WO2018137698A1 - 功率控制方法及装置 - Google Patents

功率控制方法及装置 Download PDF

Info

Publication number
WO2018137698A1
WO2018137698A1 PCT/CN2018/074226 CN2018074226W WO2018137698A1 WO 2018137698 A1 WO2018137698 A1 WO 2018137698A1 CN 2018074226 W CN2018074226 W CN 2018074226W WO 2018137698 A1 WO2018137698 A1 WO 2018137698A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
resource
srs
power control
control information
Prior art date
Application number
PCT/CN2018/074226
Other languages
English (en)
French (fr)
Inventor
唐小勇
毛祺琦
黄煌
刘亚林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710184893.3A external-priority patent/CN108366418B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18745163.8A priority Critical patent/EP3554151B1/en
Publication of WO2018137698A1 publication Critical patent/WO2018137698A1/zh
Priority to US16/523,709 priority patent/US10917895B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • This application relates to communication technologies, particularly power control techniques.
  • a base station may form a circular-like signal coverage using an omnidirectional antenna, or a fan-shaped directional antenna may be used to form a sector-like signal coverage.
  • the signal coverage of the base station B200 is divided into three sectors: R1, R2, and R3.
  • the coverage angle of each sector is 120 degrees.
  • the base station B200 forms three wide beams similar to a sector using directional antennas. Generally, the direction and number of wide beams at different times of a base station do not change.
  • the signal transmission between the base station and the terminal needs to consider the transmission power of the signal. Too low transmit power may cause the receiver to fail to receive the signal, and too high transmit power may cause interference. In order to determine the appropriate transmit power, the base station transmits power control information to the terminal.
  • a beam formed by beamforming technology can be used in a wireless communication system to obtain signal coverage over a long distance.
  • Beamforming technology is mostly used for high frequency resources and can also be used for low frequency resources.
  • the base station B200 can form a signal coverage of a high-frequency signal similar to a narrow beam shape by a beamforming technique, for example, a narrow beam, such as B21, B22, B23. Narrow beams are also directional, with narrow coverage over a wider beam.
  • the base station can transmit one or more different narrow beams for communication. The number and direction of narrow beams transmitted by the base station may be different at different times.
  • base station B200 At time T1, base station B200 generates beams B21 and B22, and at time T2, beam B23 is transmitted.
  • the base station can communicate with the terminal using one or more narrow beams at the same time.
  • the base station B200 can transmit a communication signal to the terminal T100 through B21 and B22 (for example, B22 can still be received by the terminal T100 after encountering the obstruction).
  • the communication signals can also be transmitted to the base station B200 by using the beams B11 and B12. Different narrow beams can be used to send different information or to send the same information.
  • the power control method, node, communication system, computer program product, computer readable storage medium, control signal provided by the embodiments of the present application are used to obtain a suitable transmission power.
  • the embodiment of the present application provides a power control method, including: a first node receives first power control information from a second node, where the first power control information is associated with a first resource pair link; And transmitting, by the first resource, a resource corresponding to the link to the second node. The transmission power of the signal is obtained based on the first power control information.
  • the method by associating the power control information with the resource pair link, the power control can be matched with the channel characteristics, so that matched power control can be adopted for different channel characteristics, thereby obtaining more accurate transmission. power.
  • the first power control information may be obtained based on a signal quality of a signal previously sent by the first resource to the resource corresponding to the link.
  • the power control information obtained based on the signal quality is more accurate.
  • the foregoing resource pair link may be a beam pair link or a port pair link.
  • the above radio resources may be beams, or ports.
  • the above signal may be a reference signal, or a control signal, or a data signal. Different kinds of signals can use different resources to transmit the resources of the link, and thus can perform different power control on different types of signals, thereby reducing interference and improving network transmission quality.
  • the first node may further receive the identifier information of the first resource pair link from the second node.
  • the first resource pair link may be identified according to the identification information of the first resource pair link.
  • the resource-to-link identification information has various forms, such as an index of a resource to a link, an index of a resource to a resource corresponding to a link, a resource-to-link index having a QCL relationship, and a resource index having a QCL relationship.
  • the first power control information and the identifier information of the first resource pair link may be carried by the control information.
  • the first node may further receive, by the second node, new first power control information that is associated with the link by the first resource.
  • the first node may delete the old first power control information.
  • the first node may locally save multiple power control information associated with the link by the first resource.
  • the first node may locally save power control information associated with each of the multiple resource pairs.
  • the embodiment of the present application further provides a power control method, including: sending, by a second node, first power control information associated with a first resource pair link to a first node;
  • the first receiving resource corresponding to the path receives the first signal from the first node.
  • the first power control information can be used to obtain the transmit power of the first signal.
  • the second node can control the transmit power of the first node.
  • the power control can be matched with the channel characteristics, so that matched power control can be adopted for different channel characteristics, thereby obtaining more accurate transmission power.
  • the identifier information of the first resource pair link may also be sent to the first node.
  • the first resource pair link may be identified according to the identification information of the first resource pair link.
  • the second node may further send, to the first node, new first power control information that is associated with the first resource pair link.
  • the first node may further receive, by the second node, new first power control information that is associated with the link by the first resource.
  • the first node may delete the old first power control information.
  • the first node may locally save multiple power control information associated with the link by the first resource.
  • the first node may locally store power control information associated with each of the multiple resource pair links.
  • the second node may locally save power control information associated with each of the multiple resource pairs.
  • an embodiment of the present application provides a node.
  • This node can be used to implement the method of the first aspect.
  • This node can be a terminal.
  • the node includes a processor and a transceiver.
  • the processor is configured to receive, by the transceiver, first power control information from the second node, where the first power control information is associated with the first resource pair link, and the resource corresponding to the link is sent to the second node by using the first resource Send a signal.
  • the transmission power of the signal is obtained based on the first power control information.
  • the node includes a processor and a memory.
  • the memory is for storing a program implementing the method of the first aspect, the processor being operative to run the above program to implement the method of the first aspect.
  • the method of how the node implements the first aspect can refer to the content of the first aspect.
  • an embodiment of the present application provides a node.
  • This node can be used to implement the method of the second aspect.
  • the node can be a base station.
  • the node includes a processor and a transceiver.
  • the processor sends the first power control information associated with the first resource pair link to the first node by using the transceiver, and receives the first signal from the first node by using the first resource corresponding to the first resource.
  • the first power control information can be used to obtain the transmit power of the first signal.
  • the node includes a processor and a memory.
  • the memory is for storing a program implementing the method of the second aspect, the processor being operative to run the above program to implement the method of the second aspect.
  • the method of how the node implements the second aspect can refer to the content of the second aspect.
  • an embodiment of the present application provides a communication system, including the foregoing two nodes.
  • the embodiment of the present application further provides a computer program product, where the program product includes a program for implementing the method of the first aspect.
  • the embodiment of the present application further provides a computer readable storage medium, where the medium stores the program of the sixth aspect.
  • the embodiment of the present application further provides a computer program product, where the program product includes a program for implementing the method of the second aspect.
  • the embodiment of the present application further provides a computer readable storage medium, where the medium stores the program of the eighth aspect.
  • the embodiment of the present application further provides a control information.
  • the control information includes resource-to-link identification information and power control information corresponding to the resource pair link.
  • the embodiment of the present application further provides a method for signal transmission, including:
  • the terminal acquires the first transmit power
  • the terminal transmits a signal to the base station through one or more transmission resources, the transmission power of the one or more transmission resources being equal to the first transmission power.
  • the signal is an SRS.
  • the multiple transmit resources are the same transmit resource.
  • the multiple transmit resources are different transmit resources.
  • the method further includes: the terminal receiving configuration information from the base station, where the configuration information is used to indicate resource scanning.
  • the terminal acquires the first transmit power, where the terminal acquires the maximum transmit power of the terminal, where the transmit power of the one or more transmit resources is equal to the first transmit power is the transmit power of the one or more transmit resources. Equal to the maximum transmit power.
  • the terminal acquires the first transmit power, where the terminal receives the first transmit power from the base station.
  • the method further includes: the terminal receiving, from the base station, a power parameter associated with the resource pair link.
  • the terminal acquires the first transmit power, and the terminal acquires the first transmit power based on the power parameter.
  • the power parameter may be one or more of P O_SRS, BPL (m), ⁇ SRS, BPL , f SRS, BPL, and PL BPL .
  • the terminal acquires the first transmit power based on the power parameter:
  • the embodiment of the present application provides a method for signal transmission, including:
  • the base station receives signals from the terminal through one or more receiving resources.
  • the signal is sent by one or more transmission resources, and the transmission power of the one or more transmission resources is the first transmission power.
  • the signal is an SRS.
  • the multiple transmit resources are the same transmit resource.
  • the multiple transmit resources are different transmit resources.
  • the multiple receiving resources are the same receiving resource.
  • the multiple receiving resources are different receiving resources.
  • the method further includes: the base station sending configuration information to the terminal, where the configuration information is used to indicate that the resource scanning is performed.
  • the power parameter may be one or more of P O_SRS, BPL (m), ⁇ SRS, BPL , f SRS, BPL, and PL BPL .
  • the foregoing resource may be a beam.
  • the foregoing resource pair link may be a BPL.
  • the embodiment of the present application provides a terminal.
  • the terminal can be used to implement the method of the eleventh aspect.
  • the terminal includes a processor and a transceiver.
  • the terminal includes a processor and a memory.
  • the memory is for storing a program implementing the method of the eleventh aspect, the processor being operative to run the above program to implement the method of the eleventh aspect.
  • the method of how the node implements the eleventh aspect can refer to the content of the eleventh aspect.
  • the embodiment of the present application provides a base station.
  • the base station can be used to implement the method of the twelfth aspect.
  • the base station includes a processor and a transceiver.
  • the base station includes a processor and a memory.
  • the memory is for storing a program implementing the method of the twelfth aspect, the processor being operative to run the above program to implement the method of the twelfth aspect.
  • the method of how the base station implements the twelfth aspect can refer to the content of the twelfth aspect.
  • the embodiment of the present application provides a communication system, including the foregoing base station and a terminal.
  • the embodiment of the present application further provides a computer program product, where the program product includes a program for implementing the method of the eleventh aspect.
  • the embodiment of the present application further provides a computer readable storage medium, where the medium stores the program of the sixteenth aspect.
  • the embodiment of the present application further provides a computer program product, where the program product includes a program for implementing the method of the twelfth aspect.
  • the embodiment of the present application further provides a computer readable storage medium, where the medium stores the program of the eighteenth aspect.
  • the power control of the link to the link can be implemented by the power control and the resource-to-link relationship, so that different power control can be performed for different channel characteristics, thereby obtaining more accurate transmission.
  • various signals can be set with different power control values according to their transmission on resources corresponding to different resources, which can reduce interference while receiving correctly, and the quality of network communication can have obvious gain.
  • FIG. 1 is a simplified schematic diagram of a wireless communication system
  • FIG. 2 is a schematic diagram showing a simplified structure of a terminal
  • FIG. 3 is a simplified schematic diagram of a structure of a base station
  • FIG. 4 is a schematic diagram of a beam pair link
  • FIG. 5 is a schematic diagram of signaling interaction of power control.
  • a signal is a form of expression of information.
  • Signals can sometimes be referred to as wireless signals, communication signals.
  • signals can be transmitted from one communication node to another by electromagnetic waves.
  • the signal can have many types depending on the content of the information.
  • the types of signals can be divided into reference signals, control signals, and data signals.
  • the reference signal is a signal used for channel estimation, channel sounding, or channel demodulation.
  • a sounding reference signal (SRS) can be classified as a reference signal.
  • the control signal is a signal used to control the communication behavior of the communication node.
  • a signal transmitted on a control channel can be classified as a control signal.
  • a data signal is a signal that reflects data information.
  • the signal of the traffic data transmitted on the data channel can be classified as a data signal.
  • a communication feature is information used to characterize transmission characteristics.
  • communication characteristics may include: average gain, average delay, delay distribution, Doppler shift, Doppler distribution, and the like.
  • a channel characteristic is information used to characterize channel transmission characteristics.
  • channel characteristics may include: channel attenuation, channel noise, channel interference level, channel multipath distribution, channel Doppler shift, channel angular spread, channel propagation delay, and the like.
  • a communication resource may be simply referred to as a resource.
  • Communication resources can be used to transmit signals.
  • the types of communication resources may be spatial resources, time domain resources, and frequency domain resources.
  • the types of communication resources may be beams, ports, and the like.
  • a collection of different kinds of communication resources is also a communication resource.
  • a time-frequency resource is a communication resource
  • a combination of a beam and a port is a communication resource.
  • a beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other type of beam.
  • the beamforming technique can be beamforming techniques or other technical means.
  • the beamforming technology can be specifically digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be transmitted through different beams. Alternatively, multiple beams having the same or similar communication characteristics can be considered as one beam.
  • an antenna port is a communication resource.
  • the antenna port can be simply referred to as a port.
  • a port can be a logical port or a physical port.
  • Different ports can be considered different resources. The same information or different information can be sent through different ports. Alternatively, multiple ports having the same or similar communication characteristics can be considered as one port.
  • a communication resource for receiving a signal may be referred to as a reception resource
  • a communication resource for transmitting a signal may be referred to as a transmission resource.
  • the receiving beam is a receiving resource
  • the transmitting beam is a kind of sending resource
  • the receiving port is a receiving resource
  • the sending port is a sending resource.
  • one receiving resource and one sending resource can be regarded as one resource pair.
  • a receive beam and a transmit beam can form a beam pair; a transmit port and a receive port can form a port pair.
  • the path space for wireless signal transmission can be referred to as a link.
