group having 2 or more and 4 or less carbon atoms which may have at least one substituent selected from Examples of derivatives of various amines include hydrocarbon groups in which at least some of the hydrogen atoms in the cyclic structure have 1 to 4 carbon atoms, preferably al
  • cyclic amine compounds (a1) can be used alone or in combination of two or more.
  • the ratio of the cyclic amine compound (a1) in the amine compounds in the reactant (a2) is preferably 50 when the total amount of the amine compounds is 100 parts by mass, from the viewpoint of further improving the carbon dioxide absorption amount and foamability. parts by mass or more, more preferably 60 parts by mass or more, still more preferably 70 parts by mass or more, still more preferably 80 parts by mass or more, still more preferably 90 parts by mass or more, still more preferably 95 parts by mass or more, and preferably 100 Part by mass or less.
  • Amine compounds other than the cyclic amine compound (a1) include, for example, cyclic amine compounds other than the cyclic amine compound (a1); monoethanolamine, 2-amino-2-methyl-1-propanol, diethanolamine, 2- Acyclic aliphatic amine compounds such as (methylamino)ethanol, 2-(ethylamino)ethanol, 2-(dimethylamino)ethanol, 2-(diethylamino)ethanol, ethylenediamine, N,N'-dimethylethylenediamine, and diethylenetriamine is mentioned.
  • the amine-based curing agent (A) may contain components other than the reactant (a2), such as an amine compound that has not reacted with carbon dioxide.
  • the reactant (a2) such as an amine compound that has not reacted with carbon dioxide.
  • the cyclic amine compound (a1) is suitable.
  • Preferred compounds are the same as those for the cyclic amine compound (a1), o-xylylenediamine and its derivatives, m-xylylenediamine and its derivatives, p-xylylenediamine and its derivatives, bis(aminomethyl)cyclohexane and derivatives thereof, N-(2-aminoethyl)piperazine and its derivatives, limonenediamine and its derivatives, isophoronediamine and its derivatives, 2,5-bisaminomethylfuran and its derivatives, and 2,5-bis(aminomethyl) )
  • At least one selected from the group consisting of tetrahydrofuran and derivatives thereof preferably selected from the group consisting of m-xylylenediamine and derivatives thereof, bis(aminomethyl)cyclohexane and derivatives thereof, and isophoronediamine and derivatives thereof It more preferably contains at least one, and more preferably at least one selected from the group consisting of
  • the amine compound that has not reacted with carbon dioxide may be the same amine compound as the amine compound in reactant (a2), or may be a different type of amine compound.
  • the content of the reactant (a2) in the amine-based curing agent (A) is, from the viewpoint of further improving carbon dioxide absorption and foamability, when the total amount of the amine-based curing agent (A) is 100% by mass. , preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 98% by mass or more, And it is preferably 100% by mass or less.
  • the content of the reactant (a2) in the amine-based curing agent (A) is, from the viewpoint of improving the mechanical strength of the foam, when the total amount of the amine-based curing agent (A) is 100% by mass, It is preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and is preferably 90% by mass or less, more preferably 80% by mass or less, and still more preferably 70% by mass or less. be.
  • the maximum dissociation temperature of carbon dioxide of the cyclic amine compound (a1) improves the dissociation of carbon dioxide and improves the foamability and repeated usability of the epoxy resin foam. It is preferably 200° C. or lower, more preferably 180° C. or lower, still more preferably 160° C. or lower, still more preferably 150° C. or lower, still more preferably 140° C. or lower, still more preferably 135° C. or lower, still more preferably 130° C. or lower.
  • the lower limit of the maximum dissociation temperature of carbon dioxide is not particularly limited, it is, for example, 40°C or higher.
  • the cyclic amine compound (a1) in which carbon dioxide has been absorbed is heated from 23° C. to 250° C. at a temperature elevation rate of 10° C./min, and the temperature at which the amount of heat absorbed due to desorption of carbon dioxide becomes maximum is measured. This temperature is defined as the carbon dioxide maximum dissociation temperature.
  • the carbon dioxide-absorbed cyclic amine compound (a1) can be prepared, for example, by allowing 5 mmol of the cyclic amine compound (a1) to stand in air at 23° C. and 50% RH for 24 hours. can.
  • the acid dissociation constant (pKa) of the cyclic amine compound (a1) is preferably 8.0 or higher, more preferably 8.5 or higher, still more preferably 9.0 or higher, from the viewpoint of further improving carbon dioxide absorption and foamability. 0 or more, and from the viewpoint of improving the dissociation of carbon dioxide and further improving the foamability and the reusability of the epoxy resin foam, it is preferably 12.0 or less, more preferably 11.5 or less, and furthermore. Preferably it is 11.0 or less.
  • the acid dissociation constant of the cyclic amine compound (a1) is a value determined by the following measurement method based on acid-base titration.
  • the molecular weight of the cyclic amine compound (a1) is preferably 110 or more, more preferably 120 or more, and still more preferably 130 or more, from the viewpoint of suppressing weight loss during heat treatment for dissociating carbon dioxide. It is preferably 200 or less, more preferably 180 or less, and even more preferably 175 or less, from the viewpoint of further improving the absorption amount and foamability.
  • the maximum endothermic temperature of the cyclic amine compound (a1) measured by the following method is preferably 130° C. or higher, more preferably 140° C. or higher, from the viewpoint of suppressing weight loss during heat treatment for dissociating carbon dioxide. , More preferably 150 ° C. or higher, from the viewpoint of further improving carbon dioxide absorption and foamability, preferably 260 ° C. or lower, more preferably 230 ° C. or lower, still more preferably 200 ° C. or lower, still more preferably 170 ° C. or lower is. (Method) The cyclic amine compound (a1) was heated from 23° C. to 350° C.
  • the amine value of the cyclic amine compound (a1) is preferably 400 mgKOH/g or more, more preferably 500 mgKOH/g or more, still more preferably 600 mgKOH/g or more, from the viewpoint of further improving carbon dioxide absorption and foamability.
  • 650 mgKOH/g or more and preferably 1500 mgKOH/g or less, more preferably 1200 mgKOH/g or less, still more preferably 1000 mgKOH/g or less, still more preferably 900 mgKOH/g or less, still more preferably 850 mgKOH/g or less, and further Preferably, it is 800 mgKOH/g or less.
  • the amine value indicates the amount of amine in the compound, and refers to the number of milligrams of potassium hydroxide (KOH) equivalent to the acid required to neutralize 1 g of the compound.
  • KOH potassium hydroxide
  • the amine value can be measured by the following method according to JIS K7237-1995. (1) 0.1 g of cyclic amine compound (a1) is dissolved in 20 mL of acetic acid. (2) The solution obtained in (1) above is titrated with a 0.1N perchloric acid-acetic acid solution using a potentiometric automatic titrator (eg AT-610 manufactured by Kyoto Electronics Industry Co., Ltd.). Calculate the amine value.
  • a potentiometric automatic titrator eg AT-610 manufactured by Kyoto Electronics Industry Co., Ltd.
  • the mass increase rate of the amine compound calculated by the following formula is the carbon dioxide absorption of the epoxy resin foam (D).
  • D the carbon dioxide absorption of the epoxy resin foam
  • it is preferably 15% by mass or more, more preferably 18% by mass or more, still more preferably 20% by mass or more, still more preferably 23% by mass or more, and preferably 50% by mass. % or less, more preferably 45 mass % or less, still more preferably 40 mass % or less, still more preferably 30 mass % or less, and even more preferably 28 mass % or less.
  • Mass increase rate of amine compound [% by mass] 100 x mass increase of amine compound (g)/(mass of amine compound (g) + mass increase of amine compound (g)) Specifically, the mass increase rate of the amine compound can be measured by the method described in Examples.
  • the amine-based curing agent (A) can be obtained by contacting an amine compound containing the cyclic amine compound (a1) with a gas containing carbon dioxide to react the amine compound with carbon dioxide.
  • the reaction product (a2) of the amine compound and carbon dioxide contains, for example, at least one selected from carbamic acid, carbamate, carbonate, hydrogen carbonate, etc., which is the reaction product of the amine compound and carbon dioxide. .
  • the epoxy resin (B) may be any of saturated or unsaturated aliphatic compounds, alicyclic compounds, aromatic compounds and heterocyclic compounds. From the viewpoint of improving heat resistance, chemical resistance, curability, mechanical strength, etc., it is preferable to contain an epoxy resin having an aromatic ring or an alicyclic structure in the molecule.
  • Specific examples of the epoxy resin include an epoxy resin having a glycidylamino group derived from metaxylylenediamine, an epoxy resin having a glycidylamino group derived from paraxylylenediamine, and 1,3-bis(aminomethyl).
  • the above epoxy resins can be used in combination of two or more.
  • the epoxy resin (B) is an epoxy resin having a glycidylamino group derived from meta-xylylenediamine, and an epoxy resin derived from para-xylylenediamine. at least one selected from the group consisting of an epoxy resin having a glycidylamino group derived from bisphenol A, an epoxy resin having a glycidyloxy group derived from bisphenol A, and an epoxy resin having a glycidyloxy group derived from bisphenol F.
  • the main component is an epoxy resin having a glycidyloxy group derived from bisphenol A from the viewpoint of improving heat resistance, chemical resistance, mechanical strength, etc., and from the viewpoint of availability and economy. is more preferred.
  • the term "main component" as used herein means that other components may be included within the scope of the present invention, preferably 50 to 100% by mass, more preferably 70 to 100% by mass of the total. , more preferably 90 to 100% by mass.
  • the content of the amine-based curing agent (A) in the epoxy resin composition (C) is the ratio of the number of active amine hydrogens in the amine-based curing agent (A) to the number of epoxy groups in the epoxy resin (B) (the active amine).
  • the number of hydrogen/the number of epoxy groups is preferably 0.5 or more, more preferably 0.8 or more, and still more preferably 1.0, from the viewpoint of further improving the carbon dioxide absorption of the epoxy resin foam (D).
  • the number of active amine hydrogens in the amine curing agent (A) is included in the number of active amine hydrogens of the amine compound before reacting with carbon dioxide in the reactant (a2) and the number of active amine hydrogens in the amine curing agent (A). , means the total number of active amine hydrogens of the amine compound that has not reacted with carbon dioxide.
  • the epoxy resin composition (C) further contains fillers, modifying components such as plasticizers, flow control components such as thixotropic agents, pigments, leveling agents, tackifiers, elastomer fine particles, curing accelerators, and foam stabilizers. Other components such as agents, chemical foaming agents, etc. may be contained depending on the application.
  • the total amount of the amine curing agent (A) and the epoxy resin (B) in the epoxy resin composition (C) is preferably 50% by mass or more, more preferably It is 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and still more preferably 95% by mass or more.
  • an upper limit is 100 mass %.
  • the amount of carbon dioxide absorbed per unit volume of the epoxy resin foam (D) is preferably 0.003 g/cm 3 or more, more preferably 0.005 g/cm 3 from the viewpoint of further improving the carbon dioxide absorption capacity. Above, more preferably 0.010 g/cm 3 or more, still more preferably 0.020 g/cm 3 or more, still more preferably 0.025 g/cm 3 or more. Although the upper limit is not particularly limited because it is preferable that the amount of carbon dioxide absorbed is as large as possible, it is, for example, 0.10 g/cm 3 or less. Specifically, the amount of carbon dioxide absorbed can be measured by the method described in the Examples.
  • the density of the epoxy resin foam (D) is preferably 0.01 g/cm 3 or more, more preferably 0.05 g/cm 3 or more, and still more preferably 0.10 g/cm 3 .
  • cm 3 or less more preferably 0.50 g/cm 3 or less, more preferably 0.45 g/cm 3 or less.
  • the density of the epoxy resin foam (D) can be measured by the method described in Examples.
  • the method for preparing the epoxy resin composition (C) is not particularly limited. can be manufactured.
  • the method for producing an epoxy resin-based foam of the present invention includes a step of foaming an epoxy resin composition (C) containing an amine-based curing agent (A) and an epoxy resin (B), wherein the amine-based curing agent (A) is , a reaction product (a2) of an amine compound containing a cyclic amine compound (a1) and carbon dioxide, wherein the cyclic amine compound (a1) has an amino group bonded to a primary carbon atom.
  • the method for producing an epoxy resin-based foam according to the present invention it is possible to obtain a foam with improved carbon dioxide absorption capacity.
  • the epoxy resin composition (C) is heated to generate the cyclic amine compound (a1) and carbon dioxide from the reactant (a2), and carbon dioxide
  • the epoxy resin composition (C) is foamed by , and the epoxy resin composition (C) is cured by the reaction of the epoxy resin (B) with the amine compound containing the cyclic amine compound (a1) produced.
  • an epoxy resin-based foam (D) is obtained.
  • the heating temperature and heating time in the step of foaming the epoxy resin composition (C) can be selected as appropriate. is 100 to 200°C, more preferably 120 to 180°C.
  • the reaction time is preferably 10 minutes to 12 hours, more preferably 15 minutes to 4 hours.
  • an amine compound containing the cyclic amine compound (a1) is added at a carbon dioxide concentration of 0.01% by volume. It is preferable to further include the step of reacting the amine compound and the carbon dioxide to obtain a reactant (a2) by contacting with a gas of 10% by volume or more.
  • the carbon dioxide concentration is preferably 0.02% by volume or more, more preferably 0.03% by volume or more, and preferably 5% by volume or less, more preferably 1% by volume or less, and still more preferably 0.5% by volume. % by volume or less, more preferably 0.1% by volume or less.
  • the reactant (a2) is a reactant of an amine compound containing the cyclic amine compound (a1) and carbon dioxide, for example, a reactant of an amine compound and carbon dioxide, such as carbamic acid, carbamate, carbonate It contains at least one selected from salts, hydrogen carbonates, and the like.
  • the carbon dioxide absorbent according to the present invention contains the epoxy resin foam (D) described above. Since the carbon dioxide absorbent according to the present invention contains the epoxy resin-based foam (D), it can improve the carbon dioxide absorption capacity.
  • the content of the epoxy resin foam (D) in the carbon dioxide absorbent according to the present invention is 60% by mass when the total amount of the carbon dioxide absorbent is 100% by mass from the viewpoint of improving the carbon dioxide absorption capacity. above, preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 98% by mass or more, and preferably 100% by mass or less is.
  • the carbon dioxide absorbent according to the present invention has a good amount of carbon dioxide absorbed from the air, and therefore can be suitably used in a technology (DAC) for directly absorbing carbon dioxide from the air. Moreover, the carbon dioxide absorbent according to the present invention can be suitably used, for example, when recovering low-concentration carbon dioxide of 0.01% by volume or more and 1% by volume or less.
  • DAC technology
  • the carbon dioxide absorbent according to the present invention can appropriately contain components other than the epoxy resin-based foam (D) within a range that does not impair the effects of the invention.
  • Components other than the epoxy resin foam (D) include, for example, a compound capable of absorbing carbon dioxide other than the epoxy resin foam (D), a deterioration inhibitor, an antifoaming agent, an antioxidant, and moisture. Drying agents for removal (magnesium sulfate, molecular sieves, etc.) and the like are included.
  • the multilayer structure of the present invention has an outer layer on at least one side of the epoxy resin foam.
  • Materials constituting the outer layer of the multilayer structure are not particularly limited, and metals, resins, fiber-reinforced composite materials, and the like can be mentioned.
  • the metal include stainless steel, aluminum, iron, copper, and other alloys
  • examples of the resin include cured products of thermoplastic resins, thermosetting resins, and cured products of energy ray-curable resins.
  • the fiber-reinforced composite material forming the outer layer includes a fiber-reinforced composite material containing a matrix resin and reinforcing fibers.
  • matrix resins include cured products of thermoplastic resins, thermosetting resins, and cured products of energy ray-curable resins.
  • the matrix resin is preferably a cured product of a thermosetting resin, more preferably a cured product of an epoxy resin composition.
  • the epoxy resin composition which is the precursor of the matrix resin, may have the same composition as the epoxy resin composition (C) or may have a different composition, but is preferably a non-foamable epoxy resin composition.
  • the epoxy resin composition which is the precursor of the matrix resin, preferably contains at least an epoxy resin and an epoxy resin curing agent, and does not contain a reaction product of an amine compound and carbon dioxide.
  • the content of the reaction product of the amine compound and carbon dioxide in the epoxy resin composition is preferably 5% by mass or less, more preferably 1% by mass or less, and even more preferably 0.5% by mass or less, and more More preferably, it is 0% by mass.
  • the forms of reinforcing fibers used in the fiber-reinforced composite material include short fibers, long fibers, and continuous fibers.
  • long fibers or continuous fibers are preferable, and continuous fibers are more preferable, from the viewpoint of ease of molding when molding a multilayer structure into a desired shape.
  • short fibers have a fiber length of 0.1 mm or more and less than 10 mm
  • long fibers have a fiber length of 10 mm or more and 100 mm or less.
  • a continuous fiber refers to a fiber bundle having a fiber length exceeding 100 mm.
  • the shape of the continuous fiber includes various forms such as unidirectional (UD) materials in which monofilaments or multifilaments are arranged in one direction or alternately, fabrics such as knitted fabrics, nonwoven fabrics, and mats.
  • UD unidirectional
  • fabrics such as knitted fabrics, nonwoven fabrics, and mats.
  • the form of monofilament, fabric, non-woven fabric, or mat is preferred, and fabric is more preferred.
  • the average fiber length of the continuous fiber bundle is not particularly limited, but is preferably 1 to 10,000 m, more preferably 100 to 10,000 m, from the viewpoint of moldability.
  • the average fineness of the continuous fiber bundle is preferably 50 to 2000 tex (g/1000 m), more preferably 200 to 1500 tex, still more preferably 500, from the viewpoint of moldability, high strength and high elastic modulus. ⁇ 1500 tex.
  • the average tensile elastic modulus of the continuous fiber bundle is preferably 50-1000 GPa.
  • reinforcing fiber materials include inorganic fibers such as carbon fiber, glass fiber, basalt fiber, metal fiber, boron fiber, ceramic fiber; aramid fiber, polyoxymethylene fiber, aromatic polyamide fiber, polyparaphenylenebenzobisoxazole Organic fibers such as fibers and ultra-high molecular weight polyethylene fibers can be used.
  • inorganic fibers are preferable from the viewpoint of obtaining high strength, and at least one selected from the group consisting of carbon fiber, glass fiber, and basalt fiber is preferable because it is lightweight and has high strength and high elastic modulus.
  • Carbon fiber is more preferable from the viewpoint of strength and lightness.
  • Examples of carbon fibers include polyacrylonitrile-based carbon fibers and pitch-based carbon fibers. Carbon fibers made from plant-derived raw materials such as lignin and cellulose can also be used.
  • the reinforcing fibers may be treated with a treating agent.
  • treatment agents include surface treatment agents and sizing agents.
  • a silane coupling agent is preferable as the surface treatment agent.
  • a silane coupling agent having a vinyl group a silane coupling agent having an amino group, a silane coupling agent having an epoxy group, a silane coupling agent having a (meth)acrylic group, a silane coupling agent having a mercapto group, and the like. is mentioned.
  • the sizing agent examples include urethane sizing agents, epoxy sizing agents, acrylic sizing agents, polyester sizing agents, vinyl ester sizing agents, polyolefin sizing agents, polyether sizing agents, and carboxylic acid sizing agents. and the like, and one or more of these can be used in combination.
