WO2021027805A1 - 功率控制参数配置方法、终端和网络侧设备 - Google Patents

功率控制参数配置方法、终端和网络侧设备 Download PDF

Info

Publication number
WO2021027805A1
WO2021027805A1 PCT/CN2020/108379 CN2020108379W WO2021027805A1 WO 2021027805 A1 WO2021027805 A1 WO 2021027805A1 CN 2020108379 W CN2020108379 W CN 2020108379W WO 2021027805 A1 WO2021027805 A1 WO 2021027805A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
control parameter
path loss
quasi
location relationship
Prior art date
Application number
PCT/CN2020/108379
Other languages
English (en)
French (fr)
Inventor
孙伟
陈润华
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20852530.3A priority Critical patent/EP4017143A4/en
Priority to US17/635,279 priority patent/US20220295417A1/en
Publication of WO2021027805A1 publication Critical patent/WO2021027805A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method for configuring power control parameters, a terminal, and a network side device.
  • power control parameters are independently configured, and the selection of power control parameters is based on sounding reference signal (Sounding Reference Signal, SRS) resource selection.
  • Sounding Reference Signal Sounding Reference Signal
  • the embodiments of the present disclosure provide a power control parameter configuration method, terminal, and network side equipment to solve the problem of poor uplink transmission performance.
  • Some embodiments of the present disclosure provide a power control parameter configuration method, including:
  • the terminal obtains the quasi co-location relationship for sending uplink signals indicated by the network side device;
  • the terminal determines at least one of a power control parameter and a path loss reference pilot corresponding to the quasi co-location relationship, wherein the power control parameter is associated with large-scale information of the quasi co-location relationship, and the path The loss reference pilot is associated with the reference signal in the quasi co-location relationship;
  • the power control parameter includes at least one of the following:
  • the path loss reference pilot is the downlink pilot
  • the path loss reference pilot is a quasi co-location downlink pilot of the uplink pilot.
  • the path loss compensation factor is the first path loss compensation factor, and the target received power is the first target received power, or, The path loss compensation factor is a second path loss compensation factor, and the target received power is a second target received power;
  • the path loss compensation factor is a third path loss compensation factor
  • the target received power is a third target received power
  • first path loss is greater than the second path loss
  • first path loss compensation factor is greater than the third path loss compensation factor
  • first target received power is greater than the third target received power
  • the second path loss compensation factor is less than the third path loss compensation factor
  • the second target received power is less than the third target received power
  • the power control parameter is a power control parameter carried in the configuration information of the quasi co-location relationship.
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the power control parameters include at least one of the following power control parameters:
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Radio Signal
  • the power control parameters of at least one of the PUCCH, the PUSCH, and the SRS in the configuration information are independently configured, or at least one of the PUCCH, the PUSCH, and the SRS in the configuration information
  • the power control parameter of is a unified configuration power control parameter.
  • the power control parameter is a power control parameter corresponding to an identifier in a plurality of power control parameters
  • the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship
  • the multiple power control parameters are configured in advance Of;
  • the power control parameter is a power control parameter indicated in a power control parameter set by Downlink Control Information (DCI), and the power control parameter set is configured in advance for the quasi co-location relationship.
  • DCI Downlink Control Information
  • the power control parameters include at least one of the following power control parameters:
  • the identifier of the power control parameter of the PUSCH is the identifier configured by the configuration information
  • the identifier of the power control parameter of the SRS is the identifier configured by the configuration information, or the identifier of the power control parameter of the SRS is the identifier configured in the SRS request;
  • the identifier of the power control parameter of the PUCCH is an identifier configured by the configuration information, radio resource control (Radio resource control, RRC), or medium access control control element (MAC CE).
  • RRC Radio resource control
  • MAC CE medium access control control element
  • Some embodiments of the present disclosure also provide a power control parameter configuration method, including:
  • the network side device is configured with at least one of the power control parameter of the quasi co-location relationship and the path loss reference pilot, wherein the power control parameter is determined according to the large-scale information of the quasi co-location relationship, and the path loss
  • the reference pilot frequency is determined according to the reference signal of the quasi co-location relationship
  • the network side device indicates to the terminal the quasi co-location relationship and at least one of the power control parameter and the path loss reference pilot.
  • the power control parameter includes at least one of the following:
  • the path loss reference pilot is the downlink pilot
  • the path loss reference pilot is a quasi co-location downlink pilot of the uplink pilot.
  • the path loss compensation factor is the first path loss compensation factor, and the target received power is the first target received power, or, The path loss compensation factor is a second path loss compensation factor, and the target received power is a second target received power;
  • the path loss compensation factor is a third path loss compensation factor
  • the target received power is a third target received power
  • first path loss is greater than the second path loss
  • first path loss compensation factor is greater than the third path loss compensation factor
  • first target received power is greater than the third target received power
  • the second path loss compensation factor is less than the third path loss compensation factor
  • the second target received power is less than the third target received power
  • the network side device uses the power control parameter according to the configuration information of the quasi co-location relationship;
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the power control parameters include at least one of the following power control parameters:
  • the power control parameters of at least one of the PUCCH, the PUSCH, and the SRS in the configuration information are independently configured, or at least one of the PUCCH, the PUSCH, and the SRS in the configuration information
  • the power control parameter of is a unified configuration power control parameter.
  • the network side device indicates the power control parameter in a plurality of power control parameters through an identifier, the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship, and the multiple power control parameters are Configured in advance; or
  • the network-side device indicates the power control parameter in a power control parameter set through DCI, and the power control parameter set is configured in advance for the quasi co-location relationship.
  • the power control parameters include at least one of the following power control parameters:
  • the identifier of the power control parameter of the PUSCH is the identifier configured by the configuration information
  • the identifier of the power control parameter of the SRS is the identifier configured by the configuration information, or the identifier of the power control parameter of the SRS is the identifier configured in the SRS request;
  • the identifier of the power control parameter of the PUCCH is the identifier of the configuration information, the RRC or the MAC CE configuration.
  • Some embodiments of the present disclosure also provide a terminal, including:
  • the obtaining module is used to obtain the quasi co-location relationship for sending uplink signals indicated by the network side device;
  • the determining module is configured to determine at least one of a power control parameter and a path loss reference pilot corresponding to the quasi co-location relationship, wherein the power control parameter is associated with the large-scale information of the quasi co-location relationship, so The path loss reference pilot is associated with the reference signal of the quasi co-location relationship;
  • the sending module is configured to determine the uplink transmission power according to at least one of the power control parameter and the path loss reference pilot, and send the uplink signal according to the uplink transmission power.
  • the power control parameter includes at least one of the following:
  • Some embodiments of the present disclosure also provide a network side device, including:
  • the configuration module is configured to configure at least one of the power control parameter of the quasi co-location relationship and the path loss reference pilot, wherein the power control parameter is determined according to the large-scale information of the quasi co-location relationship, and The path loss reference pilot is determined according to the reference signal of the quasi co-location relationship;
  • the indication module is used to indicate the quasi co-location relationship and at least one of the power control parameter and the path loss reference pilot to the terminal.
  • the power control parameter includes at least one of the following:
  • Some embodiments of the present disclosure also provide a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor,
  • the transceiver is used to obtain the quasi co-location relationship for sending uplink signals indicated by the network side device;
  • the transceiver or the processor is configured to determine at least one of a power control parameter and a path loss reference pilot corresponding to the quasi co-location relationship, wherein the power control parameter and the quasi co-location relationship are The large-scale information association of, the path loss reference pilot is associated with the reference signal of the quasi co-location relationship;
  • the transceiver is further configured to determine the uplink transmission power according to at least one of the power control parameter and the path loss reference pilot, and transmit the uplink signal according to the uplink transmission power.
  • the power control parameter includes at least one of the following:
  • the power control parameter is a power control parameter carried in the configuration information of the quasi co-location relationship.
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the power control parameter is a power control parameter corresponding to an identifier in a plurality of power control parameters
  • the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship
  • the multiple power control parameters are configured in advance Of;
  • the power control parameter is a power control parameter indicated by the DCI in a power control parameter set, and the power control parameter set is configured in advance for the quasi co-location relationship.
  • Some embodiments of the present disclosure also provide a network-side device, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor,
  • the transceiver or the processor is configured to configure at least one of a power control parameter of a quasi co-location relationship and a path loss reference pilot, wherein the power control parameter is a larger value according to the quasi co-location relationship If the metric information is determined, the path loss reference pilot is determined according to the reference signal of the quasi co-location relationship;
  • the transceiver is used to indicate to the terminal the quasi co-location relationship and at least one of the power control parameter and the path loss reference pilot.
  • the power control parameter includes at least one of the following:
  • the network side device uses the power control parameter according to the configuration information of the quasi co-location relationship;
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the network side device indicates the power control parameter in a plurality of power control parameters through an identifier, the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship, and the multiple power control parameters are Configured in advance; or
  • the network-side device indicates the power control parameter in a power control parameter set through DCI, and the power control parameter set is configured in advance for the quasi co-location relationship.
  • Some embodiments of the present disclosure further provide a computer-readable storage medium on which a computer program is stored, where the program is executed by a processor to implement the power control parameter configuration method on the terminal side provided by some embodiments of the present disclosure Or, when the program is executed by the processor, the steps in the power control parameter configuration method on the network side device provided by some embodiments of the present disclosure are implemented.
  • the terminal obtains the quasi co-location relationship for sending uplink signals indicated by the network side device; the terminal determines at least one of the power control parameter and the path loss reference pilot corresponding to the quasi co-location relationship , Wherein the power control parameter is associated with the large-scale information of the quasi co-location relationship, and the path loss reference pilot is associated with the reference signal of the quasi co-location relationship; according to the power control parameter and the path loss reference At least one of the pilots determines the uplink transmission power, and transmits the uplink signal according to the uplink transmission power. In this way, the uplink signal can be transmitted according to the uplink transmission power of the power control parameter corresponding to the quasi co-location association configuration, thereby improving the performance of uplink transmission.