  • the path space for wireless signal transmission using resource pairs may be referred to as a resource pair link.
  • a path space for signal transmission using a beam pair may be referred to as a beam pari link (BPL);
  • BPL beam pari link
  • a path space for signal transmission using a port pair may be referred to as a port pair link.
  • the resource pair link can correspond to the channel characteristics. Different resources may have different channel characteristics for the link.
  • a resource-to-link can be considered a communication feature.
  • For related content of the beam pair link reference may be made to the related content in Proposal R1-1700748 of the third generation partnership project (3GPP).
  • a quasi-co-location (QCL) relationship is used to indicate that one or more identical or similar communication features are present between multiple resources.
  • QCL quasi-co-location
  • the same or similar communication configuration can be used.
  • the beam pair links can be considered to be the same or similar, and the same or similar power control can be used.
  • related content of QCL reference may be made to the related contents of 3GPP proposal R1-167970, R1-168436, R1-1610825, R1-1610520, R1-1613719, and R1-1613108, and the section 6.2 of the 3GPP standard TS 36.211 v13.0.0. The contents of .1 and the contents of chapters 7.1.9 and 7.1.10 of TS 36.213 v14.1.0.
  • a network node is a device having a communication function and may also be referred to as a network device.
  • a network node can be simply referred to as a node.
  • the network node can be a device such as a terminal, a base station, or a communication chip.
  • the transmission power is sometimes referred to as the transmission power.
  • a field is sometimes referred to as a field.
  • the term “comprises” and variations thereof may mean non-limiting inclusion; the term “or” and its variants may mean “and/or”; the terms “associated”, “associated”, “corresponding” And their variants can be referred to as “bound”, “bound to”, “mapped”, “configured”, “allocated”, “based on”, or “according to...
  • the term “pass” and its variants may mean “utilizing", “using", or “on” and the like.
  • the technical solution of the present application can be applied to communication between different network nodes. For example, it can be applied to communication between a base station and a terminal, communication between a base station and a base station, communication between a terminal and a terminal, and the like.
  • the embodiment of the present application mainly describes communication between a base station and a terminal as an example.
  • the wireless communication system includes a base station B200 and a terminal T100.
  • the base station B200 can communicate with the terminal T100 using different communication resources (e.g., B1 or B2).
  • the base station B200 can transmit data signals to the terminal T100 by using different communication resources.
  • the wireless communication system may be a 4G communication system, such as an LTE (long term evolution) system, or may be a 5G communication system, such as an NR (new radio) system, or a combination of multiple communication technologies.
  • Communication system for example, a communication system in which LTE technology and NR technology are integrated).
  • the terminal T100 is a device having a wireless communication function, and may be a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
  • Terminals can be called different names in different networks, such as: user equipment, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, laptops, cordless phones, Wireless local loop station, etc.
  • FIG. 2 A schematic diagram of the structure of the terminal T100 can be as shown in FIG. 2.
  • the terminal T100 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminals, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. Some types of terminals do not have input and output devices.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • Figure 2 shows only one memory and processor. In an actual user device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process a communication protocol and communication data
  • the central processing unit is mainly used to control the entire terminal. Execute a software program that processes the data of the software program.
  • the processor in FIG. 2 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards.
  • the terminal may include multiple central processors to enhance its processing capabilities.
  • the functions of the baseband processor and the central processing unit can be integrated on one processor.
  • the various components of the terminal can be connected via various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal, and the processor having the processing function can be regarded as the processing unit of the terminal.
  • the terminal T100 includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the base station B200 which may also be referred to as a base station device, is a device deployed in a wireless access network to provide wireless communication functions.
  • a base station in an LTE network is called an evolved Node B (eNB or eNodeB)
  • a base station in an NR network is called a TRP (transmission reception point) or a gNB (generation node B, next generation Node B).
  • the structure of the base station B200 can be as shown in FIG.
  • the base station B200 shown in FIG. 3 may be a split base station.
  • FIG. 3 shows, on the left, a distributed base station including antennas, a remote radio unit (RRU), and a baseband unit (BBU).
  • RRU remote radio unit
  • BBU baseband unit
  • a base station includes a 201 portion and a 202 portion.
  • Part 201 is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 202 part is mainly used for baseband processing and base station control.
  • Section 201 can be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver, and the like.
  • Section 202 can generally be referred to as a processing unit.
  • part 202 is the control center of the base station.
  • part 201 may include an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 201 may be regarded as a receiving unit, and the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the part 201 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the 202 part may include one or more boards, each of the boards may include a processor and a memory, and the processor is configured to read and execute a program in the memory to implement a baseband processing function and a base station. control. If multiple boards exist, the boards can be interconnected to increase processing power.
  • the functions of the 202 part and the 201 part can be implemented by the SoC technology, that is, by a base station function.
  • the chip realizes that the base station function chip integrates a processor, a memory, an antenna interface and the like, and the program of the base station related function is stored in the memory, and the program is executed by the processor to implement the related functions of the base station.
  • the technical solution of the present application can be applied to a scenario in which communication is performed by using different communication resources, for example, a scenario in which communication is performed using different beams, and a scenario in which communication is performed by using different ports.
  • the embodiment of the present application is mainly described by taking a beam for communication as an example.
  • the terminal T100 can transmit signals to the base station B100 through the beams B11 and B12.
  • the beams B11 and B12 may be referred to as transmission beams of the terminal T100.
  • the base station B200 can receive the signal transmitted by the terminal T100 through the beams B21 and B22.
  • the beams B21 and B22 may be referred to as receiving beams of the base station B200.
  • the signal transmitted on the beam B11 can be received by the beam B21. It can be considered that there is a beam pair link BPL #u1 between the terminal T100 and the base station B200, and the BPL #u1 has a corresponding relationship with the beam B11 and the beam B21.
  • the signal transmitted on the beam B12 can be received by the beam B22.
  • the BPL #u2 there is a beam pair link BPL #u2 between the terminal T100 and the base station B200, and the BPL #u2 has a corresponding relationship with the beam B21 and the beam B22.
  • BPL #u1 and BPL #u2 can be considered as uplink beam pair links.
  • the base station B200 can transmit signals to the terminal T100 through the beam, and there may be downlink beam pair links BPL#d1, and BPL#d2.
  • the uplink beam pair link may also be regarded as a downlink beam pair link, or the downlink beam pair link may also be considered as an uplink beam pair link.
  • base station B200 and terminal T100 can discover and manage the beam pair links that exist between the two.
  • the discovery beam pair link can be implemented by measurement, for example by uplink measurement or downlink measurement.
  • the first node needs to send a signal to the second node, and the second node can control the transmit power of the first node.
  • the terminal T100 needs to send a signal to the base station B200, and the base station B200 can control the transmission power of the terminal T100.
  • the second node configures first power control information for the link for the first resource.
  • the base station B200 configures the first power control information for the beam pair link BPL #u1.
  • the first power control information is configured to associate the first resource pair with the first power control information, that is, the correspondence between the first resource pair link and the first power control information is established.
  • the second node sends the first power control information to the first node.
  • the base station B200 transmits the first power control information to the terminal T100.
  • the first node receives the first power control information from the second node.
  • the terminal T100 receives the first power control information from the base station B200.
  • the first node may locally save the first power control information after receiving the first power information.
  • the first node acquires, according to the first power control information, the transmit power P1 of the signal sent by the first resource to the resource corresponding to the link.
  • the terminal T100 needs to transmit a signal by using the beam B11, and the terminal T100 knows that the beam pair link corresponding to the beam B11 is BPL #u1, and the terminal T100 can obtain the transmission power P1 by using the first power control information associated with the BPL #u1.
  • the first node sends the first signal to the second node by using the first resource to the first sending resource corresponding to the link.
  • the transmission power of the first signal is P1.
  • the terminal T100 may transmit an SRS to the base station B200 through B11 corresponding to the BPL #u1, and the transmission power of the SRS is P1.
  • the second node may receive the first signal from the first node by using the first resource corresponding to the first resource.
  • the base station B200 can receive the SRS from the terminal T100 through the B21 corresponding to the BPL #u1.
  • different power control when the network node performs signal transmission on different resources to the resources corresponding to the link, different power control may be adopted, that is, different power control may be adopted for different channel characteristics to achieve power control and The channel characteristics match the effect, so that a more suitable transmission power can be obtained.
  • the reference signal, the control signal and the data signal can be transmitted on different resources to the resources corresponding to the link, and thus different power control can be adopted without multiplexing the same power control.
  • power control is performed according to different channel characteristics, which can better guarantee the reception quality and avoid unnecessary interference.
  • the second node may obtain more accurate power control information by using the signal quality of the first signal. For example, S105 to S106.
  • the second node obtains the signal quality of the first signal by measurement.
  • the base station B200 can obtain the signal quality information of the first signal by measuring the first signal.
  • the second node obtains new first power control information based on a signal quality of the first signal.
  • the base station B200 obtains new first power control information corresponding to the BPL #u1 based on the signal quality of the first signal.
  • the second node may send the new first power control information to the first node. For example, S107.
  • S107 The second node sends new first power control information to the first node.
  • the base station B200 can transmit new first power control information to the terminal T100.
  • the first node receives new first power control information from the second node.
  • the terminal T100 receives new first power control information from the base station B200.
  • the second node may save the new first power control information locally.
  • the second node may delete or deactivate the first power control information.
  • the timing of deleting or deactivating the first power control information For example, after receiving multiple power control information associated with the same resource pair link, the earliest power control information associated with the resource pair link may be deleted.
  • the new first power control information may be used to obtain a more accurate transmission power to transmit the signal. For example, S108 to S109.
  • the first node acquires the transmit power P1' of the transmit signal on the resource corresponding to the link of the first resource based on the new first power control information.
  • the terminal T100 can obtain the transmission power P1' on the B11 corresponding to the BPL #u1 based on the new first power control information.
  • the first node may obtain, according to the new first power control information and the old first power control information, a transmit power of the transmit signal on the resource corresponding to the link of the first resource.
  • the first node sends a second signal to the second node by using the first resource to the first sending resource corresponding to the link.
  • the transmission power of the second signal is P1'.
  • the terminal T100 can transmit the SRS to the base station B200 through B11 corresponding to the BPL #u1, and the transmission power of the SRS is P1'.
  • the second node may receive the second signal from the first node by using the first resource corresponding to the first resource pair.
  • the base station B200 can receive the SRS from the terminal T100 through the B21 corresponding to the BPL #u1.
  • the power control information associated with the link to the resource is updated according to the signal quality, and the transmission power that better matches the channel characteristics can be obtained.
  • the description of the power control method provided by the embodiment of the present application is different according to different nodes.
  • the power control method provided by the embodiment of the present application may include the foregoing S102, S103, and S104, or may include the foregoing S102 and S104.
  • the method may further include S107.
  • the method may further include S108 and S109.
  • the power control method provided by the embodiment of the present application may include the foregoing S102 and S104.
  • the method may further include S102.
  • the method may further include S105 and S106.
  • the method may further include S107.
  • the method may further include S109.
  • the power control method provided by the present application may include some or all of the foregoing S101 to S109 according to different needs.
  • the first power control information may be regarded as initial power control information, and the initial power control information may be negotiated by the first node and the second node, or may be specified by a communication standard.
  • the second node may separately configure respective power control information for the multiple resources.
  • the base station B200 can configure the first power control information for the BPL #u1 and the second power control information for the BPL #u2.
  • the second node may send, to the first node, power control information corresponding to the multiple resource pair links.
  • the base station B200 transmits the first power control information and the second power control information to the terminal T100.
  • the second node may send power control information to the first node by using a control channel, such as a physical downlink control channel (PDCCH).
  • a control channel such as a physical downlink control channel (PDCCH).
  • the power control information can be included in control information (eg, downlink control information (DCI)) for transmission.
  • DCI downlink control information
  • the power control information may be a value of power control (eg, a unit of measure [db]), or may be an index corresponding to a value of the power control (referred to as a power control index).
  • the value of the power control may be a power control integrated value or an absolute value of the power control.
  • the power control information may be information of the first column, information of the second column or information of the third column.
  • the power control information is the information of the first column, the first node and the second node need to save information such as Table 1.
  • the information in Table 1 can be specified in the communication standard.
  • the power control information may be information of a transmission power control (TPC) of the LTE system.
  • TPC transmission power control
  • the second node may send the identifier information of the link of the first resource pair, so that the first node can more easily identify the first power control information association.
  • the first resource to the link In other words, the second node may send the association relationship between the resource and the link and the power control information to the first node.
  • the base station B200 can transmit the identification information of the BPL #u1 and the first power control information to the terminal T100.
  • the identifier information of the resource-to-link may be an index of the resource-to-link (referred to as a resource-to-link index), or an index of a resource (for example, a receiving resource or a sending resource) corresponding to the resource.
  • a resource-to-link index referred to as the resource index, the receiving resource index, the sending resource index
  • another resource-to-link index refer to as QCL resource-to-link index
  • QCL resource-to-link index an index of another resource having a quasi-homolocation relationship with the resource, or with the resource
  • An index of another resource having a quasi-homolocation relationship referred to as QCL resource index, QCL receiving resource index, QCL sending resource index.
  • BPL#u1 and BPL#u2 have the same positioning relationship.
