WO2018202191A1 - 一种测量上报的方法和装置 - Google Patents

一种测量上报的方法和装置 Download PDF

Info

Publication number
WO2018202191A1
WO2018202191A1 PCT/CN2018/085758 CN2018085758W WO2018202191A1 WO 2018202191 A1 WO2018202191 A1 WO 2018202191A1 CN 2018085758 W CN2018085758 W CN 2018085758W WO 2018202191 A1 WO2018202191 A1 WO 2018202191A1
Authority
WO
WIPO (PCT)
Prior art keywords
reporting
measurement
terminal
report
measurement reporting
Prior art date
Application number
PCT/CN2018/085758
Other languages
English (en)
French (fr)
Inventor
王晓娜
唐小勇
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019023213-3A priority Critical patent/BR112019023213A2/pt
Priority to EP18794673.6A priority patent/EP3618491B1/en
Publication of WO2018202191A1 publication Critical patent/WO2018202191A1/zh
Priority to US16/671,712 priority patent/US11134406B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the present application relates to communication technologies, and in particular, to a method and apparatus for measuring reports.
  • a terminal In a long term evolution (LTE) system, in order to improve the transmission performance of an LTE system, a terminal usually measures a channel state information (CSI) reference signal (RS) and feeds back a channel shape to the base station. Body information.
  • CSI channel state information
  • RS reference signal
  • the method and apparatus for information reporting provided by the embodiments of the present application are for improving performance of a wireless communication system.
  • the embodiment of the present application provides a measurement reporting method, including: acquiring, by a terminal, a value of a plurality of measurement reporting parameters; and sending, by the terminal, a value of a part of the measurement reporting parameters in the multiple measurement reporting parameters to the base station, where Some measurement reporting parameters satisfy the reporting rules.
  • the value of the above-mentioned measurement reporting parameter may be obtained by measurement, or may be obtained by measurement after measurement.
  • the above partial measurement reporting parameters may be one, or may be multiple.
  • the above measurement reporting parameters may include one or more measurement reporting parameters associated with spatial resources. For example: air separation feature.
  • the method further includes: the terminal receiving the reporting rule.
  • the reporting rule may be carried in high-level signaling, such as RRC (radio resource control) signaling, and sent to the terminal.
  • RRC radio resource control
  • reporting rules may be as specified by the communication standard.
  • the method further includes: the terminal receiving a report setting, where the report setting includes the plurality of measurement report parameters.
  • the above report settings can be carried in the measurement configuration and sent to the terminal.
  • the measurement configuration can be carried in the RRC signaling and sent to the terminal.
  • the method further includes: the terminal receiving the reporting activation indication associated with the multiple measurement reporting parameters.
  • the above activation indication is used to activate the behavior of reporting the measurement reporting parameters.
  • the reporting activation indication may be carried in the MAC-CE or DCI and sent to the terminal.
  • the method further includes: the terminal sending the reporting capability of the terminal to the base station, where the multiple measurement reporting parameters are associated with the reporting capability of the terminal. It can be understood that the terminal has the capability of measuring and reporting the plurality of measurement reports.
  • the acquiring, by the terminal, the value of the multiple measurement reporting parameters includes: the terminal measuring the pilot of the base station, and obtaining a value of the multiple measurement reporting parameters.
  • the terminal sends, to the base station, a value of a part of the measurement reporting parameters in the multiple measurement reporting parameters, including: if a reporting conflict occurs, the terminal sends the part to the base station Measure the value of the reported parameter.
  • the terminal can feed back the measurement result of the pilot on each spatial resource to the base station as needed, so that the base station can adapt the data transmission scheduling and the space resource management of each spatial resource, thereby improving the performance of the wireless communication system.
  • the method is simple and elegant in implementation, and can be compatible with CSI measurement reporting.
  • the embodiment of the present application provides a measurement reporting method, including: a base station transmitting a pilot; and the base station receiving, by the terminal, a value of a part of the measurement reporting parameters in the plurality of measurement reporting parameters associated with the pilot, where Some measurement reporting parameters satisfy the reporting rules.
  • the method further includes: the base station sending the reporting rule to the terminal.
