WO2023030509A1 - 一种肽脲素衍生物、含其的药物组合物及其应用 - Google Patents

一种肽脲素衍生物、含其的药物组合物及其应用 Download PDF

Info

Publication number
WO2023030509A1
WO2023030509A1 PCT/CN2022/116897 CN2022116897W WO2023030509A1 WO 2023030509 A1 WO2023030509 A1 WO 2023030509A1 CN 2022116897 W CN2022116897 W CN 2022116897W WO 2023030509 A1 WO2023030509 A1 WO 2023030509A1
Authority
WO
WIPO (PCT)
Prior art keywords
membered
ring
formula
compound
pharmaceutically acceptable
Prior art date
Application number
PCT/CN2022/116897
Other languages
English (en)
French (fr)
Inventor
余海华
王彦军
王羽
Original Assignee
晶核生物医药科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶核生物医药科技(南京)有限公司 filed Critical 晶核生物医药科技(南京)有限公司
Publication of WO2023030509A1 publication Critical patent/WO2023030509A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/397Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/428Thiazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/438The ring being spiro-condensed with carbocyclic or heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0215Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing natural amino acids, forming a peptide bond via their side chain functional group, e.g. epsilon-Lys, gamma-Glu
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a peptide urea derivative, a pharmaceutical composition containing it and application thereof.
  • Prostate cancer is the most common disease among men. It is the second most common cancer, after lung cancer.
  • the "2018 Cancer Statistics” report in the United States predicts that the incidence of prostate cancer in American men accounts for about 19% of the incidence of tumors, ranking first.
  • the incidence rate of prostate cancer in Chinese men is 3.25%, ranking sixth, but it has gradually increased in recent years. Therefore, whether in the world or in China, prostate cancer is a high incidence of cancer.
  • Prostate cancer begins in the tissue surrounding the prostate and as it grows, it gradually spreads to other vital organs such as the lungs and bones. In the early stage, there are no obvious symptoms, but as the prostate cancer grows, it can cause problems such as urethral compression and urinary tract obstruction, and further spread to the spine or pelvis.
  • imaging diagnostic methods such as SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography), based on the principle of labeling with radioactive isotopes that emit gamma rays or positrons, have been used
  • the PSMA-targeted polypeptide substances are distributed through the specific targeting of prostate cancer, thereby showing the existence and distribution of tumor cells in tomographic images and three-dimensional images.
  • PSMA ligands as targeting groups, which can bind to the protein PSMA (prostate-specific membrane antigen, prostate-specific membrane antigen) specifically expressed in prostate cancer .
  • PSMA is a type II transmembrane glycoprotein, also known as glutamic acid carboxypeptidase, which is a specific molecular marker of prostate cancer. It is expressed in a very small amount in kidney, small intestine, and brain tissue, and the expression level in tumor tissue is much higher than normal expression in the organization.
  • Typical ligands for PSMA are peptide derivatives such as Glu-urea-Lys (GUL) or Glu-urea-Cys (GUC).
  • the prepared radiopharmaceuticals can be used for PET or SPECT imaging of prostate cancer, or for the treatment of prostate cancer (MEder, et al., Bioconjugate Chem 2012, 23:688 -697).
  • the radioisotopes used for labeling peptides are mainly ⁇ -ray-emitting radionuclides, ⁇ -ray-emitting radionuclides, ⁇ -ray-emitting radionuclides, and positron beam-emitting radionuclides.
  • radionuclides emitting alpha rays and radionuclides emitting beta rays are used for therapy
  • radionuclides emitting gamma rays and radionuclides emitting positron beams are used for diagnosis by nuclear imaging.
  • BFCA bifunctional chelating agents
  • the direct binding method is mainly used for the labeling of various non-metallic radioactive isotopes such as 125I, 131I, etc.
  • the method using a bifunctional chelating agent (BFCA) is mainly used for the labeling of various metal radioisotopes, and the type of bifunctional chelating agent (BFCA) can be selected according to the properties of the ligand and the radioisotope.
  • the technical problem to be solved by the present invention is that the structure of the existing peptide urea derivatives is single, and the radiopharmaceuticals prepared by them may cause potential harm to the human body if they are taken up in organs such as the kidney and the residence time is too long. Insufficient residence time on tumor cells.
  • the present invention provides a peptide urea derivative, a pharmaceutical composition containing it and applications thereof.
  • the derivative has better chemical and biological properties than other similar peptide urea derivatives known so far, and the uptake and residence time on non-target cells such as kidneys are greatly reduced, and the uptake and retention time on target cells
  • the retention time is significantly improved, and it can be used not only for the diagnosis and grading of PSMA-positive prostate cancer before surgery, but also for the treatment of various types and stages of prostate cancer, achieving the integration of diagnosis and treatment, and has a wide application prospect.
  • the present invention provides a peptide urea derivative as shown in formula I, its pharmaceutically acceptable salt, its solvate or its pharmaceutically acceptable salt solvate;
  • L 1 is a 5-12-membered carboheterocycle, a 5-12-membered heteroaromatic ring, a 5-12-membered carboheterocycle substituted by R 1-1 or a 5-12-membered heteroaromatic ring substituted by R 1-2 ;
  • the number of heteroatoms is 1, 2 or 3, and the heteroatoms are selected from one or more of N, O and S; in the above-mentioned heteroaryl ring, the number of heteroatoms 1, 2 or 3 heteroatoms are selected from one or more of N, O and S;
  • R 1-1 and R 1-2 are independently F, Cl, Br or C 1 to C 3 Alkyl group; said L is linked to R through N atom;
  • L 2 is a bond, a 5-12-membered carbocycle, a 5-12-membered carboheterocycle, a 6-14-membered aromatic ring, a 5-12-membered heteroaromatic ring, a 5-12-membered carbocycle substituted by R 2-1 , a 5-12-membered carbocycle substituted by 5-12-membered carboheterocyclic ring substituted by R 2-2 , 6-14-membered aromatic ring substituted by R 2-3 or 5-12-membered heteroaromatic ring substituted by R 2-4 ; , the number of heteroatoms is 1, 2 or 3, and the heteroatoms are selected from one or more of N, O and S; in the heteroaryl ring, the number of heteroatoms is 1 or 2 or 3, the heteroatom is selected from one or more of N, O and S; R 2-1 , R 2-2 , R 2-3 and R 2-4 are independently F, Cl, Br or C 1 ⁇ C 3 alkyl; said
  • L 3 is -N(R 3-1 )- or -N(R 3-2 )-L 3-1 -; said L 3 is connected to R through an N atom;
  • R 3-1 and R 3-2 are independently H or C 1 -C 3 alkyl
  • L 4 is a 3-6-membered monocyclic carbocycle, a 5-12-membered bridging ring carbocycle, a 5-12-membered carboheterocycle, a 6-14-membered aromatic ring, a 5-12-membered heteroaromatic ring, and is substituted by R 4- 1 5-12 membered carboheterocyclic rings, 6-14-membered aromatic rings substituted by R 4-2 , 5-12-membered heteroaryl rings substituted by R 4-3 or 5-12-membered bridges substituted by R 4-4 ring carbocycle; in the carboheterocyclic ring, the number of heteroatoms is 1, 2 or 3, and the heteroatoms are selected from one or more of N, O and S; in the heteroaryl ring , the number of heteroatoms is 1, 2 or 3, and the heteroatoms are selected from one or more of N, O and S; R 4-1 , R 4-2 , R 4-3 and R 4- 4 is independently F, Cl,
  • L 5 is a bond, a 5-12-membered carbocycle, a 5-12-membered carboheterocycle, a 6-14-membered aromatic ring, a 5-12-membered heteroaryl ring, a 5-12-membered carbocycle substituted by R 5-1 , a 5-12-membered carbocycle substituted by 5-12-membered carboheterocyclic ring substituted by R 5-2 , 6-14-membered aromatic ring substituted by R 5-3 or 5-12-membered heteroaromatic ring substituted by R 5-4 ; , the number of heteroatoms is 1, 2 or 3, and the heteroatoms are selected from one or more of N, O and S; in the heteroaryl ring, the number of heteroatoms is 1 or 2 or 3, the heteroatom is selected from one or more of N, O and S; R 5-1 , R 5-2 , R 5-3 and R 5-4 are independently F, Cl, Br or C 1 ⁇ C 3 alkyl;
  • R is a group containing radioactive metal ions or a group capable of optical imaging.
  • L 1 is a bicyclic ring, wherein the ring directly connected to R does not have aromaticity.
  • L 1 is a fused ring, wherein the ring directly attached to R is not aromatic.
  • L 1 is a monocyclic ring.
  • the 5- to 12-membered carboheterocycle is a 6-11-membered carboheterocycle.
  • the number of heteroatoms may be 1 or 2.
  • the heteroatom in L 1 , in the 5- to 12-membered carboheterocyclic ring, the heteroatom may be N.
  • the 5- to 12-membered carboheterocyclic ring is a bicyclic ring.
  • the 5-12-membered heteroaryl ring is a 9-10-membered heteroaryl ring.
  • the 5- to 12-membered heteroaromatic ring is a bicyclic ring.
  • the number of heteroatoms in L 1 , in the 5- to 12-membered heteroaryl, the number of heteroatoms can be 1 or 2.
  • L 2 is a bond
  • the 5-12-membered heteroaryl ring may be a 9-10-membered heteroaryl ring.
  • the 5- to 12-membered heteroaryl ring in L 2 , can be a bicyclic ring.
  • the number of heteroatoms in L 2 , in the heteroaryl ring, the number of heteroatoms can be 2.
  • the heteroatoms in L 2 , in the heteroaryl ring, can be N and/or O.
  • the 6- to 14-membered aromatic ring may be a benzene ring or a naphthalene ring.
  • L 3 is -NH- or -NH-CH 2 -.
  • said L 4 is connected to L 3 through a C atom.
  • the 5-12-membered bridged ring carbocycle is a 5-8-membered bridged ring carbocycle.
  • the 6-14-membered aromatic ring is a 9-10-membered aromatic ring.
  • the 6- to 14-membered aromatic ring is a bicyclic ring.
  • the 6- to 14-membered aromatic ring is a condensed ring.
  • the 5-12-membered heteroaryl ring is a 5-10-membered heteroaryl ring.
  • the 5- to 12-membered heteroaromatic ring is monocyclic or bicyclic.
  • L 4 is
  • L 4 is
  • the 6- to 14-membered aromatic ring may be a benzene ring or a naphthalene ring.
  • L 5 is a bond or a benzene ring.
  • L is Wherein the N atom is connected with R.
  • the C 1 -C 3 alkyl group is methyl, ethyl, n-propyl or isopropyl.
  • the C 1 -C 3 alkylene group is methylene, ethylene or propylene.
  • the group containing radioactive metal ions is composed of radioactive metal ions and a group with the function of chelating metal ions, and the group of the radioactive metal ions and the group with the function of chelating metal ions Groups chelate to form chelates containing radioactive metal examples.
  • the group with the function of chelating metal ions is DOTA, NOTA, HBED-CC, NODAGA, NOTAGA, DOTAGA, TRAP, NOPO, PCTA, DFO, DTPA, CHX-DTPA, AAZTA, or DEDPA.
  • the group with the function of chelating metal ions is
  • the peptide urea derivative shown in formula I is the peptide urea derivative shown in formula I-1, wherein T is N or CH, and M is the radioactive metal ion.
  • the radioactive metal ion has one or more of the following effects:
  • the radioactive metal ion has one or more of the following effects:
  • the radioactive metal ions are radioactive metal ions releasing alpha, beta or gamma rays.
  • the radioactive metal ions are 68 Ga, 89 Zr, 64 Cu, 86 Y, 99m Tc, 111 In, 90 Y, 67 Ga, 177 Lu, 211 At, 153 Sm, 186 Re, 188 Re, 67 Cu, 212 Pb, 225 Ac, 223 Ra, 213 Bi, 212 Bi or 212 Pb.
  • the radioactive metal ions are 68 Ga 3+ , 89 Zr 4+ , 64 Cu 2+ , 86 Y 3+ , 99m Tc 4+ , 111 In 3+ , 90 Y, 67 Ga 3+ , 177 Lu 3+ , 211 At, 153 Sm, 186 Re, 188 Re, 67 Cu 2+ , 212 Pb 2+ , 225 Ac 3+ , 223 Ra, 213 Bi 3+ , 212 Bi or 212 Pb 2+ .
  • the radioactive metal ion is 68 Ga or 177 Lu.
  • the radioactive metal ion is 68 Ga 3+ or 177 Lu 3+ .
  • the group capable of optical imaging may be a fluorescent group, such as cy3, cy5 or cy7.
  • L is -L 1 -L 2 - or -L 3 -L 4 -L 5 -;
  • L 1 is a 5-12-membered carboheterocycle or a 5-12-membered heteroaromatic ring
  • L 2 is a key
  • L 3 is -N(R 3-1 )- or -N(R 3-2 )-L 3-1 -; said L 3 is connected to R through an N atom;
  • R 3-1 and R 3-2 are independently H or C 1 -C 3 alkyl
  • L 3-1 is C 1 -C 3 alkylene
  • L4 is a 5-12-membered bridged carbocycle or a 5-12-membered heteroaromatic ring
  • L 5 is a key
  • R is a group containing radioactive metal ions.
  • the peptide urea derivative shown in formula I is a compound formed by chelating compound A with the radioactive metal ion (such as 68 Ga 3+ or 177 Lu 3+ ), and the The structure of Compound A is either shown below:
  • the peptide urea derivative shown in formula I is a compound formed by chelation of compound A and 68 Ga 3+ , and the structure of compound A is as follows:
  • the peptide urea derivative shown in formula I is a compound formed by chelation of compound A and 177 Lu 3+ , and the structure of compound A is as follows:
  • the present invention also provides a method for preparing the above-mentioned peptide urea derivative shown in formula I, which includes the following steps: chelating radioactive metal ions with the compound shown in formula II;
  • R is a group containing radioactive metal ions; in the compound shown in formula II, R' is a group with the function of chelating metal ions .
  • the chelation conditions are conventional chelation conditions in the art.
  • the present invention also provides a compound shown in formula II, a compound shown in formula III or a compound shown in formula IV;
  • R' is a group with the function of chelating metal ions, the definition of L is as mentioned above; R p1 is hydrogen or amino protecting group, R p2 is hydrogen or resin group, R 7-4 and R 7-5 are independent Ground is hydrogen or C 1 -C 4 alkyl.
  • the amino protecting group is a conventional amino protecting group in the art, such as Fmoc.
  • the resin group can be but not limited to Wang resin.
  • R 7-4 is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl or tert-butyl.
  • R 7-5 is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl or tert-butyl.
  • the compound shown in formula IV can be R 7-1 , R 7-2 and R 7-3 are independently C 1 -C 4 alkyl.
  • R 7-1 , R 7-2 and R 7-3 are independently methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl , isobutyl or tert-butyl.
  • the compound shown in formula IV can be any compound shown in formula IV.
  • the compound shown in formula IV can be any compound shown in formula IV.
  • the group having the function of chelating metal ions is not chelated with metal ions.
  • the compound shown in formula II can be a compound shown in formula II-1:
  • T is N or CH.
  • the present invention also provides a pharmaceutical composition, which includes substance X and pharmaceutical excipients; said substance X is the peptide urea derivative shown in formula I above, its pharmaceutically acceptable salt, and its solvent compound or a solvate of a pharmaceutically acceptable salt thereof.
  • the pharmaceutical excipient is one or more of DTPA (diethyltriaminepentaacetic acid), ascorbic acid, sodium ascorbate and water; more preferably, the pharmaceutical excipient is selected from DTPA, ascorbic acid , Sodium Ascorbate And Water.
  • DTPA diethyltriaminepentaacetic acid
  • ascorbic acid sodium ascorbate and water
  • the pharmaceutical excipient is selected from DTPA, ascorbic acid , Sodium Ascorbate And Water.
  • the pharmaceutical composition can be a pharmaceutical composition for treating or diagnosing prostate cancer.
  • the pharmaceutical composition can be a pharmaceutical composition for imaging prostate cancer.
  • the prostate cancer is castration-resistant prostate cancer.
  • the prostate cancer is metastatic castration-resistant prostate cancer.
  • the prostate cancer is PSMA-positive prostate cancer.
  • said substance X is a therapeutically effective amount of substance X.
  • the present invention also provides the application of a substance X in the preparation of medicine;
  • the substance X is the above-mentioned peptide urea derivative shown in formula I, its pharmaceutically acceptable salt, its solvate or its Solvates of pharmaceutically acceptable salts;
  • the drug is a drug for treating or diagnosing prostate cancer, or the drug is a drug for imaging prostate cancer.
  • the drug is a drug for treating prostate cancer
  • the radioactive metal ion is a radioactive metal ion that releases gamma rays.
  • the drug is a drug for treating prostate cancer
  • the radioactive metal ion is 177 Lu 3+ .
  • the drug is a drug for diagnosing prostate cancer
  • the radioactive metal ion is a radioactive metal ion that releases ⁇ or ⁇ rays.
  • the drug is a drug for treating prostate cancer
  • the radioactive metal ion is 225 Ac 3+ .
  • the drug is a drug for diagnosing prostate cancer
  • the radioactive metal ion is 68 Ga 3+ or Gd 3+ .
  • the prostate cancer is castration-resistant prostate cancer.
  • the prostate cancer is metastatic castration-resistant prostate cancer.
  • the prostate cancer is PSMA-positive prostate cancer.
  • pharmaceutically acceptable salt refers to a salt obtained by reacting a compound with a pharmaceutically acceptable (relatively non-toxic, safe, and suitable for use by patients) acid or base.
  • base addition salts can be obtained by contacting the free form of the compound with a sufficient amount of a pharmaceutically acceptable base in a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include, but are not limited to, sodium salts, potassium salts, calcium salts, aluminum salts, magnesium salts, bismuth salts, ammonium salts, and the like.
  • acid addition salts can be obtained by contacting the free form of the compound with a sufficient amount of a pharmaceutically acceptable acid in a suitable inert solvent.
  • Pharmaceutically acceptable acid addition salts include, but are not limited to, hydrochlorides, sulfates, methanesulfonates, acetates, trifluoroacetates, and the like. See Handbook of Pharmaceutical Salts: Properties, Selection, and Use (P. Heinrich Stahl, 2002) for details.
