WO2023030341A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023030341A1
WO2023030341A1 PCT/CN2022/115966 CN2022115966W WO2023030341A1 WO 2023030341 A1 WO2023030341 A1 WO 2023030341A1 CN 2022115966 W CN2022115966 W CN 2022115966W WO 2023030341 A1 WO2023030341 A1 WO 2023030341A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
terminal
signal
network device
information
Prior art date
Application number
PCT/CN2022/115966
Other languages
English (en)
French (fr)
Inventor
樊波
张希
袁世通
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22863476.2A priority Critical patent/EP4383855A1/en
Publication of WO2023030341A1 publication Critical patent/WO2023030341A1/zh
Priority to US18/591,025 priority patent/US20240205855A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the communication field, and in particular to a communication method and device.
  • each terminal needs to obtain an uplink timing advance (TA) of the cell (cell) where the terminal is located before performing uplink data transmission.
  • TA uplink timing advance
  • Each terminal must send uplink signals to the same site according to its respective TA, so as to ensure that the uplink signals of multiple terminals can reach the site at the same time, that is, all terminals are uplink synchronized, so that the site can successfully receive the signals from each terminal. up signal.
  • uplink transmission needs to be performed to multiple sites at the same time. Since the distance between the terminal and multiple sites is usually not equal, the uplink signal sent by the terminal according to the TA of the cell, or the uplink transmission of the terminal cannot be synchronized with multiple sites, resulting in performance loss of uplink transmission.
  • the present application provides a communication method and device, so that the uplink transmission of a terminal can be synchronized with multiple stations corresponding to one cell, so as to avoid performance loss of uplink transmission.
  • a communication method includes: the terminal determines a first timing advance TA or a first timing advance group TAG, so as to send a corresponding uplink signal to a network device according to the first TA or the first TAG.
  • the first TA is one of multiple TAs corresponding to one cell of the network device
  • the first TAG is one of multiple TAGs corresponding to one cell of the network device.
  • the terminal may configure multiple TAs or multiple TAGs corresponding to the cell.
  • the terminal when the terminal performs uplink transmission to a certain site of the network device, it can select an appropriate TA or TAG, such as the first TA or the first TAG, to send the corresponding uplink signal, so that the terminal's uplink transmission can communicate with multiple sites. Synchronization to avoid performance loss in uplink transmission.
  • the first TA or the first TAG is determined according to first information, and the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal. That is to say, the network device can indicate the currently required TA or TAG through the first information according to the actual situation, so as to realize more flexible TA or TAG selection.
  • the selected TA or TAG is more suitable for the uplink transmission distance of the terminal. The transmission is more stable.
  • the first information is carried in one or more of the following: radio resource control RRC message, medium access control-control element MAC-CE message, downlink control information DCI message, spatial relationship, transmission configuration indication TCI state, Or quasi-co-located QCL information.
  • the first TA or the first TAG is determined according to the first signal, and the first signal is the synchronization information corresponding to the uplink signal, the physical broadcast channel block SSB, the spatial relationship reference signal or the path loss reference signal. That is to say, the terminal can determine the first TA or the first TAG by itself according to the spatial relationship between the signals, without the need for the network device to additionally indicate the first TA or the first TAG, which can reduce the number of interactions between the network device and the terminal, and Save communication overhead and improve communication efficiency.
  • the method described in the first aspect may further include: the terminal receiving second information from the network device.
  • the second information is used to indicate the first signal.
  • the second information is QCL information
  • the type of the QCL information is one or more of the following: Type A, Type B, Type C, Type D, Type E, Type F, or Type G. That is to say, the first signal can be indicated by the type field in the QCL information, so that signaling multiplexing can be implemented, thereby reducing communication overhead and improving communication efficiency.
  • the first signal includes one or more of the following: sounding reference signal SRS, synchronization information and physical broadcast channel block SSB, channel state information reference signal CSI-RS, tracking reference signal TRS, physical downlink control channel PDCCH, physical Downlink shared channel PDSCH, physical uplink control channel PUCCH, or physical uplink shared channel PUSCH.
  • the terminal can accurately determine the first TA or the first TAG according to the association relationship.
  • the first TA or the first TAG is determined according to the first signal, and the first signal has an association relationship with the first TA or the first TAG, and the first signal is the SSB corresponding to the uplink signal and the spatial relationship reference signal or path loss reference signal.
  • the method described in the first aspect may further include: the terminal receives configuration information from a network device.
  • the configuration information includes the following items or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device, the multiple TAGs include the first TAG, the multiple TA offsets The offset includes the TA offset corresponding to the first TA.
  • each TA offset in the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • multiple TA offsets are in one-to-one correspondence with multiple TAGs.
  • the method described in the first aspect may further include: the terminal receiving a random access response RAR message from a network device.
  • the RAR message includes the TA initial value corresponding to the first TAG, the TA initial value corresponding to the first TAG and the TA offset corresponding to the first TAG, which are used to determine the TA corresponding to the first TAG.
  • the method in the first aspect may further include: the terminal determines the TAG corresponding to the TA initial value in the RAR message according to the field in the RAR message; or, the terminal determines the TA initial value in the RAR message according to the SSB corresponding to the RAR message The corresponding TAG.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the terminal determines the TAG corresponding to the TA initial value in the RAR message according to the SSB corresponding to the RAR message, including: the terminal determines that a TAG associated with the SSB corresponds to the TA initial value in the RAR message the TAG.
  • the network device configures the TA offset and TA initial value corresponding to the TAG for the terminal, so that the terminal can determine the TA corresponding to each TAG. In this way, even if the network device only indicates the TAG, the terminal can also determine the corresponding TAG according to the TAG. TA to achieve uplink synchronization.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • a communication method includes: the terminal receives first information from the network device, and sends an uplink signal to the network device according to the first TA or the first TAG.
  • the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal.
  • the first TA is one of multiple TAs corresponding to one cell of the network device
  • the first TAG is one of multiple TAGs corresponding to one cell of the network device.
  • the first information is carried in one or more of the following: RRC message, MAC-CE message, DCI message, spatial relationship, TCI state, or QCL information.
  • the method described in the second aspect may further include: the terminal receiving configuration information from the network device.
  • the configuration information includes the following items or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device, the multiple TAGs include the first TAG, the multiple TA offsets The offset includes the TA offset corresponding to the first TA.
  • each TA offset in the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • multiple TA offsets are in one-to-one correspondence with multiple TAGs.
  • the method described in the second aspect may further include: the terminal receiving a random access response RAR message from the network device.
  • the RAR message includes the TA initial value corresponding to the first TAG, the TA initial value corresponding to the first TAG and the TA offset corresponding to the first TAG, which are used to determine the TA corresponding to the first TAG.
  • the method in the second aspect may also include: the terminal determines the TAG corresponding to the TA initial value in the RAR message according to the field in the RAR message; or, the terminal determines the TA initial value in the RAR message according to the SSB corresponding to the RAR message The corresponding TAG.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the terminal determines the TAG corresponding to the TA initial value in the RAR message according to the SSB corresponding to the RAR message, including: the terminal determines that a TAG associated with the SSB corresponds to the TA initial value in the RAR message the TAG.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • a communication method includes: the terminal determines the first TA or the first TAG according to the first signal, so as to send a corresponding uplink signal to the network device according to the first TA or the first TAG.
  • the first signal is an SSB, a spatial relationship reference signal, or a path loss reference signal corresponding to the uplink signal.
  • the first TA is one of multiple TAs corresponding to one cell of the network device
  • the first TAG is one of multiple TAGs corresponding to one cell of the network device.
  • the method described in the third aspect may further include: the terminal receiving second information from the network device.
  • the second information is used to indicate the first signal.
  • the second information is QCL information
  • the type of the QCL information is one or more of the following: Type A, Type B, Type C, Type D, Type E, Type F, or Type G.
  • the first signal includes one or more of the following: SRS, SSB, CSI-RS, TRS, PDCCH, PDSCH, PUCCH, or PUSCH.
  • the first signal is associated with the first TA or the first TAG.
  • the first TA or the first TAG is determined according to the first signal, and the first signal has an association relationship with the first TA or the first TAG, and the first signal is the SSB corresponding to the uplink signal and the spatial relationship reference signal or path loss reference signal.
  • the method described in the third aspect may further include: the terminal receiving configuration information from the network device.
  • the configuration information includes the following items or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device, the multiple TAGs include the first TAG, the multiple TA offsets The offset includes the TA offset corresponding to the first TA.
  • each TA offset in the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • multiple TA offsets are in one-to-one correspondence with multiple TAGs.
  • the method described in the third aspect may further include: the terminal receives a random access response RAR message from the network device.
  • the RAR message includes the TA initial value corresponding to the first TAG, the TA initial value corresponding to the first TAG and the TA offset corresponding to the first TAG, which are used to determine the TA corresponding to the first TAG.
  • the method in the third aspect may also include: the terminal determines the TAG corresponding to the TA initial value in the RAR message according to the field in the RAR message; or, the terminal determines the TA initial value in the RAR message according to the SSB corresponding to the RAR message The corresponding TAG.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the terminal determines the TAG corresponding to the TA initial value in the RAR message according to the SSB corresponding to the RAR message, including: the terminal determines that a TAG associated with the SSB corresponds to the TA initial value in the RAR message the TAG.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • a communication method includes: the network device sends configuration information to the terminal, and receives an uplink signal from the terminal.
  • the configuration information includes the following item or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device.
  • the method described in the fourth aspect may further include: the network device sends the first information to the terminal.
  • the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal
  • the first TAG is one of the multiple TAGs
  • the first TA is the one corresponding to one of the multiple TA offsets.
  • the first information is carried in one or more of the following: RRC message, MAC-CE message, DCI message, spatial relationship, TCI state, or QCL information.
  • the method described in the fourth aspect may further include: the network device sending the second information to the terminal.
  • the second information is used to indicate the first signal
  • the first signal is the SSB, the spatial relationship reference signal or the path loss reference signal corresponding to the uplink signal
  • the first signal is used to determine the first TA or the first TAG corresponding to the uplink signal
  • the first TAG is one of the multiple TAGs
  • the first TA is a TA corresponding to a TA offset among the multiple TA offsets.
  • the second information is QCL information
  • the type of the QCL information is one or more of the following: Type A, Type B, Type C, Type D, Type E, Type F, or Type G.
  • the first signal includes one or more of the following: SRS, SSB, CSI-RS, TRS, PDCCH, PDSCH, PUCCH, or PUSCH.
  • the configuration information further includes: an association relationship between the first signal and the first TA or the first TAG.
  • the method described in the fourth aspect may further include: a RAR message sent by the network device to the terminal.
  • the RAR message includes the TA initial value corresponding to the first TAG.
  • the field in the RAR message is used to determine the TAG corresponding to the initial TA value in the RAR message; or, the SSB corresponding to the RAR message is used to determine the TAG corresponding to the initial TA value in the RAR message.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the TAG associated with the SSB is the TAG corresponding to the initial value of TA in the RAR message.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • each of the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • multiple TA offsets are in one-to-one correspondence with multiple TAGs.
  • a communication device includes modules for executing the method described in the first aspect, for example, includes a processing module and a transceiver module.
  • the processing module is configured to determine the first timing advance TA or the first timing advance group TAG, so as to control the transceiver module to send a corresponding uplink signal to the network device according to the first TA or the first TAG.
  • the first TA is one of multiple TAs corresponding to one cell of the network device
  • the first TAG is one of multiple TAGs corresponding to one cell of the network device.
  • the first TA or the first TAG is determined according to first information, and the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal.
  • the first information is carried in one or more of the following: RRC message, MAC-CE message, DCI message, spatial relationship, TCI state, or QCL information.
  • the first TA or the first TAG is determined according to a first signal, and the first signal is an SSB corresponding to an uplink signal, a spatial relationship reference signal, or a path loss reference signal.
  • the transceiver module is further configured to receive second information from the network device.
  • the second information is used to indicate the first signal.
  • the second information is QCL information
  • the type of the QCL information is one or more of the following: Type A, Type B, Type C, Type D, Type E, Type F, or Type G.
  • the first signal includes one or more of the following: SRS, SSB, CSI-RS, TRS, PDCCH, PDSCH, PUCCH, or PUSCH.
  • the first signal is associated with the first TA or the first TAG.
  • the first TA or the first TAG is determined according to the first signal, and the first signal has an association relationship with the first TA or the first TAG, and the first signal is the SSB corresponding to the uplink signal and the spatial relationship reference signal or path loss reference signal.
  • the transceiver module is further configured to receive configuration information from the network device before the processing module determines the first TA or the first TAG.
  • the configuration information includes the following items or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device, the multiple TAGs include the first TAG, the multiple TA offsets The offset includes the TA offset corresponding to the first TA.
  • each TA offset in the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • multiple TA offsets are in one-to-one correspondence with multiple TAGs.
  • the transceiving module is further configured to receive a random access response RAR message from the network device before the processing module determines the first TA or the first TAG.
  • the RAR message includes the TA initial value corresponding to the first TAG, the TA initial value corresponding to the first TAG and the TA offset corresponding to the first TAG, which are used to determine the TA corresponding to the first TAG.
  • processing module is also used to determine the TAG corresponding to the TA initial value in the RAR message according to the fields in the RAR message; or, the processing module is also used to determine the TA initial value in the RAR message according to the SSB corresponding to the RAR message The TAG corresponding to the value.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the processing module is further configured to determine that the TAG associated with the SSB is the TAG corresponding to the TA initial value in the RAR message.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • the transceiver module may also include a sending module and a receiving module.
  • the sending module is used to realize the sending function of the device described in the fifth aspect
  • the receiving module is used to realize the receiving function of the device described in the fifth aspect.
  • the device described in the fifth aspect may further include a storage module, where programs or instructions are stored in the storage module.
  • the processing module executes the program or instruction
  • the device can execute the method described in the first aspect.
  • the device described in the fifth aspect may be a terminal, or a chip (system) or other components or components in the terminal that can be configured, or a device including a terminal, which is not limited in this application.
  • a communication device in a sixth aspect, includes modules for executing the method described in the second aspect, such as including a processing module and a transceiver module.
  • the transceiver module is configured to receive the first information from the network device;
  • the processing module is configured to control the transceiver module to send an uplink signal to the network device according to the first TA or the first TAG.
  • the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal.
  • the first TA is one of multiple TAs corresponding to one cell of the network device
  • the first TAG is one of multiple TAGs corresponding to one cell of the network device.
  • the first information is carried in one or more of the following: RRC message, MAC-CE message, DCI message, spatial relationship, TCI state, or QCL information.
  • the transceiver module is further configured to receive configuration information from the network device before the processing module controls the transceiver module to send an uplink signal to the network device according to the first TA or the first TAG.
  • the configuration information includes the following items or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device, the multiple TAGs include the first TAG, the multiple TA offsets The offset includes the TA offset corresponding to the first TA.
  • each TA offset in the plurality of TA offsets corresponds to at least part of the TAGs in the plurality of TAGs.
  • multiple TA offsets are in one-to-one correspondence with multiple TAGs.
  • the transceiver module is further configured to receive a random access response RAR message from the network device before the processing module controls the transceiver module to send an uplink signal to the network device according to the first TA or the first TAG.
  • the RAR message includes the TA initial value corresponding to the first TAG, the TA initial value corresponding to the first TAG and the TA offset corresponding to the first TAG, which are used to determine the TA corresponding to the first TAG.
  • processing module is also used to determine the TAG corresponding to the TA initial value in the RAR message according to the fields in the RAR message; or, the processing module is also used to determine the TA initial value in the RAR message according to the SSB corresponding to the RAR message The TAG corresponding to the value.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the processing module is further configured to determine that the TAG associated with the SSB is the TAG corresponding to the TA initial value in the RAR message.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • the transceiver module may also include a sending module and a receiving module.
  • the sending module is used to realize the sending function of the device described in the sixth aspect
  • the receiving module is used to realize the receiving function of the device described in the sixth aspect.
  • the device according to the sixth aspect may further include a storage module, where programs or instructions are stored in the storage module.
  • the processing module executes the program or instruction, the device can execute the method described in the second aspect.
  • the device described in the sixth aspect may be a terminal, or a chip (system) or other components or components in the terminal that can be configured, or a device including a terminal, which is not limited in this application.
  • a communication device includes modules for executing the method described in the third aspect, such as including a processing module and a transceiver module.
  • the processing module is configured to determine the first TA or the first TAG according to the first signal, so as to control the transceiver module to send a corresponding uplink signal to the network device according to the first TA or the first TAG.
  • the first signal is an SSB, a spatial relationship reference signal, or a path loss reference signal corresponding to the uplink signal.
  • the first TA is one of multiple TAs corresponding to one cell of the network device
  • the first TAG is one of multiple TAGs corresponding to one cell of the network device.
  • the transceiver module is further configured to receive second information from the network device.
  • the second information is used to indicate the first signal.
  • the second information is QCL information
  • the type of the QCL information is one or more of the following: Type A, Type B, Type C, Type D, Type E, Type F, or Type G.
  • the first signal includes one or more of the following: SRS, SSB, CSI-RS, TRS, PDCCH, PDSCH, PUCCH, or PUSCH.
  • the first signal is associated with the first TA or the first TAG.
  • the first TA or the first TAG is determined according to the first signal, and the first signal has an association relationship with the first TA or the first TAG, and the first signal is the SSB corresponding to the uplink signal and the spatial relationship reference signal or path loss reference signal.
  • the transceiver module is further configured to receive configuration information from the network device before the processing module determines the first TA or the first TAG according to the first signal.
  • the configuration information includes the following items or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device, multiple TAGs include the first TAG, multiple TA offsets The offset includes the TA offset corresponding to the first TA.
  • each TA offset in the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • multiple TA offsets are in one-to-one correspondence with multiple TAGs.
  • the transceiver module is further configured to receive a random access response RAR message from the network device before the processing module determines the first TA or the first TAG according to the first signal.
  • the RAR message includes the TA initial value corresponding to the first TAG, the TA initial value corresponding to the first TAG and the TA offset corresponding to the first TAG, which are used to determine the TA corresponding to the first TAG.
  • processing module is also used to determine the TAG corresponding to the TA initial value in the RAR message according to the fields in the RAR message; or, the processing module is also used to determine the TA initial value in the RAR message according to the SSB corresponding to the RAR message The TAG corresponding to the value.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the processing module is further configured to determine that the TAG associated with the SSB is the TAG corresponding to the TA initial value in the RAR message.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • the transceiver module may also include a sending module and a receiving module.
  • the sending module is used to realize the sending function of the device described in the sixth aspect
  • the receiving module is used to realize the receiving function of the device described in the seventh aspect.
  • the device according to the seventh aspect may further include a storage module storing programs or instructions.
  • the processing module executes the program or instruction, the device can execute the method described in the third aspect.
  • the device described in the seventh aspect may be a terminal, or may be a chip (system) or other components or components in the terminal that may be configured, or may be a device including a terminal, which is not limited in this application.
  • a communication device includes modules for executing the method described in the fourth aspect, such as including a sending module and a receiving module.
  • the sending module is used to send configuration information to the terminal;
  • the receiving module is used to receive the uplink signal from the terminal.
  • the configuration information includes the following item or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device.
  • the sending module is further configured to send the first information to the terminal before the receiving module receives the uplink signal from the terminal.
  • the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal
  • the first TAG is one of the multiple TAGs
  • the first TA is the one corresponding to one of the multiple TA offsets.
  • the first information is carried in one or more of the following: RRC message, MAC-CE message, DCI message, spatial relationship, TCI state, or QCL information.
  • the sending module is further configured to send the second information to the terminal before the receiving module receives the uplink signal from the terminal.
  • the second information is used to indicate the first signal
  • the first signal is the SSB, the spatial relationship reference signal or the path loss reference signal corresponding to the uplink signal
  • the first signal is used to determine the first TA or the first TAG corresponding to the uplink signal
  • the first TAG is one of the multiple TAGs
  • the first TA is a TA corresponding to a TA offset among the multiple TA offsets.
  • the second information is QCL information
  • the type of the QCL information is one or more of the following: Type A, Type B, Type C, Type D, Type E, Type F, or Type G.
  • the first signal includes one or more of the following: SRS, SSB, CSI-RS, TRS, PDCCH, PDSCH, PUCCH, or PUSCH.
  • the configuration information further includes: an association relationship between the first signal and the first TA or the first TAG.
  • the sending module is also used to send the RAR message to the terminal before the receiving module receives the uplink signal from the terminal.
  • the RAR message includes the TA initial value corresponding to the first TAG.
  • the field in the RAR message is used to determine the TAG corresponding to the initial TA value in the RAR message; or, the SSB corresponding to the RAR message is used to determine the TAG corresponding to the initial TA value in the RAR message.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the TAG associated with the SSB is the TAG corresponding to the initial value of TA in the RAR message.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • each of the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • multiple TA offsets are in one-to-one correspondence with multiple TAGs.
  • the sending module and the receiving module may also be integrated into one module, such as a transceiver module.
  • the transceiver module is used to implement the sending function and receiving function of the device described in the eighth aspect.
  • the device described in the eighth aspect may further include a processing module.
  • the processing module is used to realize the processing function of the device.
  • the device described in the eighth aspect may further include a storage module, where programs or instructions are stored in the storage module.
  • the processing module executes the program or instruction
  • the device can execute the method described in the fourth aspect.
  • the device described in the eighth aspect may be a network device, or it may be a chip (system) or other components or components that can be set in the network device, or it may be a device that includes the network device. Do limited.
  • a communication device in a ninth aspect, includes: a processor. Wherein, the processor is configured to execute the method described in any one of the first aspect to the fourth aspect.
  • the device described in the ninth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver can be used by the device to communicate with other devices.
  • the device described in the ninth aspect may further include a memory.
  • the memory can be integrated with the processor or set separately.
  • the memory may be used to store computer programs and/or data involved in the method described in any one of the first aspect to the fifth aspect.
  • the device described in the ninth aspect may be the terminal described in the first aspect, the second aspect, or the third aspect, or the network device described in the fourth aspect, or may be set in the terminal or network device chips (systems) or other parts or components, or devices that include the terminal or network equipment.
  • a communication device in a tenth aspect, includes: a processor and a memory.
  • the memory is used to store computer instructions, and when the processor executes the instructions, the device executes the method described in any one of the first aspect to the fourth aspect.
  • the device described in the tenth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver can be used by the device to communicate with other devices.
  • the device described in the tenth aspect may be the terminal described in the first aspect, the second aspect, or the third aspect, or the network device described in the fourth aspect, or may be set in the terminal or network device chips (systems) or other parts or components, or devices that include the terminal or network equipment.
  • a communication device in an eleventh aspect, includes: a logic circuit and an input and output interface. Among them, the input and output interface is used to receive the code instruction and transmit it to the logic circuit.
  • the logic circuit is used to run code instructions to execute the method described in any one of the first aspect to the fourth aspect.
  • the device described in the eleventh aspect may further include a memory.
  • the memory can be integrated with the processor or set separately.
  • the memory may be used to store computer programs and/or data involved in the method described in any one of the first aspect to the fourth aspect.
  • the device described in the eleventh aspect may be the terminal described in the first aspect, the second aspect, or the third aspect, or the network device described in the fourth aspect, or may be set on the terminal or network device A chip (system) or other components or components in a device, or a device that includes the terminal or network equipment.
  • a communication device in a twelfth aspect, includes: a processor and a transceiver. Wherein, the transceiver is used for information exchange between the communication device and other devices, and the processor executes program instructions to execute the method according to any one of the first aspect to the fourth aspect.
  • the device described in the twelfth aspect may further include a memory.
  • the memory can be integrated with the processor or set separately.
  • the memory may be used to store computer programs and/or data involved in the method described in any one of the first aspect to the fourth aspect.
  • the device described in the twelfth aspect may be the terminal described in the first aspect, the second aspect, or the third aspect, or the network device described in the fourth aspect, or it may be set on the terminal or network device A chip (system) or other components or components in a device, or a device that includes the terminal or network equipment.
  • a communication system in a thirteenth aspect, includes a terminal and a network device, the terminal is used to execute the method described in the first aspect, the second aspect or the third aspect, and the network device is used to execute the method described in the fourth aspect.
  • a computer-readable storage medium including: a computer program or instruction; when the computer program or instruction is run on a computer, the method described in any one of the first to fourth aspects is executed implement.
  • a computer program product including a computer program or an instruction.
  • the computer program or instruction When the computer program or instruction is run on a computer, the method described in any one of the first aspect to the fifth aspect is executed.
  • FIG. 1 is a schematic diagram of the time-domain positional relationship between TAs and uplink time slots
  • FIG. 2 is a first schematic diagram of a positional relationship between a UE and a cell
  • FIG. 3 is a second schematic diagram of the positional relationship between the UE and the cell
  • FIG. 4 is a first schematic diagram of the architecture of the communication system provided by the embodiment of the present application.
  • FIG. 5 is a second schematic diagram of the architecture of the communication system provided by the embodiment of the present application.
  • FIG. 6 is a first schematic flow diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the corresponding relationship between TA offset and TAG in the communication method provided by the embodiment of the present application.
  • FIG. 8 is a second schematic flow diagram of the communication method provided by the embodiment of the present application.
  • FIG. 9 is a first structural schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a second structural schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram III of a communication device provided by an embodiment of the present application.
  • the embodiment of the beam in the protocol can be a spatial domain filter, or a spatial filter, or a spatial domain parameter, a spatial parameter, and a spatial domain setting. ), spatial setting (spatial setting), or quasi-colocation (Quasi-colocation, QCL) information, QCL assumption, QCL indication, etc.
  • the beam may be indicated by a transmission configuration indication state (TCI-state, Transmission Configuration Indication state) parameter, or by a spatial relation (spatial relation) parameter. Therefore, in this application, beam can be replaced by spatial filter, spatial filter, spatial parameter, spatial parameter, spatial setting, spatial setting, QCL information, QCL assumption, QCL indication, TCI state (DL TCI-state, UL TCI- state), spatial relationship, etc.
  • TCI-state Transmission Configuration Indication state
  • spatial relation spatial relation
  • the beam used to send signals can be called a transmission beam (transmission beam, Tx beam), such as an uplink transmission beam or a downlink transmission beam, and can also be called a spatial domain transmission filter (spatial domain transmission filter), a spatial transmission filter (spatial transmission filter), spatial domain transmission parameter or spatial transmission parameter, spatial domain transmission setting or spatial transmission setting.
  • Tx beam transmission beam
  • the downlink transmit beam can be indicated by the TCI status.
  • the beam used to receive signals can be called a reception beam (reception beam, Rx beam), such as an uplink reception beam or a downlink reception beam, and can also be called a spatial domain reception filter (spatial domain reception filter), a spatial reception filter (spatial reception filter), spatial domain reception parameter or spatial reception parameter, spatial domain reception setting or spatial reception setting.