  • the method further includes: the base station sending a report setting to the terminal, where the report setting includes the multiple measurement report parameters.
  • the method further includes: sending, by the base station, the reporting activation indication associated with the multiple measurement reporting parameters to the terminal.
  • the method further includes: the base station receiving the reporting capability of the terminal, where the multiple measurement reporting parameters are associated with the reporting capability of the terminal.
  • the base station can obtain the measurement result of the pilot on each spatial resource as needed, and can adapt the data transmission scheduling and the space resource management of each spatial resource according to the measurement result, thereby improving the performance of the wireless communication system.
  • the method is simple and elegant in implementation, and can be compatible with CSI measurement reporting.
  • an embodiment of the present application provides a communication apparatus for implementing the method in the first aspect.
  • the communication device can be a terminal or a baseband chip.
  • the communication device includes a processor and a transceiver component.
  • the processor and transceiver component can be used to implement the functions of various portions of the method of the first aspect described above.
  • its transceiver component may be a transceiver
  • its transceiver component may be an input/output circuit of a baseband chip.
  • the communication device includes a processor.
  • the processor is operative to run the above described program such that the method of the first aspect described above is implemented.
  • the communication device may further comprise a memory for storing a program implementing the method of the first aspect.
  • an embodiment of the present application provides a communication apparatus for implementing the method in the second aspect.
  • the communication device can be a base station, or a baseband chip, or a baseband single board.
  • the communication device includes a processor and a transceiver component.
  • the processor and transceiver component can be used to implement the functions of various portions of the method of the second aspect above.
  • the communication device is a base station
  • its transceiver component can be a transceiver.
  • the transceiver component can be a baseband chip or an input/output circuit of a baseband single board.
  • the communication device includes a processor.
  • the processor is operative to run the above program such that the method of the second aspect described above is performed.
  • the communication device may further comprise a memory for storing a program implementing the method of the second aspect.
  • the embodiment of the present application further provides a computer program product, where the program product includes a program, and when the program is executed, the method of the first aspect or the fourth aspect is performed.
  • the embodiment of the present application further provides a computer readable storage medium, where a program is stored, and when it is executed, the method of the first aspect or the fourth aspect is performed.
  • the reporting rule includes at least one of the following:
  • the first type of measurement reporting parameter is prior to the second type of measurement reporting parameter, and the first type of measurement reporting parameter includes: a receiving beam index indication, or a sending beam index indication, or a reference signal resource index indication, and the second type of measurement reporting Parameters include: rank indication RI, or precoding matrix indicating PMI, or channel quality indication; and/or,
  • Partial bandwidth measurement reporting takes precedence over subband measurement reporting
  • Partial measurement bandwidth reporting takes precedence over full bandwidth measurement reporting
  • Aperiodic measurement reporting takes precedence over semi-static measurement reporting
  • Aperiodic measurement reporting takes precedence over periodic measurement reporting
  • the reporting type including the beam index indication takes precedence over the reporting type including the RI;
  • the reporting type including the beam index indication takes precedence over the reporting type including the PMI;
  • the reporting type including the beam index indication takes precedence over the reporting type including the channel quality
  • the small identifier of the escalation setting is better than the report setting identifier
  • the service cell identifier is smaller than the service cell identifier.
  • the reporting type includes at least one of the following:
  • the design of the measurement information reporting framework for example, the design of the reporting type, or the design of the reporting priority, enables the terminal to report the measurement reporting parameters required by the network, thereby improving the performance of the wireless communication system.
  • FIG. 1 is a simplified schematic diagram of a wireless communication system
  • FIG. 2 is a schematic diagram showing a simplified structure of a terminal
  • FIG. 3 is a simplified schematic diagram of a structure of a base station
  • FIG. 4 is a signaling interaction diagram of a method for measuring reporting.
  • a communication device is a device having a communication function.
  • the communication device may be a base station, or a terminal, or a baseband chip, or a communication chip, or a sensor chip or the like.
  • the technical solution of the present application can be applied to different communication devices.
  • the embodiments of the present application are mainly described by using a base station and a terminal as an example.
