WO2023032577A1 - スイッチング電源装置 - Google Patents
スイッチング電源装置 Download PDFInfo
- Publication number
- WO2023032577A1 WO2023032577A1 PCT/JP2022/029791 JP2022029791W WO2023032577A1 WO 2023032577 A1 WO2023032577 A1 WO 2023032577A1 JP 2022029791 W JP2022029791 W JP 2022029791W WO 2023032577 A1 WO2023032577 A1 WO 2023032577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- voltage
- switching
- power supply
- circuit
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 24
- 238000007599 discharging Methods 0.000 claims abstract description 3
- 238000010277 constant-current charging Methods 0.000 claims 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
Definitions
- the present disclosure relates to a switching power supply that generates a stepped-down output voltage by switching an input voltage with a switching element.
- COT Constant On Time
- AOT Adaptive On Time control has been proposed as a technique for suppressing frequency fluctuations that depend on input voltage. Although the AOT control can suppress the fluctuation of the ripple voltage to some extent, the dependence on the input voltage remains in principle.
- switching elements 1 and 2 such as N-channel MOSFETs are connected in series between the input power supply Vin and the ground.
- a common connection point of the switching elements 1 and 2 is grounded via a series circuit of an inductor 3 and a capacitor 4 .
- a common connection point of the inductor 3 and the capacitor 4 becomes an output terminal of the voltage VOUT.
- the output voltage VOUT is input to the Ton time generation circuit 5 and the ON timing generation circuit 6 .
- the Ton time generation circuit 5 is a series circuit of a current source circuit 7 and a capacitor 8 connected between the power supply and the ground. is connected to the common connection point of the current source circuit 7 and the capacitor 8, and the comparator 10 is connected to the ground via the switch circuit 9.
- a current source circuit 7 supplies a constant current Gm*VIN proportional to the input voltage VIN.
- the output terminal of the comparator 10 which is a comparison circuit, is connected to the reset terminal R of the RS flip-flop 11.
- An output terminal Q of the RS flip-flop 11 is connected to an input terminal of the predriver 12 .
- An output terminal of the ON timing generation circuit 6 is connected to the set terminal S of the RS flip-flop 11 .
- the pre-driver 12 turns the switching element 1 ON and the switching element 2 OFF. At this time, capacitor 4 is charged via inductor 3 .
- the predriver 12 turns off the switching element 1 and turns on the switching element 2 . At this time, capacitor 4 is discharged through inductor 3 .
- the switch circuit 9 of the Ton time generation circuit 5 is turned on by the signal DB, which is the inversion of the signal D.
- the ON timing generation circuit 6 sets the RS flip-flop 11 according to the result of comparing the voltage obtained by dividing the output voltage VOUT with the reference voltage, and makes the signal D high level. The above constitutes the switching power supply device 13 .
- ripple current ⁇ IL is represented by equation (1).
- ⁇ IL (VIN ⁇ VOUT)/L ⁇ Ton (1)
- Ton is the time during which the signal D maintains a high level, and is determined by charging the capacitor 4 with a constant current in AOT control.
- Ton (VOUT ⁇ C)/(Gm ⁇ VIN) (2) That is, it is inversely proportional to the input voltage VIN.
- the ripple current ⁇ IL is expressed by the formula (3).
- ⁇ IL (VOUT ⁇ C ⁇ Gm/L) ⁇ (1-VOUT/VIN) (3) That is, since the term of the input voltage VIN remains in the equation (3), the dependency is not eliminated.
- FIG. 12 shows a calculation example of the on-time Ton and the ripple current ⁇ IL. Ripple current ⁇ IL increases as input voltage VIN rises.
- the present disclosure has been made in view of the above circumstances, and an object thereof is to provide a COT control switching power supply capable of reducing the dependence of the input voltage on the ripple current.
- the on-timing generation unit generates the timing to turn on the switching element that generates the stepped-down output voltage by switching the input voltage, and the on-time generation unit turns on the switching element. to generate the time to keep the on state.