  • FIG. 1 is a schematic diagram of a network structure applicable to some embodiments of the present disclosure
  • Figure 2 is a flowchart of a power control parameter configuration method provided by some embodiments of the present disclosure
  • FIG. 3 is another flowchart of a power control parameter configuration method provided by some embodiments of the present disclosure.
  • Figure 4 is a structural diagram of a terminal provided by some embodiments of the present disclosure.
  • Figure 5 is a structural diagram of a network side device provided by some embodiments of the present disclosure.
  • FIG. 6 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • Fig. 7 is another structural diagram of a network side device provided by some embodiments of the present disclosure.
  • Figure 1 is a schematic diagram of a network structure applicable to some embodiments of the present disclosure. As shown in Figure 1, it includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a User Equipment (UE) or other terminal.
  • Equipment such as: mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (Personal Digital Assistant, PDA), mobile Internet devices (Mobile Internet Device, MID), wearable devices ( Wearable Device), robots, vehicles and other terminal-side devices, it should be noted that in some embodiments of the present disclosure, the specific types of terminals are not limited.
  • the network side device 12 may be a base station, such as a macro station, LTE eNB, 5G NR NB, etc.; the network side device may also be a small station, such as a low power node (LPN), pico, femto, etc., or The network side device may be an access point (Access Point, AP); the network side device may also be a central unit (CU), or may be a network node such as a transmission reception point (TRP). It should be noted that, in some embodiments of the present disclosure, the specific type of the network side device is not limited.
  • FIG. 2 is a flowchart of a power control parameter configuration method provided by some embodiments of the present disclosure. As shown in FIG. 2, it includes the following steps:
  • the terminal obtains the Quasi Co-Location (QCL) relationship for sending uplink signals indicated by the network side device;
  • QCL Quasi Co-Location
  • the terminal determines at least one of a power control parameter and a path loss reference pilot corresponding to the quasi-co-location relationship, where the power control parameter is associated with large-scale information of the quasi-co-location relationship, and The path loss reference pilot is associated with the reference signal of the quasi co-location relationship;
  • the transmission configuration indication (TCI) state can be used to configure the quasi co-location relationship, or the quasi co-location relationship can be configured by the TCI state. Therefore, in some embodiments of the present disclosure, the quasi co-location relationship may also be referred to or understood as a transmission configuration indication state (TCI state) or a quasi co-location state.
  • the acquisition of the quasi co-location relationship may be a quasi co-location relationship configured on the receiving network side, for example: the quasi co-location relationship is configured through configuration information.
  • the aforementioned quasi co-location relationship for sending uplink signals may be a quasi co-location relationship when sending uplink signals.
  • the power control parameters and path loss reference pilots corresponding to the above-mentioned determination of the quasi co-location relationship may be power control parameters and path loss reference pilots determined according to instructions from the network side, for example: the network side indicates the power control parameter identification or Power control information such as power control parameters, so that the terminal determines the above-mentioned power control parameters and path loss reference pilots through these power control information.
  • the network side indicates the power control parameter identification or Power control information such as power control parameters, so that the terminal determines the above-mentioned power control parameters and path loss reference pilots through these power control information.
  • the above-mentioned power control parameters and path loss reference pilots are indicated by the network side.
  • the terminal has multiple quasi co-location relationships in advance. Power control parameters and path loss reference pilots, so that the terminal can determine the corresponding power control parameters and path loss reference pilots after acquiring the quasi co-location relationship.
  • step 202 and step 203 refers to the same content, that is, step 202 determines the power control parameter and the path loss reference pilot, then step 203 determines the power control parameter and path loss reference pilot.
  • step 203 determines the uplink transmission power according to the power control parameter or path loss reference pilot.
  • the path loss reference pilot used to determine the uplink transmission power can use the path loss reference pilot defined in the protocol.
  • the power control parameters used to determine the uplink transmission power can use the power control parameters defined in the protocol, which can also improve the performance of uplink transmission compared with related technologies.
  • the association of the above-mentioned power control parameters with the large-scale information of the quasi co-location relationship, and the association of the path loss reference pilot with the reference signal of the quasi-co-location relationship can be understood as that the above power control parameters are based on The large-scale information of the quasi co-location relationship is determined, and the path loss reference pilot frequency is determined according to the reference signal (Reference Signal) of the quasi co-location relationship.
  • the network side determines the path loss reference pilot frequency according to the reference signal of the quasi co-location relationship, and determines the power control parameter according to the large-scale information of the quasi co-location relationship.
  • the aforementioned large-scale information may include but is not limited to at least one of the following:
  • Path loss delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial reception parameters.
  • the above-mentioned large-scale information may be large-scale information that has been defined or newly defined in the agreement.
  • the path loss reference pilot is associated with the reference signal of the quasi co-location relationship
  • power control can be implemented according to the channel state indicated by the reference signal of each quasi co-location relationship, and the uplink transmission is better.
  • the power control parameters are associated with the large-scale information of the quasi-co-location relationship
  • power control can be implemented according to the large-scale information of each quasi-co-location relationship to better perform uplink transmission.
  • the path loss reference pilot may be a pilot used to calculate path loss
  • the path loss and the power control parameter may be parameters included in the uplink power control formula, that is, in some embodiments of the present disclosure,
  • the power control parameters and the path loss reference pilot are some or all of the parameters used to calculate the uplink transmission power.
  • the uplink transmit power based on at least one of the power control parameter and the path loss reference pilot.
  • the power control formula defined in the protocol can be used
  • the uplink transmission power may be determined, or the uplink transmission power may be determined by using a power control formula newly defined in a subsequent protocol version, which is not limited.
  • the uplink power control formula may refer to at least one of the power control formulas of PUSCH, PUCCH and SRS.
  • the corresponding power control parameters and path loss reference pilots can be configured for quasi co-location association, so that the power control parameters and path loss reference pilots can be corresponding to each quasi co-location relationship.
  • the corresponding power control parameter is used for transmission, such as the above-mentioned power control parameter is used to transmit the above-mentioned uplink signal.
  • An example can be: the network side determines to configure the corresponding power control parameters for the quasi co-location relationship according to the channel information of the quasi co-location relationship, the network side instructs the terminal to send the uplink signal when the quasi co-location relationship is instructed by the network side For the quasi co-location relationship, the power control parameters of the quasi co-location relationship are determined, and the corresponding uplink signal is sent.
  • the path loss reference pilot is the downlink pilot
  • the path loss reference pilot is a quasi co-location downlink pilot of the uplink pilot.
  • a reference signal can be configured for each quasi co-location relationship, and the reference signal can be a downlink pilot or an uplink pilot.
  • the reference signal associated with the quasi co-location is a downlink pilot
  • the path loss reference pilot in the power control parameter is the pilot, and no additional corresponding path loss reference pilot is configured.
  • the reference signal of the quasi co-location relationship is an uplink pilot (for example: SRS)
  • the network side device may configure the path loss reference pilot as the quasi co-location downlink pilot of the uplink pilot.
  • the quasi co-located downlink pilot of the above uplink pilot can be understood as a downlink pilot that has a quasi co-located relationship with the uplink pilot.
  • the path loss estimation can best match the channel state when the actual signal is sent, and the power control is more accurate.
  • the foregoing power control parameters include at least one of the following:
  • the path loss compensation factor and target received power may be the path loss compensation factor and target received power in the uplink power control formula.
  • the aforementioned path loss compensation factor and target received power are power control parameters related to the quasi co-location relationship, so that only the power control parameters related to the quasi co-location relationship are configured, thereby reducing complexity.
  • the path loss compensation factor is the first path loss compensation factor, and the target received power is the first target received power, or, The path loss compensation factor is a second path loss compensation factor, and the target received power is a second target received power;
  • the path loss compensation factor is a third path loss compensation factor
  • the target received power is a third target received power
  • first path loss is greater than the second path loss
  • first path loss compensation factor is greater than the third path loss compensation factor
  • first target received power is greater than the third target received power
  • the second path loss compensation factor is less than the third path loss compensation factor
  • the second target received power is less than the third target received power
  • each quasi co-location relationship may correspond to a path loss of large-scale information.
  • the path loss of large-scale information can also be understood as a large-scale fading of large-scale information.
  • the first path loss compensation factor is greater than the third path loss compensation factor
  • the first target received power is greater than the third target received power, which can achieve a relatively large path loss.
  • the path loss compensation factor and target received power can be set larger to improve the uplink transmission quality of the edge user.
  • the path loss compensation factor and target received power can be reduced to save the power of the terminal.
  • the second path loss compensation factor and the second target received power can be configured, and the second path loss compensation factor is smaller than the third path loss compensation factor, the second target received power is smaller than the third target received power, which can reduce the overall Network interference, for edge users, that is, reducing the edge user path loss compensation factor and target received power, the specific network side can be adjusted as needed.
  • the power control parameter is a power control parameter carried in the configuration information of the quasi co-location relationship
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the above configuration information can be understood as configuration information for configuring the above quasi co-location relationship, for example, high-level signaling, such as RRC signaling.
  • the above-mentioned first operation may be addition. Of course, this is not limited. For example, in some embodiments, it is also configured as a subtraction or other operation.
  • the power control parameter may include at least one of the following power control parameters:
  • the power control parameters of at least one of the PUCCH, the PUSCH, and the SRS in the configuration information are independently configured, or at least one of the PUCCH, the PUSCH, and the SRS in the configuration information
  • the power control parameter of is a unified configuration power control parameter.
  • the power control parameter corresponding to the quasi-co-location relationship is configured in the quasi-co-location relationship, for example, the power control parameter corresponding to the large-scale information of the quasi-co-location relationship.
  • the terminal can obtain the quasi co-location relationship of uplink transmission and the corresponding power control parameters.
  • the independent configuration of the power control parameters of at least one of the PUCCH, the PUSCH, and the SRS may be that the power control parameters of the PUCCH, the PUSCH, and the SRS are configured separately, for example:
  • PathlossReferenceRS-Id is PUSCH-PathlossReferenceRS-Id
  • PathlossReferenceRS-Id is PUCCH-PathlossReferenceRS-Id
  • P0-AlphaSetId is P0-PUSCH-AlphaSetId
  • PathlossReferenceRS represents the path loss reference pilot.