  • the term “comprises” and variations thereof may mean non-limiting inclusion; the term “or” and its variants may mean “and/or”; the terms “associated”, “associated”, “corresponding” And their variants can refer to “bound”, “bound to”, “mapped”, “configured”, “allocated”, “based on”, or “according to...
  • the term “pass” and its variants may mean “utilizing", “using", or “on”, etc.; the terms “acquiring”, “determining” and their variants may mean “selecting", “query” “,” “calculation”, etc.; the term “when” can mean “if", "under” conditions, and the like.
  • a field is sometimes referred to as a field.
  • the content in parentheses "()" may be an example, or may be another expression, which may be a description that may be omitted, or may be further explained and explained.
  • a signal is a form of expression of information.
  • Signals can sometimes be referred to as wireless signals, communication signals.
  • signals can be transmitted from one communication node to another by electromagnetic waves.
  • the signal can have many types depending on the content of the information.
  • CSI-RS channel state information reference signal
  • the reference signal can also be referred to as a pilot.
  • the technical solution of the present application is mainly described by taking CSI-RS as an example. It should be understood by those skilled in the art that the technical solution of the present application can also apply measurement reporting with other reference channels.
  • the pilot can also be referred to as a pilot signal.
  • a beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other type of beam.
  • the beamforming technique can be beamforming techniques or other technical means.
  • the beamforming technology can be specifically digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. Beamforming can also be referred to as beamforming. Different beams can be considered as different resources. The same information or different information can be transmitted through different beams.
  • the beam can be divided into a receive beam and a transmit beam.
  • the transmit beam may refer to a distribution of signal strengths formed in different directions of the space after the signal is transmitted through the antenna, and the receive beam may refer to a wireless signal received from the antenna in different directions in space. Signal strength distribution.
  • the beam can have multiple names. For example, the beam can be called space resource, space weight, spatial direction, spatial orientation, etc. With the development of technology, the beam may have different titles in different periods and different scenarios. limit.
  • a communication resource for receiving a signal may be referred to as a reception resource, and a communication resource for transmitting a signal may be referred to as a transmission resource.
  • the receiving beam is a receiving resource
  • the transmitting beam is a transmitting resource.
  • one receiving resource and one sending resource can be regarded as one resource pair.
  • one receive beam and one transmit beam can form a beam pair.
  • the path space of wireless signal transmission may be referred to as a link.
  • the path space for wireless signal transmission using resource pairs may be referred to as a resource pair link.
  • the path space for signal transmission using a beam pair may be referred to as a beam pari link (BPL).
  • BPL beam pari link
  • the beam pair link can be expressed by a logical number, which can be used to indicate a receive beam, or a transmit beam, or a transmit beam and a receive beam.
  • 3GPP third generation partnership project
  • a communication feature is information used to characterize transmission characteristics.
  • communication characteristics may include: average gain, average delay, delay distribution, Doppler shift, Doppler distribution, etc.
  • reporting is sometimes referred to as feedback.
  • the measurement report parameter may also be referred to as a report parameter, a pilot report parameter, a measurement quantity, a report quantity, a measurement report quantity, a measurement report content, a report content, and the like.
  • the measurement report type may also be referred to as a report format, or a measurement report format.
  • the measurement reporting rule may also be referred to as a reporting rule, a pilot reporting rule, a priority rule, or a reporting priority rule.
  • a quasi-co-location (QCL) relationship is used to indicate that one or more identical or similar communication features are present between multiple resources.
  • QCL quasi-co-location
  • the same or similar communication configuration can be used.
  • the beam pair links can be considered to be the same or similar, and the same or similar power control can be used.
  • related content of QCL reference may be made to 3GPP's proposals R1-167970, R1-168436, R1-1610825, R1-1610520, R1-1613719, and R1-1613108 related content and 3GPP standards, such as TS 36.211 v13.0.0.
  • the technical solution of the present application can be applied to communication between different network nodes. For example, it can be applied to communication between a base station and a terminal, communication between a base station and a base station, communication between a terminal and a terminal, and the like.
  • the embodiment of the present application mainly describes communication between a base station and a terminal as an example.
  • the technical solution of the present application can be used in a wireless communication system as shown in FIG. 1.