- the on-time generator is a combination of a current source circuit that flows a constant current proportional to the voltage obtained by subtracting the offset voltage from the input voltage, a capacitor that is charged by the constant current, and a discharge switching element that discharges the capacitor. and a comparison circuit for comparing the output voltage and the ramp wave signal.
- the current source circuit that constitutes the on-time generator supplies a constant current proportional to the voltage obtained by subtracting the offset voltage from the input voltage to charge the capacitor.
- the influence of the input voltage VIN can be reduced by the offset voltage in the equation (3) representing the ripple current ⁇ IL. Therefore, the dependence of input voltage on ripple current can be reduced.
- the offset voltage is set equal to the output voltage. This eliminates the dependence of the input voltage on the ripple current.
- the first current mirror circuit constituting the current source circuit subtracts the second current obtained by converting the offset voltage using the resistance from the first current obtained by converting the input voltage using the resistance. works like The second current mirror circuit mirrors a current obtained by subtracting the second current from the first current. With this configuration, the capacitor can be charged by generating a constant current proportional to the voltage obtained by subtracting the offset voltage from the input voltage.
- FIG. 1 is a diagram showing the configuration of a switching power supply device in one embodiment
- FIG. 2 is a diagram showing the configuration of the Ton time generation circuit
- FIG. 3 is a circuit diagram showing the detailed configuration of the current source
- FIG. 4 is a waveform diagram of each signal showing an operation sequence
- FIG. 5 is a diagram showing an example of calculation of the relationship between the input voltage VIN, the ON time Ton, and the ripple current ⁇ IL.
- FIG. 6 is a diagram (part 1) showing another configuration example of the power stage
- FIG. 7 is a diagram (part 2) showing another configuration example of the power stage;
- FIG. 1 is a diagram showing the configuration of a switching power supply device in one embodiment
- FIG. 2 is a diagram showing the configuration of the Ton time generation circuit
- FIG. 3 is a circuit diagram showing the detailed configuration of the current source
- FIG. 4 is a waveform diagram of each signal showing an operation sequence
- FIG. 5 is a diagram showing an example of calculation of the relationship between the input voltage VIN, the ON
- FIG. 8 is a diagram (part 3) showing another configuration example of the power stage;
- FIG. 9 is a diagram showing the configuration of a switching power supply device using a conventional AOT control system;
- FIG. 10 is a diagram showing the configuration of the Ton time generation circuit;
- FIG. 11 is a diagram showing the waveform of ripple current ⁇ IL,
- FIG. 12 is a diagram showing an example of calculated relationships among the input voltage VIN, the on-time Ton, and the ripple current ⁇ IL.
- a switching power supply device 21 of this embodiment shown in FIG. 2 replaces the current source circuit 7 with a current source circuit 23.
- the current source circuit 23 generates a constant current proportional to the difference between the input voltage VIN and the output voltage VOUT. Provides Gm*(VIN-VOUT). That is, in this embodiment, the offset voltage is set equal to the output voltage VOUT.
- the capacitor 8 , the switch circuit 9 and the current source circuit 23 constitute a ramp wave signal generation circuit 30 .
- the current charged in the capacitor 8 is offset to the negative side.
- ⁇ IL (VOUT ⁇ C)/(L ⁇ Gm) (7) becomes.
- FIG. 5 shows a calculation example of the on-time Ton and the ripple current ⁇ IL. It is shown that the ripple current ⁇ IL is independent of the input voltage VIN.
- the N-channel MOSFETs 24a and 24b constitute a first current mirror circuit 25.
- N-channel MOSFETs 26 a and 26 b constitute a second current mirror circuit 27 .
- the sources of the FETs 24a and 24b are grounded, and the gates are commonly connected to the drain of the FET 24a.
- An input voltage VIN is supplied to the drain of the FET 24a through the resistance element R1.
- the sources of the FETs 26a and 26b are grounded, and the gates are commonly connected to the drain of the FET 26a.