  • the terminal After receiving the identification information of BPL#u1 and the first power control information, the terminal can know that the first power control information is also related to BPL# through the same positioning relationship. U2 associated power control information. For example, the B11 and the B12 have the same positioning relationship. After receiving the identification information of the B11 and the first power control information, the terminal T100 can learn that the first power control information is also the power control information associated with the B12. Since the transmission resource corresponding to BPL #u2 is B12, the terminal T100 can know that the first power control information is associated with BPL #u2.
  • two fields may be used in the control information (for example, DCI) to carry the identification information of the resource pair link and the power control information corresponding to the resource pair link.
  • the two domains can be new domains or reuse the original domain.
  • the two domains are the power control index and the resource pair link index.
  • the length of the power control index field is log2(N) bits, where N is the number of quantized power adjustment values.
  • the length of the resource pair link index field is log2 (M) bits, where M is the number of resource pair links between the first node and the second node.
  • the two domains are the power control index and the QCL transmission resource index.
  • the length of the power control index field is a log 2 (N) bit, where N is the number of quantized power adjustment values.
  • the length of the QCL transmission resource index is a log 2 (Q) bit, where Q is the total number of transmission resources of the first node.
  • the identifier information of the multiple resource pair links and the power control information corresponding to the multiple resource pair links may be used by the two domains, so that the first node may be used by multiple
  • the resource sends a signal to multiple transmission resources corresponding to the link.
  • the two domains are the power control index and the resource pair link index.
  • the length of the power control index field is P*log 2 (N) bits, where N is the number of quantized power adjustment values.
  • the length of the resource pair link index field is P*log 2 (M) bits, where M is the number of resource pair links between the first node and the second node. Where P is the number of multiple resource pair links.
  • the length of each power control index is log 2 (N), and the length of each resource pair link index is log 2 (M).
  • the location of the power control index in the power control index field and the resource-to-link index corresponding to the power control index are the same in the resource-to-link index domain.
  • the resource pair link index associated with the first power control index is the first resource pair link index of the resource pair link index domain
  • the resource pair link index associated with the second power control index is the resource pair link.
  • the second resource pair index in the index domain is the first resource pair link index of the resource pair link.
  • the two domains are the power control index and the QCL transmission resource index.
  • the length of the power control index field is P*log 2 (N) bits, where N is the number of quantized power adjustment values.
  • the length of the QCL transmission resource index is P*log 2 (Q) bits, where Q is the total number of transmission resources of the first node. Where P is the number of multiple resource pair links.
  • the length of each power control index is log 2 (N), and the length of each QCL transmission resource index is log 2 (Q).
  • the location of the power control index in the power control index field is the same as the location of the QCL transmission resource index corresponding to the power control index in the QCL transmission resource index field.
  • the QCL transmission resource index associated with the first power control index is the first QCL transmission resource index in the QCL transmission resource index field
  • the QCL transmission resource index associated with the second power control index is the second in the QCL transmission resource index field.
  • Each QCL sends a resource index.
  • resource pair links may be represented by a bitmap.
  • the power control index corresponds to the second resource pair link
  • the second power control index in the power control index domain corresponds to the fifth resource pair link.
  • a different QCL transmission resource may be represented by a bitmap.
  • the QCL transmits the resource, and the second power control index in the power control index domain corresponds to the fifth QCL transmission resource.
  • one domain may be used to carry power control information corresponding to multiple resource pairs in the control information (for example, DCI), so that the first node may use multiple resources to use multiple transmission resources corresponding to the link.
  • the domain is a power control index domain.
  • the length of the power control index field is M*log 2 (N) bits, where N is the number of quantized power adjustment values, and M is the number of resource pair links between the first node and the second node.
  • the length of each power control index is log 2 (N).
  • the first node and the second node can each maintain a list of resource pair links locally.
  • the same resource pair link has the same location on the first node and in the list on the second node.
  • the location of the resource pair link in the list and the power control index associated with the resource pair link are the same in the power control index field.
  • the first power control index in the power control index domain corresponds to the first resource pair link in the list
  • the second power control index corresponds to the second resource pair link in the list.
  • M 5, indicating that there are five resource pair links between the first node and the second node
  • the value of the power control index field is “0010010000”.
  • "00" indicates that power control is not performed
  • "0010010000” can be understood as the power control index of the link associated with the link of the second resource is "10”
  • the power control index of the link associated with the third resource is "01".
  • the first, third, and fourth resources have no associated power control index for the link.
  • the transmission power P SRS,c (i) of the SRS in the subframe i of the serving cell c can be used according to the following formula.
  • P SRS,c (i) min ⁇ P CMAX,c (i),10log 10 (M SRS,c )+P O_SRS,c (m)+ ⁇ SRS,c ⁇ PL c +f SRS,c (i) ⁇ .
  • f SRS,c (i) f SRS,c (i-1)+ ⁇ SRS,c (iK SRS )
  • f SRS,c (i) ⁇ SRS,c (iK SRS )
  • ⁇ SRS,c (iK SRS ) is the value of the TPC indicated in the PDCCH on the most recent iK SRS subframe
  • f SRS,c (i) represents the dynamics of the ith SRS transmission Power adjustment value.
  • the first node may be the terminal T100
  • the second node may be the base station B200.
  • the network devices specifically referred to by the first node and the second node may change according to the network or application scenario.
  • the embodiment of the present application further provides a node, which can be used as the first node in FIG. 5 to implement the power control method provided by the embodiment of the present application.
  • the structure of this node can be as shown in Figure 2.
  • the node can be a terminal.
  • the transceiver unit 101 can be used to implement the functions of the first node in S102 and S104.
  • the processing unit 102 can be used to instruct or control the transceiver unit 101 to implement the above functions.
  • the processing unit 102 is configured to implement the function of the first node in S103.
  • the transceiver unit 101 can be configured to implement the function of the first node in S107.
  • the transceiver unit is configured to implement the function of the first node in S109.
  • the processing unit 102 can be configured to implement the function of the first node in S108.
  • the memory of the first node can be used to store a program that implements the power control related functions of FIG.
  • Processing unit 102 is operative to execute programs in memory to implement related functions of power control.
  • the embodiment of the present application further provides another node, which can be used as the second node in FIG. 5 to implement the power control method provided by the embodiment of the present application.
  • the node may be a base station.
  • the transceiver unit 201 can be used to implement related functions of the second node in S102 and S104.
  • the processing unit 202 can control or instruct the transceiver unit 201 to implement the foregoing functions.
  • the processing unit 202 is configured to implement related functions of the second node in S101.
  • the processing unit 202 is configured to implement related functions of the second node in S105 and S106.
  • the transceiver unit 201 can be configured to implement related functions of the second node in S107.
  • the transceiver unit 201 is configured to implement related functions of the second node in S109.
  • the memory of the second node can be used to store a program that implements the power control related functions of FIG.
  • Processing unit 102 is operative to execute programs in memory to implement related functions of power control.
  • the embodiment of the present application further provides a communication system, including the foregoing two types of nodes.
  • the communication system can be referred to FIG.
  • the operating mechanism of the communication system can be as described in the related content of FIG.
  • the embodiment of the present application further provides a computer program product, which includes the program of the first node in FIG. 5 for implementing a power control related function.
  • the embodiment of the present application further provides a computer readable storage medium storing a program of the first node in FIG. 5 for implementing a power control related function.
  • the embodiment of the present application further provides a computer program product, where the program product includes a program for implementing a power control related function by a second node in FIG. 5.
  • the embodiment of the present application further provides a computer readable storage medium storing a program of the second node in FIG. 5 for implementing a power control related function.
  • the embodiment of the present application further provides a control signal, including information as shown in any of Tables 2 to 8.
  • the power control method provided by the embodiment of the present application the node, the system, the computer program product, the computer readable storage medium, the control signal, and the power control and the resource are associated with the link, and the power control of the resource to the link granularity can be realized. Thereby, different power control can be performed for different channel characteristics, thereby obtaining more accurate transmission power.
  • various signals can be set with different power control values according to their transmission on resources corresponding to different resources, which can reduce interference while receiving correctly, and the quality of network communication can have obvious gain.
  • a beam management process is introduced in the NR system.
  • the base station can measure the beam transmitted by the terminal to select a suitable beam.
  • the behavior of the terminal transmitting beam is mainly divided into the following two types:
  • the first type the terminal transmits one or more identical transmit beams, and the base station receives by using multiple different receive beams;
  • the terminal transmits multiple different transmit beams, and the base station receives with one or more identical receive beams.
  • the first behavior can be understood as a scan of the receive beam at the base station side
  • the second behavior can be understood as a scan of the transmit beam on the terminal side.
  • the above two behaviors can also be referred to as the process of beam scanning.
  • multiple identical transmit beams transmitted by the terminal may be considered as one beam
  • multiple identical receive beams of the base station may be considered as one beam.
  • the same transmit beam can be understood as a beam with the same transmission angle. Different transmit beams can be understood as beams with different transmit angles.
  • the same receive beam can be understood as a beam with the same receive angle. Different receive beams can be understood as the receive angle. Different beams. It should be understood by those skilled in the art that the same meaning herein also includes the same meaning.
  • the embodiment of the present application provides a method for signal transmission, which can improve the fairness of the beam quality judgment in the beam scanning process.
  • the method S200 includes:
  • S210 The terminal acquires the first transmit power.
  • S220 The terminal sends a signal to the base station by using one or more transmit beams, where the transmit power of the one or more transmit beams is equal to the first transmit power.
  • the base station receives the signal from the terminal through one or more receive beams.
  • the terminal can transmit multiple beams by using the same transmit power in one beam scanning process, and the base station side can receive the transmit beam or the base station side receive beam more fairly.
  • the scanning result can be made more fair by keeping the transmission power of the plurality of transmitting beams of the terminal unchanged.
  • the signal can be an SRS.
  • the base station receives the signal from the terminal by using multiple different receive beams.
  • the base station receives the signal from the terminal by using one or more identical receive beams.
  • the method may further include: before S220:
  • S215 The terminal receives configuration information from the base station, where the configuration information is used to indicate that the beam scanning is performed.
  • the terminal acquires the first transmit power in a variety of alternative designs.
  • the terminal can use the maximum transmit power supported by the terminal as the first transmit power.
  • S210 may be expressed as: the terminal acquires the maximum transmit power of the terminal, and S220 may describe that the terminal sends multiple beams, and the transmit power of the multiple beams is equal to the maximum transmit power of the terminal.
  • the base station can be configured to give the terminal a transmit power.
  • S210 may be expressed as: the terminal receives the first transmit power from the base station; or the base station transmits the first transmit power to the terminal.
  • the base station may send the first sending power to the terminal by using RRC signaling or MAC-CE or DCI, that is, including the first sending power in the RRC signaling or MAC-CE or DCI sent to the terminal.
  • the base station may be configured to obtain one or more parameters of the transmit power for the terminal, and the terminal acquires the first transmit power based on the one or more parameters.
  • this parameter is associated with a certain BPL.
  • the parameter may be any one or more of P O_SRS, BPL (m), ⁇ SRS, BPL , and f SRS, BPL .
  • P O_SRS, BPL (m) represents the power reference value associated with the BPL, that is, the power reference values of different BPLs may be different
  • ⁇ SRS, BPL represents the path loss compensation factor associated with the BPL, that is, path loss compensation of different BPLs.
  • the factors may be different
  • f SRS, BPL represents the closed loop power adjustment value associated with the BPL, ie the closed loop power adjustment values of different BPLs may be different.
  • the method further includes:
  • the base station sends a power parameter associated with the BPL to the terminal.
  • S210 can be expressed as: the terminal acquires the first transmit power based on the power parameter.
  • the terminal may implement S210 according to the following manner, where P SRS,c is used to indicate the first transmit power.
  • the parameters configured by the base station to the terminal include P O_SRS, BPL (m), P O_SRS may be used , and BPL (m) may replace P O_SRS, c (m) in the above manner to obtain the first transmit power; if the base station is configured For the parameters of the terminal, there are ⁇ SRS, BPL , which can use ⁇ SRS, BPL replaces ⁇ SRS in the above manner , c to obtain the first transmit power; if the parameters configured by the station to the terminal are f SRS, BPL , f can be used. SRS, BPL replaces f SRS,c (i) in the above manner to obtain the first transmit power.
  • a suitable beam pair can be selected as the BPL.
  • the transmit angles of the multiple transmit beams may satisfy a threshold range, for example, the transmit angle is between 15 degrees and 18 degrees. between.
  • the receiving angles of the multiple receiving beams may satisfy a threshold range, for example, the receiving angle is between 45 degrees and 50 degrees.
  • the beam is a kind of resource.
  • the above method can also be used for the process of resource scanning. It only needs to replace the beam in the above method with a resource, replace the transmitting beam with the transmitting resource, replace the receiving beam with the receiving resource, and replace the BPL with the resource.
  • the link can be used, and will not be described here.
  • the embodiment of the present application further provides a terminal, which is used to implement the function of the terminal in the method S200, and the structure of the terminal may be as shown in FIG. 2 .
  • the processor of the terminal can be used to acquire the first transmit power
  • the transceiver of the terminal can be used to send a signal to the base station through one or more transmit beams.
  • the embodiment of the present application further provides a base station, which is used to implement the function of the base station in the method S200, and the structure of the base station can be as shown in FIG.
  • the transceiver of the base station can be used to transmit the transmit power or acquire the transmit power parameters to the terminal, and receive the signal from the terminal through one or more receive beams.
  • the embodiment of the present application further provides a communication system, including the terminal and the base station in the foregoing method S200.
  • the communication system can be referred to FIG.
  • the operating mechanism of the communication system can be as described in the content of S200.
  • the embodiment of the present application further provides a computer program product, the program product comprising the program of the function of the terminal in the method S200.
  • the embodiment of the present application further provides a computer readable storage medium storing a program of a function of a terminal in the method S200.
  • the embodiment of the present application further provides a computer program product, the program product comprising the program of the function of the base station in the method S200.
  • the embodiment of the present application further provides a computer readable storage medium storing a program of a function of a base station in the method S200.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods described in various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请的一个实施例提供一种功率控制方法。该方法包括:第一节点从第二节点接收与第一资源对链路关联的第一功率控制信息;第一节点通过第一资源对链路对应的第一发送资源向第二节点发送第一信号;其中,第一信号的发送功率是基于第一功率控制信息获得的。通过将功率控制与资源对链路建立关联关系,可以实现资源对链路粒度的功率控制,从而可以针对不同的信道特征进行不同的功率控制,进而获得更准确的发送功率。另外,各种信号根据其在不同资源对链路对应的资源上传输可以设置不同功率控制值,能够在正确接收的同时减少干扰,网络通信的质量可以有明显的增益。