  • sizing agents in combination of two or more include urethane/epoxy sizing agents, urethane/acrylic sizing agents, urethane/carboxylic acid sizing agents, and the like.
  • the amount of the treatment agent is preferably 0.001 to 5% by mass, more preferably 0.001 to 5% by mass, based on the reinforcing fiber, from the viewpoint of improving the interfacial adhesion between the reinforcing fiber and the matrix resin and further improving the strength and impact resistance. is 0.1 to 3% by mass, more preferably 0.5 to 2% by mass.
  • the content of the reinforcing fibers in the outer layer is preferably 0.10 or more, or more, from the viewpoint of obtaining high strength and high elastic modulus. It is preferably 0.20 or more, more preferably 0.30 or more, and still more preferably 0.40 or more. From the viewpoint of impact resistance and moldability, it is preferably 0.85 or less, more preferably 0.80 or less, and still more preferably 0.70 or less.
  • the volume fraction Vf of reinforcing fibers in the outer layer can be calculated from the following formula.
  • Vf ⁇ mass of reinforcing fiber (g) / specific gravity of reinforcing fiber ⁇ ⁇ [ ⁇ mass of reinforcing fiber (g) / specific gravity of reinforcing fiber ⁇ + ⁇ mass of matrix resin (g) / specific gravity of matrix resin ⁇ ]
  • the multilayer structure of the present invention may have an outer layer on at least one side of the epoxy resin foam, but from the viewpoint of improving mechanical strength, it is preferable to have outer layers on both sides of the epoxy resin foam. . That is, as shown in FIG. 1, the multilayer structure of the present invention more preferably has an outer layer (Ia), a core layer made of the epoxy resin foam, and an outer layer (Ib) in that order.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a multilayer structure 100 of the present invention, where 1a is an outer layer (Ia), 1b is an outer layer (Ib), and 2 is a core layer.
  • the outer layer (Ia) and the outer layer (Ib) may be made of the same material, or may be made of different materials. From the viewpoint of improving mechanical strength and light weight, the multilayer structure of the present invention has an outer layer (Ia), a core layer made of the epoxy resin foam, and an outer layer (Ib) in this order. At least one of the outer layers (Ib) is preferably a fiber-reinforced composite material containing a matrix resin and reinforcing fibers, and both the outer layer (Ia) and the outer layer (Ib) are preferably fiber-reinforced composite materials.
  • the method for producing the multilayer structure of the present invention is not particularly limited, and known methods can be used.
  • the method for producing a multilayer structure 100 shown in FIG. It preferably includes at least one step selected from (i) to step (iii).
  • the outer layer (Ib) or its precursor is sequentially laminated to produce a laminate (i), and then the foamable layer (II) is foamed
  • the core layer and the outer layer (Ib) or its precursor are laminated in order to produce a laminate (ii), and then the outer layer (Ia) or its precursor, the core layer and the outer layer (Ib ) or a step of integrating its precursor
  • the outer layer (Ia) or its precursor and the core layer are laminated and integrated to produce a laminate (iii), and then the laminate A step of laminating (iii) and the outer layer (Ib) or its precursor and integrating them
  • a foamable layer (II) made of an epoxy resin composition (C) containing the outer layer (Ia) or its precursor, the amine-based curing agent (A), and an epoxy resin (B), and The outer layer (Ib) or its precursor is laminated in order to produce a laminate (i), and then the foamable layer (II) is foamed.
  • the foamable layer (II) is foamed, and the outer layer (Ia), the core layer obtained by foaming the foamable layer (II), and the outer layer (Ib) are integrated. Also, the precursors of the outer layer (Ia) and the outer layer (Ib) are converted into the outer layer (Ia) and the outer layer (Ib) respectively along with the foaming of the foamable layer (II).
  • the "outer layer precursor” includes a reinforcing fiber prepreg in which reinforcing fibers are impregnated with a matrix resin precursor.
  • the reinforcing fiber prepreg may be a commercially available prepreg, or may be produced by known RTM (Resin Transfer Molding) molding, hand layup molding, or the like.
  • the reinforcing fiber prepreg preferably contains at least one matrix resin precursor selected from thermosetting resins and energy ray-curable resins and reinforcing fibers, more preferably the thermosetting resin and reinforcing fibers. More preferably, it contains an epoxy resin composition and reinforcing fibers.
  • the matrix resin precursor and its preferred embodiments are as described above.
  • the laminate (i) is formed, for example, by applying the epoxy resin composition (C) to one surface of the outer layer (Ia) or its precursor to form the foamable layer (II), ) on which the outer layer (Ib) or its precursor is laminated.
  • the epoxy resin composition (C) is preliminarily reacted to form a sheet-shaped foamable layer (II), and the outer layer (Ia) or its precursor, and the sheet-shaped foamable layer (II) are prepared.
  • the outer layer (Ib) or its precursor can also be laminated in order.
  • the laminate (i) is produced using the outer layer (Ia) and the outer layer (Ib) produced in advance.
  • Precursors for the outer layer (Ia) and the outer layer (Ib) may be used in the preparation of the laminate (i), but in step (i) the conversion of the outer layer precursor to the outer layer and the formation of the foamable layer (II) This is because it is necessary to heat at a high temperature for a long period of time in order to perform the foaming at the same time.
  • step (i) the heating temperature and heating time for foaming the foamable layer (II) can be appropriately selected. Conditions can be used.
  • step (ii) In step (ii), the outer layer (Ia) or its precursor, the core layer, and the outer layer (Ib) or its precursor are laminated in order to produce a laminate (ii), and then the outer layer ( Ia) or its precursor, said core layer and said outer layer (Ib) or its precursor are brought together.
  • the laminate (ii) can be produced by sequentially laminating an outer layer (Ia) or its precursor, a core layer, and an outer layer (Ib) or its precursor, using a prefabricated core layer.
  • the outer layer or its precursor used in step (ii) is the same as described in step (i).
  • the laminate (ii) uses the outer layer (Ia) and the outer layer (Ib) prepared in advance, and the outer layer (Ia), the core layer, and the outer layer (Ib) are sequentially formed. It is preferable to laminate and manufacture.
  • a method of integrating the outer layer (Ia) or its precursor, the core layer, and the outer layer (Ib) or its precursor in the laminate (ii) includes a method of subjecting the laminate (ii) to heating conditions. By subjecting to the heating conditions, the precursors of the outer layer (Ia) and the outer layer (Ib) are converted into the outer layer (Ia) and the outer layer (Ib), respectively, and integrated with the core layer. Moreover, you may pressurize simultaneously with a heat press machine using a heat press machine. Preferable heating and pressurizing conditions at this time are the same as in step (i).
  • step (iii) In step (iii), the outer layer (Ia) or its precursor and the core layer are laminated and integrated to produce a laminate (iii), and then the laminate (iii) and the outer layer (Ib ) or its precursor to be laminated and integrated.
  • the laminate (iii) can be produced, for example, by laminating the outer layer (Ia) or its precursor on one side of the core layer and subjecting it to heating conditions. By subjecting to the heating conditions, the precursor of the outer layer (Ia) is converted into the outer layer (Ia) and integrated with the core layer. Moreover, you may pressurize simultaneously with a heat press machine using a heat press machine.
  • step (i) Preferable heating and pressurizing conditions at this time are the same as in step (i).
  • the outer layer (Ib) or its precursor is laminated on the surface of the laminate (iii) on the core layer side and integrated in the same manner as the outer layer (Ia) to produce a desired multilayer structure. can be done.
  • the method for producing the multilayer structure includes step (i). is more preferable. Since the multilayer structure of the present invention has high mechanical strength and light weight, it can be used not only as a carbon dioxide absorbent, but also as a secondary structural material for aircraft, as well as automobile members, building members, and panel members. , electronic/electrical members, housings, and the like.
  • the acid dissociation constant of the amine compound was obtained by the following measuring method. (1) 0.2 g of an amine compound was dissolved in 30 mL of purified water. (2) The solution obtained in (1) above is titrated with a 0.1 N perchloric acid-acetic acid solution using a potentiometric automatic titrator (manufactured by Kyoto Electronics Industry Co., Ltd., AT-610). Dissociation constants (pKa) were calculated. The temperature during the measurement was 25 ⁇ 2°C.
  • the amine value was measured by the following measuring method according to JIS K7237-1995. (1) 0.1 g of an amine compound was dissolved in 20 mL of acetic acid. (2) The solution obtained in (1) above is titrated with a 0.1N perchloric acid-acetic acid solution using a potentiometric automatic titrator (manufactured by Kyoto Electronics Industry Co., Ltd., AT-610). calculated the value.
  • DSC measurement was performed on the amine compound as follows to measure the maximum endothermic temperature of the amine compound.
  • an amine compound is measured with a differential thermogravimetry meter (product name: DTG-60, manufactured by Shimadzu Corporation) under conditions of a measurement temperature range of 23 to 350°C, a heating rate of 10°C/min, and a nitrogen atmosphere.
  • Differential scanning calorimetry was performed using From the DSC curve thus obtained, the temperature at which the amount of heat absorbed by volatilization of the amine compound becomes maximum was calculated, and this temperature was defined as the maximum endothermic temperature of the amine compound.
  • Carbon dioxide (CO 2 ) maximum dissociation temperature of amine compound Carbon dioxide (CO 2 ) maximum dissociation temperature of amine compound
  • a carbon dioxide concentration meter and a petri dish were placed in an openable desiccator (inner dimensions: 370 mm ⁇ 260 mm ⁇ 272 mm). After that, the amine compound (5 mmol) was added to the petri dish in the desiccator, the door was immediately closed, and the amine compound was allowed to stand in the desiccator under an air environment of 23° C. and 50% RH for 24 hours. The initial carbon dioxide concentration was adjusted to about 400 ppm. Next, the amine compound was taken out from the desiccator to obtain an amine compound in which carbon dioxide had been absorbed.
  • the carbon dioxide-absorbing amine compound was subjected to DSC measurement in the following manner to measure the maximum carbon dioxide dissociation temperature of the amine compound.
  • DSC measurement was performed using From the DSC curve thus obtained, the temperature at which the amount of heat absorbed by desorption of carbon dioxide becomes maximum was calculated, and this temperature was defined as the maximum carbon dioxide dissociation temperature of the amine compound.
  • epoxy resin bis-A type epoxy resin bisphenol A type liquid epoxy resin (“jER828” manufactured by Mitsubishi Chemical Corporation, bisphenol A diglycidyl ether, epoxy equivalent 186 g/equivalent)
  • Example 1 (Production and Evaluation of Epoxy Resin Foam) (1) Absorption of carbon dioxide into amine compound (preparation of reaction product (a2) of amine compound and carbon dioxide) An amine compound, MXDA (5 mmol) was added to a container in a desiccator, and the door of the desiccator was immediately closed. Next, the MXDA was allowed to stand in an air environment of 23° C. and 50% RH for one week in a desiccator. As a result, MXDA was reacted with carbon dioxide in the air to obtain a carbonate of MXDA. Here, in order to suppress uneven reaction, the container containing the amine compound was shaken as needed to prevent unreacted MXDA.
  • Mass increase rate of amine compound [% by mass] 100 x mass increase of amine compound (g)/(initial mass of amine compound (g) + mass increase of amine compound (g))
  • the foamability of the epoxy resin composition was evaluated based on the density of the epoxy resin foam. It means that the lower the density, the better the foamability.
  • the density of the epoxy resin foam was calculated from the mass and volume of the foam.
  • the resulting epoxy resin foam and a carbon dioxide concentration meter are placed in an openable desiccator (inner dimensions: 370 mm x 260 mm x 272 mm), and 1000 minutes after placing the epoxy resin foam in the desiccator. From the difference (C2-C1) between the carbon dioxide concentration C1 in the desiccator and the maximum carbon dioxide concentration C2 in the desiccator for up to 1000 minutes after being placed in the desiccator, the unit volume of the epoxy resin foam The amount of carbon dioxide absorbed per unit (g/cm 3 ) was calculated. The inside of the desiccator was in an air environment of 23° C. and 50% RH, and the initial concentration of carbon dioxide was adjusted to 400 ppm.
  • Example 2 to 4 and Comparative Example 1 Epoxy resin-based foams were obtained in the same manner as in Example 1, except that the type of amine compound was changed to the compound shown in Table 1. Each of the above evaluations was performed on the obtained epoxy resin-based foam. Table 1 shows the results obtained.
  • Example 5 (Preparation and Evaluation of Multilayer Structure) A multilayer structure shown in FIG. 1, in which an outer layer (Ia), a core layer made of an epoxy resin foam, and an outer layer (Ib) are laminated in order, was produced and evaluated by the following method.
  • the epoxy resin composition is impregnated into a carbon fiber fabric (“50K NCF 0°/90°” manufactured by SGL, 300 g/m 2 , 0.33 mm thickness, 6 ply) by hand lay-up at room temperature to obtain a carbon fiber composite base material. was made. Next, place the carbon fiber composite substrate on the aluminum upper and lower molds preheated to 130 ° C. in an oven, quickly close the molds, heat for 3 minutes to harden the epoxy resin composition, and mix the carbon fiber fabric and the matrix resin. A carbon fiber reinforced composite material for an outer layer was obtained, which was composed of a cured product of a certain epoxy resin composition. Two carbon fiber reinforced composite materials for outer layers were produced in the same manner.
  • Epoxy Resin Composition As the amine-based curing agent (A), 5.94 g (32.96 mmol) of meta-xylylenediamine carbonate, which is the reactant (a2) obtained in Example 1, was used. And, using 2.99 g (21.95 mmol) of meta-xylylenediamine (MXDA, manufactured by Mitsubishi Gas Chemical Co., Ltd.), a bisphenol A liquid epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd.
  • a carbon fiber reinforced composite material for the outer layer (Ib) is stacked on the spacer (preparation of the laminate (i)), heated at 80 ° C. for 30 minutes to foam the foamable layer (II), and the outer layer (
  • a multilayer structure was prepared by laminating Ia), a core layer made of an epoxy resin foam, and an outer layer (Ib) in this order.
  • Table 2 shows the results.
  • Example 6 (Preparation of multilayer structure and evaluation of interlayer adhesion) A multilayer structure shown in FIG. 1, in which an outer layer (Ia), a core layer made of an epoxy resin foam, and an outer layer (Ib) are laminated in order, was produced by the following method, and interlayer adhesion was evaluated. .
  • Epoxy Resin Composition (C) As the amine-based curing agent (A), 1.35 g (7.49 mmol) of meta-xylylenediamine carbonate, which is the reactant (a2) obtained in Example 1, was used. and meta-xylylenediamine (MXDA, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 0.68 g (4.99 mmol), and as the epoxy resin (B), a bisphenol A liquid epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd. "jER828", bisphenol A diglycidyl ether, epoxy equivalent 186 g/equivalent) was used. These were stirred and mixed with a disper at 3000 rpm for 5 minutes to obtain an epoxy resin composition (C).
  • the number of active amine hydrogen atoms in the amine curing agent (A)/the number of epoxy groups in the epoxy resin (B) is 1/1.
  • (3) Preparation of multilayer structure (test piece according to JIS K6851: 1994)
  • the epoxy resin composition prepared in (2) above is placed on the carbon fiber reinforced composite material for the outer layer (Ia) prepared in (1) above.
  • (C) was applied to a thickness of 1 mm and heated at 60° C. for 45 minutes to form a foamable layer (II).
  • a carbon fiber reinforced composite material for the outer layer (Ib) is stacked on the foamable layer (II) (preparation of the laminate (i)), and heated at 130 ° C. for 15 minutes to foam the foamable layer (II).
  • a multilayer structure was produced in which an outer layer (Ia), a core layer made of an epoxy resin-based foam, and an outer layer (Ib) were laminated in this order.
  • the multilayer structure had a test piece shape according to JIS K6851:1994, and three test pieces were prepared in the same manner.
  • (4) Evaluation of interlayer adhesion Using the multilayer structure (test piece) prepared in (3) above, Autograph (manufactured by Shimadzu Corporation "AG-Xplus 100 kN"), JIS K6851: 1994 Tensile tests were performed at 23° C. and a test speed of 1 mm/min in a compliant manner to determine the maximum shear stress (MPa). Table 3 shows the average values of three test results. A larger value means a higher interlayer adhesion.
  • Example 7 In Example 6, as the amine-based curing agent (A), 1.35 g (7.49 mmol) of meta-xylylenediamine carbonate, which is the reactant (a2) obtained in Example 1, and 1,3-bis (Aminomethyl)cyclohexane (1,3-BAC, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 0.71 g (4.99 mmol) was used in the same manner as in Example 6. An interlayer adhesion evaluation was performed. Table 3 shows the results.
  • Example 8 In Example 6, as the amine-based curing agent (A), 1.13 g (6.27 mmol) of metaxylylenediamine carbonate, which is the reactant (a2) obtained in Example 1, and isophoronediamine (IPDA, A multilayer structure was produced and interlayer adhesion was evaluated in the same manner as in Example 6, except that 1.06 g (6.22 mmol) of EVONIK) was used. Table 3 shows the results.
  • Examples 9-11 As the outer layers (Ia) and (Ib), iron materials (“SS400 single-sided sandblast” manufactured by Paltec Co., Ltd., 25 mm ⁇ 100 mm ⁇ thickness 1.6 mm) were prepared.
  • the above iron material was used as the outer layers (Ia) and (Ib)
  • meta-xylylenediamine was used as the amine-based curing agent (A)
  • meta-xylylene diamine which is the reaction product (a2) obtained in Example 1 was used.
  • a multilayer structure was produced and the interlayer adhesion was evaluated in the same manner as in Example 6, except that diamine carbonate was used in the ratio shown in Table 3. Table 3 shows the results.
  • Example 12 As the outer layers (Ia) and (Ib), iron materials (“SS400 single-sided sandblast” manufactured by Paltec Co., Ltd., 25 mm ⁇ 100 mm ⁇ thickness 1.6 mm) were prepared.
  • the above iron material was used as the outer layers (Ia) and (Ib)
  • 1,3-bis(aminomethyl)cyclohexane was used as the amine-based curing agent (A)
  • the reactant obtained in Example 1 A multilayer structure was produced and the interlayer adhesion was evaluated in the same manner as in Example 7, except that a2) meta-xylylenediamine carbonate was used at the ratio shown in Table 3. Table 3 shows the results.
  • Example 13 As the outer layers (Ia) and (Ib), iron materials (“SS400 single-sided sandblast” manufactured by Paltec Co., Ltd., 25 mm ⁇ 100 mm ⁇ thickness 1.6 mm) were prepared.
  • the above iron material was used as the outer layers (Ia) and (Ib)
  • isophoronediamine was used as the amine-based curing agent (A)
  • meta-xylylenediamine which was the reaction product (a2) obtained in Example 1 was used.
  • a multilayer structure was produced and the interlayer adhesion was evaluated in the same manner as in Example 8, except that the carbonate was used in the ratio shown in Table 3. Table 3 shows the results.
  • Example 14 In Example 13, the reactant (a2) obtained in Example 1 was replaced with the carbonate of isophoronediamine, which is the reactant (a2) obtained in Example 4, and the amine-based curing agent (A) A multilayer structure was produced and interlayer adhesion was evaluated in the same manner as in Example 13, except that isophoronediamine and isophoronediamine carbonate were used in the proportions shown in Table 3. Table 3 shows the results. Note that the carbonate of isophoronediamine has a molar mass of 232.31 g/mol because 1 mol of carbon dioxide and 1 mol of water are added to 1 mol of isophoronediamine.
  • Example 15-17, 19 In Example 10, except that the outer layers (Ia) and (Ib) were changed to the materials shown in Table 4, a multilayer structure was produced and interlayer adhesion was evaluated in the same manner as in Example 10. Table 4 shows the results.
  • an epoxy resin foam with improved carbon dioxide absorption capacity.
  • the foams are also useful as core materials for multi-layer structures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)を発泡してなるエポキシ樹脂系発泡体(D)であって、前記アミン系硬化剤(A)が、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物(a2)を含み、前記環式アミン化合物(a1)が第一級炭素原子に結合したアミノ基を有する、エポキシ樹脂系発泡体。