- the drain of FET 26b is connected to the drain of FET 24a.
- the P-channel MOSFETs 28a and 28b constitute a third current mirror circuit 29.
- the sources of the FETs 28a and 28b are connected to the power supply, and the gates are commonly connected to the drain of the FET 28b.
- the drain of FET28b is connected to the drain of FET24b.
- a drain of the FET 28 a is connected to one end of the capacitor 8 .
- the gate-source tube voltage of FETs 24 and 26 be Vgs.
- the current flowing through the resistance element R1 is (VIN-Vgs)/R1
- the current flowing through the resistance element R2 is (VOUT-Vgs)/R1.
- the second current mirror circuit 27 draws a current (VOUT ⁇ Vgs)/R1 from the drain of the FET 24a
- the third current mirror circuit 29 returns the above current and flows it to the capacitor 8, the charging current of the capacitor 8 becomes Gm ⁇ (VIN-VOUT).
- the on-time Ton is determined by the output voltage VOUT and the ramp wave whose slope is Gm ⁇ (VIN ⁇ VOUT)/C.
- the off-time Toff is determined at the timing of comparing the divided voltage signal FB of the output voltage VOUT and the reference voltage VREF.
- the ON timing generation circuit 6 generates the timing to turn on the switching element 1 that generates the stepped-down output voltage VOUT by switching the input voltage VIN.
- an ON time generator 22 generates a time for maintaining the ON state of the switching element 1 .
- the ON time generation unit 22 includes a current source circuit 23 that flows a constant current proportional to the voltage obtained by subtracting the offset voltage from the input voltage VIN, a capacitor 8 that is charged by the constant current, and the capacitor 8.
- a ramp wave signal generation circuit 30 for generating a ramp wave signal in combination with a switch circuit 9 which is a discharge switching element for discharging, and a comparator 10 for comparing the output voltage and the ramp wave signal are provided.
- the equation representing the ripple current ⁇ IL becomes the equation (7), and the influence of the input voltage VIN can be reduced by the offset voltage. can be eliminated.
- the first current mirror circuit 25 constituting the current source circuit 23 subtracts the second current obtained by converting the output voltage VOUT using the resistance element R2 from the first current obtained by converting the input voltage VIN using the resistance element R1.
- the second current mirror circuit 27 mirrors the current obtained by subtracting the second current from the first current.
- the current is supplied to capacitor 8 via third current mirror circuit 29 .
- the capacitor 8 can be charged by generating a constant current proportional to the voltage obtained by subtracting the output voltage VOUT from the input voltage VIN.
- FIG. 6 shows a configuration in which the switching element 1 and the inductor 3 are interchanged.
- a diode 24 is arranged instead of the switching element 2 .
- FIG. 8 is obtained by arranging a diode 24 in place of the switching element 1 in the configuration shown in FIG.
