WO2021023103A1 - 定时提前配置方法、终端和网络侧设备 - Google Patents

定时提前配置方法、终端和网络侧设备 Download PDF

Info

Publication number
WO2021023103A1
WO2021023103A1 PCT/CN2020/106151 CN2020106151W WO2021023103A1 WO 2021023103 A1 WO2021023103 A1 WO 2021023103A1 CN 2020106151 W CN2020106151 W CN 2020106151W WO 2021023103 A1 WO2021023103 A1 WO 2021023103A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
timing advance
terminal
side device
advances
Prior art date
Application number
PCT/CN2020/106151
Other languages
English (en)
French (fr)
Inventor
孙伟
陈润华
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20849201.7A priority Critical patent/EP4009717A4/en
Priority to US17/632,140 priority patent/US20220279467A1/en
Publication of WO2021023103A1 publication Critical patent/WO2021023103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the field of communication technology, and relates to a timing advance configuration method, a terminal, and a network side device.
  • Some communication systems introduce terminal multi-antenna groups (or called multi-antenna panels or multi-antenna port groups) to communicate.
  • Multiple antenna groups of the terminal can communicate with one network-side device at the same time, or with multiple antenna groups.
  • a network-side device communication can also support dynamic switching communication between multiple antenna groups.
  • the network side only configures a timing advance for the terminal. When the terminal uses this timing advance in multiple antenna groups, the signal reception quality will be poor.
  • the embodiments of the present disclosure provide a timing advance configuration method, terminal, and network side equipment to solve the problem of poor signal reception quality.
  • timing advance configuration method including:
  • the terminal sends the first SRS to the network-side device on N sounding reference signal (Sounding Reference Signal, SRS) resource sets respectively through N antenna groups, where N is an integer greater than 1.
  • SRS Sounding Reference Signal
  • the terminal receives a first configuration message sent by the network-side device, where the first configuration message is used to configure N timing advances, and the N timing advances correspond to the N antenna groups respectively, where the The N timing advances are obtained by the network side device through the first SRS measurement on the N SRS resource sets.
  • the N timing advances respectively correspond to N SRS resource sets.
  • the first configuration message is used to indicate the adjustment values of the N timing advances, and the method further includes:
  • the terminal determines and updates the N timing advances according to the adjustment values of the N timing advances and the N timing advances maintained by the terminal.
  • the initial timing advances of the N timing advances are the same.
  • the method further includes:
  • the terminal receives the first timing advance sent by the network side device, where the first timing advance is the timing advance measured by the network side device through the first signal, and the initial timing of the N timing advances Advance is the first timing advance sent by the network side device.
  • the method further includes at least one of the following:
  • the terminal sends the PUSCH signal according to the timing advance of the physical uplink shared channel (PUSCH), where the timing advance of the PUSCH is: the timing advance indicated by the network side device, or the PUSCH associated The timing advance corresponding to the SRS, or the timing advance corresponding to the antenna group transmitting the PUSCH signal;
  • PUSCH physical uplink shared channel
  • the terminal sends the PUCCH signal according to the timing advance of the Physical Uplink Control Channel (PUCCH), where the timing advance of the PUCCH is: the timing advance indicated by the network side device, or the PUCCH associated The timing advance corresponding to the SRS, or the timing advance corresponding to the antenna group transmitting the PUCCH signal;
  • PUCCH Physical Uplink Control Channel
  • the terminal sends the second SRS in advance according to the updated timing.
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUSCH among the N timing advances; and / or
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUCCH among the N timing advances.
  • the method further includes:
  • the terminal receives a second configuration message sent by the network-side device, where the second configuration message is used to indicate an adjustment value of a first timing advance, where the first timing advance is for the network-side device to pass the The timing advance determined by the third SRS measurement on the N SRS resource sets has changed;
  • the terminal determines and updates the first timing advance according to the adjustment value of the first timing advance and the first timing advance maintained by the terminal.
  • timing advance configuration method including:
  • the network-side device measures the first SRS sent by the terminal on the N SRS resource sets through the N antenna groups, and determines N timing advances, where N is an integer greater than 1.
  • the network-side device sends a first configuration message to the terminal, where the first configuration message is used to configure the N timing advances, and the N timing advances correspond to N antenna groups respectively.
  • the N timing advances respectively correspond to N SRS resource sets.
  • the first configuration message is used to indicate the adjustment values of the N timing advances, so that the terminal is based on the adjustment values of the N timing advances and the N timing advances maintained by the terminal , Determine and update the N timing advances.
  • the initial timing advances of the N timing advances are the same.
  • the method further includes:
  • the network side device measures the first signal sent by the terminal through one or more antennas in the N antenna groups, and determines the first timing advance;
  • the network side device sends the first timing advance to the terminal, where the initial timing advances of the N timing advances are the first timing advance sent by the network side device.
  • the method further includes at least one of the following:
  • the network side device receives the PUSCH signal sent by the terminal according to the PUSCH timing advance, where the PUSCH timing advance is: the timing advance indicated by the network side device, or the timing corresponding to the SRS associated with the PUSCH Advance, or advance the timing corresponding to the antenna group transmitting the PUSCH signal;
  • the network side device receives the PUCCH signal sent by the terminal according to the PUCCH timing advance, where the PUCCH timing advance is: the timing advance indicated by the network side device, or the timing corresponding to the SRS associated with the PUCCH Advance, or advance the timing corresponding to the antenna group that transmits the PUCCH signal;
  • the network side device receives the second SRS that the terminal sends in advance according to the updated timing.
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUSCH among the N timing advances; and / or
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUCCH among the N timing advances.
  • the method further includes:
  • the network-side device measures the third SRS sent by the terminal on the N SRS resource sets through the N antenna groups to obtain the adjustment value of the first timing advance, where the first timing advance Is the timing advance determined by the network-side device through the second SRS measurement on the N SRS resource sets where the timing advance changes;
  • the network-side device sends a second configuration message to the terminal, where the second configuration message is used to indicate the adjustment value of the first timing advance, so that the terminal is based on the adjustment value of the first timing advance and the The first timing advance maintained by the terminal determines and updates the first timing advance.
  • Some embodiments of the present disclosure also provide a terminal, including:
  • the first sending module is configured to send the first SRS to the network side device on the N sounding reference signal SRS resource sets through the N antenna groups, where N is an integer greater than 1;
  • the first receiving module is configured to receive a first configuration message sent by the network-side device, where the first configuration message is used to configure N timing advances, and the N timing advances correspond to N antenna groups respectively, where: The N timing advances are obtained by the network side device through the first SRS measurement on the N SRS resource sets.
  • the first configuration message is used to indicate adjustment values of the N timing advances, and the terminal further includes:
  • the first update module is configured to determine and update the N timing advances according to the adjustment values of the N timing advances and the N timing advances maintained by the terminal.
  • Some embodiments of the present disclosure also provide a network side device, including:
  • the first measurement module is configured to measure the first SRS sent by the terminal on the N SRS resource sets through the N antenna groups, and determine N timing advances, where N is an integer greater than 1;
  • the first sending module is configured to send a first configuration message to the terminal, where the first configuration message is used to configure the N timing advances, and the N timing advances respectively correspond to N antenna groups, and N is greater than An integer of 1.
  • the first configuration message is used to indicate the adjustment values of the N timing advances, so that the terminal is based on the adjustment values of the N timing advances and the N timing advances maintained by the terminal , Determine and update the N timing advances.
  • Some embodiments of the present disclosure also provide a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor,
  • the transceiver is configured to send the first SRS to the network side device on the N sounding reference signal SRS resource sets through the N antenna groups, where N is an integer greater than 1;
  • the transceiver is further configured to receive a first configuration message sent by the network-side device, where the first configuration message is used to configure the N timing advances, and the N timing advances correspond to N antenna groups respectively, wherein, the N timing advances are obtained by the network side device through the first SRS measurement on the N SRS resource sets.
  • the first configuration message is used to indicate the adjustment values of the N timing advances
  • the transceiver or the processor is used to determine the adjustment values of the N timing advances and all the values maintained by the terminal.
  • the N timing advances are determined and updated.
  • the initial timing advances of the N timing advances are the same.
  • the transceiver is also used for at least one of the following:
  • the PUSCH signal is sent according to the timing advance of the PUSCH, where the timing advance of the PUSCH is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUSCH, or the timing advance corresponding to the PUSCH signal The timing advance corresponding to the antenna group;
  • the PUCCH signal is sent in advance according to the timing of the PUCCH, where the timing advance of the PUCCH is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUCCH, or the PUCCH signal sending The timing advance corresponding to the antenna group;
  • the second SRS is sent in advance according to the updated timing.
  • the transceiver is further configured to send a third SRS to the network side device on the N SRS resource sets through the N antenna groups, and receive the second configuration sent by the network side device Message, the second configuration message is used to indicate the adjustment value of the first timing advance, where the first timing advance is the timing determined by the network side device through the third SRS measurement on the N SRS resource sets The timing advance that changes in advance;
  • the transceiver or the processor is configured to determine and update the first timing advance according to the adjustment value of the first timing advance and the first timing advance maintained by the terminal.
  • Some embodiments of the present disclosure also provide a network-side device, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor,
  • the transceiver is configured to measure the first SRS sent by the terminal on the N SRS resource sets through the N antenna groups respectively, and determine N timing advances, where N is an integer greater than 1;
  • the transceiver is further configured to send a first configuration message to the terminal, where the first configuration message is used to configure the N timing advances, and the N timing advances respectively correspond to N antenna groups.
  • the first configuration message is used to indicate the adjustment values of the N timing advances, so that the terminal is based on the adjustment values of the N timing advances and the N timing advances maintained by the terminal , Determine and update the N timing advances.
  • the initial timing advances of the N timing advances are the same.
  • the transceiver is also used for at least one of the following:
  • the PUSCH timing advance is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUSCH, or send The timing advance corresponding to the antenna group of the PUSCH signal;
  • the timing advance of the PUCCH is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUCCH, or send The timing advance corresponding to the antenna group of the PUCCH signal;
  • the transceiver is also used for:
  • a second configuration message is sent to the terminal, where the second configuration message is used to indicate the adjustment value of the first timing advance, so that the terminal is based on the adjustment value of the first timing advance and the terminal maintained
  • the first timing advance determines and updates the first timing advance.
  • Some embodiments of the present disclosure further provide a readable storage medium on which a program is stored, and when the program is executed by a processor, the steps in the terminal-side timing advance configuration method provided by some embodiments of the present disclosure are implemented, or, When the program is executed by the processor, the steps in the timing advance configuration method on the network side device side provided by some embodiments of the present disclosure are implemented.
  • the terminal sends the first SRS to the network side device on the N SRS resource sets through N antenna groups, and N is an integer greater than 1; the terminal receives the data sent by the network side device The first configuration message, the first configuration message is used to configure N timing advances, and the N timing advances respectively correspond to the N antenna groups, wherein the N timing advances are passed by the network side device
  • the first SRS on the N SRS resource sets is measured. Since multiple antenna groups are configured with corresponding timing advances, each antenna group can use their corresponding timing advances, thereby improving signal reception quality.
  • FIG. 1 is a schematic diagram of a network structure applicable to some embodiments of the present disclosure
  • FIG. 2 is a flowchart of a timing advance configuration method provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of an example of timing advance configuration provided by some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of MAC CE provided by some embodiments of the present disclosure.
  • FIG. 5 is another schematic diagram of MAC CE provided by some embodiments of the present disclosure.
  • FIG. 6 is another schematic diagram of MAC CE provided by some embodiments of the present disclosure.
  • FIG. 7 is another flowchart of a timing advance configuration method provided by some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 9 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 10 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 11 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 12 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 13 is a structural diagram of a network side device provided by some embodiments of the present disclosure.
  • FIG. 14 is another structural diagram of a network side device provided by some embodiments of the present disclosure.
  • FIG. 15 is another structural diagram of a network side device provided by some embodiments of the present disclosure.
  • FIG. 16 is another structural diagram of a network side device provided by some embodiments of the present disclosure.
  • FIG. 17 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 18 is another structural diagram of a network side device provided by some embodiments of the present disclosure.
  • FIG. 1 is a schematic diagram of a network structure applicable to some embodiments of the present disclosure. As shown in FIG. 1, it includes a terminal 11 and a network-side device 12, where the terminal 11 includes multiple antenna groups.
  • the terminal 11 includes two antenna groups as an example.
  • the time delay of propagation route 2 is time delay 2.
  • only two antenna groups are used to communicate with the same network-side device, which is not limited.
  • multiple antenna groups of the terminal 11 may simultaneously communicate with one network-side device.
  • the device 12 can communicate with multiple network side devices 12 at the same time, and can also support dynamic switching communication between multiple antenna groups.
  • the terminal 11 may be a user terminal (User Equipment, UE) or other terminal equipment, such as a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA). ), Mobile Internet Device (MID), Wearable Device (Wearable Device), robot, vehicle and other terminal side devices. It should be noted that in some embodiments of the present disclosure, the specific type of terminal is not limited .
  • the network side device 12 may be a base station, such as a macro station, LTE eNB, 5G NR NB, etc.; the network side device may also be a small station, such as a low power node (LPN), pico, femto, etc., or The network side device may be an access point (Access Point, AP); the network side device may also be a central unit (CU), or may be a network node such as a transmission reception point (TRP). It should be noted that in some embodiments of the present disclosure, the specific type of the network side device is not limited.
  • FIG. 2 is a flowchart of a timing advance configuration method provided by some embodiments of the present disclosure. As shown in FIG. 2, it includes the following steps:
  • a terminal sends a first SRS to a network-side device on N SRS resource sets through N antenna groups, where N is an integer greater than 1.
  • the terminal receives a first configuration message sent by the network-side device, where the first configuration message is used to configure the N timing advances, and the N timing advances correspond to the N antenna groups respectively. , Wherein the N timing advances are obtained by the network side device through the first SRS measurement on the N SRS resource sets.
  • the antenna group may be called an antenna panel (antenna panel) or an antenna port group (antenna port group), that is, the aforementioned N antenna groups may also be N antenna panels (antenna panel), Or N antenna port groups (antenna port groups).
  • the aforementioned N timing advances correspond to N SRS resource sets (resource sets) respectively.
  • the antenna group and the SRS resource set have a one-to-one correspondence. Therefore, the above N timing advances can also be understood as corresponding to the N SRS resource sets respectively, that is, the timing advance and the SRS resource set correspond one-to-one.
  • each timing advance may have a timing advance identifier (ID), and different timing advances have different timing advance identifiers.
  • ID may also be referred to as a timing advance of a timing advance identifier.
  • the network side device can configure multiple timing advance IDs for the terminal in the RRC information element serving cell configuration (RRC IE ServingCellConfig) configured for the terminal, and each timing advance ID corresponds to an antenna group, or corresponds to an SRS resource set.
  • RRC IE ServingCellConfig RRC information element serving cell configuration
  • each SRS resource set can be configured by the network side equipment to the terminal, and each SRS resource set can be configured with a timing advance ID, so that when the terminal sends an SRS, each SRS resource set is sent from a different antenna group, thus measuring The above N timing advances.
  • the network side device can measure different antenna groups (or called different SRS resource sets) The timing is advanced.
  • some embodiments of the present disclosure do not limit the manner in which the network side device measures the SRS to obtain the timing advance.
  • the network side device measures the SRS to obtain the timing advance.
  • the network side device can obtain the timing advance of multiple antenna groups through SRS measurement on multiple SRS resource sets, and indicate to the terminal, so that the terminal can send the corresponding uplink signal in advance according to the instructed timing.
  • the aforementioned N timing advances respectively correspond to N antenna groups, and the timing advances and antenna groups have a one-to-one correspondence.
  • the timing advance values corresponding to different antenna groups may be the same or different.
  • the timing advance values of the timing advance 1 corresponding to antenna group 1 and the timing advance 2 corresponding to antenna group 2 are the same or different.
  • the foregoing first configuration message may be a radio resource control (Radio Resource Control, RRC) message, or a media access control control element (Media Access Control Control Element, MAC CE) and other messages.
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • the first configuration message may be used to configure N timing advances.
  • the first configuration message may configure the timing advance values of N timing advances, thereby directly updating the N timing advances, or configuring the adjustment of N timing advances. Value or offset value, so that the terminal determines and updates the timing advances of the N timing advances according to the adjustment value or offset value.