Description

エポキシ樹脂系発泡体、二酸化炭素吸収剤、エポキシ樹脂系発泡体の製造方法、多層構造体並びにその製造方法
 本発明は、エポキシ樹脂系発泡体、二酸化炭素吸収剤、エポキシ樹脂系発泡体の製造方法、多層構造体並びにその製造方法に関する。
 エポキシ樹脂は、例えば、耐熱性、耐薬品性、密着性、接着性、耐食性、電気絶縁性、可撓性等に優れており、塗料、土木、電材、接着用途等の各種分野で幅広く利用されている。また、エポキシ樹脂を発泡させることにより、エポキシ樹脂に断熱性、遮音性、軽量性等の機能を付与することも検討されている。
 エポキシ樹脂系発泡体に関する技術としては、例えば、特許文献1及び2に記載のものが挙げられる。
 特許文献1には、(A)1分子中に1個以上のエポキシ基を含む液状エポキシ樹脂100重量部当たり、(B)平均粒子径が300μm以下のメタアクリル系樹脂10~200重量部、(C)メルトインデックスが100以下でかつ平均粒子径が300μm以下のポリエチレン系樹脂10~200重量部、(D)エポキシ樹脂用潜在性硬化剤0.5~20重量部、(E)分解ガス発生温度が100~220℃の発泡剤0.5~20重量部および(F)界面活性剤0.05~5重量部からなることを特徴とするエポキシ樹脂系発泡性組成物が、軽量かつ高剛性を有する緻密な発泡体を与える上に、油面金属に対しても強固に接着させることができ、しかも耐熱性が良好であると記載されている。
 特許文献2には、エポキシ樹脂(A)と硬化剤(B)を配合してなるエポキシ樹脂組成物を硬化させる際に、エポキシ樹脂(A)と硬化剤(B)の反応により低分子量化合物を生成させ、反応熱により該低分子化合物を気化させて発泡させる事を特徴とするエポキシ樹脂発泡体の製造方法が記載されており、前記製造方法によれば、発泡剤を添加しなくても、又、外部加熱を加えなくても氷点付近から常温雰囲気下において均一且つ緻密な気泡構造を有するエポキシ樹脂発泡体を現場施工レベルで容易に製造できると記載されている。
特開平5-194780号公報 特開2006-225438号公報
 特許文献1及び2では、エポキシ樹脂系発泡体の二酸化炭素吸収能力については検討されていない。
 本発明は上記事情に鑑みてなされたものであり、二酸化炭素吸収能力が向上したエポキシ樹脂系発泡体を提供するものである。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、アミン系硬化剤及びエポキシ樹脂を含むエポキシ樹脂組成物を発泡してなるエポキシ樹脂系発泡体において、前記アミン系硬化剤が、環式アミン化合物を含むアミン化合物と二酸化炭素との反応物を含むとともに、前記環式アミン化合物が第一級炭素原子に結合したアミノ基を有することにより、エポキシ樹脂系発泡体の二酸化炭素吸収能力を向上できることを見出し、本発明を完成させた。
 すなわち、本発明によれば、以下に示すエポキシ樹脂系発泡体、二酸化炭素吸収剤、エポキシ樹脂系発泡体の製造方法、多層構造体並びにその製造方法が提供される。
[1]
 アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)を発泡してなるエポキシ樹脂系発泡体(D)であって、
 前記アミン系硬化剤(A)が、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物(a2)を含み、前記環式アミン化合物(a1)が第一級炭素原子に結合したアミノ基を有する、エポキシ樹脂系発泡体。
[2]
 前記アミン化合物を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出される前記アミン化合物の質量増加率が15質量%以上50質量%以下である、前記[1]に記載のエポキシ樹脂系発泡体。
 アミン化合物の質量増加率[質量%]=100×アミン化合物の質量増加量(g)/(アミン化合物の質量(g)+アミン化合物の質量増加量(g))
[3]
 前記エポキシ樹脂系発泡体(D)の単位体積あたりの二酸化炭素の吸収量が0.003g/cm以上である、前記[1]又は[2]に記載のエポキシ樹脂系発泡体。
[4]
 前記エポキシ樹脂系発泡体(D)の密度が0.01g/cm以上0.80g/cm以下である、前記[1]~[3]のいずれかに記載のエポキシ樹脂系発泡体。
[5]
 前記エポキシ樹脂(B)が、芳香環又は脂環式構造を分子内に有するエポキシ樹脂を含む、前記[1]~[4]のいずれかに記載のエポキシ樹脂系発泡体。
[6]
 前記環式アミン化合物(a1)が下記式(1)で示される化合物を含む、前記[1]~[5]のいずれかに記載のエポキシ樹脂系発泡体。
Figure JPOXMLDOC01-appb-C000002