  • the transmitting beam can be indicated by a spatial relationship, or an uplink TCI state, or a sounding reference signal (Sounding Reference Signal, SRS) resource (indicating the transmitting beam using the SRS).
  • SRS Sounding Reference Signal
  • the uplink transmission beam can also be replaced by SRS resources.
  • the transmitting beam can also refer to the distribution of signal strength in different directions in space after the signal is transmitted by the antenna, and the receiving beam can also refer to the distribution of signal strength in different directions in space of the wireless signal received from the antenna.
  • the beams may be wide beams, or narrow beams, or other types of beams.
  • the beam forming technique may be beamforming technique or other techniques.
  • the beamforming technology may be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, and the like.
  • Beams generally correspond to resources. For example, when performing beam measurement, network devices use different resources to measure different beams. The terminal feeds back the measured resource quality, and the network device knows the quality of the corresponding beam. During data transmission, beam information is also indicated through its corresponding resources. For example, the network device indicates the information of the physical downlink shared channel (physical downlink sharing channel, PDSCH) beam of the terminal through the transmission configuration indication (TCI) field in the downlink control information (downlink control information, DCI).
  • TCI transmission configuration indication
  • multiple beams with the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports can be included in one beam, used to transmit data channels, control channels and sounding signals, etc.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • each beam corresponds to a resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • Network devices can generate different beams, pointing to different transmission directions.
  • the network device uses a specific beam to send data to the terminal device, it needs to inform the terminal device of the sending beam information it uses, so that the terminal device can use the receiving beam corresponding to the sending beam to receive the data sent by the network device. The data.
  • the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the resources may be uplink signal resources or downlink signal resources.
  • Uplink signals include but are not limited to SRS, physical uplink control channel (physical uplink control channel, PUCCH), physical uplink shared channel (physical uplink shared channel, PUSCH), etc.
  • Downlink signals include but are not limited to: channel state information reference signal (channel state information reference signal, CSI-RS), tracking reference signal (tracking reference signal, TRS), physical downlink control channel (physical downlink control channel, PDCCH), PDSCH.
  • a resource is a data structure, including the relevant parameters of its corresponding uplink/downlink signal, such as the type of uplink/downlink signal, the resource element carrying the uplink/downlink signal, the sending time and period of the uplink/downlink signal , the number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique index to identify the downlink signal resource. It can be understood that a resource index may also be called a resource identifier, which is not limited in this embodiment of the present application.
  • Timing advance group TAG
  • uplink transmission it takes a certain propagation time for a signal to reach a site of a network device from a terminal.
  • the terminal In order to achieve uplink synchronization, that is, the time when the uplink signal arrives at the station is exactly the start time of the uplink slot (slot), the terminal needs to send the uplink signal a certain time ahead of the start time of the uplink slot, and the timing advance needs to be exactly equal to
  • the propagation time of the uplink signal, the time advance is TA.
  • each terminal must send an uplink signal to the same station corresponding to the cell according to its own TA, so as to ensure that the uplink signals of multiple terminals can reach the station at the start time of the uplink time slot.
  • the station that is, all terminals are uplink synchronized, so that the station can successfully receive the uplink signals of each terminal.
  • TAG is a configuration information unit, including TA-related parameters.
  • the network side can configure a TAG of the cell for the terminal, and the TAG corresponds to a TA. In this way, the terminal can determine the corresponding TA according to the TAG, and perform uplink transmission to the stations in the cell, so as to realize uplink synchronization. For example, as shown in FIG.
  • UE1 is in both cell 1 and cell 2, and the network side can configure TAG1 ⁇ TA1 ⁇ corresponding to cell 1 and TAG2 ⁇ TA2 ⁇ corresponding to cell 2 for UE1.
  • UE1 can use TAG1 ⁇ TA1 ⁇ to send an uplink signal to station 1 corresponding to cell 1, so as to achieve uplink synchronization with station 1.
  • UE1 may also use TAG2 ⁇ TA2 ⁇ to send an uplink signal to station 2 corresponding to cell 2, so as to achieve uplink synchronization with station 2.
  • the configured TAG is the same, but the TA parameters corresponding to the TAG are different, that is, the TA indexes are the same, and the TA values corresponding to the same TA index are different.
  • both UE1 and UE2 are in cell 1, and the network side can still configure TAG1 ⁇ TA1 ⁇ corresponding to cell 1 for UE2.
  • UE1 and UE2 have the same TA index (the index is 1), but UE1
  • the TA value corresponding to the TA index of UE2 is different from the TA value corresponding to the TA index of UE2, that is, the TA value corresponding to TAG1 of UE1 is different from the TA value corresponding to TAG1 of UE2.
  • the network side may configure a TAG and a TA offset (offset) corresponding to the cell where the terminal is located for the terminal.
  • the TA offset is applicable to all terminals in the cell, that is, the TA offset of all terminals in the cell is the same.
  • the network side may configure an initial TA value corresponding to the TAG for the terminal.
  • the initial value of TA corresponds to the distance of the terminal, and the distance is the distance between the terminal and the station corresponding to the cell, that is, if the distance between the terminal and the station is different, the network side is the distance between the station and the station.
  • the initial value of TA configured by the terminal is also different.
  • the TA mentioned in this application may refer to the TA index, for example, TA1 means that the TA index is 1, or it may also refer to the TA value corresponding to the TA index, such as TA1 It refers to the TA value corresponding to the TA index of 1, and the understanding of the two can be replaced with each other.
  • TA1 means that the TA index is 1, or it may also refer to the TA value corresponding to the TA index, such as TA1 It refers to the TA value corresponding to the TA index of 1, and the understanding of the two can be replaced with each other.
  • the multiple TAs mentioned in this application when understood as TA values, it does not refer to multiple TA values corresponding to one TA index, but refers to the TA values corresponding to each of the multiple TA indices, And in this application, one TA index usually only corresponds to one TA value.
  • TAG refers to the index of the TAG, or the TAG ID, for example, TAG1 refers to the TAG whose index is 1.
  • a network device may be understood as a general term for all devices (including stations) on the network side, for example, multiple stations may be collectively referred to as a network device.
  • a site refers to a transmission node specifically located at a physical location. In other words, network devices conceptually encompass sites.
  • the signals mentioned in this application may be specific signals, such as SRS, CSI-RS, etc., or specific channels, such as PUSCH , PUCCH, etc.
  • the signals mentioned in this application can also be understood as resources, for example, spatial relationship reference signals can be understood as spatial relationship reference signal resources, beam reference signals can be understood as beam reference signal resources, and path loss reference signals can be understood as path loss reference signals Resources and so on, the two can replace each other.
  • cell 1 includes site 1 and site 2.
  • the distances between UE1 and site 1 and site 2 are L1 and L2 respectively, and L1 is smaller than L2.
  • the network side configures TAG1 ⁇ TA1 ⁇ corresponding to cell 1 for UE1.
  • TAG1 ⁇ TA1 ⁇ corresponding to cell 1 for UE1.
  • UE1 uses TAG1 ⁇ TA1 ⁇ to perform uplink transmission to site 1 to achieve uplink synchronization
  • UE1 uses TAG1 ⁇ TA1 ⁇ to perform uplink transmission to site 2.
  • Uplink synchronization cannot be achieved, and the uplink signal arrives at site 2 before the time of site The starting time of the uplink time slot of 2 causes performance loss of uplink transmission between UE1 and station 2.
  • UE1 ⁇ TA1 ⁇ to perform uplink transmission to site 2 to achieve uplink synchronization
  • UE1 uses TAG1 ⁇ TA1 ⁇ to perform uplink transmission to site 1.
  • Uplink synchronization cannot be achieved, and the time for the uplink signal to reach site 1 lags behind that of the site The starting time of the uplink time slot of 1 causes the performance loss of the uplink transmission between UE1 and station 1.
  • WiFi wireless fidelity
  • V2X vehicle-to-everything
  • D2D device-to-devie
  • Internet of Vehicles communication systems 4th generation (4G) mobile communication systems, such as long-term evolution LTE systems, 5G mobile communication systems, such as new air interface (new radio, NR) systems, and future communication systems, such as The sixth generation (6th generation, 6G) mobile communication system, etc.
  • 4G 4th generation mobile communication systems, such as long-term evolution LTE systems
  • 5G mobile communication systems such as new air interface (new radio, NR) systems
  • future communication systems such as The sixth generation (6th generation, 6G) mobile communication system, etc.
  • the present application presents various aspects, embodiments or features in terms of a system that can include a number of devices, components, modules and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • FIG. 4 is a schematic structural diagram of a communication system to which the communication method provided in the embodiment of the present application is applicable.
  • the communication system includes: a terminal and a network device.
  • the above-mentioned terminal is a terminal that accesses the above-mentioned communication system and has a wireless transceiver function, or a chip or a chip system that can be installed in the terminal.
  • the terminal may also be called user equipment (uesr equipment, UE), access terminal, subscriber unit (subscriber unit), subscriber station, mobile station (mobile station, MS), mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal in the embodiment of the present application can be mobile phone (mobile phone), cellular phone (cellular phone), smart phone (smart phone), tablet computer (Pad), wireless data card, personal digital assistant computer (personal digital assistant, PDA) ), wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, computer with wireless transceiver function, virtual reality (virtual reality, VR) Terminals, augmented reality (augmented reality, AR) terminals, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, smart grid grid), wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, vehicle-mounted terminals, RSUs with terminal functions, etc.
  • the terminal of the present application may also be an on-vehicle module, on-vehicle module, on-vehicle component, on-vehicle chip, or on-vehicle unit built into the vehicle as one or more components or units.
  • the network equipment may include: 5G, such as a gNB in an NR system, or one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or may also be a gNB, a transmission point (transmission and Reception point, TRP or transmission point, TP) or transmission measurement function (transmission measurement function, TMF) network node, such as baseband unit (BBU), or, central unit (central unit, CU), distributed unit (distributed unit, DU), roadside unit (road side unit, RSU) with base station function, or wired access gateway, etc.
  • 5G such as a gNB in an NR system, or one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or may also be a gNB, a transmission point (transmission and Reception point, TRP or transmission point, TP) or transmission measurement function (transmission measurement function, TMF) network node, such as baseband unit (BBU), or,
  • the names of network devices may vary in systems employing different radio access technologies, such as global system for mobile communication (GSM) or code division multiple access (CDMA) ) network base transceiver station (base transceiver station, BTS), wideband code division multiple access (wideband code division multiple access, WCDMA) in the NB (NodeB), long term evolution (long term evolution, LTE) in the eNB or eNodeB (evolutional NodeB).
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • NodeB wideband code division multiple access
  • LTE long term evolution
  • eNodeB evolutional NodeB
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • cloud radio access network, CRAN cloud radio access network
  • network devices may also include access points (access points, APs) in wireless fidelity (wireless fidelity, WiFi) systems, wireless relay nodes, wireless backhaul nodes, various forms of macro base stations, micro base stations (also known as small stations), relay stations, access points, wearable devices, vehicle-mounted devices, and more.
  • access points access points, APs
  • wireless fidelity wireless fidelity, WiFi
  • wireless relay nodes wireless backhaul nodes
  • various forms of macro base stations such as small stations
  • micro base stations also known as small stations
  • relay stations such as access points, wearable devices, vehicle-mounted devices, and more.
  • the terminal 51 includes a processor 501, a memory 502 and a transceiver 503, and the transceiver 503 includes Transmitter 5031 , receiver 5032 and antenna 5033 .
  • the network device 52 includes a processor 510 , a memory 520 and a transceiver 530 , and the transceiver 530 includes a transmitter 5310 , a receiver 5320 and an antenna 5330 .
  • the receiver 5032 can be used to receive downlink signals through the antenna 5033
  • the transmitter 5031 can be used to send uplink signals to the network device 52 through the antenna 5033 .
  • the transmitter 5310 may be used to send a downlink signal to the terminal 51 through the antenna 5330
  • the receiver 5320 may be used to receive the uplink signal sent by the terminal device 51 through the antenna 5330 .
  • FIG. 6 is a first schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method can be applied to any two nodes in the network architecture shown in FIG. 4 , for example, communication between a terminal and a network device.
  • the communication method includes: S601, S602 and S603.
  • the network device sends configuration information to the terminal.
  • the terminal receives configuration information from the network device.
  • the configuration information is carried in an RRC message, or any other possible message.
  • the configuration information includes one or more of the following items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device.
  • each TA offset in the plurality of TA offsets corresponds to at least part of the TAGs in the plurality of TAGs. That is to say, there may be a one-to-one correspondence between the TA offset and the TAG, or there may be a one-to-many correspondence between the TA offset and the TAG.
  • the configuration information may include N TAGs and N TA offsets, and the two may correspond one-to-one, and N is an integer greater than 1.
  • the N TAGs and the N TA offsets may correspond in sequence, that is, the TA offset with the i-th largest TA index among the N TA offsets corresponds to the TAG with the i-th largest index among the N TAGs , or, the TA offset with the i-th smallest TA index among the N TA offsets corresponds to the TAG with the i-th smallest index among the N TAGs.
  • the TA offset with the i-th smallest TA index among the N TA offsets corresponds to the TAG with the i-th smallest index among the N TAGs.
  • TA offset 0 corresponds to TAG0
  • TA offset 1 corresponds to TAG1
  • TA offset N-2 corresponds to TAGN-2
  • TA offset Quantity N-1 corresponds to TAGN-1.
  • the N TAGs and the N TA offsets may correspond in reverse order, that is, the TA offset with the i-th smallest TA index among the N TA offsets corresponds to the i-th largest index among the N TAGs TAG, or, the TA offset with the i-th largest TA index among the N TA offsets corresponds to the TAG with the i-th smallest index among the N TAGs.
  • TA offset 0 corresponds to TAGN-1
  • TA offset 1 corresponds to TAGN-2
  • TA offset N-2 corresponds to TAG1
  • TA offset N -1 corresponds to TAG0
  • the index of the TAG or the TA offset can be numbered from 0, or from any other number, such as 1, which is not limited.
  • N TAGs and N TAs can be associated according to their respective configuration sequences, for example, the i-th TAG corresponds to the i-th TA offset, or the TAG with the i-th smallest index corresponds to the i-th TA offset The amount of displacement is not limited.
  • the configuration information may include M TAGs and N TA offsets, the i-th TA offset among the N TA offsets corresponds to m TAGs among the M TAGs, and N and M are integers greater than 1 , i is an integer with any value between 1 and N, and m is a positive integer.
  • Another example is TA offset 0 ⁇ TAG0 ⁇ , TA offset 1 ⁇ TAG1, TAG2 ⁇ , TA offset 2 ⁇ TAG2, TAG3 ⁇ and so on.
  • the TAG may be a global index (or the index of the TAG is a global index), or the TAG may also be a local index (or the index of the TAG is a local index).
  • the global index means that the TAG is a certain TAG among all TAGs corresponding to all cells.
  • the all cells may be all cells configured by the network device for the terminal.
  • the local index means that the TAG is a certain TAG among multiple TAGs corresponding to a specific cell.
  • the specific cell may be the cell sending the configuration information.
  • the correspondence between the TAG and the TA offset is not limited to the correspondence described above, and one TAG may correspond to multiple TA offsets, which is not limited in this application.
  • the terminal may send a random access request (random access request, RAR) message to the network device, and the random access request message may be used to request an initial value of TA corresponding to a specific TAG.
  • the network device may send a random access response (random access response, RAR) message to the terminal, where the random access response message may include a TA initial value of a specific TAG.
  • the terminal can receive the RAR message from the network device.
  • the RAR message may include relevant information of a certain TAG among the multiple TAGs, such as the index of the TAG, and a TA initial value corresponding to the TAG.
  • the RAR message includes the first TAG, such as the index of the first TAG, and a TA initial value corresponding to the first TAG, such as the first TA initial value.
  • An example of the frame format of the RAR message is shown in Table 1 below.
  • the first TA initial value can be indicated by some fields in the RAR message, such as the timing advance command (timing advance command) field in Table 1, and the timing advance command field has multiple bits (bit), such as 12 Bits, to indicate various values of the first TA initial value through multiple bits.
  • the first TAG may be indicated by other fields in the RAR message, such as the reserved field (R field) in Table 1, so that the terminal can determine the initial value of TA in the RAR message according to the reserved field in the RAR message.
  • the reserved field may be a bit, so that the value of the bit is 0 or 1 to indicate 2 TAGs correspondingly.
  • the value of this bit is 0 to indicate the first TAG, and the value of this bit is 1 to indicate other TAGs, such as the second TAG; or, the value of this bit is 1 to indicate the first TAG, and the value of this bit is 0 indicates the second TAG.
  • you want to indicate more than 2 TAGs you can use the joint indication of the reserved field and other fields. For example, you can use the redundant bits in the time advance command field. These redundant bits are more than the joint indication of the reserved field. 2 more TAGs.
  • the first TAG may also be indicated by any other possible field in the RAR message, which is not limited in this application.
  • the first TAG may also be indicated through some or all bits of an existing field in the random access response message.
  • the bits of the temporary C-RNTI field in the random access message may be used as the above field, which is used to indicate whether the TA contained in the random access response message is the TA of the first cell.
  • some or all bits of the fields currently existing in the random access response message may be used to indicate the first TAG.
  • the first condition at least includes: the random access preamble corresponding to the random access response message is a contention-free random access preamble.
  • the first TAG may be a local index (or the index of the first TAG is a local index), or the first TAG may also be a global index (or the index of the first TAG is a global index).
  • the global index means that the first TAG is a certain TAG among all TAGs corresponding to all cells. All cells may be all serving cells configured by the network device for the terminal.
  • the local index means that the first TAG is a certain TAG among the multiple TAGs corresponding to the specific cell.
  • the specific cell may be the cell that sent the RAR message. Please note that the first line in the above table is only used to indicate the corresponding way of the bits, and does not belong to the content of the RAR message, that is, the content of the above RAR message starts from the second line of the above table.
  • the RAR message may also only include the timing advance command field, without including the TAG indication field.
  • the SSB corresponding to the RAR message can be used to determine which TAG the TA initial value indicated in the timing advance command field in the RAR corresponds to.
  • each SSB in a cell may be associated with a TAG, or the SSBs in a cell may be divided into multiple groups, and each SSB group may be associated with a TAG.
  • the SSB grouping may be indicated by the network device to the terminal, for example, sending the SSB grouping to the terminal through an RRC configuration message.
  • the association relationship between the SSB and the TAG may be indicated by the network device to the terminal, for example, sending the association relationship between the SSB and the TAG to the terminal through an RRC configuration message.
  • the association relationship between the SSB group and the TAG can be indicated by the network device to the terminal, such as sending the association relationship between the SB group and the TAG to the terminal through an RRC configuration message, or it can be a rule stipulated in the protocol, such as the ith SSB group is associated with the first The i TAG, or the i th SSB group is associated with the i th smallest or i th largest TAG.
  • the terminal may determine the TAG corresponding to the TA initial value indicated in the RAR according to the SSB corresponding to the RAR message.
  • the terminal may determine the SSB corresponding to the RAR message, and then determine the TAG associated with the SSB, or determine the TAG associated with the SSB group to which the SSB belongs, and the TAG is the TAG corresponding to the initial value of TA indicated in the RAR.
  • the SSB corresponding to the RAR message may specifically refer to the SSB associated with the random access request message corresponding to the RAR message.
  • Each random access request message can be associated with one SSB.
  • the SSB associated with the random access request message may be indicated through DCI signaling.
  • the network device may send a DCI message to the terminal, where the DCI is used to instruct the terminal to send a random access request message to the network device, and the DCI includes information about the SSB associated with the random access request message.
  • one RAR message can carry one TA initial value corresponding to one TAG. If the network device wants to configure multiple TA initial values for the terminal, multiple RAR messages can be sent to the terminal.
  • the network device sends multiple RAR messages to the terminal and the network device sends configuration information to the terminal, that is, the sequence of S601 is not limited.
  • the network device can send multiple RAR messages to the terminal before S601, or can send multiple RAR messages to the terminal after S601, or send a part of RAR messages to the terminal before S601, and send another part of RAR messages to the terminal after S601 . It should be pointed out that the network device sends a RAR message to the terminal before S601.
  • the initial TA value in the RAR message may be a certain TAG by default, for example, the first initial TA value corresponding to the first TAG. That is to say, no matter which TA initial value is included in the RAR message by the network device, the terminal regards it as the first TA initial value corresponding to the first TAG. In this case, to avoid configuration errors, the network device should be aligned with the terminal, that is, the network device should carry the default TA initial value of the terminal in the RAR message.
  • the terminal device now defaults to 0 as the value of the field indicating TAG. Or, the terminal device ignores the value of the field indicating TAG at this time.
  • the terminal may default the TA initial value in each RAR message to the corresponding TA initial value according to the order in which the multiple RAR messages are received. For example, for the first RAR message received, the terminal defaults that the TA initial value in the RAR message is the first TA initial value corresponding to the first TAG; for the second received RAR message, the terminal defaults the TA in the RAR message The initial value is the initial value of the second TA corresponding to the second TAG, and so on.
  • the network device should carry the corresponding TA initial value in each RAR message in sequence according to the order understood by the terminal.
  • the network device may also receive a random access request (random access request) message from the terminal before sending the above RAR message to the terminal.
  • the terminal can determine a TA corresponding to each TAG according to a TA initial value corresponding to each TAG, and a TA offset value corresponding to each TAG, such as the value of the TA, that is, the network device The respective values of multiple TAs corresponding to one cell of .
  • the terminal may determine a TA corresponding to the first TAG according to the TA initial value corresponding to the first TAG, such as the first TA initial value, and the TA offset corresponding to the first TAG, such as the first TA offset, such as The first TA or other TAs.
  • the configuration information includes a TA initial value corresponding to each TAG in the multiple TAGs is only an example, and the configuration information may not include these TA initial values, that is, a TA initial value corresponding to each TAG in the multiple TAGs It can be pre-configured locally on the terminal, which is not limited in this application.
  • the specific principles of the TA initial value and the TA offset can also refer to the relevant introduction in the above "5. TA and TAG", and will not be repeated here.
  • the network device configures the TA offset and TA initial value corresponding to the TAG for the terminal, so that the terminal can determine the TA corresponding to each TAG. In this way, even if the network device only indicates the TAG, the terminal can also determine the corresponding TAG according to the TAG. TA or TAG to achieve uplink synchronization.
  • the terminal for the terminal to determine the corresponding TA or TAG, reference may be made to related introductions in S602 below.
  • the terminal determines a first TA or a first TAG.
  • the first TA is a TA corresponding to uplink signal transmission
  • the first TAG is a TAG corresponding to uplink signal transmission
  • the terminal sends a corresponding uplink signal to the network device according to the first TA or the first TAG.
  • the network device receives the uplink signal from the terminal.
  • the terminal can determine the corresponding TA value according to the first TA or the first TAG, so as to send the corresponding uplink signal to the network device according to the TA value, so that the network device receives the uplink signal at the start time of the uplink time slot .
  • the TA used for uplink transmission is one of the multiple TAs. Which one of the above TAs is specifically used may be determined according to other information corresponding to the uplink transmission.
  • the other information is one or more of the following: terminal transmission beam, terminal antenna panel, beam reference signal, path loss reference signal, TA reference signal, transmitting and receiving node (transmitting and reception point, TRP) index, CORESET group index, beam failure detection
  • TRP transmitting and reception point
  • CORESET group index transmitting and reception point
  • beam failure detection The resource group index, or the new beam identification resource group index, etc., this application does not impose any restrictions on this.
  • the first TA is one of the above multiple TAs corresponding to one cell of the network device
  • the first TAG is one of the above multiple TAGs corresponding to one cell of the network device.
  • the first TA or the first TAG is used to indicate the uplink transmission of the terminal, that is, the terminal needs to send a corresponding uplink signal to the network device according to the first TA or the first TAG
  • the uplink signal may include one or more of the following: SRS, PUSCH, or PUCCH.
  • the SRS can be one or more of the following: SRS type codebook (codebook), SRS type non-codebook (nonCodebook), SRS type beam management (beamManagement), SRS type antenna switch (antennaSwitch) , periodic SRS, semi-static SRS, or aperiodic SRS.
  • codebook codebook
  • nonCodebook codebook
  • beamManagement SRS type beam management
  • SRS type antenna switch e.g., periodic SRS, semi-static SRS, or aperiodic SRS.
  • periodic SRS e.g., periodic SRS, semi-static SRS, or aperiodic SRS.
  • the above-mentioned SRS can be both a codebook-type SRS and a periodic SRS, that is, a codebook-type periodic SRS; for another example, the above-mentioned SRS can be both
  • the type is a non-codebook SRS, and it is a semi-static SRS, that is, the type is a non-codebook semi-static SRS; for another example, the above SRS can be both a type of beam management SRS and an aperiodic SRS, that is, the type is beam Managed aperiodic SRS.
  • the terminal may determine the first TA or the first TAG through an explicit indication or an implicit indication.
  • the display indication means that the first TA or the first TAG can be determined according to the first information, and the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal.
  • the first information is used to indicate the index of the first TAG. That is to say, the network device can indicate the currently required TA or TAG through the first information according to the actual situation, so as to realize more flexible TA or TAG selection.
  • the selected TA or TAG is more suitable for the uplink transmission distance of the terminal. The transmission is more stable.
  • the first information may be carried in one or more of the following: RRC message, medium access control-control element (medium access control-control element, MAC-CE) message, DCI message, spatial relationship, TCI state, power control parameter Set, or QCL information (QCL-info), will be introduced in detail in conjunction with uplink signals below.
  • RRC message medium access control-control element (medium access control-control element, MAC-CE) message
  • DCI message spatial relationship
  • TCI state power control parameter Set
  • QCL-info QCL information
  • the uplink signal is SRS, and the first information is carried in one or more of the following: RRC message, MAC-CE message, or DCI message.
  • the first information is carried in the RRC message, and the first information may correspond to the SRS resource set (resource set) in the RRC message.
  • the network device may configure the corresponding first TA or the first resource set for the SRS resource set in the RRC message.
  • TAG that is, configure the first information to indicate that all SRSs corresponding to the SRS resource set need to be sent using the first TA or the first TAG indicated by the first information.
  • TA1 ⁇ SRS1, SRS2, SRS3 ⁇ or TAG1 ⁇ SRS1, SRS2, SRS3 ⁇ are configured to indicate that SRS1, SRS2, and SRS3 all need to be sent using TA1 or TAG1.
  • the first information may correspond to the SRS resource (resource) in the RRC message.
  • the network device may configure the corresponding first TA or first TAG for the SRS resource in the RRC message to indicate that the SRS corresponding to the SRS resource needs to be used.
  • the first TA or the first TAG indicated by the first information is sent.