Description

功率控制方法及装置
本申请要求于2017年01月26日提交中国专利局、申请号为201710061835.1、发明名称为“节点和功率控制方法”的中国专利申请的优先权,以及于2017年3月24日提交中国专利局、申请号为201710184893.3、发明名称为“节点和功率控制方法”的中国专利申请的优先权,它们全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其是功率控制技术。
背景技术
在无线通信系统中,基站可以采用全向天线形成类似圆形的信号覆盖,也可以采用扇形辐射的定向天线形成类似扇形的信号覆盖。如图1所示,基站B200的信号覆盖分为三个扇区:R1,R2和R3。每个扇区的覆盖角度为120度。换而言之,基站B200利用定向天线形成了3个类似于扇形的宽波束。通常一个基站的在不同时刻的宽波束的方向和数量不会发生变化。
基站和终端之间的信号传输,需要考虑信号的发送功率。发送功率太低可能导致接收方接收信号失败,发送功率太高可能会引起干扰。为了确定合适的发送功率,基站会向终端发送功率控制信息。
随着技术的发展,无线通信系统中可以采用波束成型技术形成的波束来获得较远距离的信号覆盖。波束成型技术多用于高频资源,也可以用于低频资源。如图1所示,基站B200通过波束成型技术可以使高频信号形成类似窄波束形状的信号覆盖,简称窄波束,例如B21,B22,B23。窄波束同样具有方向性,其覆盖范围较宽波束的覆盖范围而言较窄。在同一时刻,基站可以发射一个或多个不同的窄波束来进行通信。不同时刻,基站发射的窄波束的数量和方向可以不同。例如,在T1时刻基站B200发生波束B21和B22,在T2时刻发射波束B23。基站可以在同一时刻利用一个或多个窄波束与终端进行通信。例如基站B200可以通过B21和B22向终端T100发送通信信号(例如B22在遇到遮挡物后反射仍可以被终端T100接收到)。对于终端T100而言,也可以利用波束B11和B12向基站B200发送通信信号。不同的窄波束可用于发送不同的信息,也可以用于发送相同的信息。
利用窄波束进行通信时,如何获得合适的发送功率是呈待解决的问题。
发明内容
本申请的实施例提供的功率控制方法,节点,通信系统,计算机程序产品,计算机可读存储介质,控制信号,用以获得合适的发送功率。
第一方面,本申请实施例提供一种功率控制方法,包括:第一节点从第二节点接收第 一功率控制信息,该第一功率控制信息与第一资源对链路相关联;第一节点通过该第一资源对链路对应的资源向第二节点发送信号。其中,该信号的发送功率是基于第一功率控制信息获得的。
通过该方法,不同的资源对链路对应的资源具有不同的信道特性。因此,在该方法中,通过将功率控制信息与资源对链路相关联,可以将功率控制与信道特性相匹配,从而可以针对不同的信道特性采用相匹配的功率控制,进而获得更准确的发送功率。
可选的,第一功率控制信息可以基于之前在第一资源对链路对应的资源发送的信号的信号质量来获得。根据信号质量获得的功率控制信息更加准确。
可选的,上述资源对链路可以是波束对链路,或者端口对链路。上述无线资源可以是波束,或者端口。上述信号可以是参考信号,或者控制信号,或者数据信号。不同种类的信号可以利用不同的资源对链路的资源进行传输,进而可以对不同的种类的信号进行不同的功率控制,从而可以减少干扰,提高网络的传输质量。
可选的,第一节点从第二节点接收第一功率控制信息时还可以从第二节点接收第一资源对链路的标识信息。根据该第一资源对链路的标识信息可识别出第一资源对链路。资源对链路的标识信息有多种形式,例如资源对链路的索引,资源对链路对应的资源的索引,具有QCL关系的资源对链路的索引,具有QCL关系的资源索引等。
可选的,可以通过控制信息来携带第一功率控制信息和第一资源对链路的标识信息。
可选的,第一节点还可以从第二节点接收第一资源对链路关联的新的第一功率控制信息。可选的,第一节点可以删除旧的第一功率控制信息。可选的,第一节点本地可以保存第一资源对链路关联的多个功率控制信息。可选的,第一节点本地可以保存多个资源对链路各自关联的功率控制信息。
第二方面,本申请实施例还提供一种功率控制方法,包括:第二节点向第一节点发送与第一资源对链路关联的第一功率控制信息;第二节点通过第一资源对链路对应的第一接收资源从第一节点接收第一信号。其中,第一功率控制信息可用于获得第一信号的发送功率。
通过该方法,第二节点可以对第一节点的发送功率进行控制。在该方法中,通过将功率控制信息与资源对链路相关联,可以将功率控制与信道特性相匹配,从而可以针对不同的信道特性采用相匹配的功率控制,进而获得更准确的发送功率。
可选的,第二节点向第一节点发送第一功率控制信息时还可以向第一节点发送第一资源对链路的标识信息。根据该第一资源对链路的标识信息可识别出第一资源对链路。
可选的,第二节点还可以向第一节点发送第一资源对链路关联的新的第一功率控制信息。
可选的,第一节点还可以从第二节点接收第一资源对链路关联的新的第一功率控制信息。可选的,第一节点可以删除旧的第一功率控制信息。可选的,第一节点本地可以保存第一资源对链路关联的多个功率控制信息。可选的,第一节点本地可以保存多个资源对链 路各自关联的功率控制信息。可选的,第二节点本地可以保存多个资源对链路各自关联的功率控制信息。
可选的,如何获得更准确的第一功率控制信息,资源对链路的说明,资源的说明,信号的说明,资源对链路的标识信息的说明,如何传输第一功率控制信息和第一资源对链路的标识信息的说明可以参见第一方面。
第三方面,本申请实施例提供一种节点。该节点可用于实现第一方面的方法。该节点可以是终端。
作为一种可选的设计,该节点包括处理器和收发机。该处理器用于通过收发机从第二节点接收第一功率控制信息,该第一功率控制信息与第一资源对链路相关联,并通过该第一资源对链路对应的资源向第二节点发送信号。其中,该信号的发送功率是基于第一功率控制信息获得的。
作为另一种可选的设计,该节点包括处理器和存储器。存储器用于存储实现第一方面的方法的程序,处理器用于运行上述程序以实现第一方面的方法。
该节点如何实现第一方面的方法可以参考第一方面的内容。
第四方面,本申请实施例提供一种节点。该节点可用于实现第二方面的方法。该节点可以是基站。
作为一种可选的设计,该节点包括处理器和收发机。该处理器利用收发机向第一节点发送与第一资源对链路关联的第一功率控制信息,并通过第一资源对链路对应的第一接收资源从第一节点接收第一信号。其中,第一功率控制信息可用于获得第一信号的发送功率。
作为另一种可选的设计,该节点包括处理器和存储器。存储器用于存储实现第二方面的方法的程序,处理器用于运行上述程序以实现第二方面的方法。
该节点如何实现第二方面的方法可以参考第二方面的内容。
第五方面,本申请实施例提供一种通信系统,用于包括上述2个节点。
第六方面,本申请实施例还提供一种计算机程序产品,该程序产品包括用于实现第一方面方法的程序。
第七方面,本申请实施例还提供一种计算机可读存储介质,该介质存储有第六方面的程序。
第八方面,本申请实施例还提供一种计算机程序产品,该程序产品包括用于实现第二方面方法的程序。
第九方面,本申请实施例还提供一种计算机可读存储介质,该介质存储有第八方面的程序。
第十方面,本申请实施例还提供一种控制信息。该控制信息包括资源对链路的标识信息和与该资源对链路对应的功率控制信息。
第十一方面,本申请实施例还提供一种信号传输的方法,包括:
终端获取第一发射功率;
该终端通过一个或多个发射资源向基站发送信号,所述一个或多个发射资源的发射功率等于所述第一发射功率。
可选的,该信号为SRS。
可选的,所述多个发射资源为相同的发射资源。
可选的,所述多个发射资源为不相同的发射资源。
可选的,该方法还包括:该终端从基站接收配置信息,所述配置信息用于指示进行资源扫描。
可选的,终端获取第一发射功率为终端获取该终端的最大发射功率,所述一个或多个发射资源的发射功率等于所述第一发射功率为所述一个或多个发射资源的发射功率等于该最大发射功率。
可选的,终端获取第一发射功率为终端从基站接收第一发射功率。
可选的,该方法还包括:终端从基站接收与资源对链路关联的功率参数。终端获取第一发射功率为终端基于所述功率参数获取所述第一发射功率。
可选的,所述功率参数可以是P O_SRS,BPL(m),α SRS,BPL,f SRS,BPL和PL BPL中的一个或多个。
可选的,终端基于所述功率参数获取所述第一发射功率为:
终端基于P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c}或者P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c+f SRS,c(i)}获取第一发射功率。
第十二方面,本申请实施例提供一种信号传输的方法,包括:
基站向终端发送第一发射功率或者与第一发射功率关联的功率参数;
基站通过一个或多个接收资源从终端接收信号。
其中,该信号是通过一个或多个发射资源发送的,所述一个或多个发送资源的发射功率为所述第一发射功率。
可选的,该信号为SRS。
可选的,所述多个发射资源为相同的发射资源。
可选的,所述多个发射资源为不相同的发射资源。
可选的,所述多个接收资源是相同的接收资源。
可选的,所述多个接收资源是不相同的接收资源。
可选的,该方法还包括:基站向终端发送配置信息,所述配置信息用于指示进行资源扫描。
可选的,所述功率参数可以是P O_SRS,BPL(m),α SRS,BPL,f SRS,BPL和PL BPL中的一个或多个。
可选的,上述资源可以是波束。
可选的,上述资源对链路可以是BPL。
第十三方面,本申请实施例提供一种终端。该终端可用于实现第十一方面的方法。
作为一种可选的设计,该终端包括处理器和收发机。
作为另一种可选的设计,该终端包括处理器和存储器。存储器用于存储实现第十一方面的方法的程序,处理器用于运行上述程序以实现第十一方面的方法。
该节点如何实现第十一方面的方法可以参考第十一方面的内容。
第十四方面,本申请实施例提供一种基站。该基站可用于实现第十二方面的方法。
作为一种可选的设计,该基站包括处理器和收发机。
作为另一种可选的设计,该基站包括处理器和存储器。存储器用于存储实现第十二方面的方法的程序,处理器用于运行上述程序以实现第十二方面的方法。
该基站如何实现第十二方面的方法可以参考第十二方面的内容。
第十五方面,本申请实施例提供一种通信系统,用于包括上述基站和终端。
第十六方面,本申请实施例还提供一种计算机程序产品,该程序产品包括用于实现第十一方面方法的程序。
第十七方面,本申请实施例还提供一种计算机可读存储介质,该介质存储有第十六方面的程序。
第十八方面,本申请实施例还提供一种计算机程序产品,该程序产品包括用于实现第十二方面方法的程序。
第十九方面,本申请实施例还提供一种计算机可读存储介质,该介质存储有第十八方面的程序。
本申请的技术方案中,通过将功率控制与资源对链路建立关联关系,可以实现资源对链路粒度的功率控制,从而可以针对不同的信道特征进行不同的功率控制,进而获得更准确的发送功率。另外,各种信号根据其在不同资源对链路对应的资源上传输可以设置不同功率控制值,能够在正确接收的同时减少干扰,网络通信的质量可以有明显的增益。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍。
图1为无线通信系统的简化示意图;
图2为一种终端的结构简化示意图示意图;
图3为一种基站的结构简化示意图;
图4为一种波束对链路的示意图;
图5为一种功率控制的信令交互示意图。
具体实施方式
下面将结合本申请中的附图,对本申请的实施例进行描述。
以下对本申请中的一些术语和约定做出说明。
在本申请中,信号是信息的一种表现形式。信号有时可以称为无线信号,通信信号。在无线通信中,信号可以通过电磁波的方式由一个通信节点发送到另一个通信节点。信号根据信息内容的不同,可以具有多种类型。例如:信号的种类可以分为参考信号,控制信号,和数据信号。参考信号是一种用于信道估计、信道探测、或者信道解调的信号。例如:探测参考信号(sounding reference signal,SRS)可以归为参考信号。控制信号是一种用于对通信节点的通信行为进行控制的信号。例如:在控制信道发送的信号可以归为控制信号。数据信号是一种体现数据信息的信号。例如:在数据信道发送的业务数据的信号可以归为数据信号。
在本申请中,通信特征是一种用于表征传输特性的信息。例如通信特征可以包括:平均增益,平均时延,时延分布,多普勒频移,多普勒分布等。
在本申请中,信道特征是一种用于表征信道传输特性的信息。例如:信道特征可以包括:信道衰减,信道噪声,信道干扰水平,信道的多径分布,信道的多普勒频移,信道的角度扩展,信道的传播时延等。
在本申请中,通信资源可以简称为资源。通信资源可用于传输信号。通信资源具有多种类型。例如:从物理特性的角度,通信资源的类型可以是空间资源,时域资源,和频域资源。例如:从不同的表现形式的角度,通信资源的类型可以是波束,端口等。不同种类的通信资源的集合也是一种通信资源。例如:时频资源是一种通信资源,波束和端口的组合是一种通信资源。
在本申请中,波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。
在本申请中,天线端口是一种通信资源。天线端口可以简称为端口。端口可以是逻辑端口,或者是物理端口。不同的端口可以认为是不同的资源。通过不同的端口可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个端口视为一个端口。
在本申请中,用于接收信号的通信资源可以称为接收资源,用于发送信号的通信资源可以称为发送资源。例如:接收波束是一种接收资源,发送波束是一种发送资源;接收端口是一种接收资源,发送端口是一种发送资源。
在本申请中,可以将一个接收资源和一个发送资源视为一个资源对。例如:一个接收波束和一个发送波束可以形成一个波束对;一个发送端口和一个接收端口可以形成一个端口对。无线信号传输的路径空间可以称为链路。利用资源对进行无线信号传输的路径空间可以称为资源对链路。例如:利用波束对进行信号传输的路径空间可以称为波束对链路(beam pari link,BPL);利用端口对进行信号传输的路径空间可以称为端口对链路。资源 对链路可以与信道特征相对应。不同的资源对链路可以具有不同的信道特征。在本申请中,可以将资源对链路视为一种通信特征。关于波束对链路的相关内容可以参见第三代合作伙伴计划(third generation partnership project,3GPP)的提案R1-1700748中的相关内容。
在本申请中,准同定位(quasi-co-location,QCL)关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征。对于具有准同定位关系的多个资源,可以采用相同或者类似的通信配置。例如:对2个具有QCL关系的波束可以认为其波束对链路相同或者近似,可以采用相同或者近似的功率控制。关于QCL的相关内容可以参考3GPP的提案R1-167970,R1-168436,R1-1610825,R1-1610520,R1-1613719,和R1-1613108中相关的内容以及3GPP的标准TS 36.211 v13.0.0的章节6.2.1的内容和TS 36.213 v14.1.0的章节7.1.9和7.1.10的内容。
在本申请中,网络节点是一种具有通信功能的装置,也可以称为网络设备。网络节点可以简称为节点。例如:网络节点可以是终端,基站,或者通信芯片等装置。