  • the timing advance can be represented by N TA or T TA , where T TA can be understood as the timing advance value after N TA is converted.
  • T TA can be understood as the timing advance value after N TA is converted.
  • the conversion relationship between T TA and N TA can adopt the conversion relationship defined in the agreement, for example: the following conversion relationship:
  • T TA (N TA +N TA,offset )T c
  • T TA and N TA are only an example, and some embodiments of the present disclosure do not limit this.
  • the conversion relationship between T TA and N TA can also be newly defined by subsequent protocol versions. The conversion relationship.
  • timing advance can be understood as N TA indicating timing advance, or T TA indicating timing advance.
  • N TA indicating timing advance
  • T TA indicating timing advance
  • some embodiments of the present disclosure mainly use N TA for illustration.
  • the first configuration message is used to indicate the adjustment values of the N timing advances, and the method further includes:
  • the terminal determines and updates the N timing advances according to the adjustment values of the N timing advances and the N timing advances maintained by the terminal.
  • N timing advances can be understood as the timing advances of N timing advance identifiers, and the N timing advances maintained by the terminal may be the timing advances of the N timing advance identifiers maintained by the terminal, for example:
  • the timing advance of the last update of the terminal before the update is also referred to as the timing advance of the terminal currently maintained by the terminal before the update is performed.
  • the aforementioned adjustment values of the N timing advances may be obtained by the network side device through the first SRS measurement on the N SRS resource sets, for example: each antenna obtained by the network side device through the first SRS measurement on the N SRS resource sets
  • the timing advance of the group and the timing advance of each antenna group measured last time are used to determine the adjustment value (also called an offset value) of the timing advance of each antenna group, that is, the offset value compared with the previous timing advance.
  • the network side device when the network side device configures the timing advance ID for the SRS resource set, the network side device can determine the timing advance ID of the corresponding timing advance ID according to each SRS resource set. When the network side device does not configure the timing advance ID for the SRS resource set At this time, the network side device can determine the timing advance corresponding to the SRS resource set ID according to each SRS resource set to determine the timing advance corresponding to each SRS resource set (or called the timing advance corresponding to each antenna group). After that, the network-side device notifies the terminal of the measured timing advance of each antenna group. For example, the timing advance command corresponding to the timing advance ID can be indicated to the terminal through the MAC CE, or the SRS resource set ID can be corresponded to the MAC CE. The timing advance command is notified to the terminal. Therefore, the terminal can determine and maintain each timing advance ID or timing advance corresponding to each SRS resource set ID (or timing advance corresponding to each antenna group) according to the notification from the network side device.
  • the initial timing advances of the aforementioned N timing advances may be the same.
  • the initial timing advance of the aforementioned timing advance may be the initial value of the timing advance of the timing advance, or may be the initial value of the adjustment value (TA) of the timing advance.
  • the method further includes:
  • the terminal receives the first timing advance sent by the network side device, where the first timing advance is the timing advance measured by the network side device through the first signal, and the initial timing of the N timing advances Advance is the first timing advance sent by the network side device.
  • the above-mentioned first signal may be a random access channel (Random Access Channel, RACH).
  • RACH Random Access Channel
  • SRS Signal Reference Signal
  • the aforementioned one or more antennas may be antennas in one or more antenna groups.
  • the terminal can send RACH to the network-side device through a certain antenna group, and the network-side device obtains the timing advance of the terminal according to the RACH measurement sent by the terminal, and then the network-side device uses the random access response (Random Access Response, RAR) in the The Timing Advance Command (Timing Advance Command) configures the timing advance for the terminal, and the timing advance is the initial value of the timing advance of each antenna group.
  • RAR Random Access Response
  • the maintenance can be started with the same initial timing advance for each timing advance, thereby reducing complexity.
  • the initial timing advances of the N timing advances are not limited to be the same, and different timing advances may be allowed in some embodiments.
  • the N timing advance identifiers may be N timing advance sub-group (Timing Advance sub-Group, TASG) identifiers, so that each TASG identifier corresponds to one antenna group.
  • TASG Timing Advance sub-Group
  • timing advance may also be referred to as TASG, or TASG timing advance.
  • the network side device can configure N TASGs for the terminal through RRC signaling, so that the terminal can maintain the timing advance of N timing subgroups.
  • Each timing advance subgroup can correspond to an antenna group.
  • the number of timing advance subgroups is determined by RRC.
  • the configuration can also be determined according to the capabilities of the terminal or according to the report of the terminal.
  • Each timing advance subgroup has a number, which can be called the timing advance subgroup ID.
  • the TASG may also be a group of antenna panels or antenna groups, that is, different antenna groups may be characterized, and the timing advance of each antenna group may be different.
  • the TASG ID can also be the antenna panel ID or antenna group ID, which is used by the terminal to distinguish different antenna groups, and the timing advance of each antenna group can be different.
  • the foregoing further includes at least one of the following:
  • the terminal sends the PUSCH signal according to the timing advance of the PUSCH, where the timing advance of the PUSCH is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUSCH, or the The timing advance corresponding to the antenna group of the PUSCH signal;
  • the terminal sends the PUCCH signal according to the timing advance of the PUCCH, where the timing advance of the PUCCH is: the timing advance indicated by the network-side device, or the timing advance corresponding to the SRS associated with the PUCCH, or the The timing advance corresponding to the antenna group of the PUCCH signal;
  • the terminal sends the second SRS in advance according to the updated timing.
  • the timing advance of the PUSCH is the timing advance indicated by the network-side device
  • the timing advance indicated by the network-side device may be the timing advance indicated to the PUSCH among the N timing advances.
  • the network side device can configure the TASG ID of the PUSCH through Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the TASG ID of PUSCH can be configured in DCI.
  • DCI Downlink Control Channel
  • N TA indicated by the TASG ID field is the same for all transmission blocks.
  • each transmission block (transmission block) in DCI has a TASG ID field, that is, the N TA of each transmission block (transmission block) is different, because for multiple antenna groups simultaneous transmission Each antenna group may use different transmission blocks for transmission, and the timing advance of each transmission block is different.
  • the TASG ID through the associated pilot (for example, SRS), and to determine the timing advance through the TASG ID.
  • the associated pilot for timing advance is SRS, such as SRS indicated by SRS resource indicator (SRI) or quasi-colocation (QCL) indicated by Transmission Configuration Indication (TCI) If the pilot frequency is SRS, the TASG ID of the PUSCH is the same as the TASG ID configured by the SRS, and no additional indication is required.
  • timing advance identifier as TASG ID, which is not limited.
  • the timing advance indicated by the network-side device may be the timing advance indicated to the PUCCH among the N timing advances.
  • the TASG ID can be configured through high-level signaling, or the TASG ID can be configured through physical layer information, and the terminal determines the timing advance through the TASG ID.
  • each PUCCH-ResourceSet is configured with a TASG ID, as follows:
  • each PUCCH resource (PUCCH-Resource) is configured with a TASG ID, as follows:
  • the PUCCH resource indicator indicates the PUCCH resource.
  • the The PUCCH TASG-Id indicator is added to indicate that the PUCCH transmission timing is advanced.
  • the PUCCH resource indicator can be 3 bits, and the PUCCH tasg indicator can be 2 bits, of course, this is not limited.
  • the foregoing terminal sending the second SRS in advance according to the updated timing may be that the terminal sends the corresponding SRS according to the updated value of the timing advance corresponding to the SRS.
  • the terminal can send the SRS in advance according to the updated timing.
  • the first SRS and the second SRS, and the following third SRS may be the same SRS or different SRSs, and the first, second, and third SRSs are only for distinguishing the differences.
  • the time unit may be a subframe (subframe), a time slot (slot), or a symbol (symbol), which is not limited.
  • the terminal when the network side device indicates the terminal PUSCH transmission timing advance ID, the terminal can determine the PUSCH transmission timing advance according to the indicated timing advance ID, and when the network side device does not indicate the terminal PUSCH transmission timing advance For ID, the terminal may determine the PUSCH transmission timing advance according to the timing advance ID or SRS resource set ID or antenna group corresponding to the SRS associated with the PUSCH.
  • the terminal can determine the PUCCH transmission timing advance according to the indicated timing advance ID.
  • the terminal can determine to send The antenna group of the PUCCH is the same as the transmission antenna group of which SRS resource set, so that the timing advance is determined according to the SRS resource set ID. If the terminal cannot determine the corresponding SRS resource set ID, or the terminal has not sent an SRS, or the terminal has not obtained the timing advance command corresponding to the SRS resource set, the terminal uses the timing advance group (TAG) sent by the network side device
  • TAG timing advance group
  • the terminal sends RACH to the network-side device, and the network-side device calculates the initial value of TA according to the RACH, that is, the initial value of the adjustment value of N timing advance identifiers (or TASG ID). Of course, it can also calculate N The initial value of the timing advance identified by the timing advance;
  • the network side device sends an indication of the initial value of TA through a random access response (Random Access Response, RAR);
  • RAR Random Access Response
  • the terminal determines the initial value of TA according to the RAR notification, that is, determines the initial value of the adjustment value of N timing advance identifiers (or TASG ID), or determines the initial value of the timing advance of N timing advance identifiers;
  • the network side device configures multiple SRS resource sets for the terminal
  • the terminal uses different antenna groups to send SRS on different SRS resource sets;
  • the network side device determines the adjustment value (TA value) of the timing advance of each antenna group according to the received SRS;
  • the network side device indicates the TA value of each antenna group to the terminal
  • the terminal maintains the timing advance of each timing advance identifier (or TASG ID) according to the indicated TA value, that is, determines and updates the timing advance of each timing advance identifier (or TASG ID);
  • the terminal determines the transmission timing advance according to the indicated PUSCH and PUCCH timing advance identifier (or TASG ID), and transmits the PUSCH and/or PUCCH.
  • the method further includes:
  • the terminal receives a second configuration message sent by the network-side device, where the second configuration message is used to indicate an adjustment value of a first timing advance, where the first timing advance is for the network-side device to pass the The timing advance determined by the third SRS measurement on the N SRS resource sets has changed;
  • the terminal determines and updates the first timing advance according to the adjustment value of the first timing advance and the first timing advance maintained by the terminal.
  • the above-mentioned first timing advance may be one or more.
  • the network side device may configure the adjustment values of the multiple timing advances through the above-mentioned second configuration message.
  • the first timing advance may be a PUSCH timing advance
  • the first timing advance maintained by the terminal is a timing advance corresponding to an SRS associated with the PUSCH maintained by the terminal.
  • the timing advance corresponding to the SRS associated with the PUSCH may be the SRS resource set corresponding to the SRS associated with the PUSCH or the timing advance corresponding to the antenna group.
  • the foregoing first timing advance may also be the timing advance of PUCCH, which is not limited.
  • the timing advance N TA for sending uplink signals on different antenna groups is configured through high-layer signaling, which may specifically include the following:
  • Each TASG can correspond to an antenna group.
  • the number of TASGs is configured by RRC and can be determined according to the terminal's capabilities or the terminal's report. .
  • Each TASG has a number, which can be called the timing advance subgroup ID.
  • the TASG configuration can be added to the RRC configuration, including but not limited to the following examples:
  • the terminal sends the RACH to the network side device through a certain antenna group, and the network side device obtains the timing advance of the terminal according to the RACH measurement sent by the terminal, and then the base station configures the timing advance for the terminal through the timing advance command in the RAR.
  • the advance is the initial value of the timing advance of each antenna group.
  • the base station configures multiple SRS resource sets for the terminal, and configures a timing advance subgroup ID for each SRS resource set.
  • the terminal sends SRS resource set on different antenna groups.
  • the base station receives each SRS resource set, measures the timing advance corresponding to each TASG ID, and determines the timing advance corresponding to each TASG ID and the previously measured timing advance of each antenna group (the initial value of the timing advance of each antenna group can be Determine the adjustment value of the timing advance of each antenna group board according to the timing advance obtained by the RACH measurement.
  • Each TASG timing advance command word is configured by MAC CE.
  • the MAC layer configures the timing advance corresponding to each TASG-Id through Timing Advance Command MAC CE. After receiving the MAC CE, the terminal determines the timing advance of each timing advance subgroup.
  • the MAC CE can update the timing advances of all TASGs at once, or update the timing advances of some TASGs. As shown below, the timing advance of each timing subgroup is:
  • N TA_new N TA_old + (T A -k) ⁇ 16 ⁇ 64/2 ⁇
  • N TA_old subset of the timing for the maintenance of a timing advance N TA_new timing after the timing advance updates for the subgroup
  • T A represents the adjustment value
  • k value of the number of fields for bit TA the following formula may be Any one:
  • NrOfTaBits represents the number of bits in the TA field.
  • k can be 31 or 32, and when the number of bits in the TA field is 5 bits, k can be 15 or 16.
  • the adjustment value indicated by T A is only an example.
  • the adjustment value of the network side device configuration may also be (T A -k) ⁇ 16 ⁇ 64/2 ⁇ , and , (T A -k) ⁇ 16 ⁇ 64/2 ⁇ in the above formula can be understood as the adjustment value of the timing advance that converts T A into N TA dimension.
  • T A is converted to N TA
  • the manner of adjusting the value of the timing advance of the dimension is not limited. For example, the above-mentioned relationship defined in the protocol may be used, or the conversion relationship newly defined in the subsequent protocol version may be used.
  • the timing advance of different SRS resource sets is configured through high-layer signaling (for example, RRC IE or MAC CE), and the SRS resource set ID can be used to distinguish antenna groups.
  • high-layer signaling for example, RRC IE or MAC CE
  • the terminal sends the RACH to the network side device through a certain antenna group, and the base station obtains the timing advance of the terminal according to the RACH measurement sent by the terminal, and then the network side device configures the timing advance for the terminal through the timing advance command in the RAR.
  • the advance is the initial value of the timing advance of each antenna group.
  • the network side device configures multiple SRS resource sets for the terminal.
  • the terminal sends SRS resource set on different antenna groups.
  • the network side device receives each SRS resource set, measures the timing advance corresponding to each SRS resource set, and determines the timing advance corresponding to each SRS resource set and the timing advance of the previous measurement (the initial value of the timing advance of each SRS resource set) To determine the adjustment value of each SRS resource set timing advance according to the timing advance obtained by the RACH measurement.
  • the network side device When the network side device detects that there is a deviation in the timing advance of a certain SRS resource set, it needs to notify the timing advance offset value corresponding to the SRS resource set through high-layer signaling.
  • Solution 1 Configure through MAC CE
  • the terminal After receiving the MAC CE, the terminal determines that the transmission timing of the antenna group corresponding to the SRS resource set is advanced.
  • the terminal After the terminal receives the RRC information element (Information Element, IE), it determines that the transmission timing of the antenna group corresponding to the SRS resource set is advanced.
  • Information Element, IE Information Element
  • the timing advance can be obtained through the associated SRS resource set ID.
  • the terminal can determine the antenna group for transmitting the PUCCH is the same as the transmission antenna group of which SRS resource set, so as to determine the timing advance. If the terminal cannot determine the corresponding SRS resource set ID, or the terminal has not sent an SRS, or the terminal has not obtained the timing advance command corresponding to the SRS resource set, the terminal uses the timing indicated by the TAG MAC CE to send the PUCCH in advance.
  • the physical layer signaling DCI is used to indicate the adjustment amount of the PUSCH timing advance
  • the TA field is added to the DCI to indicate the offset value between the timing advance of the PUSCH and the timing advance of the associated pilot.
  • the terminal sends the RACH to the base station through a certain antenna group, and the network side device obtains the timing advance of the terminal according to the RACH measurement sent by the terminal, and then the network side device configures the timing advance for the terminal through the timing advance command in the RAR. Advance to the initial value.
  • the network side device configures multiple SRS resource sets for the terminal.
  • the network-side device sends the SRS corresponding to the SRS resource set on different antenna groups.
  • the network side device receives SRS in each SRS resource set, and measures the timing advance corresponding to each SRS resource set.
  • the timing advance obtained by the network side device receiving SRS measurement changes, it needs to notify that the timing delay of the PUSCH associated with the PUSCH has changed, and the TA field is added to the DCI to indicate the timing advance of the PUSCH and the associated pilot.
  • the adjusted value of the timing advance After receiving the information in the DCI, the terminal determines the timing advance of the PUSCH according to the timing advance of the SRS and the timing advance adjustment value indicated in the DCI.
  • N TA_PUSCH N TA_associatedSRS + (T A -k) ⁇ 16 ⁇ 64/2 ⁇ ,
  • N TA_associatedSRS represents the associated pilot transmission SRS timing advance
  • N TA_PUSCH PUSCH denotes the timing advance
  • T A represents the adjustment value
  • the adjustment value indicated by T A is only an example.
  • the adjustment value of the network-side device configuration may also be (T A -k) ⁇ 16 ⁇ 64/2 ⁇ .
  • the above formula The (T A -k) ⁇ 16 ⁇ 64/2 ⁇ in (T A -k) ⁇ 16 ⁇ 64/2 ⁇ can refer to the corresponding description of the above-mentioned embodiment, which is not repeated here.
  • Possible solution 1 There is only one TA field in DCI, that is, the N TA indicated by the TA field is the same for all transmission blocks (transmission blocks)
  • Each transmission block in DCI has a TA field, that is, the N TA of each transmission block is different. This is because for simultaneous transmission of multiple antenna groups, each antenna group It is possible to use different transmission blocks for transmission, and the timing advance of each transmission block is different.
  • the terminal can determine whether PUCCH transmission and PUSCH use the same transmission antenna group, if they are the same, the same timing advance as that of PUSCH is used; otherwise, the timing advance of PUCCH remains unchanged.
  • the timing advances corresponding to different antenna groups are different, and different timing advances can be indicated to each uplink signal, as follows:
  • the network configures different timing advance subgroups for the terminal, and indicates the timing advance of each timing advance subgroup through MAC CE, and the terminal determines the timing advance of each timing advance subgroup through MAC CE;