  • TA1 ⁇ SRS1 ⁇ or TAG1 ⁇ SRS1 ⁇ is configured to indicate that SRS1 needs to be sent using TA1 or TAG1.
  • the network device may configure the same TA or TAG for the respective SRS resources of the multiple SRSs, such as configuring the first TA or the first TAG.
  • TAG1 ⁇ SRS1 ⁇ , TAG1 ⁇ SRS2 ⁇ , TAG1 ⁇ SRS3 ⁇ are configured to indicate that SRS1, SRS2 and SRS3 all need to be sent using TAG1.
  • the network device may also configure different TAs or TAGs for the multiple SRS resources of the multiple SRSs, which is not limited. It can be seen that the network device can use different configuration granularities to indicate the TA or TAG corresponding to the SRS.
  • the set configuration granularity of the SRS resource can be used to indicate the TA or TAG corresponding to the SRS more conveniently, and the configuration granularity of the SRS resource can be more flexible.
  • ground indicates the TA or TAG corresponding to the SRS.
  • the first information is carried in a MAC-CE message
  • the MAC-CE message may be a MAC-CE message (denoted as MAC-CE message 1) for activating the spatial relationship of the SRS. That is, MAC-CE message 1 may indicate the transmission beam of the SRS.
  • MAC-CE message 1 may indicate the transmission beam of the SRS.
  • Table 2 An example of the frame format of MAC-CE message 1 is shown in Table 2 below.
  • the first information may be some fields in MAC-CE message 1, such as R1 field and/or R2 field.
  • a field, or a single bit, such as an R1 field or an R2 field may be used to indicate the first TA or the first TAG.
  • the R1 field indicates one TAG among the two TAGs of a specific cell.
  • the R2 field indicates one of the two TAGs of the specific cell.
  • the first TA or the first TAG may be indicated through multiple fields, or multiple bits.
  • the 2 bits composed of the R1 field and the R2 field are used to indicate a TAG, such as indicating a TAG among TAGs corresponding to a specific cell, or a TAG among all TAGs corresponding to all cells.
  • the above specific cell specifically refers to the cell that sends the MAC CE message 1, or the cell indicated in the above MAC CE message 1, such as the cell indicated by the SRS Resource Set’s Cell ID field, or the cell where the terminal is located.
  • MAC-CE messages can also be used to indicate TA or TAG, and the specific method is the same as the method described above, that is, one or more bits are used to indicate the TA or TAG of a specific cell. one of the multiple TAGs corresponding to all the cells, or use one or more bits to indicate one of the multiple TAGs corresponding to all the cells.
  • the above-mentioned specific cell may be the cell that sends the above-mentioned MAC-CE message 1, or may be another cell, such as the cell indicated in the above-mentioned MAC-CE message 1. Note that the first line in the above table is only used to indicate the corresponding mode of the bits, and does not belong to the content in the MAC-CE message 1, that is, the content of the above MAC-CE message 1 starts from the second line of the above table.
  • the first information is carried in the DCI message, for example, it may be a DCI field in the DCI message, such as the first DCI field.
  • the first TAG may be a global index, or may also be a local index.
  • the global index means that the first TAG is a certain TAG among all TAGs corresponding to all cells. All cells may be all cells configured by the network device for the terminal.
  • the local index means that the first TAG is a certain TAG among the multiple TAGs corresponding to the specific cell.
  • the specific cell may be the cell that sends the DCI message, that is, the own cell, or may be another cell, so as to implement cross-cell scheduling.
  • the specific cell of the other cell can be indicated by a field in the DCI, such as carrier ID, or any other possible field, which is not limited in this application.
  • the indication principle of the first DCI field is similar to the indication principle of the above-mentioned MAC-CE message 1, which can be understood by referring to it, and will not be described again.
  • the first information carried in the RRC message, MAC-CE message, or DCI message is only an example, not limiting, and the first information can also be carried in the spatial relationship , TCI state, power control parameter set, or QCL information, the specific implementation can refer to the relevant introduction in the following "D)", which will not be repeated here.
  • the uplink signal is PUCCH, and the first information is carried in one or more of the following items: RRC message or MAC-CE message.
  • the first information is carried in the RRC message, and the first information may correspond to a group of PUCCHs in the RRC message, or correspond to a PUCCH set.
  • the network device may configure a corresponding first TA or first TAG, that is, first information, for a group of PUCCHs in the RRC message, to indicate that this group of PUCCHs needs to use the first TA or first TAG indicated by the first information.
  • TAG sent Exemplarily, for example, configure TA1 ⁇ PUCCH1, PUCCH2, PUCCH3 ⁇ , or TAG1 ⁇ PUCCH1, PUCCH2, PUCCH3 ⁇ to indicate that PUCCH1, PUCCH2, and PUCCH3 all need to be sent using TA1 or TAG1.
  • the first information may correspond to a single PUCCH in the RRC message.
  • the network device may configure a corresponding first TA or first TAG for each PUCCH in the RRC message, so as to indicate that the PUCCH needs to be sent using the first TA or first TAG indicated by the first information.
  • configure TA1 ⁇ PUCCH1 ⁇ or TAG1 ⁇ PUCCH1 ⁇ to indicate that PUCCH 1 needs to be sent by using TA1 or TAG1.
  • the network device may configure the same TA or TAG for the multiple PUCCHs, such as configuring the first TA or the first TAG.
  • TAG1 ⁇ PUCCH1 ⁇ , TAG1 ⁇ PUCCH2 ⁇ , TAG1 ⁇ PUCCH3 ⁇ are configured to indicate that PUCCH1, PUCCH2 and PUCCH3 all need to be sent by using TAG1.
  • the network device may also configure different TAs or TAGs for multiple PUCCHs, which is not limited. It can be seen that the network device can use different configuration granularities to indicate the TA or TAG corresponding to the PUCCH.
  • the PUCCH set configuration granularity can be used to indicate the TA or TAG corresponding to the PUCCH more conveniently, and the single PUCCH configuration granularity can be used to indicate the PUCCH more flexibly.
  • the corresponding TA or TAG can be used to indicate that PUCCH1, PUCCH2 and PUCCH3 all need to be sent by using TAG1.
  • the network device may also configure different TAs or TAGs for multiple PUCCHs, which is not limited. It can be seen that the network device can use different configuration
  • the first information is carried in a MAC-CE message
  • the MAC-CE message may be a MAC-CE message for activating the spatial relationship of the PUCCH (denoted as MAC-CE message 2). That is to say, the MAC CE2 message may indicate the transmission beam of the PUCCH.
  • Table 3 An example of the frame format of the MAC-CE message 2 is shown in Table 3 below.
  • the first information may be some fields in the MAC-CE message 2, such as including R3 field and/or R4 field.
  • a single field, or a single bit, such as an R3 field or an R4 field may be used to indicate the first TA or the first TAG.
  • the R3 field indicates one TAG among the two TAGs of a specific cell.
  • the R4 field indicates one of the two TAGs of the specific cell.
  • the first TA or the first TAG may be indicated through multiple fields, or multiple bits.
  • the 2 bits composed of the R3 field and the R4 field are used to indicate a TAG, such as indicating a TAG among the TAGs corresponding to a specific cell, or indicating a TAG among all the TAGs corresponding to all cells.
  • the above-mentioned specific cell specifically refers to the cell that sends the MAC-CE message 2, or the cell indicated by the above-mentioned MAC-CE message 2, such as the cell indicated by the Serving Cell ID field, or the cell where the terminal is located. It should be understood that, in addition to the above-mentioned MAC-CE message 2, other MAC-CE messages can also be used to indicate TA or TAG.
  • the specific method is the same as the method described above, that is, one or more bits are used to indicate the number of TAGs in a specific cell. one of the multiple TAGs corresponding to all the cells, or use one or more bits to indicate one of the multiple TAGs corresponding to all the cells.
  • the above-mentioned specific cell may be the cell that sends the above-mentioned MAC-CE message 2, or may be another cell, such as the cell indicated in the above-mentioned MAC-CE message 2. Note that the first row in the above table is only used to indicate the corresponding mode of the bits, and does not belong to the content in the MAC-CE message 2, that is, the content of the above MAC-CE message 2 starts from the second row of the above table.
  • the first information carried in the RRC message and the MAC-CE message is only an example and not limiting.
  • the first information can also be carried in the DCI message, spatial relationship, TCI status, power control parameter set, or QCL information.
  • the PUCCH is the PDSCH indicated by the DCI message or the PUCCH corresponding to the downlink measurement.
  • the DCI when the DCI schedules the PDSCH, the DCI is used to indicate the TA or TAG of the PUCCH that feeds back the HARQ result corresponding to the PDSCH.
  • the DCI triggers the downlink measurement
  • the DCI is used to indicate the TA or TAG of the PUCCH that feeds back the measurement result corresponding to the downlink measurement.
  • TCI state For the specific implementation of carrying the first information in the spatial relationship, TCI state, or QCL information, reference may be made to the relevant introduction in the following "D)", which will not be repeated here.
  • the uplink signal is PUSCH, and the first information is carried in the DCI message.
  • the DCI message may be a DCI message for scheduling PUSCH
  • the first information may be a DCI field in the DCI message, such as a second DCI field
  • the second DCI field may be one or more bits. Through the one or Multiple bits indicate the first TA or the first TAG.
  • the first TAG may be a global index, or may also be a local index.
  • the global index is used to indicate that the first TAG is a certain TAG among all TAGs corresponding to all cells. All cells may be all cells configured by the network device for the terminal.
  • the local index is used to indicate that the first TAG is a certain TAG among the multiple TAGs corresponding to the specific cell.
  • the specific cell may be the cell sending the DCI message, that is, the own cell, or other cells, so as to implement cross-cell scheduling.
  • the specific cell of the other cell can be indicated by a field in the DCI, such as carrier ID, or any other possible field, which is not limited in this application.
  • the indication principle of the second DCI field is similar to the indication principle of the above-mentioned MAC-CE message 1 or MAC-CE message 2, which can be referred to for understanding and will not be described again.
  • the first information carried in the DCI message is only an example and not limiting.
  • the first information can also be carried in the RRC message, MAC-CE message, spatial relationship, TCI status, or QCL information.
  • the specific implementation of carrying the first information in the spatial relationship, TCI state, or QCL information can refer to the relevant introduction in the following "D)", and will not be repeated here.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH, and the first information is carried in spatial relationship, TCI state, power control parameter set, or QCL information.
  • the spatial relationship, TCI state, or QCL information is used to indicate the transmission beam of the uplink signal, in other words, the terminal needs to use the transmission beam indicated in the spatial relationship, TCI state, or QCL information to transmit the uplink signal.
  • the first information is carried in the spatial relationship, TCI state, or QCL information, it means that the terminal needs to use the transmit beam and the first TA or first TAG to transmit uplink signals, so as to realize the transmit beam, and The first TA or the first TAG are indicated together, so that signaling overhead can be reduced and communication efficiency can be improved.
  • the first information may be a certain field in the spatial relationship, TCI state, or QCL information, and the field may include multiple bits, so that the value of a single bit among the multiple bits, or the value of multiple bits
  • the combination indicates the first TA or the first TAG.
  • the first TAG indicated by the multiple bits may be a global index, or may also be a local index.
  • the global index means that the first TAG is a certain TAG among all TAGs corresponding to all cells. All cells may be all cells configured by the network device for the terminal.
  • the local index means that the first TAG is a certain TAG among the multiple TAGs corresponding to the specific cell.
  • the specific cell may be the cell that sends the spatial relationship, TCI state, or QCL information, that is, the own cell, or it may be another cell, so as to realize cross-cell scheduling.
  • the specific cell of the other cell may be indicated through a space relationship, a TCI state, or a field in the QCL information, which is not limited in this application.
  • the indication principle of the multiple bits is similar to the indication principle of the above-mentioned MAC-CE message 1 or MAC-CE message 2, which can be understood by reference and will not be described again.
  • the spatial relationship, TCI status and QCL information reference may be made to the relevant introductions in the following "a) realization of QCL information" and "b) realization of spatial relationship", and will not be repeated here.
  • the power control parameter set is a parameter set used to calculate the transmission power of the above-mentioned uplink signal, including path loss reference resources and the like.
  • the network device can flexibly choose whether to use the above-mentioned single-bit indication or multiple-bit indication. For example, if the number of TAs or TAGs is small, the single-bit indication The method is to flexibly indicate each TA or TAG; if the number of TAs or TAGs is large, a multi-bit indication method is used to indicate more TAs or TAGs, which is not limited in this application.
  • the first information may not only indicate the TA or TAG corresponding to the network device's own cell, but also indicate the TA or TAG corresponding to the cells of other network devices, so as to realize cross-cell scheduling.
  • the network device may carry cell identities of other network devices in the cell identifier field corresponding to the SRS resource set of MAC-CE message 1, or in the serving cell identifier field of MAC-CE message 2, to indicate that the cell identifiers of other network devices are located in other networks.
  • the terminals in the cell of the device need to use the corresponding TA or TAG to send uplink signals.
  • the implicit indication means that the first TA or the first TAG can be determined according to the first signal, for example, the TA or TAG corresponding to the first signal is used as the first TA or the first TAG.
  • the first signal may be a spatial relationship reference signal of the uplink signal, that is, the first TA or the first TAG is determined by determining the spatial relationship reference signal. Spatial relationship can also be understood as sending beams, spatial filters, etc., see the previous description for details.
  • the first signal may be an SSB corresponding to the uplink signal, a spatial relationship reference signal, or a path loss reference signal, that is, the first TA or the first TAG is determined by determining the path loss reference signal.
  • the first signal may also be a reference signal specially used to determine the TA or TAG, which is referred to as a TA reference signal in this application.
  • the first signal may include one or more of the following: SRS, SSB, CSI-RS, TRS, PDCCH, PDSCH, PUCCH or PUSCH.
  • an association relationship may be established between the first signal and the TA or TAG.
  • the association relationship between SSB or SRS and TAG can be configured through RRC, so that as long as an SSB or SRS is indicated to the terminal device as the first signal, the terminal device can use the TA or TAG corresponding to the SSB or SRS for uplink transmission .
  • SSB In addition to the SSB, other types of signals mentioned above can also be associated with the TA or TAG through the above method.
  • other signaling may also be used to indicate the association relationship between the first signal and the TAG, such as a MAC-CE message or a DCI message.
  • the above-mentioned CSI-RS may be one or more of the following: CSI-RS in the CSI-RS resource set configured with repeated reception (repetition) parameters, CSI in the CSI-RS resource set configured with TRS information (trs-info parameter) - RS, CSI-RS in a CSI-RS resource set configured with neither repeated reception parameter nor TRS information parameter, periodic CSI-RS, semi-static CSI-RS, or aperiodic CSI-RS.
  • the above-mentioned CSI-RS may also be a combination of the above-mentioned multiple types.
  • the above-mentioned CSI-RS may be a CSI-RS in a CSI-RS resource set configured with repeated reception parameters, and a periodic CSI-RS.
  • Periodic CSI-RS in the CSI-RS resource set with repeated reception parameters for another example, the above CSI-RS can be both a CSI-RS in the CSI-RS resource set with repeated reception parameters configured, and a semi-static CSI-RS , that is, the semi-static CSI-RS in the CSI-RS resource set configured with repeated reception parameters; for another example, the above CSI-RS can be both the CSI-RS in the CSI-RS resource set configured with TRS information and a periodic CSI - RS, that is, the periodic CSI-RS in the CSI-RS resource set configured with TRS information and so on.
  • the terminal can determine the first TA or the first TAG corresponding to the uplink signal by itself according to the spatial relationship between the signals, and the network device does not need to additionally indicate the first TA or the first TAG, which can reduce the communication between the network device and the terminal. Interaction times to save communication overhead and improve communication efficiency.
  • the implicit indication can be realized through QCL information, spatial relationship and beam reference relationship, which will be introduced respectively below.
  • the network device may send the second information to the terminal.
  • the terminal receives the second information from the network device.
  • the second information may be used to indicate the first signal.
  • the second information may be QCL information.
  • the QCL information includes reference signal resources, that is, the first signal, carried in the TCI state.
  • the type of the QCL information can be one or more of the following: type A (typeA), type B (typeB), type C (typeC), type D (typeD), type E (typeE), type F (typeF), or type G (typeG).
  • the TCI state is an information structure, which includes beam-related information, such as the index (tci-StateId) of the TCI itself, and multiple QCL information, such as 2 QCL information, and each QCL information includes a reference signal (reference signal ) resource, such as the first signal, and the type of the QCL information.
  • beam-related information such as the index (tci-StateId) of the TCI itself
  • QCL information such as 2 QCL information
  • each QCL information includes a reference signal (reference signal ) resource, such as the first signal, and the type of the QCL information.
  • the meaning of the reference signal resource in the type A QCL information is different.
  • the reference signal resource in the type A QCL information is used to determine the TA or TAG used in the uplink transmission, that is, the terminal needs to use the TA or TAG corresponding to the reference signal resource in the type A QCL information to send the uplink Signal.
  • the reference signal resource in the QCL information of type A is used to determine ⁇ Doppler frequency shift, Doppler spread, average delay, delay spread ⁇ of the downlink signal.
  • the type A QCL information may further include indication information (denoted as indication information 1), which is used to indicate whether the type A QCL information is used for uplink transmission or downlink transmission.
  • the type A QCL information is used to determine ⁇ Doppler frequency shift, Doppler spread, average delay, delay spread ⁇ of the downlink signal. If the indication information 1 indicates that the type A QCL information is used for uplink transmission, then the type A QCL information is used to indicate the TA or TAG used for uplink transmission, such as the first TA or the first TAG.
  • the reference signal resource in the QCL information of type A is the object to be referenced, and the uplink transmission of the QCL information of type A needs to use the same TA or TAG as the reference signal resource in the QCL information of type A .
  • the reference signal resources in the QCL information of type B have different meanings in uplink transmission and downlink transmission.
  • the reference signal resource in the type B QCL information is used to determine the TA or TAG used in the uplink transmission, that is, the terminal needs to use the TA or TAG corresponding to the reference signal resource in the type B QCL information to send the uplink Signal.
  • the reference signal resource in the type B QCL information is used to determine ⁇ Doppler frequency shift, Doppler spread ⁇ of the downlink signal.
  • the type B QCL information may further include indication information (denoted as indication information 2), which is used to indicate whether the type B QCL information is used for uplink transmission or downlink transmission.
  • the type B QCL information is used to determine ⁇ Doppler frequency shift, Doppler spread ⁇ of the downlink signal. If the indication information 2 indicates that the type B QCL information is used for uplink transmission, then the type B QCL information is used to indicate the TA or TAG used in the uplink transmission, such as the first TA or the first TAG. In other words, the reference signal resource in the type B QCL information is the object of reference, and the uplink transmission of the type B QCL information needs to use the same TA or TAG as the reference signal resource in the type B QCL information .
  • the reference signal resources in the QCL information of type C have different meanings in uplink transmission and downlink transmission.
  • the reference signal resource in the type C QCL information is used to determine the TA or TAG used in the uplink transmission, that is, the terminal needs to use the TA or TAG corresponding to the reference signal resource in the type C QCL information to send the uplink Signal.
  • the reference signal resource in the type C QCL information is used to determine ⁇ Doppler frequency shift, average time delay ⁇ of the downlink signal.
  • the type-C QCL information may further include indication information (denoted as indication information 3), which is used to indicate whether the type-C QCL information is used for uplink transmission or downlink transmission.
  • the type-C QCL information is used to determine ⁇ Doppler frequency shift, average time delay ⁇ of the downlink signal. If the indication information 3 indicates that the type-C QCL information is used for uplink transmission, the type-C QCL information is used to indicate the TA or TAG used for transmission, such as the first TA or the first TAG. In other words, the reference signal resource in the type-C QCL information is the object to be referenced, and the uplink transmission of the type-C QCL information needs to use the same TA or TAG as the reference signal resource in the type-C QCL information .
  • the QCL information of type D may be used to indicate the TA or TAG corresponding to the uplink transmission besides the uplink transmission beam.
  • the reference signal resource in the type D QCL information is the object to be referenced, and the uplink transmission of the type D QCL information needs to use the same TA or TAG as the reference signal resource in the type D QCL information .
  • the QCL information of type E or type F is a new type of QCL information, and the QCL information of type E or F is directly used for the corresponding TA or TAG of uplink transmission, that is, the QCL information of type E or F
  • the reference signal resource is the object to be referenced, and the uplink transmission of the type E or type F QCL information needs to use the same TA or TAG as the reference signal resource in the type E or type F QCL information.
  • the new QCL information type is Type E or Type F, which is just an example for the convenience of description, and it can also be replaced by Type 1, Type 2, Type 3, etc., and can also be replaced by Type H, Type G and so on, this application does not make any limitation on this.
  • the terminal is configured with the relationship between the reference signal resource in the above QCL information and the TA or TAG corresponding to the reference signal resource, such as the relationship between SSB and TA or TAG, the relationship between SRS and TA or TAG, the PUCCH
  • the association relationship with TA or TAG, the association relationship between PUSCH and TA or TAG, etc. that is, the association relationship between the first signal and TA or TAG.
  • the TA may be the first TA
  • the TAG may be the first TAG
  • the association relationship may also be regarded as an association relationship between the first signal and the first TA or the first TAG.
  • the association relationship may be carried in the above configuration information or any other possible information, which is not limited in this application.
  • the terminal can determine that the uplink transmission needs to use the same TA or TAG as the reference signal resource in the QCL information, that is, the same TA or TAG as the first signal, so that according to the first signal and the first The association relationship of the TA or the first TAG determines the first TA or the first TAG.
  • the first signal (denoted as the first signal 1) corresponding to the above association relationship and the first signal (denoted as the first signal 2) corresponding to the spatial relationship reference signal of the uplink signal may be the same signal or different signals.
  • the first signal 1 is SRS1
  • the first signal 2 is SRS2, SRS1 and SRS2 are different SRSs, but the uplink transmission of SRS2 needs to use the transmission beam of SRS1, that is, SRS1 is the spatial relationship reference signal of SRS2, and SRS1 and SRS2 There is a beam reference relationship between them.
  • the first signal 1 is an SSB
  • the first signal 2 is an SRS.
  • the uplink transmission of the SRS needs to use the receiving beam of the SSB, that is, the SSB is the spatial relationship reference signal of the SRS, and there is a beam reference relationship between the SSB and the SRS.
  • the first signal 1 is SRS
  • the first signal 2 is PUSCH.
  • the uplink transmission of the PUSCH needs to use the transmission beam of the SRS, that is, the SRS is the spatial relationship reference signal of the PUSCH, and there is a beam reference relationship between the SRS and the PUSCH.
  • the second information may be a spatial relationship.
  • the first signal may be a spatial relationship reference signal resource in the spatial relationship, that is, a reference signal resource used to determine an uplink transmission beam.
  • the first signal may also be a reference signal resource specifically used to indicate a TA or a TAG carried in a spatial relationship.
  • the beam reference relationship refers to the beam reference relationship between signals, that is, the transmission/reception beam of one signal needs to refer to the transmission/reception beam of another signal, or the transmission/reception of one signal needs to use the same transmission/reception beam as another signal. receive beam.
  • one signal may also be referred to as a spatial relationship reference signal of the other signal.
  • the beam reference relationship between signals may include but not limited to: a beam reference relationship between uplink signals, a beam reference relationship between downlink signals, and a beam reference relationship between uplink signals and downlink signals.
  • the beam reference relationship between the above-mentioned uplink signals may include but not limited to one or more of the following: the beam reference relationship between SRS, for example, the transmission of SRS2 needs to use the same transmission beam as SRS1, and the beam reference relationship between PUCCH,
  • the transmission of PUCCH2 needs to use the same transmission beam as PUCCH1, and the beam reference relationship between PUSCHs.
  • the transmission of PUSCH2 needs to use the same transmission beam as PUSCH1, and the beam reference relationship between SRS and PUCCH.
  • the same transmission beam as SRS the beam reference relationship between SRS and PUSCH.
  • the transmission of PUSCH needs to use the same transmission beam as SRS, and the beam reference relationship between PUCCH and PUSCH.
  • the transmission of PUCCH needs to use the same transmission beam as PUSCH.
  • the transmission beam, or the transmission of the PUSCH needs to use the same transmission beam as that of the PUCCH.
  • the beam reference relationship between the above-mentioned downlink signals may include but not limited to one or more of the following: the beam reference relationship between SSB and CSI-RS or TRS respectively, for example, the reception of CSI-RS or TRS needs to use the same
  • the beam reference relationship between the receiving beam, CSI-RS and PDCCH or PDSCH respectively for example, the reception of PDCCH or PDSCH needs to adopt the same receiving beam as CSI-RS
  • the beam reference relationship between TRS and PDCCH or PDSCH respectively such as PDCCH
  • the reception of PDSCH needs to use the same reception beam as TRS
  • the beam reference relationship between PDCCH and PDSCH for example, the reception of PDCCH needs to use the same reception beam as PDSCH, or the reception of PDSCH needs to use the same reception beam as PDCCH.
  • the beam reference relationship of the downlink signal has a certain hierarchical relationship, and all of them finally refer to the receiving beam of the SSB, that is, the SSB is the
  • the beam reference relationship between the above-mentioned uplink signal and the downlink signal may include but not limited to one or more of the following: the beam reference relationship between the SRS and the downlink signal, the beam reference relationship between the PUSCH and the downlink signal, or the beam reference relationship between the PUCCH and the downlink signal. Beam reference relationship between signals. That is to say, the receiving beams of one or more of the following downlink signals can be used as the sending beams of the SRS in turn: SSB, CSI-RS, TRS, PDCCH, or PDSCH.
  • the terminal is pre-configured with the beam reference relationship between the signals (including the beam reference relationship of the uplink signal), and the terminal can determine that the transmission of the uplink signal needs to refer to the first signal according to the beam reference relationship of the uplink signal, thereby determining the uplink
  • the sending of the signal needs to adopt the same sending beam as that of the first signal.
  • the terminal device may determine the first TA or the first TAG through the foregoing beam reference relationship. Specifically, for an uplink signal, according to which reference signal is the uplink sending beam determined, then the TA or TAG of the uplink signal is determined according to the reference signal. In other words, if the transmission beam of an uplink signal is determined according to a reference signal, the uplink signal uses the TA or TAG corresponding to the reference signal as the TA or TAG used for its uplink transmission.
  • the foregoing describes how to determine TA or TAG through the first signal.
  • the first signal may be one of a spatial relationship reference signal, a path loss reference signal, or a TA reference signal. It should be noted that when the corresponding first signal of an uplink signal has no directly corresponding TA or TAG, the TA or TAG corresponding to another signal associated with the first signal may be used.
  • the other signal may be a spatial relationship reference signal, a path loss reference signal, a timing reference signal, a frequency offset reference signal or a TA reference signal of the first signal.