  • solvate refers to a substance formed after crystallization of a compound with a solvent (including but not limited to: water, methanol, ethanol, etc.). Solvates are divided into stoichiometric solvates and non-stoichiometric solvates.
  • solvate of a pharmaceutically acceptable salt refers to a compound with a pharmaceutically acceptable (relatively non-toxic, safe, and suitable for patient use) acid or base, solvent (including but not limited to: water, methanol, ethanol etc.), wherein the pharmaceutically acceptable salt has the same meaning as the term “pharmaceutically acceptable salt” above, and the solvent is stoichiometric or non-stoichiometric.
  • solvent including but not limited to: water, methanol, ethanol etc.
  • Solvates of pharmaceutically acceptable salts include, but are not limited to, hydrochloride monohydrate.
  • alkyl refers to a straight-chain or branched-chain alkyl group having a specified number of carbon atoms (eg, C 1 -C 6 ).
  • Alkyl groups include but are not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, isobutyl, sec-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl wait.
  • cycloalkyl or “carbocycle” refers to a saturated cyclic group with a specified number of carbon atoms (such as C 3 to C 6 ), composed only of carbon atoms, which is a monocyclic, bridged ring or Spiral. Cycloalkyl includes, but is not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • heterocycloalkyl or “carboheterocycle” refers to a specified number of ring atoms (such as 5-10 members), a specified number of heteroatoms (such as 1, 2 or 3), and a specified type of heteroatom (one or more of N, O and S), which is a monocyclic, bridged or spiro ring, and each ring is saturated.
  • Heterocycloalkyl includes, but is not limited to, azetidinyl, tetrahydropyrrolyl, tetrahydrofuranyl, morpholinyl, piperidinyl, and the like.
  • aryl or "aromatic ring” refers to a cyclic group consisting only of carbon atoms with a specified number of carbon atoms (such as C 6 to C 10 ), which is a single ring or a condensed ring, and at least one The ring is aromatic (according to Huckel's rule).
  • the aryl group is connected to other segments in the molecule through an aromatic ring or a non-aromatic ring.
  • Aryl groups include, but are not limited to, phenyl, naphthyl, wait.
  • heteroaryl or “heteroaromatic ring” refers to a specified number of ring atoms (such as 5-10 members), a specified number of heteroatoms (such as 1, 2 or 3), a specified type of heteroatom ( One or more of N, O and S) cyclic group, which is a single ring or condensed ring, and at least one ring is aromatic (according to Huckel's rule). Heteroaryl groups are attached to other segments of the molecule through an aromatic ring or a non-aromatic ring in a fused ring.
  • Heteroaryl groups include, but are not limited to, furyl, pyrrolyl, thienyl, pyrazolyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, indolyl, wait.
  • fragment means that the structural fragment is connected to other fragments in the molecule through this site.
  • site means cyclohexyl.
  • pharmaceutical excipients refers to the excipients and additives used in the production of drugs and the preparation of prescriptions, and refers to all substances contained in pharmaceutical preparations except for active ingredients. For details, see Pharmacopoeia of the People's Republic of China (2020 Edition) or Handbook of Pharmaceutical Excipients (Raymond C Rowe, 2009).
  • therapeutically effective amount refers to the amount of compound administered to a patient sufficient to effectively treat the disease, the radiation dose.
  • the therapeutically effective amount will vary according to the compound, the type of disease, the severity of the disease, the age of the patient, etc., but can be adjusted by those skilled in the art as appropriate.
  • treating refers to any of the following: (1) amelioration of one or more biological manifestations of disease; (2) interference with one or more points in the biological cascade leading to disease; (3) slowing of disease The development of one or more biological manifestations.
  • prevention refers to reducing the risk of developing a disease.
  • DMF stands for N,N-dimethylformamide.
  • Fmoc represents a 9-fluorenylmethoxycarbonyl protecting group.
  • H-Glu(OtBu)-OH represents L-glutamic acid-5-tert-butyl ester.
  • Lys represents L-lysine
  • Dde represents 1-(4,4-dimethyl-2,6-dioxcyclohexylene)ethyl.
  • DOTA stands for 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
  • the positive progress effect of the present invention is: the derivatives included in the present invention overcome the shortcomings of other compounds of the same kind at present. After entering the animal body, the uptake and residence time of such derivatives in non-target organs such as the kidney Both are greatly reduced, while the uptake and residence time on the targeted cells are significantly increased. It can be used not only for the diagnosis and grading of PSMA-positive prostate cancer before surgery, but also for the treatment of prostate cancer of various types and stages. The integration of diagnosis and treatment has broad application prospects.
  • Fig. 1 is effect embodiment 5 cell binding experiments.
  • Fig. 2 is the endocytosis experiment of effect example 5.
  • Fig. 3 is PET/CT scanning after administration of Example 6 of the effect.
  • Fig. 5 is the test result of the LogP of effect embodiment 6.
  • Fig. 6 is the test result of combination with PPB of effect example 8.
  • Fig. 7 is the tissue distribution of 177 Lu-E3 in various organs of normal SD rats in Effect Example 9.
  • Fig. 8 shows the tissue distribution of 177 Lu-E3 in various organs of 22RV1 tumor-bearing mice according to the effect example 9.
  • Fig. 9 is a SPECT image of 177 Lu-PSMA-617 of Effect Example 10.
  • Fig. 10 is the SPECT imaging of 177 Lu-E3 of Effect Example 10.
  • Fig. 12 is the SPECT imaging of 177 Lu-E8 of Effect Example 10.
  • Fig. 13 is the SPECT imaging of 177 Lu-E16 of Effect Example 10.
  • Fig. 14 is the SPECT imaging of 177 Lu-E18 in Effect Example 10.
  • Fig. 15 is the SPECT imaging of 177 Lu-E24 of Effect Example 10.
  • Fig. 16 is the change of body weight of animals in the pharmacodynamic study of 177 Lu-E3 in effect example 11.
  • Fig. 17 is the change of tumor size in the pharmacodynamic study of Lu-E3 in Example 11 177 of the effect.
  • the resin-loaded compound M1 and compound M2 were added to the reaction flask in an equal equivalent ratio, DMF was used as a solvent, and an equivalent amount of HOBt and DIC were added to carry out condensation coupling resin, stirred at room temperature for 2.5 hours, and detected by ninhydrin The dark blue is the detection method. After monitoring the completion of the reaction, filter and wash with DMF 3-5 times to obtain the intermediate E1-1, which is directly used in the next step.
  • the filtrate was added to a large amount of cold anhydrous ether to precipitate the polypeptide and centrifuged. After washing several times with ether and drying, the crude polypeptide was obtained, and the crude product was prepared and purified by reverse-phase high-performance liquid chromatography to obtain compound E1.
  • the filtrate was added to a large amount of cold anhydrous ether to precipitate the polypeptide and centrifuged. After washing several times with ether and drying, the crude polypeptide was obtained.
  • the crude product was prepared and purified by reverse-phase high-performance liquid chromatography to obtain compound E2.
  • Embodiment 3 the synthesis of compound E3
  • Embodiment 4 the synthesis of compound E4
  • Embodiment 5 the synthesis of compound E5
  • Embodiment 6 the synthesis of compound E6
  • Embodiment 7 the synthesis of compound E7
  • Embodiment 8 the synthesis of compound E8
  • Embodiment 9 the synthesis of compound E9
  • Embodiment 10 the synthesis of compound E10
  • Embodiment 11 the synthesis of compound E11
  • Embodiment E12 the synthesis of compound E12
  • Embodiment 13 the synthesis of compound E13
  • Embodiment 14 the synthesis of compound E14
  • Embodiment 15 the synthesis of compound E15
  • Embodiment 16 the synthesis of compound E16
  • Embodiment 17 the synthesis of compound E17
  • Embodiment 18 the synthesis of compound E18
  • Embodiment 19 the synthesis of compound E19
  • Embodiment 20 the synthesis of compound E20
  • Embodiment 21 the synthesis of compound E21
  • Embodiment 22 the synthesis of compound E22
  • Embodiment 24 the synthesis of compound E24
  • Embodiment 25 the synthesis of compound E25
  • Embodiment E26 the synthesis of compound E26
  • LCMS detection method 1 the characterization of the compound is carried out by MS, and its purity is tested by an analytical high-performance liquid chromatograph (Agela C18-10 ⁇ 250mm, flow rate: 1 milliliter per minute), and the mobile phase A is (containing 0.05% Trifluoroacetic acid, 2% acetonitrile in water), mobile phase B is 90% acetonitrile in water, and the detection wavelength is 220nm. (from 0% B to 100% B in 10 minutes).
  • LCMS detection method 2 the characterization of the compound is carried out by MS, and its purity is tested by an analytical high-performance liquid chromatograph (Agela C18-10 ⁇ 250mm, flow rate: 1 milliliter per minute), and the mobile phase A is (containing 0.05% Trifluoroacetic acid, 2% acetonitrile in water), mobile phase B is 90% acetonitrile in water, (from 8% B to 43% B in 35 minutes), and the detector wavelength is 220nm.
  • Cover with a rubber stopper take out the silica gel plate when the developing agent expands to 9-10cm, and blow dry.
  • the gamma scanner scans the silica gel plate, compares the 177 LuCl 3 solution and the solution after the reaction, and calculates the radiochemical purity and labeling rate through the peak area.
  • Example 35 Labeling experiment of compound 68 Ga
  • the selected E series compounds were dissolved in DMSO to make a 1 mg/mL solution, and a part was taken out and diluted with PBS to a solution with a concentration of 0.1 mg/mL for later use.
  • LNCap cells Resuscitate LNCap cells (Shangcheng Beina Chuanglian Biotechnology Co., Ltd., Industrial Park, Chengguan Town, Shangcheng County, Xinyang City, Henan province) and subculture and expand. After the cells are expanded to a sufficient amount, use 1 ⁇ 104 cells/well seeded in 24-well plates. Uptake experiments were performed when the cells grew to 80%-90% confluent.
  • mice carrying LNCaP PSMA-positive tumors (Jiangsu Huajing Institute of Molecular Imaging and Drug Research Co., Ltd.) through the tail vein, and the mice were injected with 2% iso Halothane/98% oxygen anesthesia for SPECT image contrast study, the results are shown in Table 10 and Table 11. It can be seen from Table 10 and Table 11 that, compared with 177 Lu-PSMA-617, 177 Lu-E3 can be quickly distributed to various organs after entering the animal body, and its metabolism is mainly excreted through the kidneys, and it proceeds over time. Accumulation of177Lu -E3 in PSMA-positive tumors was much higher than in reference animals injected with177Lu -PSMA-617.
  • Biacore 8K (Cytiva) instrument was used to detect ligand binding of PSMA protein (Sinobiological). Capture of PSMA protein on SA chip. Before immobilizing the ligand (flow path 1, 2, flow rate 10 ⁇ L/min), immobilize PSMA protein (10 ⁇ g/ml, flow rate 5 ⁇ L/min, injection time 600 s) on flow path 2 with flow buffer, at 50 mM Three consecutive injections of 1M NaCl in NaOH were used to condition the sensor surface. After each ligand injection, include an additional wash with isopropanol in 1M NaCl and 50 mM NaOH (flow path 1, 2, flow rate 10 ⁇ L/min, injection time 60 s).
  • LNCAP cells in the logarithmic growth phase were made into a cell suspension, and the cell density was adjusted to 2 ⁇ 10 5 /ml, and 1 mL was inoculated into a 24-well cell culture plate. Incubate in a 37°C incubator for 48 hours. The serum-free RPMI1640 medium (NEWZERUM) was replaced 3 hours before the experiment, the cell culture medium was aspirated, and the cells were washed once with PBS.
  • Cell endocytosis experiment make LNCAP cells in the logarithmic growth phase (Shangcheng Beina Chuanglian Biotechnology Co., Ltd.) into cell suspension, adjust the cell density to 1 ⁇ 10 5 /ml and inoculate 1 mL into 12-well cell culture board. Incubate in a 37°C incubator for 48 hours. Serum-free 1640 medium was replaced 3 hours before the experiment. Aspirate the cell culture medium and wash the cells once with PBS.
  • the solutions of series E compounds labeled with 177 Lu and reference compound PSMA-617 were prepared with physiological saline (containing 0.05% BSA) to a solution of 47.36MBq ( ⁇ 1280uci)/mL. Dilute the above solution with serum-free medium and add it to the plate so that the concentration of the labeled compound in each well is (5uci/well); incubate in a 37°C incubator for 2 hours, then wash the cells three times with ice-cold PBS, and suck off the washing solution , add 0.5M glycine buffer (100mM NaCl, pH2,8, hydrochloric acid adjustment), incubate for 10 minutes and wash the cells three times with 0.5M glycine buffer, aspirate the washing solution, and collect, lyse the cells with 0.5mL 1M sodium hydroxide, Wash twice with 0.5mL PBS, collect sodium hydroxide (0.5mL) and PBS (0.5mL ⁇ 2) solutions, and measure uptake counts
  • Figure 2 shows the results of the endocytosis experiment. Combining the results of the above examples, the E series compounds not only have higher cell affinity, but also show a higher endocytosis than the reference compound PSMA-617 in the endocytosis experiment at 37°C. The nature of endocytosis. Endocytosis is of great significance for the absorption and retention of labeled compounds in tumor cells, because it directly affects the application of compounds containing radioactive substances in tumor therapy.
  • PMPA is a specific inhibitor of PSMA
  • E3 has similar lipophilicity to the reference compound PSMA-617 both from the structure of the compound and from the LogP results of the compound (Fig. 6), E3 exhibits an abnormally high PPB binding rate, which is important for the retention of the compound in the blood. is of great significance.
  • E radiolabeled compound was injected into the tail vein of 6-9 weeks old SD rats (Hangzhou Ziyuan Experimental Animal Technology Co., Ltd.) (about 7.4MBq/mouse, specific activity: 84200.14 kBq/ ⁇ g), SD rats were euthanized by carbon dioxide inhalation at different time points (0.25, 0.5, 1, 2, 4, 6, 24, 48, 72h) after administration, and the blood of the animals was collected after euthanasia and 16 organs (blood, liver, spleen, lungs, heart, muscle, pancreas, testis).
  • Blood was collected through the abdominal aorta, and immediately after collection, 100 ⁇ L was quantified into a designated centrifuge tube (weighed). After the viscera were collected, they were washed twice with deionized water and dried, put into a pre-weighed test tube, weighed again, and the weight of the sample was calculated. The sample was measured on the day of collection. All blood samples and tissue samples were measured for radioactive counts using a gamma counter.
  • 177 Lu-E3 was quickly distributed to various organs of tumor-bearing mice, and the clearance rate in the blood was relatively fast, and it was excreted through renal metabolism.
  • the uptake of 177 Lu-E3 in the tumor reached the highest 2 hours after administration, and then decreased with time, but even after 7 days, the tumor still contained a high drug concentration.
  • the uptake in non-target organs was always Low and quickly metabolized out of the body.
  • mice were subcutaneously inoculated with 5x106 cells of 22rv1 (in 50% Matrigel, Corning) on the right shoulder blade of the animals.
  • the tumor grows to a size of about 150-350mm3
  • radiolabel 177Lu-PSMA-617, 177Lu-E3, 177Lu-E4, 177Lu-E8, 177Lu-E16, 177Lu-E18, 177Lu-E24
  • the compounds were injected from the tail vein of mice (about 7.4MBq/mouse, specific activity: 22423.82KBq/ ⁇ g), and then the small animal SPECT-CT imaging system (U-SPECT+ /CT, MI Labs) for SPECT imaging, 177Lu-PSMA-617 is shown in Figure 9, 177Lu-E3 is shown in Figure 10, 177Lu-E4 is shown in Figure 11, 177Lu
  • mice were subcutaneously inoculated with 1 ⁇ 10 6 cells of 22rv1 (in 50% Matrigel, Corning) on the right scapula of the animals.
  • the animals are randomly assigned to 5 experimental groups according to the tumor volume, with 7 animals in each group, and the body weight and tumor size of the animals are measured.
  • the control group (normal saline), group 1 ( 177 Lu-PSMA-617 300mCi/piece), Group 2 ( 177 Lu-PSMA-617 600mCi/piece), Group 3 ( 177 Lu-E3 300mCi/piece), Group 4 ( 177 Lu-E3 600mCi/piece) start
  • group 1 177 Lu-PSMA-617 300mCi/piece
  • Group 2 177 Lu-PSMA-617 600mCi/piece
  • Group 3 177 Lu-E3 300mCi/piece
  • Group 4 177 Lu-E3 600mCi/piece
  • a Mean ⁇ standard error
  • b Statistical comparison between the tumor volume of the treatment group and the control group on the 19th day after group administration, T-test.
  • TGI TV (%) [1-(T i -T 0 )/(V i -V 0 )] ⁇ 100%
  • T i tumor in the treatment group on day i of administration Mean volume
  • T 0 the mean tumor volume of the treatment group on the 0th day of administration
  • V i the mean tumor volume of the solvent control group on the i-th day of administration
  • V 0 the tumor volume of the solvent control group on the 0th day of administration volume mean.
  • the experimental results showed that the drug efficacy of 177 Lu-E3 in the mouse xenograft tumor model was significantly improved. Compared with the 15-21% of the tumor inhibition rate of 177 Lu-PSMA-617, the tumor growth inhibition rate of 177 Lu-E3 reached 71- 80%. Moreover, the two groups of animals treated with 177 Lu-E3 showed no significant difference in the inhibitory effect of the two doses on tumor growth within 10 days of medication. Compared with the data of 177 Lu-E3 in the two groups, there was a more obvious dose-related difference. This difference is statistically significant.