  • the beam formed by the beamforming technique can be used in the wireless communication system shown in FIG. 1 to obtain signal coverage at a longer distance.
  • Beamforming technology is mostly used for high frequency resources and can also be used for low frequency resources.
  • the wireless communication system includes a base station B200 and a terminal T100.
  • the base station B200 can form a signal coverage of a high-frequency signal similar to a narrow beam shape by a beamforming technique, for example, a narrow beam, such as B21, B22, B23. Narrow beams are also directional, with narrow coverage over a wider beam.
  • the base station can transmit one or more different narrow beams for communication.
  • the number and direction of narrow beams transmitted by the base station may be different at different times. For example, at time T1, base station B200 generates beams B21 and B22, and at time T2, beam B23 is transmitted.
  • the base station can communicate with the terminal using one or more narrow beams at the same time.
  • the base station B200 can transmit a communication signal to the terminal T100 through B21 and B22 (for example, B22 can still be received by the terminal T100 after encountering the obstruction).
  • the communication signals can also be transmitted to the base station B200 by using the beams B11 and B12. Different narrow beams can be used to send different information or to send the same information.
  • the wireless communication system may be a 4G communication system, such as an LTE (long term evolution) system, a 5G communication system, such as an NR (new radio) system, and a communication system in which various communication technologies are integrated (for example, LTE technology). Communication system integrated with NR technology).
  • LTE long term evolution
  • 5G communication system such as an NR (new radio) system
  • LTE technology for example, LTE technology
  • NR new radio
  • the terminal T100 is a device having a wireless communication function, and may be a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
  • Terminals can be called different names in different networks, such as: user equipment, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, laptops, cordless phones, Wireless local loop station, etc.
  • FIG. 2 A schematic diagram of the structure of the terminal T100 can be as shown in FIG. 2.
  • the terminal T100 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminals, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. Some types of terminals do not have input and output devices.
  • the processor can read the software program (instruction) in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • Figure 2 shows only one memory and processor. In an actual user equipment, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process a communication protocol and communication data
  • the central processing unit is mainly used to control the entire terminal. Execute a software program that processes the data of the software program.
  • the processor in FIG. 2 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards.
  • the terminal may include multiple central processors to enhance its processing capabilities.
  • the functions of the baseband processor and the central processing unit can be integrated on one processor.
  • the various components of the terminal can be connected via various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the radio frequency circuit having the transceiving function can be regarded as the transceiving unit of the terminal, and the processor having the processing function can be regarded as the processing unit of the terminal.
  • the terminal T100 includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the base station B200 which may also be referred to as a base station device, is a device deployed in a wireless access network to provide wireless communication functions.
  • a base station in an LTE network is called an evolved Node B (eNB or eNodeB)
  • a base station in an NR network is called a TRP (transmission reception point) or a gNB (generation node B, next generation Node B).
  • the structure of the base station B200 can be as shown in FIG.
  • the base station B200 shown in FIG. 3 may be a split base station.
  • FIG. 3 shows, on the left, a distributed base station including antennas, a remote radio unit (RRU), and a baseband unit (BBU).
  • RRU remote radio unit
  • BBU baseband unit
  • a base station includes a 201 portion and a 202 portion.
  • Part 201 is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 202 part is mainly used for baseband processing and base station control.
  • Section 201 can be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver, and the like.
  • Section 202 can generally be referred to as a processing unit.
  • part 202 is the control center of the base station.
  • part 201 may include an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 201 may be regarded as a receiving unit, and the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the part 201 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the 202 part may include one or more boards, each of the boards may include a processor and a memory, and the processor is configured to read and execute a program in the memory to implement a baseband processing function and a base station. control. If multiple boards exist, the boards can be interconnected to increase processing power.
  • SoC system-on-chip
  • all or part of the functions of the 202 part and the 201 part may be implemented by the SoC technology, for example, by A base station function chip is implemented.
  • the base station function chip integrates a processor, a memory, an antenna interface and the like.
  • the program of the base station related function is stored in the memory, and the program is executed by the processor to implement the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • the measurement of the reference signal is also referred to as the measurement of the pilot, referred to as the pilot measurement; for the measurement reporting of the reference signal, also referred to as the measurement report for the pilot, referred to as the pilot.