  • the following takes another signal as an example of a spatial relationship reference signal for illustration, and this principle is also applicable to a case where another signal is a path loss reference signal or a TA reference signal.
  • the PUCCH uses an SRS as a spatial relationship reference signal, and the SRS has no corresponding TA or TAG, then the spatial relationship reference signal of the SRS, such as a CSI-RS, and the corresponding TA or TAG are used. If the CSI-RS does not have a corresponding TA or TAG, then a spatial relationship reference signal corresponding to the CSI-RS, such as an SSB, and a corresponding TA or TAG may be used. That is to say, the source can be traced forward according to the beam reference relationship until the first-level reference signal corresponding to the TA or TAG is found, or the source can be directly traced to the source SSB, and the TA or TAG corresponding to the SSB is used.
  • this application takes the terminal determining the first TA or the first TAG as an example, and the terminal may also determine other TAs or TAGs, such as the second TA or the second TAG, which is not limited in this application.
  • the terminal may configure multiple TAs or multiple TAGs corresponding to the cell.
  • the terminal when the terminal performs uplink transmission to a certain site of the network device, it can select an appropriate TA or TAG, such as the first TA or the first TAG, to send the corresponding uplink signal, so that the terminal's uplink transmission can communicate with multiple sites. Synchronization to avoid performance loss in uplink transmission.
  • multiple TAs or TAGs are used for PUSCH transmission.
  • the DCI message scheduling PUSCH transmission indicates multiple TAs or TAGs
  • the DCI message scheduling PUSCH transmission indicates multiple SRSs, such as 2 SRSs, and each SRS corresponds to a different TA or TAG, such as the first SRS
  • the corresponding first TA or the first TAG, and the second SRS corresponds to the second TA or the second TAG.
  • the terminal uses multiple TAs or TAGs to perform PUSCH transmission. Specifically, how to use multiple TAs or TAGs for PUSCH transmission depends on the PUSCH transmission mode.
  • the uplink transmission of each PUSCH may adopt a corresponding TA or TAG.
  • the numbers of the two TAs or TAGs corresponding to the time-division transmission of the PUSCH are divided into #1 and #2.
  • the order of TAs or TAGs used for time-division transmission of PUSCH may be ⁇ #1, #2, #1, #2, ... ⁇ , that is, two TAs or TAGs are alternately used for PUSCH transmission.
  • the above transmissions may correspond to the same or different redundancy versions of the same PUSCH, or may be different PUSCHs.
  • the transmission mode of the PUSCH is a simultaneous transmission model, the PUSCH is transmitted simultaneously using multiple TAs or TAGs.
  • each transmission stream may use a corresponding TA or TAG.
  • a PUSCH transmission stream includes two parts, namely the first transmission stream and the second transmission stream, and the terminal can use the first TA or the first TAG to transmit the first transmission stream, and use the second TA or the second TAG to transmit Second transport stream.
  • Both the first transport stream and the second transport stream may include one or more transport streams.
  • the corresponding relationship between the transport stream of the PUSCH and the TA or TAG can be in the following ways.
  • Mode 1 Divide according to code division multiple access (dode design multiplexing, CDM) groups of demodulation reference signal (domodulation reference signal, DMRS) ports.
  • CDM code division multiple access
  • DMRS demodulation reference signal
  • multiple transport streams correspond to multiple DMRS ports, and each transport stream corresponds to one DMRS port.
  • the network device indicates the DMRS port of the PUSCH through the DCI.
  • the DMRS of PUSCH can be divided into multiple CDM groups.
  • the corresponding relationship between transport streams and multiple TAs or TAGs can be divided according to CDM groups, that is, different CDM groups correspond to different TAs or TAGs. In this way, multiple TAs or TAGs are respectively used to transmit transport streams corresponding to multiple CDM groups.
  • Method 2 Perform equal distribution according to the number of DMRS ports.
  • the multiple DMRS ports corresponding to the PUSCH are equally divided into multiple groups, and each group corresponds to one TA or TAG.
  • two TAs or TAGs are taken as examples for illustration.
  • the first group may have one more than the second group. That is, the number of DMRSs in the first group is N/2 rounded up, N is the number of DMRS ports, and the remaining ports are the second group.
  • Mode 3 The first two ports correspond to the first TA or TAG, and the remaining ports correspond to the second TA or TAG.
  • Mode 4 DCI directly indicates two groups of DMRS ports corresponding to two TAs or TAGs.
  • the terminal device can directly determine the two groups of DMRS ports corresponding to the two TAs or TAGs.
  • This method requires multiple TAs or TAGs only when the number of ports is greater than 2.
  • the correspondence between the multiple transmission streams of the PUSCH and the multiple TAs or TAGs may also be determined according to the correspondence between the multiple transmission streams of the PUSCH and the multiple uplink transmission beams.
  • Each TA or TAG corresponds to an uplink transmission beam, and which transmission streams the uplink transmission beam corresponds to, then which transmission streams the TA or TAG corresponding to the uplink transmission beam corresponds to.
  • the first TA or the first TAG corresponding to the uplink signal may be predefined by a protocol.
  • the first TA or the first TAG can be one or more of the following: the first/last/smallest/largest index TAG among the multiple TAGs corresponding to the cell where the terminal is located, among the multiple TAGs corresponding to the cell where the terminal is located.
  • the TAG or TA corresponding to the CORESET or the CORESET group refers to the TAG or TA corresponding to the PDSCH carrying the CORESET or the CORESET group, or may also refer to the TAG or TA corresponding to the SSB referenced by the PDSCH.
  • the foregoing explicit indication and implicit indication may be implemented in combination, as follows.
  • Explicitly indicating priority means that the terminal uses an explicitly indicated TA or TAG, such as the first TA or first TAG indicated by the first information, as the TA or TAG required for sending the uplink signal. That is to say, no matter whether the network device implicitly instructs the terminal, the terminal always uses the explicitly indicated TA or TAG to send the uplink signal.
  • the explicit indication reference may be made to the relevant introduction in the foregoing "mode 1, display indication", and details are not repeated here.
  • the implicit indication priority means that the terminal determines the TA or TAG according to the implicit indication, such as the first TA or the first TAG corresponding to the first signal, so as to use the TA or TAG as the TA or TAG required for sending the uplink signal. That is to say, no matter whether the network device explicitly instructs the terminal, the terminal always uses the corresponding TA or TAG implicitly indicated to send the uplink signal.
  • the implicit indication for the specific implementation of the implicit indication, reference may be made to the relevant introduction in the foregoing "Mode 2, Implicit Indication", which will not be repeated here.
  • Compatibility with explicit indication and implicit indication means that the terminal can send an uplink signal by using an explicitly indicated TA or TAG, and can also use an implicitly indicated corresponding TA or TAG to send an uplink signal. In this case, if they are for the same uplink signal, the explicitly indicated TA or TAG should be consistent with the implicitly indicated corresponding TA or TAG. If they are for different uplink signals, the explicitly indicated TA or TAG and the implicitly indicated corresponding TA or TAG may or may not be consistent. Exemplarily, taking TA as an example, for example, the terminal may use the explicitly indicated TA1 to send SRS1, and then use the implicitly indicated TA2 to send SRS2, and TA1 and TA2 may be the same or different.
  • the terminal may use the explicitly indicated TA3 to send the SRS, and then use the implicitly indicated TA4 to send the PUSCH, and TA3 and TA4 may be the same or different.
  • the terminal may use the explicitly indicated TA5 to send PUSCH1, and then use the implicitly indicated TA6 to send PUSCH2, and TA5 and TA6 may be the same or different.
  • the terminal may use the explicitly indicated TA7 to send the PUSCH, and then use the implicitly indicated TA8 to send the PUCCH, and the TA7 and TA8 may be the same or different.
  • the terminal may use the explicitly indicated TA9 to send the PUCCH1, and then use the implicitly indicated TA10 to send the PUCCH2, and the TA9 and the TA10 may be the same or different.
  • any two explicitly indicated TAs or TAGs may be consistent or inconsistent, and any two implicitly indicated corresponding TAs or TAGs may be consistent or inconsistent. This application does not make any limitation on this. .
  • the order of the explicit indication and the implicit indication is not limited.
  • the terminal can first send the uplink signal according to the explicit indication, and then send the rest of the uplink signal according to the implicit indication, or can first send the uplink signal according to the implicit indication, and then according to the explicit indication Instructing to send the remaining uplink signals, or the explicit instruction and the implicit instruction can also be used cyclically, which is not limited in this application.
  • the network device may also update the corresponding TA values among the above multiple TAs, for example, the first TA or the TA corresponding to the first TAG value.
  • the following uses the first TA or the first TAG as an example for introduction. Specifically, as the terminal moves, the distance between the terminal and the network device, that is, the distance between the terminal and the site changes accordingly, so that the existing TA value of the terminal, such as the TA value corresponding to the first TA or the first TAG, is different from the TA value corresponding to the first TAG. The current distances do not match.
  • the network device may send the first TA or the first TAG corresponding TA update value to the terminal according to the current distance, for example, send indication information to the terminal, the indication information carries the index of the first TA or the index of the first TAG, And the TA update value corresponding to the index.
  • the terminal can determine the first TA or the first TAG according to the index of the first TA or the index of the first TAG, so as to update the TA value corresponding to the first TA or the first TAG according to the TA update value, so that The updated TA value matches the current distance.
  • the TA value corresponding to the first TA or the first TAG in S603 above may be an updated TA value or a non-updated TA value, which is not limited in this application.
  • FIG. 8 is a second schematic flow diagram of the communication provided by the embodiment of the present application.
  • the communication method may be applicable to communication between a UE (the above-mentioned terminal) and a radio access network (radio access network, RAN) device (the above-mentioned network device).
  • the communication method may include the following steps:
  • the RAN device sends an RRC message to the UE.
  • the UE receives the RRC message from the RAN device.
  • the RRC message includes the above configuration information.
  • the configuration information includes one or more of the following items: multiple TAGs corresponding to one cell of the RAN device, or multiple TA offsets corresponding to one cell of the RAN device.
  • the configuration information further includes an association relationship between the first signal and the first TA or the first TAG, the first TAG is one of the multiple TAGs, and the first TA is a TA offset among the multiple TA offsets.
  • a TA corresponding to the displacement for specific implementation of S801, reference may be made to relevant introductions in S601 and S602 above, which will not be repeated here.
  • the RAN device sends a RAR message to the UE.
  • the UE receives the RAR message from the RAN device.
  • the RAR message may include an initial TA value corresponding to a certain TAG among the multiple TAGs.
  • S802 may be executed multiple times, and the execution order of S801 and S802 is not limited.
  • the RAN device sends a MAC CE message to the UE.
  • the UE receives the MAC CE message from the RAN device.
  • the MAC CE message includes corresponding TA update values in multiple TAs.
  • S803 is an optional step, that is, if the movement of the terminal makes the corresponding TA value in multiple TAs not match the distance between the terminal and the station, then S803 may be executed; otherwise, S803 may not be executed.
  • the RAN device sends the first information or the second information to the UE.
  • the UE receives the first information or the second information from the RAN device.
  • the specific implementation of the first information can refer to the relevant introduction in the above-mentioned "mode 1, display indication”, and the specific realization of the second information can refer to the relevant introduction in the above-mentioned “mode 2, implicit indication”, and will not be repeated here.
  • S804 is optional, that is, if the terminal determines the TA or TAG according to the beam reference relationship, S804 may not be executed; otherwise, S804 is executed.
  • reference may be made to the relevant introduction in the above S602, which will not be repeated here.
  • the UE sends an uplink signal to the RAN device.
  • the RAN device receives the uplink signal from the UE.
  • the UE may send an uplink signal to the RAN device according to the determined TA value corresponding to the TAG, so that the RAN device receives the uplink signal at the start time of the uplink time slot.
  • the communication method provided by the embodiment of the present application has been described in detail above with reference to FIGS. 6-8 .
  • a communication device configured to execute the communication method provided in the embodiment of the present application will be described in detail below with reference to FIGS. 9-11 .
  • FIG. 9 is a first structural diagram of a communication device provided by an embodiment of the present application.
  • a communication device 900 includes modules for performing terminal functions in the method shown in FIG. 6 , for example, includes a transceiver module 901 and a processing module 902 .
  • the transceiver module 901 is used to implement the transceiver function in the above method embodiment
  • the processing module 902 is used to realize the processing function in the above method embodiment.
  • FIG. 9 only shows the main components of the communication device.
  • the communication device 900 may be applicable to the communication system shown in FIG. 4 or FIG. 5 , and perform some functions of the terminal in the method shown in FIG. 6 .
  • the processing module 902 is configured to determine a first timing advance TA or a first timing advance group TAG, so as to control the transceiver module 901 to send a corresponding uplink signal to the network device according to the first TA or the first TAG.
  • the first TA is one of multiple TAs corresponding to one cell of the network device
  • the first TAG is one of multiple TAGs corresponding to one cell of the network device.
  • the first TA or the first TAG is determined according to first information, and the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal.
  • the first information is carried in one or more of the following: RRC message, MAC-CE message, DCI message, spatial relationship, TCI state, or QCL information.
  • the first TA or the first TAG is determined according to a first signal, and the first signal is an SSB corresponding to an uplink signal, a spatial relationship reference signal, or a path loss reference signal.
  • the transceiver module 901 is further configured to receive second information from the network device.
  • the second information is used to indicate the first signal.
  • the second information is QCL information
  • the type of the QCL information is one or more of the following: Type A, Type B, Type C, Type D, Type E, Type F, or Type G.
  • the first signal includes one or more of the following: SRS, SSB, CSI-RS, TRS, PDCCH, PDSCH, PUCCH, or PUSCH.
  • the first signal is associated with the first TA or the first TAG.
  • the first TA or the first TAG is determined according to the first signal, and the first signal has an association relationship with the first TA or the first TAG, and the first signal is the SSB corresponding to the uplink signal and the spatial relationship reference signal or path loss reference signal.
  • the transceiver module 901 is further configured to receive configuration information from the network device before the processing module 902 determines the first TA or the first TAG.
  • the configuration information includes the following items or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device, the multiple TAGs include the first TAG, the multiple TA offsets The offset includes the TA offset corresponding to the first TA.
  • each TA offset in the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • the transceiving module 901 is further configured to receive a random access response RAR message from the network device before the processing module 902 determines the first TA or the first TAG.
  • the RAR message includes the TA initial value corresponding to the first TAG, the TA initial value corresponding to the first TAG and the TA offset corresponding to the first TAG, which are used to determine the TA corresponding to the first TAG.
  • processing module 902 is also used to determine the TAG corresponding to the TA initial value in the RAR message according to the field in the RAR message; or, the processing module 902 is also used to determine the TAG in the RAR message according to the SSB corresponding to the RAR message. TAG corresponding to the initial value of TA.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the processing module 902 is further configured to determine that a TAG associated with the SSB is the TAG corresponding to the TA initial value in the RAR message.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • the transceiver module 901 may also include a sending module and a receiving module (not shown in FIG. 9 ).
  • the sending module is used to realize the sending function of the communication device 900
  • the receiving module is used to realize the receiving function of the communication device 900 .
  • the communication device 900 may further include a storage module (not shown in FIG. 9 ), where programs or instructions are stored in the storage module.
  • the processing module executes the program or instruction
  • the communication device 900 can execute some functions of the terminal in the method shown in FIG. 6 .
  • the processing module involved in the communication device 900 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver or transceiver unit.
  • the communication device 900 may be a terminal, a chip (system) or other components or components that may be installed in the terminal, or a device including a terminal, which is not limited in this application.
  • the communication device 900 may be applicable to the communication system shown in FIG. 4 or FIG. 5 , and perform other functions of the terminal in the method shown in FIG. 6 .
  • the transceiver module 901 is configured to receive first information from a network device.
  • the processing module 902 is configured to control the transceiver module 901 to send an uplink signal to the network device according to the first TA or the first TAG.
  • the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal.
  • the first TA is one of multiple TAs corresponding to one cell of the network device
  • the first TAG is one of multiple TAGs corresponding to one cell of the network device.
  • the first information is carried in one or more of the following: RRC message, MAC-CE message, DCI message, spatial relationship, TCI state, or QCL information.
  • the transceiver module 901 is further configured to receive configuration information from the network device before the processing module 902 controls the transceiver module 901 to send an uplink signal to the network device according to the first TA or the first TAG.
  • the configuration information includes the following items or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device, the multiple TAGs include the first TAG, the multiple TA offsets The offset includes the TA offset corresponding to the first TA.
  • each TA offset in the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • the transceiving module 901 is further configured to receive a random access response RAR message from the network device before the processing module 902 controls the transceiving module 901 to send an uplink signal to the network device according to the first TA or the first TAG.
  • the RAR message includes the TA initial value corresponding to the first TAG, the TA initial value corresponding to the first TAG and the TA offset corresponding to the first TAG, which are used to determine the TA corresponding to the first TAG.
  • processing module 902 is also used to determine the TAG corresponding to the TA initial value in the RAR message according to the field in the RAR message; or, the processing module 902 is also used to determine the TAG in the RAR message according to the SSB corresponding to the RAR message. TAG corresponding to the initial value of TA.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the processing module 902 is further configured to determine that a TAG associated with the SSB is the TAG corresponding to the TA initial value in the RAR message.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • the transceiver module 901 may also include a sending module and a receiving module (not shown in FIG. 9 ).
  • the sending module is used to realize the sending function of the communication device 900
  • the receiving module is used to realize the receiving function of the communication device 900 .
  • the communication device 900 may further include a storage module (not shown in FIG. 9 ), where programs or instructions are stored in the storage module.
  • the processing module executes the program or instruction
  • the communication device 900 can execute other functions of the terminal in the method shown in FIG. 6 .
  • the processing module involved in the communication device 900 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver or transceiver unit.
  • the communication device 900 may be a terminal, a chip (system) or other components or components that may be installed in the terminal, or a device including a terminal, which is not limited in this application.
  • the communication device 900 may be applicable to the communication system shown in FIG. 4 or FIG. 5 , and perform some functions of the terminal in the method shown in FIG. 6 .
  • the processing module 902 is configured to determine the first TA or the first TAG according to the first signal, so as to control the transceiver module 901 to send a corresponding uplink signal to the network device according to the first TA or the first TAG.
  • the first signal is an SSB, a spatial relationship reference signal, or a path loss reference signal corresponding to the uplink signal.
  • the first TA is one of multiple TAs corresponding to one cell of the network device
  • the first TAG is one of multiple TAGs corresponding to one cell of the network device.
  • the transceiver module 901 is further configured to receive second information from the network device.
  • the second information is used to indicate the first signal.
  • the second information is QCL information
  • the type of the QCL information is one or more of the following: Type A, Type B, Type C, Type D, Type E, Type F, or Type G.
  • the first signal includes one or more of the following: SRS, SSB, CSI-RS, TRS, PDCCH, PDSCH, PUCCH, or PUSCH.
  • the first signal is associated with the first TA or the first TAG.
  • the first TA or the first TAG is determined according to the first signal, and the first signal has an association relationship with the first TA or the first TAG, and the first signal is the SSB corresponding to the uplink signal and the spatial relationship reference signal or path loss reference signal.
  • the transceiver module 901 is further configured to receive configuration information from the network device before the processing module 902 determines the first TA or the first TAG according to the first signal.
  • the configuration information includes the following items or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device, the multiple TAGs include the first TAG, the multiple TA offsets The offset includes the TA offset corresponding to the first TA.
  • each TA offset in the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • the transceiving module 901 is further configured to receive a random access response RAR message from the network device before the processing module 902 determines the first TA or the first TAG according to the first signal.
  • the RAR message includes the TA initial value corresponding to the first TAG, the TA initial value corresponding to the first TAG and the TA offset corresponding to the first TAG, which are used to determine the TA corresponding to the first TAG.
  • processing module 902 is also used to determine the TAG corresponding to the TA initial value in the RAR message according to the field in the RAR message; or, the processing module 902 is also used to determine the TAG in the RAR message according to the SSB corresponding to the RAR message. TAG corresponding to the initial value of TA.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the processing module 902 is further configured to determine that a TAG associated with the SSB is the TAG corresponding to the TA initial value in the RAR message.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • the transceiver module 901 may also include a sending module and a receiving module (not shown in FIG. 9 ).
  • the sending module is used to realize the sending function of the communication device 900
  • the receiving module is used to realize the receiving function of the communication device 900 .
  • the communication device 900 may further include a storage module (not shown in FIG. 9 ), where programs or instructions are stored in the storage module.
  • the processing module executes the program or the instruction
  • the communication device 900 can execute some functions of the terminal in the method shown in FIG. 6 .
  • the processing module involved in the communication device 900 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver or transceiver unit.
  • the communication device 900 may be a terminal, a chip (system) or other components or components that may be installed in the terminal, or a device including a terminal, which is not limited in this application.
  • FIG. 10 is a second schematic structural diagram of a communication device provided by an embodiment of the present application.
  • a communication apparatus 1000 includes modules for performing network device functions in the method shown in FIG. 6 , such as including a receiving module 1001 and a sending module 1002 .
  • the receiving module 1001 is used to realize the receiving function in the above method embodiment
  • the sending module 1002 is used to realize the sending function in the above method embodiment.
  • FIG. 10 only shows the main components of the communication device.
  • the communication device 1000 may be applicable to the communication system shown in FIG. 4 or FIG. 5 , and execute some functions of the network device in the method shown in FIG. 6 .
  • the sending module 1002 is configured to send configuration information to the terminal.
  • the receiving module 1001 is configured to receive an uplink signal from a terminal.
  • the configuration information includes the following item or items: multiple TAGs corresponding to one cell of the network device, or multiple TA offsets corresponding to one cell of the network device.
  • the sending module 1002 is further configured to send the first information to the terminal before the receiving module 1001 receives the uplink signal from the terminal.
  • the first information is used to indicate the first TA or the first TAG corresponding to the uplink signal
  • the first TAG is one of the multiple TAGs
  • the first TA is the one corresponding to one of the multiple TA offsets.
  • the first information is carried in one or more of the following: RRC message, MAC-CE message, DCI message, spatial relationship, TCI state, or QCL information.
  • the sending module 1002 is further configured to send the second information to the terminal before the receiving module 1001 receives the uplink signal from the terminal.
  • the second information is used to indicate the first signal
  • the first signal is the SSB, the spatial relationship reference signal or the path loss reference signal corresponding to the uplink signal
  • the first signal is used to determine the first TA or the first TAG corresponding to the uplink signal
  • the first TAG is one of the multiple TAGs
  • the first TA is a TA corresponding to a TA offset among the multiple TA offsets.
  • the second information is QCL information
  • the type of the QCL information is one or more of the following: Type A, Type B, Type C, Type D, Type E, Type F, or Type G.
  • the first signal includes one or more of the following: SRS, SSB, CSI-RS, TRS, PDCCH, PDSCH, PUCCH, or PUSCH.
  • the configuration information further includes: an association relationship between the first signal and the first TA or the first TAG.
  • the sending module 1002 is also used to send the RAR message to the terminal before the receiving module 1001 receives the uplink signal from the terminal.
  • the RAR message includes the TA initial value corresponding to the first TAG.
  • the field in the RAR message is used to determine the TAG corresponding to the initial TA value in the RAR message; or, the SSB corresponding to the RAR message is used to determine the TAG corresponding to the initial TA value in the RAR message.
  • the SSB corresponding to the RAR message is associated with a TAG
  • the TAG associated with the SSB is the TAG corresponding to the initial value of TA in the RAR message.
  • the uplink signal includes one or more of the following: SRS, PUSCH, or PUCCH.
  • each of the multiple TA offsets corresponds to at least part of the multiple TAGs.
  • the sending module 1002 and the receiving module 1001 may also be integrated into one module, such as a transceiver module (not shown in FIG. 10 ).
  • the transceiver module is used to realize the sending function and the receiving function of the communication device 1000 .
  • the communication device 1000 may further include a processing module (not shown in FIG. 10 ).
  • the processing module is used to implement the functions of the network device in the method shown in FIG. 6 above except the sending and receiving function.
  • the communication device 1000 may further include a storage module (not shown in FIG. 10 ), where programs or instructions are stored in the storage module.
  • the processing module executes the program or instruction
  • the communication device 1000 can execute the function of the network device in the method shown in FIG. 6 .
  • the processing module involved in the communication device 1000 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver or transceiver unit.
  • the communication device 1000 may be a network device, a chip (system) or other components or components that may be installed in the network device, or a device including the network device, which is not limited in this application.
  • FIG. 11 is a third schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device, or may be a chip (system) or other components or components that may be provided in the terminal device or the network device.
  • a communication device 1100 may include a processor 1101 .
  • the communication device 1100 may further include a memory 1102 and/or a transceiver 1103 .
  • the processor 1101 is coupled with the memory 1102 and the transceiver 1103, such as may be connected through a communication bus.
  • the components of the communication device 1100 are specifically introduced below in conjunction with FIG. 11 :
  • the processor 1101 is the control center of the communication device 1100, and may be one processor, or may be a general term for multiple processing elements, or may also be called a logic circuit.
  • the processor 1101 is one or more central processing units (central processing unit, CPU), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more An integrated circuit, for example: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • the processor 1101 may execute the functions of the network device or the terminal in the method shown in FIG. 6 above by running or executing a software program stored in the memory 1102 and calling data stored in the memory 1102 .
  • the processor 1101 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 11 .
  • the communication device 1100 may also include multiple processors, for example, the processor 1101 and the processor 1104 shown in FIG. 11 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer programs or instructions).
  • the memory 1102 is used to store a software program for executing the solution of the present application, and is controlled by the processor 1101, so that the above-mentioned method shown in FIG. 6 is executed.
  • the memory 1102 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, or a random access memory (random access memory, RAM) that can store information and
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical discs storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited to.
  • the memory 1102 may be integrated with the processor 1101, or may exist independently, and is coupled to the processor 1101 through an interface circuit of the communication device 1100, or an input and output interface (not shown in FIG. 11 ). Not specifically limited.
  • the transceiver 1103 is used for communication with other communication devices.
  • the communication apparatus 1100 is a terminal, and the transceiver 1103 can be used to communicate with a network device, or communicate with another terminal device.
  • the communication apparatus 1100 is a network device, and the transceiver 1103 may be used to communicate with a terminal, or communicate with another network device.
  • the transceiver 1103 may include a receiver and a transmitter (not separately shown in FIG. 11 ). Wherein, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 1103 may be integrated with the processor 1101, or may exist independently, and be coupled to the processor 1101 through an interface circuit (not shown in FIG. 11 ) of the communication device 1100.
  • This embodiment of the present application does not Be specific.