Abstract

提供一种肽脲素衍生物、含其的药物组合物及其应用,该衍生物如式(I)所示。该衍生物既可以用于PSMA阳性前列腺癌的手术前显影诊断及分级,也可以用于各个分型和分期的前列腺癌的治疗,达到诊疗一体化,具有广泛的应用前景。

Description

一种肽脲素衍生物、含其的药物组合物及其应用
本申请要求申请日为2021年9月3日的中国专利申请2021110314236的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种肽脲素衍生物、含其的药物组合物及其应用。
背景技术
根据美国癌症学会官方期刊《临床医师癌症杂志》在线发表的“2018年全球癌症统计数据”报告,对185个国家中的36种癌症发病率和死亡率的评估结果发现:前列腺癌是男性中发病率第二高的癌症,仅次于肺癌。美国的“2018年癌症统计”报告中预测美国男性的前列腺癌发病率约占肿瘤发生率的19%,高居第一。中国国家癌症中心发布的2014年全国癌症统计数据显示前列腺癌在中国男性中的发病率为3.25%,居第六位,但是在近年来有逐步升高的趋势。所以无论在世界范围还是中国国内,前列腺癌都是一个高发的癌种。
前列腺癌的早期影像诊断和治疗在中国乃至整个世界都已成为一个需要迫切解决的问题。前列腺癌开始在前列腺周围的组织中发生,随着其生长,逐渐转移至其他重要器官例如肺部和骨骼部位。在早期,没有比较明显的症状,但随着前列腺癌的生长,会引起例如尿道压迫和尿路梗阻等问题,并进一步转移至脊柱或盆骨。对于前列腺癌的诊断,目前已经在使用SPECT(单光子发射计算机断层术)和PET(正电子发射断层照相术)等的成像诊断方法,其原理是通过使用发射γ射线或正电子的放射性同位素标记PSMA靶向的多肽物质,通过前列腺癌特异性靶向分布从而在断层图像和三维图像中显示出肿瘤细胞的存在和分布。这些成像诊断方法最近由于在组合了CT或MRI的SPECT-CT/MRI和PET-CT/MRI的发展下,图像质量有了大幅度提高从而得到极大推广。目前用于前列腺癌特异显影的放射性药物是以PSMA配体为靶向基团的,该配体可以与前列腺癌中特异性表达的蛋白质PSMA(前列腺特异性膜抗原,prostate-specific membrane antigen)结合。PSMA是一种Ⅱ型跨膜糖蛋白,又称谷氨酸羧肽酶,是前列腺癌特异性分子标志,在肾、小肠、脑组织有极少量表达,肿瘤组织中的表达水平远高于正常组织中的表达。PSMA的代表性的配体是例如Glu-脲-Lys(GUL)或Glu-脲-Cys(GUC)等的肽衍生物。因此,通过将放射性同位素标记到含有这种肽配体上来,制备的放射性药物可以用于PET或SPECT的前列腺癌成像、或用于治疗前列腺癌(MEder,等人,Bioconjugate Chem 2012,23:688-697)。用于标记肽的放射性同位素主要是发射α射线的放射性核素、发射β射线的放射性核素、发射γ射线的放射性核素、和发射正电子束的放射性核素。其中,发射α射线的放射性核素和发射β射线的放射性核素用于治疗,发射γ射线的放射性核素和发射正电子束的放射性核素用于通过核成像诊断。放射性同位素标记配体的方法一般有以下两种:配体与放射性同位素直接结合的方法,或配体通过DTPA、DOTA、TETA、HYNIC、N2S2、和MAG3等双官能螯合剂(BFCA)螯合放射性同位素的方法。直接结 合方法主要用于各种非金属放射性同位素如125I、131I等的标记。而使用双官能螯合剂(BFCA)的方法主要用于各种金属放射性同位素的标记,双官能螯合剂(BFCA)的种类可以根据配体和放射性同位素的性质进行选择。
目前去势手术、抗雄激素去势方法以及雄激素受体抑制剂是前列腺癌症的主流治疗方案。虽然这些治疗方案在初始阶段是非常有效的,但是有很大一部分患者会发展成去势抵抗的前列腺癌(Castration Resistant Prostate Cancer,简称CRPC),甚至是转移性去势抵抗的前列腺癌(Metastatic Castration Resistant Prostate Cancer,mCRPC)。mCRPC是一种治疗选择有限且存在重大未满足医疗需求的疾病,所以以PSMA为靶点的放射性药物成为近年来的研究热点。
用PSMA作为靶点的放射性药物来治疗mCRPC病人已进行了一系列临床研究,虽然177Lu-PSMA-617和177Lu-PSMAI&T等放射性药物的初步临床结果令人鼓舞,但也存在一些问题,比如有近30%的病人对此治疗方法并无响应,一种可能的解释是由于不理想的药代导致没有足够的放射性药物被输送到肿瘤病灶,另一个值得关注的是177Lu-PSMA-617等放射性药物在肾脏,唾液腺等器官内的长时间累计。因此,一个以PSMA为靶点的高活性,高选择性,同时具有更好药代动力学的放射性药物是在治疗及诊断mCRPC领域的持续热点。
发明内容
本发明所要解决的技术问题是现有的肽脲素衍生物的结构单一,且由其制备的放射性药物在肾脏等器官的摄取及滞留时间过长可能对人体造成潜在的伤害,而在靶向肿瘤细胞上滞留时间不够长。为此,本发明提供了一种肽脲素衍生物、含其的药物组合物及其应用。该衍生物具有较目前已知的其他同类肽脲素衍生物更好的化学及生物性能,在非靶向细胞上如肾脏等的摄取和滞留时间都大大降低,在靶向细胞上的摄取及滞留时间均明显提高,既可以用于PSMA阳性前列腺癌的手术前显影诊断及分级,也可以用于各个分型和分期的前列腺癌的治疗,达到诊疗一体化,具有广泛的应用前景。
本发明提供了一种如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物;
Figure PCTCN2022116897-appb-000001
其中,L为-L 1-L 2-或-L 3-L 4-L 5-;
L 1为5~12元碳杂环、5~12元杂芳环、被R 1-1取代的5~12元碳杂环或被R 1-2取代的5~12元杂芳环;所述的碳杂环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;所述的杂芳环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;R 1-1和R 1-2独立地为F、Cl、Br或C 1~C 3烷基;所述的L 1通过N原子与R相连;
L 2为键、5~12元碳环、5~12元碳杂环、6~14元芳环、5~12元杂芳环、被R 2-1取代的5~12元碳环、被R 2-2取代的5~12元碳杂环、被R 2-3取代的6~14元芳环或被R 2-4取代的5~12元杂芳环;所述的碳杂环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;所述的杂芳环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;R 2-1、R 2-2、R 2- 3和R 2-4独立地为F、Cl、Br或C 1~C 3烷基;所述的L 2
Figure PCTCN2022116897-appb-000002
相连;
L 3为-N(R 3-1)-或-N(R 3-2)-L 3-1-;所述的L 3通过N原子与R相连;
R 3-1和R 3-2独立地为H或C 1~C 3烷基;
L 3-1为C 1~C 3亚烷基;
L 4为3~6元单环碳环、5~12元桥环碳环、5~12元碳杂环、6~14元芳环、5~12元杂芳环、被R 4- 1取代的5~12元碳杂环、被R 4-2取代的6~14元芳环、被R 4-3取代的5~12元杂芳环或被R 4-4取代的5~12元桥环碳环;所述的碳杂环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;所述的杂芳环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;R 4-1、R 4-2、R 4-3和R 4-4独立地为F、Cl、Br或C 1~C 3烷基;当L 4为3~6元单环碳环时,L 3为-N(R 3-1)-;
L 5为键、5~12元碳环、5~12元碳杂环、6~14元芳环、5~12元杂芳环、被R 5-1取代的5~12元碳环、被R 5-2取代的5~12元碳杂环、被R 5-3取代的6~14元芳环或被R 5-4取代的5~12元杂芳环;所述的碳杂环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;所述的杂芳环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;R 5-1、R 5-2、R 5- 3和R 5-4独立地为F、Cl、Br或C 1~C 3烷基;所述的L 5
Figure PCTCN2022116897-appb-000003
相连;
R为含有放射性金属离子的基团或能够光学成像的基团。
在某一方案中,所述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物里,某些基团的定义如下所述,其余基团的定义其他任一方案所述(以下简称为“在某一方案中”):
L 1为双环,其中与R直接相连的环不具备芳香性。
在某一方案中,L 1为稠环,其中与R直接相连的环不具备芳香性。
在某一方案中,L 1为单环。
在某一方案中,L 1中,所述的5~12元碳杂环为6~11元碳杂环。
在某一方案中,L 1中,所述的5~12元碳杂环为3~6元碳单杂环。
在某一方案中,L 1中,所述的5~12元碳杂环中,杂原子的数量可为1个或2个。
在某一方案中,L 1中,所述的5~12元碳杂环中,杂原子可为N。
在某一方案中,L 1中,所述的5~12元碳杂环为双环。
在某一方案中,L 1中,所述的5~12元碳杂环为双环,所述的双环为桥环或螺环。
在某一方案中,L 1中,所述的5~12元杂芳环为9~10元杂芳环。
在某一方案中,L 1中,所述的5~12元杂芳环为双环。
在某一方案中,L 1中,所述的5~12元杂芳中,杂原子的数量可为1个或2个。
在某一方案中,L 1
Figure PCTCN2022116897-appb-000004
其中,m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11和m12独立地为0、1、2、3或4,m1+m3=1、2、3或4,m2+m4=1、2、3或4,m5+m7=0、1、2或3,m6+m8=0、1、2或3,m9+m10=0、1、2或3,m11+m12=0、1、2或3。
在某一方案中,L 1
Figure PCTCN2022116897-appb-000005
Figure PCTCN2022116897-appb-000006
在某一方案中,L 2为键、
Figure PCTCN2022116897-appb-000007
在某一方案中,L 2中,所述的5~12元杂芳环可为9~10元杂芳环。
在某一方案中,L 2中,所述的5~12元杂芳环可为双环。
在某一方案中,L 2中,所述的5~12元杂芳环可为稠环。
在某一方案中,L 2中,所述的杂芳环中,杂原子的数量可为2个。
在某一方案中,L 2中,所述的杂芳环中,杂原子可为N和/或O。
在某一方案中,L 2中,所述的6~14元芳环可为苯环或萘环。
在某一方案中,L 3为-NH-或-NH-CH 2-。
在某一方案中,所述的L 4通过C原子与L 3相连。
在某一方案中,L 4中,所述的5~12元桥环碳环为5~8元桥环碳环。
在某一方案中,L 4中,所述的6~14元芳环为9~10元芳环。
在某一方案中,L 4中,所述的6~14元芳环为双环。
在某一方案中,L 4中,所述的6~14元芳环为稠环。
在某一方案中,L 4中,所述的5~12元杂芳环为5~10元杂芳环。
在某一方案中,L 4中,所述的5~12元杂芳环为单环或双环。
在某一方案中,L 4
Figure PCTCN2022116897-appb-000008
其中,m13、m14、m15和m16独立地为0、1、2或3,m13+m14=0、1、2或3,m15+m16=0、1、2或3;o、p和q独立地为1或2。
在某一方案中,L 4
Figure PCTCN2022116897-appb-000009
Figure PCTCN2022116897-appb-000010
在某一方案中,L 5中,所述的6~14元芳环可为苯环或萘环。
在某一方案中,L 5为键或苯环。
在某一方案中,L为
Figure PCTCN2022116897-appb-000011
Figure PCTCN2022116897-appb-000012
Figure PCTCN2022116897-appb-000013
其中的N原子与R相连。
在某一方案中,所述的C 1~C 3烷基为甲基、乙基、正丙基或异丙基。
在某一方案中,所述的C 1~C 3亚烷基为亚甲基、亚乙基或亚丙基。
在某一方案中,所述的含有放射性金属离子的基团由放射性金属离子与具有螯合金属离子功能的基团组成,所述的放射性金属离子与所述的具有螯合金属离子功能的基团螯合形成含有放射性金属例子螯合物。
在某一方案中,所述的具有螯合金属离子功能的基团为
Figure PCTCN2022116897-appb-000014
DOTA、NOTA、HBED-CC、NODAGA、NOTAGA、DOTAGA、TRAP、NOPO、PCTA、DFO、DTPA、CHX-DTPA、AAZTA或DEDPA。
Figure PCTCN2022116897-appb-000015
Figure PCTCN2022116897-appb-000016
在某一方案中,所述的具有螯合金属离子功能的基团为
Figure PCTCN2022116897-appb-000017
Figure PCTCN2022116897-appb-000018
在某一方案中,
Figure PCTCN2022116897-appb-000019
所述的如式I所示的肽脲素衍生物为如式I-1所示的肽脲素衍生物,其中,T为N或CH,M为所述的放射性金属离子。
在某一方案中,当L 4为苯环时,L 3为-N(R 3-1)-或L 5不为键。
在某一方案中,所述的放射性金属离子具有下述作用中的一个或多个:
(1)PET成像;
(2)SPECT成像;
(3)放射性治疗。
在某一方案中,所述的放射性金属离子具有下述作用中的一个或多个:
(1)示踪;
(2)递送;
(3)成像;
(4)治疗。
在某一方案中,所述的放射性金属离子为释放α、β或γ射线的放射性金属离子。
在某一方案中,所述的放射性金属离子为 68Ga、 89Zr、 64Cu、 86Y、 99mTc、 111In、 90Y、 67Ga、 177Lu、 211At、 153Sm、 186Re、 188Re、 67Cu、 212Pb、 225Ac、 223Ra、 213Bi、 212Bi或 212Pb。
在某一方案中,所述的放射性金属离子为 68Ga 3+89Zr 4+64Cu 2+86Y 3+99mTc 4+111In 3+90Y、 67Ga 3+177Lu 3+211At、 153Sm、 186Re、 188Re、 67Cu 2+212Pb 2+225Ac 3+223Ra、 213Bi 3+212Bi或 212Pb 2+
在某一方案中,所述的放射性金属离子为 68Ga或 177Lu。
在某一方案中,所述的放射性金属离子为 68Ga 3+177Lu 3+
在某一方案中,所述的能够光学成像的基团可为具有荧光性的基团,例如cy3、cy5或cy7。
在某一方案中,L为-L 1-L 2-或-L 3-L 4-L 5-;
L 1为5~12元碳杂环或5~12元杂芳环;
L 2为键;
L 3为-N(R 3-1)-或-N(R 3-2)-L 3-1-;所述的L 3通过N原子与R相连;
R 3-1和R 3-2独立地为H或C 1~C 3烷基;
L 3-1为C 1~C 3亚烷基;
L 4为5~12元桥环碳环或5~12元杂芳环;
L 5为键;
R为含有放射性金属离子的基团。
在某一方案中,所述的如式I所示的肽脲素衍生物为化合物A与所述的放射性金属离子(例如 68Ga 3+177Lu 3+)螯合形成的化合物,所述的化合物A的结构如下任一所示:
Figure PCTCN2022116897-appb-000020
Figure PCTCN2022116897-appb-000021
Figure PCTCN2022116897-appb-000022
在某一方案中,所述的如式I所示的肽脲素衍生物为化合物A与 68Ga 3+螯合形成的化合物,所述的化合物A的结构如下任一所示:
Figure PCTCN2022116897-appb-000023
Figure PCTCN2022116897-appb-000024
Figure PCTCN2022116897-appb-000025
在某一方案中,所述的如式I所示的肽脲素衍生物为化合物A与 177Lu 3+螯合形成的化合物,所述的化合物A的结构如下任一所示:
Figure PCTCN2022116897-appb-000026
Figure PCTCN2022116897-appb-000027
Figure PCTCN2022116897-appb-000028
在某一方案中,所述的如式I所示的肽脲素衍生物的结构如下任一所示:
Figure PCTCN2022116897-appb-000029
Figure PCTCN2022116897-appb-000030
本发明还提供了一种上述的如式I所示的肽脲素衍生物的制备方法,其包括下述步骤:将放射性金属离子与如式II所示的化合物进行螯合,即可;
Figure PCTCN2022116897-appb-000031
所述的如式I所示的肽脲素衍生物中,R为含有放射性金属离子的基团;所述的如式II所示的化合物中,R’为具有螯合金属离子功能的基团。
在某一方案中,所述螯合条件为本领域常规螯合条件。
本发明还提供了一种如式II所示的化合物、如式III所示的化合物或如式IV所示的化合物;
Figure PCTCN2022116897-appb-000032
其中,R’为具有螯合金属离子功能的基团,L的定义如前所述;R p1为氢或氨基保护基,R p2为氢 或树脂基,R 7-4和R 7-5独立地为氢或C 1~C 4烷基。
所述的如式III所示的化合物中,所述的氨基保护基为本领域常规的氨基保护基,例如Fmoc。
所述的如式III所示的化合物中,所述的树脂基可以是但不限于Wang resin。
所述的如式III所示的化合物中,R 7-4为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基。
所述的如式III所示的化合物中,R 7-5为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基。
所述的如式IV所示的化合物中,所述的具有螯合金属离子功能的基团的定义可如前所述。
所述的如式IV所示的化合物可为
Figure PCTCN2022116897-appb-000033
R 7-1、R 7-2和R 7-3独立地为C 1~C 4烷基。
所述的如式IV所示的化合物中,R 7-1、R 7-2和R 7-3独立地为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基。
所述的如式IV所示的化合物可为
Figure PCTCN2022116897-appb-000034
所述的如式IV所示的化合物可为
Figure PCTCN2022116897-appb-000035
Figure PCTCN2022116897-appb-000036
所述的如式II所示的化合物中,所述的具有螯合金属离子功能的基团的定义可如前所述。