  • the network configures the timing advance subgroup ID for PUSCH and PUCCH, and the terminal determines the timing advance for PUSCH and PUCCH transmission according to the timing advance subgroup ID;
  • the network configures different SRS resource set timing advances through MAC CE, and the terminal determines the PUSCH according to the SRS resource set ID, and the PUCCH transmission timing advances;
  • the network indicates the timing advance of PUSCH through DCI.
  • Some embodiments of the present disclosure can support the indication of multiple timing advances for multiple antenna groups to improve data reception quality.
  • FIG. 7 is a flowchart of a timing advance configuration method provided by some embodiments of the present disclosure. As shown in FIG. 7, it includes the following steps:
  • the network side device measures the first SRS sent by the terminal on the N SRS resource sets through the N antenna groups, and determines N timing advances, where N is an integer greater than 1.
  • the network-side device sends a first configuration message to the terminal, where the first configuration message is used to configure the N timing advances, and the N timing advances respectively correspond to N antenna groups.
  • the N timing advances respectively correspond to N SRS resource sets.
  • the first configuration message is used to indicate the adjustment values of the N timing advances, so that the terminal is based on the adjustment values of the N timing advances and the N timing advances maintained by the terminal , Determine and update the N timing advances.
  • the initial timing advances of the N timing advances are the same.
  • the method further includes:
  • the network side device measures the first signal sent by the terminal through one or more antennas in the N antenna groups, and determines the first timing advance;
  • the network side device sends the first timing advance to the terminal, where the initial timing advances of the N timing advances are the first timing advance sent by the network side device.
  • the method further includes at least one of the following:
  • the network side device receives the PUSCH signal sent by the terminal according to the PUSCH timing advance, where the PUSCH timing advance is: the timing advance indicated by the network side device, or the timing corresponding to the SRS associated with the PUSCH Advance, or advance the timing corresponding to the antenna group transmitting the PUSCH signal;
  • the network side device receives the PUCCH signal sent by the terminal according to the PUCCH timing advance, where the PUCCH timing advance is: the timing advance indicated by the network side device, or the timing corresponding to the SRS associated with the PUCCH Advance, or advance the timing corresponding to the antenna group transmitting the PUCCH signal;
  • the network side device receives the second SRS that the terminal sends in advance according to the updated timing.
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUSCH among the N timing advances; and / or
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUCCH among the N timing advances.
  • the method further includes:
  • the network-side device measures the third SRS sent by the terminal on the N SRS resource sets through the N antenna groups to obtain the adjustment value of the first timing advance, where the first timing advance Is the timing advance determined by the network-side device through the second SRS measurement on the N SRS resource sets where the timing advance changes;
  • the network-side device sends a second configuration message to the terminal, where the second configuration message is used to indicate the adjustment value of the first timing advance, so that the terminal is based on the adjustment value of the first timing advance and the The first timing advance maintained by the terminal determines and updates the first timing advance.
  • the first timing advance is a PUSCH timing advance
  • the first timing advance maintained by the terminal is a timing advance corresponding to an SRS associated with the PUSCH maintained by the terminal.
  • this embodiment is used as an implementation manner of the network-side device corresponding to the embodiment shown in FIG. 2.
  • FIG. 8 is a structural diagram of a terminal provided by some embodiments of the present disclosure. As shown in FIG. 8, the terminal 800 includes:
  • the first sending module 801 is configured to send the first SRS to the network side device on the N sounding reference signal SRS resource sets through the N antenna groups, where N is an integer greater than 1;
  • the first receiving module 802 is configured to receive a first configuration message sent by a network side device, where the first configuration message is used to configure N timing advances, and the N timing advances respectively correspond to N antenna groups, and N is greater than An integer of 1.
  • the N timing advances respectively correspond to N SRS resource sets.
  • the terminal 800 further includes:
  • the first update module 803 determines and updates the N timing advances according to the adjustment values of the N timing advances and the N timing advances maintained by the terminal.
  • the initial timing advances of the N timing advances are the same.
  • the terminal 800 further includes:
  • the second sending module 804 is configured to send a first signal to the network side device through one or more antennas in the N antenna groups;
  • the second receiving module 805 is configured to receive the first timing advance sent by the network side device, where the first timing advance is the timing advance obtained by the network side device through the first signal measurement, and the N number The initial timing advance of the timing advance is the first timing advance sent by the network side device.
  • the terminal 800 further includes at least one of the following:
  • the third sending module 806 is configured to send the PUSCH signal according to the timing advance of the PUSCH, where the timing advance of the PUSCH is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUSCH, Or, the timing corresponding to the antenna group transmitting the PUSCH signal is advanced;
  • the fourth sending module 807 is configured to send the PUCCH signal according to the timing advance of the PUCCH, where the timing advance of the PUCCH is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUCCH, Or, the timing corresponding to the antenna group transmitting the PUCCH signal is advanced;
  • the fifth sending module 808 is configured to send the second SRS in advance according to the updated timing.
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUSCH among the N timing advances; and / or
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUCCH among the N timing advances.
  • the terminal 800 further includes at least one of the following:
  • the sixth sending module 809 is configured to send a third SRS to the network side device on the N SRS resource sets respectively through the N antenna groups;
  • the third receiving module 8010 is configured to receive a second configuration message sent by the network-side device, where the second configuration message is used to indicate an adjustment value of the first timing advance, where the first timing advance is the network The timing advance determined by the side device through the third SRS measurement on the N SRS resource sets;
  • the second update module 8011 is configured to determine and update the first timing advance according to the adjustment value of the first timing advance and the first timing advance maintained by the terminal.
  • the first timing advance is a PUSCH timing advance
  • the first timing advance maintained by the terminal is a timing advance corresponding to an SRS associated with the PUSCH maintained by the terminal.
  • the aforementioned terminal 800 in this embodiment may be a terminal of any implementation manner in the method embodiments in some embodiments of the present disclosure, and any implementation manner of the terminal in the method embodiments in some embodiments of the present disclosure may be
  • the foregoing terminal 800 in this embodiment realizes and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 13 is a structural diagram of a network side device provided by some embodiments of the present disclosure.
  • the network side device 1300 includes:
  • the first measurement module 1301 is configured to measure the first SRS sent by the terminal on the N SRS resource sets through the N antenna groups respectively, and determine N timing advances, where N is an integer greater than 1.
  • the first sending module 1302 is configured to send a first configuration message to the terminal, where the first configuration message is used to configure the N timing advances, and the N timing advances respectively correspond to N antenna groups, where N is An integer greater than 1.
  • the N timing advances respectively correspond to N SRS resource sets.
  • the first configuration message is used to indicate the adjustment values of the N timing advances, so that the terminal is based on the adjustment values of the N timing advances and the N timing advances maintained by the terminal , Determine and update the N timing advances.
  • the initial timing advances of the N timing advances are the same.
  • the network side device 1300 further includes:
  • the second measurement module 1303 is configured to measure the first signal sent by the terminal through one or more antennas in the N antenna groups, and determine the first timing advance;
  • the second sending module 1304 is configured to send the first timing advance to the terminal, where the initial timing advances of the N timing advances are the first timing advance sent by the network side device.
  • the network side device 1300 further includes at least one of the following:
  • the first receiving module 1305 is configured to receive the PUSCH signal sent by the terminal according to the timing advance of the PUSCH, where the timing advance of the PUSCH is: the timing advance indicated by the network side device, or the SRS associated with the PUSCH The corresponding timing advance, or the timing advance corresponding to the antenna group transmitting the PUSCH signal;
  • the second receiving module 1306 is configured to receive the PUCCH signal sent by the terminal according to the timing advance of the PUCCH, where the timing advance of the PUCCH is: the timing advance indicated by the network side device, or the SRS associated with the PUCCH The corresponding timing advance, or the timing advance corresponding to the antenna group transmitting the PUCCH signal;
  • the third receiving module 1307 is configured to receive the second SRS sent in advance by the terminal according to the updated timing.
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUSCH among the N timing advances; and / or
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUCCH among the N timing advances.
  • the network side device 1300 further includes:
  • the second measurement module 1308 is configured to measure the third SRS sent by the terminal on the N SRS resource sets through the N antenna groups to obtain the adjustment value of the first timing advance.
  • a certain timing advance is the timing advance determined by the network side device through the second SRS measurement on the N SRS resource sets and the timing advance changes;
  • the third sending module 1309 is configured to send a second configuration message to the terminal, where the second configuration message is used to indicate the adjustment value of the first timing advance, so that the terminal is based on the adjustment value of the first timing advance And the first timing advance maintained by the terminal, determining and updating the first timing advance.
  • the first timing advance is a PUSCH timing advance
  • the first timing advance maintained by the terminal is a timing advance corresponding to an SRS associated with the PUSCH maintained by the terminal.
  • the above-mentioned network-side device 1300 in this embodiment may be a network-side device in any implementation manner in the method embodiments in some embodiments of the present disclosure.
  • the network-side device in the method embodiments is Any implementation manner can be implemented by the above-mentioned network side device 1300 in this embodiment, and achieve the same beneficial effects, and will not be repeated here.
  • FIG. 17 is a structural diagram of another terminal provided by some embodiments of the present disclosure.
  • the terminal includes: a transceiver 1710, a memory 1720, a processor 1700, and storage in the memory.
  • the transceiver 1710 is configured to send the first SRS to the network side device on the N SRS resource sets through N antenna groups, and N is an integer greater than 1;
  • the transceiver 1710 is further configured to receive a first configuration message sent by the network side device, where the first configuration message is used to configure N timing advances, and the N timing advances correspond to the N antenna groups respectively , Wherein the N timing advances are obtained by the network side device through the first SRS measurement on the N SRS resource sets.
  • the transceiver 1710 may be used to receive and send data under the control of the processor 1700.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1700 and various circuits of the memory represented by the memory 1720 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1710 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 1700 is responsible for managing the bus architecture and general processing, and the memory 1720 can store data used by the processor 1700 when performing operations.
  • the memory 1720 is not limited to only being on the terminal, and the memory 1720 and the processor 1700 may be separated in different geographic locations.
  • the N timing advances respectively correspond to N SRS resource sets.
  • the first configuration message is used to indicate the adjustment values of the N timing advances
  • the transceiver 1710 or the processor 1700 is used to determine the adjustment values of the N timing advances and the information maintained by the terminal.
  • the N timing advances are determined and updated.
  • the initial timing advances of the N timing advances are the same.
  • the transceiver 1710 is further configured to send a first signal to the network side device through one or more antennas in the N antenna groups; and receive the first timing advance sent by the network side device,
  • the first timing advance is a timing advance measured by the network side device through the first signal, and the initial timing advances of the N timing advances are the first timing advance sent by the network side device.
  • the transceiver 1710 is also used for at least one of the following:
  • the PUSCH signal is sent according to the timing advance of the PUSCH, where the timing advance of the PUSCH is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUSCH, or the timing advance corresponding to the PUSCH signal The timing advance corresponding to the antenna group;
  • the terminal sends the PUCCH signal according to the timing advance of the PUCCH, where the timing advance of the PUCCH is: the timing advance indicated by the network-side device, or the timing advance corresponding to the SRS associated with the PUCCH, or the The timing advance corresponding to the antenna group of the PUCCH signal;
  • the terminal sends the second SRS in advance according to the updated timing.
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUSCH among the N timing advances; and / or
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUCCH among the N timing advances.
  • the transceiver 1710 is further configured to send a third SRS to the network-side device on the N SRS resource sets through the N antenna groups, and receive a second configuration message sent by the network-side device The second configuration message is used to indicate the adjustment value of the first timing advance, where the first timing advance is the timing advance determined by the network side device through the third SRS measurement on the N SRS resource sets The timing advance of the change;
  • the transceiver 1710 or the processor 1700 is configured to determine and update the first timing advance according to the adjustment value of the first timing advance and the first timing advance maintained by the terminal.
  • the first timing advance is a PUSCH timing advance
  • the first timing advance maintained by the terminal is a timing advance corresponding to an SRS associated with the PUSCH maintained by the terminal.
  • the above-mentioned terminal in this embodiment may be a terminal of any implementation manner in the method embodiment in some embodiments of the present disclosure, and any implementation manner of the terminal in the method embodiment in some embodiments of the present disclosure may be The foregoing terminal in the embodiment realizes and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 18 is a structural diagram of another network-side device provided by some embodiments of the present disclosure.
  • the network-side device includes: a transceiver 1810, a memory 1820, a processor 1800, and a storage device.
  • the transceiver 1810 is configured to measure the first SRS sent by the terminal on the N SRS resource sets through the N antenna groups, respectively, to determine N timing advances, where N is an integer greater than 1;
  • the transceiver 1810 is further configured to send a first configuration message to the terminal, where the first configuration message is used to configure the N timing advances, and the N timing advances respectively correspond to N antenna groups.
  • the transceiver 1810 can be used to receive and send data under the control of the processor 1800.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1800 and various circuits of the memory represented by the memory 1820 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1810 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 1800 is responsible for managing the bus architecture and general processing, and the memory 1820 can store data used by the processor 1800 when performing operations.
  • the memory 1820 is not limited to being only on the network side device, and the memory 1820 and the processor 1800 can be separated in different geographic locations.
  • the N timing advances respectively correspond to N SRS resource sets.
  • the first configuration message is used to indicate the adjustment values of the N timing advances, so that the terminal is based on the adjustment values of the N timing advances and the N timing advances maintained by the terminal , Determine and update the N timing advances.
  • the initial timing advances of the N timing advances are the same.
  • the transceiver 1810 is further configured to measure the first signal sent by the terminal through one or more antennas in the N antenna groups, determine the first timing advance, and send to the terminal The first timing advance, wherein the initial timing advances of the N timing advances are the first timing advance sent by the network side device.
  • the transceiver 1810 is also used for at least one of the following:
  • the PUSCH timing advance is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUSCH, or send The timing advance corresponding to the antenna group of the PUSCH signal;
  • the timing advance of the PUCCH is: the timing advance indicated by the network side device, or the timing advance corresponding to the SRS associated with the PUCCH, or send The timing advance corresponding to the antenna group of the PUCCH signal;
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUSCH among the N timing advances; and / or
  • the timing advance indicated by the network-side device is the timing advance indicated to the PUCCH among the N timing advances.
  • the transceiver 1810 is further configured to measure the third SRS sent by the terminal on the N SRS resource sets through the N antenna groups to obtain the adjustment value of the first timing advance, where ,
  • the first timing advance is the timing advance determined by the network side device through the second SRS measurement on the N SRS resource sets to change; and the second configuration message is sent to the terminal, the The second configuration message is used to indicate the adjustment value of the first timing advance, so that the terminal determines and updates the first timing advance according to the adjustment value of the first timing advance and the first timing advance maintained by the terminal. Timing advance.
  • the first timing advance is a PUSCH timing advance
  • the first timing advance maintained by the terminal is a timing advance corresponding to an SRS associated with the PUSCH maintained by the terminal.
  • the above-mentioned network-side device in this embodiment may be any of the network-side devices in any of the method embodiments in some embodiments of the present disclosure, and any of the network-side devices in the method embodiments in some embodiments of the present disclosure
  • the implementation manners can be implemented by the above-mentioned network-side device in this embodiment and achieve the same beneficial effects, and will not be repeated here.
  • Some embodiments of the present disclosure further provide a readable storage medium on which a program is stored, and when the program is executed by a processor, the steps in the terminal-side timing advance configuration method provided by some embodiments of the present disclosure are implemented, or, When the program is executed by the processor, the steps in the timing advance configuration method on the network side device side provided by some embodiments of the present disclosure are implemented.
  • the disclosed method and device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be separately physically included, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute part of the information data block processing method described in each embodiment of the present disclosure step.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc., which can store program codes Medium.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in some embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in some embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种定时提前配置方法、终端和网络侧设备,该方法包括:终端通过N个天线组分别在N个SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;所述终端接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置N个定时提前,所述N个定时提前分别与所述N个天线组对应,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源集合上的第一SRS测量得到。