  • the power control parameters of at least one of the aforementioned PUCCH, the PUSCH, and the SRS are uniformly configured power control parameters, which can be configured to configure multiple uniform path loss reference pilots (Pathloss Reference RS) and path loss compensation factors ( P0-AlphaSet), no longer distinguish between PUCCH, PUSCH and SRS, as defined:
  • Pathloss Reference RS uniform path loss reference pilots
  • P0-AlphaSet path loss compensation factors
  • Each uplink transmission configuration indication state configures a quasi co-location relationship and the power control parameters corresponding to the quasi co-location relationship:
  • the PathlossReferenceRS-Id may not be configured.
  • each uplink transmission configuration indication state is configured with a quasi co-location relationship and the power control parameters corresponding to the quasi co-location relationship:
  • PathlossReferenceRS may not be configured.
  • the power control parameter of at least one of the PUCCH, the PUSCH, and the SRS is a uniformly configured power control parameter, signaling overhead can be saved in this way.
  • the path loss reference pilot may not be configured, and the downlink reference pilot Can be used as a reference pilot for path loss.
  • the power control parameter is an identifier corresponding to a power control parameter in a plurality of power control parameters
  • the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship
  • the multiple power The control parameters are configured in advance.
  • the above-mentioned multiple power control parameters may be power control parameters used for uplink transmission in multiple quasi-co-location relationships, so that the power control parameters corresponding to each quasi-co-location relationship can be flexibly indicated through the above-mentioned identifier.
  • the network side device can configure the corresponding P0-Alpha ID and PathlossReferenceRS ID in the quasi-co-location state according to the large-scale information of the quasi-co-location relationship.
  • P0-AlphaSet The configuration of P0-AlphaSet is as follows:
  • Alpha is 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, etc.
  • the value of P0 is in the same range and is a relative value, while P0 of SRS is an absolute value.
  • the The P0 associated with the quasi co-location relationship is configured as a relative value.
  • the power control parameter of at least one of the PUCCH, the PUSCH, and the SRS described above is a manner of uniformly configured power control parameters.
  • multiple quasi co-location power control parameters can be configured through RRC, and then a quasi co-location power control parameter ID can be configured for each quasi co-location relationship.
  • PathlossReferenceRS-Id P0-PAlphaSetId
  • P0-PAlphaSetId P0-PAlphaSetId
  • each uplink transmission configuration indication state configures a quasi co-location relationship and the power control parameters corresponding to the quasi co-location relationship:
  • the power control parameters include at least one of the following power control parameters:
  • the identifier of the power control parameter of the PUSCH is the identifier configured by the configuration information
  • the identifier of the power control parameter of the SRS is the identifier configured by the configuration information, or the identifier of the power control parameter of the SRS is the identifier configured in the SRS request;
  • the identifier of the power control parameter of the PUCCH is the identifier of the configuration information, the RRC or the MAC CE configuration.
  • the power control parameters of PUCCH, PUSCH, and SRS can be flexibly configured.
  • the uplink transmission configuration indication state (for example, UL-TCI state) can be used to configure the uplink quasi co-location relationship (for example: UL QCL state), and it can be used to configure the power control parameters of PUSCH, SRS and PUCCH.
  • PUSCH you can Through the UL TCI field indication in DCI;
  • SRS SRS request
  • SRS request SRS request
  • PUCCH you can Through DCI configuration, it can also be configured through RRC or MAC CE.
  • the power control parameter is a power control parameter indicated by the DCI in a power control parameter set, and the power control parameter set is configured in advance for the quasi co-location relationship.
  • a power control parameter set may be configured for each quasi co-location relationship.
  • the power control parameter set may include one or more sets of power control parameters, and the power control parameter sets of different quasi co-location relationships include power
  • the number and content of the control parameters can all be the same, some of the same or different. In this way, the power control parameters of each quasi co-location relationship can be flexibly configured, and since each quasi co-location relationship is configured with a power control parameter set, the power control parameters configured for each quasi co-location relationship are more matched to further improve Uplink transmission performance.
  • the network side device configures and activates multiple quasi-co-location relationships for the terminal, and each quasi-co-location relationship activates a corresponding power control parameter set at the same time, that is, configure and update N QCL-PowerControls in RRC IE PUSCH-PowerControl,
  • the size of N depends on the number of bits indicated by quasi co-location in DCI. For example, when the number of bits indicated by quasi co-location is 3, N is less than or equal to 8
  • a certain QCL-PowerControl configured in the PUSCH-PowerControl can be indicated through the quasi co-location in the DCI.
  • the quasi co-location relationship, the path loss reference signal, and the power control parameter are configured in combination.
  • the reference signal in quasi co-location is a downlink signal
  • the reference signal can be used as a path loss reference signal at the same time.
  • the open loop power control parameter P0AlphaSet-Id up to 5 bits
  • the closed loop adjustment state for example: 1 bit
  • the network-side device may decide whether to update the power control parameters. If the DCI includes the power control parameters, the terminal needs to update, without additional instructions to update the power control parameters. For example: for P0AlphaSet-Id, if there is no configuration in DCI, the terminal uses the configured P0AlphaSet. E.g:
  • corresponding power control parameters can be configured for the quasi co-location relationship at the same time.
  • the network side device configures power control parameters for the quasi co-location relationship through high-level signaling
  • the network side device configures power control parameters for the quasi co-location relationship through physical layer signaling DCI.
  • some embodiments of the present disclosure configure corresponding power control parameters for the quasi co-location relationship when configuring the uplink quasi co-location relationship, power control can be performed according to the power control parameters of each quasi co-location relationship to obtain more Good for uplink transmission.
  • FIG. 3 is a flowchart of a power control parameter configuration method provided by some embodiments of the present disclosure. As shown in FIG. 3, it includes the following steps:
  • the network side device is configured with at least one of a power control parameter of a quasi co-location relationship and a path loss reference pilot, wherein the power control parameter is determined according to the large-scale information of the quasi co-location relationship, and The path loss reference pilot is determined according to the reference signal of the quasi co-location relationship;
  • the network side device indicates to the terminal the quasi co-location relationship and at least one of the power control parameter and the path loss reference pilot.
  • the power control parameter includes at least one of the following:
  • the path loss reference pilot is the downlink pilot
  • the path loss reference pilot is a quasi co-location downlink pilot of the uplink pilot.
  • the path loss compensation factor is the first path loss compensation factor, and the target received power is the first target received power, or, The path loss compensation factor is a second path loss compensation factor, and the target received power is a second target received power;
  • the path loss compensation factor is a third path loss compensation factor
  • the target received power is a third target received power
  • first path loss is greater than the second path loss
  • first path loss compensation factor is greater than the third path loss compensation factor
  • first target received power is greater than the third target received power
  • the second path loss compensation factor is less than the third path loss compensation factor
  • the second target received power is less than the third target received power
  • the network side device uses the power control parameter according to the configuration information of the quasi co-location relationship;
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the power control parameters include at least one of the following power control parameters:
  • the power control parameters of at least one of the PUCCH, the PUSCH, and the SRS in the configuration information are independently configured, or at least one of the PUCCH, the PUSCH, and the SRS in the configuration information
  • the power control parameter of is a unified configuration power control parameter.
  • the network side device indicates the power control parameter in a plurality of power control parameters through an identifier, the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship, and the multiple power control parameters are Configured in advance; or
  • the network-side device indicates the power control parameter in a power control parameter set through DCI, and the power control parameter set is configured in advance for the quasi co-location relationship.
  • the power control parameters include at least one of the following power control parameters:
  • the identifier of the power control parameter of the PUSCH is the identifier configured by the configuration information
  • the identifier of the power control parameter of the SRS is the identifier configured by the configuration information, or the identifier of the power control parameter of the SRS is the identifier configured in the SRS request;
  • the identifier of the power control parameter of the PUCCH is the identifier of the configuration information, the RRC or the MAC CE configuration.
  • this embodiment is used as an implementation manner of the network-side device corresponding to the embodiment shown in FIG. 2.
  • FIG. 4 is a structural diagram of a terminal provided by some embodiments of the present disclosure. As shown in FIG. 4, the terminal 400 includes:
  • the obtaining module 401 is configured to obtain the quasi co-location relationship for sending uplink signals indicated by the network side device;
  • the determining module 402 is configured to determine at least one of a power control parameter and a path loss reference pilot corresponding to the quasi co-location relationship, wherein the power control parameter is associated with large-scale information of the quasi co-location relationship,
  • the path loss reference pilot is associated with the reference signal in the quasi co-location relationship;
  • the sending module 403 is configured to determine the uplink transmission power according to at least one of the power control parameter and the path loss reference pilot, and send the uplink signal according to the uplink transmission power.
  • the power control parameter includes at least one of the following:
  • the path loss refers to the pilot frequency, path loss compensation factor and target received power.
  • the path loss reference pilot is the downlink pilot
  • the path loss reference pilot is a quasi co-location downlink pilot of the uplink pilot.
  • the path loss compensation factor is the first path loss compensation factor, and the target received power is the first target received power, or, The path loss compensation factor is a second path loss compensation factor, and the target received power is a second target received power;
  • the path loss compensation factor is a third path loss compensation factor
  • the target received power is a third target received power
  • first path loss is greater than the second path loss
  • first path loss compensation factor is greater than the third path loss compensation factor
  • first target received power is greater than the third target received power
  • the second path loss compensation factor is less than the third path loss compensation factor
  • the second target received power is less than the third target received power
  • the power control parameter is a power control parameter carried in the configuration information of the quasi co-location relationship.
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the power control parameters include at least one of the following power control parameters:
  • the power control parameters of at least one of the PUCCH, the PUSCH, and the SRS in the configuration information are independently configured, or at least one of the PUCCH, the PUSCH, and the SRS in the configuration information
  • the power control parameter of is a unified configuration power control parameter.
  • the power control parameter is a power control parameter corresponding to an identifier in a plurality of power control parameters
  • the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship
  • the multiple power control parameters are configured in advance Of;
  • the power control parameter is a power control parameter indicated by the DCI in a power control parameter set, and the power control parameter set is configured in advance for the quasi co-location relationship.
  • the power control parameters include at least one of the following power control parameters:
  • the identifier of the power control parameter of the PUSCH is the identifier configured by the configuration information
  • the identifier of the power control parameter of the SRS is the identifier configured by the configuration information, or the identifier of the power control parameter of the SRS is the identifier configured in the SRS request;
  • the identifier of the power control parameter of the PUCCH is the identifier of the configuration information, the RRC or the MAC CE configuration.
  • the above-mentioned terminal 400 in this embodiment may be a terminal of any implementation manner in the method embodiments in some embodiments of the present disclosure, and any implementation manner of the terminal in the method embodiments in some embodiments of the present disclosure may be