  • the structure of the communication device 1100 shown in FIG. 11 does not constitute a limitation to the communication device, and an actual communication device may include more or less components than shown in the figure, or combine certain components, or Different component arrangements.
  • An embodiment of the present application provides a communication system.
  • the communication system includes the above-mentioned one or more terminals, and one or more network devices.
  • processor in the embodiment of the present application may be a CPU, and the processor may also be other general-purpose processors, DSP, ASIC, Field Programmable Gate Array FPGA or other programmable logic devices, discrete gates or transistor logic devices , discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory may be ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), EEPROM or flash memory.
  • Volatile memory can be RAM, which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs. When the computer instructions or computer programs or instructions are loaded or executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,以实现终端的上行传输能够与一个小区对应多个站点都同步,避免上行传输的性能损失。方法包括:终端确定第一定时提前TA或第一定时提前组TAG,以根据第一TA或第一TAG,向网络设备发送对应的上行信号。第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。

Description

通信方法及装置
本申请要求于2021年8月31日提交国家知识产权局、申请号为202111015739.6、申请名称为“通信方法及装置”的中国专利申请的优先权,以及要求于2022年4月27日提交国家知识产权局、申请号为202210454297.3、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
在第五代(5th generation,5G)移动通信系统中,每个终端在进行上行数据传输之前,需要获取该终端所在小区(cell)的一个上行定时提前(timing advance,TA)。每个终端都要根据各自的TA向同一个站点发送上行信号,以保证多个终端的上行信号可以同时到达该站点,即所有终端是上行同步的,这样,该站点便能够成功接收各个终端的上行信号。
然而,当网络设备的一个小区对应多个站点时,上行传输需要同时向多个站点进行。由于终端与多个站点之间的距离通常不相等,导致终端根据该小区的TA发送的上行信号,或者说终端的上行传输无法与多个站点都同步,造成上行传输的性能损失。
发明内容
本申请提供一种通信方法及装置,以实现终端的上行传输能够与一个小区对应多个站点都同步,避免上行传输的性能损失。
本申请采用如下技术方案:
第一方面,提供一种通信方法。该方法包括:终端确定第一定时提前TA或第一定时提前组TAG,以根据第一TA或第一TAG,向网络设备发送对应的上行信号。其中,第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。
基于第一方面的方法可知,在网络设备的一个小区对应多个站点的情况下,终端可以配置该小区对应的多个TA或多个TAG。这样,终端向网络设备的某个站点进行上行传输时,可以选择合适的TA或TAG,比如第一TA或第一TAG来发送对应的上行信号,以实现终端的上行传输能够与多个站点都同步,避免上行传输的性能损失。
一种可能的设计方案中,第一TA或第一TAG根据第一信息确定,第一信息用于指示上行信号对应的第一TA或第一TAG。也就是说,网络设备可以根据实际情况,通过第一信息指示当前所需的TA或TAG,以实现更灵活的TA或TAG选择,所选的TA或TAG与终端的上行传输距离更匹配,上行传输更稳定。
可选地,第一信息承载在如下一项或多项中:无线资源控制RRC消息、媒体接入控制-控制单元MAC-CE消息、下行控制信息DCI消息、空间关系、传输配置指示TCI状态、或准共位置QCL信息。
另一种可能的设计方案中,第一TA或第一TAG根据第一信号确定,第一信号为上行信号对应的同步信息和物理广播信道块SSB、空间关系参考信号或路损参考信号。也就是说,终端可以根据信号之间的空间关系自行确定第一TA或第一TAG,无需网络设备额外指示第一TA或第一TAG,如此可以减少网络设备与终端之间的交互次数,以节约通信开销,提高通信效率。
可选地,第一方面所述的方法还可以包括:终端接收来自网络设备的第二信息。其中,第二信息用于指示第一信号。
进一步地,第二信息为QCL信息,QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。也就是说,第一信号可以由QCL信息中的类型字段指示,如此可以实现信令复用,从而降低通信开销,提高通信效率。
可选地,第一信号包括如下一项或多项:探测参考信号SRS、同步信息和物理广播信道块SSB、信道状态信息参考信号CSI-RS、跟踪参考信号TRS、物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH、或物理上行共享信道PUSCH。
可选地,第一信号与第一TA或第一TAG存在关联关系,以便终端可以根据关联关系,准确地确定出第一TA或第一TAG。
一种可能的设计方案中,第一TA或第一TAG根据第一信号确定,第一信号与第一TA或第一TAG存在关联关系,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。
一种可能的设计方案中,在终端确定第一TA或第一TAG之前,第一方面所述的方法还可以包括:终端接收来自网络设备的配置信息。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量,多个TAG包括第一TAG,多个TA偏移量包括第一TA对应的TA偏移量。
可选地,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,多个TA偏移量与多个TAG一一对应。
可选地,在终端确定第一TA或第一TAG之前,第一方面所述的方法还可以包括:终端接收来自网络设备的随机接入响应RAR消息。其中,RAR消息包括第一TAG对应的TA初始值,第一TAG对应的TA初始值和第一TAG对应的TA偏移量,用于确定第一TAG对应的TA。
进一步的,第一方面的方法还可以包括:终端根据RAR消息中的字段,确定RAR消息中的TA初始值对应的TAG;或者,终端根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,终端根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG,包括:终端确定SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。可以看出,网络设备通过为终端配置TAG对应的TA偏移量和TA初始值,使得终端可以确定每个TAG对应的TA,这样,即便网络设备只指示TAG,终端也能够根据TAG确定对应的TA,从而实现上行同步。
一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
第二方面,提供一种通信方法。该方法包括:终端接收来自网络设备的第一信息,并根据第一TA或第一TAG,向网络设备发送上行信号。其中,所述第一信息用于指示上行信号对应的第一TA或第一TAG。第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。
一种可能的设计方案中,第一信息承载在如下一项或多项中:RRC消息、MAC-CE消息、DCI消息、空间关系、TCI状态、或QCL信息。
一种可能的设计方案中,在终端根据第一TA或第一TAG,向网络设备发送上行信号之前,第二方面所述的方法还可以包括:终端接收来自网络设备的配置信息。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量,多个TAG包括第一TAG,多个TA偏移量包括第一TA对应的TA偏移量。
可选地,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,多个TA偏移量与多个TAG一一对应。
可选地,在终端根据第一TA或第一TAG,向网络设备发送上行信号之前,第二方面所述的方法还可以包括:终端接收来自网络设备的随机接入响应RAR消息。其中,RAR消息包括第一TAG对应的TA初始值,第一TAG对应的TA初始值和第一TAG对应的TA偏移量,用于确定第一TAG对应的TA。
进一步的,第二方面的方法还可以包括:终端根据RAR消息中的字段,确定RAR消息中的TA初始值对应的TAG;或者,终端根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,终端根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG,包括:终端确定SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
此外,第二方面所述的方法的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第三方面,提供一种通信方法。该方法包括:终端根据第一信号确定第一TA或第一TAG,从而根据第一TA或第一TAG,向网络设备发送对应的上行信号。第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。
可选地,第三方面所述的方法还可以包括:终端接收来自网络设备的第二信息。其中,第二信息用于指示第一信号。
进一步地,第二信息为QCL信息,QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。
可选地,第一信号包括如下一项或多项:SRS、SSB、CSI-RS、TRS、PDCCH、PDSCH、PUCCH、或PUSCH。
可选地,第一信号与第一TA或第一TAG存在关联关系。
一种可能的设计方案中,第一TA或第一TAG根据第一信号确定,第一信号与第一TA或第一TAG存在关联关系,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。
一种可能的设计方案中,在终端根据第一信号确定第一TA或第一TAG之前,第三方面所述的方法还可以包括:终端接收来自网络设备的配置信息。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量,多个TAG包括第一TAG,多个TA偏移量包括第一TA对应的TA偏移量。
可选地,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,多个TA偏移量与多个TAG一一对应。
可选地,在终端根据第一信号确定第一TA或第一TAG之前,第三方面所述的方法还可以包括:终端接收来自网络设备的随机接入响应RAR消息。其中,RAR消息包括第一TAG对应的TA初始值,第一TAG对应的TA初始值和第一TAG对应的TA偏移量,用于确定第一TAG对应的TA。
进一步的,第三方面的方法还可以包括:终端根据RAR消息中的字段,确定RAR消息中的TA初始值对应的TAG;或者,终端根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,终端根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG,包括:终端确定SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。
一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
此外,第三方面所述的方法的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第四方面,提供一种通信方法。该方法包括:网络设备向终端发送配置信息,并接收来自终端的上行信号。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量。
一种可能的设计方案中,在网络设备接收来自终端的上行信号之前,第四方面所述的方法还可以包括:网络设备向终端发送第一信息。其中,第一信息用于指示上行信号对应的第一TA或第一TAG,第一TAG为多个TAG中的一个,第一TA为多个TA偏移量中的一个TA偏移量对应的一个TA。
可选地,第一信息承载在如下一项或多项中:RRC消息、MAC-CE消息、DCI消息、空间关系、TCI状态、或QCL信息。
另一种可能的设计方案中,在网络设备接收来自终端的上行信号之前,第四方面所述的方法还可以包括:网络设备向终端发送第二信息。其中,第二信息用于指示第一信号,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号,第一信号用于确定上行信号对应的第一TA或第一TAG,第一TAG为多个TAG中的一个,第一TA为多个TA偏移量中的一个TA偏移量对应的一个TA。
可选地,第二信息为QCL信息,QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。
可选地,第一信号包括如下一项或多项:SRS、SSB、CSI-RS、TRS、PDCCH、PDSCH、PUCCH、或PUSCH。
可选地,配置信息还包括:第一信号与第一TA或第一TAG的关联关系。
一种可能的设计方案中,在网络设备接收来自终端的上行信号之前,第四方面所述的方法还可以包括:网络设备向终端发送的RAR消息。其中,RAR消息包括第一TAG对应的TA初始值。
可选地,RAR消息中的字段用于确定RAR消息中的TA初始值对应的TAG;或者,RAR消息对应的SSB用于确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。
一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
一种可能的设计方案中,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,多个TA偏移量与多个TAG一一对应。
此外,第四方面所述的方法的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该装置包括用于执行第一方面所述的方法的模块,比如包括处理模块和收发模块。其中,处理模块,用于确定第一定时提前TA或第一定时提前组TAG,以根据第一TA或第一TAG,控制收发模块向网络设备发送对应的上行信号。其中,第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。
一种可能的设计方案中,第一TA或第一TAG根据第一信息确定,第一信息用于指示上行信号对应的第一TA或第一TAG。
可选地,第一信息承载在如下一项或多项中:RRC消息、MAC-CE消息、DCI消息、空间关系、TCI状态、或QCL信息。
另一种可能的设计方案中,第一TA或第一TAG根据第一信号确定,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。
可选地,收发模块,还用于接收来自网络设备的第二信息。其中,第二信息用于指示第一信号。
进一步地,第二信息为QCL信息,QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。
可选地,第一信号包括如下一项或多项:SRS、SSB、CSI-RS、TRS、PDCCH、PDSCH、PUCCH、或PUSCH。
可选地,第一信号与第一TA或第一TAG存在关联关系。
一种可能的设计方案中,第一TA或第一TAG根据第一信号确定,第一信号与第一TA或第一TAG存在关联关系,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。
一种可能的设计方案中,收发模块,还用于在处理模块确定第一TA或第一TAG之前,接收来自网络设备的配置信息。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量,多个TAG包括第一TAG,多个TA偏移量包括第一TA对应的TA偏移量。
可选地,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,多个TA偏移量与多个TAG一一对应。
可选地,收发模块,还用于在处理模块确定第一TA或第一TAG之前,接收来自网络设备的随机接入响应RAR消息。其中,RAR消息包括第一TAG对应的TA初始值,第一TAG对应的TA初始值和第一TAG对应的TA偏移量,用于确定第一TAG对应的TA。
进一步的,处理模块,还用于根据RAR消息中的字段,确定RAR消息中的TA初始值对应的TAG;或者,处理模块,还用于根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,处理模块,还用于确定SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。
一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
可选地,收发模块也可以包括发送模块和接收模块。其中,发送模块用于实现第五方面所述的装置的发送功能,接收模块用于实现第五方面所述的装置的接收功能。
可选地,第五方面所述的装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该装置可以执行第一方面所述的方法。
需要说明的是,第五方面所述的装置可以是终端,也可以是可设置终端中的芯片(系统)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,第五方面所述的装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第六方面,提供一种通信装置。该装置包括用于执行第二方面所述的方法的模块,比如包括处理模块和收发模块。其中,收发模块,用于接收来自网络设备的第一信息;处理模块,用于根据第一TA或第一TAG,控制收发模块向网络设备发送上行信号。其中,第一信息用于指示上行信号对应的第一TA或第一TAG。第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。
一种可能的设计方案中,第一信息承载在如下一项或多项中:RRC消息、MAC-CE消息、DCI消息、空间关系、TCI状态、或QCL信息。
一种可能的设计方案中,收发模块,还用于在处理模块根据第一TA或第一TAG,控制收发模块向网络设备发送上行信号之前,接收来自网络设备的配置信息。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量,多个TAG包括第一TAG,多个TA偏移量包括第一TA对应的TA偏移量。
可选地,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对 应。
可选地,多个TA偏移量与多个TAG一一对应。
可选地,收发模块,还用于在处理模块根据第一TA或第一TAG,控制收发模块向网络设备发送上行信号之前,接收来自网络设备的随机接入响应RAR消息。其中,RAR消息包括第一TAG对应的TA初始值,第一TAG对应的TA初始值和第一TAG对应的TA偏移量,用于确定第一TAG对应的TA。
进一步的,处理模块,还用于根据RAR消息中的字段,确定RAR消息中的TA初始值对应的TAG;或者,处理模块,还用于根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,处理模块,还用于确定SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
可选地,收发模块也可以包括发送模块和接收模块。其中,发送模块用于实现第六方面所述的装置的发送功能,接收模块用于实现第六方面所述的装置的接收功能。
可选地,第六方面所述的装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该装置可以执行第二方面所述的方法。
需要说明的是,第六方面所述的装置可以是终端,也可以是可设置终端中的芯片(系统)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,第六方面所述的装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第七方面,提供一种通信装置。该装置包括用于执行第三方面所述的方法的模块,比如包括处理模块和收发模块。其中,处理模块,用于根据第一信号确定第一TA或第一TAG,从而根据第一TA或第一TAG,控制收发模块向网络设备发送对应的上行信号。第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。
可选地,收发模块,还用于接收来自网络设备的第二信息。其中,第二信息用于指示第一信号。
进一步地,第二信息为QCL信息,QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。
可选地,第一信号包括如下一项或多项:SRS、SSB、CSI-RS、TRS、PDCCH、PDSCH、PUCCH、或PUSCH。
可选地,第一信号与第一TA或第一TAG存在关联关系。
一种可能的设计方案中,第一TA或第一TAG根据第一信号确定,第一信号与第一TA或第一TAG存在关联关系,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。
一种可能的设计方案中,收发模块,还用于在处理模块根据第一信号确定第一TA或第一TAG之前,接收来自网络设备的配置信息。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量, 多个TAG包括第一TAG,多个TA偏移量包括第一TA对应的TA偏移量。
可选地,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,多个TA偏移量与多个TAG一一对应。
可选地,收发模块,还用于在处理模块根据第一信号确定第一TA或第一TAG之前,接收来自网络设备的随机接入响应RAR消息。其中,RAR消息包括第一TAG对应的TA初始值,第一TAG对应的TA初始值和第一TAG对应的TA偏移量,用于确定第一TAG对应的TA。
进一步的,处理模块,还用于根据RAR消息中的字段,确定RAR消息中的TA初始值对应的TAG;或者,处理模块,还用于根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,处理模块,还用于确定SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
可选地,收发模块也可以包括发送模块和接收模块。其中,发送模块用于实现第六方面所述的装置的发送功能,接收模块用于实现第七方面所述的装置的接收功能。
可选地,第七方面所述的装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该装置可以执行第三方面所述的方法。
需要说明的是,第七方面所述的装置可以是终端,也可以是可设置终端中的芯片(系统)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,第七方面所述的装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第八方面,提供一种通信装置。该装置包括用于执行第四方面所述的方法的模块,比如包括发送模块和接收模块。其中,发送模块,用于向终端发送配置信息;接收模块,用于接收来自终端的上行信号。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量。
一种可能的设计方案中,发送模块,还用于在接收模块接收来自终端的上行信号之前,向终端发送第一信息。其中,第一信息用于指示上行信号对应的第一TA或第一TAG,第一TAG为多个TAG中的一个,第一TA为多个TA偏移量中的一个TA偏移量对应的一个TA。
可选地,第一信息承载在如下一项或多项中:RRC消息、MAC-CE消息、DCI消息、空间关系、TCI状态、或QCL信息。
另一种可能的设计方案中,发送模块,还用于在接收模块接收来自终端的上行信号之前,向终端发送第二信息。其中,第二信息用于指示第一信号,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号,第一信号用于确定上行信号对应的第一TA或第一TAG,第一TAG为多个TAG中的一个,第一TA为多个TA偏移量中的一个TA偏移量对应的一个TA。
可选地,第二信息为QCL信息,QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。
可选地,第一信号包括如下一项或多项:SRS、SSB、CSI-RS、TRS、PDCCH、PDSCH、PUCCH、或PUSCH。
可选地,配置信息还包括:第一信号与第一TA或第一TAG的关联关系。
一种可能的设计方案中,发送模块,还用于在接收模块接收来自终端的上行信号之前,向终端发送的RAR消息。其中,RAR消息包括第一TAG对应的TA初始值。
可选地,RAR消息中的字段用于确定RAR消息中的TA初始值对应的TAG;或者,RAR消息对应的SSB用于确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。
一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
一种可能的设计方案中,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,多个TA偏移量与多个TAG一一对应。
可选地,发送模块和接收模块也可以集成为一个模块,如收发模块。其中,收发模块用于实现第八方面所述的装置的发送功能和接收功能。
可选地,第八方面所述的装置还可以包括处理模块。其中,处理模块用于实现该装置的处理功能。
可选地,第八方面所述的装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该装置可以执行第四方面所述的方法。
需要说明的是,第八方面所述的装置可以是网络设备,也可以是可设置网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第八方面所述的装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第九方面,提供一种通信装置。该装置包括:处理器。其中,处理器,用于执行如第一方面至第四方面中任一方面所述的方法。
一种可能的设计方案中,第九方面所述的装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于该装置与其他装置通信。
一种可能的设计方案中,第九方面所述的装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面至第五方面中任一方面所述的方法所涉及的计算机程序和/或数据。
在本申请中,第九方面所述的装置可以为第一方面、第二方面或第三方面所述的终端,或者第四方面所述的网络设备,或者可设置于该终端或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第九方面所述的装置的技术效果可以参考第一方面至第四方面中任一方面所述的方法的技术效果,此处不再赘述。
第十方面,提供一种通信装置。该装置包括:处理器和存储器。其中,存储器用于存储计算机指令,当处理器执行该指令时,以使该装置执行如第一方面至第四方面中任一方面所述的方法。
一种可能的设计方案中,第十方面所述的装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于该装置与其他装置通信。
在本申请中,第十方面所述的装置可以为第一方面、第二方面或第三方面所述的终端,或者第四方面所述的网络设备,或者可设置于该终端或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第十方面所述的装置的技术效果可以参考第一方面至第四方面中任一方面所述的方法的技术效果,此处不再赘述。
第十一方面,提供一种通信装置。该装置包括:逻辑电路和输入输出接口。其中,输入输出接口,用于接收代码指令并传输至逻辑电路。逻辑电路用于运行代码指令以执行如第一方面至第四方面中任一方面所述的方法。
一种可能的设计方案中,第十一方面所述的装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面至第四方面中任一方面所述的方法所涉及的计算机程序和/或数据。
在本申请中,第十一方面所述的装置可以为第一方面、第二方面或第三方面所述的终端,或者第四方面所述的网络设备,或者可设置于该终端或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第十一方面所述的装置的技术效果可以参考第一方面至第四方面中任一方面所述的方法的技术效果,此处不再赘述。
第十二方面,提供一种通信装置。该装置包括:处理器和收发器。其中,收发器用于通信装置和其他装置之间进行信息交互,处理器执行程序指令,用以执行如第一方面至第四方面中任一方面所述的方法。
一种可能的设计方案中,第十二方面所述的装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面至第四方面中任一方面所述的方法所涉及的计算机程序和/或数据。
在本申请中,第十二方面所述的装置可以为第一方面、第二方面或第三方面所述的终端,或者第四方面所述的网络设备,或者可设置于该终端或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第十二方面所述的装置的技术效果可以参考第一方面至第四方面中任一方面所述的方法的技术效果,此处不再赘述。
第十三方面,提供一种通信系统。该通信系统包括终端和网络设备,终端用于执行第一方面、第二方面或第三方面所述的方法,网络设备用于执行第四方面所述的方法。
第十四方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得第一方面至第四方面中任一方面所述的方法被执行。
第十五方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得第一方面至第五方面中任一方面所述的方法被执行。
附图说明
图1为TA与上行时隙的时域位置关系示意图;
图2为UE与小区的位置关系示意图一;
图3为UE与小区的位置关系示意图二;
图4为本申请实施例提供的通信系统的架构示意图一;
图5为本申请实施例提供的通信系统的架构示意图二;
图6为本申请实施例提供的通信方法的流程示意图一;
图7为本申请实施例提供的通信方法中TA偏移量和TAG对应关系示意图;
图8为本申请实施例提供的通信方法的流程示意图二;
图9为本申请实施例提供的通信装置的结构示意图一;