所述的如式II所示的化合物中,所述的具有螯合金属离子功能的基团未与金属离子螯合。
所述的如式II所示的化合物可为如式II-1所示的化合物:
Figure PCTCN2022116897-appb-000037
其中,T为N或CH。
所述的如式II所示的化合物的结构可如下任一所示:
Figure PCTCN2022116897-appb-000038
Figure PCTCN2022116897-appb-000039
Figure PCTCN2022116897-appb-000040
Figure PCTCN2022116897-appb-000041
Figure PCTCN2022116897-appb-000042
Figure PCTCN2022116897-appb-000043
Figure PCTCN2022116897-appb-000044
本发明还提供了一种药物组合物,其包括物质X和药用辅料;所述的物质X为上述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物。
在某一方案中,所述药用辅料为DTPA(二乙基三胺五乙酸)、抗坏血酸、抗坏血酸钠和水中的一种或多种;更佳地,所述药用辅料选自DTPA、抗坏血酸、抗坏血酸钠和水。
在某一方案中,所述的药物组合物可为治疗或诊断前列腺癌的药物组合物。
在某一方案中,所述的药物组合物可为使前列腺癌成像的药物组合物。
在某一方案中,所述的前列腺癌为去势抵抗的前列腺癌。
在某一方案中,所述的前列腺癌为转移性去势抵抗的前列腺癌。
在某一方案中,所述的前列腺癌为PSMA阳性前列腺癌。
在某一方案中,所述的物质X为治疗有效量的物质X。
本发明还提供了一种物质X在制备药物中的应用;所述的物质X为上述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物;
所述的药物为治疗或诊断前列腺癌的药物,或者,所述的药物为使前列腺癌成像的药物。
在某一方案中,所述的药物为治疗前列腺癌的药物,所述的放射性金属离子为释放γ射线的放射性金属离子。
在某一方案中,所述的药物为治疗前列腺癌的药物,所述的放射性金属离子为 177Lu 3+
在某一方案中,所述的药物为诊断前列腺癌的药物,所述的放射性金属离子为释放α或β射线的放射性金属离子。
在某一方案中,所述的药物为治疗前列腺癌的药物,所述的放射性金属离子为 225Ac 3+
在某一方案中,所述的药物为诊断前列腺癌的药物,所述的放射性金属离子为 68Ga 3+或Gd 3+
在某一方案中,所述的前列腺癌为去势抵抗的前列腺癌。
在某一方案中,所述的前列腺癌为转移性去势抵抗的前列腺癌。
在某一方案中,所述的前列腺癌为PSMA阳性前列腺癌。
术语“药学上可接受的盐”是指化合物与药学上可接受的(相对无毒、安全、适合于患者使用)酸或碱反应得到的盐。当化合物中含有相对酸性的官能团时,可以通过在合适的惰性溶剂中用足量的药学上可接受的碱与化合物的游离形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括但不限于钠盐、钾盐、钙盐、铝盐、镁盐、铋盐、铵盐等。当化合物中含有相对碱性的官能团时,可以通过在合适的惰性溶剂中用足量的药学上可接受的酸与化合物的游离形式接触的方式获得酸加成盐。药学上可接受的酸加成盐包括但不限于盐酸盐、硫酸盐、甲磺酸盐、醋酸盐、三氟乙酸盐等。具体参见Handbook of Pharmaceutical Salts:Properties,Selection,and Use(P.Heinrich Stahl,2002)。
术语“溶剂合物”是指化合物与溶剂(包括但不限于:水、甲醇、乙醇等)结晶后形成的物质。溶剂合物分为化学计量类溶剂合物和非化学计量类溶剂合物。
术语“药学上可接受的盐的溶剂合物”是指化合物与药学上可接受的(相对无毒、安全、适合于患者使用)酸或碱、溶剂(包括但不限于:水、甲醇、乙醇等)结合形成的物质,其中,药学上可接受的盐与上文术语“药学上可接受的盐”的含义相同,溶剂为化学计量的或非化学计量的。药学上可接受的盐的溶剂合物包括但不限于盐酸盐一水合物。
术语“烷基”是指具有指定的碳原子数(例如C 1~C 6)的直链或支链烷基。烷基包括但不限于甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、仲丁基、正戊基、正己基、正庚基、正辛基等。
术语“环烷基”或“碳环”是指具有指定的碳原子数(例如C 3~C 6)的、仅由碳原子组成的、饱和的环状基团,其为单环、桥环或螺环。环烷基包括但不限于环丙基、环丁基、环戊基、环己基等。
术语“杂环烷基”或“碳杂环”是指具有指定环原子数(例如5~10元)的、指定杂原子数(例如1个、2个或3个)的、指定杂原子种类(N、O和S中的一种或多种)的环状基团,其为单环、桥环或螺环,且每一个环均为饱和的。杂环烷基包括但不限于氮杂环丁烷基、四氢吡咯基、四氢呋喃基、吗啉基、哌啶基等。
术语“芳基”或“芳环”是指具有指定的碳原子数(例如C 6~C 10)的、仅由碳原子组成的环状基团,其为单环或稠环,且至少一个环具有芳香性(符合休克尔规则)。芳基通过具有芳香性的环或不具有芳香性的环与分子中的其他片段连接。芳基包括但不限于苯基、萘基、
Figure PCTCN2022116897-appb-000045
等。
术语“杂芳基”或“杂芳环”是指具有指定环原子数(例如5~10元)的、指定杂原子数(例如1个、2个或3个)的、指定杂原子种类(N、O和S中的一种或多种)的环状基团,其为单环或稠环,且至少一个环具有芳香性(符合休克尔规则)。杂芳基通过具有芳香性的环或稠环中不具有芳香性的环与分子中的其他片段连接。杂芳基包括但不限于呋喃基、吡咯基、噻吩基、吡唑基、咪唑基、噁唑基、噻唑基、吡啶基、嘧啶基、吲哚基、
Figure PCTCN2022116897-appb-000046
等。
结构片段中的
Figure PCTCN2022116897-appb-000047
是指该结构片段通过该位点与分子中的其他片段连接。例如,
Figure PCTCN2022116897-appb-000048
是指环己基。
术语“药用辅料”是指生产药品和调配处方时使用的赋形剂和附加剂,是除活性成分以外,包含在药物制剂中的所有物质。具体参见中华人民共和国药典(2020年版)或Handbook of Pharmaceutical Excipients(Raymond C Rowe,2009)。
术语“治疗有效量”是指给予患者的、足以有效治疗疾病的化合物的量,放射剂量。治疗有效量将根据化合物、疾病种类、疾病的严重度、患者的年龄等变化,但可由本领域技术人员视情况调整。
术语“患者”是指已经或即将接受治疗的任何动物,优选哺乳动物,最优选人类。哺乳动物包括但不限于牛、马、羊、猪、猫、狗、小鼠、大鼠、家兔、豚鼠、猴、人类等。
术语“治疗”是指下述任一情形:(1)缓解疾病的一种或多种生物学表现;(2)干扰引发疾病的生物级联中的一个或多个点;(3)减缓疾病的一种或多种生物学表现发展。
术语“预防”是指降低发生疾病的风险。
本发明采用以下缩略词:
DMF表示N,N-二甲基甲酰胺。
DMAP表示4-二甲基吡啶。
Fmoc表示9-芴基甲氧基羰基保护基。
H-Glu(OtBu)-OH表示L-谷氨酸-5-叔丁基酯。
Lys表示L-赖氨酸。
Dde表示1-(4,4-二甲基-2,6-二氧环亚己基)乙基。
DOTA表示1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸
HATU 2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯
TCEP三(2-羟乙基)膦
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用常用试剂和原料均市售可得或用市售可得的原料经过本领域技术人员所熟知的反应制得。
本发明的积极进步效果在于:本发明所包括的衍生物克服了目前同类其他化合物所存在的缺点,在进入动物体内后,这类衍生物在非靶向器官,如肾脏等的摄取及滞留时间均大大降低,而在靶向细胞上的摄取及滞留时间明显提高,既可以用于PSMA阳性前列腺癌的手术前显影诊断及分级,也可以用于各个分型和分期的前列腺癌的治疗,达到诊疗一体化,具有广泛的应用前景。
附图说明
图1为效果实施例5细胞结合实验。
图2为效果实施例5细胞内吞实验。
图3为效果实施例6给药后用PET/CT扫描。
图4为效果实施例6E系列化合物特异性实验。
图5为效果实施例6的LogP的测试结果。
图6为效果实施例8的与PPB结合的测试结果。
图7为效果实施例9中 177Lu-E3在正常SD大鼠各个器官的组织分布。
图8为效果实施例9 177Lu-E3在22RV1荷瘤小鼠各个器官的组织分布。图9为效果实施例10的 177Lu-PSMA-617的SPECT成像。
图10为效果实施例10的 177Lu-E3的SPECT成像。
图11为效果实施例10的 177Lu-E4的SPECT成像。
图12为效果实施例10的 177Lu-E8的SPECT成像。
图13为效果实施例10的 177Lu-E16的SPECT成像。
图14为效果实施例10的 177Lu-E18的SPECT成像。
图15为效果实施例10的 177Lu-E24的SPECT成像。
图16为效果实施例11 177Lu-E3药效学研究的动物体重变化。
图17为效果实施例11 177Lu-E3药效学研究的肿瘤大小变化。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
中间体化合物M1的合成
Figure PCTCN2022116897-appb-000049
通用合成方法A:以Fmoc-Lys(Dde)-Wang resin(0.3mmol/g)为起始原料,加入至反应容器中,再加入25%六氢吡啶/DMF(体积比),搅拌30min,以茚三酮检测显示深蓝色,抽干过滤反应液,用DMF洗涤5次,去除N端Fmoc保护基使N端成为自由氨基;以DMF为溶剂,按比例(1:2:2)投入N,N二琥珀酰亚胺基碳酸酯(1当量),N,N-二异丙基乙胺DIPEA(2当量)和4-二甲氨基吡啶DMAP(2当量),在氮气保护下,反应1h,再加入H-Glu(OtBu)-OH(1.1当量),搅拌24小时。用2%水合肼/DMF溶液去除Lys的侧链Dde保护基后,加入Fmoc-2-Nal-OH/HOBt/DIC(3当量)与树脂进行接枝引入2-Nal氨基酸残基。随后再次用25%六氢吡啶/DMF(体积比)去除Fmoc保护基使2-Nal的N端成为自由氨基,合成得到产物M1。
中间体化合物M2的合成方法:
Figure PCTCN2022116897-appb-000050
中间体M2-2的合成:
将化合物M2-1(250mg,1.29mmol),以及TMSCH 2N 2(445mg,3.86mmol)滴加到MeOH(10ml)中,反应与100mL圆底瓶中室温搅拌2小时,LCMS监测反应完成。将反应倒入水(50mL)中淬灭,用乙酸乙酯(50mL×3)萃取,合并有机相,有机相用饱和氯化钠(50mL×1)洗涤,硫酸钠干燥,过滤,滤液浓缩。粗产物经厚制备板纯化后得到化合物M2-2(200mg,74.6%)。
中间体M2-3的合成:
将化合物M2-2(200mg,0.96mmol),HATU(2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯)(437mg,1.15mmol)以及DIEA(N,N-二异丙基乙胺)(247mg,1.92mmol)加入到DCM(5mL)中,反应与100mL圆底瓶中室温搅拌5min,然后加入化合物DOTA(549mg,0.96mmol),继续于该温度下搅拌反应1h,LCMS监测反应完成。将反应倒入水(50mL)中淬灭,用DCM(50mL×3)萃取,合并有机相,有机相用饱和氯化钠(50mL*1)洗涤,硫酸钠干燥,过滤,滤液浓缩。粗产物经厚制备板纯化得到化合物M2-3(500mg,68.23%)。
中间体M2的合成:
将化合M2-3(500mg,0.655mmol),以及LiOH(32mg,1.31mmol)加入到MeOH(8ml)/H 2O(2mL)中,反应于100mL圆底瓶中室温搅拌2hrs,LCMS监测反应完成。将反应倒入水(50mL)中淬灭,用EtOAc(50mL×3)萃取,合并有机相,有机相用饱和氯化钠(50mL×1)洗涤,硫酸 钠干燥,过滤,滤液浓缩。粗产物经厚制备板纯化后再经pre-HPLC纯化得到化合物M2(60mg,12.2%); 1H NMR(400MHz,DMSO-d 6)δ13.13-12.51(brs,1.0H),δ8.24(d,J=1.2Hz,1H),8.04(d,J=8.3Hz,1H),7.84(dd,J=8.3,1.5Hz,1H),3.42(d,J=16.5Hz,8H),2.94–2.66(m,17H),1.31(s,27H).LCMS:[M-1] +=747.4
下列中间体用上述中间体M2的合成方法合成得到:
Figure PCTCN2022116897-appb-000051
使用通用中间体M2的合成方法获得B3(820mg,28.5%),MS:[M+1] +=683.5。
Figure PCTCN2022116897-appb-000052
使用通用中间体M2的合成方法获得B4(568mg,35.8%),MS:[M+1] +=683.5。
Figure PCTCN2022116897-appb-000053
使用通用中间体M2的合成方法获得B6(768mg,39%),MS:[M+1] +=683.5。
Figure PCTCN2022116897-appb-000054
使用通用中间体M2的合成方法获得B11(368mg,26%),MS:[M+1] +=683.5。
Figure PCTCN2022116897-appb-000055
使用通用中间体M2的合成方法获得B17(612mg,29.9%),MS:[M+1] +=683.5。
Figure PCTCN2022116897-appb-000056
使用通用中间体M2的合成方法获得B18(712mg,30.9%),MS:[M+1] +=683.5。
Figure PCTCN2022116897-appb-000057
使用通用中间体M2的合成方法获得B23(568mg,37.9%),MS:[M+1] +=683.5
Figure PCTCN2022116897-appb-000058
使用通用中间体M2的合成方法获得B24(658mg,45.9%),MS:[M+1] +=761.1
Fmoc保护的中间体化合物的合成
通用合成方法B:化合物Fomc-Osu(1当量)和含氨基化合物(1当量)溶解在1,4二氧六环(4mL)和水(2mL)中,加入碳酸钠(1.85当量),室温搅拌10h,TLC检测,原料反应完全。减压抽干溶剂,加入0.1mol/L浓度NH 4Cl溶液调节pH至3-4,EtOAc萃取2次,干燥,浓缩,粗品pre-HPLC纯化得到的相应Fmoc保护的化合物。
Figure PCTCN2022116897-appb-000059
使用通用合成方法B获得M3(168mg,57.9%); 1H NMR(400MHz,DMSO-d 6)δ12.08(s,1H),7.89(d,J=7.5Hz,2H),7.63(d,J=7.4Hz,2H),7.42(t,J=7.3Hz,2H),7.34(td,J=7.4,0.9Hz,2H),4.31(d,J=6.7Hz,2H),4.23(t,J=6.7Hz,1H),3.50(d,J=17.9Hz,4H),2.16(s,1H),1.75(t,J=10.3Hz,4H),1.39(ddd,J=28.9,17.8,6.8Hz,4H);LCMS:[M-1] +=390.2。
Figure PCTCN2022116897-appb-000060
使用通用合成方法B得到化合物M4(107mg,97.7%); 1H NMR(400MHz,DMSO-d 6)δ13.18–12.22(m,1H),7.78(dd,J=76.9,28.8Hz,6H),7.46–7.16(m,5H),4.54(s,2H),4.42(d,J=6.2Hz,2H),4.31(t,J=6.2Hz,1H),3.52(s,2H),2.75(s,2H);LCMS:[M-1] +=398.1。
Figure PCTCN2022116897-appb-000061
使用通用合成方法B得到化合物M5(150mg,98.2%); 1H NMR(400MHz,DMSO-d 6)δ12.45–11.54(m,1H),7.90(d,J=7.5Hz,2H),7.63(d,J=7.4Hz,2H),7.41(d,J=7.4Hz,2H),7.35(dd,J=7.4,0.7Hz,2H),4.39(d,J=6.3Hz,2H),4.27(d,J=6.2Hz,1H),3.28–3.19(m,4H),2.16(ddd,J=14.8,7.5,3.8Hz,1H),1.63(ddd,J=23.0,12.6,8.8Hz,4H),1.513-1.421(m,2H),1.28–1.05(m,6H);LCMS:[M-1] +=418.2。
Figure PCTCN2022116897-appb-000062
使用通用合成方法B得到化合物M6(168mg,57.91%); 1H NMR(400MHz,DMSO-d 6)δ11.99(s,1H),7.88(d,J=7.5Hz,2H),7.69(d,J=7.3Hz,2H),7.41(t,J=7.2Hz,2H),7.32(t,J=7.0Hz,2H),7.02(s,1H),4.19(s,3H),1.75(s,12H);LCMS:[M-1] +=390.1。
Figure PCTCN2022116897-appb-000063
使用通用合成方法B得到化合物M7(121mg,98.7%); 1H NMR(400MHz,DMSO-d 6)δ8.08(s,1H),7.88(d,J=7.5Hz,2H),7.67(d,J=7.1Hz,2H),7.41(t,J=7.4Hz,2H),7.33(td,J=7.4,1.0Hz,2H),4.24(d,J=27.0Hz,3H),2.08(t,J=18.1Hz,5H),1.58(s,1H),1.23(s,1H);LCMS:[M-1] +=348.2。
Figure PCTCN2022116897-appb-000064
使用通用合成方法B得到化合物M8(151mg,89.9%); 1H NMR(400MHz,DMSO-d 6)δ11.99(s,1H),7.88(d,J=7.5Hz,2H),7.69(d,J=7.3Hz,2H),7.41(t,J=7.2Hz,2H),7.32(t,J=7.0Hz,2H),7.02(s,1H),4.19(s,3H),2.89(d,J=2.7Hz,2H),1.75(s,12H);LCMS:[M-1] +=404.2。
Figure PCTCN2022116897-appb-000065
使用通用合成方法B得到化合物M9(110mg,56.7%); 1H NMR(400MHz,DMSO-d 6)δ8.08(s,1H),7.88(d,J=7.5Hz,2H),7.67(d,J=7.1Hz,2H),7.41(t,J=7.4Hz,2H),7.33(td,J=7.4,1.0Hz,2H),4.24(d,J=27.0Hz,3H),2.99(d,J=2.7Hz,2H)2.08(t,J=18.1Hz,5H),1.58(s,1H),1.23(s,1H);LCMS:[M-1] +=362.2。