  • the foregoing terminal 400 in this embodiment realizes and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 5 is a structural diagram of a network side device provided by some embodiments of the present disclosure. As shown in FIG. 5, the network side device 500 includes:
  • the configuration module 501 is configured to configure at least one of the power control parameter of the quasi co-location relationship and the path loss reference pilot, wherein the power control parameter is determined according to the large-scale information of the quasi co-location relationship, so The path loss reference pilot frequency is determined according to the reference signal of the quasi co-location relationship;
  • the indication module 502 is configured to indicate the quasi co-location relationship and at least one of the power control parameter and the path loss reference pilot to the terminal.
  • the power control parameter includes at least one of the following:
  • the path loss reference pilot is the downlink pilot
  • the path loss reference pilot is a quasi co-location downlink pilot of the uplink pilot.
  • the path loss compensation factor is the first path loss compensation factor, and the target received power is the first target received power, or, The path loss compensation factor is a second path loss compensation factor, and the target received power is a second target received power;
  • the path loss compensation factor is a third path loss compensation factor
  • the target received power is a third target received power
  • first path loss is greater than the second path loss
  • first path loss compensation factor is greater than the third path loss compensation factor
  • first target received power is greater than the third target received power
  • the second path loss compensation factor is less than the third path loss compensation factor
  • the second target received power is less than the third target received power
  • the network side device uses the power control parameter according to the configuration information of the quasi co-location relationship;
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the power control parameters include at least one of the following power control parameters:
  • the power control parameters of at least one of the PUCCH, the PUSCH, and the SRS in the configuration information are independently configured, or at least one of the PUCCH, the PUSCH, and the SRS in the configuration information
  • the power control parameter of is a unified configuration power control parameter.
  • the network side device indicates the power control parameter in a plurality of power control parameters through an identifier, the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship, and the multiple power control parameters are Configured in advance; or
  • the network-side device indicates the power control parameter in a power control parameter set through DCI, and the power control parameter set is configured in advance for the quasi co-location relationship.
  • the power control parameters include at least one of the following power control parameters:
  • the identifier of the power control parameter of the PUSCH is the identifier configured by the configuration information
  • the identifier of the power control parameter of the SRS is the identifier configured by the configuration information, or the identifier of the power control parameter of the SRS is the identifier configured in the SRS request;
  • the identifier of the power control parameter of the PUCCH is the identifier of the configuration information, the RRC or the MAC CE configuration.
  • the above-mentioned network-side device 500 in this embodiment may be a network-side device in any implementation manner in the method embodiments in some embodiments of the present disclosure.
  • the network-side device in the method embodiments is Any implementation manner can be implemented by the above-mentioned network side device 500 in this embodiment, and achieve the same beneficial effects, and will not be repeated here.
  • FIG. 6 is a structural diagram of another terminal provided by some embodiments of the present disclosure.
  • the terminal includes: a transceiver 610, a memory 620, a processor 600 and stored in the memory.
  • a program that can be run on the processor 600 on 620 wherein:
  • the transceiver 610 is configured to obtain the quasi co-location relationship for sending uplink signals indicated by the network side device;
  • the transceiver 610 or the processor 600 is configured to determine at least one of a power control parameter and a path loss reference pilot corresponding to the quasi co-location relationship, wherein the power control parameter is the same as the quasi co-location relationship.
  • the large-scale information of the address relationship is associated, and the path loss reference pilot is associated with the reference signal of the quasi co-location relationship.
  • the transceiver 610 is also used for the terminal to determine the uplink transmission power according to at least one of the power control parameter and the path loss reference pilot, and to transmit the uplink signal according to the uplink transmission power.
  • the transceiver 610 may be used to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the memory 620 is not limited to being only on the terminal, and the memory 620 and the processor 600 may be separated in different geographic locations.
  • the power control parameter includes at least one of the following:
  • the path loss reference pilot is the downlink pilot
  • the path loss reference pilot is a quasi co-location downlink pilot of the uplink pilot.
  • the path loss compensation factor is the first path loss compensation factor, and the target received power is the first target received power, or, The path loss compensation factor is a second path loss compensation factor, and the target received power is a second target received power;
  • the path loss compensation factor is a third path loss compensation factor
  • the target received power is a third target received power
  • first path loss is greater than the second path loss
  • first path loss compensation factor is greater than the third path loss compensation factor
  • first target received power is greater than the third target received power
  • the second path loss compensation factor is less than the third path loss compensation factor
  • the second target received power is less than the third target received power
  • the power control parameter is a power control parameter carried in the configuration information of the quasi co-location relationship.
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the power control parameters include at least one of the following power control parameters:
  • the power control parameters of at least one of the PUCCH, the PUSCH, and the SRS in the configuration information are independently configured, or at least one of the PUCCH, the PUSCH, and the SRS in the configuration information
  • the power control parameter of is a unified configuration power control parameter.
  • the power control parameter is a power control parameter corresponding to an identifier in a plurality of power control parameters
  • the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship
  • the multiple power control parameters are configured in advance Of;
  • the power control parameter is a power control parameter indicated by the DCI in a power control parameter set, and the power control parameter set is configured in advance for the quasi co-location relationship.
  • the power control parameters include at least one of the following power control parameters:
  • the identifier of the power control parameter of the PUSCH is the identifier configured by the configuration information
  • the identifier of the power control parameter of the SRS is the identifier configured by the configuration information, or the identifier of the power control parameter of the SRS is the identifier configured in the SRS request;
  • the identifier of the power control parameter of the PUCCH is the identifier of the configuration information, the RRC or the MAC CE configuration.
  • the above-mentioned terminal in this embodiment may be a terminal of any implementation manner in the method embodiment in some embodiments of the present disclosure, and any implementation manner of the terminal in the method embodiment in some embodiments of the present disclosure may be The foregoing terminal in the embodiment realizes and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 7 is a structural diagram of another network side device provided by some embodiments of the present disclosure.
  • the network side device includes: a transceiver 710, a memory 720, a processor 700, and a storage device.
  • the transceiver 710 or the processor 700 is configured to configure at least one of a power control parameter of a quasi co-location relationship and a path loss reference pilot, wherein the power control parameter is based on the quasi co-location relationship
  • the path loss reference pilot is determined according to the reference signal of the quasi co-location relationship;
  • the transceiver 710 is configured to indicate the quasi co-location relationship and at least one of the power control parameter and the path loss reference pilot to the terminal.
  • the transceiver 710 may be used to receive and send data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 700 and various circuits of the memory represented by the memory 720 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 710 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 when performing operations.
  • the memory 720 is not limited to being only on the network side device, and the memory 720 and the processor 700 may be separated in different geographic locations.
  • the power control parameter includes at least one of the following:
  • the path loss reference pilot is the downlink pilot
  • the path loss reference pilot is a quasi co-location downlink pilot of the uplink pilot.
  • the path loss compensation factor is the first path loss compensation factor, and the target received power is the first target received power, or, The path loss compensation factor is a second path loss compensation factor, and the target received power is a second target received power;
  • the path loss compensation factor is a third path loss compensation factor
  • the target received power is a third target received power
  • first path loss is greater than the second path loss
  • first path loss compensation factor is greater than the third path loss compensation factor
  • first target received power is greater than the third target received power
  • the second path loss compensation factor is less than the third path loss compensation factor
  • the second target received power is less than the third target received power
  • the network side device uses the power control parameter according to the configuration information of the quasi co-location relationship;
  • the power control parameter is a power control parameter obtained by performing a first calculation on the power control parameter in the configuration information of the quasi co-location relationship and the power control parameter saved by the terminal.
  • the power control parameters include at least one of the following power control parameters:
  • the power control parameters of at least one of the PUCCH, the PUSCH, and the SRS in the configuration information are independently configured, or at least one of the PUCCH, the PUSCH, and the SRS in the configuration information
  • the power control parameter of is a unified configuration power control parameter.
  • the network side device indicates the power control parameter in a plurality of power control parameters through an identifier, the identifier includes an identifier of the configuration information configuration of the quasi co-location relationship, and the multiple power control parameters are Configured in advance; or
  • the network-side device indicates the power control parameter in a power control parameter set through DCI, and the power control parameter set is configured in advance for the quasi co-location relationship.
  • the power control parameters include at least one of the following power control parameters:
  • the identifier of the power control parameter of the PUSCH is the identifier configured by the configuration information
  • the identifier of the power control parameter of the SRS is the identifier configured by the configuration information, or the identifier of the power control parameter of the SRS is the identifier configured in the SRS request;
  • the identifier of the power control parameter of the PUCCH is the identifier of the configuration information, the RRC or the MAC CE configuration.
  • the above-mentioned network-side device in this embodiment may be any of the network-side devices in any of the method embodiments in some embodiments of the present disclosure, and any of the network-side devices in the method embodiments in some embodiments of the present disclosure
  • the implementation manners can be implemented by the above-mentioned network-side device in this embodiment and achieve the same beneficial effects, and will not be repeated here.
  • Some embodiments of the present disclosure further provide a computer-readable storage medium on which a computer program is stored, where the program is executed by a processor to implement the power control parameter configuration method on the terminal side provided by some embodiments of the present disclosure Or, when the program is executed by the processor, the steps in the power control parameter configuration method on the network side device provided by some embodiments of the present disclosure are implemented.
  • the disclosed method and device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be separately physically included, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute part of the information data block processing method described in each embodiment of the present disclosure step.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc., which can store program codes Medium.
  • the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in the present disclosure.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种功率控制参数配置方法、终端和网络侧设备,该方法包括:终端获取网络侧设备指示的发送上行信号的准共址关系;所述终端确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;所述终端依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。