在本申请中,发送功率有时也称发射功率。
在本申请中,字段有时也称为域(field)。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”;术语“关联的”、“有关联”、“对应的”以及他们的变形可以指“绑定的”,“与……绑定”,“有映射关系的”,“配置的”,“分配的”,“基于……的”,或者“根据……获得的”等;术语“通过”以及其变形可以指“利用”,“使用”,或者“在……上”等。
本申请的技术方案可以适用于不同网络节点之间的通信。例如,可以适用于基站和终端之间的通信,基站与基站之间的通信,终端与终端之间的通信等。本申请实施例主要以基站和终端之间的通信为例进行说明。
本申请的技术方案可以用于如图1所示的无线通信系统中。如图1所示,在无线通信系统包括基站B200和终端T100。基站B200可以利用不同的通信资源(例如B1或B2)与终端T100进行通信。例如:基站B200可以利用不同的通信资源向终端T100发送数据信号。该无线通信系统可以是4G通信系统,例如:LTE(长期演进,long term evolution)系统,或者,可以是5G通信系统,例如NR(new radio,新空口)系统,或者是多种通信技术融合的通信系统(例如LTE技术和NR技术融合的通信系统)。
终端T100是一种具有无线通信功能的设备,可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中终端可以叫做不同的名称,例如:用户设备,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。
终端T100的结构示意图可以如图2所示。为了便于说明,图2仅示出了终端的主要部件。如图2所示,终端T100包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。有些种类的终端不具有输入输出装置。
当终端开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图2仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图2中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。可选的,终端可以包括多个基带处理器以适应不同的网络制式。可选的,终端可以包括多个中央处理器以增强其处理能力。可选的,可以将基带处理器和中央处理器的功能集成在一个处理器上实现。可选的,终端的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。可选的,对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图2所示,终端T100包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元。接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
基站B200,也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备。例如:在LTE网络中的基站称为演进的节点B(evolved NodeB,eNB或者eNodeB),在NR网络中的基站称为TRP(收发点,transmission reception point)或者gNB(generation nodeB,下一代节点B)。基站B200的结构可以如图3所示。图3所示的基站B200可以是分体式基站,例如图3靠左示出了包括天线(antennas)、无线射频单元(remote radio unit,RRU)和基带单元(baseband unit,BBU)的分布式基站,图3所示的基站也可以是一体式基站,例如图3靠右示出的小站(small cell)。一般而言,基站包括201部分以及202部分。201部分主要用于射频信号的收发以及射频信号与基带信号的转换;202部分主要用于进行基带处理,对基站进行控制等。201部分通常可以称为收发单元、收发机、收发电路、收发器等。202部分通常可以称为处理单元。通常202部分是基站的控制中心。
作为一种可选的实施方式,201部分可以包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将201部分中用于实现接收功能的器件视为接收单元, 将用于实现发送功能的器件视为发送单元,即201部分包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
作为一种可选的实施方式,202部分可以包括一个或多个单板,每个单板可以包括处理器和存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。
作为另一种可选的实施方式,随着片上系统(英文:System-on-chip,简称:SoC)技术的发展,可以202部分和201部分的功能由SoC技术实现,即由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。
本申请的技术方案可以适用于利用不同的通信资源进行通信的场景,例如利用不同波束进行通信的场景,利用不同端口进行通信的场景。本申请实施例主要以利用波束进行通信为例进行说明。
如图4所示,终端T100可以通过波束B11和B12向基站B100发送信号。其中,波束B11和B12可以称为终端T100的发送波束。基站B200可以通过波束B21和B22接收终端T100发送的信号。其中,波束B21和B22可以称为基站B200的接收波束。在波束B11上发送的信号可以由波束B21接收,则可以认为终端T100和基站B200之间存在波束对链路BPL#u1,该BPL#u1与波束B11和波束B21存在对应关系。在波束B12上发送的信号可以由波束B22接收,则可以认为终端T100和基站B200之间存在波束对链路BPL#u2,该BPL#u2与波束B21和波束B22存在对应关系。可以将BPL#u1和BPL#u2视为上行的波束对链路。类似的,基站B200可以通过波束向终端T100发送信号,则可能存在下行的波束对链路BPL#d1,和BPL#d2。可选的,在上下行具有互易性的场景下,上行的波束对链路也可以认为是下行的波束对链路,或者下行的波束对链路也可以认为是上行的波束对链路。在波束管理流程中,基站B200和终端T100可以发现并管理两者之间存在的波束对链路。发现波束对链路可以通过测量来实现,例如通过上行测量或者下行测量。
在图5所示的交互过程中,第一节点需要向第二节点发送信号,第二节点可以对第一节点的发送功率进行控制。例如:终端T100需要向基站B200发送信号,基站B200可以对终端T100进行发送功率的控制。如图5所示:
S101:第二节点为第一资源对链路配置第一功率控制信息。
例如:基站B200为波束对链路BPL#u1配置第一功率控制信息。
为第一资源对链路配置第一功率控制信息可视为将第一资源对链路与第一功率控制信息关联,即建立了第一资源对链路与第一功率控制信息的对应关系。
S102:第二节点向第一节点发送该第一功率控制信息。
例如:基站B200向终端T100发送该第一功率控制信息。
换而言之,第一节点从第二节点接收该第一功率控制信息。
例如:终端T100从基站B200接收该第一功率控制信息。
可选的,第一节点在收到第一功率信息后可以在本地保存该第一功率控制信息。
S103:第一节点基于第一功率控制信息获取在第一资源对链路对应的资源上发送信 号的发送功率P1。
例如:终端T100需要利用波束B11发送信号,终端T100可知波束B11对应的波束对链路为BPL#u1,终端T100可以使用与BPL#u1关联的该第一功率控制信息来获取发送功率P1。
S104:第一节点通过该第一资源对链路对应的第一发送资源向第二节点发送第一信号。该第一信号的发送功率为P1。
例如:终端T100可以通过与BPL#u1对应的B11向基站B200发送SRS,该SRS的发送功率为P1。
换而言之,第二节点可以通过该第一资源对链路对应的第一接收资源从第一节点接收第一信号。
例如:基站B200可以通过BPL#u1对应的B21从终端T100接收SRS。
通过上述S102,S103和S104,网络节点在不同的资源对链路对应的资源上进行信号传输时,可以采用不同的功率控制,即可以针对不同的信道特征采用不同的功率控制,达到功率控制与信道特性相匹配的效果,从而可以获得更合适的发送功率。另外,参考信号,控制信号和数据信号可以在不同的资源对链路对应的资源上传输,进而可以采用不同的功率控制,无需复用相同的功率控制。对于不同种类的信号根据不同的信道特性来进行功率控制,能更好的保障接收质量,避免不必要的干扰。
可选的,第二节点可以通过上述第一信号的信号质量来获得更准确的功率控制信息。例如S105~S106。
S105:第二节点通过测量获得第一信号的信号质量。
例如:基站B200可以通过对第一信号进行测量获得第一信号的信号质量信息。
S106:第二节点基于第一信号的信号质量获得新的第一功率控制信息。
例如:基站B200基于第一信号的信号质量获得BPL#u1对应的新的第一功率控制信息。
在获得第一资源对链路对应的新的第一功率控制信息后,第二节点可以将新的第一功率控制信息发送至第一节点。例如S107。
S107:第二节点向第一节点发送新的第一功率控制信息。
例如:基站B200可以向终端T100发送新的第一功率控制信息。
换而言之,第一节点从第二节点接收新的第一功率控制信息。
例如:终端T100从基站B200接收新的第一功率控制信息。
可选的,第二节点可以在本地保存新的第一功率控制信息。
可选的,第二节点可以删除或者去激活第一功率控制信息。删除或者去激活第一功率控制信息的时机不做限制。例如在收到多个与同一个资源对链路关联的功率控制信息后,可以删除最早的与该资源对链路关联的功率控制信息。
第一节点在需要在第一资源对链路对应的资源上发送信号时,可以使用新的第一功率控制信息获得更准确的发送功率来发射信号。例如S108~S109。
S108:第一节点基于新的第一功率控制信息获取在第一资源对链路对应的资源上发送信号的发送功率P1’。
例如:终端T100可以基于新的第一功率控制信息获得在BPL#u1对应的B11上的发 送功率P1’。
可选的,第一节点可以基于新的第一功率控制信息和旧的第一功率控制信息获得在第一资源对链路对应的资源上发送信号的发送功率。
S109:第一节点通过该第一资源对链路对应的第一发送资源向第二节点发送第二信号。该第二信号的发送功率为P1’。
例如:终端T100可以通过与BPL#u1对应的B11向基站B200发送SRS,该SRS的发送功率为P1’。
换而言之,第二节点可以通过该第一资源对链路对应的第一接收资源从第一节点接收第二信号。
例如:基站B200可以通过BPL#u1对应的B21从终端T100接收SRS。
根据信号质量来更新资源对链路关联的功率控制信息,能够获得更加匹配信道特性的发送功率。
根据不同的节点,本申请实施例提供的功率控制方法的描述有所不同。
例如:从第一节点的角度,本申请实施例提供的功率控制方法可以包括上述S102,S103和S104,或者可以包括上述S102和S104。可选的,该方法还可以包括S107。可选的,该方法还可以包括S108和S109。
例如:从第二节点的角度,本申请实施例提供的功率控制方法可以包括上述S102和S104。可选的,该方法还可以包括S102。可选的,该方法还可以包括S105和S106。可选的,该方法还可以包括S107。可选的,该方法还可以包括S109。
本领域技术人员应知,本申请提供的功率控制方法可以根据不同的需要,包括上述S101~S109中的部分或者全部。
可选的,在S101部分,第一功率控制信息可以视为初始的功率控制信息,初始的功率控制信息可以由第一节点和第二节点协商,或者可以由通信标准规定。
可选的,在S101部分,第二节点可以为多个资源对链路分别配置各自的功率控制信息。例如:基站B200可以为BPL#u1配置第一功率控制信息,为BPL#u2配置第二功率控制信息。
可选的,在S102部分,第二节点可以向第一节点发送多个资源对链路对应的功率控制信息。例如:基站B200向终端T100发送第一功率控制信息和第二功率控制信息。
可选的,在S102部分,或者S107部分,第二节点可以通过控制信道(例如物理下行控制信道(physical downlink control channel,PDCCH))向第一节点发送功率控制信息。例如,可以将功率控制信息包括在控制信息(例如:下行控制信息(downlink control information,DCI))中传输。
可选的,功率控制信息可以是功率控制的值(例如计量单位为[db]),或者可以是与功率控制的值对应的索引(简称功率控制索引)。其中,功率控制的值可以是功率控制累计值,或者是功率控制绝对值。如下表1所示,功率控制信息可以是第一列的信息,第二列的信息或者第三列的信息。当功率控制信息是第一列的信息时,第一节点和第二节点需要保存例如表1的信息。表1的信息可以是通信标准中规定的。
表1
索引 功率控制累计值[dB] 功率控制绝对值[db]
0 -1 -4
1 0 -1
2 1 1
3 3 4
例如:功率控制信息可以是LTE系统的传输功率控制(transmission power control,TPC)的信息。具体TPC的内容可以参见3GPP的标准TS 36.213 version 14.1.0,章节5.1.1.1。
可选的,在S102,第二节点在发送第一功率控制信息时,可以一并发送第一资源对链路的标识信息,以便第一节点能够更为方便的识别出第一功率控制信息关联的第一资源对链路。换而言之,第二节点可以将资源对链路和功率控制信息的关联关系发送给第一节点。例如:基站B200可以将BPL#u1的标识信息和第一功率控制信息发送给终端T100。
可选的,资源对链路的标识信息可以是资源对链路的索引(简称资源对链路索引),或者是资源对链路对应的资源(例如:接收资源,或者发送资源)的索引(简称资源索引,接收资源索引,发送资源索引),或者是与该资源对链路具有准同定位关系的另一个资源对链路的索引(简称QCL资源对链路索引),或者是与该资源具有准同定位关系的另一个资源的索引(简称QCL资源索引,QCL接收资源索引,QCL发送资源索引)。例如:BPL#u1和BPL#u2具有准同定位关系,终端收到BPL#u1的标识信息和第一功率控制信息后,通过准同定位关系,可以获知该第一功率控制信息也是与BPL#u2关联的功率控制信息。再例如:B11和B12具有准同定位关系,终端T100收到B11的标识信息和第一功率控制信息后,通过准同定位关系,可以获知该第一功率控制信息也是与B12关联的功率控制信息,由于BPL#u2对应的发送资源为B12,终端T100可以获知第一功率控制信息与BPL#u2相关联。
可选的,可以在控制信息(例如DCI)中用2个域来携带资源对链路的标识信息和与该资源对链路对应的功率控制信息。该两个域可以是新增的域,也可以是重用原来的域。
例如:如表2所示,2个域为功率控制索引和资源对链路索引。功率控制索引域的长度为log2(N)比特位,其中N为经过量化后功率调整值的个数。资源对链路索引域的长度为log2(M)比特位,其中M为第一节点和第二节点间资源对链路的数量。
表2
长度(比特位)
功率控制索引 log 2(N)
资源对链路索引 log 2(M)