- the offset voltage need not necessarily be set equal to the output voltage, and may be set to a value equal to or lower than the output voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本開示の一態様は、スイッチング電源装置21において、ONタイミング生成回路6は、入力電圧VINをスイッチングすることで降圧した出力電圧VOUTを生成するスイッチング素子1をオンさせるタイミングを生成し、ON時間生成部22は、スイッチング素子1のオン状態を維持する時間を生成する。具体的には、入力電圧VINからオフセット電圧を減算した電圧に比例した定電流を流す電流源回路23、その定電流により充電されるコンデンサ8、このコンデンサ8を放電させる放電用スイッチング素子であるスイッチ回路9の組み合わせによりランプ波信号を生成するランプ波信号生成回路30と、出力電圧とランプ波信号とを比較する比較するコンパレータ10とを備える。
Description
本出願は、2021年8月30日に出願された日本出願番号2021-139966号に基づくもので、ここにその記載内容を援用する。
本開示は、入力電圧をスイッチング素子によりスイッチングして降圧した出力電圧を生成するスイッチング電源装置に関する。
スイッチング電源装置の制御方式であるCOT(Constant On Time)制御では、負荷電流や入力電圧に依存して周波数が変化するが、それに応じてリップル電圧も変化することが課題となっている。入力電圧に依存する周波数の変動を抑制する技術として、AOT(Adaptive On Time)制御が提案されている。AOT制御では、リップル電圧の変動をある程度抑制することはできるが、原理的に、入力電圧への依存性は残存する。
図9に示すように、入力電源Vinとグランドとの間には、例えばNチャネルMOSFET等のスイッチング素子1及び2が直列に接続されている。スイッチング素子1及び2の共通接続点は、インダクタ3及びコンデンサ4の直列回路を介してグランドに接続されている。インダクタ3及びコンデンサ4の共通接続点は、電圧VOUTの出力端子となる。
出力電圧VOUTは、Ton時間生成回路5及びONタイミング生成回路6に入力されている。図10に示すように、Ton時間生成回路5は、電源とグランドとの間に接続される電流源回路7及びコンデンサ8の直列回路、反転入力端子に出力電圧VOUTが入力され、非反転入力端子が電流源回路7及びコンデンサ8の共通接続点に接続されると共に、スイッチ回路9を介してグランドに接続されるコンパレータ10で構成されている。電流源回路7は、入力電圧VINに比例した定電流Gm*VINを供給する。
図9において、比較回路であるコンパレータ10の出力端子は、RSフリップフロップ11のリセット端子Rに接続されている。RSフリップフロップ11の出力端子Qは、プリドライバ12の入力端子に接続されている。ONタイミング生成回路6の出力端子は、RSフリップフロップ11のセット端子Sに接続されている。
RSフリップフロップ11がセットされ、出力端子Qがハイレベルになると、プリドライバ12はスイッチング素子1をON,スイッチング素子2をOFFにする。この時、コンデンサ4は、インダクタ3を介して充電される。RSフリップフロップ11がリセットされ、出力端子Qがローレベルになると、プリドライバ12はスイッチング素子1をOFF,スイッチング素子2をONにする。この時、コンデンサ4は、インダクタ3を介して放電される。
出力端子Qより出力される信号をDとすると、Ton時間生成回路5のスイッチ回路9は、信号Dの反転である信号DBによってONされる。ONタイミング生成回路6は、出力電圧VOUTを分圧した電圧を基準電圧と比較した結果に応じて、RSフリップフロップ11をセットし、信号Dをハイレベルにする。以上がスイッチング電源装置13を構成している。
図11に示すように、リップル電流ΔILは、(1)式で表される。
ΔIL=(VIN-VOUT)/L×Ton …(1)
Tonは信号Dがハイレベルを維持する時間であり、AOT制御ではコンデンサ4への定電流充電で決定される。
Ton=(VOUT×C)/(Gm×VIN) …(2)
つまり、入力電圧VINに反比例する。
ΔIL=(VIN-VOUT)/L×Ton …(1)
Tonは信号Dがハイレベルを維持する時間であり、AOT制御ではコンデンサ4への定電流充電で決定される。
Ton=(VOUT×C)/(Gm×VIN) …(2)
つまり、入力電圧VINに反比例する。
(1)式に(2)式を代入すると、リップル電流ΔILは(3)式で表される。
ΔIL=(VOUT×C×Gm/L)×(1-VOUT/VIN) …(3)
すなわち、(3)式では入力電圧VINの項が残っているため、依存性が解消されていない。
図12に、オン時間Tonとリップル電流ΔILの計算例を示す。リップル電流ΔILは入力電圧VINの上昇に応じて増加している。
ΔIL=(VOUT×C×Gm/L)×(1-VOUT/VIN) …(3)