(上記式(1)中、R~Rはそれぞれ独立に水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基を示し、R~R10はそれぞれ独立に水素原子又は炭素数1以上4以下の炭化水素基を示し、x及びyはそれぞれ独立に0以上6以下の整数を表し、x+yは1以上6以下であり、p及びqはそれぞれ独立に0以上4以下の整数であり、p及びqの少なくとも一方が1以上である。)
[7]
 前記環式アミン化合物(a1)のアミノ基の数が2以上6以下である、前記[1]~[6]のいずれかに記載のエポキシ樹脂系発泡体。
[8]
 前記環式アミン化合物(a1)の環状構造が5員環及び6員環から選択される少なくとも一種を含む、前記[1]~[7]のいずれかに記載のエポキシ樹脂系発泡体。
[9]
 前記環式アミン化合物(a1)がビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体から選択される少なくとも一種を含む、前記[1]~[8]のいずれかに記載のエポキシ樹脂系発泡体。
[10]
 前記[1]~[9]のいずれかに記載のエポキシ樹脂系発泡体(D)を含む二酸化炭素吸収剤。
[11]
 アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)を発泡する工程を含み、
 前記アミン系硬化剤(A)が、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物(a2)を含み、前記環式アミン化合物(a1)が第一級炭素原子に結合したアミノ基を有する、エポキシ樹脂系発泡体の製造方法。
[12]
 前記エポキシ樹脂組成物(C)を発泡する工程の前に、前記アミン化合物を二酸化炭素濃度が0.01体積%以上10体積%以下の気体に接触させることにより、前記アミン化合物と前記二酸化炭素を反応させて前記反応物(a2)を得る工程を更に含む、前記[11]に記載のエポキシ樹脂系発泡体の製造方法。
[13]
 前記アミン化合物を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出される前記アミン化合物の質量増加率が15質量%以上50質量%以下である、前記[11]又は[12]に記載のエポキシ樹脂系発泡体の製造方法。
 アミン化合物の質量増加率[質量%]=100×アミン化合物の質量増加量(g)/(アミン化合物の質量(g)+アミン化合物の質量増加量(g))
[14]
 前記[1]~[9]のいずれかに記載のエポキシ樹脂系発泡体の少なくとも片面に外層を有する、多層構造体。
[15]
 前記多層構造体が、外層(Ia)、前記エポキシ樹脂系発泡体からなるコア層、及び外層(Ib)を順に有する、前記[14]に記載の多層構造体。
[16]
 前記外層(Ia)及び前記外層(Ib)のうち少なくとも一方が、マトリックス樹脂及び強化繊維を含む繊維強化複合材である、前記[15]に記載の多層構造体。
[17]
 下記工程(i)~工程(iii)から選択される少なくとも一つの工程を含む、前記[15]又は[16]に記載の多層構造体の製造方法。
工程(i):前記外層(Ia)又はその前駆体、前記アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)からなる発泡性層(II)、及び、前記外層(Ib)又はその前駆体を順に積層して積層体(i)を作製し、次いで、前記発泡性層(II)を発泡させる工程
工程(ii):前記外層(Ia)又はその前駆体、前記コア層、及び、前記外層(Ib)又はその前駆体を順に積層して積層体(ii)を作製し、次いで、前記外層(Ia)又はその前駆体、前記コア層、及び前記外層(Ib)又はその前駆体を一体化させる工程
工程(iii):前記外層(Ia)又はその前駆体と前記コア層とを積層し、一体化させて積層体(iii)を作製した後、該積層体(iii)と、前記外層(Ib)又はその前駆体とを積層し、一体化させる工程
 本発明によれば、二酸化炭素吸収能力が向上したエポキシ樹脂系発泡体を提供することができる。該発泡体は、多層構造体のコア材としても有用である。
本発明の多層構造体の一実施形態を示す断面模式図である。
 本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明の内容を限定しない。本発明は、その要旨の範囲内で適宜に変形して実施できる。本実施形態において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいといえる。本実施形態において、「XX~YY」の記載は、「XX以上YY以下」を意味する。
[エポキシ樹脂系発泡体]
 本発明のエポキシ樹脂系発泡体は、アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)を発泡してなるエポキシ樹脂系発泡体(D)であって、アミン系硬化剤(A)が、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物(a2)を含み、環式アミン化合物(a1)が第一級炭素原子に結合したアミノ基を有する。
 本発明のエポキシ樹脂系発泡体は、二酸化炭素吸収能力が向上した発泡体である。
 本実施形態において、「二酸化炭素吸収能力が向上」とは、空気中の低濃度(約0.04体積%)の二酸化炭素に対する吸収量がより多いことを意味し、「第一級炭素原子」とは、他の炭素原子1個と結合している炭素原子を意味する。「繰り返し使用性」とは、二酸化炭素の吸収と解離のサイクル試験をおこなったときの二酸化炭素吸収量の維持率を意味する。
 エポキシ樹脂系発泡体(D)は、エポキシ樹脂(B)を硬化させるための硬化剤として、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物(a2)を含むアミン系硬化剤(A)を用いることで、二酸化炭素吸収能力を向上させることができる。その理由は定かではないが、以下のように考えられる。
 まず、エポキシ樹脂組成物(C)を加熱することにより、反応物(a2)から環式アミン化合物(a1)を含むアミン化合物及び二酸化炭素が生成する。このとき、生成した二酸化炭素によりエポキシ樹脂組成物(C)が発泡するとともに、生成したアミン化合物とエポキシ樹脂(B)とが反応してエポキシ樹脂組成物(C)の硬化が起きることによって、エポキシ樹脂系発泡体(D)が得られる。
 すなわち、エポキシ樹脂系発泡体(D)における発泡構造は、多孔構造であるため表面積が大きく、さらに二酸化炭素が解離して形成された構造であるため、二酸化炭素を吸収しやすい構造になっていると考えられる。
 また、環式アミン化合物(a1)は、第一級炭素原子に結合したアミノ基を有する。このようなアミノ基は立体障害が小さく、二酸化炭素を吸収しやすいと考えられる。
 以上の理由から、エポキシ樹脂系発泡体(D)は、二酸化炭素吸収能力を向上できると考えられる。
<アミン系硬化剤(A)>
 アミン系硬化剤(A)は、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物(a2)を含む。
 環式アミン化合物(a1)は、環状構造を有するアミン化合物である。環式アミン化合物(a1)の環状構造としては、例えば、脂環式炭化水素構造、芳香族炭化水素構造、環の中にヘテロ原子を含む複素環式構造等が挙げられ、環式アミン化合物(a1)からの二酸化炭素の解離性をより向上させる観点から、脂環式炭化水素構造を含むことが好ましい。
 ここで、本実施形態において、脂環式炭化水素構造とは、芳香族性を有しない飽和又は不飽和の炭素と水素からなる環状構造のことをいい、環の中にヘテロ原子を含む複素環式構造は除かれる。また、複素環式構造とは、環の中にヘテロ原子を含む複素環構造のことをいう。
 環式アミン化合物(a1)の環状構造は、二酸化炭素との反応性及び発泡性をより向上させる観点から、5員環及び6員環から選択される少なくとも一種を含むことが好ましく、6員環を含むことがより好ましい。飽和6員環を含む環式アミン化合物(a1)は、シス体、トランス体、シス体とトランス体との混合物のいずれであってもよい。
 また、環式アミン化合物(a1)は、二酸化炭素との反応性及び発泡性をより向上させる観点から、環状構造を1つ有することが好ましい。すなわち、環式アミン化合物(a1)は単環式化合物であることが好ましい。
 環式アミン化合物(a1)の脂環式炭化水素構造としては、例えばシクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等が挙げられる。上記の環構造の中でも、シクロペンタン環、シクロヘキサン環が好ましく、シクロヘキサン環がより好ましく、1,3-置換のシクロヘキサン環が更に好ましい。
 環式アミン化合物(a1)のアミノ基の数は、二酸化炭素との反応性、硬化性及び発泡性をより向上させる観点から、好ましくは2以上であり、そして、好ましくは6以下、より好ましくは4以下、更に好ましくは3以下、更に好ましくは2である。
 また、アミノ基としては、二酸化炭素との反応性、硬化性及び発泡性をより向上させる観点から、窒素-水素結合を有するアミノ基が好ましく、第一級アミノ基及び第二級アミノ基からなる群から選択される少なくとも一種のアミノ基がより好ましく、第一級アミノ基が更に好ましい。
 環式アミン化合物(a1)は、好ましくは下記式(1)で示される化合物を含み、より好ましくは下記式(1)で示される化合物である。
Figure JPOXMLDOC01-appb-C000003