  • Measurement report or measurement report For the report setting of the pilot measurement, it is simply referred to as the report setting.
  • the wireless communication system for the measurement of the pilot measurement, from the perspective of the time domain, it can be divided into aperiodic measurement reporting, periodic measurement reporting, and semi-static measurement reporting.
  • the aperiodic measurement report is dynamically triggered; the measurement and reporting parameters are configured through a high layer, such as a radio resource control (RRC) layer, and a MAC-CE (media access control control element) Or DCI (downlink control information) dynamic activation reporting the measurement reporting parameter; for example, during the user's movement, when the base station detects that the current link signal quality is poor, the user is dynamically triggered to perform neighboring area measurement and reporting.
  • RRC radio resource control
  • MAC-CE media access control control element
  • DCI downlink control information
  • the periodic measurement report refers to periodically reporting the measurement report parameters at a specific time interval; configuring the measurement report parameters and the reporting period through a high layer (for example, the RRC layer); for example, after the user accesses the base station, the measurement configuration sent by the base station is received.
  • the measurement report parameters that need to be reported periodically are periodically reported, and the terminal periodically reports the value of the measurement report parameter according to the reporting period.
  • Semi-static measurement reporting means that the measurement report can be dynamically activated and deactivated; the measurement reporting parameters and the reporting period are configured by the upper layer (for example, the RRC layer), and the above-mentioned measurement reporting parameters are dynamically activated or deactivated by MAC-CE or DCI. Reporting; when activated, the measurement report is similar to periodic measurement reporting; when deactivated, the reporting of the above-mentioned measurement reporting parameters is not required.
  • the wireless communication system for the measurement of the pilot measurement, from the perspective of the frequency domain, it can be divided into a full-band measurement report, a partial band measurement report, and a sub-band measurement report.
  • the full bandwidth measurement report is a measurement report of the entire working frequency band of the serving base station; for example, the current working frequency band is 10 MHz, and the user needs to measure and combine the pilots of the full bandwidth, and report the value of the measurement reporting parameter for the full bandwidth.
  • the partial bandwidth measurement report is a report of the measurement of a part of the working frequency band of the serving base station; for example, the serving base station can support different service type services, and different service types occupy part of the bandwidth of the entire working frequency band, and only need to report according to the current service type of the user.
  • the value of the parameter is reported for the measurement of the partial bandwidth.
  • the sub-band measurement reporting refers to dividing the entire working frequency band of the serving base station into multiple sub-bands, and the base station or the user side selects the reported value of the measurement reporting parameter for one or more sub-bands.
  • beam management can be achieved by measuring pilots.
  • the base station transmits pilots through different beams (which can be simply understood as transmitting pilots in different directions), and the terminal measures pilots on different beams to obtain pilot measurements on the respective beams, and feeds back the measurement results.
  • the pilots transmitted using different beams described above may be CSI-RS.
  • the measurement reporting of the pilot can be used for both beam management and link adaptive scheduling.
  • the measurement reporting parameters reported by the terminal may include one or more of the following:
  • Receive beam indication used to indicate the user side or base station side receive beam index or number.
  • the receive beam indication may indicate one receive beam or multiple receive beams.
  • the receive beam indication can be expressed using a logical identifier.
  • the logical identifier may identify a single beam or may identify a group of beams.
  • the logical identifier can be an identification of a beam.
  • the logical identifier can be considered as a group identifier.
  • the group identity can be the identity of the BPL, or the identity of the QCL.
  • a group of identities have some or some of the same or similar communication or spatial characteristics.
  • the receive beam indication may also be referred to as a receive beam index indication, and the receive beam index indication is a beam index indication.
  • the transmit beam indication may indicate one transmit beam or multiple transmit beams. Similar to the receive beam indication, it can be expressed by using a logical identifier. For related content, refer to the relevant content of the receive beam indication.
  • the transmit beam indication may also be identified by using a resource identifier of the reference signal or an antenna port number. For example, the resource identifier or the antenna port number of the CSI-RS is used to identify the transmission beam, or the combination of the resource identifier of the CSI-RS and the antenna port number is used to identify the transmission beam.