Figure PCTCN2022116897-appb-000066
使用通用合成方法B得到化合物M10(1155mg,63.3%); 1H NMR(400MHz,DMSO-d 6)δ13.18–12.22(m,1H),7.78(dd,J=76.9,28.8Hz,6H),7.46–7.16(m,5H),4.54(s,2H),3.17(d,J=1.37Hz,2H),2.75(d,J=6.2Hz,2H),2.73(t,J=6.2Hz,2H),1.99(m,1H).
Figure PCTCN2022116897-appb-000067
使用通用合成方法B得到化合物M11(165mg,86.7%);MS:[M-1] +=398.2。
Figure PCTCN2022116897-appb-000068
使用通用合成方法B得到化合物M12(210mg,76.5%);MS:[M-1] +=404.2。
Figure PCTCN2022116897-appb-000069
使用通用合成方法B得到化合物B8(820mg,65%);1H NMR(400MHz,CDCl 3)δ7.77(d,J=7.6Hz,2H),7.61(d,J=7.6Hz,2H),7.37(t,J 7.6Hz,2H),7.28(t,J=7.6Hz,2H),4.31-4.45(m,2H),4.18-4.22(m,1H),3.68-3.75(m,1H),3.61-3.71(m,1H),3.48-3.58(m,2H),2.16-2.21(m,2H),1.45-1.48(m,1H).MS:[M+1] +=350.1。
Figure PCTCN2022116897-appb-000070
使用通用合成方法B得到化合物B12(210mg,76.5%); 1HNMR(400MHZ,DMSO-d6)δ12.02(s,1H),7.89(d,J=7.6Hz,2H),7.62(d,J=7.6Hz,2H),7.41(d,J=7.6Hz,2H),7.33(d,J=7.6Hz,2H),4.33-4.52(m,2H),4.22-4.31(m,1H),3.18-3.25(m,4H),2.02-2.21(m,1H),1.16-1.68(m,12H).MS:[M+1] +=42。
Figure PCTCN2022116897-appb-000071
使用通用合成方法B得到化合物B16(300mg,79%),MS:[M+1] +=401.1。
Figure PCTCN2022116897-appb-000072
使用通用合成方法B得到化合物B19(300mg,80%),1H NMR(400MHz,DMSO-d6)δ12.71(s,1H),7.91(d,J=8.0Hz,2H),7.65(d,J=8.0Hz,2H),7.42(t,J=12Hz,2H),7.33(t,J=8.0Hz,2H),7.21(br s,1H),4.69(d J=8.0Hz,2H),4.35(s,1H),3.49-3.56(m,2H),2.52-2.77(m,2H),1.65-1.79(m,2H),MS:[M+1] +=400.1。
Figure PCTCN2022116897-appb-000073
使用通用合成方法B得到化合物B20(450mg,79%),1H NMR(400MHz,DMSO-d6)δ12.99(s,1H),9.88(s,1H),7.21-8.02(m,16H),4.30-4.61(m,2H),4.25-4.30(m,1H);MS:[M+1] +=436.2。
Figure PCTCN2022116897-appb-000074
使用通用合成方法B得到化合物B21(500mg,87%)。1H NMR(400MHz,DMSO-d6)δ12.92(s,1H),10.12(s,1H),8.5(s,1H),8.13(s,1H),7.71-8.12(m,4H),7.50-7.69(m,1H),7.30-7.49(m,4H),4.45-4.58(m,2H),4.31-4.40(m,1H);MS:[M+1] +=410.2。
Figure PCTCN2022116897-appb-000075
使用通用合成方法B得到化合物B22(300mg,75%). 1H NMR(400MHZ,DMSO-d6)δ12.11(br s,1H),7.89(d,J=7.5Hz,2H),7.68(d,J=7.3Hz,2H),7.42(t,J=7.2Hz,2H),7.33(t,J=7.0Hz,2H),4.22-4.33(m,3H),3.90(s,2H),3.80(s,2H),2.82-2.95(m,1H),2.25-2.41(m,4H).MS:[M+1] +=364.3。
Figure PCTCN2022116897-appb-000076
使用通用合成方法B得到化合物B25(620mg,67%), 1H NMR(400MHZ,DMSO-d6)δ12.32(br s,1H),10.28(s,1H),9.22(s,1H),8.82(s,1H),8.29(s,1H),8.08(d,J=9.2Hz,1H),7.92(d,J=7.6Hz,2H),7.78(d,J=7.2Hz,2H),7.75-7.76(m,1H),7.44(t,J=7.2Hz,2H),7.37(t,J=7.2Hz,2H),4.58(d,J=6.4Hz,2H),4.36(t,J=6.8Hz,1H).MS:[M+1] +=411.1。
Figure PCTCN2022116897-appb-000077
使用通用合成方法B得到化合物B26(700mg,81%),MS:[M+1] +=366.2。
通用Fmoc保护基去保护步骤:将含有5%piperidine,1.25%DBU和1%HOBt的DMF(v/v/w/v)溶液(大约6毫升溶液/克树脂)与树脂混合并在室温下搅拌10分钟,过滤后再加入相同溶液在室温下搅拌20分钟,过滤随后树脂按下列顺序进行洗涤2x DMF,2x MTBE,2x DMF,洗涤后树脂备用。
实施例1.化合物E1的合成
Figure PCTCN2022116897-appb-000078
通用合成方法C:
1)中间体E1-1的合成:
将树脂负载的化合物M1和化合物M2以等倍当量比加入到反应瓶中,DMF为溶剂,分别加入等当量的HOBt和DIC进行缩合偶联树脂,在常温下搅拌2.5小时,以茚三酮检测显示深蓝色为检测方法,监测反应完全后,过滤,用DMF洗涤3-5次,得到中间体E1-1,直接用于下一步。
2)化合物E1的合成:
使用切割试剂(三氟乙酸:H 2O:三异丙基硅烷=90:5:5,v/v)将目标多肽从化合物E1-1树脂上裂解下来并除去侧链保护基(30℃下切割3小时)。滤液加入到大量冷的无水乙醚中使多肽沉淀析出,离心。用乙醚洗涤数次后干燥,即得到多肽粗品,采用反相高效液相色谱仪对粗品进行制备纯化得到化合物E1。色谱柱型号:Agela C18(10μm,
Figure PCTCN2022116897-appb-000079
50×250mm)。色谱操作条件:流动相A为含0.05%三氟乙酸和2%乙腈的水溶液,流动相B为90%乙腈水溶液,流速为每分钟25毫升,紫外检测波长220纳米。冻干溶剂后得到蓬松状态的多肽纯品,其化学结构由MALDI-TOF质谱进行表征,而其纯度则由分析型高效液相色谱仪(Agela C18-10×250mm,流速:每分钟1毫升)测试。MS:[M+2] +=1080.3,[M+Na] +=1102.4
实施例2.化合物E2的合成
Figure PCTCN2022116897-appb-000080
Figure PCTCN2022116897-appb-000081
通用合成方法D:
1)中间体E2-1的合成:
将树脂负载的化合物M1和化合物M3(1.5倍当量)分别加入到反应瓶中,DMF为溶剂,再加入1.5当量的HOBt和1.5当量DIC进行缩合偶联树脂,在常温下搅拌2.5小时,以茚三酮检测显示深蓝色为检测方法,监测反应完全后,过滤,用DMF洗涤3-5次得到化合物E2-1;
2)中间体E2-2的合成:
将中间体E2-1加入到反应瓶中,用25%六氢吡啶/DMF(体积比)脱除其Fmoc保护基,再过滤,用DMF洗涤3-5次,将洗涤干燥的化合物加入到含有DMF的反应瓶中,分别加入2倍当量的DOTA-Tris(t-Bu)ester,2倍当量HOBt和2倍当量DIC,在室温下搅拌2.0小时,以茚三酮检测显示深蓝色为检测方法,反应完全后,过滤,用DMF洗涤3-5次得到中间体化合物E2-3;
3)化合物E2的合成:
在含有中间体E2-3的反应瓶中加入切割试剂(三氟乙酸:H 2O:三异丙基硅烷=90:5:5,v/v)将目标多肽从树脂上裂解下来并除去侧链保护基(30℃下切割3小时)。滤液加入到大量冷的无水乙醚中使多肽沉淀析出,离心。用乙醚洗涤数次后干燥,即得到多肽粗品,采用反相高效液相色谱仪对粗品进行制备纯化得到化合物E2.色谱柱型号:Agela C18(10μm,
Figure PCTCN2022116897-appb-000082
50×250mm)。色谱操作条件:流动相A为(含0.05%三氟乙酸,2%乙腈的水溶液),流动相B为90%乙腈水溶液,25分钟内从0%B到100%B)。流速为每分钟25毫升,紫外检测波长220纳米。冻干溶剂后得到蓬松状态的多肽纯品,其化学结构由MALDI-TOF质谱进行表征,而其纯度则由分析型高效液相色谱仪(Agela C18-10×250mm,流速:每分钟1毫升)测试,流动相A为(含0.05%三氟乙酸,2%乙腈的水溶液),流动相B为90%乙腈水溶液,(10分钟内从0%B到100%B)。MS:[M+1] +=1054.6,[M+Na] +=1075.8
实施例3:化合物E3的合成
Figure PCTCN2022116897-appb-000083
使用通用合成方法C,D均可得到化合物E3;MS:[M+1] +=1062.1,[M+Na] +=1084.7
实施例4:化合物E4的合成
Figure PCTCN2022116897-appb-000084
使用通用合成方法C得到化合物E4;
实施例5:化合物E5的合成
Figure PCTCN2022116897-appb-000085
使用通用合成方法D得到化合物E5;MS:[M+1] +=1027.6,[M+Na] +=1049.8
实施例6:化合物E6的合成
Figure PCTCN2022116897-appb-000086
使用通用合成方法C,D均可得到化合物E6;MS:[M+1] +=1063.5,[M+Na] +=1085.4
实施例7:化合物E7的合成
Figure PCTCN2022116897-appb-000087
使用通用合成方法D得到化合物E7;MS:[M+1] +=1077.2
实施例8:化合物E8的合成
Figure PCTCN2022116897-appb-000088
使用通用合成方法D得到化合物E8;MS:[M+1] +=1013.07
实施例9:化合物E9的合成
Figure PCTCN2022116897-appb-000089
使用通用合成方法D得到化合物E9;MS:[M+1] +=1084.2,[M+Na] +=1105.3
实施例10:化合物E10的合成
Figure PCTCN2022116897-appb-000090
使用通用合成方法D得到化合物E10:MS:[M+1] +=1069.5,[M+Na] +=1090.5
实施例11:化合物E11的合成
Figure PCTCN2022116897-appb-000091
使用通用合成方法C得到化合物E11;MS:[M+1] +=1048.4
实施例E12:化合物E12的合成
Figure PCTCN2022116897-appb-000092
使用通用合成方法D得到化合物E12;MS:[M+1] +=1082.5
实施例13:化合物E13的合成
Figure PCTCN2022116897-appb-000093
使用通用合成方法D得到化合物E13;MS:[M+1] +=1055.2,[M+Na] +=1076.5
实施例14:化合物E14的合成
Figure PCTCN2022116897-appb-000094
使用通用合成方法D得到化合物E14;MS:[M+1] +=1013.1,[M+Na] +=1034.4
实施例15:化合物E15的合成
Figure PCTCN2022116897-appb-000095
使用通用合成方法D得到化合物E15;MS:[M+1] +=1069.1,[M+Na] +=1090.5
实施例16:化合物E16的合成
Figure PCTCN2022116897-appb-000096
使用通用合成方法D得到化合物E16;MS:[M+1] +=1063.4
实施例17:化合物E17的合成
Figure PCTCN2022116897-appb-000097
使用通用合成方法C得到化合物E17;MS:[M+1] +=1063.5
实施例18:化合物E18的合成
Figure PCTCN2022116897-appb-000098
使用通用合成方法C得到化合物E18;MS:[M+1] +=1068.6
实施例19:化合物E19的合成
Figure PCTCN2022116897-appb-000099
使用通用合成方法D得到化合物E19;MS:[M+1] +=1063.2
实施例20:化合物E20的合成
Figure PCTCN2022116897-appb-000100
使用通用合成方法D得到化合物E20;MS:[M+1] +=1099.4
实施例21:化合物E21的合成
Figure PCTCN2022116897-appb-000101
使用通用合成方法D得到化合物E21;MS:[M+1] +=1073.5
实施例22:化合物E22的合成
Figure PCTCN2022116897-appb-000102
使用通用合成方法D得到化合物E22;MS:[M+1] +=1026.5
实施例23:化合物E23的合成
Figure PCTCN2022116897-appb-000103
使用通用合成方法C得到化合物E23;MS:[M+1] +=1014.1
实施例24:化合物E24的合成
Figure PCTCN2022116897-appb-000104
使用通用合成方法C得到化合物E24;MS:[M+1] +=1090.5
实施例25:化合物E25的合成
Figure PCTCN2022116897-appb-000105
使用通用合成方法D得到化合物E25;MS:[M+1] +=1073.5
实施例E26:化合物E26的合成
Figure PCTCN2022116897-appb-000106
使用通用合成方法D得到化合物E26;MS:[M+1] +=1029.1
实施例27:参比化合物PSMA-617的合成
Figure PCTCN2022116897-appb-000107
使用通用合成方法D得到化合物PSMA-617;MS:[M+1] +=1043.1所有化合物的制备方法及表征总结如表1所示
表1合成化合物方法及表征
化合物 合成方法 HPLC t r(min) MS[M+1] +
E1 C 25.90 3 1080.1
E2 D 12.83 2 1055.1
E3 C,D 11.82 2 1062.5
E4 C 12.45 2 1062.5
E5 D 13.89 2 1013.2
E6 C,D 12.16 2 1049.2
E7 D 7.34 1 1077.2
E8 D 6.17 1 1013.07
E9 D 14.71 2 1083.2
E10 D 13.62 2 1069.2
E11 C 11.47 2 1048.4
E12 D 12.42 2 1082.5
E13 D 11.67 2 1055.2
E14 D 13.89 2 1013.1
E15 D 12.85 2 1069.2
E16 D 10.14 2 1064.1
E17 C 11.36 2 1064.1
E18 C 11.39 2 1068.6
E19 D 12.05 2 1063.2
E20 D 7.63 1 1099.4
E21 D 12.27 2 1073.5
E22 D 9.66 2 1026.5
E23 C 12.11 2 1014.1
E24 C 13.65 2 1090.5
E25 D 9.96 2 1073.5
E26 D 9.78 2 1029.1
PSMA-617 D 12.08 2 1043.1
1表示采用LCMS检测方法1
LCMS检测方法1,化合物的表征由MS来进行,而其纯度则由分析型高效液相色谱仪(Agela C18-10×250mm,流速:每分钟1毫升)测试,流动相A为(含0.05%三氟乙酸,2%乙腈的水溶液),流动相B为90%乙腈水溶液,检测波长为220nm。(10分钟内从0%B到100%B)。
2表示采用LCMS检测方法2
LCMS检测方法2,化合物的表征由MS来进行,而其纯度则由分析型高效液相色谱仪(Agela C18-10×250mm,流速:每分钟1毫升)测试,流动相A为(含0.05%三氟乙酸,2%乙腈的水溶液),流动相B为90%乙腈水溶液,(25分钟内从0%B到100%B)。
3表示采用LCMS检测方法3
LCMS检测方法2,化合物的表征由MS来进行,而其纯度则由分析型高效液相色谱仪(Agela C18-10×250mm,流速:每分钟1毫升)测试,流动相A为(含0.05%三氟乙酸,2%乙腈的水溶液),流 动相B为90%乙腈水溶液,(35分钟内从8%B到43%B),检测器波长为220nm。
实施例28:金属络合物 177Lu-E1合成
Figure PCTCN2022116897-appb-000108
通用合成方法E:
1)称取醋酸钠4.1g,加入45mL超纯水,完全溶解后,用冰醋酸调pH至4.0,再补超纯水至50mL,得1M的醋酸钠溶液。打开金属浴反应器,预热至95℃。
2)分别称量前体化合物E1(1mg),分别加入1000μL的醋酸钠溶液,充分溶解后得1μg/μL的前体溶液。取前体溶液10μL(10μg),再加入240μL的醋酸钠溶液稀释。然后分别加入250μCi的 177LuCl 3溶液,混匀后置于95℃的反应器上反应30min,使用C18Sep-Pak进行纯化。
3)称取EDTA钠盐0.5g,加入50mL生理盐水,充分溶解,得1%EDTA钠盐水溶液。取 177LuCl 3溶液2μL,点在瞬时薄层色谱层析硅胶板上距底部1cm处,吹干。取反应后的溶液2μL,点在瞬时薄层色谱层析硅胶板距上底部1cm处,吹干。以0.5mL的1%EDTA钠盐溶液为展开剂,将硅胶板底部置于玻璃试管的展开剂中,硅胶板底部伸入展开剂液面不超过5mm。盖上橡胶塞,待展开剂展开至9-10cm时取出硅胶板,吹干。γ扫描仪扫描硅胶板,对比 177LuCl 3溶液和反应后的溶液,通过峰面积计算放化纯度和标记率。
如表2所示, 177LuCl 3溶液在展开剂中展开至硅胶板顶部。
表2:区域: 177Lu 检测器:PMT
Figure PCTCN2022116897-appb-000109
总面积:2400 Counts
平均背景:0 Counts
如表3所示,标记化合物 177Lu-E1在展开剂中只能展开至硅胶板底部,其放化纯度为96.0%,标记率也是100%。
表3:区域: 177Lu 检测器:PMT
Figure PCTCN2022116897-appb-000110
Figure PCTCN2022116897-appb-000111
总面积:2462 Counts
平均背景:0 Counts
实施例29:金属络合物 177Lu-E2的合成