 上記式(1)中、R~Rはそれぞれ独立に水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基を示し、R~R10はそれぞれ独立に水素原子又は炭素数1以上4以下の炭化水素基を示し、x及びyはそれぞれ独立に0以上6以下の整数を表し、x+yは1以上6以下であり、p及びqはそれぞれ独立に0以上4以下の整数であり、p及びqの少なくとも一方が1以上である。
 R~Rは、それぞれ独立に、水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基であり、好ましくは水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基であり、より好ましくは水素原子、又はアミノ基及びシアノ基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基であり、更に好ましくは水素原子、又はアミノ基及びシアノ基から選択される少なくとも一種の置換基を有していてもよい炭素数2以上4以下のアルキル基であり、更に好ましくは水素原子である。
 R~Rの炭化水素基の炭素数は、それぞれ独立に、1以上、好ましくは2以上、そして10以下、好ましくは5以下、より好ましくは4以下、更に好ましくは3以下である。
 R~R10は、それぞれ独立に、水素原子又は炭素数1以上4以下の炭化水素基であり、好ましくは水素原子又は炭素数1以上4以下のアルキル基であり、より好ましくは水素原子又は炭素数1以上3以下のアルキル基であり、更に好ましくは水素原子又はメチル基であり、更に好ましくは水素原子である。
 R~R10の炭化水素基の炭素数は、それぞれ独立に、1以上4以下、好ましくは1又は2、より好ましくは1である。
 p及びqは、それぞれ独立に、0以上、好ましくは1以上であり、そして4以下、好ましくは2以下、より好ましくは1である。ただし、p及びqの少なくとも一方が1以上である。
 x及びyは、それぞれ独立に、0以上6以下の整数を表し、x+yは1以上6以下である。二酸化炭素吸収量及び発泡性をより向上させる観点から、x+yは、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上であり、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは5以下、より好ましくは4である。すなわち、脂環式炭化水素構造は5員環又は6員環であることが好ましく、6員環であることがより好ましい。x+yが4の場合、好ましくはxが1であり、yが3である。
 環式アミン化合物(a1)としては、二酸化炭素との反応性、硬化性及び発泡性をより向上させる観点から、o-キシリレンジアミン及びその誘導体、m-キシリレンジアミン及びその誘導体、p-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、N-(2-アミノエチル)ピペラジン及びその誘導体、リモネンジアミン及びその誘導体、イソホロンジアミン及びその誘導体、2,5-ビスアミノメチルフラン及びその誘導体、並びに、2,5-ビス(アミノメチル)テトラヒドロフラン及びその誘導体からなる群から選択される少なくとも一種を含むことが好ましく、m-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、N-(2-アミノエチル)ピペラジン及びその誘導体、リモネンジアミン及びその誘導体、並びに、イソホロンジアミン及びその誘導体からなる群から選択される少なくとも一種を含むことがより好ましく、ビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体から選択される少なくとも一種を含むことが更に好ましく、ビス(アミノメチル)シクロヘキサン及びその誘導体が更に好ましく、1,3-ビス(アミノメチル)シクロヘキサン及びその誘導体が更に好ましく、1,3-ビス(アミノメチル)シクロヘキサンが更に好ましい。
 ここで、上記各種アミンの誘導体としては、例えば、アミノ基の水素原子のうちの少なくとも1つが、アミノ基、シアノ基及びフェニル基からなる群から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基、好ましくはアミノ基、シアノ基及びフェニル基からなる群から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基、より好ましくはアミノ基及びシアノ基からなる群から選択される少なくとも一種の置換基を有していてもよい炭素数1以上4以下のアルキル基、更に好ましくはアミノ基及びシアノ基からなる群から選択される少なくとも一種の置換基を有していてもよい炭素数2以上4以下のアルキル基で置換された化合物が挙げられる。
 また、上記各種アミンの誘導体としては、例えば、環状構造の水素原子のうちの少なくとも一部が炭素数1以上4以下の炭化水素基、好ましくは炭素数1以上3以下のアルキル基、より好ましくはメチル基又はエチル基、更に好ましくはメチル基で置換された化合物が挙げられる。
 これらの環式アミン化合物(a1)は、単独で又は2種以上を組み合わせて用いることができる。
 反応物(a2)におけるアミン化合物中の環式アミン化合物(a1)の割合は、二酸化炭素吸収量及び発泡性をより向上させる観点から、アミン化合物の全量を100質量部としたとき、好ましくは50質量部以上、より好ましくは60質量部以上、更に好ましくは70質量部以上、更に好ましくは80質量部以上、更に好ましくは90質量部以上、更に好ましくは95質量部以上であり、そして好ましくは100質量部以下である。
 環式アミン化合物(a1)以外のアミン化合物としては、例えば、環式アミン化合物(a1)以外の環式アミン化合物;モノエタノールアミン、2-アミノ-2-メチル-1-プロパノール、ジエタノールアミン、2-(メチルアミノ)エタノール、2-(エチルアミノ)エタノール、2-(ジメチルアミノ)エタノール、2-(ジエチルアミノ)エタノール、エチレンジアミン、N,N’-ジメチルエチレンジアミン、ジエチレントリアミン等の非環式脂肪族系アミン化合物が挙げられる。
 アミン系硬化剤(A)は、二酸化炭素と反応していないアミン化合物等の、反応物(a2)以外の成分を含有してもよい。二酸化炭素と反応していないアミン化合物としては、前記環式アミン化合物(a1)が好適である。好ましい化合物についても環式アミン化合物(a1)と同様であり、o-キシリレンジアミン及びその誘導体、m-キシリレンジアミン及びその誘導体、p-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、N-(2-アミノエチル)ピペラジン及びその誘導体、リモネンジアミン及びその誘導体、イソホロンジアミン及びその誘導体、2,5-ビスアミノメチルフラン及びその誘導体、並びに、2,5-ビス(アミノメチル)テトラヒドロフラン及びその誘導体からなる群から選択される少なくとも一種が好ましく、m-キシリレンジアミン及びその誘導体、ビス(アミノメチル)シクロヘキサン及びその誘導体、並びに、イソホロンジアミン及びその誘導体からなる群から選択される少なくとも一種を含むことがより好ましく、m-キシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、及びイソホロンジアミンからなる群から選択される少なくとも一種が更に好ましい。
 二酸化炭素と反応していないアミン化合物は、反応物(a2)におけるアミン化合物と同一のアミン化合物でもよく、異なる種類のアミン化合物でもよい。
 アミン系硬化剤(A)中の反応物(a2)の含有量は、二酸化炭素吸収量及び発泡性をより向上させる観点からは、アミン系硬化剤(A)の全量を100質量%としたとき、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは98質量%以上であり、そして好ましくは100質量%以下である。
 また、アミン系硬化剤(A)中の反応物(a2)の含有量は、発泡体の機械強度を向上させる観点からは、アミン系硬化剤(A)の全量を100質量%としたとき、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上であり、また、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下である。
 以下の方法で測定される、環式アミン化合物(a1)の二酸化炭素最大解離温度は、二酸化炭素の解離性を向上させ、発泡性及びエポキシ樹脂系発泡体の繰り返し使用性を向上させる観点から、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは160℃以下、更に好ましくは150℃以下、更に好ましくは140℃以下、更に好ましくは135℃以下、更に好ましくは130℃以下である。上記二酸化炭素最大解離温度の下限値は特に限定されないが、例えば40℃以上である。
(方法)
 二酸化炭素を吸収させた環式アミン化合物(a1)を、昇温速度10℃/分で23℃から250℃まで加熱し、二酸化炭素の脱離に伴う吸熱量が最大になる温度を測定し、この温度を二酸化炭素最大解離温度とする。ここで、二酸化炭素を吸収させた環式アミン化合物(a1)は、例えば、環式アミン化合物(a1)5mmolを23℃、50%RHの空気中に24時間静置することにより調製することができる。
 環式アミン化合物(a1)の酸解離定数(pKa)は、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは8.0以上、より好ましくは8.5以上、更に好ましくは9.0以上であり、そして二酸化炭素の解離性を向上させ、発泡性及びエポキシ樹脂系発泡体の繰り返し使用性をより向上させる観点から、好ましくは12.0以下、より好ましくは11.5以下、更に好ましくは11.0以下である。
 環式アミン化合物(a1)の酸解離定数は、酸塩基適定法に基づく下記測定方法により求められる値である。
(1)環式アミン化合物(a1)0.2gを精製水30mLに溶解する。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(例えば京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することにより酸解離定数(pKa)を算出する。
 なお、測定時の温度は、25±2℃とする。
 環式アミン化合物(a1)の分子量は、二酸化炭素を解離させる際の熱処理時の重量減少を抑制する観点から、好ましくは110以上、より好ましくは120以上、更に好ましくは130以上であり、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは200以下、より好ましくは180以下、更に好ましくは175以下である。
 以下の方法で測定される環式アミン化合物(a1)の最大吸熱温度は、二酸化炭素を解離させる際の熱処理時の重量減少を抑制する観点から、好ましくは130℃以上、より好ましくは140℃以上、更に好ましくは150℃以上であり、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは260℃以下、より好ましくは230℃以下、更に好ましくは200℃以下、更に好ましくは170℃以下である。
(方法)
 環式アミン化合物(a1)を、昇温速度10℃/分で23℃から350℃まで加熱し、環式アミン化合物(a1)の揮発に伴う吸熱量が最大になる温度を測定し、この温度を環式アミン化合物(a1)の最大吸熱温度とする。
 環式アミン化合物(a1)のアミン価は、二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは400mgKOH/g以上、より好ましくは500mgKOH/g以上、更に好ましくは600mgKOH/g以上、更に好ましくは650mgKOH/g以上であり、そして好ましくは1500mgKOH/g以下、より好ましくは1200mgKOH/g以下、更に好ましくは1000mgKOH/g以下、更に好ましくは900mgKOH/g以下、更に好ましくは850mgKOH/g以下、更に好ましくは800mgKOH/g以下である。アミン価とは、化合物中のアミンの量を示し、化合物1g量を中和するのに要する酸と当量の水酸化カリウム(KOH)のmg数をいう。
 アミン価はJIS K7237-1995に準じて、下記方法により測定することができる。
(1)環式アミン化合物(a1)0.1gを酢酸20mLに溶解する。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(例えば京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することによりアミン価を算出する。
 前記アミン化合物を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出される前記アミン化合物の質量増加率は、エポキシ樹脂系発泡体(D)の二酸化炭素吸収量及び発泡性をより向上させる観点から、好ましくは15質量%以上、より好ましくは18質量%以上、更に好ましくは20質量%以上、更に好ましくは23質量%以上であり、そして、好ましくは50質量%以下、より好ましくは45質量%以下、更に好ましくは40質量%以下、更に好ましくは30質量%以下、更に好ましくは28質量%以下である。
 アミン化合物の質量増加率[質量%]=100×アミン化合物の質量増加量(g)/(アミン化合物の質量(g)+アミン化合物の質量増加量(g))
 前記アミン化合物の質量増加率は、具体的には実施例に記載の方法により測定できる。
 アミン系硬化剤(A)は、環式アミン化合物(a1)を含むアミン化合物を、二酸化炭素を含む気体に接触させて、アミン化合物と二酸化炭素を反応させることにより得ることができる。
 アミン化合物と二酸化炭素との反応物(a2)は、例えば、アミン化合物と二酸化炭素との反応物である、カルバミン酸、カルバミン酸塩、炭酸塩、炭酸水素塩等から選択される少なくとも一種を含む。
<エポキシ樹脂(B)>
 エポキシ樹脂(B)は、飽和又は不飽和の脂肪族化合物や脂環式化合物、芳香族化合物、複素環式化合物のいずれであってもよい。耐熱性、耐薬品性、硬化性、機械強度等を向上させる観点から、芳香環又は脂環式構造を分子内に有するエポキシ樹脂を含むことが好ましい。
 当該エポキシ樹脂の具体例としては、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、1,3-ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、1,4-ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルアミノ基及び/又はグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂、フェノールノボラックから誘導されたグリシジルオキシ基を有するエポキシ樹脂及びレゾルシノールから誘導されたグリシジルオキシ基を有するエポキシ樹脂から選ばれる少なくとも1種の樹脂が挙げられる。上記のエポキシ樹脂は、2種以上混合して用いることもできる。
 上記の中でも、耐熱性、耐薬品性、機械強度等を向上させる観点からは、エポキシ樹脂(B)としてはメタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂、及びビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂からなる群から選ばれる少なくとも1種を主成分とするものが好ましく、耐熱性、耐薬品性、機械強度等を向上させる観点、並びに、入手性及び経済性の観点から、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂を主成分とするものがより好ましい。
 なお、ここでいう「主成分」とは、本発明の趣旨を逸脱しない範囲で他の成分を含みうることを意味し、好ましくは全体の50~100質量%、より好ましくは70~100質量%、さらに好ましくは90~100質量%を意味する。
 エポキシ樹脂組成物(C)中のアミン系硬化剤(A)の含有量は、エポキシ樹脂(B)中のエポキシ基数に対するアミン系硬化剤(A)中の活性アミン水素数の比(前記活性アミン水素数/前記エポキシ基数)が、エポキシ樹脂系発泡体(D)の二酸化炭素吸収量をより向上させる観点から、好ましくは0.5以上、より好ましくは0.8以上、更に好ましくは1.0以上、更に好ましくは1.1以上、更に好ましくは1.2以上であり、エポキシ樹脂系発泡体(D)の耐熱性、耐薬品性、硬化性及び機械強度を向上させる観点から、好ましくは2.0以下、より好ましくは1.8以下、更に好ましくは1.5以下、更に好ましくは1.4以下、更に好ましくは1.3以下となる量である。
 ここで、アミン系硬化剤(A)中の活性アミン水素数は、反応物(a2)における二酸化炭素と反応する前のアミン化合物の活性アミン水素数と、アミン系硬化剤(A)に含まれる、二酸化炭素と反応していないアミン化合物の活性アミン水素数との合計数を意味する。
 エポキシ樹脂組成物(C)には、さらに、充填材、可塑剤等の改質成分、揺変剤等の流動調整成分、顔料、レベリング剤、粘着付与剤、エラストマー微粒子、硬化促進剤、整泡剤、化学発泡剤等のその他の成分を用途に応じて含有させてもよい。
 ただし、本発明の効果を有効に得る観点から、エポキシ樹脂組成物(C)中のアミン系硬化剤(A)及びエポキシ樹脂(B)の合計量は、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上である。また、上限は100質量%である。
 エポキシ樹脂系発泡体(D)の単位体積あたりの二酸化炭素の吸収量は、二酸化炭素吸収能力をより向上させる観点から、好ましくは0.003g/cm以上、より好ましくは0.005g/cm以上、更に好ましくは0.010g/cm以上、更に好ましくは0.020g/cm以上、更に好ましくは0.025g/cm以上である。前記二酸化炭素の吸収量は多ければ多いほど好ましいため上限値は特に限定されないが、例えば0.10g/cm以下である。前記二酸化炭素の吸収量は、具体的には実施例に記載の方法により測定できる。
 エポキシ樹脂系発泡体(D)の密度は、機械強度を向上させる観点から、好ましくは0.01g/cm以上、より好ましくは0.05g/cm以上、更に好ましくは0.10g/cm以上、更に好ましくは0.13g/cm以上であり、断熱性、遮音性、軽量性等の機能をより向上させる観点から、好ましくは0.80g/cm以下、より好ましくは0.60g/cm以下、更に好ましくは0.50g/cm以下、更に好ましくは0.45g/cm以下である。エポキシ樹脂系発泡体(D)の密度は、具体的には実施例に記載の方法により測定できる。
<エポキシ樹脂組成物(C)の調製方法>
 エポキシ樹脂組成物(C)の調製方法には特に制限はなく、アミン系硬化剤(A)、エポキシ樹脂(B)、及び必要に応じ他の成分を公知の方法及び装置を用いて混合し、製造することができる。
[エポキシ樹脂系発泡体の製造方法]
 本発明のエポキシ樹脂系発泡体の製造方法は、アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)を発泡する工程を含み、アミン系硬化剤(A)が、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物(a2)を含み、環式アミン化合物(a1)が第一級炭素原子に結合したアミノ基を有する。
 本発明に係るエポキシ樹脂系発泡体の製造方法によれば、二酸化炭素吸収能力が向上した発泡体を得ることが可能である。
 本発明に係るエポキシ樹脂系発泡体の製造方法の効果が得られる理由は、前述の本発明のエポキシ樹脂系発泡体の効果が得られる理由と同じ理由が考えられる。
 本発明に係るエポキシ樹脂系発泡体の製造方法で使用する各成分及びその好適態様は、前述した本発明に係るエポキシ樹脂系発泡体と同じである。
 エポキシ樹脂組成物(C)を発泡する工程では、例えば、エポキシ樹脂組成物(C)を加熱することにより、反応物(a2)から環式アミン化合物(a1)及び二酸化炭素を生成させ、二酸化炭素によりエポキシ樹脂組成物(C)を発泡させるとともに、生成した環式アミン化合物(a1)を含むアミン化合物とエポキシ樹脂(B)との反応によりエポキシ樹脂組成物(C)を硬化させる。これにより、エポキシ樹脂系発泡体(D)が得られる。
 エポキシ樹脂組成物(C)を発泡する工程における加熱温度及び加熱時間は適宜選択できるが、反応速度及び生産性、並びに原料の分解等を防止する観点からは、好ましくは50~250℃、より好ましくは100~200℃、更に好ましくは120~180℃である。また反応時間は、好ましくは10分間~12時間、より好ましくは15分間~4時間である。
 本発明に係るエポキシ樹脂系発泡体の製造方法では、エポキシ樹脂組成物(C)を発泡する工程の前に、環式アミン化合物(a1)を含むアミン化合物を二酸化炭素濃度が0.01体積%以上10体積%以下の気体に接触させることにより、前記アミン化合物と前記二酸化炭素を反応させて反応物(a2)を得る工程を更に含むことが好ましい。
 前記二酸化炭素濃度は、好ましくは0.02体積%以上、より好ましくは0.03体積%以上であり、そして、好ましくは5体積%以下、より好ましくは1体積%以下、更に好ましくは0.5体積%以下、更に好ましくは0.1体積%以下である。また、0.01体積%以上10体積%以下の前記気体は空気であることが更に好ましい。
 反応物(a2)は、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物であり、例えば、アミン化合物と二酸化炭素との反応物である、カルバミン酸、カルバミン酸塩、炭酸塩、炭酸水素塩等から選択される少なくとも一種を含む。
[二酸化炭素吸収剤]
 本発明に係る二酸化炭素吸収剤は、前述したエポキシ樹脂系発泡体(D)を含む。本発明に係る二酸化炭素吸収剤は、エポキシ樹脂系発泡体(D)を含むため、二酸化炭素吸収能力を向上させることができる。
 本発明に係る二酸化炭素吸収剤中のエポキシ樹脂系発泡体(D)の含有量は、二酸化炭素吸収能力を向上させる観点から、二酸化炭素吸収剤の全量を100質量%としたとき、60質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは98質量%以上であり、そして好ましくは100質量%以下である。
 本発明に係る二酸化炭素吸収剤は、空気中からの二酸化炭素吸収量が良好であるため、空気中の二酸化炭素を直接吸収する技術(DAC)に好適に用いることができる。
 また、本発明に係る二酸化炭素吸収剤は、例えば、0.01体積%以上1体積%以下の低濃度の二酸化炭素を回収する場合に好適に用いることができる。
 本発明に係る二酸化炭素吸収剤は、発明の効果を損なわない範囲で、エポキシ樹脂系発泡体(D)以外の成分を適宜含有することができる。エポキシ樹脂系発泡体(D)以外の成分としては、例えば、エポキシ樹脂系発泡体(D)以外の二酸化炭素を吸収することができる化合物、劣化抑制剤、消泡剤、酸化防止剤、水分を除去するための乾燥剤(硫酸マグネシウム、モレキュラーシーブス等)等が挙げられる。
[多層構造体]
 本発明の多層構造体は、前記エポキシ樹脂系発泡体の少なくとも片面に外層を有する。
 多層構造体の外層を構成する材料は特に制限されず、金属、樹脂、繊維強化複合材等が挙げられる。該金属としては、ステンレス、アルミニウム、鉄、銅、その他合金等、該樹脂としては、熱可塑性樹脂、熱硬化性樹脂の硬化物、エネルギー線硬化性樹脂の硬化物等が挙げられる。
 外層を構成する繊維強化複合材としては、マトリックス樹脂及び強化繊維を含む繊維強化複合材が挙げられる。
 マトリックス樹脂としては、熱可塑性樹脂、熱硬化性樹脂の硬化物、エネルギー線硬化性樹脂の硬化物等が挙げられる。外層と、コア層であるエポキシ樹脂系発泡体との接着性向上の観点からは、マトリックス樹脂は熱硬化性樹脂の硬化物であることが好ましく、エポキシ樹脂組成物の硬化物であることがより好ましい。
 マトリックス樹脂の前駆体であるエポキシ樹脂組成物は、前記エポキシ樹脂組成物(C)と同じ組成でもよく、異なっていてもよいが、発泡性を有さないエポキシ樹脂組成物であることが好ましい。すなわちマトリックス樹脂の前駆体であるエポキシ樹脂組成物は、エポキシ樹脂及びエポキシ樹脂硬化剤を少なくとも含み、且つ、アミン化合物と二酸化炭素との反応物を含まないことが好ましい。該エポキシ樹脂組成物中の、アミン化合物と二酸化炭素との反応物の含有量は、好ましくは5質量%以下、より好ましくは1質量%以下、更に好ましくは0.5質量%以下であり、より更に好ましくは0質量%である。
 繊維強化複合材に用いる強化繊維の形態としては、短繊維、長繊維、連続繊維が挙げられる。これらの中でも、多層構造体を所望の形状に成形する際の成形容易性の観点からは、長繊維又は連続繊維が好ましく、連続繊維がより好ましい。
 なお本明細書において、短繊維とは繊維長が0.1mm以上10mm未満、長繊維とは繊維長が10mm以上100mm以下のものをいう。また連続繊維とは、100mmを超える繊維長を有する繊維束をいう。
 連続繊維の形状としては、モノフィラメント又はマルチフィラメントを一方向又は交互に交差するように並べた一方向(UD)材、編織物等の布帛、不織布、マット等の種々の形態が挙げられる。これらのうち、外層用の繊維強化複合材を製造する観点からは、好ましくはモノフィラメント、布帛、不織布、又はマットの形態であり、より好ましくは布帛である。
 連続繊維において、連続繊維束の平均繊維長には特に制限はないが、成形加工性の観点から、好ましくは1~10,000m、より好ましくは100~10,000mである。
 連続繊維束の平均繊度は、成形加工性の観点、高強度及び高弾性率が得られやすいという観点から、好ましくは50~2000tex(g/1000m)、より好ましくは200~1500tex、さらに好ましくは500~1500texである。
 また連続繊維束の平均引張弾性率は、好ましくは50~1000GPaである。
 強化繊維の材質としては、例えば、炭素繊維、ガラス繊維、バサルト繊維、金属繊維、ボロン繊維、セラミック繊維等の無機繊維;アラミド繊維、ポリオキシメチレン繊維、芳香族ポリアミド繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等の有機繊維が挙げられる。これらの中でも、高強度を得る観点からは無機繊維が好ましく、軽量で且つ高強度、高弾性率であることから好ましくは炭素繊維、ガラス繊維、及びバサルト繊維からなる群から選ばれる少なくとも1種であり、強度及び軽量性の観点からは、より好ましくは炭素繊維である。
 炭素繊維としては、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維等が挙げられる。また、リグニンやセルロースなど、植物由来原料の炭素繊維も用いることができる。
 強化繊維は、処理剤で処理されたものでもよい。処理剤としては、表面処理剤又は集束剤が例示される。
 上記表面処理剤としては、シランカップリング剤が好ましい。例えば、ビニル基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、エポキシ基を有するシランカップリング剤、(メタ)アクリル基を有するシランカップリング剤、メルカプト基を有するシランカップリング剤等が挙げられる。
 上記集束剤としては、例えば、ウレタン系集束剤、エポキシ系集束剤、アクリル系集束剤、ポリエステル系集束剤、ビニルエステル系集束剤、ポリオレフィン系集束剤、ポリエーテル系集束剤、及びカルボン酸系集束剤等が挙げられ、これらのうち1種又は2種以上を組み合わせて用いることができる。2種以上を組み合わせた集束剤としては、例えば、ウレタン/エポキシ系集束剤、ウレタン/アクリル系集束剤、ウレタン/カルボン酸系集束剤等が挙げられる。
 前記処理剤の量は、強化繊維とマトリックス樹脂との界面接着性を向上させ、強度、耐衝撃性をより向上させる観点から、強化繊維に対し、好ましくは0.001~5質量%、より好ましくは0.1~3質量%、さらに好ましくは0.5~2質量%である。