Description

定时提前配置方法、终端和网络侧设备
相关申请的交叉引用
本申请主张在2019年8月2日在中国提交的中国专利申请号No.201910713150.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,涉及一种定时提前配置方法、终端和网络侧设备。
背景技术
一些通信系统(例如:5G系统)中引入终端多天线组(或者称作多天线面板或者多天线端口组)通信,终端的多个天线组可以同时与一个网络侧设备通信,也可以同时与多个网络侧设备通信,也可以支持多天线组之间动态的切换通信。但网络侧只给终端配置一个定时提前,当终端在多天线组中均使用这一个定时提前时,会导致信号接收质量比较差。
发明内容
本公开实施例提供一种定时提前配置方法、终端和网络侧设备,以解决信号接收质量比较差的问题。
本公开的一些实施例提供一种定时提前配置方法,包括:
终端通过N个天线组分别在N个探测参考信号(Sounding Reference Signal,SRS)资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;
所述终端接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置N个定时提前,所述N个定时提前分别与所述N个天线组对应,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源集合上的第一SRS测量得到。
可选的,所述N个定时提前分别与N个SRS资源集合对应。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,所述 方法还包括:
所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
可选的,所述N个定时提前的初始定时提前相同。
可选的,所述方法还包括:
所述终端通过所述N个天线组中的一个或者多个天线,向所述网络侧设备发送第一信号;
所述终端接收所述网络侧设备发送的第一定时提前,所述第一定时提前是所述网络侧设备通过所述第一信号测量得到的定时提前,且所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
可选的,所述方法还包括如下至少一项:
所述终端按照物理上行共享信道(Physical uplink shared channel,PUSCH)的定时提前发送PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
所述终端按照物理上行控制信道(Physical Uplink Control Channel,PUCCH)的定时提前发送PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
所述终端按照更新后的定时提前发送第二SRS。
可选的,在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUSCH的定时提前;和/或
在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUCCH的定时提前。
可选的,所述方法还包括:
所述终端通过所述N个天线组分别在N个SRS资源集合上,向所述网络侧设备发送第三SRS;
所述终端接收所述网络侧设备发送的第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第三SRS测量确定的定时提前发生变化的定时提前;
所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
本公开的一些实施例还提供一种定时提前配置方法,包括:
网络侧设备对终端通过N个天线组分别在N个SRS资源集合上发送的第一SRS进行测量,确定N个定时提前,N为大于1的整数;
所述网络侧设备向所述终端发送第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应。
可选的,所述N个定时提前分别与N个SRS资源集合对应。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,以使得所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
可选的,所述N个定时提前的初始定时提前相同。
可选的,所述方法还包括:
所述网络侧设备对所述终端通过所述N个天线组中的一个或者多个天线发送的第一信号进行测量,确定第一定时提前;
所述网络侧设备向所述终端发送所述第一定时提前,其中,所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
可选的,所述方法还包括如下至少一项:
所述网络侧设备接收所述终端按照PUSCH的定时提前发送的PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
所述网络侧设备接收所述终端按照PUCCH的定时提前发送的PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH 信号的天线组对应的定时提前;
所述网络侧设备接收所述终端按照更新后的定时提前发送的第二SRS。
可选的,在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUSCH的定时提前;和/或
在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUCCH的定时提前。
可选的,所述方法还包括:
所述网络侧设备对所述终端通过所述N个天线组分别在N个SRS资源集合上发送的第三SRS进行测量,以得到第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第二SRS测量确定的定时提前发生变化的定时提前;
所述网络侧设备向所述终端发送第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,以使得所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
本公开的一些实施例还提供一种终端,包括:
第一发送模块,用于通过N个天线组分别在N个探测参考信号SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;
第一接收模块,用于接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置N个定时提前,所述N个定时提前分别与N个天线组对应,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源集合上的第一SRS测量得到。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,所述终端还包括:
第一更新模块,用于依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
本公开的一些实施例还提供一种网络侧设备,包括:
第一测量模块,用于对终端通过N个天线组分别在N个SRS资源集合 上发送的第一SRS进行测量,确定N个定时提前,N为大于1的整数;
第一发送模块,用于向所述终端发送第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应,N为大于1的整数。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,以使得所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
本公开的一些实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机,用于通过N个天线组分别在N个探测参考信号SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;
所述收发机还用于接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源集合上的第一SRS测量得到。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,所述收发机或者所述处理器用于依据所述N个定时提前的调整值和所述终端维护的所述N个定时提,确定并更新所述N个定时提前。
可选的,所述N个定时提前的初始定时提前相同。
可选的,所述收发机还用于如下至少一项:
按照PUSCH的定时提前发送PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
按照PUCCH的定时提前发送PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
按照更新后的定时提前发送第二SRS。
可选的,所述收发机还用于通过所述N个天线组分别在N个SRS资源集合上,向所述网络侧设备发送第三SRS,以及接收所述网络侧设备发送的 第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第三SRS测量确定的定时提前发生变化的定时提前;
所述收发机或者所述处理器用于依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
本公开的一些实施例还提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机,用于对终端通过N个天线组分别在N个SRS资源集合上发送的第一SRS进行测量,确定N个定时提前,N为大于1的整数;
所述收发机还用于向所述终端发送第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,以使得所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
可选的,所述N个定时提前的初始定时提前相同。
可选的,所述收发机还用于如下至少一项:
接收所述终端按照PUSCH的定时提前发送的PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
接收所述终端按照PUCCH的定时提前发送的PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
接收所述终端按照更新后的定时提前发送的第二SRS。
可选的,所述收发机还用于:
对所述终端通过所述N个天线组分别在N个SRS资源集合上发送的第三SRS进行测量,以得到第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第二SRS测量确定的定 时提前发生变化的定时提前;
向所述终端发送第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,以使得所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
本公开的一些实施例还提供一种可读存储介质,其上存储有程序,该程序被处理器执行时实现本公开的一些实施例提供的终端侧的定时提前配置方法中的步骤,或者,该程序被处理器执行时实现本公开的一些实施例提供的网络侧设备侧的定时提前配置方法中的步骤。
本公开的一些实施例中,终端通过N个天线组分别在N个SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;所述终端接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置N个定时提前,所述N个定时提前分别与所述N个天线组对应,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源集合上的第一SRS测量得到。由于配置多个天线组分别对应的定时提前,这样各天线组可以使用各自对应的定时提前,从而提升信号接收质量。
附图说明
图1是本公开的一些实施例可应用的网络结构示意图;
图2是本公开的一些实施例提供的定时提前配置方法的流程图;
图3是本公开的一些实施例提供的定时提前配置的举例示意图;
图4是本公开的一些实施例提供的MAC CE的示意图;
图5是本公开的一些实施例提供的MAC CE的另一示意图;
图6是本公开的一些实施例提供的MAC CE的另一示意图;
图7是本公开的一些实施例提供的定时提前配置方法的另一流程图;
图8是本公开的一些实施例提供的终端的结构图;
图9是本公开的一些实施例提供的终端的另一结构图;
图10是本公开的一些实施例提供的终端的另一结构图;
图11是本公开的一些实施例提供的终端的另一结构图;
图12是本公开的一些实施例提供的终端的另一结构图;
图13是本公开的一些实施例提供的网络侧设备的结构图;
图14是本公开的一些实施例提供的网络侧设备的另一结构图;
图15是本公开的一些实施例提供的网络侧设备的另一结构图;
图16是本公开的一些实施例提供的网络侧设备的另一结构图;
图17是本公开的一些实施例提供的终端的另一结构图;以及
图18是本公开的一些实施例提供的网络侧设备的另一结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1是本公开的一些实施例可应用的网络结构示意图,如图1所示,包括终端11和网络侧设备12,其中,终端11包括多个天线组,其中,附图以终端11包括两个天线组为例,天线组1与网络侧设备12之间存在传播路线1,传播路线1的时延为时延1,天线组2与网络侧设备12之间存在传播路线2,传播路线2的时延为时延2。需要说明的是,附图中仅是以两个天线组与同一个网络侧设备进行通信,对此不作限定,本公开的一些实施例中,终端11的多个天线组可以同时与一个网络侧设备12通信,也可以同时与多个网络侧设备12通信,也可以支持多天线组之间动态的切换通信。
进一步的,终端11可以是用户终端(User Equipment,UE)或者其他终端设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)、机器人、车辆等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端的具体类型。网络侧设备12可以是基站,例如:宏站、LTE eNB、5G NR NB等;网络侧设备也可以是小站,如低功率节点(Low Power Node,LPN)、pico、femto等小站,或者网络侧设备可以接入点(Access Point,AP);网络侧设备也可以是中央单元(Central Unit,CU),或者可以是传输接收点(Transmission Reception Point,TRP)等网络节点。需要说明的是,在本公开的一些实施例中并不限定网络侧设备的具体类型。
请参见图2,图2是本公开的一些实施例提供的一种定时提前配置方法的流程图,如图2所示,包括以下步骤:
201、终端通过N个天线组分别在N个SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;
202、所述终端接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与所述N个天线组对应,,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源集合上的第一SRS测量得到。
本公开的一些实施例中,天线组可以称作天线面板(antenna panel)或者天线端口组(antenna port group),也就是说,上述N个天线组也可以是N个天线面板(antenna panel),或者N个天线端口组(antenna port group)。
其中,上述N个定时提前分别与N个SRS资源集合(resource set)对应。具体可以是,天线组与SRS resource set是一一对应的,因此,上述N个定时提前也可以理解为分别与N个SRS resource set对应,即定时提前与SRS resource set一一对应。
另外,本公开的一些实施例中,每个定时提前可以有一个定时提前标识(ID),不同定时提前的定时提前标识不同,一个定时提前也可以称作一个定时提前标识的定时提前。例如:网络侧设备可以在为终端配置的RRC信息单元服务小区配置(RRC IE ServingCellConfig)为终端配置多个定时提前ID,每个定时提前ID对应一个天线组,或者对应一个SRS resource set。
且上述N个SRS resource set可以是网络侧设备配置给终端,且每个SRS resource set可以配置一个定时提前ID,这样终端发送SRS时,每个SRS resource set从不同的天线组发送,从而测量到上述N个定时提前。
由于终端通过所述N个天线组分别在N个SRS resource set上,向所述网络侧设备发送第一SRS,从而网络侧设备可以测量到不同的天线组(或者称作不同的SRS resource set)的定时提前。
需要说明的是,本公开的一些实施例中并不限定网络侧设备测量SRS得到定时提前的方式,具体可以参见协议中已定义的方式,或者可以是采用后续协议中新引入的方式等。
通过步骤201可以实现网络侧设备通过多个SRS resource set上的SRS测量得到多个天线组的定时提前,并指示给终端,从而终端可以根据指示的定时提前发送对应的上行信号。
另外,上述N个定时提前分别与N个天线组对应可以是,定时提前与天线组是一一对应关系,但在实际应用中,不同天线组对应的定时提前的值可以是相同或者不同的,例如:天线组1对应的定时提前1和天线组2对应的定时提前2的定时提前值是相同或者不同的。
另外,上述第一配置消息可以是无线资源控制(Radio Resource Control,RRC)消息,或者媒体接入控制的控制单元(Media Access Control Control Element,MAC CE)等消息。
需要说明的是,上述第一配置消息用于配置N个定时提前可以是,第一配置消息配置N个定时提前的定时提前值,从而直接更新N个定时提前,或者配置N个定时提前的调整值或者偏移值,以使得终端根据调整值或者偏移值确定并更新这N个定时提前的定时提前。
需要说明的是,本公开的一些实施例中,定时提前可以用N TA表示,或者可以用T TA表示,其中,T TA可以理解为将N TA进行转换后的定时提前值。其中,T TA和N TA之间转换关系可以采用协议中已定义的转换关系,例如:如下转换关系:
T TA=(N TA+N TA,offset)T c
其中,其中,T c=1/(Δf max·N f),Δf max=480·10 3Hz,N f=4096,而N TA,offset的值可以按照相关协议的定义如下:
双工模式 N TAoffset
FDD in FR1 or FR2 0
TDD in FR1 25560
TDD in FR2 13763
需要说明的是,上述T TA和N TA之间转换关系仅是一个举例,本公开的一些实施例对此不作限定,例如:T TA和N TA之间转换关系也可以采用后续协议版本新定义的转换关系。
通过上述可知,本公开的一些实施例中,定时提前可以理解为N TA表示定 时提前,也可以理解为T TA表示定时提前,其中,本公开的一些实施例中主要以N TA进行举例说明。