すなわち、(3)式では入力電圧VINの項が残っているため、依存性が解消されていない。
図12に、オン時間Tonとリップル電流ΔILの計算例を示す。リップル電流ΔILは入力電圧VINの上昇に応じて増加している。
本開示は上記事情に鑑みてなされたものであり、その目的は、リップル電流に対する入力電圧の依存性を低減できるCOT制御スイッチング電源装置を提供することにある。
請求項1記載のスイッチング電源装置によれば、オンタイミング生成部は、入力電圧をスイッチングすることで降圧した出力電圧を生成するスイッチング素子をオンさせるタイミングを生成し、オン時間生成部は、スイッチング素子のオン状態を維持する時間を生成する。そのオン時間生成部は、入力電圧からオフセット電圧を減算した電圧に比例した定電流を流す電流源回路と、その定電流により充電されるコンデンサと、このコンデンサを放電させる放電用スイッチング素子との組み合わせによりランプ波信号を生成するランプ波信号生成部と、出力電圧とランプ波信号とを比較する比較する比較回路とを備える。
即ち、図9及び図10に示す構成を前提として、オン時間生成部を構成する電流源回路が、入力電圧からオフセット電圧を減算した電圧に比例した定電流を流してコンデンサを充電する。これにより、リップル電流ΔILを表す(3)式において、入力電圧VINが及ぼす影響をオフセット電圧分だけ低減できるようになる。したがって、リップル電流に対する入力電圧の依存性を低減できる。
請求項2記載のスイッチング電源装置によれば、オフセット電圧を出力電圧に等しく設定する。これにより、リップル電流に対する入力電圧の依存性をなくすことができる。
請求項3記載のスイッチング電源装置によれば、電流源回路を構成する第1カレントミラー回路は、入力電圧を抵抗により変換した第1電流から、オフセット電圧を抵抗により変換した第2電流を減算するように動作する。第2カレントミラー回路は、第1電流から第2電流を減算した電流をミラーさせて流す。このように構成すれば、入力電圧からオフセット電圧を減算した電圧に比例した定電流を生成してコンデンサを充電できる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態において、スイッチング電源装置の構成を示す図であり、
図2は、Ton時間生成回路の構成を示す図であり、
図3は、電流源の詳細構成を示す回路図であり、
図4は、動作シーケンスを示す各信号の波形図であり、
図5は、入力電圧VINとオン時間Ton及びリップル電流ΔILの関係を計算した一例を示す図であり、
図6は、パワーステージの他の構成例を示す図(その1)であり、
図7は、パワーステージの他の構成例を示す図(その2)であり、
図8は、パワーステージの他の構成例を示す図(その3)であり、
図9は、従来のAOT制御方式によるスイッチング電源装置の構成を示す図であり、
図10は、Ton時間生成回路の構成を示す図であり、
図11は、リップル電流ΔILの波形を示す図であり、
図12は、入力電圧VINとオン時間Ton及びリップル電流ΔILの関係を計算した一例を示す図である。
以下、一実施形態について説明する。図1に示す本実施形態のスイッチング電源装置21は、従来のスイッチング電源装置13におけるTon時間生成回路5を、Ton時間生成回路22に置き換えたものである。図2に示すように、Ton時間生成回路22は、電流源回路7を電流源回路23に置き換えたもので、電流源回路23は、入力電圧VINと出力電圧VOUTとの差に比例した定電流Gm*(VIN-VOUT)を供給する。つまり本実施形態では、オフセット電圧を出力電圧VOUTに等しく設定している。また、コンデンサ8、スイッチ回路9及び電流源回路23は、ランプ波信号生成回路30を構成している。
本実施形態では、Ton時間生成回路22において、コンデンサ8に充電する電流を負側にオフセットさせる。オフセット電流をIoffsetとして、(2)式にオフセット電流Ioffsetの作用を加えて示すと、
Ton=(VOUT×C)/{(Gm×VIN)-Ioffset} …(4)
となる。そこで、
Ioffset=Gm×VOUT …(5)
に設定すれば、(4)式は
Ton=(VOUT×C)/{(Gm×VIN)-Gm×VOUT}
=(VOUT×C)/{(Gm×(VIN-×VOUT)} …(6)
となる。(1)式に(6)式を代入すると、
ΔIL=(VOUT×C)/(L×Gm) …(7)
となる。これにより、入力電圧VINの項がなくなるので、リップル電流ΔILの依存性を解消できる。
図5に、オン時間Tonとリップル電流ΔILの計算例を示す。リップル電流ΔILは入力電圧VINに依存しないことが示されている。
Ton=(VOUT×C)/{(Gm×VIN)-Ioffset} …(4)
となる。そこで、
Ioffset=Gm×VOUT …(5)
に設定すれば、(4)式は
Ton=(VOUT×C)/{(Gm×VIN)-Gm×VOUT}
=(VOUT×C)/{(Gm×(VIN-×VOUT)} …(6)
となる。(1)式に(6)式を代入すると、
ΔIL=(VOUT×C)/(L×Gm) …(7)