再例如:如表3所示,2个域为功率控制索引和QCL发送资源索引。功率控制索引域的长度为log 2(N)比特位,其中N为经过量化后功率调整值的个数。QCL发送资源索引的长度为log 2(Q)比特位,其中Q为第一节点的发送资源的总数。
表3
长度(比特位)
功率控制索引 log 2(N)
QCL发送资源索引 log 2(Q)
可选的,可以在控制信息(例如DCI)中用2个域来携带多个资源对链路的标识信息,和多个资源对链路对应的功率控制信息,可便于第一节点使用多个资源对链路对应的多个发送资源来发送信号。
例如:如表4所示,2个域为功率控制索引和资源对链路索引。功率控制索引域的长度为P*log 2(N)比特位,其中N为经过量化后功率调整值的个数。资源对链路索引域的长度为P*log 2(M)比特位,其中M为第一节点和第二节点间资源对链路的数量。其中,P为多个资源对链路的数量。每个功率控制索引的长度为log 2(N),每个资源对链路索引的长度为log 2(M)。可选的,可以约定一个功率控制索引在功率控制索引域的位置与该功率控制索引对应的资源对链路索引在资源对链路索引域的位置相同。例如:第一个功率控制索引关联的资源对链路索引为资源对链路索引域中第一个资源对链路索引,第二个功率控制索引关联的资源对链路索引为资源对链路索引域中第二个资源对链路索引。
表4
长度(比特位)
功率控制索引 P*log 2(N)
资源对链路索引 P*log 2(M)
例如:如表5所示,2个域为功率控制索引和QCL发送资源索引。功率控制索引域的长度为P*log 2(N)比特位,其中N为经过量化后功率调整值的个数。QCL发送资源索引的长度为P*log 2(Q)比特位,其中Q为第一节点的发送资源的总数。其中P为多个资源对链路的数量。每个功率控制索引的长度为log 2(N),每个QCL发送资源索引的长度为log 2(Q)。可选的,可以约定一个功率控制索引在功率控制索引域的位置与该功率控制索引对应的QCL发送资源索引在QCL发送资源索引域的位置相同。例如:第一个功率控制索引关联的QCL发送资源索引为QCL发送资源索引域中第一个QCL发送资源索引,第二个功率控制索引关联的QCL发送资源索引为QCL发送资源索引域中第二个QCL发送资源索引。
表5
长度(比特位)
功率控制索引 P*log 2(N)
QCL发送资源索引 P*log 2(Q)
再例如:如表6所示,在资源对链路的数量较多情况下,可以采用比特图(bitmap)的方式表示不同的资源对链路。在表6中,资源对链路bitmap域的长度为M比特位。例如:M=5,表示第一节点和第二节点之间存在5个资源对链路。资源对链路bitmap域的值为“01001”,表示其中第2个资源对链路和第5个资源对链路的资源可用于发送信号,则P=2,功率控制索引域中第一个功率控制索引对应第2个资源对链路,功率控制索引域中第二个功率控制索引对应第5个资源对链路。
表6
长度(比特位)
功率控制索引 P*log 2(N)
资源对链路bitmap M
再例如:如表7所示,在QCL发送资源的数量较多的情况下,可以采用bitmap的方式来表示不同的QCL发送资源。在表7中,QCL发送资源bitmap域的长度为Q个比特位。例如:Q=5,表示第一节点有5个QCL发送资源。资QCL发送资源bitmap域的值为“01001”,表示其中第2个QCL发送资源和第5个QCL发送资源可用,则P=2,功率控制索引域中第一个功率控制索引对应第2个QCL发送资源,功率控制索引域中第二个功率控制索引对应第5个QCL发送资源。
表7
长度(比特位)
功率控制索引 P*log 2(N)
QCL发送资源bitmap Q
可选的,可以在控制信息(例如DCI)中用1个域来携带多个资源对链路对应的功率控制信息,可便于第一节点使用多个资源对链路对应的多个发送资源来发送信号。
例如:如表8所示,该域为功率控制索引域。功率控制索引域的长度为M*log 2(N)比特位,其中N为经过量化后功率调整值的个数,M为第一节点和第二节点间资源对链路的数量。每个功率控制索引的长度为log 2(N)。第一节点和第二节点可以各自在本地维护一个资源对链路列表。同一资源对链路在第一节点上和第二节点上的列表中的位置相同。资源对链路在列表中的位置和与该资源对链路关联的功率控制索引在功率控制索引域的位置相同。例如功率控制索引域中第一个功率控制索引对应列表中第一个资源对链路,第二个功率控制索引对应列表中第二个资源对链路。例如M=5,表示第一节点和第二节点之间有5个资源对链路,N=4,则每个功率控制索引占用2个比特位,功率控制索引域的值为“0010010000”,“00”表示不进行功率控制,则“0010010000”可以理解为第二个资源对链路关联的功率控制索引为“10”,第三个资源对链路关联的功率控制索引为“01”,第一,第三和第四个资源对链路没有关联的功率控制索引。
表8
长度(比特位)
功率控制索引 M*log 2(N)
可选的,根据功率控制信息获得发送功率有多种方法。
例如:可以根据如下公式针对SRS在服务小区c的子帧i时的发送功率P SRS,c(i)。
P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c+f SRS,c(i)}。
其中当TPC累计功能打开时,f SRS,c(i)=f SRS,c(i-1)+δ SRS,c(i-K SRS),当TPC累计功能关闭时,f SRS,c(i)=δ SRS,c(i-K SRS),其中δ SRS,c(i-K SRS)的值为最近i-K SRS子帧上PDCCH中指示的TPC的值;f SRS,c(i)表示第i次SRS传输的动态功率调整值。上述公式中各个参数的介绍可参见3GPP的标准TS 36.213 version 14.1.0,章节5.1.3.1的相关内容。
本领域技术人员应知,在上述方案的说明中,第一节点可以是终端T100,第二节点可以是基站B200。第一节点和第二节点具体指代的网络设备可以随着网络或者应用场景的不同而发生变化。
本申请实施例还提供一种节点,可以作为图5中的第一节点,用于实现本申请实施例提供的功率控制方法。该节点的结构可以如图2所示。可选的,该节点可以是终端。
作为一种可选实施方式,收发单元101可用于实现S102和S104中第一节点的功能。处理单元102可用于指示或者控制收发单元101实现上述功能。可选的,处理单元102可用于实现S103中第一节点的功能。可选的,收发单元101可用于实现S107中第一节点的功能。可选的,收发单元可用于实现S109中第一节点的功能。可选的,处理单元102可用于实现S108中第一节点的功能。
作为另一种可选的实施方式,第一节点的存储器可用于存储实现图5中功率控制相关功能的程序。处理单元102用于执行存储器中的程序以实现功率控制的相关功能。
本申请实施例还提供另一种节点,可以作为图5中的第二节点,用于实现本申请实施例提供的功率控制方法。可选的,该节点可以是基站。
作为一种实施方式,收发单元201可用于实现S102和S104中第二节点的相关功能。可选的,处理单元202可以控制或者指示收发单元201实现上述功能。可选的,处理单元202可用于实现S101中第二节点的相关功能。可选的,处理单元202可用于实现S105和S106中第二节点的相关功能。可选的,收发单元201可用于实现S107中第二节点的相关功能。可选的,收发单元201可用于实现S109中第二节点的相关功能。
作为另一种实施方式,第二节点的存储器可用于存储实现图5中功率控制相关功能的程序。处理单元102用于执行存储器中的程序以实现功率控制的相关功能。
本申请实施例还提供一种通信系统,包括上述两种节点。该通信系统可以参考图1所示。该通信系统的运行机制可以如图5相关内容所述。
本申请实施例还提供一种计算机程序产品,该程序产品包括图5中第一节点实现功率控制相关功能的程序。
本申请实施例还提供一种计算机可读存储介质,该存储介质存储有图5中第一节点实现功率控制相关功能的程序。
本申请实施例还提供一种计算机程序产品,该程序产品包括图5中第二节点实现功率控制相关功能的程序。
本申请实施例还提供一种计算机可读存储介质,该存储介质存储有图5中第二节点实现功率控制相关功能的程序。
本申请实施例还提供一种控制信号,包括有如表2~表8任一所示的信息。
本领域技术人员应知,上述不同的可选部分/实现方式等可以根据不同的网络需要进行组合和替换。
本申请实施例提供的功率控制方法,节点,系统,计算机程序产品,计算机可读存储介质,控制信号,将功率控制与资源对链路建立关联关系,可以实现资源对链路粒度的功率控制,从而可以针对不同的信道特征进行不同的功率控制,进而获得更准确的发送功率。另外,各种信号根据其在不同资源对链路对应的资源上传输可以设置不同功率控制值,能够在正确接收的同时减少干扰,网络通信的质量可以有明显的增益。
NR系统中引入了波束管理过程。在波束管理过程中,基站可以测量终端发射的波束,以选择合适的波束。在波束管理过程中,终端发射波束的行为主要分为以下2种:
第一种:终端发射一个或多个相同的发射波束,基站采用多个不同的接收波束接收;
第二种:终端发射多个不同的发射波束,基站采用一个或多个相同的接收波束接收。
第一种行为可以理解为对于基站侧接收波束的扫描,第二种行为可以理解为对于终端侧发射波束的扫描。上述两种行为也可以称为波束扫描的过程。在第一种行为中,终端发射的多个相同的发射波束可以认为是一个波束;在第二种行为中,基站的多个相同的接收波束可以认为是一个波束。
其中,相同的发射波束可以理解为发射角度相同的波束,不同的发射波束可以理解为发射角度不同的波束,相同的接收波束可以理解为接收角度相同的波束,不同的接收波束可以理解为接收角度不同的波束。本领域技术人员应知,这里的相同的意思也包括近似于相同的意思。
波束管理的相关内容可以参考3GPP的提案R1-1609415,R1-1700043,R1-1700749,R1-1701718,R1-1703170。
在波束扫描过程中,需要提高波束质量判断的公平性。
本申请实施例提供一种信号传输的方法,可以提高在波束扫描过程中对波束质量判断的公平性。
该方法S200包括:
S210:终端获取第一发射功率;
S220:该终端通过一个或多个发射波束向基站发送信号,所述一个或多个发射波束的发射功率等于所述第一发射功率。
换而言之,在S220,基站通过一个或多个接收波束从该终端接收所述信号。
S220中终端可以在一个波束扫描的过程中采用相同的发射功率发射多个波束,对于基站而言可以更加公平的测量终端测的发射波束或者基站侧的接收波束。
可见,通过该方法,在波束扫描过程中,通过让终端的多个发射波束的发射功率保持不变,可以使得扫描结果更具有公平性。
可选的,该信号可以是SRS。
可选的,如果S220中所述一个或多个发射波束为相同的发射波束,则基站通过多个不同的接收波束从该终端接收所述信号。
可选的,如果S220中所述多个发射波束为不同的发射波束,则基站通过一个或多个相同的接收波束从该终端接收所述信号。
可选的,该方法在S220前还可以包括:
S215:终端从基站接收配置信息,该配置信息用于指示进行波束扫描。
在S210,终端获取第一发射功率有多种可选的设计。
在第一种可选的设计中,终端可以采用终端所支持的最大发射功率作为第一发射功率。作为一个示例,S210可以表述为:终端获取所述终端的最大发射功率,S220可以表述为该终端发送多个波束,所述多个波束的发射功率等于所述终端的最大发射功率。
在第二种可选的设计中,基站可以配置给终端一个发射功率。作为一个示例,S210可以表述为:终端从基站接收第一发射功率;或者基站向终端发送第一发射功率。可选的,基站可以通过RRC信令或者MAC-CE或者DCI将第一发送功率发送给终端,即在发送给终端的RRC信令或者MAC-CE或者DCI中包括第一发送功率。
在第三种可选的设计中,基站可以配置给终端获取发射功率的一个或多个参数,终端基于上述一个或多个参数来获取第一发射功率。其中,该参数与某个BPL关联。可选的,该参数可以是P O_SRS,BPL(m),α SRS,BPL,和f SRS,BPL中的任意一个或多个。其中P O_SRS,BPL(m)表示与该BPL关联的功率基准值,即不同BPL的功率基准值可以不同,α SRS,BPL表示与该BPL关联的路径损耗补偿因子,即不同BPL的路径损耗补偿因子可以不同,f SRS,BPL表示与该BPL关联的闭环功率调整值,即不同BPL的闭环功率调整值可以不同。
作为一个示例,该方法还包括:
S208:基站向终端发送与BPL关联的功率参数。
S210可以表述为:终端基于所述功率参数获取第一发射功率。
可选的,终端可以根据如下方式来实现S210,其中P SRS,c用于表示第一发射功率。
方式一:P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c};
方式二:P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c+f SRS,c(i)}。
例如:如果基站配置给终端的参数中有P O_SRS,BPL(m),可以使用P O_SRS,BPL(m)替换上述方式中的P O_SRS,c(m)来获取第一发射功率;如果基站配置给终端的参数中有α SRS,BPL,可以使用α SRS,BPL替换上述方式中的α SRS,c来获取第一发射功率;如果站配置给终端的参数中有f SRS,BPL,可以使用f SRS,BPL替换上述方式中的f SRS,c(i)来获取第一发射功率。
上述公式的说明可以参见上述表8下的相关内容,此处不作赘述。
通过第三种设计,可以选择出合适的波束对作为该BPL。
可选的,在第三种设计中,如果S220中所述多个发射波束为不同的发射波束,则多个发射波束的发射角度可以满足一个阈值范围,例如发射角度处于15度到18度之间。
可选的,在第三种设计中,如果S220中,多个接收波束为不同的接收波束,则多个接 收波束的接收角度可以满足一个阈值范围,例如接收角度处于45度到50度。
波束是一种资源,上述方法同样可以用于资源扫描的过程,只需将上述方法中的波束替换为资源,将发射波束替换为发射资源,将接收波束替换为接收资源,将BPL替换为资源对链路即可,此处不作赘述。
本申请实施例还提供一种终端,用于实现方法S200中终端的功能,该终端的结构可以如图2所示。例如:终端的处理器可用于获取第一发射功率,终端的收发机可用于通过一个或多个发射波束向基站发送信号。
本申请实施例还提供一种基站,用于实现方法S200中基站的功能,该基站的结构可以如图3所示。例如:基站的收发机可用于向终端发送发射功率或者获取发射功率的参数,并通过一个或多个接收波束从终端接收信号。
本申请实施例还提供一种通信系统,包括上述方法S200中的终端和基站。该通信系统可以参考图1所示。该通信系统的运行机制可以如S200的内容所述。
本申请实施例还提供一种计算机程序产品,该程序产品包括方法S200中终端的功能的程序。
本申请实施例还提供一种计算机可读存储介质,该存储介质存储有方法S200中终端的功能的程序。
本申请实施例还提供一种计算机程序产品,该程序产品包括方法S200中基站的功能的程序。
本申请实施例还提供一种计算机可读存储介质,该存储介质存储有方法S200中基站的功能的程序。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个 实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以理解:本文中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (41)