通过上述步骤可以实现为不同的天线组配置对应的定时提前,从而各天线组可以使用各自对应的定时提前,进而提升信号接收质量。
作为一种可选的实施方式,所述第一配置消息用于指示所述N个定时提前的调整值,所述方法还包括:
所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
其中,上述N个定时提前可以理解为为N个定时提前标识的定时提前,上述终端维护的所述N个定时提前可以是终端维护的所述N个定时提前标识的定时提前,例如:在上述更新前终端最后一次更新的定时提前,或者称作终端在执行上述更新之前终端当前维护的定时提前。
另外,上述N个定时提前的调整值可以是网络侧设备通过N个SRS resource set上的第一SRS测量得到,例如:网络侧设备通过N个SRS resource set上的第一SRS测量得到的各天线组的定时提前与前次测量的各天线组的定时提前,以确定各个天线组的定时提前的调整值(也可以称作偏移值),即相比前一次定时提前的偏移值。
例如:当网络侧设备为SRS resource set配置了定时提前ID时,网络侧设备根据每个SRS resource set可以确定对应的定时提前ID的定时提前,当网络侧设备没有为SRS resource set配置定时提前ID时,网络侧设备根据每个SRS resource set可以确定对应SRS resource set ID的定时提前,以确定各SRS resource set对应的定时提前(或者称作各天线组对应的定时提前)。之后,网络侧设备将测量得到的各个天线组的定时提前通知终端,例如:可以通过MAC CE,将定时提前ID对应的定时提前命令指示给终端,也可以通过MAC CE,将SRS resource set ID对应的定时提前命令通知给终端。从而终端根据网络侧设备的通知,可以确定和维护各个定时提前ID或者各个SRS resource set ID对应的定时提前(或者,各个天线组对应的定时提前)。
进一步的,上述N个定时提前的初始定时提前可以相同。
其中,上述定时提前的初始定时提前可以是,定时提前的定时提前初始 值,或者可以是定时提前的调整值(TA)的初始值。
例如:所述方法还包括:
所述终端通过所述N个天线组中的一个或者多个天线,向所述网络侧设备发送第一信号;
所述终端接收所述网络侧设备发送的第一定时提前,所述第一定时提前是所述网络侧设备通过所述第一信号测量得到的定时提前,且所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
其中,上述第一信号可以是随机接入信道(Random Access Channel,RACH),当然,对此不作限定,也可以是其他上行信号,例如:SRS等。
另外,上述一个或者多个天线可以是一个或者多个天线组中的天线。例如:终端可以通过某个天线组向网络侧设备发送RACH,网络侧设备根据终端发送的RACH测量得到该终端的定时提前,然后网络侧设备通过随机接入响应(Random Access Response,RAR)中的定时提前命令(Timing Advance Command)为终端配置该定时提前,该定时提前是各个天线组的定时提前的初始值。
该实施方式中,由于N个定时提前的初始定时提前可以相同,从而可以使得各定时提前以相同的初始定时提前进行开始维护,降低复杂度。当然,本公开的一些实施例中并不限定N个定时提前的初始定时提前是相同,在一些实施方式也可以允许是不同的。
另外,本公开的一些实施例中,N个定时提前标识可以为N个定时提前子组(Timing Advance sub-Group,TASG)标识,从而每个TASG标识对应一个天线组。另外,定时提前也可以称作TASG,或者TASG的定时提前。
其中,网络侧设备可以通过RRC信令为终端配置N个TASG,从而终端可以维护N个定时子组的定时提前,每个定时提前子组可以对应一个天线组,定时提前子组的数目由RRC配置,也可以根据终端的能力确定,或者根据终端的上报确定,每个定时提前子组有一个编号,可以称为定时提前子组ID。
本公开的一些实施例中,TASG也可以是天线面板的分组或者天线组,即可以表征不同的天线组,每个天线组的定时提前可以不同。而TASG ID,也可以是天线面板ID,天线组ID,用于终端区分不同的天线组,每个天线组 的定时提前可以不同。
作为一种可选的实施方式,上述还包括如下至少一项:
所述终端按照PUSCH的定时提前发送PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
所述终端按照PUCCH的定时提前发送PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
所述终端按照更新后的定时提前发送第二SRS。
其中,上述在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前可以为在N个定时提前中指示给所述PUSCH的定时提前。例如:对于PUSCH,网络侧设备可以通过下行控制信息(Downlink Control Information,DCI)配置PUSCH的TASG ID。
进一步的,可以在DCI中配置PUSCH的TASG ID,例如:一种可能的方案:DCI中只有一个TASG ID字段,即该TASG ID字段指示的N TA对所有的传输块(transmission block)都是相同的;另一种可能的方案:DCI中每个传输块(transmission block)有一个TASG ID字段,即每个传输块(transmission block)的N TA是不同的,这是因为对于多天线组同时传输,每个天线组可能采用不同的传输块(transmission block)传输,则每个传输块的定时提前是不同的。
另外,上述实施方式中,还可以实现通过相关联的导频(例如:SRS)获得TASG ID,通过TASG ID确定定时提前。例如:定时提前的关联导频是SRS,如通过SRS资源指示(SRS resource indicator,SRI)指示的SRS或者通过传输配置指示(Transmission Configuration Indication,TCI)指示的准共址(Quasi-colocation,QCL)的导频为SRS,则PUSCH的TASG ID与该SRS配置的TASG ID相同,可以不额外指示。
需要说明的是,上述仅是以定时提前标识为TASG ID进行举例,对此并 不作限定。
而在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前可以为在N个定时提前中指示给所述PUCCH的定时提前。例如:对于PUCCH,可以通过高层信令配置TASG ID,也可以通过物理层信息配置TASG ID,终端通过TASG ID确定定时提前。
以通过RRC IE配置为例:
如每个PUCCH-ResourceSet配置一个TASG ID,具体如下:
Figure PCTCN2020106151-appb-000001
或者每个PUCCH资源(PUCCH-Resource)配置一个TASG ID,具体如下:
Figure PCTCN2020106151-appb-000002
Figure PCTCN2020106151-appb-000003
以通过DCI指示为例:
在标准协议中,DCI格式(DCI format)1_0和1_1中通过PUCCH资源指示(PUCCH resource indicator)指示PUCCH的资源,为了指示发送该PUCCH的定时提前,本公开的一些实施例中,可以在DCI中增加PUCCH TASG-Id的指示(PUCCH tasg indicator),用于指示PUCCH的发送定时提前。
对于Format 1_0或者Format 1_1,PUCCH resource indicator可以是3比特,而PUCCH tasg indicator可以是2比特,当然,对此不作限定。
上述终端按照更新后的定时提前发送第二SRS可以是,终端按照SRS对应的定时提前更新的值发送对应的SRS。例如:终端接收到MAC CE中的调整值(TA)命令后,可以按照更新之后的定时提前发送SRS。
需要说明的是,本公开的一些实施例中,第一SRS和第二SRS,以及后面的第三SRS可以是相同的SRS或者不同的SRS,第一、第二和第三仅是为了区分不同时间单元发送的SRS,时间单元可以是子帧(subframe),也可以是时隙(slot),也可以是符号(symbol),不做限定。
上述实施方式中,可以实现当网络侧设备指示终端PUSCH发送时的定时提前ID时,终端可以根据指示的定时提前ID确定PUSCH的发送定时提前,当网络侧设备没有指示终端PUSCH发送时的定时提前ID时,终端可以根据PUSCH关联的SRS对应的定时提前ID或者SRS resource set ID或者天线组确定PUSCH的发送定时提前。
当网络侧设备指示终端PUCCH发送时的定时提前ID时,终端可以根据指示的定时提前ID确定PUCCH的发送定时提前,当网络侧设备有通知终端PUCCH发送时的定时提前ID时,终端可以确定发送该PUCCH的天线组是与哪个SRS resource set的发送天线组是相同的,从而根据SRS resource set ID确定定时提前。如果终端无法确定对应的SRS resource set ID,或者终端还没有发送SRS,或者终端还没有获得SRS resource set对应的定时提前命令,则终端采用网络侧设备发送的定时提前组(Timing Advance Group,TAG)MAC CE指示的定时提前发送PUCCH。
下面结合图3对本公开的一些实施例提供的上述多种实施方式进行举例 说明:
如图3所示,终端向网络侧设备发送RACH,网络侧设备根据RACH计算TA初始值,即N个定时提前标识(或者TASG ID)的调整值的初始值,当然,也可以是计算N个定时提前标识的定时提前初始值;
网络侧设备通过随机接入响应(Random Access Response,RAR)发送TA初始值的指示;
终端根据RAR的通知确定TA的初始值,即确定N个定时提前标识(或者TASG ID)的调整值的初始值,或者确定N个定时提前标识的定时提前初始值;
网络侧设备为终端配置多个SRS resource set;
终端采用不同的天线组在不同的SRS resource set上发送SRS;
网络侧设备根据接收到的SRS确定各天线组的定时提前的调整值(TA值);
网络侧设备向终端指示各天线组的TA值;
终端根据指示的TA值维护各定时提前标识(或者TASG ID)的定时提前,即确定并更新各定时提前标识(或者TASG ID)的定时提前;
之后,终端按照指示的PUSCH和PUCCH的定时提前标识(或者TASG ID)确定发送定时提前,发送PUSCH和/或PUCCH。
作为一种可选的实施方式,所述方法还包括:
所述终端通过所述N个天线组分别在N个SRS资源集合上,向所述网络侧设备发送第三SRS;
所述终端接收所述网络侧设备发送的第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第三SRS测量确定的定时提前发生变化的定时提前;
所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
其中,上述第一定时提前可以是一个或者多个,例如:当测量到多个定时提前发生变化时,网络侧设备可以通过上述第二配置消息配置这多个定时 提前的调整值。
该实施方式中,可以实现只配置发生变化的定时提前的调整值,从而降低配置开销。具体的,该实施方式中,可以应用于在步骤201配置N个定时提前之后,后续更新这N个定时提前的场景。
进一步的,所述第一定时提前可以为PUSCH的定时提前,所述终端维护的所述第一定时提前为,所述终端维护的所述PUSCH关联的SRS对应的定时提前。
其中,这里PUSCH关联的SRS对应的定时提前可以是PUSCH关联的SRS对应的SRS resource set或者天线组对应的定时提前。
当然,上述第一定时提前也可以为PUCCH的定时提前,对此不作限定。
下面以三个具体的实施例对本公开的一些实施例提供的定时提前配置方法进行举例说明:
实施例1
该实施例通过高层信令配置在不同天线组上发送上行信号的定时提前N TA,具体可以包括如下:
通过RRC信令为终端配置TASG,终端维护多个定时提前子组的定时提前,每个TASG可以对应一个天线组,TASG的数目由RRC配置,可以根据终端的能力确定,或者根据终端的上报确定。每个TASG有一个编号,可以称为定时提前子组ID。
本实施例中的TASG可以参见前面描述的TASG,此处不作赘述。
可以在RRC配置中增加TASG的配置,包括但不限于的例子如下:
Figure PCTCN2020106151-appb-000004
TASG的数目与终端的天线组数有关,maxNrofTASGs=4;
终端通过某个天线组向网络侧设备发送RACH,网络侧设备根据终端发送的RACH测量得到该终端的定时提前,然后基站通过RAR中的定时提前 命令Timing Advance Command为终端配置该定时提前,该定时提前是各个天线组的定时提前的初始值。
基站为终端配置多个SRS resource set,并为每个SRS resource set配置一个定时提前子组ID。终端在不同的天线组上发送SRS resource set。基站通过接收各个SRS resource set,测量得到各个TASG ID对应的定时提前,并确定各个TASG ID对应的定时提前与前次测量的各天线组的定时提前(各个天线组的定时提前的初始值可以为根据RACH测量得到的定时提前)确定各个天线组板定时提前的调整值。
每个TASG定时提前命令字由MAC CE配置。MAC层通过Timing Advance Command MAC CE配置每个TASG-Id对应的定时提前。终端收到MAC CE之后,确定各个定时提前子组的定时提前。
MAC CE可以一次更新所有TASG的定时提前,也可以更新部分TASG的定时提前,如下如所示,则每个定时子组的定时提前为:
N TA_new=N TA_old+(T A-k)·16·64/2 μ
其中,N TA_old为该定时子组维护的定时提前,N TA_new为该定时子组更新后的定时提前,T A表示调整值,k的取值与TA字段的bit数有关,公式可以为下面的任意一种:
k=2 NrOfTaBits/2-1
k=2 NrOfTaBits-1-1
k=2 NrOfTaBits/2
k=2 NrOfTaBits-1
其中, NrOfTaBits表示TA字段的bit数,举例来说,当TA字段的比特数为6bit时,k可以为31或者32,当TA字段的比特数为5bit时,k可以为15或者16。
需要说明的是,上述T A表示的调整值仅是举例说明,本公开的一些实施例中,网络侧设备配置的调整值也可以是(T A-k)·16·64/2 μ,另外,上述公式中的(T A-k)·16·64/2 μ可以理解为将T A转换为N TA维度的定时提前的调整值,本公开的一些实施例中,T A转换为N TA维度的定时提前的调整值的方式不作限定,例如:可以采用协议中已定义的上述关系,也可以采用后续协议版本中新定义的转换关系。
另外,上述MAC CE的格式可以参见图4所示。
该实施方式中的PUSCH、PUCCH和SRS的定时提前,以及传输可以参见上面实施描述的相关描述,此处不作赘述。
实施例2
该实施例中,通过高层信令(例如:RRC IE或者MAC CE)配置不同SRS resource set的定时提前,SRS resource set ID可以用于区分天线组。
终端通过某个天线组向网络侧设备发送RACH,基站根据终端发送的RACH测量得到该终端的定时提前,然后网络侧设备通过RAR中的定时提前命令Timing Advance Command为终端配置该定时提前,该定时提前是各个天线组的定时提前的初始值。
网络侧设备为终端配置多个SRS resource set。终端在不同的天线组上发送SRS resource set。网络侧设备通过接收各个SRS resource set,测量得到各个SRS resource set对应的定时提前,并确定各个SRS resource set对应的定时提前与前次测量的定时提前(每个SRS resource set的定时提前的初始值为根据RACH测量得到的定时提前)确定各个SRS resource set定时提前的调整值。
当网络侧设备检测到某一个SRS resource set的定时提前存在偏差时,需要通过高层信令通知该SRS resource set对应的定时提前偏移值。
方案一:通过MAC CE配置
通过MAC CE,为每个SRS resource set配置定时提前命令,其中,该MAC CE如图5或图6所示。
终端收到该MAC CE之后,确定对应该SRS resource set的天线组的发送定时提前。
方案二:采用RRC IE配置,可以如下:
Figure PCTCN2020106151-appb-000005
Figure PCTCN2020106151-appb-000006
终端收到该RRC信息元素(Information Element,IE)之后,确定对应发送该SRS resource set的天线组的发送定时提前。
对于PUSCH,可以通过相关联的SRS resource set ID获得定时提前。
对于PUCCH,终端可以确定发送该PUCCH的天线组是与哪个SRS resource set的发送天线组是相同的,从而确定定时提前。如果终端无法确定对应的SRS resource set ID,或者终端还没有发送SRS,或者终端还没有获得SRS resource set对应的定时提前命令,则终端采用TAG MAC CE指示的定时提前发送PUCCH。
实施例3
该实施例中,通过物理层信令DCI来指示PUSCH的定时提前的调整量
在DCI中增加TA字段,用于指示PUSCH的定时提前与关联导频的定时提前的偏移值。
终端通过某个天线组向基站发送RACH,网络侧设备根据终端发送的RACH测量得到该终端的定时提前,然后网络侧设备通过RAR中的定时提前命令Timing Advance Command为终端配置该定时提前,该定时提前为初始值。
网络侧设备为终端配置多个SRS resource set。网络侧设备在不同的天线组上发送SRS resource set对应的SRS。网络侧设备通过在各个SRS resource set接收SRS,测量得到各个SRS resource set对应的定时提前。当网络侧设备接收SRS测量得到的定时提前发生变化时,需要通知与该PUSCH相关联的PUSCH的定时时延发生改变,则在DCI中增加TA字段,用于指示PUSCH的定时提前与关联导频的定时提前的调整值。终端接收到该DCI中信息后,根据SRS的定时提前和DCI中指示的定时提前调整值,确定PUSCH的定时提前。
N TA_PUSCH=N TA_associatedSRS+(T A-k)·16·64/2 μ
其中,k的取值如前所述,N TA_associatedSRS表示的是关联导频SRS的发送定时提前,N TA_PUSCH表示PUSCH的定时提前,T A表示调整值。
同样,上述T A表示的调整值仅是举例说明,本公开的一些实施例中,网络侧设备配置的调整值也可以是(T A-k)·16·64/2 μ,另外,上述公式中的 (T A-k)·16·64/2 μ可以参见上述实施方式的相应说明,此处不作赘述。