Figure PCTCN2022116897-appb-000112
使用通用合成方法E,得到放化纯为97.4%的 177Lu-E2如表4所示,标记率为100%。
表4:区域: 177Lu 检测器:PMT
Figure PCTCN2022116897-appb-000113
总面积:3456 Counts
平均背景:0 Counts
实施例30:金属络合物 177Lu-E3的合成
Figure PCTCN2022116897-appb-000114
使用通用合成方法E,得到放化纯为98.2%的 177Lu-E3如表5所示,标记率为100%。
表5:区域: 177Lu 检测器:PMT
Figure PCTCN2022116897-appb-000115
总面积:4501 Counts
平均背景:0 Counts
实施例31:金属络合物 177Lu-E9的合成
Figure PCTCN2022116897-appb-000116
使用通用合成方法E,得到放化纯为98.4%的 177Lu-E9如表6所示,标记率为100%。
表6:区域: 177Lu 检测器:PMT
Figure PCTCN2022116897-appb-000117
总面积:5103 Counts
平均背景:0 Counts
实施例32:金属络合物 177Lu-E14的合成
Figure PCTCN2022116897-appb-000118
使用通用合成方法E,得到放化纯为98.5%的 177Lu-E14如表7所示,标记率为100%。
表7:区域: 177Lu 检测器:PMT
Figure PCTCN2022116897-appb-000119
总面积:5782 Counts
平均背景:0 Counts
实施例33:金属络合物 177Lu-E5的合成
Figure PCTCN2022116897-appb-000120
使用通用合成方法E,得到放化纯为96.8%的 177Lu-E5如表8所示,标记率为100%。
表8:区域: 177Lu 检测器:PMT
Figure PCTCN2022116897-appb-000121
总面积:23725 Counts
平均背景:0 Counts
实施例34:金属络合物 177Lu-PSMA-617的合成
Figure PCTCN2022116897-appb-000122
使用通用合成方法E,得到放化纯为98.9%的 177Lu-PSMA-617如表9所示,标记率为100%。
表9:区域: 177Lu 检测器:PMT
Figure PCTCN2022116897-appb-000123
总面积:12855 Counts
平均背景:0 Counts
实施例35:化合物 68Ga的标记实验
将所选择的E系列化合物用DMSO溶解,制成为1 mg/mL的溶液,取出部分并用PBS稀释为浓 度为0.1mg/mL的溶液备用。用5mL 0.1M HCl分段淋洗锗镓发生器,取活度最高部分(0.5mL),加入0.5mL的pH=4.5无金属醋酸钠缓冲液,以1.5mL离心管为反应器,加入一定量前体(0.1mg/mL),旋涡混匀10s,95℃800rpm加热15min,冷却至室温,将反应液通过用无水乙醇和水活化的C18小柱,收集标记的组分备用。用TLC方法检测标记化合物的放化纯度。
效果例1 PSMA阳性细胞LNCap对标记后化合物摄取实验
复苏LNCap细胞(商城北纳创联生物科技有限公司,河南省信阳市商城县城关镇产业集聚区工业园区)并传代扩增,待细胞扩增至足够量,以1×10 4个细胞/孔的密度接种于24孔板中。细胞长至80%-90%融合时进行摄取实验。
将上述标记的化合物 177Lu-E1、177Lu-E2、 177Lu-E3、 177Lu-E5、177Lu-E9、177Lu-E14和 177Lu-PSMA-617用无血清培养基稀释成10000、1000、100、10、1、0.1和0nM。取稀释后的溶液1mL加至24孔板中,37℃孵育0.5h。弃去上清,用PBS洗细胞3次。每孔加入1M的NaOH溶液250μL,吹打细胞至完全溶解并转移至闪烁瓶中。每孔再次加入NaOH溶液250μL,清洗孔底并转移至闪烁瓶中。每个闪烁瓶中加入2mL闪烁液并充分摇匀。液体闪烁计数仪检测每个瓶子的放射性计数。LNCap细胞对不同浓度的前体化合物摄取情况如下表所示:
Figure PCTCN2022116897-appb-000124
效果例2  177Lu标记络合物在SD大鼠体内的代谢实验
SD大鼠18只(杭州子源实验动物科技有限公司),雄性,体重180-200g,随机分成6组,每组3只。每只分别尾静脉注射标记后的前体化合物10μCi,给药后5min、0.5h、1h、2h、4h、8h和24h眼眶采血250μL至抗凝管中。3000rpm离心10min,取血浆100μL至闪烁瓶中。每个闪烁瓶中加入2mL闪烁液并充分摇匀。液体闪烁计数仪检测每个瓶子的放射性计数。
标记后的化合物在SD大鼠体内的代谢情况如下表所示:
Figure PCTCN2022116897-appb-000125
Figure PCTCN2022116897-appb-000126
效果例3SPECT影像
将100μCi 177Lu标记的 177Lu-E3和 177Lu-PSMA-617分别经尾部静脉注入携带LNCaP PSMA阳性肿瘤的小鼠(江苏华景分子影像与药物研究院有限公司),小鼠用2%异氟烷/98%氧气实施麻醉进行SPECT影像对比研究,其结果见表10和表11。从表10和表11可以看出,较 177Lu-PSMA-617而言, 177Lu-E3在进入动物体内后,可迅速分布至各器官,其代谢主要是通过肾进行排泄,随时间进行, 177Lu-E3在PSMA阳性肿瘤内的累计大大高于注射 177Lu-PSMA-617的参照动物。
表10
Figure PCTCN2022116897-appb-000127
Figure PCTCN2022116897-appb-000128
表11
Figure PCTCN2022116897-appb-000129
效果实施例4.化合物与PSMA蛋白in vitro结和力测试:
Biacore 8K(Cytiva)仪器用于检测PSMA蛋白(Sinobiological)的配体结合。在SA芯片上捕获PSMA蛋白。在固定配体之前(流动路径1、2,流速为10μL/min),用流动缓冲液在流动路径2上固定PSMA蛋白(10μg/ml,流速为5μL/min,注射时间为600s),在50mM NaOH中连续注入三次1M NaCl,调节传感器表面。在每次配体注射后,包括在1M NaCl和50mM NaOH中使用异丙醇进行额外清洗(流动路径1、2,流速为10μL/min,注射时间为60s)。
所有化合物溶解在100%二甲基亚砜中并稀释至10mM,然后在分析缓冲液(PBS,pH 7.4,1mM TCEP(三-(2-羟乙基)膦),0.05%P20,2%二甲基亚砜)中以适当的最高浓度稀释。使用以下条件运行分析物:15℃分析温度,分析步骤=全部设置为LMW动力学;循环类型=单循环(90s接触时间,1800s分离时间,30ul/min流速,流道1,2);流道检测=2-1)。使用Biacore Insight评估软件进行数据评估,数据适合1:1绑定模型。
Biacore结果见12表:pK D=-LogK D,其中K D是用Biacore测得的化合物对PSMA蛋白的结合力。用K D(M)=K d(1/s)/K a(1/Ms)来表达。
表12化合物对PSMA蛋白结合力
化合物 pK D
E1 -
E2 9.64
E3 9.26
E4 9.57
E5 -
E6 -
E7 -
E8 9.49
E9 9.55
E10 -
E11 -
E12 -
E13 12.46
E14 -
E15 -
E16 -
E17 -
E18 12.28
E19 -
E20 12.46
E21 9.82
E22 10.00
E23 -
E24 15.53
E25 10.15
E26 9.44
PSMA-617 11.69
上述测试的结果显示以芳香稠环,桥环碳环,仲胺化合物作为连接子而得到的PSMA抑制剂不仅具有良好的针对PSMA蛋白的生物活性,而且与参照物PSMA-617相比有数个化合物表现出更好的体外生物活性。
效果实施例5.细胞结合及内吞实验:
将对数生长期的LNCAP细胞(和元生物技术(上海)股份有限公司),制成细胞悬液,细胞密度调整为2×10 5/ml接种1mL至24孔细胞培养板中。37℃孵箱中培养48小时。于实验前3小时更换无血清RPMI1640培养基(NEWZERUM),吸去细胞培养液,并用PBS洗涤细胞1次。用无血清RPMI1640培养基配制32、16、8、4、1、0.5、0.1、0.02、0.01、0.002uCi/mL浓度的 177Lu-E系列化合物,弃去原培养基后每孔加1mL含有 177Lu-E系列化合物的配制溶液。板在冰上放置2小时,然后用0.5mL冰冷的PBS洗涤细胞三次,吸去洗涤液,用0.5mL 1M氢氧化钠裂解细胞,用0.5mL PBS 洗涤2次,收集氢氧化钠(0.5mL)和PBS(0.5mL×2)溶液,测定摄取计数。
细胞结合实验的结果如图1。由图1可知细胞结合实验表明所测试的化合物具有良好的与PSMA细胞结合的能力,尤其是化合物E26具有优异的细胞结合率。
细胞内吞的实验:将对数生长期的LNCAP细胞(商城北纳创联生物科技有限公司),制成细胞悬液,细胞密度调整为和1×10 5/ml接种1mL至12孔细胞培养板中。37℃孵箱中培养48小时。于实验前3小时更换无血清1640培养基。吸去细胞培养液,用PBS洗涤细胞1次。
将用 177Lu标记的E系列化合物和参照化合物PSMA-617的液体用生理盐水(含0.05%BSA)配制成47.36MBq(~1280uci)/mL的溶液。用无血清培养基稀释上述溶液并加入到板中,使每孔中标记化合物浓度为(5uci/孔);37℃孵箱中培养2小时,随后用冰的PBS洗涤细胞三次,吸去洗涤液,加入0.5M甘氨酸缓冲液(100mM NaCl,pH2,8,盐酸调节),孵育10分钟并用0.5M甘氨酸缓冲液洗涤细胞三次,吸去洗涤液,并收集,用0.5mL 1M氢氧化钠裂解细胞,用0.5mL PBS洗涤2次,收集氢氧化钠(0.5mL)和PBS(0.5mL×2)溶液,测定摄取计数
图2显示了细胞内吞实验的结果,结合上述实例的结果,E系列化合物不仅具有较高的细胞亲和力,而且在37℃的内吞实验中也表现出了比参照化合物PSMA-617具有更易被细胞内吞的性质。内吞性能对于标记化合物在肿瘤细胞内的吸收和滞留具有重要意义,因为它直接影响到含放射性物质的化合物在肿瘤治疗方面的应用。
效果实施例6.E系列化合物特异性实验
68Ga-E3放射性标记化合物从PSMA阳性(22RV1)荷瘤小鼠(江苏华景分子影像与药物研究院有限公司)的尾部静脉注入(约7.4MBq/鼠,比活度为:22423.82KBq/μg)(50uCi),给药后用PET/CT进行1h动态扫描、中分辨率全身CT,2h、3h静态扫描10min。从图3可以清晰看到给药后药物快速分布到动物体内,随时间药物被迅速经肾代谢并排出体内,而药物在PSMA表达的肿瘤上的富集在给药30分钟左右达到最高,随后虽逐渐被代谢,但180分钟时在肿瘤上仍有较高的 68Ga-E3富集。
隔天,将 68Ga-E3与PSMA标样PMPA(2mg/Kg)的混合物从PSMA阳性荷瘤小鼠的尾部静脉注入(约7.4MBq/鼠,比活度为:22423.82KBq/μg)(50uCi),给药后用PET/CT进行1h动态扫描、中分辨率全身CT,2h、3h静态扫描10min,结果详见图4。
由于PMPA是PSMA的特异抑制剂,当其与 68Ga-E3一起给药时, 68Ga-E3和PMPA迅速分布到动物体内各器官,而PMPA占据了肿瘤上的PSMA靶点,因而阻碍了 68Ga-E3与肿瘤上PSMA的结合。这个结果反映了E3具有针对PSMA高效的特异性。
效果实施例7.cLogP的测定
取3个EP管,各加入0.5mL饱和正辛醇和480μL的超纯水,然后分别加入20μL(约1MBq)的JHP化合物和对照品溶液,振荡均匀后室温离心(2000r/min,5min,离心半径10cm),各管从脂层和水层分别取100μL,测量两相的每分钟放射性计数,并计算LogP值,结果取均值。
LogP的测试结果如图5显示所测试的E系列化合物均具有良好的亲水性,其中E3,E22与参照化合物PSMA-617相比具有相似的亲脂性,而E26具有更好的亲质性。另外,ClogP的数值显示所测试的化合物均具有良好的水溶性。
效果实施例8.E化合物与血浆蛋白(PPB)结合实验
取3个EP管,每管中分别加入血浆0.2mL和50μL的177Lu标记化合物,在37℃恒温器中温育10min后,取出分别加入到超滤管中,把超滤管在13000rpm离心45min,然后加入50μL生理盐水,继续离心15min。然后测量各管套管和滤过液的每分钟放射性计数,并计算PPB,记录3管的均值。PPB=[(上层计数-本底计数)]/(下清计数+上层计数-2*本底计数)]*100。
化合物与血浆蛋白(PPB)的结合率的程度对于化合物在血液内循环有重要的作用。虽然无论从化合物结构,还是从化合物的LogP结果(图6)看,E3与参照化合物PSMA-617具有类似的亲脂性,但E3表现出异常高的PPB结合率,这对于化合物在血液内的滞留具有重要意义。
效果实施例9.E系列化合物的生物分布:
健康大鼠的体内分布:将E放射性标记化合物从6-9周龄大的SD大鼠(杭州子源实验动物科技有限公司)的尾部静脉注入(约7.4MBq/鼠,比活度为:84200.14kBq/μg),在SD大鼠给药后的不同时间节点(0.25、0.5、1、2、4、6、24、48、72h)使用二氧化碳吸入对动物进行安乐死,安乐死后采集动物血液和16种脏器(血、肝、脾、肺、心、肌肉、胰腺、睾丸)。
血液通过腹主动脉采血,采集后立即定量100μL到指定离心管中(称重)。脏器采集后使用去离子水清洗两次并擦干,放入事先称重的试管中,再次称重,计算样本重量,样本于采集当天进行测定。所有血液样本和组织样本使用伽马计数计测量放射性计数。
实验结果图7表明在静脉给药后, 177Lu-E3可快速分布到健康大鼠的各个器官并被快速代谢出体内,其代谢的主要途径是经肾脏来完成的,在各个器官中 177Lu-E3的摄取量均较低,且具有良好的代谢性质。
PSMA阳性荷瘤小鼠组织分布:将6-9周左右的(nod scid)小鼠(江苏华景分子影像与药物研究院有限公司)用5x10 6细胞的22rv1(在50%基质胶中,康宁)皮下接种在动物右侧肩部。待肿瘤生长至约150-350mm 3的尺寸时,将 177Lu-E3放射性标记化合物从小鼠的尾部静脉注入(约7.4MBq/鼠,比活度为:22423.82KBq/μg),动物给药后分别在0.25、0.5、1、6、24、72、144、168h使用二氧化碳吸入的方式对动物进行安乐死,安乐死后采集动物血液和脏器(血、肝、脾、肺、心、肌肉、胰腺、睾丸、肿瘤)。
血液通过腹主动脉采血,采集后立即定量100μL到指定离心管中(称重)。脏器采集后使用去离子水清洗两次并擦干,放入事先称重的试管中,再次称重,计算样本重量,样本于采集当天进行测定。所有血液样本和组织样本使用伽马计数计测量放射性计数,结果如图8。
经静脉给药后, 177Lu-E3快速分布到荷瘤小鼠的各个器官,在血液中的清除速率较快,且是 经肾脏代谢排出体外。 177Lu-E3在肿瘤里的摄取在给药2小时后达到最高,随后随时间而递减,但即使7天后,肿瘤中仍含有较高的药物浓度,另外,在非靶向器官中摄取量始终较低且很快被代谢出体内。
效果实施例10.
将4-5周左右的(balb/c nude,北京维通利华)小鼠用5x106细胞的22rv1(在50%基质胶中,康宁)在动物右侧肩胛骨皮下接种。待肿瘤生长至约150-350mm3的尺寸时,用异氟烷麻醉后,将177Lu-PSMA-617,177Lu-E3,177Lu-E4,177Lu-E8,177Lu-E16,177Lu-E18,177Lu-E24放射性标记化合物分别从小鼠的尾部静脉注入(约7.4MBq/鼠,比活度为:22423.82KBq/μg),随后分别在1h,5h,24h,48h和72h用小动物SPECT-CT成像系统(U-SPECT+/CT,MI Labs)进行SPECT成像,177Lu-PSMA-617如图9,177Lu-E3如图10,177Lu-E4如图11,177Lu-E8如图12,177Lu-E16如图13,177Lu-E8如图14,177Lu-E24如图15。影像实验的结果显示这些 177Lu标记的E化合物经动物尾部静脉进入动物体内后,可快速分布到动物的各个器官并被快速代谢出体内,其代谢的主要途径是经肾脏来完成的,其中 177Lu-E8, 177Lu-E16, 177Lu-E24在动物体内及表达PSMA的肿瘤上的滞留时间均较短,1个小时后,这些化合物基本被代谢掉。而与 177Lu-PSMA-617相比, 177Lu-E3, 177Lu-E4, 177Lu-E8在进入动物体内也可被快速代谢,除了在PSMA表达的肿瘤上有较高的吸收外,在其他器官上均与背景相似, 177Lu-E3和 177Lu-E18在72小时后在表达PSMA肿瘤上仍表现出较高的特异性吸收。
效果实施例11
将4-5周左右的(nod scid,江苏华景分子影像与药物研究院有限公司)小鼠用1x10 6细胞的22rv1(在50%基质胶中,康宁)在动物右侧肩胛骨皮下接种。待肿瘤生长至实验要求的尺寸时,将动物按肿瘤体积随机分配到5个实验组中,每组7只,对动物体重和肿瘤大小进行测量,分组当天按control组(生理盐水),组1( 177Lu-PSMA-617 300mCi/只),组2( 177Lu-PSMA-617 600mCi/只),组3( 177Lu-E3 300mCi/只),组4( 177Lu-E3 600mCi/只)开始给药,实验开始后每天进行一般健康和外观观察,在每个样品采样时间点前测量动物体重和肿瘤大小。在整个研究期间若发现任何异常观察结果都将需要被记录在原始数据中。动物体重结果如图16,肿瘤大小结果如图17和表13。
Figure PCTCN2022116897-appb-000130
Figure PCTCN2022116897-appb-000131
注:a:平均数±标准误;b:给药组肿瘤体积与Control对照肿瘤体积在分组给药后第19天做统计学比较,T-test。
其中相对肿瘤抑制率以TGI TV(%)=[1-(T i-T 0)/(V i-V 0)]×100%来表示(T i:治疗组在给药第i天的肿瘤体积均值,T 0:治疗组在给药第0天的肿瘤体积均值;V i:溶剂对照组在给药第i天的肿瘤体积均值,V 0:溶剂对照组在给药第0天的肿瘤体积均值。
实验结果表明 177Lu-E3在小鼠移植瘤模型上的药效提升显著,对比 177Lu-PSMA-617的肿瘤抑制率的15-21%, 177Lu-E3的肿瘤生长抑制率达到了71-80%。而且,用 177Lu-E3处理的两组动物表现出在用药10天内两个剂量对肿瘤生长的抑制作用没有明显差别,对比两组 177Lu-E3的数据有较明显的与剂量相关的差别,这种差别具有统计学上意义。这个实验结果表明在相同剂量下 177Lu-E3比 177Lu-PSMA-617具有更好的抑制表达PSMA的肿瘤生长作用,其高效的抑制作用可以降低其在使用时的药物剂量,这不仅降低了潜在的与放射性相关的药物毒性,同时也可以降低药物成本。
最后,上述文中的一般性说明以及具体的实施实例对本发明作了详尽的描述,通过这些描述,本领域技术人员显而易见地可在本发明的基础上,对本发明做一些修改或改进,因此,在不偏离本发明精神的基础上所做的任何修改或改进,均属于本发明所要求保护的范筹。