图10为本申请实施例提供的通信装置的结构示意图二;
图11为本申请实施例提供的通信装置的结构示意图三。
具体实施方式
下面介绍本申请实施例所涉及的技术术语。
1、波束:
波束在协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter),或称空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),或准共址(Quasi-colocation,QCL)信息,QCL假设,QCL指示等。波束可以通过传输配置指示状态(TCI-state,Transmission Configuration Indication state)参数来指示,或通过空间关系(spatial relation)参数指示。因此,本申请中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI状态(DL TCI-state,UL TCI-state),空间关系等。上述术语之间也相互等效。波束也可以替换为其他表示波束的术语,本申请不做限定。
用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),比如上行发送波束或下行发送波束,也可以称为空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter)或空间发送参数(spatial transmission parameter),空域发送设置(spatial domain transmission setting)或空间发送设置(spatial transmission setting)。下行发送波束可以通过TCI状态指示。
用于接收信号的波束可以称为接收波束(reception beam,Rx beam),比如上行接收波束或下行接收波束,也可以称为空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或空间接收参数(spatial reception parameter),空域接收设置(spatial domain reception setting)或空间接收设置(spatial reception setting)。发送波束可以通过空间关系,或上行TCI状态,或探测参考信号(Sounding Reference Signal,SRS)资源(表示采用该SRS的发送波束)来指示。上行发送波束还可以替换为SRS资源。
发送波束也可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束也可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可 以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过下行控制信息(downlink control information,DCI)中的传输配置编号(transmission configuration indication,TCI)字段,来指示终端的物理下行共享信道(physical downlink sharing channel,PDSCH)波束的信息。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。在波束测量中,每一个波束对应一个资源,因此可以以资源的索引来唯一标识该资源对应的波束。
网络设备可以生成不同的波束,指向不同的传输方向。在下行数据传输中,网络设备在采用一个特定的波束向终端设备发送数据时,需要告知终端设备其采用的发送波束信息,这样终端设备才能采用与该发送波束相对应的接收波束接收网络设备发送的数据。
2、资源:
在波束测量中,可以通过资源的索引来唯一标识该资源对应的波束。资源可以是上行信号资源,也可以是下行信号资源。上行信号包括但不限于SRS、物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)等。下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、跟踪参考信号(tracking reference signal,TRS)、物理下行控制信道(physical downlink control channel,PDCCH)、PDSCH。
资源通过无线资源控制(radio resource control,RRC)消息配置。在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。每一个上行/下行信号的资源具有唯一的索引,以标识该下行信号的资源。可以理解的是,资源的索引也可以称为资源的标识,本申请实施例对此不做任何限制。
3、TA和定时提前组(Timing advance group,TAG):
请参阅图1,在上行传输中,信号从终端到达网络设备的站点需要一定的传播时间。为实现上行同步,即上行信号到达站点的时间刚好是上行时隙(slot)的起始时间,终端需要相对于上行时隙起始时间提前一定的时间发送上行信号,该时间提前量需要刚好等于上行信号的传播时间,该时间提前量即为TA。对于同一小区内的终端而言,每个终端都要根据自身的TA,向该小区对应的同一个站点发送上行信号,以保证多个终端的上行信号可以在上行时隙的起始时间到达该站点,即所有终端是上行同步的,这样,该站点便能够成功接收各个终端的上行信号。
如果终端所在的小区不同,则终端所使用的TA也不同,因此,可以通过TAG来确定各个对应的TA。TAG是一个配置信息单元,包含TA相关的参数。对于某个小 区内的终端,网络侧可以为该终端配置该小区的一个TAG,该TAG对应一个TA。如此,该终端可以根据该TAG确定对应的TA,向该小区内的站点进行上行传输,以实现上行同步。比如图2所示,UE1既在小区1又在小区2内,网络侧可以为UE1配置小区1对应的TAG1{TA1},以及小区2对应的TAG2{TA2}。这样,UE1可以使用TAG1{TA1},向小区1对应的站点1发送上行信号,以实现与站点1的上行同步。同理,UE1也可以使用TAG2{TA2},向小区2对应的站点2发送上行信号,以实现与站点2的上行同步。对于同一个小区内的不同终端,其配置的TAG相同,但该TAG对应的TA的参数不同,即TA索引相同,同一个TA索引对应的TA取值不同。比如图2所示,UE1和UE2都在小区1内,网络侧仍可以为UE2配置小区1对应的TAG1{TA1},此时,UE1和UE2的TA索引相同(索引都为1),但是UE1的TA索引对应的TA取值与UE2的TA索引对应的TA取值不同,也即UE1的TAG1对应的TA取值与UE2的TAG1对应的TA取值不同。
对于一个终端,网络侧可以为终端配置该终端所在小区对应的一个TAG和一个TA偏移量(offset)。该TA偏移量适用于该小区内的所有终端,即该小区内所有终端的TA偏移量相同。在此基础上,网络侧可以为该终端配置该TAG对应的一个TA初始值。其中,该TA初始值与该终端的距离对应,该距离为该终端与该小区对应的站点之间的距离,也就是说,如果该终端与该站点之间的距离不同,则网络侧为该终端配置的TA初始值也不同。这样,该终端可以根据该TAG对应的TA初始值和TA偏移量,确定该TAG对应的一个TA取值,比如TA取值=TA偏移量+TA初始值。之后,随着该终端的移动,该终端与该站点之间的距离也相应变化,网络侧需要根据距离的变化对应更新该TA取值,以保持上行同步。
需要指出的是,在没有特殊说明的情况下,本申请提到的TA可以指该TA索引,例如TA1是指TA索引为1,或者也可以指该TA索引对应的TA取值,又例如TA1是指TA索引为1对应的TA取值,二者的理解可以相互替换。但是,对于本申请提到的多个TA,在理解为TA取值的情况下,其并非指一个TA索引对应的多个TA取值,而是指多个TA索引各自对应的TA取值,并且在本申请中,一个TA索引通常只对应一个TA取值。在没有特殊说明的情况下,本申请提到的TAG通常指该TAG的索引,或者说TAG ID,例如TAG1是指索引为1的TAG。此外,为了便于描述,本申请中会同时提到“网络设备”和“站点”的概念。网络设备可以理解为网络侧所有设备(包括站点)的统称,例如多个站点可以统称为网络设备。站点是指具体位于一个物理位置的一个传输节点。换句话说,网络设备在概念上包含了站点。在没有特殊说明的情况下,本申请提到的信号,例如上行信号、下行信号、第一信号等,可以是具体的信号,例如SRS、CSI-RS等,也可以是具体的信道,例如PUSCH、PUCCH等。此外,本申请提到的信号也可以理解为资源,例如空间关系参考信号可以理解为空间关系参考信号资源、波束参考信号可以理解为波束参考信号资源、路损参考信号可以理解为路损参考信号资源等等,两者可以相互替换。
可以理解,如果网络设备的一个小区对应一个站点,则终端使用该小区对应的一个TAG和一个TA向该站点进行上行传输,能够实现上行同步。但是,如果网络设备的一个小区对应多个站点,则因为终端与多个站点之间的距离通常不相等,导致终端 使用该小区对应的一个TAG和一个TA向多个站点分别进行上行传输时,难以与多个站点都同步,造成上行传输的性能损失。比如图3所示,小区1包括站点1和站点2,UE1与站点1和站点2之间的距离分别为L1和L2,L1小于L2,网络侧为UE1配置小区1对应的TAG1{TA1}。此时,如果UE1使用TAG1{TA1}向站点1进行上行传输能够实现上行同步,则UE1使用TAG1{TA1}向站点2进行上行传输便不能实现上行同步,上行信号到达站点2的时间先于站点2的上行时隙的起始时间,造成UE1与站点2之间上行传输的性能损失。同理,如果UE1使用TAG1{TA1}向站点2进行上行传输能够实现上行同步,则UE1使用TAG1{TA1}向站点1进行上行传输便不能实现上行同步,上行信号到达站点1的时间滞后于站点1的上行时隙的起始时间,造成UE1与站点1之间上行传输的性能损失。
针对上述技术问题,本申请实施例提出了如下技术方案。
本申请实施例的技术方案可以应用于各种通信系统,例如无线保真(wireless fidelity,WiFi)系统,车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-todevie,D2D)通信系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进LTE系统、5G移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。在没有特别说明的情况下,“/”表示“或”。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图4中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图4为本申请实施例提供的通信方法所适用的一种通信系统的架构示意图。
如图4所示,该通信系统包括:终端和网络设备。
上述终端为接入上述通信系统,且具有无线收发功能的终端或可设置于该终端的芯片或芯片系统。该终端也可以称为用户装置(uesr equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动站(mobile station,MS)、移动台、远方站、 远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、蜂窝电话(cellular phone)、智能电话(smart phone)、平板电脑(Pad)、无线数据卡、个人数字助理电脑(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。本申请的终端还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元。
其中,上述网络设备可以有多个,为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。该网络设备可以包括:5G,比如NR系统中的gNB,或,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB、传输点(transmission and reception point,TRP或者transmission point,TP)或传输测量功能(transmission measurement function,TMF)的网络节点,如基带单元(BBU),或,中心单元(central unit,CU)、分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU),或者有线接入网关等。此外,在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同,例如全球移动通信系统(global system for mobile communication,GSM)或码分多址(dode division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。此外,网络设备也可以包括无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),无线中继节点、无线回传节点、各种形式的宏基站、微基站(也称为小站)、中继站、接入点、可穿戴设备、车载设备等等。
图5所示的通信系统中网络设备和终端之间的通信还可以用另一种形式来表示,如图5所示,终端51包括处理器501、存储器502和收发器503,收发器503包括发射机5031、接收机5032和天线5033。网络设备52包括处理器510、存储器520和收发器530,收发器530包括发射机5310、接收机5320和天线5330。其中,接收机5032可以用于通过天线5033接收下行信号,发射机5031可以用于通过天线5033向网络设备52发送上行信号。发射机5310可以用于通过天线5330向终端51发送下行信号,接收机5320可以用于通过天线5330接收终端设备51发送的上行信号。
下面将结合图6-图8对本申请实施例提供的通信方法进行具体阐述。
示例性地,图6为本申请实施例提供的通信方法的流程示意图一。该通信方法可以适用于图4所示的网络架构中的任意两个节点,例如终端与网络设备之间的通信。如图6所示,该通信方法包括:S601、S602和S603。
S601,网络设备向终端发送配置信息。相应的,终端接收来自网络设备的配置信息。
其中,配置信息承载在RRC消息,或者其他任何可能的消息中。配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量。其中,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。也就是说,TA偏移量与TAG可以是一一对应,或者,TA偏移量与TAG可以是一对多对应。
具体的,配置信息可以包括N个TAG和N个TA偏移量,两者可以一一对应,N为大于1的整数。一种对应方式中,N个TAG和N个TA偏移量可以是顺序对应,即N个TA偏移量中TA索引第i大的TA偏移量对应N个TAG中索引第i大的TAG,或者,N个TA偏移量中TA索引第i小的TA偏移量对应N个TAG中索引第i小的TAG。示例性地,例如图7中的(a)所示,TA偏移量0对应TAG0,TA偏移量1对应TAG1,以此类推,TA偏移量N-2对TAGN-2,TA偏移量N-1对应TAGN-1。另一种对应方式中,N个TAG和N个TA偏移量可以是倒序对应,即N个TA偏移量中TA索引第i小的TA偏移量对应N个TAG中索引第i大的TAG,或者,N个TA偏移量中TA索引第i大的TA偏移量对应N个TAG中索引第i小的TAG。例如图7中的(b)所示,TA偏移量0对应TAGN-1,TA偏移量1对应TAGN-2,以此类推,TA偏移量N-2对应TAG1,TA偏移量N-1对应TAG0。此外,TAG或TA偏移量的索引可以从0开始编号,也可以从其他任意数字,比如从1开始编号,对此不限定。又一种对应方式中,N个TAG和N个TA可以按照各自的配置顺序进行对应,例如第i个TAG对应第i个TA偏移量,或者索引第i小的TAG对应第i个TA偏移量,对此不限定。
或者,配置信息可以包括M个TAG和N个TA偏移量,N个TA偏移量中的第i个TA偏移量对应M个TAG中的m个TAG,N和M为大于1的整数,i为1至N之间任意取值的整数,m为正整数。示例性地,例如TA偏移量0{TAG0,TAG1,TAG2},TA偏移量1{TAG1,TAG2},TA偏移量2{TAG2,TAG3}等等。又例如TA偏移量0{TAG0},TA偏移量1{TAG1,TAG2},TA偏移量2{TAG2,TAG3}等等。
需要指出的是,在上述配置信息中,TAG可以为全局索引(或者说TAG的索引为全局索引),或者该TAG也可以为局部索引(或者说TAG的索引为局部索引)。全局索引是指该TAG为所有小区对应的所有TAG中的某个TAG。该所有小区可以是网络设备为终端配置的所有小区。局部索引是指该TAG为特定小区对应的多个TAG中的某个TAG。该特定小区可以是发送该配置信息的小区。此外,TAG与TA偏移量之间的对应关系并不限于上述介绍的对应关系,也可以是一个TAG对应多个TA偏移量,本申请对此不做任何限定。
可选地,终端可以向网络设备发送随机接入请求(random access request,RAR)消息,该随机接入请求消息可用于请求特定TAG对应的TA初始值。网络设备可以向终端发送随机接入响应(random access response,RAR)消息,该随机接入响应消息可包括特定TAG的TA初始值。相应的,终端可以接收来自网络设备的RAR消息。
其中,该RAR消息可以包括多个TAG中的某一个TAG的相关信息,比如该TAG 的索引,以及该TAG对应的一个TA初始值。以第一TAG为例,RAR消息包括第一TAG,比如第一TAG的索引,以及第一TAG对应的TA初始值,比如第一TA初始值。RAR消息的帧格式的一种示例如下表1所示。
表1
Figure PCTCN2022115966-appb-000001
其中,第一TA初始值可以由RAR消息中的一些字段,比如表1中的时间提前量命令(timing advance command)字段指示,该时间提前量命令字段有多个比特(bit),比如12个比特,以通过多个比特指示该第一TA初始值的各种取值。其中,第一TAG可以由RAR消息中的另一些字段,比如表1中的预留字段(R字段)指示,以便终端能够根据RAR消息中的预留字段,确定RAR消息中的TA初始值为第一TAG对应的第一TA初始值。其中,该预留字段可以是一个比特,以通过该比特的取值为0或1对应指示2个TAG。比如,该比特的取值为0指示第一TAG,该比特的取值为1指示其他TAG,比如第二TAG;或者,该比特的取值为1指示第一TAG,该比特的取值为0指示第二TAG。若要指示比2个更多的TAG,则可以采用预留字段和其他字段联合指示实现,比如,可以利用时间提前量命令字段中的冗余比特,这些冗余比特与预留字段联合指示比2个更多的TAG。第一TAG也可以由RAR消息中的其他任何可能的字段指示,本申请对此不做任何限定。例如,也可以通过随机接入响应消息中现有的字段的部分或全部比特来指示第一TAG。具体的,可以将随机接入消息中的temporary C-RNTI字段的部分或全部比特作为上述字段,即用于指示该随机接入响应消息包含的TA是否为第一小区的TA。可选地,当第一条件满足时,才可以将随机接入响应消息中当前已经存在的字段的部分或全部比特用于指示第一TAG。第一条件至少包括:随机接入响应消息对应的随机接入前导码为免竞争随机接入前导码。在RAR消息中,第一TAG可以为局部索引(或者说第一TAG的索引为局部索引),或者第一TAG也可以为全局索引(或者说第一TAG的索引为全局索引)。全局索引是指第一TAG为所有小区对应的所有TAG中的某个TAG。所有小区可以是网络设备为终端配置的所有服务小区。局部索引是指第一TAG为特定小区对应的多个TAG中的某个TAG。特定小区可以是发送该RAR消息的小区。请注意,上述表格中第一行仅用于表示比特的对应方式,不属于RAR消息中的内容,即上述RAR消息的内容是从上述表格的第二行开始的。
RAR消息中也可以只包括时间提前量命令字段,而不包含TAG指示字段。这种情况下,可以通过该RAR消息对应的SSB,确定该RAR中的时间提前量命令字段所指示的TA初始值是对应哪个TAG。
在一种实现中,可以将一个小区中的每个SSB与一个TAG关联起来,或者将一个小区中的SSB分为多个组,每个SSB组与一个TAG关联起来。SSB的分组可以由网络设备向终端指示,如通过RRC配置消息向终端发送SSB的分组。SSB与TAG的关联关系可以由网络设备向终端指示,如通过RRC配置消息向终端发送SSB与TAG的关联关系。SSB的分组与TAG的关联关系可以由网络设备向终端指示,如通过RRC配置消息向终端发送SB的分组与TAG的关联关系,或者也可以是协议规定的规则,如第i个SSB分组关联第i个TAG,或第i个SSB分组关联索引第i小或第i大的TAG。终端可根据RAR消息对应的SSB,确定该RAR中指示的TA初始值对应的TAG。例如,终端可以确定RAR消息对应的SSB,然后确定该SSB关联的TAG,或确定该SSB所属的SSB分组关联的TAG,该TAG即为该RAR中指示的TA初始值对应的TAG。RAR消息对应的SSB可以具体是指RAR消息对应的随机接入请求消息关联的SSB。每个随机接入请求消息可以关联一个SSB。随机接入请求消息关联的SSB可以通过DCI信令指示。例如,网络设备可以向终端发送DCI消息给,该DCI用于指示终端向网络设备发送随机接入请求消息,该DCI中包括随机接入请求消息关联的SSB的信息。
根据上述RAR消息的介绍可知,一条RAR消息可以承载一个TAG对应的一个TA初始值,如果网络设备想要为终端配置多个TA初始值,则可以向终端发送多条RAR消息。网络设备向终端发送多条RAR消息与网络设备向终端发送配置信息,即S601的顺序不限定。网络设备可以在S601之前向终端发送多条RAR消息,也可以在S601之后向终端发送多条RAR消息,还可以在S601之前向终端发送一部分RAR消息,在S601之后再向终端发送另一部分RAR消息。需要指出的是,网络设备在S601之前向终端发送一条RAR消息,由于终端还未通过配置信息获知对应的TAG,使得终端不能理解RAR消息中TAG的含义,即上述预留字段的含义,因此终端可以默认该RAR消息中的TA初始值是某一个TAG,比如第一TAG对应的第一TA初始值。也就是说,无论网络设备在RAR消息中包括哪一个TA初始值,终端都将其认为是第一TAG对应的第一TA初始值。这种情况下,为避免配置出错,网络设备应当与终端对齐,即网络设备应当在该RAR消息中承载该终端默认的TA初始值。换句话说,终端设备这时默认上述指示TAG的字段的值为0。或者,终端设备在这时忽略上述指示TAG的字段的取值。此外,如果网络设备在S601之前向终端发送多条RAR消息,则终端可以按照多条RAR消息的接收顺序,将每条RAR消息各中的TA初始值默认为对应的TA初始值。比如,对于第一条接收的RAR消息,终端默认该RAR消息中的TA初始值是第一TAG对应的第一TA初始值;对于第二条接收的RAR消息,终端默认该RAR消息中的TA初始值是第二TAG对应的第二TA初始值,然后依次类推。这种情况下,为避免配置出错,网络设备应当按照终端的理解顺序,依次在各条RAR消息中承载对应的TA初始值。此外,网络设备在向终端发送上述RAR消息之前,还可以接收来自终端的随机接入请求(random access request)消息。
对于终端而言,终端可以根据每个TAG对应的一个TA初始值,以及每个TAG对应的一个TA偏移值,确定每个TAG对应的一个TA,比如该TA的取值,也即网络设备的一个小区对应的多个TA各自的取值。例如,终端可以根据第一TAG对应的TA初始值,比如第一TA初始值,以及第一TAG对应的TA偏移量,比如第一TA偏 移量,确定第一TAG对应的一个TA,比如第一TA或者其他TA。示例性地,假设TAG0{TA偏移量0},TAG0{TA初始值0},终端确定TAG0{TA0的TA取值}=TAG0{TA偏移量0+TA初始值0};假设TAG1{TA偏移量1},TAG1{TA初始值1},终端确定TAG1{TA1的TA取值}=TAG1{TA偏移量1+TA初始值1}等等。应理解,配置信息包括多个TAG中每个TAG对应的一个TA初始值仅为一种示例,配置信息也可以不包括这些TA初始值,即多个TAG中每个TAG对应的一个TA初始值可以预先配置在终端本地,本申请对此不做任何限定。此外,TA初始值和TA偏移量的具体原理也可以参考上述“5、TA和TAG”中的相关介绍,不再赘述。
可以看出,网络设备通过为终端配置TAG对应的TA偏移量和TA初始值,使得终端可以确定每个TAG对应的TA,这样,即便网络设备只指示TAG,终端根据TAG也能够确定对应的TA或者TAG,从而实现上行同步。此外,终端确定对应的TA或者TAG可以参考下述S602中的相关介绍。
S602,终端确定第一TA或第一TAG。
其中,该第一TA为上行信号传输对应的TA,该第一TAG为上行信号传输对应的TAG。
S603,终端根据第一TA或第一TAG,向网络设备发送对应的上行信号。相应的,网络设备接收来自终端的上行信号。
其中,终端可以根据第一TA或第一TAG,确定对应的TA取值,从而根据该TA取值向网络设备发送对应的上行信号,以便网络设备在上行时隙起始时间接收到该上行信号。此外,在一个TAG,比如第一TAG对应多个TA的情况下,上行传输采用的TA是该多个TA中的一个。具体采用上述TA中的哪一个,可以根据上行传输对应的其他信息来确定。该其他信息如下一项或多项:终端发送波束、终端天线面板、波束参考信号、路损参考信号、TA参考信号、收发节点(transmitting and reception point,TRP)索引、CORESET组索引、波束失败检测资源组索引、或新波束识别资源组索引等,本申请对此不做任何限制。
下面介绍上述S602的具体实现。
其中,第一TA为网络设备的一个小区对应的上述多个TA中的一个,第一TAG为网络设备的一个小区对应的上述多个TAG中的一个。第一TA或第一TAG用于指示终端的上行传输,即终端需要根据第一TA或第一TAG,向网络设备发送对应的上行信号,该上行信号可以包括如下一项或多项:SRS、PUSCH、或PUCCH。SRS可以是如下一种或多种:类型为码本(codebook)的SRS、类型为非码本(nonCodebook)的SRS、类型为波束管理(beamManagement)的SRS、类型为天线切换(antennaSwitch)的SRS、周期性的SRS、半静态的SRS、或者非周期的SRS。此外,上述SRS也可以是上述多种的组合,比如,上述SRS可以既是类型为码本的SRS,又是周期性的SRS,即类型为码本的周期性SRS;再比如,上述SRS可以既是类型为非码本的SRS,又是半静态的SRS,即类型为非码本的半静态SRS;又比如,上述SRS可以既是类型为波束管理的SRS,又是非周期的SRS,即类型为波束管理的非周期SRS。终端可以通过显式指示或者隐式指示的方式确定第一TA或第一TAG。
方式1,显示指示:
其中,显示指示是指第一TA或第一TAG可以根据第一信息确定,第一信息用于指示上行信号对应的第一TA或第一TAG。例如,第一信息用于指示第一TAG的索引。也就是说,网络设备可以根据实际情况,通过第一信息指示当前所需的TA或TAG,以实现更灵活的TA或TAG选择,所选的TA或TAG与终端的上行传输距离更匹配,上行传输更稳定。第一信息可以承载在如下一项或多项中:RRC消息、媒体接入控制-控制单元(medium access control-control element,MAC-CE)消息、DCI消息、空间关系、TCI状态、功控参数集,或QCL信息(QCL-info),下面结合上行信号具体介绍。
A)上行信号为SRS,第一信息承载在如下一项或多项中:RRC消息、MAC-CE消息、或DCI消息。
其中,第一信息承载在RRC消息中,第一信息可以与RRC消息中的SRS资源集合(resource set)对应,比如网络设备可以为RRC消息中的SRS资源集合配置对应的第一TA或第一TAG,即配置第一信息,用以指示SRS资源集合对应的所有SRS都需要使用第一信息指示的第一TA或第一TAG发送。示例性地,例如配置TA1{SRS1,SRS2,SRS3},或者TAG1{SRS1,SRS2,SRS3},用以指示SRS1、SRS2和SRS3都需要使用TA1或者TAG1发送。或者,第一信息可以与RRC消息中的SRS资源(resource)对应,比如网络设备可以为RRC消息中的SRS资源配置对应的第一TA或第一TAG,用以指示SRS资源对应的SRS需要使用第一信息指示的第一TA或第一TAG发送。示例性地,例如配置TA1{SRS1},或者TAG1{SRS1},用以指示SRS1需要使用TA1或者TAG1发送。这种情况下,若要指示多个SRS都使用同一TA或TAG发送,则网络设备可以为多个SRS各自的SRS资源都配置同一TA或TAG,比如配置第一TA或第一TAG。示例性地,例如配置TAG1{SRS1},TAG1{SRS2},TAG1{SRS3},用以指示SRS1、SRS2和SRS3都需要使用TAG1发送。当然,网络设备也可以为多个SRS的多个SRS资源分别配置不同TA或TAG,对此不限定。可以看出,网络设备可以采用不同的配置粒度来指示SRS对应的TA或TAG,比如采用SRS资源的集合配置粒度可以更方便地指示SRS对应的TA或TAG,采用SRS资源的配置粒度可以更灵活地指示SRS对应的TA或TAG。
其中,第一信息承载在MAC-CE消息中,该MAC-CE消息可以是用于激活SRS的空间关系的MAC-CE消息(记为MAC-CE消息1)。也就是说,MAC-CE消息1可以指示该SRS的发送波束。MAC-CE消息1的帧格式的一种示例如下表2所示。
表2
Figure PCTCN2022115966-appb-000002
Figure PCTCN2022115966-appb-000003
如表2所示,第一信息可以是MAC-CE消息1中的一些字段,比如R1字段和/或R2字段。在一些指示方式中,可以通过一个字段,或者说单个比特,如R1字段或R2字段,指示第一TA或第一TAG。例如,通过R1字段指示特定小区的2个TAG中的一个TAG。或者,通过R2字段指示特定小区的2个TAG中的一个TAG。在另一些指示方式中,可以通过多个字段,或者说多个比特指示第一TA或第一TAG。例如,R1字段和R2字段组成的2个比特用于指示一个TAG,比如指示特定小区对应的TAG中的一个TAG,或者所有小区对应的所有TAG中的一个TAG。上述特定小区具体是指发送该MAC CE消息1的小区,或上述MAC CE消息1中指示的小区,如SRS Resource Set’s Cell ID字段指示的小区,或终端所在的小区。应理解,除了采用上述MAC-CE消息1,也可以采用其他MAC-CE消息来指示TA或TAG,具体方法和上述介绍的方法相同,即采用一个或多个比特指示特定小区的多个TAG中的一个,或采用一个或多个比特指示所有小区对应的多个TAG中的一个。上述特定小区可以是发送上述MAC-CE消息1的小区,也可以是其他小区,如上述MAC-CE消息1中指示的小区。注意,上述表格中第一行仅用于表示比特的对应方式,不属于MAC-CE消息1中的内容,即上述MAC-CE消息1的内容是从上述表格的第二行开始的。
其中,第一信息承载在DCI消息中,比如可以是DCI消息中的一个DCI字段,比如第一DCI字段。在第一DCI字段中,第一TAG可以为全局索引,或者也可以为局部索引。全局索引是指第一TAG为所有小区对应的所有TAG中的某个TAG。所有小区可以是网络设备为终端配置的所有小区。局部索引是指第一TAG为特定小区对应的多个TAG中的某个TAG。该特定小区可以是发送该DCI消息的小区,即本小区,或者也可以是其他小区,以实现跨小区调度。该其他小区具体是哪个小区可以通过DCI中的一个字段指示,比如carrier ID,或者其他任何可能的字段,本申请对此不做任何限定。此外,该第一DCI字段的指示原理与上述MAC-CE消息1的指示原理类似,可以参考理解,不再赘述。
需要指出的是,在上行信号为SRS的情况,第一信息承载在RRC消息、MAC-CE消息、或DCI消息中仅为一种示例性,不作为限定,第一信息还可以承载在空间关系、TCI状态、功控参数集,或QCL信息中,具体实现可以参考下述“D)”中的相关介绍,此处不予赘述。
B)上行信号为PUCCH,第一信息承载在如下一项或多项中:RRC消息、或MAC-CE消息。