  1. 一种信号传输的方法,其特征在于,包括:
    确定终端的第一发射功率;和
    以所述第一发射功率通过多个波束向基站发送探测参考信号SRS。
  2. 根据权1所述的方法,其特征在于,还包括:
    接收配置信息,所述配置信息用于指示进行波束扫描。
  3. 根据权1或2所述的方法,其特征在于,
    所述确定终端的第一发射功率为:确定所述终端的第一发射功率为所述终端的最大发射功率。
  4. 根据权1或2所述的方法,其特征在于,还包括:
    从所述基站接收第二发射功率;
    所述确定终端的第一发射功率为:确定所述终端的第一发射功率为所述接收到的第二发射功率。
  5. 根据权1或2所述的方法,还包括,
    从所述基站接收与波束对链路关联的功率参数;
    所述确定终端的第一发射功率为:基于所述功率参数确定所述终端的第一发射功率。
  6. 根据权5所述的方法,其特征在于,
    所述功率参数为P O_SRS,BPL(m),α SRS,BPL,f SRS,BPL和PL BPL中的一个或多个。
  7. 根据权6所述的方法,其特征在于,所述基于所述功率参数确定所述终端的第一发射功率为:
    基于P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c}或者P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c+f SRS,c(i)}确定所述终端的第一发射功率;其中,P O_SRS,c(m)=P O_SRS,BPL(m),或者α SRS,c=α SRS,BPL,或者,f SRS,c(i)=f SRS,BPL,或者PL c=PL BPL
  8. 一种信号传输的方法,包括:
    向终端发送第一发射功率或者用于确定第一发射功率的功率参数;
    所述第一发射功率或者用于确定第一发射功率的功率参数,用于配置所述终端以所述第一发射功率通过多个波束发送探测参考信号SRS;和
    接收所述SRS。
  9. 根据权8所述的方法,其特征在于,还包括:
    向所述终端发送配置信息,所述配置信息用于指示进行波束扫描。
  10. 根据权8或9所述的方法,其特征在于,
    所述功率参数为P O_SRS,BPL(m),α SRS,BPL,f SRS,BPL和PL BPL中的一个或多个。
  11. 根据权10所述的方法,其特征在于,
    所述功率参数用于基于
    P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c}或者
    P SRS,c(i)=min{P CMAX,c(i),10log 10(M SRS,c)+P O_SRS,c(m)+α SRS,c·PL c+f SRS,c(i)}确定所述第一发射功率;其中,P O_SRS,c(m)=P O_SRS,BPL(m),或者α SRS,c=α SRS,BPL,或者,f SRS,c(i)=f SRS,BPL,或者PL c=PL BPL
  12. 一种装置,其特征在于,所述装置包括处理器;
    所述处理器用于与存储器耦合,读取所述存储器中的指令并执行所述指令,以使所述装置实现如权1-7任一所述的方法。
  13. 如权12所述的装置,其特征在于,所述装置还包括所述存储器。
  14. 一种装置,其特征在于,所述装置包括处理器;:
    所述处理器用于与存储器耦合,读取所述存储器中的指令并执行所述指令,以使所述装置实现如权8-11任一所述的方法。
  15. 如权14所述的装置,其特征在于,所述装置还包括所述存储器。
  16. 一种节点,其特征在于,包括:处理器和收发机;
    所述处理器用于利用所述收发机从第二节点接收与第一资源对链路关联的第一功率控制信息,并通过所述第一资源对链路对应的第一发送资源向所述第二节点发送第一信号;
    其中,所述第一信号的发送功率是基于所述第一功率控制信息获得的。
  17. 如权利要求16所述的节点,其特征在于,
    所述处理器还用于利用所述收发机通过所述第一发送资源向所述第二节点发送第二信号;其中,所述第一功率控制信息与所述第二信号的信号质量有关联。
  18. 如权利要求16或17所述的节点,其特征在于,
    所述处理器具体用于利用所述收发机从所述第二节点接收所述第一功率控制信息和所述第一资源对链路的标识信息。
  19. 如权利要求18所述的节点,其特征在于,
    所述处理器具体用于利用所述收发机从所述第二节点接收控制信息,所述控制信息包括所述第一功率控制信息和所述第一资源对链路的标识信息。
  20. 如权利要求19所述的节点,其特征在于,
    所述控制信息还包括与第二资源对链路关联的第二功率控制信息和所述第二资源对链路的标识信息。
  21. 如权利要求18-20任一所述的节点,其特征在于,
    所述第一资源对链路的标识信息为所述第一资源对链路的索引,或者所述第一发送资源的索引,或者与所述第一资源对链路具有准同定位关系的第三资源对链路的索引,或者与所述第一发送资源具有准同定位关系的第三资源的索引。
  22. 如权利要求16-21任一所述的节点,其特征在于,
    所述第一资源对链路为波束对链路。
  23. 如权利要求22所述的节点,其特征在于,
    所述节点为终端。
  24. 一种功率控制方法,其特征在于,包括:
    第一节点从第二节点接收与第一资源对链路关联的第一功率控制信息;
    所述第一节点通过所述第一资源对链路对应的第一发送资源向所述第二节点发送第一信号;
    其中,所述第一信号的发送功率是基于所述第一功率控制信息获得的。
  25. 如权利要求24所述的方法,其特征在于,所述第一节点从第二节点接收与第一资源对链路关联的第一功率控制信息包括:
    所述第一节点从所述第二节点接收控制信息,所述控制信息包括所述第一功率控制信息和所述第一资源对链路的标识信息。
  26. 一种节点,其特征在于,包括:处理器和收发机;
    所述处理器用于利用所述收发机向第一节点发送与第一资源对链路关联的第一功率控制信息,并通过所述第一资源对链路对应的第一接收资源从所述第一节点接收第一信号。
  27. 如权利要求26所述的节点,其特征在于,
    所述处理器还用于利用所述收发机向所述第一节点发送与所述第一资源对链路关联的第二功率控制信息;其中,所述第二功率控制信息与所述第一信号的信号质量有关联。
  28. 如权利要求26或27所述的节点,其特征在于,
    所述处理器具体用于利用所述收发机向所述第一节点发送所述第一功率控制信息和所述第一资源对链路的标识信息。
  29. 如权利要求28所述的节点,其特征在于,
    所述处理器具体用于利用所述收发机向所述第一节点发送控制信息,所述控制信息包括所述第一功率控制信息和所述第一资源对链路的标识信息。
  30. 如权利要求29所述的节点,其特征在于,
    所述控制信息还包括与第二资源对链路关联的第二功率控制信息和所述第二资源对链路的标识信息。
  31. 如权利要求28-30任一所述的节点,其特征在于,
    所述第一资源对链路的标识信息为所述第一资源对链路的索引,或者所述第一发送资源的索引,或者与所述第一资源对链路具有准同定位关系的第三资源对链路的索引,或者与所述第一发送资源具有准同定位关系的第三资源的索引。
  32. 如权利要求26-31任一所述的节点,其特征在于,
    所述第一资源对链路为波束对链路。
  33. 一种功率控制方法,其特征在于,包括:
    第二节点向第一节点发送与第一资源对链路关联的第一功率控制信息;
    所述第二节点通过所述第一资源对链路对应的第一接收资源从所述第一节点接收第一信号。
  34. 如权利要求33所述的方法,其特征在于,还包括:
    所述第二节点向所述第一节点发送与所述第一资源对链路关联的第二功率控制信息;其中,所述第二功率控制信息与所述第一信号的信号质量有关联。
  35. 如权利要求33或34所述的方法,其特征在于,所述第二节点向第一节点发送与第一资源对链路关联的第一功率控制信息包括:
    所述第二节点向所述第一节点发送控制信息,所述控制信息包括所述第一功率控制信息和所述第一资源对链路的标识信息。
  36. 如权利要求35所述的方法,其特征在于,
    所述控制信息还包括与第二资源对链路关联的第二功率控制信息和所述第二资源对链路的标识信息。
  37. 如权利要求35或36所述的方法,其特征在于,
    所述第一资源对链路的标识信息为所述第一资源对链路的索引,或者所述第一发送资 源的索引,或者与所述第一资源对链路具有准同定位关系的第三资源对链路的索引,或者与所述第一发送资源具有准同定位关系的第三资源的索引。
  38. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权1-7任一所述的方法。
  39. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权8-11任一所述的方法。
  40. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权24或25所述的方法。
  41. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权33-37任一所述的方法。
PCT/CN2018/074226 2017-01-26 2018-01-26 功率控制方法及装置 WO2018137698A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18745163.8A EP3554151B1 (en) 2017-01-26 2018-01-26 Power control method and device
US16/523,709 US10917895B2 (en) 2017-01-26 2019-07-26 Power control method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710061835 2017-01-26
CN201710061835.1 2017-01-26
CN201710184893.3 2017-03-24
CN201710184893.3A CN108366418B (zh) 2017-01-26 2017-03-24 节点和功率控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/523,709 Continuation US10917895B2 (en) 2017-01-26 2019-07-26 Power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2018137698A1 true WO2018137698A1 (zh) 2018-08-02