となる。これにより、入力電圧VINの項がなくなるので、リップル電流ΔILの依存性を解消できる。
図5に、オン時間Tonとリップル電流ΔILの計算例を示す。リップル電流ΔILは入力電圧VINに依存しないことが示されている。
図3に示すように、電流源回路23において、NチャネルMOSFET24a及び24bは、第1カレントミラー回路25を構成している。また、NチャネルMOSFET26a及び26bは、第2カレントミラー回路27を構成している。FET24a及び24bのソースはグランドに接続され、ゲートはFET24aのドレインに共通に接続されている。入力電圧VINは、抵抗素子R1を介してFET24aのドレインに供給されている。
FET26a及び26bのソースはグランドに接続され、ゲートはFET26aのドレインに共通に接続されている。出力電圧VOUTは、抵抗素子R2を介してFET26aのドレインに供給されている。尚、R1=R2である。FET26bのドレインは、FET24aのドレインに接続されている。
PチャネルMOSFET28a及び28bは、第3カレントミラー回路29を構成している。FET28a及び28bのソースは電源に接続され、ゲートはFET28bのドレインに共通に接続されている。FET28bのドレインは、FET24bのドレインに接続されている。FET28aのドレインは、コンデンサ8の一端に接続される。
次に、電流源回路23の動作について説明する。FET24,26のゲート-ソース管電圧をVgsとする。抵抗素子R1に流れる電流は(VIN-Vgs)/R1となり、抵抗素子R2に流れる電流は(VOUT-Vgs)/R1となる。第2カレントミラー回路27は、FET24aのドレインより電流(VOUT-Vgs)/R1を引くので、FET24bのドレインに流れる電流は、R1=R2=Rとすると、
(VIN-Vgs)/R-(VOUT-Vgs)/R=(VIN-VOUT)/R
になる。第3カレントミラー回路29は、上記の電流を折り返してコンデンサ8に流すので、コンデンサ8の充電電流は、Gm×(VIN-VOUT)となる。
(VIN-Vgs)/R-(VOUT-Vgs)/R=(VIN-VOUT)/R
になる。第3カレントミラー回路29は、上記の電流を折り返してコンデンサ8に流すので、コンデンサ8の充電電流は、Gm×(VIN-VOUT)となる。
図4に示すように、オン時間Tonは、出力電圧VOUTと、傾きがGm×(VIN-VOUT)/Cとなるランプ波で決まる。オフ時間Toffは、出力電圧VOUTの分圧信号FBと基準電圧VREFとを比較したタイミングで決定される。
以上のように本実施形態によれば、スイッチング電源装置21において、ONタイミング生成回路6は、入力電圧VINをスイッチングすることで降圧した出力電圧VOUTを生成するスイッチング素子1をオンさせるタイミングを生成し、ON時間生成部22は、スイッチング素子1のオン状態を維持する時間を生成する。具体的には、ON時間生成部22は、入力電圧VINからオフセット電圧を減算した電圧に比例した定電流を流す電流源回路23と、その定電流により充電されるコンデンサ8と、このコンデンサ8を放電させる放電用スイッチング素子であるスイッチ回路9との組み合わせによりランプ波信号を生成するランプ波信号生成回路30と、出力電圧とランプ波信号とを比較する比較するコンパレータ10とを備える。
そして、オフセット電圧を出力電圧VOUTに等しく設定することで、リップル電流ΔILを表す式が(7)式となり、入力電圧VINが及ぼす影響をオフセット電圧分だけ低減でき、リップル電流に対する入力電圧の依存性をなくすことができる。
また、電流源回路23を構成する第1カレントミラー回路25は、入力電圧VINを抵抗素子R1により変換した第1電流から、出力電圧VOUTを抵抗素子R2により変換した第2電流を減算するように動作する。第2カレントミラー回路27は、第1電流から第2電流を減算した電流をミラーさせて流す。その電流を、第3カレントミラー回路29を介してコンデンサ8に供給する。これにより、入力電圧VINから出力電圧VOUTを減算した電圧に比例した定電流を生成してコンデンサ8を充電できる。
(その他の実施形態)
図6から図8は、スイッチングを行うパワーステージについて、その他の構成例を示す。図6は、スイッチング素子1とインダクタ3とを入れ替えた構成である。図7は、スイッチング素子2に替えて、ダイオード24を配置している。図8は、図6に示す構成において、スイッチング素子1に替えて、ダイオード24を配置したものである。
オフセット電圧は、必ずしも出力電圧に等しく設定する必要はなく、出力電圧以下の値に設定すれば良い。
図6から図8は、スイッチングを行うパワーステージについて、その他の構成例を示す。図6は、スイッチング素子1とインダクタ3とを入れ替えた構成である。図7は、スイッチング素子2に替えて、ダイオード24を配置している。図8は、図6に示す構成において、スイッチング素子1に替えて、ダイオード24を配置したものである。
オフセット電圧は、必ずしも出力電圧に等しく設定する必要はなく、出力電圧以下の値に設定すれば良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (3)