Claims (14)

  1. 一种如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物;
    Figure PCTCN2022116897-appb-100001
    其中,L为-L 1-L 2-或-L 3-L 4-L 5-;
    L 1为5~12元碳杂环、5~12元杂芳环、被R 1-1取代的5~12元碳杂环或被R 1-2取代的5~12元杂芳环;所述的碳杂环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;所述的杂芳环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;R 1-1和R 1-2独立地为F、Cl、Br或C 1~C 3烷基;所述的L 1通过N原子与R相连;
    L 2为键、5~12元碳环、5~12元碳杂环、6~14元芳环、5~12元杂芳环、被R 2-1取代的5~12元碳环、被R 2-2取代的5~12元碳杂环、被R 2-3取代的6~14元芳环或被R 2-4取代的5~12元杂芳环;所述的碳杂环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;所述的杂芳环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;R 2-1、R 2-2、R 2- 3和R 2-4独立地为F、Cl、Br或C 1~C 3烷基;所述的L 2
    Figure PCTCN2022116897-appb-100002
    相连;
    L 3为-N(R 3-1)-或-N(R 3-2)-L 3-1-;所述的L 3通过N原子与R相连;
    R 3-1和R 3-2独立地为H或C 1~C 3烷基;
    L 3-1为C 1~C 3亚烷基;
    L 4为3~6元单环碳环、5~12元桥环碳环、5~12元碳杂环、6~14元芳环、5~12元杂芳环、被R 4- 1取代的5~12元碳杂环、被R 4-2取代的6~14元芳环、被R 4-3取代的5~12元杂芳环或被R 4-4取代的5~12元桥环碳环;所述的碳杂环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;所述的杂芳环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;R 4-1、R 4-2、R 4-3和R 4-4独立地为F、Cl、Br或C 1~C 3烷基;
    L 5为键、5~12元碳环、5~12元碳杂环、6~14元芳环、5~12元杂芳环、被R 5-1取代的5~12元碳环、被R 5-2取代的5~12元碳杂环、被R 5-3取代的6~14元芳环或被R 5-4取代的5~12元杂芳环;所述的碳杂环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;所述的杂 芳环中,杂原子的数量为1个、2个或3个,杂原子选自N、O和S中的一种或多种;R 5-1、R 5-2、R 5- 3和R 5-4独立地为F、Cl、Br或C 1~C 3烷基;所述的L 5
    Figure PCTCN2022116897-appb-100003
    相连;当L 4为3~6元单环碳环时,L 3为-N(R 3-1)-;
    R为含有放射性金属离子的基团或能够光学成像的基团。
  2. 如权利要求1所述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物,其特征在于,其满足下述条件中的一个或多个:
    (1)L 1中,所述的5~12元碳杂环为6~11元碳杂环;
    (2)L 1中,所述的5~12元碳杂环为双环;
    (3)L 1为稠环,其中与R直接相连的环不具备芳香性;
    (4)L 1为单环;
    (5)L 1中,所述的5~12元碳杂环为3~6元碳单杂环;
    (6)L 1中,所述的5~12元碳杂环中,杂原子的数量为1个或2个;
    (7)L 1中,所述的5~12元碳杂环中,杂原子为N;
    (8)L 1中,所述的5~12元杂芳中,杂原子的数量为1个或2个;
    (9)L 1中,所述的5~12元杂芳环为9~10元杂芳环;
    (10)L 1中,所述的5~12元杂芳环为双环;
    (11)L 2中,所述的5~12元杂芳环为9~10元杂芳环;
    (12)L 2中,所述的5~12元杂芳环为双环;
    (14)L 2中,所述的5~12元杂芳环为稠环;
    (15)L 2中,所述的杂芳环中,杂原子的数量为2个;
    (16)L 2中,所述的杂芳环中,杂原子为N和/或O;
    (17)L 2中,所述的6~14元芳环为苯环或萘环;
    (18)L 3为-NH-或-NH-CH 2-;
    (19)所述的L 4通过C原子与L 3相连;
    (20)L 4中,所述的5~12元桥环碳环为5~8元桥环碳环;
    (21)L 4中,所述的6~14元芳环为9~10元芳环;
    (22)L 4中,所述的6~14元芳环为双环;
    (23)L 4中,所述的6~14元芳环为稠环;
    (24)L 4中,所述的5~12元杂芳环为5~10元杂芳环;
    (25)L 4中,所述的5~12元杂芳环为单环或双环;
    (26)L 5中,所述的6~14元芳环为苯环或萘环
    (27)所述的C 1~C 3烷基为甲基、乙基、正丙基或异丙基;
    (28)所述的含有放射性金属离子的基团由放射性金属离子与具有螯合金属离子功能的基团组成,所述的放射性金属离子与所述的具有螯合金属离子功能的基团螯合;
    (29)L 1为双环,其中与R直接相连的环不具备芳香性;
    (30)所述的能够光学成像的基团为cy3、cy5或cy7;
    (31)所述的放射性金属离子为释放α、β或γ射线的放射性金属离子;
    (32)所述的放射性金属离子具有下述作用中的一个或多个:1.PET成像;2.SPECT成像;3.放射性治疗;
    (33)所述的放射性金属离子具有下述作用中的一个或多个:1.示踪;2.递送;3.成像;4.治疗。
  3. 如权利要求2所述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物,其特征在于,其满足下述条件中的一个或多个:
    (1)L 1
    Figure PCTCN2022116897-appb-100004
    其中,m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11和m12独立地为0、1、2、3或4,m1+m3=1、2、3或4,m2+m4=1、2、3或4,m5+m7=0、1、2或3,m6+m8=0、1、2或3,m9+m10=0、1、2或3,m11+m12=0、1、2或3;
    (2)L 4
    Figure PCTCN2022116897-appb-100005
    其中,m13、m14、m15和m16独立地为0、1、2或3,m13+m14=0、1、2或3,m15+m16=0、1、2或3;o、p和q独立地为1或2;
    (3)所述的具有螯合金属离子功能的基团为
    Figure PCTCN2022116897-appb-100006
    DOTA、NOTA、HBED-CC、NODAGA、NOTAGA、DOTAGA、TRAP、NOPO、PCTA、DFO、DTPA、CHX-DTPA、AAZTA或DEDPA;
    (4)所述的放射性金属离子为 68Ga、 89Zr、 64Cu、 86Y、 99mTc、 111In、 90Y、 67Ga、 177Lu、 211At、 153Sm、 186Re、 188Re、 67Cu、 212Pb、 225Ac、 213Bi、 223Ra、 212Bi或 212Pb;
    (5)L 2为键
    Figure PCTCN2022116897-appb-100007
    (6)L 5为键或苯环。
  4. 如权利要求3所述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物,其特征在于,其满足下述条件中的一个或多个:
    (1)L 1
    Figure PCTCN2022116897-appb-100008
    Figure PCTCN2022116897-appb-100009
    (2)L 4
    Figure PCTCN2022116897-appb-100010
    Figure PCTCN2022116897-appb-100011
    (3)所述的具有螯合金属离子功能的基团为
    Figure PCTCN2022116897-appb-100012
    Figure PCTCN2022116897-appb-100013
    (4)所述的放射性金属离子为 68Ga 3+89Zr 4+64Cu 2+86Y 3+99mTc 4+111In 3+90Y、 67Ga 3+177Lu 3+211At、 153Sm、 186Re、 188Re、 67Cu 2+212Pb 2+225Ac 3+213Bi 3+223Ra、 212Bi或 212Pb 2+,例如 225Ac 3+68Ga 3+或Gd 3+
    (5)L 2为键、
    Figure PCTCN2022116897-appb-100014
    较佳地,L为
    Figure PCTCN2022116897-appb-100015
    Figure PCTCN2022116897-appb-100016
    Figure PCTCN2022116897-appb-100017
    Figure PCTCN2022116897-appb-100018
    其中的N原子与R相连。
  5. 如权利要求1所述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物,其特征在于,所述的如式I所示的肽脲素衍生物为化合物A与 68Ga 3+螯合形成的化合物,所述的化合物A的结构如下任一所示:
    Figure PCTCN2022116897-appb-100019
    Figure PCTCN2022116897-appb-100020
    Figure PCTCN2022116897-appb-100021
  6. 如权利要求1所述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物,其特征在于,所述的如式I所示的肽脲素衍生物为化合物A与 177Lu 3+螯合形成的化合物,所述的化合物A的结构如下任一所示:
    Figure PCTCN2022116897-appb-100022
    Figure PCTCN2022116897-appb-100023
    Figure PCTCN2022116897-appb-100024
  7. 如权利要求1所述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物,其特征在于,所述的如式I所示的肽脲素衍生物的结构如下任一所示:
    Figure PCTCN2022116897-appb-100025
    Figure PCTCN2022116897-appb-100026
  8. 一种如权利要求1~7中任一项所述的如式I所示的肽脲素衍生物的制备方法,其包括下述步骤:将放射性金属离子与如式II所示的化合物螯合,即可;
    Figure PCTCN2022116897-appb-100027
    所述的如式I所示的肽脲素衍生物中,R为含有放射性金属离子的基团;所述的如式II所示的化合物中,R’为具有螯合金属离子功能的基团。
  9. 一种如式II所示的化合物、如式III所示的化合物或如式IV所示的化合物;
    Figure PCTCN2022116897-appb-100028
    其中,R’为具有螯合金属离子功能的基团,L的定义如权利要求1~7中任一项所述;R p1为氢或氨基保护基,R p2为氢或树脂基,R 7-4和R 7-5为氢或C 1~C 4烷基。
  10. 如权利要求9所述的如式II所示的化合物、如式III所示的化合物或如式IV所示的化合物,其特征在于,其满足下述条件中的一个或多个:
    (1)所述的如式III所示的化合物中,所述的氨基保护基为Fmoc;
    (2)所述的如式III所示的化合物中,所述的树脂基为Wang resin;
    (3)所述的如式III所示的化合物中,R 7-4为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基;
    (4)所述的如式IV所示的化合物中,所述的具有螯合金属离子功能的基团的定义如权利要求2或3所述;
    (5)所述的如式IV所示的化合物为
    Figure PCTCN2022116897-appb-100029
    R 7-1、R 7-2和R 7-3独立地为C 1~C 4烷基;
    (6)所述的如式II所示的化合物中,所述的具有螯合金属离子功能的基团的定义如权利要求2或3所述;
    (7)所述的如式III所示的化合物中,R 7-5为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基。
  11. 如权利要求9所述的如式II所示的化合物或如式IV所示的化合物,其特征在于,所述的如式IV所示的化合物为
    Figure PCTCN2022116897-appb-100030
    Figure PCTCN2022116897-appb-100031
    和/或,所述的如式II所示的化合物的结构如下任一所示:
    Figure PCTCN2022116897-appb-100032
    Figure PCTCN2022116897-appb-100033
    Figure PCTCN2022116897-appb-100034
    Figure PCTCN2022116897-appb-100035
    Figure PCTCN2022116897-appb-100036
    Figure PCTCN2022116897-appb-100037
    Figure PCTCN2022116897-appb-100038
  12. 一种药物组合物,其包括物质X和药用辅料;所述的物质X为如权利要求1~7中任一项所述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物,较佳地,所述药用辅料选自DTPA、抗坏血酸、抗坏血酸钠和水中的一种或多种;更佳地,所述药用辅料选自DTPA、抗坏血酸、抗坏血酸钠和水。
  13. 一种物质X在制备药物中的应用;所述的物质X为如权利要求1~7中任一项所述的如式I所示的肽脲素衍生物、其药学上可接受的盐、其溶剂合物或其药学上可接受的盐的溶剂合物;
    所述的药物为治疗或诊断前列腺癌的药物,或者,所述的药物为使前列腺癌成像的药物。
  14. 如权利要求13所述的应用,所述的前列腺癌为去势抵抗的前列腺癌、转移性去势抵抗的前列腺癌或PSMA阳性前列腺癌。
PCT/CN2022/116897 2021-09-03 2022-09-02 一种肽脲素衍生物、含其的药物组合物及其应用 WO2023030509A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111031423 2021-09-03
CN202111031423.6 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023030509A1 true WO2023030509A1 (zh) 2023-03-09