可能的方案一:DCI中只有一个TA字段,即该TA字段指示的N TA对所有的传输块(transmission block)都是相同的
可能的方案二:DCI中每个传输块(transmission block)有一个TA字段,即每个传输块(transmission block)的N TA是不同的,这是因为对于多天线组同时传输,每个天线组可能采用不同的传输块(transmission block)传输,则每个传输块的定时提前是不同的。
对于PUCCH,由于终端可以判断PUCCH的发送是否与PUSCH采用相同的发送天线组,如果相同,则采用与PUSCH相同的定时提前,否则,PUCCH的定时提前不变。
本公开的一些实施例可以实现:
当终端存在多个天线组时,不同的天线组对应的定时提前不同,可以给每个上行信号指示不同的定时提前,具体如下:
网络为终端配置不同的定时提前子组,通过MAC CE指示每个定时提前子组的定时提前,终端通过MAC CE确定每个定时提前子组的定时提前;
网络为PUSCH、PUCCH配置定时提前子组ID,终端根据定时提前子组ID,确定PUSCH、PUCCH发送的定时提前;
网络通过MAC CE配置不同的SRS resource set的定时提前,终端根据SRS resource set ID确定PUSCH,PUCCH的发送定时提前;
网络通过DCI指示PUSCH的定时提前。
本公开的一些实施例可以支持对于多天线组多定时提前的指示,提高数据接收质量。
请参见图7,图7是本公开的一些实施例提供的一种定时提前配置方法的流程图,如图7所示,包括以下步骤:
701、网络侧设备对终端通过N个天线组分别在N个SRS资源集合上发送的第一SRS进行测量,确定N个定时提前,N为大于1的整数;
702、所述网络侧设备向所述终端发送第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应。
可选的,所述N个定时提前分别与N个SRS资源集合对应。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,以使得所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
可选的,所述N个定时提前的初始定时提前相同。
可选的,所述方法还包括:
所述网络侧设备对所述终端通过所述N个天线组中的一个或者多个天线发送的第一信号进行测量,确定第一定时提前;
所述网络侧设备向所述终端发送所述第一定时提前,其中,所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
可选的,所述方法还包括如下至少一项:
所述网络侧设备接收所述终端按照PUSCH的定时提前发送的PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
所述网络侧设备接收所述终端按照PUCCH的定时提前发送的PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
所述网络侧设备接收所述终端按照更新后的定时提前发送的第二SRS。
可选的,在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUSCH的定时提前;和/或
在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUCCH的定时提前。
可选的,所述方法还包括:
所述网络侧设备对所述终端通过所述N个天线组分别在N个SRS资源集合上发送的第三SRS进行测量,以得到第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第二SRS 测量确定的定时提前发生变化的定时提前;
所述网络侧设备向所述终端发送第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,以使得所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
可选的,所述第一定时提前为PUSCH的定时提前,所述终端维护的所述第一定时提前为,所述终端维护的所述PUSCH关联的SRS对应的定时提前。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图8,图8是本公开的一些实施例提供的一种终端的结构图,如图8所示,终端800包括:
第一发送模块801,用于通过N个天线组分别在N个探测参考信号SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;
第一接收模块802,用于接收网络侧设备发送的第一配置消息,所述第一配置消息用于配置N个定时提前,所述N个定时提前分别与N个天线组对应,N为大于1的整数。
可选的,所述N个定时提前分别与N个SRS资源集合对应。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,如图9所示,终端800还包括:
第一更新模块803,依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
可选的,所述N个定时提前的初始定时提前相同。
可选的,如图10所示,终端800还包括:
第二发送模块804,用于通过所述N个天线组中的一个或者多个天线,向所述网络侧设备发送第一信号;
第二接收模块805,用于接收所述网络侧设备发送的第一定时提前,所述第一定时提前是所述网络侧设备通过所述第一信号测量得到的定时提前,且所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
可选的,如图11所示,终端800还包括如下至少一项:
第三发送模块806,用于按照PUSCH的定时提前发送PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
第四发送模块807,用于按照PUCCH的定时提前发送PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
第五发送模块808,用于按照更新后的定时提前发送第二SRS。
可选的,在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUSCH的定时提前;和/或
在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUCCH的定时提前。
可选的,如图12所示,终端800还包括如下至少一项:
第六发送模块809,用于通过所述N个天线组分别在N个SRS资源集合上,向所述网络侧设备发送第三SRS;
第三接收模块8010,用于接收所述网络侧设备发送的第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第三SRS测量确定的定时提前发生变化的定时提前;
第二更新模块8011,用于依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
可选的,所述第一定时提前为PUSCH的定时提前,所述终端维护的所述第一定时提前为,所述终端维护的所述PUSCH关联的SRS对应的定时提前。
需要说明的是,本实施例中上述终端800可以是本公开的一些实施例中 方法实施例中任意实施方式的终端,本公开的一些实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端800所实现,以及达到相同的有益效果,此处不再赘述。
请参见图13,图13是本公开的一些实施例提供的一种网络侧设备的结构图,如图13所示,网络侧设备1300包括:
第一测量模块1301,用于对终端通过N个天线组分别在N个SRS资源集合上发送的第一SRS进行测量,确定N个定时提前,N为大于1的整数;
第一发送模块1302,用于向所述终端发送第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应,N为大于1的整数。
可选的,所述N个定时提前分别与N个SRS资源集合对应。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,以使得所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
可选的,所述N个定时提前的初始定时提前相同。
可选的,如图14所示,网络侧设备1300还包括:
第二测量模块1303,用于对所述终端通过所述N个天线组中的一个或者多个天线发送的第一信号进行测量,确定第一定时提前;
第二发送模块1304,用于向所述终端发送所述第一定时提前,其中,所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
可选的,如图15所示,网络侧设备1300还包括如下至少一项:
第一接收模块1305,用于接收所述终端按照PUSCH的定时提前发送的PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
第二接收模块1306,用于接收所述终端按照PUCCH的定时提前发送的PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
第三接收模块1307,用于接收所述终端按照更新后的定时提前发送的第二SRS。
可选的,在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUSCH的定时提前;和/或
在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUCCH的定时提前。
可选的,如图16所示,网络侧设备1300还包括:
第二测量模块1308,用于对所述终端通过所述N个天线组分别在N个SRS资源集合上发送的第三SRS进行测量,以得到第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第二SRS测量确定的定时提前发生变化的定时提前;
第三发送模块1309,用于向所述终端发送第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,以使得所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
可选的,所述第一定时提前为PUSCH的定时提前,所述终端维护的所述第一定时提前为,所述终端维护的所述PUSCH关联的SRS对应的定时提前。
需要说明的是,本实施例中上述网络侧设备1300可以是本公开的一些实施例中方法实施例中任意实施方式的网络侧设备,本公开的一些实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备1300所实现,以及达到相同的有益效果,此处不再赘述。
请参见图17,图17是本公开的一些实施例提供的另一种终端的结构图,如图17所示,该终端包括:收发机1710、存储器1720、处理器1700及存储在所述存储器1720上并可在所述处理器1700上运行的程序,其中:
所述收发机1710,用于通过N个天线组分别在N个SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;
所述收发机1710还用于接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置N个定时提前,所述N个定时提前分别与所述N个天线组对应,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源集合上的第一SRS测量得到。
其中,收发机1710,可以用于在处理器1700的控制下接收和发送数据。
在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1700代表的一个或多个处理器和存储器1720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1700负责管理总线架构和通常的处理,存储器1720可以存储处理器1700在执行操作时所使用的数据。
需要说明的是,存储器1720并不限定只在终端上,可以将存储器1720和处理器1700分离处于不同的地理位置。
可选的,所述N个定时提前分别与N个SRS资源集合对应。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,收发机1710或者所述处理器1700用于依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
可选的,所述N个定时提前的初始定时提前相同。
可选的,收发机1710还用于通过所述N个天线组中的一个或者多个天线,向所述网络侧设备发送第一信号;以及接收所述网络侧设备发送的第一定时提前,所述第一定时提前是所述网络侧设备通过所述第一信号测量得到的定时提前,且所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
可选的,所述收发机1710还用于如下至少一项:
按照PUSCH的定时提前发送PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
所述终端按照PUCCH的定时提前发送PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
所述终端按照更新后的定时提前发送第二SRS。
可选的,在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUSCH的定时提前;和/或
在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUCCH的定时提前。
可选的,收发机1710还用于通过所述N个天线组分别在N个SRS资源集合上,向所述网络侧设备发送第三SRS,以及接收所述网络侧设备发送的第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第三SRS测量确定的定时提前发生变化的定时提前;
所述收发机1710或者所述处理器1700用于依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
可选的,所述第一定时提前为PUSCH的定时提前,所述终端维护的所述第一定时提前为,所述终端维护的所述PUSCH关联的SRS对应的定时提前。
需要说明的是,本实施例中上述终端可以是本公开的一些实施例中方法实施例中任意实施方式的终端,本公开的一些实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端所实现,以及达到相同的有益效果,此处不再赘述。
请参见图18,图18是本公开的一些实施例提供的另一种网络侧设备的结构图,如图18所示,该网络侧设备包括:收发机1810、存储器1820、处理器1800及存储在所述存储器1820上并可在所述处理器上运行的程序,其中:
所述收发机1810,用于对终端通过N个天线组分别在N个SRS资源集合上发送的第一SRS进行测量,确定N个定时提前,N为大于1的整数;
所述收发机1810还用于向所述终端发送第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应。
其中,收发机1810,可以用于在处理器1800的控制下接收和发送数据。
在图18中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1800代表的一个或多个处理器和存储器1820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1810可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1800负责管理总线架构和通常的处理,存储器1820可以存储处理器1800在执行操作时所使用的数据。
需要说明的是,存储器1820并不限定只在网络侧设备上,可以将存储器1820和处理器1800分离处于不同的地理位置。
可选的,所述N个定时提前分别与N个SRS资源集合对应。
可选的,所述第一配置消息用于指示所述N个定时提前的调整值,以使得所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
可选的,所述N个定时提前的初始定时提前相同。
可选的,所述收发机1810还用于对所述终端通过所述N个天线组中的一个或者多个天线发送的第一信号进行测量,确定第一定时提前,以及向所述终端发送所述第一定时提前,其中,所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
可选的,所述收发机1810还用于如下至少一项:
接收所述终端按照PUSCH的定时提前发送的PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
接收所述终端按照PUCCH的定时提前发送的PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
接收所述终端按照更新后的定时提前发送的第二SRS。
可选的,在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUSCH的定时提前;和/或
在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUCCH的定时提前。
可选的,所述收发机1810还用于对所述终端通过所述N个天线组分别在N个SRS资源集合上发送的第三SRS进行测量,以得到第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第二SRS测量确定的定时提前发生变化的定时提前;以及向所述终端发送第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,以使得所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
可选的,所述第一定时提前为PUSCH的定时提前,所述终端维护的所述第一定时提前的定时提前为,所述终端维护的所述PUSCH关联的SRS对应的定时提前。
需要说明的是,本实施例中上述网络侧设备可以是本公开的一些实施例中方法实施例中任意实施方式的网络侧设备,本公开的一些实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
本公开的一些实施例还提供一种可读存储介质,其上存储有程序,该程序被处理器执行时实现本公开的一些实施例提供的终端侧的定时提前配置方法中的步骤,或者,该程序被处理器执行时实现本公开的一些实施例提供的网络侧设备侧的定时提前配置方法中的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述信息数据块的处理方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开的一些实施例所述功能的模块(例如过程、函数等)来实现本公开的一些实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (31)