Family

ID=62978055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074226 WO2018137698A1 (zh) 2017-01-26 2018-01-26 功率控制方法及装置

Country Status (1)

Country Link
WO (1) WO2018137698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972211A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种功率控制的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983529A (zh) * 2008-03-31 2011-03-02 高通股份有限公司 用于捕获指示信道的灵活功率偏移量分配
CN102356675A (zh) * 2009-03-17 2012-02-15 交互数字专利控股公司 用于探测参考信号(srs)传输的功率控制的方法和设备
CN105830508A (zh) * 2013-12-20 2016-08-03 高通股份有限公司 Lte中的在覆盖增强期间的pusch和pucch功率控制

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983529A (zh) * 2008-03-31 2011-03-02 高通股份有限公司 用于捕获指示信道的灵活功率偏移量分配
CN102356675A (zh) * 2009-03-17 2012-02-15 交互数字专利控股公司 用于探测参考信号(srs)传输的功率控制的方法和设备
CN105830508A (zh) * 2013-12-20 2016-08-03 高通股份有限公司 Lte中的在覆盖增强期间的pusch和pucch功率控制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3554151A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972211A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种功率控制的方法和装置
CN110972211B (zh) * 2018-09-28 2023-10-20 华为技术有限公司 一种功率控制的方法和装置
US11949553B2 (en) 2018-09-28 2024-04-02 Huawei Technologies Co., Ltd. Transmission parameter configuration method and apparatus

Similar Documents

Publication Publication Date Title
KR102308639B1 (ko) 신호 전송 방법 및 장치
WO2018202191A1 (zh) 一种测量上报的方法和装置
WO2020034889A1 (zh) 信号传输的方法和通信装置
WO2018127181A1 (zh) 一种信号传输方法和装置
WO2018127066A1 (zh) 一种上行测量信号的指示方法及装置
WO2018228532A1 (zh) 通信方法、终端及网络设备
WO2018082641A1 (zh) 传输信息的方法和设备
WO2018137424A1 (zh) 上行测量参考信号的功率控制方法、网络设备及终端设备
WO2018228504A1 (zh) 功率控制方法及装置
WO2019137441A1 (zh) 一种通信方法及装置
WO2020248779A1 (zh) 更新传输配置指示tci信息的方法与通信装置
WO2018141261A1 (zh) 参考信号的配置方法、配置装置及通信节点
WO2021027805A1 (zh) 功率控制参数配置方法、终端和网络侧设备
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2020164517A1 (zh) 用于测量信号的方法和通信装置
TWI692264B (zh) 波束管理方法、網路設備和終端
US10917895B2 (en) Power control method and apparatus
WO2018095305A1 (zh) 一种波束训练方法及装置
WO2021052473A1 (zh) 通信方法和通信装置
WO2018082663A1 (zh) 一种参考信号传输的方法及装置
WO2018202137A1 (zh) 一种通信方法及装置
WO2018127141A1 (zh) 一种参考信号传输方法及装置
WO2021204113A1 (zh) 通信方法及装置
CN103155658A (zh) 上行链路功率控制机制的方法
WO2022001241A1 (zh) 一种波束管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018745163

Country of ref document: EP

Effective date: 20190709

NENP Non-entry into the national phase

Ref country code: DE