 強化繊維として市販品を用いることもできる。連続炭素繊維の市販品としては、例えば東レ(株)製のトレカクロス「CO6142」「CO6151B」、「CO6343」、「CO6343B」、「CO6347B」、「CO6644B」、「CK6244C」、「CK6273C」、「CK6261C」、「UT70」シリーズ、「UM46」シリーズ、「BT70」シリーズ、「T300」シリーズ、「T300B」シリーズ、「T400HB」シリーズ、「T700SC」シリーズ、「T800SC」シリーズ、「T800HB」シリーズ、「T1000GB」シリーズ、「M35JB」シリーズ、「M40JB」シリーズ、「M46JB」シリーズ、「M50JB」シリーズ、「M55J」シリーズ、「M55JB」シリーズ、「M60JB」シリーズ、「M30SC」シリーズ、「Z600GT」シリーズ等;トレカ糸「T300」、「T300B」、「T400HB」、「T700SC」、「T800SC」、「T800HB」、「T830HB」、「T1000GB」、「T100GC」、「M35JB」、「M40JB」、「M46JB」、「M50JB」、「M55J」、「M55JB」、「M60JB」、「M30SC」、「Z600」の各シリーズ等;帝人(株)製のテナックス「HTA40」シリーズ、「HTS40」シリーズ、「HTS45」シリーズ、「HTS45P12」シリーズ、「STS40」シリーズ、「UTS50」シリーズ、「ITS50」シリーズ、「ITS55」シリーズ、「IMS40」シリーズ、「IMS60」シリーズ、「IMS65」シリーズ、「IMS65P12」シリーズ、「HMA35」シリーズ、「UMS40」シリーズ、「UMS45」シリーズ、「UMS55」シリーズ、「HTS40MC」シリーズ等;帝人(株)製のテナックス「HTA40」シリーズ、「HTS40」シリーズ、「HTS45」シリーズ、「HTS45P12」シリーズ、「STS40」シリーズ、「UTS50」シリーズ、「ITS50」シリーズ、「ITS55」シリーズ、「IMS40」シリーズ、「IMS60」シリーズ、「IMS65」シリーズ、「IMS65P12」シリーズ、「HMA35」シリーズ、「UMS40」シリーズ、「UMS45」シリーズ、「UMS55」シリーズ、「HTS40MC」シリーズ等;三菱ケミカル(株)製のPYROFIL「TR3110M」、「TR3523M」、「TR3524M」、「TR6110HM」、「TR6120HM」、「TRK101M」、「TRK510M」、「TR3160TMS」、「TRK979PQRW」、「TRK976PQRW」、「TR6185HM」、「TRK180M」、SGL製「50K NCF0°/90°」等の炭素繊維ファブリック、三菱ケミカル(株)製のPYROFIL「HT」、「IM」、「HM」シリーズ、GRAFIL「HT」シリーズ、「DIALEAD」シリーズの炭素繊維トウ、が挙げられる。
 外層が繊維強化複合材である場合、外層中の強化繊維の含有量は、高強度及び高弾性率を得る観点から、外層中の強化繊維の体積分率が、好ましくは0.10以上、より好ましくは0.20以上、更に好ましくは0.30以上、より更に好ましくは0.40以上となる範囲である。また、耐衝撃性及び成形加工性の観点からは、好ましくは0.85以下、より好ましくは0.80以下、更に好ましくは0.70以下となる範囲である。
 外層中の強化繊維の体積分率Vfは下記式から算出することができる。
   Vf={強化繊維の質量(g)/強化繊維の比重}÷[{強化繊維の質量(g)/強化繊維の比重}+{マトリックス樹脂の質量(g)/マトリックス樹脂の比重}]
<多層構造体の構成>
 本発明の多層構造体は、前記エポキシ樹脂系発泡体の少なくとも片面に外層を有していればよいが、機械強度向上の観点から、前記エポキシ樹脂系発泡体の両面に外層を有することが好ましい。すなわち本発明の多層構造体は、図1に示すように、外層(Ia)、前記エポキシ樹脂系発泡体からなるコア層、及び外層(Ib)を順に有することがより好ましい。
 図1は本発明の多層構造体100の一実施形態を示す断面模式図であり、1aは外層(Ia)、1bは外層(Ib)、2はコア層である。外層(Ia)及び外層(Ib)は、互いに同一の材料で構成されていてもよく、異なる材料で構成されていてもよい。
 本発明の多層構造体は、機械強度及び軽量性向上の観点からは、外層(Ia)、前記エポキシ樹脂系発泡体からなるコア層、及び外層(Ib)を順に有し、外層(Ia)及び外層(Ib)のうち少なくとも一方が、マトリックス樹脂及び強化繊維を含む繊維強化複合材であることが好ましく、外層(Ia)及び外層(Ib)が、共に繊維強化複合材であることが好ましい。
<多層構造体の製造方法>
 本発明の多層構造体の製造方法は特に制限されず、公知の方法を用いることができる。
 例えば、図1に示す、外層(Ia)、前記エポキシ樹脂系発泡体からなるコア層、及び外層(Ib)を順に有する多層構造体100の製造方法は、製造効率の向上の観点から、下記工程(i)~工程(iii)から選択される少なくとも一つの工程を含むことが好ましい。
工程(i):前記外層(Ia)又はその前駆体、前記アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)からなる発泡性層(II)、及び、前記外層(Ib)又はその前駆体を順に積層して積層体(i)を作製し、次いで、前記発泡性層(II)を発泡させる工程
工程(ii):前記外層(Ia)又はその前駆体、前記コア層、及び、前記外層(Ib)又はその前駆体を順に積層して積層体(ii)を作製し、次いで、前記外層(Ia)又はその前駆体、前記コア層、及び前記外層(Ib)又はその前駆体を一体化させる工程
工程(iii):前記外層(Ia)又はその前駆体と前記コア層とを積層し、一体化させて積層体(iii)を作製した後、該積層体(iii)と、前記外層(Ib)又はその前駆体とを積層し、一体化させる工程
(工程(i))
 工程(i)では、前記外層(Ia)又はその前駆体、前記アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)からなる発泡性層(II)、及び、前記外層(Ib)又はその前駆体を順に積層して積層体(i)を作製し、次いで、前記発泡性層(II)を発泡させる。
 工程(i)では、発泡性層(II)の発泡とともに、外層(Ia)、該発泡性層(II)を発泡させて得られるコア層、及び外層(Ib)を一体化させる。また、外層(Ia)及び外層(Ib)の前駆体は、発泡性層(II)の発泡とともに、それぞれ外層(Ia)及び外層(Ib)に変換される。
 「外層の前駆体」とは、例えば、外層がマトリックス樹脂及び強化繊維を含む繊維強化複合材である場合には、強化繊維にマトリックス樹脂前駆体を含浸させた強化繊維プリプレグが挙げられる。該強化繊維プリプレグは、市販のプリプレグを用いてもよく、公知のRTM(Resin Transfer Molding)成形、ハンドレイアップ成形等により作製したものでもよい。
 該強化繊維プリプレグは、好ましくは熱硬化性樹脂及びエネルギー線硬化性樹脂から選択される少なくとも一種のマトリックス樹脂前駆体と、強化繊維とを含み、より好ましくは、熱硬化性樹脂と強化繊維とを含み、更に好ましくは、エポキシ樹脂組成物と強化繊維とを含む。マトリックス樹脂前駆体及びその好ましい態様は、前記の通りである。
 前記積層体(i)は、例えば、外層(Ia)又はその前駆体の一方の面にエポキシ樹脂組成物(C)を塗布して発泡性層(II)を形成し、該発泡性層(II)の上に外層(Ib)又はその前駆体を積層して作製することができる。あるいは、エポキシ樹脂組成物(C)を予備反応させてシート状に成形した発泡性層(II)を予め作製し、外層(Ia)又はその前駆体、シート状に成形した発泡性層(II)、及び外層(Ib)又はその前駆体を順に積層して作製することもできる。
 本発明の多層構造体の製造効率向上の観点からは、前記積層体(i)は、予め作製した外層(Ia)及び外層(Ib)を用いて作製することが好ましい。積層体(i)の作製において、外層(Ia)及び外層(Ib)の前駆体を用いてもよいが、工程(i)において外層の前駆体の外層への変換と、発泡性層(II)の発泡とを同時に行うには、高温で長時間加熱する必要が生じるためである。
 工程(i)において、発泡性層(II)を発泡させる際の加熱温度及び加熱時間は適宜選択でき、例えば、前記エポキシ樹脂組成物(C)を発泡する工程における加熱温度及び加熱時間と同様の条件を用いることができる。
 発泡性層(II)を発泡させる際には、外層と、発泡性層(II)を発泡させて得られるコア層との層間接着性を向上させるために、熱プレス機等を用いて、加熱と同時に加圧を行ってもよい。加圧条件は特に制限されないが、通常、0.1~5MPaの範囲である。
(工程(ii))
 工程(ii)では、前記外層(Ia)又はその前駆体、前記コア層、及び、前記外層(Ib)又はその前駆体を順に積層して積層体(ii)を作製し、次いで、前記外層(Ia)又はその前駆体、前記コア層、及び前記外層(Ib)又はその前駆体を一体化させる。
 前記積層体(ii)は、予め作製したコア層を用いて、外層(Ia)又はその前駆体、コア層、外層(Ib)又はその前駆体を順に積層して作製することができる。
 工程(ii)で用いる外層又はその前駆体は、工程(i)に記載のものと同じである。
 多層構造体の製造効率向上の観点からは、前記積層体(ii)は、予め作製した外層(Ia)及び外層(Ib)を用いて、外層(Ia)、コア層、外層(Ib)を順に積層して作製することが好ましい。
 積層体(ii)における外層(Ia)又はその前駆体、コア層、及び外層(Ib)又はその前駆体を一体化させる方法としては、積層体(ii)を加熱条件に供する方法が挙げられる。該加熱条件に供することで、外層(Ia)及び外層(Ib)の前駆体は、それぞれ外層(Ia)及び外層(Ib)に変換され、コア層と一体化される。また、熱プレス機等を用いて、加熱と同時に加圧を行ってもよい。この際の好ましい加熱加圧条件は、工程(i)と同様である。
(工程(iii))
 工程(iii)では、前記外層(Ia)又はその前駆体と前記コア層とを積層し、一体化させて積層体(iii)を作製した後、該積層体(iii)と、前記外層(Ib)又はその前駆体とを積層し、一体化させる。
 前記積層体(iii)は、例えば、コア層の片面に、外層(Ia)又はその前駆体を積層し、加熱条件に供することにより作製できる。該加熱条件に供することで、外層(Ia)の前駆体は外層(Ia)に変換され、コア層と一体化される。また、熱プレス機等を用いて、加熱と同時に加圧を行ってもよい。この際の好ましい加熱加圧条件は、工程(i)と同様である。
 次いで、積層体(iii)のコア層側の面に、前記外層(Ib)又はその前駆体を積層し、外層(Ia)と同様の方法で一体化させ、所望の多層構造体を作製することができる。
 前記工程(i)~工程(iii)の中でも、製造効率の向上の観点、得られる多層構造体の層間接着性向上の観点からは、該多層構造体の製造方法は、工程(i)を含むことがより好ましい。
 本発明の多層構造体は、機械強度が高く、且つ軽量性を有することから、二酸化炭素吸収剤としての使用の他に、航空機の二次構造材をはじめ、自動車部材、建造物部材、パネル部材、電子・電機部材、筐体等に用いることができる。
 以下、本発明を実施例により説明するが、本発明は実施例の範囲に限定されない。なお本実施例において、各種測定は以下の方法により行った。
(アミン化合物の酸解離定数(pKa))
 アミン化合物の酸解離定数は、下記測定方法により求めた。
(1)アミン化合物0.2gを精製水30mLに溶解した。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することにより酸解離定数(pKa)を算出した。
 なお、測定時の温度は、25±2℃とした。
(アミン化合物のアミン価)
 アミン価はJIS K7237-1995に準じて、下記測定方法により測定した。
(1)アミン化合物0.1gを酢酸20mLに溶解した。
(2)上記(1)により得られた溶液を、電位差自動滴定装置(京都電子工業株式会社製、AT-610)を用いて、0.1規定過塩素酸-酢酸溶液で滴定することによりアミン価を算出した。
(アミン化合物の最大吸熱温度)
 アミン化合物に対して、次のようにしてDSC測定を行い、アミン化合物の最大吸熱温度を測定した。まず、アミン化合物に対し、測定温度範囲23~350℃、昇温速度10℃/分、窒素雰囲気の条件下で、示差熱重量測定計(製品名:DTG-60、株式会社島津製作所製)を用いて示差走査熱量測定を行った。これにより得られたDSC曲線から、アミン化合物の揮発に伴う吸熱量が最大になる温度を算出し、その温度をアミン化合物の最大吸熱温度とした。
(アミン化合物の二酸化炭素(CO)最大解離温度)
 開閉可能なデシケーター(内寸:370mm×260mm×272mm)内に二酸化炭素濃度計とシャーレを配置した。その後、アミン化合物(5mmol)をデシケーター内のシャーレに加え、すぐに扉を閉め、デシケーター内にアミン化合物を、23℃、50%RHの空気環境下、24時間静置した。なお、二酸化炭素の初期濃度は、約400ppmに調整した。
 次いで、デシケーター内からアミン化合物を取り出し、二酸化炭素を吸収させたアミン化合物を得た。二酸化炭素を吸収させたアミン化合物に対して、次のようにしてDSC測定を行い、アミン化合物の二酸化炭素最大解離温度を測定した。まず、アミン化合物に対し、測定温度範囲23~250℃、昇温速度10℃/分、窒素雰囲気の条件下で、示差熱重量測定計(製品名:DTG-60、株式会社島津製作所製)を用いて示差走査熱量測定を行った。これにより得られたDSC曲線から、二酸化炭素の脱離に伴う吸熱量が最大になる温度を算出し、その温度をアミン化合物の二酸化炭素最大解離温度とした。
 表1に記載の実施例及び比較例において、アミン化合物及びエポキシ樹脂としては以下のものを用いた。
(アミン化合物)
MXDA:メタキシリレンジアミン(三菱瓦斯化学株式会社製)
1,3-BAC:1,3-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学株式会社製)
AEP:N-(2-アミノエチル)ピペラジン(東京化成工業株式会社製)
PACM:4,4’-メチレンビス(シクロヘキシルアミン)(東京化成工業株式会社製)
IPDA:イソホロンジアミン(東京化成工業株式会社製)
(エポキシ樹脂)
bis-A型エポキシ樹脂:ビスフェノールA型液状エポキシ樹脂(三菱ケミカル(株)製「jER828」、ビスフェノールAジグリシジルエーテル、エポキシ当量186g/当量)
実施例1(エポキシ樹脂系発泡体の製造及び評価)
(1)アミン化合物への二酸化炭素の吸収(アミン化合物と二酸化炭素との反応物(a2)の調製)
 デシケーター内の容器に、アミン化合物であるMXDA(5mmol)を加え、すぐにデシケーターの扉を閉めた。次いで、デシケーター内にMXDAを、23℃、50%RHの空気環境下、1週間静置した。これにより、MXDAと空気中の二酸化炭素を反応させて、MXDAの炭酸塩を得た。ここで、反応ムラを抑制するために、適宜、アミン化合物が入っている容器を振り、未反応のMXDAが生じないようにした。なお、デシケーター内の二酸化炭素の初期濃度は、400ppmに調整した。
 次いで、MXDAの質量増加量を測定し、以下の式からアミン化合物の質量増加率を算出した。
 アミン化合物の質量増加率[質量%]=100×アミン化合物の質量増加量(g)/(初期のアミン化合物の質量(g)+アミン化合物の質量増加量(g))
(2)エポキシ樹脂組成物の調製
 前記(1)における初期のMXDAの活性アミン水素数を計算し、前記活性アミン水素数/エポキシ樹脂中のエポキシ基数が表1に記載の値となるようにbis-A型エポキシ樹脂を秤量した。
 次いで、(1)で得られたMXDAの炭酸塩とbis-A型エポキシ樹脂をディスパーで3000rpm、5分の条件で撹拌混合し、エポキシ樹脂組成物を得た。
(3)エポキシ樹脂系発泡体の製造
 (2)で得られたエポキシ樹脂組成物を縦×横×高さ=7×12×2.1cmの型に入れ、熱風乾燥機を用いて、加熱温度150℃、加熱時間30分の条件で加熱し、エポキシ樹脂組成物を硬化及び発泡させた。これにより、エポキシ樹脂系発泡体を得た。
 得られたエポキシ樹脂系発泡体について、以下の各評価をおこなった。得られた結果を表1に示す。
(発泡性の評価)
 エポキシ樹脂系発泡体の密度により、エポキシ樹脂組成物の発泡性を評価した。密度が低いほど発泡性に優れていることを意味する。
 エポキシ樹脂系発泡体の密度は、発泡体の質量と体積から算出した。
(二酸化炭素吸収能力の評価)
 開閉可能なデシケーター(内寸:370mm×260mm×272mm)内に、得られたエポキシ樹脂系発泡体と二酸化炭素濃度計を配置し、エポキシ樹脂系発泡体をデシケーター内に配置してから1000分後のデシケーター内の二酸化炭素濃度C1と、デシケーター内に配置してから1000分までの間におけるデシケーター内の二酸化炭素の最大濃度C2との差(C2-C1)から、エポキシ樹脂系発泡体の単位体積あたりの二酸化炭素の吸収量(g/cm)を算出した。
 なお、デシケーター内は、23℃、50%RHの空気環境下とし、二酸化炭素の初期濃度は、400ppmに調整した。
(実施例2~4及び比較例1)
 アミン化合物の種類を表1に示す化合物に変更した以外は実施例1と同様にしてエポキシ樹脂系発泡体をそれぞれ得た。
 得られたエポキシ樹脂系発泡体について、上記の各評価をそれぞれおこなった。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1より、実施例のエポキシ樹脂系発泡体は、比較例の発泡体よりも、二酸化炭素吸収量が多いことが分かる。すなわち、本発明のエポキシ樹脂系発泡体は、二酸化炭素吸収能力を向上できることが分かる。
実施例5(多層構造体の作製及び評価)
 以下の方法により、外層(Ia)、エポキシ樹脂系発泡体からなるコア層、及び外層(Ib)が順に積層された、図1に示す多層構造体を作製し、評価を行った。
(1)外層(Ia)、(Ib)用の炭素繊維強化複合材の作製
 エポキシ樹脂であるビスフェノールA型液状エポキシ樹脂(OLIN製「DER332」)を100g、エポキシ樹脂硬化剤である1,3-ビス(アミノメチル)シクロヘキサン(1,3-BAC、三菱瓦斯化学(株)製、シス/トランス比=77/23)19gを混合し、エポキシ樹脂組成物を調製した。該エポキシ樹脂組成物を、室温でのハンドレイアップにより炭素繊維織物(SGL製「50K NCF0°/90°」、300g/m、0.33mm厚、6ply)に含浸させて炭素繊維複合基材を作製した。次いで、オーブン内で予め130℃に加熱したアルミ上下型に炭素繊維複合基材を載せ、速やかに型を閉じ、3分加熱してエポキシ樹脂組成物を硬化させ、炭素繊維織物と、マトリックス樹脂であるエポキシ樹脂組成物の硬化物とからなる、外層用の炭素繊維強化複合材を得た。同様の方法で外層用の炭素繊維強化複合材を2枚作製した。
 炭素繊維強化複合材の厚さは2mm、炭素繊維強化複合材中の炭素繊維の体積分率Vfは0.49であった。
(2)エポキシ樹脂組成物(C)の調製
 アミン系硬化剤(A)として、実施例1で得られた反応物(a2)であるメタキシリレンジアミンの炭酸塩5.94g(32.96mmol)と、メタキシリレンジアミン(MXDA、三菱瓦斯化学(株)製)2.99g(21.95mmol)を用い、エポキシ樹脂(B)として、ビスフェノールA型液状エポキシ樹脂(三菱ケミカル(株)製「jER828」、ビスフェノールAジグリシジルエーテル、エポキシ当量186g/当量)40.90gを用いた。これらをディスパーで3000rpm、5分の条件で撹拌混合し、エポキシ樹脂組成物(C)を得た。アミン系硬化剤(A)中の活性アミン水素数/エポキシ樹脂(B)中のエポキシ基数は1/1である。
(3)多層構造体の作製
 前記(1)で作製した外層(Ia)用の炭素繊維強化複合材上に厚さ10mmのスペーサーを載置した。該スペーサー内に前記(2)で調製したエポキシ樹脂組成物(C)を塗布し、発泡性層(II)を形成した。さらに、該スペーサーの上に外層(Ib)用の炭素繊維強化複合材を重ね(積層体(i)の作製)、80℃で30分加熱して発泡性層(II)を発泡させ、外層(Ia)、エポキシ樹脂系発泡体からなるコア層、及び外層(Ib)が順に積層された多層構造体を作製した。
(4)多層構造体の評価
 前記(3)で作製した多層構造体について、以下の方法により機械強度及び比重を測定した。結果を表2に示す。
(機械強度)
 オートグラフ((株)島津製作所製「AG-Xplus 100kN」)を用いて、温度23℃、支点間距離80mm、試験速度5mm/分で曲げ試験を行い、曲げ強度(MPa)、比強度(N・m/kg)、曲げ弾性率(GPa)、最大試験力(N)、及び変位(mm)を測定した。
(比重)
 電子比重計(アルファミラージュ(株)製「MDS-300」)を用いて測定した。
Figure JPOXMLDOC01-appb-T000005
実施例6(多層構造体の作製及び層間接着性評価)
 以下の方法により、外層(Ia)、エポキシ樹脂系発泡体からなるコア層、及び外層(Ib)が順に積層された、図1に示す多層構造体を作製し、層間接着性の評価を行った。
(1)外層(Ia)、(Ib)用の炭素繊維強化複合材の作製
 実施例5と同様の方法で外層(Ia)、(Ib)用の炭素繊維強化複合材を作製した。
(2)エポキシ樹脂組成物(C)の調製
 アミン系硬化剤(A)として、実施例1で得られた反応物(a2)であるメタキシリレンジアミンの炭酸塩1.35g(7.49mmol)と、メタキシリレンジアミン(MXDA、三菱瓦斯化学(株)製)0.68g(4.99mmol)とを用い、エポキシ樹脂(B)として、ビスフェノールA型液状エポキシ樹脂(三菱ケミカル(株)製「jER828」、ビスフェノールAジグリシジルエーテル、エポキシ当量186g/当量)9.30gを用いた。これらをディスパーで3000rpm、5分の条件で撹拌混合し、エポキシ樹脂組成物(C)を得た。アミン系硬化剤(A)中の活性アミン水素数/エポキシ樹脂(B)中のエポキシ基数は1/1である。
(3)多層構造体(JIS K6851:1994記載の試験片)の作製
 前記(1)で作製した外層(Ia)用の炭素繊維強化複合材上に、前記(2)で調製したエポキシ樹脂組成物(C)を厚さ1mmになるように塗布し、60℃で45分加熱し、発泡性層(II)を形成した。さらに、発泡性層(II)の上に外層(Ib)用の炭素繊維強化複合材を重ね(積層体(i)の作製)、130℃で15分加熱して発泡性層(II)を発泡させ、外層(Ia)、エポキシ樹脂系発泡体からなるコア層、及び外層(Ib)が順に積層された多層構造体を作製した。該多層構造体はJIS K6851:1994記載の試験片形状であり、同様の方法で試験片を3個作製した。
(4)層間接着性の評価
 前記(3)で作製した多層構造体(試験片)を用いて、オートグラフ((株)島津製作所製「AG-Xplus 100kN」)にて、JIS K6851:1994に準拠した方法で、23℃、試験速度1mm/分で引張試験を行い、最大剪断応力(MPa)を測定した。3回の試験結果の平均値を表3に示す。値が大きいほど層間接着性が高いことを意味する。
実施例7
 実施例6において、アミン系硬化剤(A)として、実施例1で得られた反応物(a2)であるメタキシリレンジアミンの炭酸塩1.35g(7.49mmol)と、1,3-ビス(アミノメチル)シクロヘキサン(1,3-BAC、三菱瓦斯化学(株)製)0.71g(4.99mmol)とを用いたこと以外は、実施例6と同様の方法で多層構造体の作製及び層間接着性評価を行った。結果を表3に示す。
実施例8
 実施例6において、アミン系硬化剤(A)として、実施例1で得られた反応物(a2)であるメタキシリレンジアミンの炭酸塩1.13g(6.27mmol)と、イソホロンジアミン(IPDA、EVONIK製)1.06g(6.22mmol)とを用いたこと以外は、実施例6と同様の方法で多層構造体の作製及び層間接着性評価を行った。結果を表3に示す。
実施例9~11
 外層(Ia)、(Ib)として、鉄材(株式会社パルテック製「SS400 片面サンドブラスト」、25mm×100mm×厚さ1.6mm)を準備した。
 実施例6において、外層(Ia)、(Ib)として上記鉄材を用い、アミン系硬化剤(A)として、メタキシリレンジアミンと、実施例1で得られた反応物(a2)であるメタキシリレンジアミンの炭酸塩とを表3に記載の割合で用いたこと以外は、実施例6と同様の方法で多層構造体の作製及び層間接着性評価を行った。結果を表3に示す。
実施例12
 外層(Ia)、(Ib)として、鉄材(株式会社パルテック製「SS400 片面サンドブラスト」、25mm×100mm×厚さ1.6mm)を準備した。
 実施例7において、外層(Ia)、(Ib)として上記鉄材を用い、アミン系硬化剤(A)として、1,3-ビス(アミノメチル)シクロヘキサンと、実施例1で得られた反応物(a2)であるメタキシリレンジアミンの炭酸塩とを表3に記載の割合で用いたこと以外は、実施例7と同様の方法で多層構造体の作製及び層間接着性評価を行った。結果を表3に示す。
実施例13
 外層(Ia)、(Ib)として、鉄材(株式会社パルテック製「SS400 片面サンドブラスト」、25mm×100mm×厚さ1.6mm)を準備した。
 実施例8において、外層(Ia)、(Ib)として上記鉄材を用い、アミン系硬化剤(A)として、イソホロンジアミンと、実施例1で得られた反応物(a2)であるメタキシリレンジアミンの炭酸塩とを表3に記載の割合で用いたこと以外は、実施例8と同様の方法で多層構造体の作製及び層間接着性評価を行った。結果を表3に示す。
実施例14
 実施例13において、実施例1で得られた反応物(a2)に替えて、実施例4で得られた反応物(a2)であるイソホロンジアミンの炭酸塩を用い、アミン系硬化剤(A)として、イソホロンジアミンと、イソホロンジアミンの炭酸塩とを表3に記載の割合で用いたこと以外は、実施例13と同様の方法で多層構造体の作製及び層間接着性評価を行った。結果を表3に示す。なお、イソホロンジアミンの炭酸塩は、イソホロンジアミン1モルに対し二酸化炭素が1モル、水が1モル付加していることから、モル質量は232.31g/molとして計算した。
Figure JPOXMLDOC01-appb-T000006
実施例15~17、19
 実施例10において、外層(Ia)、(Ib)を表4に記載の材質に変更したこと以外は、実施例10と同様の方法で多層構造体の作製及び層間接着性評価を行った。結果を表4に示す。
実施例18
(1)外層(Ia)、(Ib)用のガラス繊維強化複合材の作製
 エポキシ樹脂であるビスフェノールA型液状エポキシ樹脂(OLIN製「DER332」)を100g、エポキシ樹脂硬化剤である1,3-ビス(アミノメチル)シクロヘキサン(1,3-BAC、三菱瓦斯化学(株)製、シス/トランス比=77/23)19gを混合し、エポキシ樹脂組成物を調製した。調製したエポキシ樹脂組成物を、室温でのVa-RTM成形により、16cm×16cmの平織ガラスクロス(セントラルグラスファイバー(株)製ロービングクロス「ERW320-554A」、厚さ0.3mm)に含浸させてプリプレグを作製した。次いで、該プリプレグを60℃の熱風乾燥機内で15時間保持してエポキシ樹脂組成物を熱硬化させ、厚さ2mmの外層用のガラス繊維強化複合材を作製した。
(2)エポキシ樹脂組成物(C)の調製、多層構造体の作製及び層間接着性評価
 実施例10において、外層(Ia)、(Ib)を上記ガラス繊維強化複合材に変更したこと以外は、実施例10と同様の方法でエポキシ樹脂組成物(C)の調製、多層構造体の作製及び層間接着性評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 表4に記載の外層の詳細は下記である。
銅:株式会社スタンダードテストピース製 JIS K6850試験片「C1020P-1/2H」、25mm×100mm×厚さ2mm
SUS:株式会社スタンダードテストピース製 JIS K6850試験片「SUS304-2B」、25mm×100mm×厚さ2mm
Al:株式会社スタンダードテストピース製 JIS K6850試験片「A1050P-H24」、25mm×100mm×厚さ2mm
GFRP:実施例18で作製したガラス繊維強化複合材
CFRP:実施例5で作製した炭素繊維強化複合材
 本発明によれば、二酸化炭素吸収能力が向上したエポキシ樹脂系発泡体を提供することができる。該発泡体は、多層構造体のコア材としても有用である。
100   多層構造体
1a,1b 外層
2     エポキシ樹脂系発泡体(コア層)