Description

功率控制参数配置方法、终端和网络侧设备
相关申请的交叉引用
本申请主张在2019年8月15日在中国提交的中国专利申请号No.201910754869.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种功率控制参数配置方法、终端和网络侧设备。
背景技术
一些通信系统中功率控制参数是独立配置的,且功率控制参数的选择是基于探测参考信号(Sounding Reference Signal,SRS)资源选择的。这样,对于终端的上行多面板(或者称作天线面板、天线组)多波束的场景,可能会存在功率控制参数选择不对应的问题,导致上行传输的性能比较差。
发明内容
本公开实施例提供一种功率控制参数配置方法、终端和网络侧设备,以解决上行传输的性能比较差的问题。
本公开的一些实施例提供一种功率控制参数配置方法,包括:
终端获取网络侧设备指示的发送上行信号的准共址关系;
所述终端确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;
依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
可选的,在所述准共址关系的参考信号为下行导频的情况下,所述路损 参考导频为所述下行导频;或者
在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频为所述上行导频的准共址下行导频。
可选的,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收功率;
在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率,所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率小于所述第三目标接收功率。
可选的,所述功率控制参数为所述准共址关系的配置信息中携带的功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical uplink shared channel,PUSCH)和探测参考信号(Sounding radio signal,SRS);
其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
可选的,所述功率控制参数为多个功率控制参数中标识对应的功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
所述功率控制参数为下行控制信息(Downlink control information,DCI)在功率控制参数集合中指示的功率控制参数,所述功率控制参数集合是提前 配置给所述准共址关系的。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述SRS的功率控制参数的标识为SRS请求中配置的标识;
所述PUCCH的功率控制参数的标识为所述配置信息、无线资源控制(Radio resource control,RRC)或者媒体接入控制控制单元(Medium access control control element,MAC CE)配置的标识。
本公开的一些实施例还提供一种功率控制参数配置方法,包括:
网络侧设备配置准共址关系的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数是依据所述准共址关系的大尺度信息确定的,所述路损参考导频是依据所述准共址关系的参考信号确定的;
所述网络侧设备向终端指示所述准共址关系,以及所述功率控制参数和路损参考导频中的至少一项。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
可选的,在所述准共址关系的参考信号为下行导频的情况下,所述路损参考导频为所述下行导频;或者
在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频为所述上行导频的准共址下行导频。
可选的,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收功率;
在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率, 所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率小于所述第三目标接收功率。
可选的,所述网络侧设备通过所述准共址关系的配置信息所述功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
可选的,所述网络侧设备通过标识在多个功率控制参数中指示所述功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
所述网络侧设备通过DCI在功率控制参数集合中指示所述功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述SRS的功率控制参数的标识为SRS请求中配置的标识;
所述PUCCH的功率控制参数的标识为所述配置信息、RRC或者MAC CE配置的标识。
本公开的一些实施例还提供一种终端,包括:
获取模块,用于获取网络侧设备指示的发送上行信号的准共址关系;
确定模块,用于确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;
发送模块,用于依据所述功率控制参数和路损参考导频中的至少一项确 定上行发送功率,并依据所述上行发送功率发送所述上行信号。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
本公开的一些实施例还提供一种网络侧设备,包括:
配置模块,用于配置准共址关系的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数是依据所述准共址关系的大尺度信息确定的,所述路损参考导频是依据所述准共址关系的参考信号确定的;
指示模块,用于向终端指示所述准共址关系,以及所述功率控制参数和路损参考导频中的至少一项。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
本公开的一些实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机,用于获取网络侧设备指示的发送上行信号的准共址关系;
所述收发机或者所述处理器,用于确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;
所述收发机还用于依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
可选的,所述功率控制参数为所述准共址关系的配置信息中携带的功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
可选的,所述功率控制参数为多个功率控制参数中标识对应的功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
所述功率控制参数为DCI在功率控制参数集合中指示的功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
本公开的一些实施例还提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机或者所述处理器,用于配置准共址关系的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数是依据所述准共址关系的大尺度信息确定的,所述路损参考导频是依据所述准共址关系的参考信号确定的;
所述收发机,用于向终端指示所述准共址关系,以及所述功率控制参数和路损参考导频中的至少一项。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
可选的,所述网络侧设备通过所述准共址关系的配置信息所述功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
可选的,所述网络侧设备通过标识在多个功率控制参数中指示所述功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
所述网络侧设备通过DCI在功率控制参数集合中指示所述功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
本公开的一些实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现本公开的一些实施例提供的终端侧的功率控制参数配置方法中的步骤,或者,该程序被处理器执行时实现本公开的一些实施例提供的网络侧设备侧的功率控制参数配置方法中的步骤。
本公开的一些实施例中,终端获取网络侧设备指示的发送上行信号的准共址关系;所述终端确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;依据所述功率 控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。这样可以实现依据准共址关联配置对应的功率控制参数的上行发送功率发送上行信号,从而提高上行传输的性能。
附图说明
图1是本公开的一些实施例可应用的网络结构示意图;
图2是本公开的一些实施例提供的功率控制参数配置方法的流程图;
图3是本公开的一些实施例提供的功率控制参数配置方法的另一流程图;
图4是本公开的一些实施例提供的终端的结构图;
图5是本公开的一些实施例提供的网络侧设备的结构图;
图6是本公开的一些实施例提供的终端的另一结构图;以及
图7是本公开的一些实施例提供的网络侧设备的另一结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1是本公开的一些实施例可应用的网络结构示意图,如图1所示,包括终端11和网络侧设备12,终端11可以是用户终端(User Equipment,UE)或者其他终端设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)、机器人、车辆等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端的具体类型。网络侧设备12可以是基站,例如:宏站、LTE eNB、5G NR NB等;网络侧设备也可以是小站,如低功率节点(Low Power Node,LPN)、pico、femto等小站,或者网络侧设备可以接入点(Access Point,AP);网络侧设备也可以是中央单元(Central Unit,CU),或者可以是传输接收点(Transmission Reception Point,TRP)等网络节点。需要说明的是,在本公开的一些实施例中并不限定网络侧设备的具体类型。
请参见图2,图2是本公开的一些实施例提供的一种功率控制参数配置 方法的流程图,如图2所示,包括以下步骤:
201、终端获取网络侧设备指示的发送上行信号的准共址(Quasi Co-Location,QCL)关系;
202、所述终端确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;
203、依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。
本公开的一些实施例中,传输配置指示(transmission configuration indication,TCI)状态可以用于配置准共址关系,或者,准共址关系可以由TCI状态配置。因此,本公开的一些实施例中,准共址关系也可以称作或者理解为传输配置指示状态(TCI state)或者准共址状态。
另外,上述获取准共址关系可以是接收网络侧配置的准共址关系,例如:通过配置信息配置上述准共址关系。
上述发送上行信号的准共址关系可以是,发送上行信号时的准共址关系。
而上述确定所述准共址关系对应的功率控制参数和路损参考导频可以是,根据网络侧指示确定的功率控制参数和路损参考导频,例如:网络侧指示功率控制参数的标识或者功率控制参数等功率控制信息,从而终端通过这些功率控制信息确定上述功率控制参数和路损参考导频。当然,本公开的一些实施例中,并不限定上述功率控制参数和路损参考导频是由网络侧指示的,例如:在一些实施方式中,可以实现终端预先有多个准共址关系对应的功率控制参数和路损参考导频,从而终端在获取到准共址关系,可以确定对应的功率控制参数和路损参考导频。
需要说明的是,步骤202和步骤203中的至少一项是指相同的内容,即步骤202确定功率控制参数和路损参考导频,那么步骤203就依据功率控制参数和路损参考导频确定上行发送功率,若步骤202确定功率控制参数或者路损参考导频,那么步骤203就依据功率控制参数或者路损参考导频确定上行发送功率。另外,如果步骤202确定功率控制参数,则确定上行发送功率所使用的路损参考导频可以使用协议中已定义的路损参考导频,同理,如果 步骤202确定路损参考导频,则确定上行发送功率所使用的功率控制参数可以使用协议中已定义的功率控制参数,这样相比相关技术,同样可以提高上行传输的性能。
需要说明的是,上述功率控制参数与所述准共址关系的大尺度信息关联,以及路损参考导频与所述准共址关系的参考信号关联可以是理解为,上述功率控制参数是依据准共址关系的大尺度信息确定的,上述路损参考导频是依据准共址关系的参考信号(Reference Signal)确定的。例如:网络侧依据准共址关系的参考信号确定上述路损参考导频,依据准共址关系的大尺度信息确定上述功率控制参数。
而上述大尺度信息可以包括但不限于如下至少一项:
路损、时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及空间接收参数等。
具体的,上述大尺度信息可以是协议中已定义或者新定义的大尺度信息,
该实施方式中,由于路损参考导频与所述准共址关系的参考信号关联,这样可以实现根据每个准共址关系的参考信号指示的信道状态进行功率控制,更好的进行上行传输;以及由于功率控制参数与所述准共址关系的大尺度信息关联,这样可以实现根据每个准共址关系的大尺度信息进行功率控制,更好的进行上行传输。
其中,上述路损参考导频可以是用于计算路损的导频,而路损和上述功率控制参数可以是上行功率控制公式中包括的参数,也就是说,本公开的一些实施例中,功率控制参数和路损参考导频是用于计算上行发送功率的部分或者全部参数。另外,
需要说明的是,本公开的一些实施例中,并不限定依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,例如:可以采用协议中已定义的功率控制公式确定上行发送功率,或者可以是采用后续协议版本新定义的功率控制公式确定上行发送功率,对此不作限定。且上行功率控制公式可以是指PUSCH、PUCCH和SRS的功率控制公式中的至少一项。
本公开的一些实施例中,通过上述步骤可以实现为准共址关联配置对应的功率控制参数和路损参考导频,从而可以根据每个准共址关系对应功率控 制参数和路损参考导频进行功率控制,以更好地进行上行传输,进而提高上行传输的性能。例如:在进行该准共址关系的上行传输时,使用对应的功率控制参数进行传输,如使用上述功率控制参数发送上述上行信号。
一个例子可以是:网络侧根据准共址关系的信道信息,确定为该准共址关系配置相应的功率控制参数,网络侧指示终端发送上行信号时的准共址关系,终端根据网络侧指示的准共址关系,确定该准共址关系的功率控制参数,并进行相应上行信号的发送。
作为一种可选的实施方式,在所述准共址关系的参考信号为下行导频的情况下,所述路损参考导频为所述下行导频;或者
在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频为所述上行导频的准共址下行导频。
例如:可以为每个准共址关系配置一个参考信号,该参考信号可以是下行导频,也可以是上行导频。当准共址关联的参考信号是下行导频时,则功率控制参数中的路损参考导频即为该导频,不再额外配置对应的路损参考导频。当准共址关系的参考信号为上行导频(例如:SRS)时,网络侧设备可以将路损参考导频配置为该上行导频的准共址下行导频。
其中,上述上行导频的准共址下行导频可以是理解为,与该上行导频存在准共址关系的下行导频。
该实施方式中,通过这种配置,可以使路损估计与实际信号发送时的信道状态最匹配,功率控制更准确。
作为一种可选的实施方式,上述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
其中,这里的路损补偿因子和目标接收功率可以是上行功率控制公式中的路损补偿因子和目标接收功率。
上述路损补偿因子和目标接收功率是与准共址关系有关的功率控制参数,这样只配置与准共址关系有关的功率控制参数,从而可以降低复杂度。
可选的,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收 功率;
在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率,所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率小于所述第三目标接收功率。
该实施方式中,每个准共址关系可以对应一个大尺度信息的路损,另外,上述大尺度信息的路损也可以理解为大尺度信息的大尺度衰落。
该实施方式中,由于第一路损大于第二路损,第一路损补偿因子大于第三路损补偿因子,第一目标接收功率大于第三目标接收功率,这样可以实现路损比较大时,终端处于网络的边缘,是边缘用户,则为了用户的上行传输质量,可以将路损补偿因子和目标接收功率设置的大一些,以提高边缘用户的上行传输质量。以及可以实现,当路损比较小时,终端处于网络的中心,是中心用户,考虑到终端的节能,可以降低路损补偿因子和目标接收功率,以节约终端的功率。
另外,由于可以配置第二路损补偿因子和第二目标接收功率,且第二路损补偿因子小于第三路损补偿因子,第二目标接收功率小于第三目标接收功率,这样可以实现降低整个网络的干扰,对于边缘用户,即降低边缘用户路损补偿因子和目标接收功率,具体网络侧可以根据需要调整。
该实施方式中,可以通过为准共址关系配置合适的功率控制参数,以提高系统性能。
作为一种可选的实施方式,所述功率控制参数为所述准共址关系的配置信息中携带的功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
其中,上述配置信息可以理解为配置上述准共址关系的配置信息,例如:高层信令,如RRC信令。
上述第一运算可以是相加,当然,对此不作限定,例如:在一些实施方 式中,也是配置成相减或者其他运算。
其中,所述功率控制参数可以包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
例如:RRC在配置准共址关系时,同时在准共址关系中配置该准共址关系对应的功率控制参数,例如:准共址关系的大尺度信息对应的功率控制参数。具体可以是,通过MAC CE的准共址关系激活,以及DCI的准共址关系指示,终端可以获得上行传输的准共址关系以及对应的功率控制参数。
以上述第一运算为相加进行举例:对于SRS的P0,每次收到准共址关系指示(例如,通过TCI指示的准共址关系)之后与终端保存的P0值加和得到更新的P0值,而对于PUCCH和PUSCH,每次收到准共址关系指示(例如,通过TCI指示的准共址关系)之后根据准共址关系中的P0值和配置的通用路损补偿因子(P0-normal)值加和得到功率控制公式中的P0,其中,P0表示上述目标接收功率。
上述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置可以是,PUCCH、所述PUSCH和所述SRS的功率控制参数是分别配置的,例如:
PathlossReferenceRS-Id为PUSCH-PathlossReferenceRS-Id
PathlossReferenceRS-Id为PUCCH-PathlossReferenceRS-Id
P0-AlphaSetId为P0-PUSCH-AlphaSetId;
其中,PathlossReferenceRS表示路损参考导频。
而上述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数可以是,为终端配置多个统一的路损参考导频(PathlossReferenceRS)和路损补偿因子(P0-AlphaSet),不在区分PUCCH、PUSCH和SRS,如定义:
Figure PCTCN2020108379-appb-000001
Figure PCTCN2020108379-appb-000002
另外,在上行传输配置指示状态中配置功率控制信息的一种实现方式如下,每个上行传输配置指示状态配置一个准共址关系,以及该准共址关系对应的功率控制参数:
Figure PCTCN2020108379-appb-000003
Figure PCTCN2020108379-appb-000004
当上述referenceSignal为下行导频时,PathlossReferenceRS-Id可以不配置。
或者,在上行传输配置指示状态中直接配置功率相关的信息的一种实现方式如下,每个上行传输配置指示状态配置一个准共址关系,以及该准共址关系对应的功率控制参数:
Figure PCTCN2020108379-appb-000005
当上述referenceSignal为下行导频时,PathlossReferenceRS可以不配置。
上述实施方式中,由于PUCCH、所述PUSCH和所述SRS中至少一项 的功率控制参数为统一配置的功率控制参数,这样可以节约信令开销。
需要说明的是,本公开的一些实施例中,在准共址关联的参考信号为下行导频(例如:SSB或者CSI-RS)时,路损参考导频可以不配置,该下行参考导频可以作为路损参考导频。
作为一种可选的实施方式,所述功率控制参数为多个功率控制参数中标识对应的功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的。
其中,上述多个功率控制参数可以是用于多个准共址关系进行上行传输的功率控制参数,这样通过上述标识可以灵活地指示各准共址关系对应的功率控制参数。
例如:对于功率控制信息,已经提前配置了多个P0-AlphaSet和多个PathlossReferenceRS。网络侧设备可以根据准共址关系的大尺度信息,在准共址状态中配置相应的P0-Alpha ID和PathlossReferenceRS ID。
例如:关于P0-AlphaSet的配置如下:
对于PUSCH:
Figure PCTCN2020108379-appb-000006
其中,Alpha的取值为0,0.4,0.5,0.6,0.7,0.8,0.9,1.0等。
对于PUCCH:功率控制公式中可以没有alpha
Figure PCTCN2020108379-appb-000007
对于SRS:
alpha                        Alpha
p0                           INTEGER(-202..24)
可见,对于PUSCH和PUCCH,P0的取值是相同范围的,都是相对值,而SRS的P0是绝对值,这样,为了将上行的PUSCH,PUCCH,SRS都采用统一的配置流程,可以将与准共址关系关联的P0配置为相对值,例如:上述介绍的PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数的方式。
另外,可以通过RRC配置多个准共址功率控制参数(如QCL-PowerControl),然后为每个准共址关系配置一个准共址功率控制参数ID。
例如:在一个QCL-PowerControl例子中,PathlossReferenceRS-Id,P0-PAlphaSetId可以参见上面实施方式的描述,该例子如下:
Figure PCTCN2020108379-appb-000008
例如:在另一个QCL-PowerControl例子中:
Figure PCTCN2020108379-appb-000009
然后在配置准共址关系时,可以为该准共址关系选择配置一个准共址功率控制参数。如下面一个可能的例子,每个上行传输配置指示状态配置一个 准共址关系,以及该准共址关系对应的功率控制参数:
Figure PCTCN2020108379-appb-000010
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述SRS的功率控制参数的标识为SRS请求中配置的标识;
所述PUCCH的功率控制参数的标识为所述配置信息、RRC或者MAC CE配置的标识。
该实施方式中,可以灵活地配置PUCCH、PUSCH和SRS的功率控制参数。例如:上行传输配置指示状态(例如,UL-TCI state)可以用于配置上行准共址关系(例如:UL QCL state),可以用于配置PUSCH、SRS和PUCCH的功率控制参数,对于PUSCH,可以通过DCI中的UL TCI域指示;对于SRS,可以在DCI中增加SRS TCI域指示,结合SRS请求(SRS request)配置,指示SRS的发送,或者在RRC的SRS配置中指示TCI;对于PUCCH,可以通过DCI配置,也可以通过RRC或者MAC CE配置。
作为一种可选的实施方式,所述功率控制参数为DCI在功率控制参数集合中指示的功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
该实施方式中,可以为每个准共址关系配置一个功率控制参数集合,该功率控制参数集合可以包括一个或者多组功率控制参数,且不同的准共址关系的功率控制参数集合包括的功率控制参数的数量以及内容可以全部相同,部分相同或者不同。这样,可以灵活地配置每个准共址关系的功率控制参数,且由于每个准共址关系配置一个功率控制参数集合,从而为各准共址关系配置的功率控制参数更加匹配,以进一步提高上行传输的性能。
例如:网络侧设备为终端配置和激活多个准共址关系,每个准共址关系同时激活一个相应的功率控制参数集合,即在RRC IE PUSCH-PowerControl中配置和更新N个QCL-PowerControl,N的大小取决于DCI中准共址指示的bit数,如准共址指示的bit数为3时,N小于等于8
具体为:
Figure PCTCN2020108379-appb-000011
然后,可以通过DCI中的准共址指示PUSCH-PowerControl中配置的某个QCL-PowerControl。
又例如:准共址关系、路损参考信号和功率控制参数两两结合配置。当准共址中的参考信号为下行信号时,该参考信号同时可以作为路损参考信号。则通过DCI中为该准共址关系配置开环功率控制参数P0AlphaSet-Id(最多可以是5bit)和闭环调整状态(例如:1bit),其中,闭环调整状态为上行功率控制公式中的闭环参数。
进一步的,网络侧设备可以决定是否更新功率控制参数,如果DCI中包括功率控制参数,则终端要更新,不需要额外指示更新功率控制参数。例如:对于P0AlphaSet-Id,如果DCI中没有配置,则终端使用已经配置的P0AlphaSet。例如:
Figure PCTCN2020108379-appb-000012
本公开的一些实施例,可以实现在配置上行准共址关系时,同时为该准共址关系配置相应的功率控制参数。
例如:网络侧设备通过高层信令为准共址关系配置功率控制参数;或者
网络侧设备通过物理层信令DCI为准共址关系配置功率控制参数。
由于本公开的一些实施例在配置上行准共址关系时,同时为该准共址关系配置相应的功率控制参数,从而可以根据每个准共址关系的功率控制参数进行功率控制,以获得更好的进行上行传输。
请参见图3,图3是本公开的一些实施例提供的一种功率控制参数配置方法的流程图,如图3所示,包括以下步骤:
301、网络侧设备配置准共址关系的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数是依据所述准共址关系的大尺度信息确定的,所述路损参考导频是依据所述准共址关系的参考信号确定的;
302、所述网络侧设备向终端指示所述准共址关系,以及所述功率控制参数和路损参考导频中的至少一项。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
可选的,在所述准共址关系的参考信号为下行导频的情况下,所述路损参考导频为所述下行导频;或者
在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频 为所述上行导频的准共址下行导频。
可选的,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收功率;
在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率,所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率小于所述第三目标接收功率。
可选的,所述网络侧设备通过所述准共址关系的配置信息所述功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
可选的,所述网络侧设备通过标识在多个功率控制参数中指示所述功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
所述网络侧设备通过DCI在功率控制参数集合中指示所述功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述 SRS的功率控制参数的标识为SRS请求中配置的标识;
所述PUCCH的功率控制参数的标识为所述配置信息、RRC或者MAC CE配置的标识。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图4,图4是本公开的一些实施例提供的一种终端的结构图,如图4所示,终端400包括:
获取模块401,用于获取网络侧设备指示的发送上行信号的准共址关系;
确定模块402,用于确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;
发送模块403,用于依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。
可选的,所述功率控制参数包括如下至少一项:
路损参考导频、路损补偿因子和目标接收功率。
可选的,在所述准共址关系的参考信号为下行导频的情况下,所述路损参考导频为所述下行导频;或者
在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频为所述上行导频的准共址下行导频。
可选的,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收功率;
在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率,所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率 小于所述第三目标接收功率。
可选的,所述功率控制参数为所述准共址关系的配置信息中携带的功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
可选的,所述功率控制参数为多个功率控制参数中标识对应的功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
所述功率控制参数为DCI在功率控制参数集合中指示的功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述SRS的功率控制参数的标识为SRS请求中配置的标识;
所述PUCCH的功率控制参数的标识为所述配置信息、RRC或者MAC CE配置的标识。
需要说明的是,本实施例中上述终端400可以是本公开的一些实施例中方法实施例中任意实施方式的终端,本公开的一些实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端400所实现,以及达到相同的有益效果,此处不再赘述。
请参见图5,图5是本公开的一些实施例提供的一种网络侧设备的结构图,如图5所示,网络侧设备500包括:
配置模块501,用于配置准共址关系的功率控制参数和路损参考导频中 的至少一项,其中,所述功率控制参数是依据所述准共址关系的大尺度信息确定的,所述路损参考导频是依据所述准共址关系的参考信号确定的;
指示模块502,用于向终端指示所述准共址关系,以及所述功率控制参数和路损参考导频中的至少一项。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
可选的,在所述准共址关系的参考信号为下行导频的情况下,所述路损参考导频为所述下行导频;或者
在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频为所述上行导频的准共址下行导频。
可选的,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收功率;
在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率,所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率小于所述第三目标接收功率。
可选的,所述网络侧设备通过所述准共址关系的配置信息所述功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
可选的,所述网络侧设备通过标识在多个功率控制参数中指示所述功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
所述网络侧设备通过DCI在功率控制参数集合中指示所述功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述SRS的功率控制参数的标识为SRS请求中配置的标识;
所述PUCCH的功率控制参数的标识为所述配置信息、RRC或者MAC CE配置的标识。
需要说明的是,本实施例中上述网络侧设备500可以是本公开的一些实施例中方法实施例中任意实施方式的网络侧设备,本公开的一些实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备500所实现,以及达到相同的有益效果,此处不再赘述。
请参见图6,图6是本公开的一些实施例提供的另一种终端的结构图,如图6所示,该终端包括:收发机610、存储器620、处理器600及存储在所述存储器620上并可在所述处理器600上运行的程序,其中:
所述收发机610,用于获取网络侧设备指示的发送上行信号的准共址关系;
所述收发机610或者所述处理器600,用于确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联。
所述收发机610还用于所述终端依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。
其中,收发机610,可以用于在处理器600的控制下接收和发送数据。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
需要说明的是,存储器620并不限定只在终端上,可以将存储器620和处理器600分离处于不同的地理位置。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
可选的,在所述准共址关系的参考信号为下行导频的情况下,所述路损参考导频为所述下行导频;或者
在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频为所述上行导频的准共址下行导频。
可选的,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收功率;
在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率,所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率小于所述第三目标接收功率。
可选的,所述功率控制参数为所述准共址关系的配置信息中携带的功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与 所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
可选的,所述功率控制参数为多个功率控制参数中标识对应的功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
所述功率控制参数为DCI在功率控制参数集合中指示的功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述SRS的功率控制参数的标识为SRS请求中配置的标识;
所述PUCCH的功率控制参数的标识为所述配置信息、RRC或者MAC CE配置的标识。
需要说明的是,本实施例中上述终端可以是本公开的一些实施例中方法实施例中任意实施方式的终端,本公开的一些实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端所实现,以及达到相同的有益效果,此处不再赘述。
请参见图7,图7是本公开的一些实施例提供的另一种网络侧设备的结构图,如图7所示,该网络侧设备包括:收发机710、存储器720、处理器700及存储在所述存储器720上并可在所述处理器上运行的程序,其中:
所述收发机710或者所述处理器700,用于配置准共址关系的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数是依据所述准共址关系的大尺度信息确定的,所述路损参考导频是依据所述准共址关系的参考信号确定的;
所述收发机710,用于向终端指示所述准共址关系,以及所述功率控制参数和路损参考导频中的至少一项。
其中,收发机710,可以用于在处理器700的控制下接收和发送数据。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
需要说明的是,存储器720并不限定只在网络侧设备上,可以将存储器720和处理器700分离处于不同的地理位置。
可选的,所述功率控制参数包括如下至少一项:
路损补偿因子和目标接收功率。
可选的,在所述准共址关系的参考信号为下行导频的情况下,所述路损参考导频为所述下行导频;或者
在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频为所述上行导频的准共址下行导频。
可选的,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收功率;
在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率,所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率小于所述第三目标接收功率。
可选的,所述网络侧设备通过所述准共址关系的配置信息所述功率控制参数;或者
所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
可选的,所述网络侧设备通过标识在多个功率控制参数中指示所述功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
所述网络侧设备通过DCI在功率控制参数集合中指示所述功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
可选的,所述功率控制参数包括如下至少一项的功率控制参数:
PUCCH、PUSCH和SRS;
其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述SRS的功率控制参数的标识为SRS请求中配置的标识;
所述PUCCH的功率控制参数的标识为所述配置信息、RRC或者MAC CE配置的标识。
需要说明的是,本实施例中上述网络侧设备可以是本公开的一些实施例中方法实施例中任意实施方式的网络侧设备,本公开的一些实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现本公开的一些实施例提供的终端侧的功率控制参数配置方法中的步骤,或者,该程序被处理器执行时实现本公开的一些实施例提供的网络侧设备侧的功率控制参数配置方法中的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述信息数据块的处理方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理 器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (29)