  1. 一种定时提前配置方法,包括:
    终端通过N个天线组分别在N个探测参考信号SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;
    所述终端接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置N个定时提前,所述N个定时提前分别与所述N个天线组对应,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源集合上的第一SRS测量得到。
  2. 如权利要求1所述的方法,其中,所述N个定时提前分别与N个SRS资源集合对应。
  3. 如权利要求1所述的方法,其中,所述第一配置消息用于指示所述N个定时提前的调整值,所述方法还包括:
    所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
  4. 如权利要求3所述的方法,其中,所述N个定时提前的初始定时提前相同。
  5. 如权利要求4所述的方法,还包括:
    所述终端通过所述N个天线组中的一个或者多个天线,向所述网络侧设备发送第一信号;
    所述终端接收所述网络侧设备发送的第一定时提前,所述第一定时提前是所述网络侧设备通过所述第一信号测量得到的定时提前,且所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
  6. 如权利要求1至5中任一项所述的方法,还包括如下至少一项:
    所述终端按照物理上行共享信道PUSCH的定时提前发送PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
    所述终端按照物理上行控制信道PUCCH的定时提前发送PUCCH信号, 其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
    所述终端按照更新后的定时提前发送第二SRS。
  7. 如权利要求6所述的方法,其中,在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUSCH的定时提前;和/或
    在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUCCH的定时提前。
  8. 如权利要求1至5中任一项所述的方法,还包括:
    所述终端通过所述N个天线组分别在N个SRS资源集合上,向所述网络侧设备发送第三SRS;
    所述终端接收所述网络侧设备发送的第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第三SRS测量确定的定时提前发生变化的定时提前;
    所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
  9. 一种定时提前配置方法,包括:
    网络侧设备对终端通过N个天线组分别在N个SRS资源集合上发送的第一SRS进行测量,确定N个定时提前,N为大于1的整数;
    所述网络侧设备向所述终端发送第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应。
  10. 如权利要求9所述的方法,其中,所述N个定时提前分别与N个SRS资源集合对应。
  11. 如权利要求9所述的方法,其中,所述第一配置消息用于指示所述N个定时提前的调整值,以使得所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
  12. 如权利要求11所述的方法,其中,所述N个定时提前的初始定时提前相同。
  13. 如权利要求12所述的方法,还包括:
    所述网络侧设备对所述终端通过所述N个天线组中的一个或者多个天线发送的第一信号进行测量,确定第一定时提前;
    所述网络侧设备向所述终端发送所述第一定时提前,其中,所述N个定时提前的初始定时提前为所述网络侧设备发送的第一定时提前。
  14. 如权利要求9至13中任一项所述的方法,还包括如下至少一项:
    所述网络侧设备接收所述终端按照PUSCH的定时提前发送的PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
    所述网络侧设备接收所述终端按照PUCCH的定时提前发送的PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
    所述网络侧设备接收所述终端按照更新后的定时提前发送的第二SRS。
  15. 如权利要求14所述的方法,其中,在所述PUSCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUSCH的定时提前;和/或
    在所述PUCCH的定时提前为所述网络侧设备指示的定时提前的情况下,所述网络侧设备指示的定时提前为在N个定时提前中指示给所述PUCCH的定时提前。
  16. 如权利要求9至13中任一项所述的方法,还包括:
    所述网络侧设备对所述终端通过所述N个天线组分别在N个SRS资源集合上发送的第三SRS进行测量,以得到第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第二SRS测量确定的定时提前发生变化的定时提前;
    所述网络侧设备向所述终端发送第二配置消息,所述第二配置消息用于 指示第一定时提前的调整值,以使得所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
  17. 一种终端,包括:
    第一发送模块,用于通过N个天线组分别在N个SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;
    第一接收模块,用于接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置N个定时提前,所述N个定时提前分别与N个天线组对应,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源集合上的第一SRS测量得到。
  18. 如权利要求17所述的终端,其中,所述第一配置消息用于指示所述N个定时提前的调整值,所述终端还包括:
    第一更新模块,用于依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
  19. 一种网络侧设备,包括:
    第一测量模块,用于对终端通过N个天线组分别在N个SRS资源集合上发送的第一SRS进行测量,确定N个定时提前,N为大于1的整数;
    第一发送模块,用于向所述终端发送第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应,N为大于1的整数。
  20. 如权利要求19所述的网络侧设备,其中,所述第一配置消息用于指示所述N个定时提前的调整值,以使得所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
  21. 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,
    所述收发机,用于通过N个天线组分别在N个探测参考信号SRS资源集合上,向网络侧设备发送第一SRS,N为大于1的整数;
    所述收发机还用于接收所述网络侧设备发送的第一配置消息,所述第一配置消息用于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应,其中,所述N个定时提前为所述网络侧设备通过所述N个SRS资源 集合上的第一SRS测量得到。
  22. 如权利要求21所述的终端,其中,所述第一配置消息用于指示所述N个定时提前的调整值,所述收发机或者所述处理器用于依据所述N个定时提前的调整值和所述终端维护的所述N个定时提,确定并更新所述N个定时提前。
  23. 如权利要求22所述的终端,其中,所述N个定时提前的初始定时提前相同。
  24. 如权利要求21至23中任一项所述的终端,其中,所述收发机还用于如下至少一项:
    按照PUSCH的定时提前发送PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
    按照PUCCH的定时提前发送PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
    按照更新后的定时提前发送第二SRS。
  25. 如权利要求21至23中任一项所述的终端,其中,所述收发机还用于通过所述N个天线组分别在N个SRS资源集合上,向所述网络侧设备发送第三SRS,以及接收所述网络侧设备发送的第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第三SRS测量确定的定时提前发生变化的定时提前;
    所述收发机或者所述处理器用于依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
  26. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,
    所述收发机,用于对终端通过N个天线组分别在N个SRS资源集合上发送的第一SRS进行测量,确定N个定时提前,N为大于1的整数;
    所述收发机还用于向所述终端发送第一配置消息,所述第一配置消息用 于配置所述N个定时提前,所述N个定时提前分别与N个天线组对应。
  27. 如权利要求26所述的网络侧设备,其中,所述第一配置消息用于指示所述N个定时提前的调整值,以使得所述终端依据所述N个定时提前的调整值和所述终端维护的所述N个定时提前,确定并更新所述N个定时提前。
  28. 如权利要求27所述的网络侧设备,其中,所述N个定时提前的初始定时提前相同。
  29. 如权利要求26至28中任一项所述的网络侧设备,其中,所述收发机还用于如下至少一项:
    接收所述终端按照PUSCH的定时提前发送的PUSCH信号,其中,所述PUSCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUSCH关联的SRS对应的定时提前,或者,发送所述PUSCH信号的天线组对应的定时提前;
    接收所述终端按照PUCCH的定时提前发送的PUCCH信号,其中,所述PUCCH的定时提前为:所述网络侧设备指示的定时提前,或者,所述PUCCH关联的SRS对应的定时提前,或者,发送所述PUCCH信号的天线组对应的定时提前;
    接收所述终端按照更新后的定时提前发送的第二SRS。
  30. 如权利要求26至28中任一项所述的网络侧设备,其中,所述收发机还用于:
    对所述终端通过所述N个天线组分别在N个SRS资源集合上发送的第三SRS进行测量,以得到第一定时提前的调整值,其中,所述第一定时提前为所述网络侧设备通过所述N个SRS资源集合上的第二SRS测量确定的定时提前发生变化的定时提前;
    向所述终端发送第二配置消息,所述第二配置消息用于指示第一定时提前的调整值,以使得所述终端依据所述第一定时提前的调整值和所述终端维护的所述第一定时提前,确定并更新所述第一定时提前。
  31. 一种可读存储介质,其上存储有程序,其中,该程序被处理器执行时实现如权利要求1至8中任一项所述的定时提前配置方法中的步骤,或者,该程序被处理器执行时实现如权利要求9至16中任一项所述的定时提前配置 方法中的步骤。
PCT/CN2020/106151 2019-08-02 2020-07-31 定时提前配置方法、终端和网络侧设备 WO2021023103A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20849201.7A EP4009717A4 (en) 2019-08-02 2020-07-31 ADVANCE CONFIGURATION METHOD OF SYNCHRONIZATION, TERMINAL AND NETWORK DEVICE
US17/632,140 US20220279467A1 (en) 2019-08-02 2020-07-31 Timing advance configuration method, terminal and network side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910713150.XA CN112312556A (zh) 2019-08-02 2019-08-02 一种定时提前配置方法、终端和网络侧设备
CN201910713150.X 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021023103A1 true WO2021023103A1 (zh) 2021-02-11