Family

ID=85349537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116897 WO2023030509A1 (zh) 2021-09-03 2022-09-02 一种肽脲素衍生物、含其的药物组合物及其应用

Country Status (2)

Country Link
CN (1) CN115745903A (zh)
WO (1) WO2023030509A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636924A (zh) * 2013-10-18 2016-06-01 德国癌症研究中心 前列腺特异性膜抗原(psma)的标记的抑制剂,它们作为显影剂和用于治疗前列腺癌的药剂的用途
CN109641924A (zh) * 2016-06-24 2019-04-16 国家核研究所 作为检测前列腺特异性膜抗原的过表达的放射性药物的99mtc-edda/hynic-ipsma
CN110740757A (zh) * 2017-05-24 2020-01-31 同位素技术慕尼黑公司 新型psma-结合剂及其用途
CN111253465A (zh) * 2020-03-03 2020-06-09 复旦大学附属肿瘤医院 一种psma结合剂及其用途
CN111491668A (zh) * 2017-12-13 2020-08-04 塞控斯公司 一种含有与铅或钍放射性核素连接的psma靶向化合物的络合物
CN111630059A (zh) * 2017-10-22 2020-09-04 省卫生服务机构 用于诊断或治疗表达前列腺特异性膜抗原的癌症的新型放射性金属结合化合物
CN112074526A (zh) * 2018-03-14 2020-12-11 国家核研究所 作为靶向前列腺特异性膜抗原的治疗性放射性药物的177Lu-DOTA-HYNIC-iPSMA
WO2021013978A1 (en) * 2019-07-25 2021-01-28 Bayer As Targeted radiopharmaceuticals for the diagnosis and treatment of prostate cancer
CN112770785A (zh) * 2018-09-28 2021-05-07 海德堡大学 前列腺特异性膜抗原(psma)的标记抑制剂,其作为显像剂和药剂用于治疗表达psma的癌症的用途
WO2022101352A1 (en) * 2020-11-12 2022-05-19 Abx Advanced Biochemical Compounds Gmbh Ligands of prostate specific membrane antigen (psma) containing heteroaromatic linker building blocks

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2844151C (en) * 2011-08-05 2022-11-29 John W. Babich Radiolabeled prostate specific membrane antigen inhibitors
WO2016062370A1 (en) * 2014-10-20 2016-04-28 Deutsches Krebsforschungszentrum 18f-tagged inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer
IL237525A (en) * 2015-03-03 2017-05-29 Shalom Eli Method for labeling a prostate-specific membrane antigen with a radioactive isotope
DE212016000299U1 (de) * 2016-12-15 2019-09-05 The European Atomic Energy Community (Euratom), Represented By The European Commission Behandlung vpm PMSA-exprimierenden Krebsarten
WO2020220023A1 (en) * 2019-04-26 2020-10-29 Five Eleven Pharma Inc. Prostate-specific membrane antigen (psma) inhibitors as diagnostic and radionuclide therapeutic agents
EP4263509A1 (en) * 2020-12-16 2023-10-25 The University of British Columbia Radiolabeled compounds targeting the prostate-specific membrane antigen
CN112898270B (zh) * 2021-01-22 2023-03-21 周彤 一种诊疗一体的psma抑制剂、化合物及其制备方法与用途
CN113004371A (zh) * 2021-03-01 2021-06-22 上海蓝纳成生物技术有限公司 一种长循环半衰期的前列腺特异性膜抗原靶向化合物及其制备方法和应用
WO2022253785A2 (en) * 2021-05-31 2022-12-08 Universität Heidelberg Improved prostate-specific membrane antigen targeting radiopharmaceuticals and uses thereof
CN117615795A (zh) * 2021-09-01 2024-02-27 天津恒瑞医药有限公司 前列腺特异性膜抗原的抑制剂及其医药用途
WO2023083209A1 (zh) * 2021-11-10 2023-05-19 苏州瑞核医药科技有限公司 一种靶向psma抗原的配体化合物及其螯合物与用于前列腺癌诊断和治疗的应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636924A (zh) * 2013-10-18 2016-06-01 德国癌症研究中心 前列腺特异性膜抗原(psma)的标记的抑制剂,它们作为显影剂和用于治疗前列腺癌的药剂的用途
CN109641924A (zh) * 2016-06-24 2019-04-16 国家核研究所 作为检测前列腺特异性膜抗原的过表达的放射性药物的99mtc-edda/hynic-ipsma
CN110740757A (zh) * 2017-05-24 2020-01-31 同位素技术慕尼黑公司 新型psma-结合剂及其用途
CN111630059A (zh) * 2017-10-22 2020-09-04 省卫生服务机构 用于诊断或治疗表达前列腺特异性膜抗原的癌症的新型放射性金属结合化合物
CN111491668A (zh) * 2017-12-13 2020-08-04 塞控斯公司 一种含有与铅或钍放射性核素连接的psma靶向化合物的络合物
CN112074526A (zh) * 2018-03-14 2020-12-11 国家核研究所 作为靶向前列腺特异性膜抗原的治疗性放射性药物的177Lu-DOTA-HYNIC-iPSMA
CN112770785A (zh) * 2018-09-28 2021-05-07 海德堡大学 前列腺特异性膜抗原(psma)的标记抑制剂,其作为显像剂和药剂用于治疗表达psma的癌症的用途
WO2021013978A1 (en) * 2019-07-25 2021-01-28 Bayer As Targeted radiopharmaceuticals for the diagnosis and treatment of prostate cancer
CN111253465A (zh) * 2020-03-03 2020-06-09 复旦大学附属肿瘤医院 一种psma结合剂及其用途
WO2022101352A1 (en) * 2020-11-12 2022-05-19 Abx Advanced Biochemical Compounds Gmbh Ligands of prostate specific membrane antigen (psma) containing heteroaromatic linker building blocks

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANGSU HUAJING: "Molecular Imaging", DRUG RESEARCH INSTITUTE CO.
MEDER ET AL., BIOCONJUGATE CHEM, vol. 23, 2012, pages 688 - 697
RAYMOND C ROWE: "Pharmacopoeia of the People's Republic of China", 2009, HANDBOOK OF PHARMACEUTICAL

Also Published As

Publication number Publication date
CN115745903A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
ES2729555T3 (es) Inhibidores homomultivalentes y heteromultivalentes de antígeno de membrana específico de próstata (PMSA) y usos de los mismos
CN111511408A (zh) 靶向成纤维细胞活化蛋白-α(FAP-α)的成像剂及放射治疗剂
EP3209336B1 (en) 18f-tagged inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer
US20210393809A1 (en) Labeled inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of psma-expressing cancers
EP4089074A1 (en) Psma-binding agents and uses thereof
ES2844586T3 (es) Inhibidores del antígeno prostático específico de membrana (PSMA) etiquetados con 18F y su uso como agentes de obtención de imágenes para el cáncer de próstata
BR112020018155A2 (pt) 177lu-dota-hynic-ipsma como um radiofármaco terapêutico dirigido ao antígeno prostático específico de membrana
JP7447300B2 (ja) 放射性金属と複合するDZ-1-Lys-DOTAコンジュゲート及び使用
Li et al. Syntheses and preliminary evaluation of [18F] AlF‐NOTA‐G‐TMTP1 for PET imaging of high aggressive hepatocellular carcinoma
US11426395B2 (en) PSMA inhibitor derivatives for labelling with 99mTc via HYNIC, a radiopharmaceutical kit, radiopharmaceutical preparations and their use in prostate cancer diagnostics
KR101383655B1 (ko) 트리카르보닐 테크네슘-99m 또는 레늄-188 표지 고리 알지디 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 신생혈관 관련 질환의 진단 또는 치료용 약학적 조성물
WO2023083209A1 (zh) 一种靶向psma抗原的配体化合物及其螯合物与用于前列腺癌诊断和治疗的应用
WO2023030509A1 (zh) 一种肽脲素衍生物、含其的药物组合物及其应用
EP3011976A1 (en) 18F-tagged inhibitors of prostate specific membrane antigen (PSMA), their use as imaging agents
US20230277699A1 (en) Tumor stroma imaging agent and preparation method thereof
WO2023143612A1 (zh) 一种肽脲素衍生物、含其的药物组合物及其应用
KR20220006286A (ko) 전립선암 진단 및 치료를 위한 전립선특이 막 항원 표적 화합물 및 이를 포함하는 전립선암 진단 및 치료용 조성물
KR102658933B1 (ko) 이중 표적화 화합물 및 이의 제조 방법과 응용
KR20180083812A (ko) 악성 흑색종 진단용 방사성 화합물 및 그의 용도
US20220273826A1 (en) Prostate specific membrane antigen (psma) ligands and uses thereof
CN116375709A (zh) 一种叶酸受体靶向药物、金属络合物及其制备方法与用途
CN116217505A (zh) 用于诊断或治疗表达前列腺特异性膜抗原癌症的新型标记靶向剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863643

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022863643

Country of ref document: EP

Effective date: 20240403