  1. 一种功率控制参数配置方法,包括:
    终端获取网络侧设备指示的发送上行信号的准共址关系;
    所述终端确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;
    所述终端依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。
  2. 如权利要求1所述的方法,其中,所述功率控制参数包括如下至少一项:
    路损补偿因子和目标接收功率。
  3. 如权利要求1所述的方法,其中,在所述准共址关系的参考信号为下行导频的情况下,所述路损参考导频为所述下行导频;或者
    在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频为所述上行导频的准共址下行导频。
  4. 如权利要求2所述的方法,其中,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收功率;
    在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
    其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率,所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率小于所述第三目标接收功率。
  5. 如权利要求1所述的方法,其中,所述功率控制参数为所述准共址关系的配置信息中携带的功率控制参数;或者
    所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与 所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
  6. 如权利要求5所述的方法,其中,所述功率控制参数包括如下至少一项的功率控制参数:
    物理上行控制信道PUCCH、物理上行共享信道PUSCH和探测参考信号SRS;
    其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
  7. 如权利要求1所述的方法,其中,所述功率控制参数为多个功率控制参数中标识对应的功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
    所述功率控制参数为下行控制信息DCI在功率控制参数集合中指示的功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
  8. 如权利要求7所述的方法,其中,所述功率控制参数包括如下至少一项的功率控制参数:
    PUCCH、PUSCH和SRS;
    其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
    所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述SRS的功率控制参数的标识为SRS请求中配置的标识;
    所述PUCCH的功率控制参数的标识为所述配置信息、无线资源控制RRC或者媒体接入控制控制单元MAC CE配置的标识。
  9. 一种功率控制参数配置方法,包括:
    网络侧设备配置准共址关系的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数是依据所述准共址关系的大尺度信息确定的,所述路损参考导频是依据所述准共址关系的参考信号确定的;
    所述网络侧设备向终端指示所述准共址关系,以及所述功率控制参数和路损参考导频中的至少一项。
  10. 如权利要求9所述的方法,其中,所述功率控制参数包括如下至少一项:
    路损补偿因子和目标接收功率。
  11. 如权利要求9所述的方法,其中,在所述准共址关系的参考信号为下行导频的情况下,所述路损参考导频为所述下行导频;或者
    在所述准共址关系的参考信号为上行导频的情况下,所述路损参考导频为所述上行导频的准共址下行导频。
  12. 如权利要求10所述的方法,其中,在所述大尺度信息的路损为第一路损的情况下:所述路损补偿因子为第一路损补偿因子,所述目标接收功率为第一目标接收功率,或者,所述路损补偿因子为第二路损补偿因子,所述目标接收功率为第二目标接收功率;
    在所述大尺度信息的衰落为第二路损的情况下,所述路损补偿因子为第三路损补偿因子,所述目标接收功率为第三目标接收功率;
    其中,所述第一路损大于所述第二路损,所述第一路损补偿因子大于所述第三路损补偿因子,所述第一目标接收功率大于所述第三目标接收功率,所述第二路损补偿因子小于所述第三路损补偿因子,所述第二目标接收功率小于所述第三目标接收功率。
  13. 如权利要求9所述的方法,其中,所述网络侧设备通过所述准共址关系的配置信息所述功率控制参数;或者
    所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
  14. 如权利要求13所述的方法,其中,所述功率控制参数包括如下至少一项的功率控制参数:
    PUCCH、PUSCH和SRS;
    其中,所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数独立配置,或者所述配置信息中所述PUCCH、所述PUSCH和所述SRS中至少一项的功率控制参数为统一配置的功率控制参数。
  15. 如权利要求9所述的方法,其中,所述网络侧设备通过标识在多个功率控制参数中指示所述功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
    所述网络侧设备通过DCI在功率控制参数集合中指示所述功率控制参数, 所述功率控制参数集合是提前配置给所述准共址关系的。
  16. 如权利要求15所述的方法,其中,所述功率控制参数包括如下至少一项的功率控制参数:
    PUCCH、PUSCH和SRS;
    其中,所述PUSCH的功率控制参数的标识为所述配置信息配置的标识;
    所述SRS的功率控制参数的标识为所述配置信息配置的标识,或者所述SRS的功率控制参数的标识为SRS请求中配置的标识;
    所述PUCCH的功率控制参数的标识为所述配置信息、RRC或者MAC CE配置的标识。
  17. 一种终端,包括:
    获取模块,用于获取网络侧设备指示的发送上行信号的准共址关系;
    确定模块,用于确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;
    发送模块,用于依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。
  18. 如权利要求17所述的终端,其中,所述功率控制参数包括如下至少一项:
    路损补偿因子和目标接收功率。
  19. 一种网络侧设备,包括:
    配置模块,用于配置准共址关系的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数是依据所述准共址关系的大尺度信息确定的,所述路损参考导频是依据所述准共址关系的参考信号确定的;
    指示模块,用于向终端指示所述准共址关系,以及所述功率控制参数和路损参考导频中的至少一项。
  20. 如权利要求19所述的网络侧设备,其中,所述功率控制参数包括如下至少一项:
    路损补偿因子和目标接收功率。
  21. 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上 并可在所述处理器上运行的程序,其中,
    所述收发机,用于获取网络侧设备指示的发送上行信号的准共址关系;
    所述收发机或者所述处理器,用于确定所述准共址关系对应的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数与所述准共址关系的大尺度信息关联,所述路损参考导频与所述准共址关系的参考信号关联;
    所述收发机还用于依据所述功率控制参数和路损参考导频中的至少一项确定上行发送功率,并依据所述上行发送功率发送所述上行信号。
  22. 如权利要求21所述的终端,其中,所述功率控制参数包括如下至少一项:
    路损补偿因子和目标接收功率。
  23. 如权利要求21所述的终端,其中,所述功率控制参数为所述准共址关系的配置信息中携带的功率控制参数;或者
    所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
  24. 如权利要求21所述的终端,其中,所述功率控制参数为多个功率控制参数中标识对应的功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
    所述功率控制参数为DCI在功率控制参数集合中指示的功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
  25. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,
    所述收发机或者所述处理器,用于配置准共址关系的功率控制参数和路损参考导频中的至少一项,其中,所述功率控制参数是依据所述准共址关系的大尺度信息确定的,所述路损参考导频是依据所述准共址关系的参考信号确定的;
    所述收发机,用于向终端指示所述准共址关系,以及所述功率控制参数和路损参考导频中的至少一项。
  26. 如权利要求25所述的网络侧设备,其中,所述功率控制参数包括如 下至少一项:
    路损补偿因子和目标接收功率。
  27. 如权利要求25所述的网络侧设备,其中,所述网络侧设备通过所述准共址关系的配置信息所述功率控制参数;或者
    所述功率控制参数为将所述准共址关系的配置信息中的功率控制参数与所述终端保存的功率控制参数进行第一运算,以得到的功率控制参数。
  28. 如权利要求25所述的网络侧设备,其中,所述网络侧设备通过标识在多个功率控制参数中指示所述功率控制参数,所述标识包括所述准共址关系的配置信息配置的标识,所述多个功率控制参数为提前配置的;或者
    所述网络侧设备通过DCI在功率控制参数集合中指示所述功率控制参数,所述功率控制参数集合是提前配置给所述准共址关系的。
  29. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1至8中任一项所述的功率控制参数配置方法中的步骤,或者,该程序被处理器执行时实现如权利要求9至16中任一项所述的功率控制参数配置方法中的步骤。
PCT/CN2020/108379 2019-08-15 2020-08-11 功率控制参数配置方法、终端和网络侧设备 WO2021027805A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20852530.3A EP4017143A4 (en) 2019-08-15 2020-08-11 METHOD OF CONFIGURATION OF PERFORMANCE CONTROL PARAMETERS, TERMINAL AND NETWORK SIDE DEVICE
US17/635,279 US20220295417A1 (en) 2019-08-15 2020-08-11 Power control parameter configuration method, terminal and network side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910754869.8 2019-08-15
CN201910754869.8A CN112399543B (zh) 2019-08-15 2019-08-15 一种功率控制参数配置方法、终端和网络侧设备