- 入力電圧をスイッチング素子(1)によりスイッチングすることに基づき降圧した出力電圧を生成するもので、
前記スイッチング素子をオンさせるタイミングを生成するオンタイミング生成部(6)と、
前記スイッチング素子のオン状態を維持する時間を生成するオン時間生成部(22)を備え、
前記オン時間生成部は、前記入力電圧からオフセット電圧を減算した電圧に比例した定電流を流す電流源回路(23)と、前記定電流により充電されるコンデンサ(8)と、このコンデンサを放電させる放電用スイッチング素子(9)との組み合わせによりランプ波信号を生成するランプ波信号生成部(30)と、
前記出力電圧と前記ランプ波信号とを比較する比較する比較回路(10)とを備えるスイッチング電源装置。 - 前記オフセット電圧を、前記出力電圧とする請求項1記載のスイッチング電源装置。
- 前記電流源回路は、前記入力電圧を抵抗により変換した第1電流から、前記オフセット電圧を抵抗により変換した第2電流を減算するように動作する第1カレントミラー回路(25)と、
前記第1電流から前記第2電流を減算した電流をミラーさせて流す第2カレントミラー回路(27)とを備える請求項1又は2記載のスイッチング電源装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-139966 | 2021-08-30 | ||
JP2021139966A JP2023033964A (ja) | 2021-08-30 | 2021-08-30 | スイッチング電源装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023032577A1 true WO2023032577A1 (ja) | 2023-03-09 |
Family
ID=85411203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/029791 WO2023032577A1 (ja) | 2021-08-30 | 2022-08-03 | スイッチング電源装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023033964A (ja) |
WO (1) | WO2023032577A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116227474A (zh) * | 2023-05-09 | 2023-06-06 | 之江实验室 | 一种对抗文本的生成方法、装置、存储介质及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008092740A (ja) * | 2006-10-04 | 2008-04-17 | Thine Electronics Inc | コンパレータ方式dc−dcコンバータ |
JP2011087405A (ja) * | 2009-10-15 | 2011-04-28 | Panasonic Corp | スイッチングレギュレータ |
US20120019218A1 (en) * | 2010-07-26 | 2012-01-26 | Richtek Technology Corporation | Constant on-time switching regulator, and control method and on-time calculation circuit therefor |
WO2012147609A1 (ja) * | 2011-04-25 | 2012-11-01 | ローム株式会社 | スイッチング電源装置及びこれを用いた電子機器 |
US20160301303A1 (en) * | 2015-04-07 | 2016-10-13 | Virginia Tech Intellectual Properties, Inc. | Inverse Charge Current Mode (IQCM) Control for Power Converter |
-
2021
- 2021-08-30 JP JP2021139966A patent/JP2023033964A/ja active Pending
-
2022
- 2022-08-03 WO PCT/JP2022/029791 patent/WO2023032577A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008092740A (ja) * | 2006-10-04 | 2008-04-17 | Thine Electronics Inc | コンパレータ方式dc−dcコンバータ |
JP2011087405A (ja) * | 2009-10-15 | 2011-04-28 | Panasonic Corp | スイッチングレギュレータ |