Family

ID=74486591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106151 WO2021023103A1 (zh) 2019-08-02 2020-07-31 定时提前配置方法、终端和网络侧设备

Country Status (4)

Country Link
US (1) US20220279467A1 (zh)
EP (1) EP4009717A4 (zh)
CN (1) CN112312556A (zh)
WO (1) WO2021023103A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231823A1 (zh) * 2022-05-30 2023-12-07 华为技术有限公司 一种通信方法及相关装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116456489A (zh) * 2022-01-07 2023-07-18 北京紫光展锐通信技术有限公司 定时提前确定方法及相关装置
WO2023150934A1 (en) * 2022-02-09 2023-08-17 Qualcomm Incorporated Timing advance group indication based on unified transmission configuration indication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782532A (zh) * 2011-09-07 2014-05-07 Lg电子株式会社 在无线通信系统中将上行信号从用户设备发送至基站的方法及方法
US20170332358A1 (en) * 2016-05-12 2017-11-16 Samsung Electronics Co., Ltd. Method and apparatus for uplink resource assignment for cellular network using unlicensed bands
CN108024325A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 无线通信方法和装置
CN109548133A (zh) * 2017-07-29 2019-03-29 华为技术有限公司 时间提前的管理方法及装置
US20190159156A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Beam-specific timing advance groups

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
WO2018203680A1 (ko) * 2017-05-04 2018-11-08 엘지전자(주) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치
CN112134672A (zh) * 2018-02-13 2020-12-25 Oppo广东移动通信有限公司 探测参考信号传输方法、终端设备和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782532A (zh) * 2011-09-07 2014-05-07 Lg电子株式会社 在无线通信系统中将上行信号从用户设备发送至基站的方法及方法
US20170332358A1 (en) * 2016-05-12 2017-11-16 Samsung Electronics Co., Ltd. Method and apparatus for uplink resource assignment for cellular network using unlicensed bands
CN108024325A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 无线通信方法和装置
CN109548133A (zh) * 2017-07-29 2019-03-29 华为技术有限公司 时间提前的管理方法及装置
US20190159156A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Beam-specific timing advance groups

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4009717A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231823A1 (zh) * 2022-05-30 2023-12-07 华为技术有限公司 一种通信方法及相关装置

Also Published As

Publication number Publication date
US20220279467A1 (en) 2022-09-01
EP4009717A1 (en) 2022-06-08
CN112312556A (zh) 2021-02-02
EP4009717A4 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
CN109150272B (zh) 通信方法、终端及网络设备
WO2021023103A1 (zh) 定时提前配置方法、终端和网络侧设备
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
WO2018127066A1 (zh) 一种上行测量信号的指示方法及装置
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
WO2021027805A1 (zh) 功率控制参数配置方法、终端和网络侧设备
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2018228511A1 (zh) 通信方法、网络设备和终端
WO2019157980A1 (zh) 一种中继传输的方法及装置
WO2018202169A1 (zh) 一种功率控制方法和装置
JP2023101787A (ja) サイドリンクチャネルリソースユニットの構成のための方法および装置
WO2018202137A1 (zh) 一种通信方法及装置
US10764848B2 (en) Inter-base-station synchronization method and device
WO2022171129A1 (zh) 信号参数上报方法、装置及设备
WO2021129768A1 (zh) 指示消息传输方法和通信设备
US20240056247A1 (en) Enhancements for Beam Group Reporting in Multi-TRP Scenarios
US20240080148A1 (en) Csi measurement resource processing method and apparatus, terminal, and readable storage medium
US20240007166A1 (en) Csi feedback method and apparatus, device, and readable storage medium
CN111479326A (zh) 一种信息发送、检测方法及装置
WO2020221040A1 (zh) 通信方法和通信装置
EP4233254A1 (en) Implicit update of activated tci states
WO2024026858A1 (zh) 上行数据发送、上行数据接收装置以及方法
WO2024026859A1 (zh) 上行数据发送、上行数据接收装置以及方法
WO2022206504A1 (zh) Csi反馈方法、相关设备及可读存储介质
WO2024060078A1 (zh) 信息收发方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020849201

Country of ref document: EP

Effective date: 20220302