其中,第一信息承载在RRC消息中,第一信息可以与RRC消息中的一组PUCCH对应,或者说与PUCCH集合对应。比如,网络设备可以为RRC消息中的一组PUCCH配置对应的第一TA或第一TAG,即第一信息,用以指示这一组PUCCH都需要使用第一信息指示的第一TA或第一TAG发送。示例性地,例如配置 TA1{PUCCH1,PUCCH2,PUCCH3},或者TAG1{PUCCH1,PUCCH2,PUCCH3},用以指示PUCCH1、PUCCH2和PUCCH3都需要使用TA1或者TAG1发送。或者,第一信息可以与RRC消息中的单个PUCCH对应。比如,网络设备可以为RRC消息中的每个PUCCH配置对应的第一TA或第一TAG,用以指示该PUCCH需要使用第一信息指示的第一TA或第一TAG发送。示例性地,例如配置TA1{PUCCH1},或者TAG1{PUCCH1},用以指示PUCCH 1需要使用TA1或者TAG1发送。这种情况下,若要指示多个PUCCH都使用同一TA或TAG发送,则网络设备可以为多个PUCCH配置同一TA或TAG,比如配置第一TA或第一TAG。示例性地,例如配置TAG1{PUCCH1},TAG1{PUCCH2},TAG1{PUCCH3},用以指示PUCCH1、PUCCH2和PUCCH3都需要使用TAG1发送。当然,网络设备也可以为多个PUCCH分别配置不同TA或TAG,对此不限定。可以看出,网络设备可以采用不同的配置粒度来指示PUCCH对应的TA或TAG,比如采用PUCCH集合配置粒度可以更方便地指示PUCCH对应的TA或TAG,采用单个PUCCH配置粒度可以更灵活地指示PUCCH对应的TA或TAG。
其中,第一信息承载在MAC-CE消息中,该MAC-CE消息可以是用于激活PUCCH的空间关系的MAC-CE消息(记为MAC-CE消息2)。也就是说,该MAC CE2消息可以指示该PUCCH的发送波束。MAC-CE消息2的帧格式的一种示例如下表3所示。
表3
Figure PCTCN2022115966-appb-000004
如表3所示,第一信息可以是MAC-CE消息2中的一些字段,比如包括R3字段和/或R4字段。在一些指示方式中,可以通过单个字段,或者说单个比特,如R3字段或R4字段,指示第一TA或第一TAG。例如,通过R3字段指示特定小区的2个TAG中的一个TAG。或者,通过R4字段指示特定小区的2个TAG中的一个TAG。在另一些指示方式中,可以通过多个字段,或者说多个比特指示第一TA或第一TAG。例如,R3字段和R4字段组成的2个比特用于指示一个TAG,比如指示特定小区对应的TAG中的一个TAG,或者指示所有小区对应的所有TAG中的一个TAG。上述特定小区具体是指发送该MAC-CE消息2的小区,或上述MAC-CE消息2指示的小区,如Serving Cell ID字段指示的小区,或终端所在的小区。应理解,除了采用上述MAC-CE消息2,也可以采用其他MAC-CE消息来指示TA或TAG,具体方法和上述介绍的方法相同,即采用一个或多个比特指示特定小区的多个TAG中的一个,或采用一个或多个比特指示所有小区对应的多个TAG中的一个。上述特定小区可以是发送上述MAC-CE消息2的小区,也可以是其他小区,如上述MAC-CE消息2中指示的小区。注意,上述表格中第一行仅用于表示比特的对应方式,不属于MAC-CE消息2中的内容,即上述MAC-CE消息2的内容是从上述表格的第二行开始的。
需要指出的是,在上行信号为PUCCH的情况,第一信息承载在RRC消息、MAC-CE消息中仅为一种示例性,不作为限定,第一信息还可以承载在DCI消息、空间关系、 TCI状态、功控参数集,或QCL信息中。如果第一信息承载在DCI消息中,则该PUCCH为用于该DCI消息指示的PDSCH或下行测量对应的PUCCH。换句话说,DCI调度PDSCH时,该DCI用于指示反馈该PDSCH对应的HARQ结果的PUCCH的TA或TAG。或者,DCI触发下行测量时,该DCI用于指示反馈该下行测量对应的测量结果的PUCCH的TA或TAG。
第一信息承载在空间关系、TCI状态、或QCL信息中的具体实现可以参考下述“D)”中的相关介绍,此处不予赘述。
C)上行信号为PUSCH,第一信息承载在DCI消息中。
其中,该DCI消息可以是调度PUSCH的DCI消息,第一信息可以是该DCI消息中的一个DCI字段,比如第二DCI字段,该第二DCI字段可以是一个或多个比特,通过该一个或多个比特指示第一TA或第一TAG。与第一DCI字段类似,在第二DCI字段中,第一TAG可以为全局索引,或者也可以为局部索引。该全局索引用于指示第一TAG为所有小区对应的所有TAG中的某个TAG。所有小区可以是网络设备为终端配置的所有小区。该局部索引用于指示第一TAG为特定小区对应的多个TAG中的某个TAG。该特定小区可以是发送该DCI消息的小区,即本小区,也可以是其他小区,以实现跨小区调度。该其他小区具体是哪个小区可以通过DCI中的一个字段指示,比如carrier ID,或者其他任何可能的字段,本申请对此不做任何限定。此外,该第二DCI字段的指示原理与上述MAC-CE消息1或MAC-CE消息2的指示原理类似,可以参考理解,不再赘述。
需要指出的是,在上行信号为PUSCH的情况,第一信息承载在DCI消息中仅为一种示例性,不作为限定,第一信息还可以承载在RRC消息、MAC-CE消息、空间关系、TCI状态、或QCL信息中。其中,第一信息承载在空间关系、TCI状态、或QCL信息中的具体实现可以参考下述“D)”中的相关介绍,此处不予赘述。
D)上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH,第一信息承载在空间关系、TCI状态、功控参数集、或QCL信息中。
其中,空间关系、TCI状态、或QCL信息用于指示上行信号的发送波束,换句话说,终端需要使用空间关系、TCI状态、或QCL信息中指示的发送波束发送上行信号。这种情况下,如果将第一信息承载在空间关系、TCI状态、或QCL信息中,则表示终端需要使用该发送波束以及第一TA或第一TAG发送上行信号,以实现将发送波束,与第一TA或第一TAG一并指示,如此可以减少信令开销,提高通信效率。具体的,第一信息可以是空间关系、TCI状态、或QCL信息中某个字段,该字段可以包括多个比特,以通过多个比特中的单个比特的取值,或者多个比特的取值组合指示第一TA或第一TAG。其中,该多个比特指示的第一TAG可以为全局索引,或者也可以为局部索引。全局索引是指第一TAG为所有小区对应的所有TAG中的某个TAG。所有小区可以是网络设备为终端配置的所有小区。局部索引是指第一TAG为特定小区对应的多个TAG中的某个TAG。特定小区可以是发送空间关系、TCI状态、或QCL信息的小区,即本小区,或者也可以是其他小区,以实现跨小区调度。该其他小区具体是哪个小区可以通过空间关系、TCI状态、或QCL信息中的字段指示,本申请对此不做任何限定。此外,该多个比特的指示原理与上述MAC-CE消息1或MAC-CE消息2的 指示原理类似,可以参考理解,不再赘述。该空间关系、TCI状态以及QCL信息的具体实现,可以参考下述“a)QCL信息实现”和“b)空间关系实现”中的相关介绍,在此不予赘述。
其中,功控参数集是用于计算上述上行信号的发送功率的参数集合,其中包括路损参考资源等。通过将第一信息承载在功控参数集中,可以实现功控参数与第一TA或第一TAG的指示,减少信令开销,提高通信效率。
需要指出的是,在上述介绍中,对于采用上述单个比特指示的方式,还是多个比特指示的方式,网络设备可以灵活选择,比如,如果TA或TAG的数量较少,则采用单个比特指示的方式,以灵活指示每个TA或TAG;如果TA或TAG的数量较多,则采用多个比特指示的方式,以指示更多的TA或TAG,对此本申请不做任何限定。此外,第一信息不仅可以指示网络设备自身小区对应的TA或TAG,还可以指示其他网络设备的小区对应的TA或TAG,以实现跨小区调度。比如,网络设备可以在MAC-CE消息1的SRS资源集合对应的小区标识字段中,或者可以在MAC-CE消息2的服务小区标识字段中,携带其他网络设备的小区标识,以指示位于其他网络设备的小区内的终端需要使用对应的TA或TAG发送上行信号。
方式2,隐式指示:
其中,隐式指示是指第一TA或第一TAG可以根据第一信号确定,例如,采用第一信号对应的TA或TAG来作为第一TA或第一TAG。第一信号可以为上行信号的空间关系参考信号,即通过确定空间关系的参考信号来确定第一TA或第一TAG。空间关系也可以理解为发送波束,空间滤波器等,具体见前文描述。第一信号可以为上行信号对应的SSB、空间关系参考信号或路损参考信号,即通过确定路损的参考信号来确定第一TA或第一TAG。第一信号也可以是专门用于确定TA或TAG的参考信号,本申请称为TA参考信号。第一信号可以包括如下一项或多项:SRS、SSB、CSI-RS、TRS、PDCCH、PDSCH、PUCCH或PUSCH。为了通过第一信号确定第一TA或第一TAG,可以在第一信号与TA或TAG之间建立关联关系。例如,可以通过RRC配置SSB或SRS与TAG之间的关联关系,这样只要向终端设备指示一个SSB或SRS作为第一信号,终端设备就可以采用该SSB或SRS对应的TA或TAG来进行上行传输。除了SSB以外,上述提到的其他类型的信号也可以通过上述方法与TA或TAG建立关联关系。除了RRC配置以外,还可以通过其他信令来指示第一信号与TAG之间的关联关系,如MAC-CE消息或DCI消息。
上述CSI-RS可以是如下一种或多种:配置了重复接收(repetition)参数的CSI-RS资源集中的CSI-RS、配置了TRS信息(trs-info参数)的CSI-RS资源集中的CSI-RS、既未配置重复接收参数又未配置TRS信息参数的CSI-RS资源集中的CSI-RS、周期性的CSI-RS,半静态的CSI-RS、或非周期的CSI-RS。此外,上述CSI-RS也可以是上述多种的组合,比如,上述CSI-RS可以既是配置了重复接收参数的CSI-RS资源集中的CSI-RS,又是周期性的CSI-RS,即配置了重复接收参数的CSI-RS资源集中的周期性CSI-RS;又比如,上述CSI-RS可以既是配置了重复接收参数的CSI-RS资源集中的CSI-RS,又是半静态的CSI-RS,即配置了重复接收参数的CSI-RS资源集中的半静态CSI-RS;再比如,上述CSI-RS可以既是配置了TRS信息的CSI-RS资源集中的CSI-RS, 又是周期性的CSI-RS,即配置了TRS信息的CSI-RS资源集中的周期性CSI-RS等等。
可以看出,终端可以根据信号之间的空间关系自行确定上行信号对应的第一TA或第一TAG,无需网络设备额外指示第一TA或第一TAG,如此可以减少网络设备与终端之间的交互次数,以节约通信开销,提高通信效率。
其中,隐式指示可以通过QCL信息、空间关系和波束参考关系实现,下面分别介绍。
a)QCL信息实现:
其中,网络设备可以向终端发送第二信息。相应的,终端接收来自网络设备的第二信息。该第二信息可以用于指示第一信号。具体的,第二信息可以为QCL信息。该QCL信息包括参考信号资源,即第一信号,承载在TCI状态中。该QCL信息的类型可以为以下一项或多项:类型A(typeA)、类型B(typeB)、类型C(typeC)、类型D(typeD)、类型E(typeE)、类型F(typeF)、或类型G(typeG)。其中,TCI状态是一个信息结构,其中包括波束相关的信息,比如TCI自身的索引(tci-StateId),以及多个QCL信息,比如2个QCL信息,每个QCL信息包括一个参考信号(reference signal)资源,比如第一信号,以及该QCL信息的类型。这样,终端可以根据QCL信息的类型,确定上行传输需要采用第一信号对应的TA或TAG,比如第一TA或第一TAG,下面具体介绍。
在上行传输和下行传输中,类型A的QCL信息中的参考信号资源的含义是不同的。在上行传输中,类型A的QCL信息中的参考信号资源用于确定该上行传输采用的TA或TAG,即终端需要采用该类型A的QCL信息中的参考信号资源对应的TA或TAG来发送上行信号。在下行传输中,类型A的QCL信息中的参考信号资源用于确定下行信号的{多普勒频移,多普勒扩展,平均时延,时延扩展}。具体的,类型A的QCL信息中还可以包括指示信息(记为指示信息1),用于指示该类型A的QCL信息用于上行传输还是下行传输。如果指示信息1指示该类型A的QCL信息用于下行传输,则该类型A的QCL信息用于确定下行信号的{多普勒频移,多普勒扩展,平均时延,时延扩展}。如果指示信息1指示该类型A的QCL信息用于上行传输,则该类型A的QCL信息用于指示上行传输采用的TA或TAG,比如第一TA或第一TAG。换句话说,该类型A的QCL信息中的参考信号资源是被参考的对象,采用该类型A的QCL信息的上行传输,需要采用与类型A的QCL信息中的参考信号资源相同的TA或TAG。
与类型A的QCL信息类似,在上行传输和下行传输中,类型B的QCL信息中的参考信号资源的含义是不同的。在上行传输中,类型B的QCL信息中的参考信号资源用于确定该上行传输采用的TA或TAG,即终端需要采用该类型B的QCL信息中的参考信号资源对应的TA或TAG来发送上行信号。在下行传输中,类型B的QCL信息中的参考信号资源用于确定下行信号的{多普勒频移,多普勒扩展}。具体的,类型B的QCL信息中还可以包括指示信息(记为指示信息2),用于指示该类型B的QCL信息用于上行传输还是下行传输。如果指示信息2指示该类型B的QCL信息用于下行传输,则该类型B的QCL信息用于确定下行信号的{多普勒频移,多普勒扩展}。如果指示信息2指示该类型B的QCL信息用于上行传输,则该类型B的QCL信息用 于指示上行传输采用的TA或TAG,比如第一TA或第一TAG。换句话说,该类型B的QCL信息中的参考信号资源是被参考的对象,采用该类型B的QCL信息的上行传输,需要采用与类型B的QCL信息中的参考信号资源相同的TA或TAG。
与类型A的QCL信息类似,在上行传输和下行传输中,类型C的QCL信息中的参考信号资源的含义是不同的。在上行传输中,类型C的QCL信息中的参考信号资源用于确定该上行传输采用的TA或TAG,即终端需要采用该类型C的QCL信息中的参考信号资源对应的TA或TAG来发送上行信号。在下行传输中,类型C的QCL信息中的参考信号资源用于确定下行信号的{多普勒频移,平均时延}。具体的,类型C的QCL信息中还可以包括指示信息(记为指示信息3),用于指示该类型C的QCL信息用于上行传输还是下行传输。如果指示信息3指示该类型C的QCL信息用于下行传输,则该类型C的QCL信息用于确定下行信号的{多普勒频移,平均时延}。如果指示信息3指示该类型C的QCL信息用于上行传输,则该类型C的QCL信息用于指示传输采用的TA或TAG,比如第一TA或第一TAG。换句话说,该类型C的QCL信息中的参考信号资源是被参考的对象,采用该类型C的QCL信息的上行传输,需要采用与类型C的QCL信息中的参考信号资源相同的TA或TAG。
在上行传输中,类型D的QCL信息除了用于指示上行发送波束,还可以用于指示上行传输对应的TA或TAG。换句话说,该类型D的QCL信息中的参考信号资源是被参考的对象,采用该类型D的QCL信息的上行传输,需要采用与类型D的QCL信息中的参考信号资源相同的TA或TAG。
类型E或类型F的QCL信息是一种新的QCL信息类型,该类型E或类型F的QCL信息直接用于上行传输对应的TA或TAG,也即该类型E或类型F的QCL信息中的参考信号资源是被参考的对象,采用该类型E或类型F的QCL信息的上行传输,需要采用与类型E或类型F的QCL信息中的参考信号资源相同的TA或TAG。应理解,新的QCL信息类型为类型E或类型F只是为了方便描述而列举的一种示例,其还可以被替换为类型1、类型2、类型3等等,也可以被替换为类型H、类型G等等,本申请对此不做任何限定。
对于终端而言,终端配置有上述QCL信息中的参考信号资源与该参考信号资源对应的TA或TAG的关联关系,比如SSB与TA或TAG的关联关系、SRS与TA或TAG的关联关系,PUCCH与TA或TAG的关联关系、PUSCH与TA或TAG的关联关系等等,也即第一信号与TA或TAG的关联关系。其中,该TA可以是第一TA,该TAG可以是第一TAG,该关联关系也可以认为是第一信号与第一TA或第一TAG的关联关系。可选地,该关联关系可以承载在上述配置信息,或者其他任何可能的信息中,对此本申请不做任何限定。这样,终端可以根据该QCL信息的类型,确定上行传输需要采用与QCL信息中的参考信号资源相同的TA或TAG,即与第一信号相同的TA或TAG,从而根据该第一信号与第一TA或第一TAG的关联关系,确定出第一TA或第一TAG。
需要指出的是,上述关联关系对应的第一信号(记为第一信号1),与上行信号的空间关系参考信号对应的第一信号(记为第一信号2),可以是同一信号或者是不同信号。比如,该第一信号1是SRS1,第一信号2是SRS2,SRS1与SRS2是不同的 SRS,但SRS2的上行传输需要使用SRS1的发送波束,即SRS1是SRS2的空间关系参考信号,SRS1与SRS2之间具有波束参考关系。又比如,第一信号1是SSB,第一信号2是SRS,该SRS的上行传输需要使用SSB的接收波束,即SSB是SRS的空间关系参考信号,SSB与SRS之间具有波束参考关系。再比如,第一信号1是SRS,第一信号2是PUSCH,该PUSCH的上行传输需要使用SRS的发送波束,即SRS是PUSCH的空间关系参考信号,SRS与PUSCH之间具有波束参考关系。可以看出,在第一信号1与第一信号2是不同信号的情况下,第一信号1与第一信号2之间满足波束参考关系即可,波束参考关系的具体实现可以参考下述“c)波束参考关系实现”中的相关介绍,在此不予赘述。
b)空间关系实现:
与TCI状态的实现类似,第二信息可以是空间关系。第一信号可以是空间关系中的空间关系参考信号资源,即用于确定上行发送波束的参考信号资源。第一信号也可以是承载在空间关系中的专门用于指示TA或TAG的参考信号资源。
c)波束参考关系实现:
波束参考关系是指信号之间的波束参考关系,即一个信号的发送/接收波束需要参考另一个信号的发送/接收波束,或者说一个信号的发送/接收需要采用与另一个信号相同的发送/接收波束。具有波束参考关系的两个信号中,一个信号也可以被称为另一个信号的空间关系参考信号。信号之间的波束参考关系可以包括但不限于:上行信号之间的波束参考关系、下行信号之间的波束参考关系、以及上行信号与下行信号之间的波束参考关系。
上述上行信号之间的波束参考关系可以包括但不限于如下一项或多项:SRS之间的波束参考关系,比如SRS2的发送需要采用与SRS1相同的发送波束、PUCCH之间的波束参考关系,比如PUCCH2的发送需要采用与PUCCH1相同的发送波束、PUSCH之间的波束参考关系,比如PUSCH2的发送需要采用与PUSCH1相同的发送波束、SRS与PUCCH之间的波束参考关系,比如PUCCH的发送需要采用与SRS相同的发送波束、SRS与PUSCH之间的波束参考关系,比如PUSCH的发送需要采用与SRS相同的发送波束、PUCCH与PUSCH之间的波束参考关系,比如PUCCH的发送需要采用与PUSCH相同的发送波束,或者PUSCH的发送需要采用与PUCCH相同的发送波束。
上述下行信号之间的波束参考关系可以包括但不限于如下一项或多项:SSB分别与CSI-RS或TRS之间的波束参考关系,比如CSI-RS或TRS的接收需要采用与SSB相同的接收波束、CSI-RS分别与PDCCH或PDSCH之间的波束参考关系,比如PDCCH或PDSCH的接收需要采用与CSI-RS相同的接收波束、TRS分别与PDCCH或PDSCH之间的波束参考关系,比如PDCCH或PDSCH的接收需要采用与TRS相同的接收波束、或PDCCH与PDSCH之间的波束参考关系,比如PDCCH的接收需要采用与PDSCH相同的接收波束,或者PDSCH的接收需要采用与PDCCH相同的接收波束。可以看出,下行信号的波束参考关系具有一定的层级关系,其最终都是参考SSB的接收波束,即SSB是下行信号的参考源头。
上述上行信号与下行信号之间的波束参考关系可以包括但不限于如下一项或多项:SRS与下行信号之间的波束参考关系、PUSCH与下行信号之间的波束参考关系、或者 PUCCH与下行信号之间的波束参考关系。也就是说,下行信号的如下一项或多项的接收波束可以反过来作为SRS的发送波束:SSB、CSI-RS、TRS、PDCCH、或PDSCH。
对于终端而言,终端预先配置有信号之间的波束参考关系(包括上行信号的波束参考关系),终端可以根据上行信号的波束参考关系,确定上行信号的发送需要参考第一信号,从而确定上行信号的发送需要采用与该第一信号相同的发送波束。终端设备可以通过上述波束参考关系来确定第一TA或第一TAG。具体的,对于一个上行信号,其上行发送波束是根据哪个参考信号确定的,那么该上行信号的TA或TAG就根据该参考信号来确定。换句话说,如果一个上行信号的发送波束是根据一个参考信号来确定的,那么该上行信号采用该参考信号对应的TA或TAG来作为其上行发送采用的TA或TAG。
前文介绍了如何通过第一信号来确定TA或TAG。第一信号可以是空间关系参考信号,路损参考信号或TA参考信号中的一种。需要注意的是,当一个上行信号的对应的第一信号没有直接对应的TA或TAG,可以采用该第一信号关联的另一个信号对应的TA或TAG。所述另一个信号可以是该第一信号的空间关系参考信号,路损参考信号,定时参考信号,频偏参考信号或TA参考信号。下面以另一个信号为空间关系参考信号为例进行阐述,该原理同样适用于另一个信号为路损参考信号或TA参考信号的情况。例如,PUCCH采用一个SRS作为空间关系参考信号,该SRS没有对应的TA或TAG,那么采用该SRS的空间关系参考信号,例如一个CSI-RS,对应的TA或TAG。如果该CSI-RS也没有对应的TA或TAG,那么可以采用该CSI-RS对应的空间关系参考信号,例如一个SSB,对应的TA或TAG。也就是说,可以按照波束参考关系往前溯源,直到找到有对应TA或TAG的那一级参考信号,或者直接溯源到源头SSB,采用该SSB对应的TA或TAG。
应理解,本申请是以终端确定第一TA或第一TAG为例,终端也可以确定其他TA或TAG,例如第二TA或第二TAG,本申请对此不做任何限定。
综上,根据上述实施例提供的方法可知,在网络设备的一个小区对应多个站点的情况下,终端可以配置该小区对应的多个TA或多个TAG。这样,终端向网络设备的某个站点进行上行传输时,可以选择合适的TA或TAG,比如第一TA或第一TAG来发送对应的上行信号,以实现终端的上行传输能够与多个站点都同步,避免上行传输的性能损失。
可选地,结合上述实施例,在第一种可能的应用场景中,PUSCH传输采用多个TA或TAG。例如,调度PUSCH传输的DCI消息指示了多个TA或TAG,或者,调度PUSCH传输的DCI消息指示了多个SRS,比如2个SRS,每个SRS各自对应不同的TA或TAG,比如第一SRS对应的第一TA或第一TAG,第二SRS对应的第二TA或第二TAG。终端采用多个TA或TAG来进行PUSCH传输。具体如何采用多个TA或TAG进行PUSCH传输,取决于PUSCH的传输模式。如果PUSCH的传输模式为分时传输模型,则每个PUSCH的上行传输可以采用对应的一种TA或TAG。比如,分时传输PUSCH对应的两个TA或TAG的编号分为#1和#2。PUSCH分时传输采用的TA或TAG的顺序可以是{#1,#2,#1,#2,…},即交替采用两个TA或TAG进行PUSCH传输。上述各次传输对应的可以是同一PUSCH的相同或不同冗余版本,也可以是不 同PUSCH。如果PUSCH的传输模式为同时传输模型,则该PUSCH同时采用多个TA或TAG进行传输。
采用多个TA或TAG传输PUSCH时,该PUSCH对应的多个传输流中,每个传输流可以采用对应的TA或TAG。比如,一个PUSCH的传输流包括两个部分,分别是第一传输流和第二传输流,终端可以采用第一TA或第一TAG传输第一传输流,以及采用第二TA或第二TAG传输第二传输流。第一传输流和第二传输流都可以包括一个或多个传输流。PUSCH的传输流和TA或TAG的对应关系可以有以下几种方式。
方式一:按照解调参考信号(domodulation reference signal,DMRS)端口的码分多址(dode devision multiplexing,CDM)组进行划分。具体的,多个传输流对应多个DMRS端口,每个传输流对应一个DMRS端口。网络设备通过DCI指示PUSCH的DMRS端口。PUSCH的DMRS可以分为多个CDM组。传输流与多个TA或TAG的对应关系可以按照CDM组来划分,即不同CDM组对应不同的TA或TAG。这样,多个TA或TAG分别用于传输多个CDM组对应的传输流。可以规定,只有在特定条件下,才能采用多个TA或TAG同时传输PUSCH。该特定条件包括以下一项或多项的组合:传输流数大于X(X为整数,如X=1或X=2),CDM组数量大于Y(Y为整数,如Y=1)。
方式二:按照DMRS端口数量进行均分。PUSCH对应的多个DMRS端口均分为多组,每组对应一个TA或TAG。下面具体以两个TA或TAG为例进行阐述。当DMRS端口数无法均分时,例如DMRS端口数为奇数,无法均分为两组时,第一组可以比第二组多一个。即第一组DMRS的数量为N/2向上取整,N为DMRS端口数,剩余的端口为第二组。
方式三:前两个端口对应第一个TA或TAG,剩余端口对应第二个TA或TAG。
方式四:DCI直接指示对应两个TA或TAG的两组DMRS端口。通过DCI指示,终端设备可以直接确定两个TA或TAG对应的两组DMRS端口。这种方法要求只有在端口数大于2时才能采用多个TA或TAG。此外,也可以根据PUSCH的多个传输流与多个上行发送波束之间的对应关系,来确定PUSCH的多个传输流与多个TA或TAG的对应关系。每个TA或TAG与一个上行发送波束对应,该上行发送波束对应哪些传输流,那么与该上行发送波束对应的TA或TAG就对应哪些传输流。
可选地,结合上述实施例,在第二种可能的应用场景中,上行信号对应的第一TA或第一TAG可以由协议预定义。比如,第一TA或第一TAG可以如下一项或多项:终端所在小区对应的多个TAG中第一个/最后一个/索引最小/索引最大的TAG、终端所在小区对应的多个TAG中第一个/最后一个/索引最小/索引最大的TAG对的TA、终端所在小区的所有PUCCH中第一个/最后一个/索引最小/索引最大的PUCCH对应的TAG或TA、终端所在小区的所有PUSCH中第一个/最后一个/索引最小/索引最大的PUSCH对应的TAG或TA、终端所在小区的所有SRS集合中第一个/最后一个/索引最小/索引最大的SRS集合对应的TAG或TA、调度PUSCH的PDCCH对应的TAG或TA、调度PUSCH的PDCCH所在的CORESET组对应的TAG或TA、终端所在小区的CORESET组中第一个/最后一个/索引最小/索引最大的CORESET对应的TAG或TA、或者终端最近一次侦听到所有CORESET中第一个/最后一个/索引最小/索引最大的 CORESET对应的TAG或TA,对此本申请不做任何限定。其中,CORESET或者CORESET组对应的TAG或TA,是指承载该CORESET或者CORESET组的PDSCH对应的TAG或TA,或者也可以指该PDSCH参考的SSB对应的TAG或TA。
可选地,结合上述实施例,在第三种可能的应用场景中,上述显式指示与隐式指示可以结合实施,具体如下。
方式A,显式指示优先:
显式指示优先是指终端以显式指示的TA或TAG,比如第一信息指示的第一TA或第一TAG,作为发送上行信号所需的TA或TAG。也是就说,不论网络设备是否隐式指示终端,终端始终采用显式指示的TA或TAG来发送上行信号。此外,显式指示的具体实现可以参考上述“方式1,显示指示”中的相关介绍,在此不予赘述。
方式B,隐式指示优先:
隐式指示优先是指终端根据隐式指示确定TA或TAG,比如第一信号对应的第一TA或第一TAG,从而将该TA或TAG作为发送上行信号所需的TA或TAG。也是就说,不论网络设备是否显式指示终端,终端始终采用隐式指示对应的TA或TAG来发送上行信号。此外,隐式指示的具体实现可以参考上述“方式2,隐式指示”中的相关介绍,在此不予赘述。
方式C,兼容显式指示和隐式指示:
兼容显式指示和隐式指示是指终端既可以采用显式指示的TA或TAG来发送上行信号,也可以采用隐式指示对应的TA或TAG来发送上行信号。这种情况下,如果是针对同一上行信号,则显式指示的TA或TAG,与隐式指示对应的TA或TAG应当一致。如果针对不同的上行信号,则显式指示的TA或TAG,与隐式指示对应的TA或TAG可以一致,也可以不一致。示例性地,以TA为例,比如,终端可以使用显式指示的TA1发送SRS1,再使用隐式指示的TA2发送SRS2,TA1与TA2可以相同也可以不同。比如,终端可以使用显式指示的TA3发送SRS,再使用隐式指示的TA4发送PUSCH,TA3与TA4可以相同也可以不同。比如,终端可以使用显式指示的TA5发送PUSCH1,再使用隐式指示的TA6发送PUSCH2,TA5与TA6可以相同也可以不同。比如,终端可以使用显式指示的TA7发送PUSCH,再使用隐式指示的TA8发送PUCCH,TA7与TA8可以相同也可以不同。比如,终端可以使用显式指示的TA9发送PUCCH1,再使用隐式指示的TA10发送PUCCH2,TA9与TA10可以相同也可以不同。此外,针对不同的上行信号,任意两次显式指示的TA或TAG可以一致也可以不一致,任意两次隐式指示对应的TA或TAG可以一致也可以不一致,本申请对此不做任何不限定。显式指示和隐式指示的顺序不限,比如终端可以先根据显式指示发送上行信号,再根据隐式指示发送余下的上行信号,也可以先根据隐式指示发送上行信号,再根据显式指示发送余下的上行信号,或者显式指示和隐式指示还可以循环使用,本申请对此不做任何不限定。
可选地,结合上述实施例,在第四种可能的应用场景中,在S601之后,网络设备还可以更新上述多个TA中对应的TA取值,比如第一TA或第一TAG对应的TA取值。为方便理解,下面以第一TA或第一TAG为例进行介绍。具体的,随着终端的移动,终端与网络设备,也即终端与站点之间的距离随之变化,使得终端已有的TA取 值,比如第一TA或第一TAG对应的TA取值与当前的距离不匹配。因此,网络设备可以根据当前的距离,向终端发送该第一TA或第一TAG对应TA更新值,比如向终端发送指示信息,该指示信息携带有第一TA的索引或第一TAG的索引,以及该索引对应的TA更新值。这样,终端可以根据该第一TA的索引或第一TAG的索引,确定第一TA或第一TAG,从而根据该TA更新值,更新该第一TA或第一TAG对应的TA取值,使得更新的TA取值与当前的距离匹配。在此基础上,上述S603中第一TA或第一TAG对应的TA取值,可以是更新的TA取值,也可以是未更新的TA取值,本申请对此不做任何不限定。
以上结合图6介绍了本申请实施例提供的通信方法的整体流程,以下结合图8,详细说明图6所示的通信方法在具体应用场景下的流程。
示例性地,图8为本申请实施例提供的通信的流程示意图二。该通信方法可以适用于UE(上述终端)与无线接入网(radio access network,RAN)设备(上述网络设备)之间的通信。如图8所示,该通信方法可以包括如下步骤:
S801,RAN设备向UE发送RRC消息。相应的,UE接收来自RAN设备的RRC消息。
其中,该RRC消息包括上述配置信息。该配置信息包括下一项或多项:RAN设备的一个小区对应的多个TAG、或RAN设备的一个小区对应的多个TA偏移量。可选地,该配置信息还包括第一信号与第一TA或第一TAG的关联关系,第一TAG为多个TAG中的一个,第一TA为多个TA偏移量中的一个TA偏移量对应的一个TA。此外,S801的具体实现可以参考上述S601和S602中的相关介绍,在此不再赘述。
S802,RAN设备向UE发送RAR消息。相应的,UE接收来自RAN设备的RAR消息。
其中,RAR消息可以包括多个TAG中某一个TAG对应的一个TA初始值,具体实现可以参考上述S602中的相关介绍,在此不再赘述。此外,S802可以多次执行,且S801和S802的执行顺序不限定。
S803,RAN设备向UE发送MAC CE消息。相应的,UE接收来自RAN设备的MAC CE消息。
其中,该MAC CE消息包括多个TA中对应的TA更新值,具体实现可以参考上述第四种可能的应用场景中的相关介绍,在此不再赘述。此外,S803为可选步骤,即如果终端的移动,使得多个TA中对应的TA取值与终端与站点之间的距离不匹配,则可以执行S803,否则,可以不执行S803。
S804,RAN设备向UE发送第一信息或第二信息。相应的,UE接收来自RAN设备的第一信息或第二信息。
其中,第一信息的具体实现可以参考上述“方式1,显示指示”中的相关介绍,第二信息的具体实现可以参考上述“方式2,隐式指示”中的相关介绍,在此不再赘述。此外,S804为可选不再,即如果终端根据波束参考关系确定TA或TAG,则可以不执行S804,否则,执行S804。此外,S804的整体实现可以参考上述S602中的相关介绍,在此不再赘述。
S805,UE向RAN设备发送上行信号。相应的,RAN设备接收来自UE的上行信 号。
其中,UE可以根据确定出的TA或TAG对应的TA取值,向RAN设备发送上行信号,以便RAN设备在上行时隙起始时间接收到该上行信号。
以上结合图6-图8详细说明了本申请实施例提供的通信方法。以下结合图9-图11详细说明用于执行本申请实施例提供的通信方法的通信装置。