US20120019218A1 (en) * | 2010-07-26 | 2012-01-26 | Richtek Technology Corporation | Constant on-time switching regulator, and control method and on-time calculation circuit therefor |
WO2012147609A1 (ja) * | 2011-04-25 | 2012-11-01 | ローム株式会社 | スイッチング電源装置及びこれを用いた電子機器 |
US20160301303A1 (en) * | 2015-04-07 | 2016-10-13 | Virginia Tech Intellectual Properties, Inc. | Inverse Charge Current Mode (IQCM) Control for Power Converter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116227474A (zh) * | 2023-05-09 | 2023-06-06 | 之江实验室 | 一种对抗文本的生成方法、装置、存储介质及电子设备 |
CN116227474B (zh) * | 2023-05-09 | 2023-08-25 | 之江实验室 | 一种对抗文本的生成方法、装置、存储介质及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
JP2023033964A (ja) | 2023-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8624566B2 (en) | Current-mode control switching regulator and operations control method thereof | |
US10075073B2 (en) | DC/DC converter and switching power supply having overcurrent protection | |
US7777472B2 (en) | Current detector circuit and current mode switching regulator | |
KR100744592B1 (ko) | Dc-dc 컨버터, dc-dc 컨버터의 제어 회로 및dc-dc 컨버터의 제어 방법 | |
JP5071138B2 (ja) | 電流負帰還回路およびそれを用いるdc−dcコンバータ | |
JP5151830B2 (ja) | 電流モード制御型dc−dcコンバータ | |
US20090115388A1 (en) | DC/DC converter | |
JP3829753B2 (ja) | Dc−dcコンバータ | |
US20090160416A1 (en) | Dc-dc converter | |
JP2008161001A (ja) | 電流モード制御型スイッチングレギュレータ及びその動作制御方法 | |
JP2004062331A (ja) | 直流電源装置 | |
KR20080025314A (ko) | Dc-dc 컨버터 및 dc-dc 컨버터의 제어 방법 | |
US10050532B2 (en) | DC-DC converter with pseudo ripple voltage generation | |
US20040257056A1 (en) | Switching regulator with improved load transient efficiency and method thereof | |
CN110149049B (zh) | 电压转换电路 | |
WO2023032577A1 (ja) | スイッチング電源装置 | |
JP2006014559A (ja) | Dc−dcコンバータ | |
CN115378246B (zh) | 具有过冲保护的开关电源 | |
KR20030082468A (ko) | Pfm 제어용 스위칭 레귤레이터 제어 회로 | |
US8018207B2 (en) | Switching regulator | |
US8416591B2 (en) | DC-DC converter with soft start circuit | |
JP7452395B2 (ja) | スイッチング電源の制御装置 | |
JP2010063290A (ja) | 電源制御回路 | |
US10454461B1 (en) | Frequency compensation circuit used in DC voltage converter | |
JP5864193B2 (ja) | スイッチング電源回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22864163 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22864163 Country of ref document: EP Kind code of ref document: A1 |