Claims (17)

  1.  アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)を発泡してなるエポキシ樹脂系発泡体(D)であって、
     前記アミン系硬化剤(A)が、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物(a2)を含み、前記環式アミン化合物(a1)が第一級炭素原子に結合したアミノ基を有する、エポキシ樹脂系発泡体。
  2.  前記アミン化合物を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出される前記アミン化合物の質量増加率が15質量%以上50質量%以下である、請求項1に記載のエポキシ樹脂系発泡体。
     アミン化合物の質量増加率[質量%]=100×アミン化合物の質量増加量(g)/(アミン化合物の質量(g)+アミン化合物の質量増加量(g))
  3.  前記エポキシ樹脂系発泡体(D)の単位体積あたりの二酸化炭素の吸収量が0.003g/cm以上である、請求項1又は2に記載のエポキシ樹脂系発泡体。
  4.  前記エポキシ樹脂系発泡体(D)の密度が0.01g/cm以上0.80g/cm以下である、請求項1~3のいずれかに記載のエポキシ樹脂系発泡体。
  5.  前記エポキシ樹脂(B)が、芳香環又は脂環式構造を分子内に有するエポキシ樹脂を含む、請求項1~4のいずれかに記載のエポキシ樹脂系発泡体。
  6.  前記環式アミン化合物(a1)が下記式(1)で示される化合物を含む、請求項1~5のいずれかに記載のエポキシ樹脂系発泡体。
    Figure JPOXMLDOC01-appb-C000001