Publications (1)

Publication Number Publication Date
WO2021027805A1 true WO2021027805A1 (zh) 2021-02-18

Family

ID=74570240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108379 WO2021027805A1 (zh) 2019-08-15 2020-08-11 功率控制参数配置方法、终端和网络侧设备

Country Status (4)

Country Link
US (1) US20220295417A1 (zh)
EP (1) EP4017143A4 (zh)
CN (1) CN112399543B (zh)
WO (1) WO2021027805A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115189829A (zh) * 2021-04-02 2022-10-14 大唐移动通信设备有限公司 路径损耗参考信号的确定方法、设备、装置及介质
WO2023133008A1 (en) * 2022-01-05 2023-07-13 Qualcomm Incorporated Indicating uplink power control parameters
US11974230B2 (en) 2022-01-05 2024-04-30 Qualcomm Incorporated Indicating uplink power control parameters

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3975440A1 (en) * 2020-09-28 2022-03-30 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Methods and apparatuses for signaling framework for flexible beam management
US20220217643A1 (en) * 2021-01-04 2022-07-07 Qualcomm Incorporated Power control information for common tci states
US20240172125A1 (en) * 2021-05-10 2024-05-23 Qualcomm Incorporated Uplink power control parameter indication schemes
CN116418471A (zh) * 2021-12-30 2023-07-11 华为技术有限公司 一种路损参考信号确定方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170126388A1 (en) * 2013-11-01 2017-05-04 Innovative Technology Lab Co., Ltd. Apparatus and method for cancelling inter-cell interference in communication system
CN109495959A (zh) * 2017-09-11 2019-03-19 维沃移动通信有限公司 功率控制方法、网络设备及终端
CN109803362A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
CN109842926A (zh) * 2017-11-27 2019-06-04 华为技术有限公司 一种功率控制的方法、装置及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
CN108632971A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 功率控制方法、终端和网络设备
US10425900B2 (en) * 2017-05-15 2019-09-24 Futurewei Technologies, Inc. System and method for wireless power control
CN109151969B (zh) * 2017-06-16 2022-04-05 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
CN110089162B (zh) * 2017-06-16 2023-11-03 华为技术有限公司 对上行链路传输的功率控制的方法和系统
CN109392144B (zh) * 2017-08-11 2023-10-03 华为技术有限公司 通信方法和通信设备
JP7024068B2 (ja) * 2017-09-21 2022-02-22 オッポ広東移動通信有限公司 無線通信方法及びデバイス
EP3962182B1 (en) * 2019-06-14 2023-06-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170126388A1 (en) * 2013-11-01 2017-05-04 Innovative Technology Lab Co., Ltd. Apparatus and method for cancelling inter-cell interference in communication system
CN109495959A (zh) * 2017-09-11 2019-03-19 维沃移动通信有限公司 功率控制方法、网络设备及终端
CN109803362A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
CN109842926A (zh) * 2017-11-27 2019-06-04 华为技术有限公司 一种功率控制的方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4017143A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115189829A (zh) * 2021-04-02 2022-10-14 大唐移动通信设备有限公司 路径损耗参考信号的确定方法、设备、装置及介质
CN115189829B (zh) * 2021-04-02 2023-12-22 大唐移动通信设备有限公司 路径损耗参考信号的确定方法、设备、装置及介质
WO2023133008A1 (en) * 2022-01-05 2023-07-13 Qualcomm Incorporated Indicating uplink power control parameters
US11974230B2 (en) 2022-01-05 2024-04-30 Qualcomm Incorporated Indicating uplink power control parameters

Also Published As

Publication number Publication date
CN112399543A (zh) 2021-02-23
CN112399543B (zh) 2022-04-19
US20220295417A1 (en) 2022-09-15
EP4017143A1 (en) 2022-06-22
EP4017143A4 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2021027805A1 (zh) 功率控制参数配置方法、终端和网络侧设备
EP3817479B1 (en) Communication method and communication apparatus
US11497030B2 (en) Channel quality information reporting method and apparatus
WO2018127066A1 (zh) 一种上行测量信号的指示方法及装置
US11950245B2 (en) Method and device for cross carrier scheduling physical downlink shared channel
US11405163B2 (en) Channel quality information reporting method, terminal device, and network device
US20230239032A1 (en) Beam processing method and apparatus, and related device
US20210076240A1 (en) Method, apparatus and computer program for performing measurements in new radio (nr)
WO2020238617A1 (zh) 确定小区激活时延的方法和装置
US20220006589A1 (en) System and method for phase noise-based signal design for positioning in a communication system
WO2021023103A1 (zh) 定时提前配置方法、终端和网络侧设备
WO2021082930A1 (zh) 一种终端类型的确定方法、网络设备及终端
US10917895B2 (en) Power control method and apparatus
CN110446252B (zh) 用于定向lbt的能量阈值确定方法、定向lbt方法及装置、存储介质、终端、基站
WO2020029873A1 (zh) 通信方法、装置和通信系统
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
US20190305902A1 (en) Reference signal transmission method and apparatus
WO2017092383A1 (zh) 一种共小区网络下的多天线传输方法及基站
WO2021013138A1 (zh) 无线网络通信方法和通信装置
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2020221040A1 (zh) 通信方法和通信装置
WO2020134897A1 (zh) 随机接入方法、装置、系统及存储介质
WO2018137698A1 (zh) 功率控制方法及装置
US20240179781A1 (en) Method and Device for Transmitting Reference Signal
WO2022194200A1 (zh) 终端操作、配置方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020852530

Country of ref document: EP

Effective date: 20220315