示例性地,图9是本申请实施例提供的通信装置的结构示意图一。如图9所示,通信装置900包括用于执行图6所示的方法中终端功能的模块,比如包括收发模块901和处理模块902。其中,收发模块901用于实现上述方法实施例中的收发功能,处理模块902用于实现上述方法实施例的处理功能。为了便于说明,图9仅示出了该通信装置的主要部件。
一些实施例中,该通信装置900可适用于图4或图5中所示出的通信系统中,执行图6中所示出的方法中终端的一些功能。
其中,处理模块902,用于确定第一定时提前TA或第一定时提前组TAG,以根据第一TA或第一TAG,控制收发模块901向网络设备发送对应的上行信号。其中,第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。
一种可能的设计方案中,第一TA或第一TAG根据第一信息确定,第一信息用于指示上行信号对应的第一TA或第一TAG。
可选地,第一信息承载在如下一项或多项中:RRC消息、MAC-CE消息、DCI消息、空间关系、TCI状态、或QCL信息。
另一种可能的设计方案中,第一TA或第一TAG根据第一信号确定,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。
可选地,收发模块901,还用于接收来自网络设备的第二信息。其中,第二信息用于指示第一信号。
进一步地,第二信息为QCL信息,QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。
可选地,第一信号包括如下一项或多项:SRS、SSB、CSI-RS、TRS、PDCCH、PDSCH、PUCCH、或PUSCH。
可选地,第一信号与第一TA或第一TAG存在关联关系。
一种可能的设计方案中,第一TA或第一TAG根据第一信号确定,第一信号与第一TA或第一TAG存在关联关系,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。
一种可能的设计方案中,收发模块901,还用于在处理模块902确定第一TA或第一TAG之前,接收来自网络设备的配置信息。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量,多个TAG包括第一TAG,多个TA偏移量包括第一TA对应的TA偏移量。
可选地,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,收发模块901,还用于在处理模块902确定第一TA或第一TAG之前, 接收来自网络设备的随机接入响应RAR消息。其中,RAR消息包括第一TAG对应的TA初始值,第一TAG对应的TA初始值和第一TAG对应的TA偏移量,用于确定第一TAG对应的TA。
进一步的,处理模块902,还用于根据RAR消息中的字段,确定RAR消息中的TA初始值对应的TAG;或者,处理模块902,还用于根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,处理模块902,还用于确定SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。
一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
可选地,收发模块901也可以包括发送模块和接收模块(图9中未示出)。其中,发送模块用于实现通信装置900的发送功能,接收模块用于实现通信装置900的接收功能。
可选地,通信装置900还可以包括存储模块(图9中未示出),该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得通信装置900可以执行图6所示出的方法中终端的一些功能。
应理解,通信装置900中涉及的处理模块可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置900可以是终端,也可以是可设置于终端中的芯片(系统)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,通信装置900的技术效果可以参考图6所示出的方法中对应的技术效果,此处不再赘述。
另一些实施例中,该通信装置900可适用于图4或图5中所示出的通信系统中,执行图6中所示出的方法中终端的另一些功能。
其中,收发模块901,用于接收来自网络设备的第一信息。处理模块902,用于根据第一TA或第一TAG,控制收发模块901向网络设备发送上行信号。其中,第一信息用于指示上行信号对应的第一TA或第一TAG。第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。
一种可能的设计方案中,第一信息承载在如下一项或多项中:RRC消息、MAC-CE消息、DCI消息、空间关系、TCI状态、或QCL信息。
一种可能的设计方案中,收发模块901,还用于在处理模块902根据第一TA或第一TAG,控制收发模块901向网络设备发送上行信号之前,接收来自网络设备的配置信息。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量,多个TAG包括第一TAG,多个TA偏移量包括第一TA对应的TA偏移量。
可选地,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,收发模块901,还用于在处理模块902根据第一TA或第一TAG,控制收发模块901向网络设备发送上行信号之前,接收来自网络设备的随机接入响应RAR 消息。其中,RAR消息包括第一TAG对应的TA初始值,第一TAG对应的TA初始值和第一TAG对应的TA偏移量,用于确定第一TAG对应的TA。
进一步的,处理模块902,还用于根据RAR消息中的字段,确定RAR消息中的TA初始值对应的TAG;或者,处理模块902,还用于根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,处理模块902,还用于确定SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
可选地,收发模块901也可以包括发送模块和接收模块(图9中未示出)。其中,发送模块用于实现通信装置900的发送功能,接收模块用于实现通信装置900的接收功能。
可选地,通信装置900还可以包括存储模块(图9中未示出),该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得通信装置900可以执行图6所示出的方法中终端的另一些功能。
应理解,通信装置900中涉及的处理模块可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置900可以是终端,也可以是可设置于终端中的芯片(系统)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,通信装置900的技术效果可以参考图6所示出的方法中对应的技术效果,此处不再赘述。
又一些实施例中,该通信装置900可适用于图4或图5中所示出的通信系统中,执行图6中所示出的方法中终端的又一些功能。
其中,处理模块902,用于根据第一信号确定第一TA或第一TAG,从而根据第一TA或第一TAG,控制收发模块901向网络设备发送对应的上行信号。第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。第一TA为网络设备的一个小区对应的多个TA中的一个,第一TAG为网络设备的一个小区对应的多个TAG中的一个。
可选地,收发模块901,还用于接收来自网络设备的第二信息。其中,第二信息用于指示第一信号。
进一步地,第二信息为QCL信息,QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。
可选地,第一信号包括如下一项或多项:SRS、SSB、CSI-RS、TRS、PDCCH、PDSCH、PUCCH、或PUSCH。
可选地,第一信号与第一TA或第一TAG存在关联关系。
一种可能的设计方案中,第一TA或第一TAG根据第一信号确定,第一信号与第一TA或第一TAG存在关联关系,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号。
一种可能的设计方案中,收发模块901,还用于在处理模块902根据第一信号确 定第一TA或第一TAG之前,接收来自网络设备的配置信息。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量,多个TAG包括第一TAG,多个TA偏移量包括第一TA对应的TA偏移量。
可选地,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,收发模块901,还用于在处理模块902根据第一信号确定第一TA或第一TAG之前,接收来自网络设备的随机接入响应RAR消息。其中,RAR消息包括第一TAG对应的TA初始值,第一TAG对应的TA初始值和第一TAG对应的TA偏移量,用于确定第一TAG对应的TA。
进一步的,处理模块902,还用于根据RAR消息中的字段,确定RAR消息中的TA初始值对应的TAG;或者,处理模块902,还用于根据RAR消息对应的SSB,确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,处理模块902,还用于确定SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。
一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
可选地,收发模块901也可以包括发送模块和接收模块(图9中未示出)。其中,发送模块用于实现通信装置900的发送功能,接收模块用于实现通信装置900的接收功能。
可选地,通信装置900还可以包括存储模块(图9中未示出),该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得通信装置900可以执行图6所示出的方法中终端的又一些功能。
应理解,通信装置900中涉及的处理模块可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置900可以是终端,也可以是可设置于终端中的芯片(系统)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,通信装置900的技术效果可以参考图6所示出的方法中对应的技术效果,此处不再赘述。
示例性地,图10是本申请实施例提供的通信装置的结构示意图二。如图10所示,通信装置1000包括用于执行图6所示的方法中网络设备功能的模块,比如包括接收模块1001和发送模块1002。其中,接收模块1001用于实现上述方法实施例中的接收功能,发送模块1002用于实现上述方法实施例的发送功能。为了便于说明,图10仅示出了该通信装置的主要部件。
其中,通信装置1000可适用于图4或图5中所示出的通信系统中,执行图6中所示出的方法中网络设备的些功能。
其中,发送模块1002,用于向终端发送配置信息。接收模块1001,用于接收来自终端的上行信号。其中,配置信息包括下一项或多项:网络设备的一个小区对应的多个TAG、或网络设备的一个小区对应的多个TA偏移量。
一种可能的设计方案中,发送模块1002,还用于在接收模块1001接收来自终端的上行信号之前,向终端发送第一信息。其中,第一信息用于指示上行信号对应的第一TA或第一TAG,第一TAG为多个TAG中的一个,第一TA为多个TA偏移量中的一个TA偏移量对应的一个TA。
可选地,第一信息承载在如下一项或多项中:RRC消息、MAC-CE消息、DCI消息、空间关系、TCI状态、或QCL信息。
另一种可能的设计方案中,发送模块1002,还用于在接收模块1001接收来自终端的上行信号之前,向终端发送第二信息。其中,第二信息用于指示第一信号,第一信号为上行信号对应的SSB、空间关系参考信号或路损参考信号,第一信号用于确定上行信号对应的第一TA或第一TAG,第一TAG为多个TAG中的一个,第一TA为多个TA偏移量中的一个TA偏移量对应的一个TA。
可选地,第二信息为QCL信息,QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。
可选地,第一信号包括如下一项或多项:SRS、SSB、CSI-RS、TRS、PDCCH、PDSCH、PUCCH、或PUSCH。
可选地,配置信息还包括:第一信号与第一TA或第一TAG的关联关系。
一种可能的设计方案中,发送模块1002,还用于在接收模块1001接收来自终端的上行信号之前,向终端发送的RAR消息。其中,RAR消息包括第一TAG对应的TA初始值。
可选地,RAR消息中的字段用于确定RAR消息中的TA初始值对应的TAG;或者,RAR消息对应的SSB用于确定RAR消息中的TA初始值对应的TAG。
进一步的,RAR消息对应的SSB关联一个TAG,SSB关联的一个TAG为RAR消息中的TA初始值对应的TAG。
一种可能的设计方案中,上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
一种可能的设计方案中,多个TA偏移量中的每个TA偏移量与多个TAG中的至少部分TAG对应。
可选地,发送模块1002和接收模块1001也可以集成为一个模块,如收发模块(图10中未示出)。其中,收发模块用于实现通信装置1000的发送功能和接收功能。
可选地,通信装置1000还可以包括处理模块(图10中未示出)。其中,处理模块用于实现上述图6所示的方法中网络设备除收发功能以外的功能。
可选地,通信装置1000还可以包括存储模块(图10中未示出),该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得通信装置1000可以执行图6所示的方法中网络设备的功能。
应理解,通信装置1000中涉及的处理模块可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置1000可以是网络设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,通信装置1000的技术效果可以参考图6所示出的方法中对应的技术效果,此处不再赘述。
示例性地,图11为本申请实施例提供的通信装置的结构示意图三。该通信装置可以是终端设备或网络设备,也可以是可设置于终端设备或网络设备的芯片(系统)或其他部件或组件。如图11所示,通信装置1100可以包括处理器1101。可选地,通信装置1100还可以包括存储器1102和/或收发器1103。其中,处理器1101与存储器1102和收发器1103耦合,如可以通过通信总线连接。
下面结合图11对通信装置1100的各个构成部件进行具体的介绍:
其中,处理器1101是通信装置1100的控制中心,可以是一个处理器,也可以是多个处理元件的统称,或者也可以称为逻辑电路。例如,处理器1101是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器1101可以通过运行或执行存储在存储器1102内的软件程序,以及调用存储在存储器1102内的数据,执行上述图6所示的方法中网络设备或者终端的功能。
在具体的实现中,作为一种实施例,处理器1101可以包括一个或多个CPU,例如图11中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1100也可以包括多个处理器,例如图11中所示的处理器1101和处理器1104。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序或指令)的处理核。
其中,所述存储器1102用于存储执行本申请方案的软件程序,并由处理器1101来控制,使得上述图6所示的方法被执行。
可选地,存储器1102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1102可以和处理器1101集成在一起,也可以独立存在,并通过通信装置1100的接口电路,或者说输入输出接口(图11中未示出)与处理器1101耦合,本申请实施例对此不做具体限定。
收发器1103,用于与其他通信装置之间的通信。例如,通信装置1100为终端,收发器1103可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置1100为网络设备,收发器1103可以用于与终端通信,或者与另一个网络设备通信。
可选地,收发器1103可以包括接收器和发送器(图11中未单独示出)。其中, 接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器1103可以和处理器1101集成在一起,也可以独立存在,并通过通信装置1100的接口电路(图11中未示出)与处理器1101耦合,本申请实施例对此不做具体限定。
需要说明的是,图11中示出的通信装置1100的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置1100的技术效果可以参考上述方法实施例所述的通信方法的技术效果,此处不再赘述。
本申请实施例提供一种通信系统。该通信系统包括上述一个或多个终端,以及一个或多个网络设备。
应理解,在本申请实施例中的处理器可以是CPU,该处理器还可以是其他通用处理器、DSP、ASIC、现场可编程门阵列FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、EEPROM或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序或指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在 B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
上述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保 护范围为准。

Claims (25)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端确定第一定时提前TA或第一定时提前组TAG,所述第一TA为网络设备的一个小区对应的多个TA中的一个,所述第一TAG为所述网络设备的一个小区对应的多个TAG中的一个;
    所述终端根据所述第一TA或所述第一TAG,向所述网络设备发送对应的上行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一TA或所述第一TAG根据第一信息确定,所述第一信息用于指示所述上行信号对应的所述第一TA或所述第一TAG。
  3. 根据权利要求1所述的方法,其特征在于,所述第一TA或所述第一TAG根据第一信号确定,所述第一信号为所述上行信号对应的同步信息和物理广播信道块SSB、空间关系参考信号或路损参考信号。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自所述网络设备的第二信息,所述第二信息用于指示所述第一信号。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一信号与所述第一TA或所述第一TAG存在关联关系。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,在所述终端确定第一TA或第一TAG之前,所述方法还包括:
    所述终端接收来自所述网络设备的配置信息,所述配置信息包括下一项或多项:所述网络设备的一个小区对应的多个TAG、或所述网络设备的一个小区对应的多个TA偏移量,所述多个TAG包括所述第一TAG,所述多个TA偏移量包括所述第一TA对应的TA偏移量。
  7. 根据权利要求6所述的方法,其特征在于,在所述终端确定第一TA或第一TAG之前,所述方法还包括:
    所述终端接收来自所述网络设备的随机接入响应RAR消息,所述RAR消息包括所述第一TAG对应的TA初始值,所述第一TAG对应的TA初始值和所述第一TAG对应的TA偏移量,用于确定所述第一TAG对应的TA。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述RAR消息中的字段,确定所述RAR消息中的TA初始值对应的TAG;或者,
    所述终端根据所述RAR消息对应的SSB,确定所述RAR消息中的TA初始值对应的TAG。
  9. 根据权利要求8所述的方法,其特征在于,所述RAR消息对应的SSB关联一个TAG,所述终端根据所述RAR消息对应的SSB,确定所述RAR消息中的TA初始值对应的TAG,包括:
    所述终端确定所述SSB关联的一个TAG为所述RAR消息中的TA初始值对应的TAG。
  10. 一种通信方法,其特征在于,所述方法包括:
    网络设备向终端发送配置信息,所述配置信息包括下一项或多项:所述网络设备的一个小区对应的多个TAG、或所述网络设备的一个小区对应的多个TA偏移量;
    所述网络设备接收来自所述终端的上行信号。
  11. 根据权利要求10所述的方法,其特征在于,在所述网络设备接收来自所述终端的上行信号之前,所述方法还包括:
    所述网络设备向所述终端发送第一信息,所述第一信息用于指示所述上行信号对应的第一TA或第一TAG,所述第一TAG为所述多个TAG中的一个,所述第一TA为所述多个TA偏移量中的一个TA偏移量对应的一个TA。
  12. 根据权利要求2或11所述的方法,其特征在于,所述第一信息承载在如下一项或多项中:无线资源控制RRC消息、媒体接入控制-控制单元MAC-CE消息、下行控制信息DCI消息、空间关系、传输配置指示TCI状态、或准共位置QCL信息。
  13. 根据权利要求10所述的方法,其特征在于,在所述网络设备接收来自所述终端的上行信号之前,所述方法还包括:
    所述网络设备向所述终端发送第二信息,所述第二信息用于指示所述第一信号,所述第一信号为所述上行信号对应的SSB、空间关系参考信号或路损参考信号,所述第一信号用于确定所述上行信号对应的所述第一TA或所述第一TAG,所述第一TAG为所述多个TAG中的一个,所述第一TA为所述多个TA偏移量中的一个TA偏移量对应的一个TA。
  14. 根据权利要求4或13所述的方法,其特征在于,所述第二信息为QCL信息,所述QCL信息的类型为以下一项或多项:类型A、类型B、类型C、类型D、类型E、类型F、或类型G。
  15. 根据权利要求3、4、13、14中任一项所述的方法,其特征在于,所述第一信号包括如下一项或多项:探测参考信号SRS、同步信息和物理广播信道块SSB、信道状态信息参考信号CSI-RS、跟踪参考信号TRS、物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH、或物理上行共享信道PUSCH。
  16. 根据权利要求13-15中任一项所述的方法,其特征在于,所述配置信息还包括:所述第一信号与所述第一TA或所述第一TAG的关联关系。
  17. 根据权利要求11-16中任一项所述的方法,其特征在于,在所述网络设备接收来自所述终端的上行信号之前,所述方法还包括:
    所述网络设备向所述终端发送的RAR消息,所述RAR消息包括所述第一TAG对应的TA初始值。
  18. 根据权利要求17所述的方法,其特征在于,所述RAR消息中的字段用于确定所述RAR消息中的TA初始值对应的TAG;或者,所述RAR消息对应的SSB用于确定所述RAR消息中的TA初始值对应的TAG。
  19. 根据权利要求18所述的方法,其特征在于,所述RAR消息对应的SSB关联一个TAG,所述SSB关联的一个TAG为所述RAR消息中的TA初始值对应的TAG。
  20. 根据权利要求1-19中任一项所述的方法,其特征在于,所述上行信号包括如下一项或多项:SRS、PUSCH、或PUCCH。
  21. 根据权利要求6、8-20中任一项所述的方法,其特征在于,所述多个TA偏移量中的每个TA偏移量与所述多个TAG中的至少部分TAG对应。
  22. 根据权利要求6、8-21中任一项所述的方法,其特征在于,所述多个TA偏移量与所述多个TAG一一对应。
  23. 一种通信装置,其特征在于,所述装置包括用于执行如权利要求1-9中任一项所述的方法的模块,或者用于执行如权利要求10-22中任一项所述的方法的模块。
  24. 一种通信装置,其特征在于,包括:处理器,所述处理器用于执行如权利要求1-9中任一项所述的方法,或者执行如权利要求10-22中任一项所述的方法。
  25. 一种通信装置,其特征在于,包括:处理器和存储器;所述存储器用于存储计算机指令,当所述处理器执行所述指令时,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者执行如权利要求10-22中任一项所述的方法。
PCT/CN2022/115966 2021-08-31 2022-08-30 通信方法及装置 WO2023030341A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22863476.2A EP4383855A1 (en) 2021-08-31 2022-08-30 Communication method and apparatus
US18/591,025 US20240205855A1 (en) 2021-08-31 2024-02-29 Communication method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111015739 2021-08-31
CN202111015739.6 2021-08-31
CN202210454297.3 2022-04-27
CN202210454297.3A CN115734335A (zh) 2021-08-31 2022-04-27 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/591,025 Continuation US20240205855A1 (en) 2021-08-31 2024-02-29 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2023030341A1 true WO2023030341A1 (zh) 2023-03-09

Family

ID=85292548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115966 WO2023030341A1 (zh) 2021-08-31 2022-08-30 通信方法及装置

Country Status (4)

Country Link
US (1) US20240205855A1 (zh)
EP (1) EP4383855A1 (zh)
CN (1) CN115734335A (zh)
WO (1) WO2023030341A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020215108A2 (en) * 2020-08-06 2020-10-22 Futurewei Technologies, Inc. System and method for uplink timing in multi-point communications
CN111918304A (zh) * 2019-05-10 2020-11-10 华为技术有限公司 一种通信方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918304A (zh) * 2019-05-10 2020-11-10 华为技术有限公司 一种通信方法及装置
WO2020215108A2 (en) * 2020-08-06 2020-10-22 Futurewei Technologies, Inc. System and method for uplink timing in multi-point communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Considerations on TA maintaining in HF cell", 3GPP DRAFT; R2-1704611 CONSIDERATION ON TA MAITAINNING IN HF CELL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Hangzhou, China; 20170515 - 20170519, 6 May 2017 (2017-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 4, XP051264497 *
SAMSUNG: "Enhancements on multi-TRP inter-cell operation", 3GPP DRAFT; R1-2006130, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915188 *

Also Published As

Publication number Publication date
US20240205855A1 (en) 2024-06-20
EP4383855A1 (en) 2024-06-12
CN115734335A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
CN111586846B (zh) 传输配置编号状态指示的方法和通信装置
JP7179156B2 (ja) 信号伝送方法及び通信機器
KR20230019102A (ko) 사이드링크 리소스 풀 구성
JP7369763B2 (ja) 設定方法及び機器
WO2019128873A1 (zh) 一种波束训练方法及相关设备
WO2020098381A1 (zh) 无线通信的方法和设备
JP2024500480A (ja) セルハンドオーバー方法及び装置
US11490403B2 (en) Data transmission method and data transmission device
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
CN112039644B (zh) 一种非周期定位导频传送方法和装置
WO2021088085A1 (zh) 一种资源指示的方法及装置
CN110149714A (zh) 一种上行传输方法、用户设备及网络设备
WO2021023103A1 (zh) 定时提前配置方法、终端和网络侧设备
WO2021017739A1 (zh) 测量上报的方法与装置
WO2022206688A1 (zh) 一种定位方法及装置
US20230275706A1 (en) Sidelink harq feedback control method and device therefor
KR102684116B1 (ko) 액세스 네트워크 장치를 인증하는 방법 및 관련 장치
US20230209365A1 (en) Enhanced fr2 tracking procedures for nr sidelink systems
WO2023030341A1 (zh) 通信方法及装置
WO2020034969A1 (zh) 信号传输方法、波束确定方法及其装置
JP7399319B2 (ja) 測位方法、装置及び機器
US20230421340A1 (en) Implicit update of activated tci states
WO2024067552A1 (zh) 一种通信方法、装置和系统
WO2023098595A1 (zh) 通信方法及装置
US20240057006A1 (en) Method for performing pdc and computer device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022863476

Country of ref document: EP

Effective date: 20240305

NENP Non-entry into the national phase

Ref country code: DE