    (上記式(1)中、R~Rはそれぞれ独立に水素原子、又はアミノ基、シアノ基及びフェニル基から選択される少なくとも一種の置換基を有していてもよい炭素数1以上10以下の炭化水素基を示し、R~R10はそれぞれ独立に水素原子又は炭素数1以上4以下の炭化水素基を示し、x及びyはそれぞれ独立に0以上6以下の整数を表し、x+yは1以上6以下であり、p及びqはそれぞれ独立に0以上4以下の整数であり、p及びqの少なくとも一方が1以上である。)
  7.  前記環式アミン化合物(a1)のアミノ基の数が2以上6以下である、請求項1~6のいずれかに記載のエポキシ樹脂系発泡体。
  8.  前記環式アミン化合物(a1)の環状構造が5員環及び6員環から選択される少なくとも一種を含む、請求項1~7のいずれかに記載のエポキシ樹脂系発泡体。
  9.  前記環式アミン化合物(a1)がビス(アミノメチル)シクロヘキサン及びその誘導体、リモネンジアミン及びその誘導体、並びにイソホロンジアミン及びその誘導体から選択される少なくとも一種を含む、請求項1~8のいずれかに記載のエポキシ樹脂系発泡体。
  10.  請求項1~9のいずれかに記載のエポキシ樹脂系発泡体(D)を含む二酸化炭素吸収剤。
  11.  アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)を発泡する工程を含み、
     前記アミン系硬化剤(A)が、環式アミン化合物(a1)を含むアミン化合物と二酸化炭素との反応物(a2)を含み、前記環式アミン化合物(a1)が第一級炭素原子に結合したアミノ基を有する、エポキシ樹脂系発泡体の製造方法。
  12.  前記エポキシ樹脂組成物(C)を発泡する工程の前に、前記アミン化合物を二酸化炭素濃度が0.01体積%以上10体積%以下の気体に接触させることにより、前記アミン化合物と前記二酸化炭素を反応させて前記反応物(a2)を得る工程を更に含む、請求項11に記載のエポキシ樹脂系発泡体の製造方法。
  13.  前記アミン化合物を23℃、50%RHの空気環境下、1週間静置したときの、下記式で算出される前記アミン化合物の質量増加率が15質量%以上50質量%以下である、請求項11又は12に記載のエポキシ樹脂系発泡体の製造方法。
     アミン化合物の質量増加率[質量%]=100×アミン化合物の質量増加量(g)/(アミン化合物の質量(g)+アミン化合物の質量増加量(g))
  14.  請求項1~9のいずれかに記載のエポキシ樹脂系発泡体の少なくとも片面に外層を有する、多層構造体。
  15.  前記多層構造体が、外層(Ia)、前記エポキシ樹脂系発泡体からなるコア層、及び外層(Ib)を順に有する、請求項14に記載の多層構造体。
  16.  前記外層(Ia)及び前記外層(Ib)のうち少なくとも一方が、マトリックス樹脂及び強化繊維を含む繊維強化複合材である、請求項15に記載の多層構造体。
  17.  下記工程(i)~工程(iii)から選択される少なくとも一つの工程を含む、請求項15又は16に記載の多層構造体の製造方法。
    工程(i):前記外層(Ia)又はその前駆体、前記アミン系硬化剤(A)及びエポキシ樹脂(B)を含むエポキシ樹脂組成物(C)からなる発泡性層(II)、及び、前記外層(Ib)又はその前駆体を順に積層して積層体(i)を作製し、次いで、前記発泡性層(II)を発泡させる工程
    工程(ii):前記外層(Ia)又はその前駆体、前記コア層、及び、前記外層(Ib)又はその前駆体を順に積層して積層体(ii)を作製し、次いで、前記外層(Ia)又はその前駆体、前記コア層、及び前記外層(Ib)又はその前駆体を一体化させる工程
    工程(iii):前記外層(Ia)又はその前駆体と前記コア層とを積層し、一体化させて積層体(iii)を作製した後、該積層体(iii)と、前記外層(Ib)又はその前駆体とを積層し、一体化させる工程
PCT/JP2022/031250 2021-09-02 2022-08-18 エポキシ樹脂系発泡体、二酸化炭素吸収剤、エポキシ樹脂系発泡体の製造方法、多層構造体並びにその製造方法 WO2023032698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280058022.6A CN117881728A (zh) 2021-09-02 2022-08-18 环氧树脂系发泡体、二氧化碳吸收剂、环氧树脂系发泡体的制造方法、多层结构体以及其制造方法
JP2023545440A JPWO2023032698A1 (ja) 2021-09-02 2022-08-18
KR1020247004098A KR20240066246A (ko) 2021-09-02 2022-08-18 에폭시 수지계 발포체, 이산화탄소 흡수제, 에폭시 수지계 발포체의 제조방법, 다층 구조체 그리고 그의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-143143 2021-09-02
JP2021143143 2021-09-02
JP2022-070863 2022-04-22
JP2022070863 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023032698A1 true WO2023032698A1 (ja) 2023-03-09

Family

ID=85411116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031250 WO2023032698A1 (ja) 2021-09-02 2022-08-18 エポキシ樹脂系発泡体、二酸化炭素吸収剤、エポキシ樹脂系発泡体の製造方法、多層構造体並びにその製造方法

Country Status (4)

Country Link
JP (1) JPWO2023032698A1 (ja)
KR (1) KR20240066246A (ja)
TW (1) TW202319461A (ja)
WO (1) WO2023032698A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320187A (en) * 1962-06-27 1967-05-16 Samuel L Burt Epoxy resin foaming process
US3425964A (en) * 1964-10-09 1969-02-04 Nat Starch Chem Corp Latent curing agents for thermosetting polymers
JPS57151343A (en) * 1981-03-16 1982-09-18 Nissan Motor Reinforcing body for reinforcing board material
JPS57156217A (en) * 1981-03-20 1982-09-27 Nissan Motor Co Ltd Molding method of frp cylindrical body
JPH04266940A (ja) * 1991-02-20 1992-09-22 Nippon Oil Co Ltd 複合材料用エポキシ樹脂組成物、中間材および複合材料
JPH05186625A (ja) * 1992-01-09 1993-07-27 Three Bond Co Ltd 加熱発泡性シート組成物
JPH06123158A (ja) * 1992-10-13 1994-05-06 Shimizu Corp 建築用複合材
JP2007519540A (ja) * 2004-02-02 2007-07-19 エル アンド エル プロダクツ, インク. 複合材料におけるまたはそれに関係する改良
WO2010123118A1 (ja) * 2009-04-24 2010-10-28 東ソー株式会社 ポリウレタンフォーム製造用の発泡性添加剤、及びそれを用いた硬質ポリウレタンフォームの製造方法
JP2013503215A (ja) * 2009-08-31 2013-01-31 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 中空構造部における低温発泡性エポキシ樹脂の使用
CN104945599A (zh) * 2015-06-18 2015-09-30 常州大学 一种潜伏性环氧树脂固化-发泡剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548656B2 (ja) 1992-01-22 1996-10-30 日本ゼオン株式会社 エポキシ樹脂系発泡性組成物
JP5087817B2 (ja) 2005-02-15 2012-12-05 三菱化学株式会社 エポキシ樹脂系発泡体の製造方法及びエポキシ樹脂発泡体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320187A (en) * 1962-06-27 1967-05-16 Samuel L Burt Epoxy resin foaming process
US3425964A (en) * 1964-10-09 1969-02-04 Nat Starch Chem Corp Latent curing agents for thermosetting polymers
JPS57151343A (en) * 1981-03-16 1982-09-18 Nissan Motor Reinforcing body for reinforcing board material
JPS57156217A (en) * 1981-03-20 1982-09-27 Nissan Motor Co Ltd Molding method of frp cylindrical body
JPH04266940A (ja) * 1991-02-20 1992-09-22 Nippon Oil Co Ltd 複合材料用エポキシ樹脂組成物、中間材および複合材料
JPH05186625A (ja) * 1992-01-09 1993-07-27 Three Bond Co Ltd 加熱発泡性シート組成物
JPH06123158A (ja) * 1992-10-13 1994-05-06 Shimizu Corp 建築用複合材
JP2007519540A (ja) * 2004-02-02 2007-07-19 エル アンド エル プロダクツ, インク. 複合材料におけるまたはそれに関係する改良
WO2010123118A1 (ja) * 2009-04-24 2010-10-28 東ソー株式会社 ポリウレタンフォーム製造用の発泡性添加剤、及びそれを用いた硬質ポリウレタンフォームの製造方法
JP2013503215A (ja) * 2009-08-31 2013-01-31 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 中空構造部における低温発泡性エポキシ樹脂の使用
CN104945599A (zh) * 2015-06-18 2015-09-30 常州大学 一种潜伏性环氧树脂固化-发泡剂及其制备方法

Also Published As

Publication number Publication date
KR20240066246A (ko) 2024-05-14
TW202319461A (zh) 2023-05-16
JPWO2023032698A1 (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
US10214612B2 (en) Epoxy resin composition comprising 2-(2,2,6,6-tetramethylpiperidin-4-yl)propane-1,3-diamine as hardener
RU2657298C2 (ru) Композиции огнестойких эпоксидных смол и их использование
US10221277B2 (en) Epoxy resin composition comprising 2-(3-(aminomethyl)-3,5,5-trimethylcyclohexyl)propane-1,3-diamine (AM-CPDA) as hardener
EP2935421B1 (en) Fast cure epoxy resin systems
US20100222461A1 (en) Epoxy compositions with improved mechanical performance
US9856354B2 (en) Epoxy resin composition and prepreg using the same, fiber-reinforced composite resin tubular body manufactured from the prepreg and manufacturing method therefor, and fiber-reinforced composite resin molded body
KR20110120314A (ko) 벤조옥사진 수지 조성물
US20170355810A1 (en) Epoxy resin composition comprising 2-(3,3,5-trimethylcyclohexyl)propane-1,3-diamine as hardener
TW201702307A (zh) 環氧樹脂組成物、預浸體、碳纖維強化複合材料及此等之製造方法
EP2709833B1 (en) Fibre reinforced composite moulding
TW201224033A (en) Solvent-free benzoxazine based thermosetting resin composition
JP7363946B2 (ja) 炭素繊維プリプレグ及び樹脂組成物
JP2006265458A (ja) プリプレグ用樹脂組成物およびプリプレグ
WO2019167579A1 (ja) 熱硬化性樹脂組成物、プリプレグおよび繊維強化複合材料
JP6790078B2 (ja) 急速硬化エポキシ樹脂組成物
RU2705724C2 (ru) Смоляная композиция
WO2004096885A1 (ja) プリプレグ用樹脂組成物
WO2023032698A1 (ja) エポキシ樹脂系発泡体、二酸化炭素吸収剤、エポキシ樹脂系発泡体の製造方法、多層構造体並びにその製造方法
TW201942179A (zh) 具有噁唑烷酮結構的環氧樹脂、製造方法、環氧樹脂組成物、纖維強化複合材料及成形體
EP4397703A1 (en) Epoxy resin foam, carbon dioxide absorbent, method for producing epoxy resin foam, multilayer structure and method for producing same
JP2013142123A (ja) プリプレグ及びプリプレグの製造方法
US20200317913A1 (en) Thermosetting resin composition
CN117881728A (zh) 环氧树脂系发泡体、二氧化碳吸收剂、环氧树脂系发泡体的制造方法、多层结构体以及其制造方法
WO2023062999A1 (ja) エポキシ樹脂組成物及びその硬化物、繊維強化複合材、高圧ガス容器
JP7431508B2 (ja) バインダー樹脂組成物、プリフォーム、並びに繊維強化複合材料、及び繊維強化複合材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545440

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280058022.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022864283

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864283

Country of ref document: EP

Effective date: 20240402