  • the transmit beam indication may also be referred to as a transmit beam index indication, and the transmit beam index indication is a beam index indication.
  • Beam quality used to reflect the quality of the beam.
  • the beam quality can be expressed by the received power of the reference signal, such as layer-by-CSI-RS reference signal received power (L1CSI-RS RSRP), that is, the linearity of the CSI-RS measured at the antenna connection of the terminal. Average power in watts [W].
  • L1CSI-RS RSRP layer-by-CSI-RS reference signal received power
  • Spatial parameters The spatial characteristics of the transmission channel used to indicate the base station and the user. For example, the mean zenith angle of arrival or the mean angle of arrival can be understood as a space-dividing characteristic.
  • the resource selection indicator is used to indicate the current resource set of the pilot corresponding to the measurement, or the pilot resource, or the pilot port, or the beam information of the pilot resource.
  • the resource selection indication may refer to a channel state information reference singal resource indicator (CRI) in LTE.
  • Rank indicator used to indicate the number of transmission layers that the current user can use.
  • a precoding matrix indicator for indicating precoding information that can be used by the current user.
  • the PMI can be divided into two parts, one part is long-term channel quality precoding information or beam selection (represented by W1), and the other part is short-term/ Instantaneous channel quality precoding information (represented by W2); when the base station uses multiple antenna panels, the PMI can be divided into three parts, one part is W1, one part is W2, and the other part is the bandwidth between multiple antenna panels. Or the phase information (co-phasing factor) of the subband (represented by W3). Among them, W3 can be reported independently, or embedded in W1 or W2. W1 is sometimes referred to as the first PMI, and W2 is sometimes referred to as the second PMI.
  • Channel quality used to indicate the channel quality of the current user.
  • CQI channel quality indicator
  • MCS modulation and coding scheme
  • Precoding based on a linear merged codebook for indicating the final precoding information.
  • W1 is used to feed back selected multiple beam indications
  • W2 is used to indicate one or more sets of weighting vectors of multiple beams selected by W1, and the two parts can be jointly indicated by the above two parts. Precoded information.
  • Covariance matrix used to indicate long-term, wide-band channel covariance matrices.
  • Hybrid CSI for indicating joint feedback of precoding based on linear combining codebook and beamforming CSI-RS (beamformed CSI-RS) measurement.
  • the amount of interference is used to indicate the amount of interference of the paired users in the cell, or the amount of interference between cells, or the amount of interference between beams.
  • the measurement setting may be issued by the network side for the terminal.
  • the measurement configuration may include one or more links corresponding to a reporting setting and a resource setting; each resource setting includes one or more resource sets ( Each of the resource sets further includes one or more pilot (eg, CSI-RS) resources, and each pilot resource corresponds to a resource index for uniquely identifying the pilot resource.
  • This measurement configuration can be used for the above beam measurements as well as for the pilot measurements described above.
  • the measurement reporting parameters that the terminal needs to report are different. For example, for a P2 beam scan, a transmit beam indication needs to be reported. For a P3 beam scan, a receive beam indication needs to be reported. Therefore, the measurement reporting parameters reported by the terminal may change according to the network application scenario or the mode of beam scanning. Through the above measurement configuration, it can be applied to beam management and link adaptive scheduling.
  • an index can be understood as an identifier, and an index can also be referred to as a number.
  • the resource setting can be understood as indicating which resources (such as frequency domain resources, time domain resources, or spatial resources) the reference signal (pilot) is transmitted.
  • the reporting setting can be understood as indicating the measurement report to be reported.
  • Parameters, links can be understood as the relationship between measurement resource settings and measurement report settings.
  • the base station and terminal in FIG. 4 may be the base station and the terminal in FIG. 2 and FIG. 3, and the network scenario in FIG. 4 may be as shown in FIG. 1.
  • S101 The terminal sends the reporting capability to the base station.
  • the above transmission function can be implemented by the transceiver of the terminal.
  • the base station receives the reporting capability from the terminal.
  • the above receiving function can be implemented by the transceiver of the base station.
  • the reporting capability can be understood as measurement capability and measurement reporting capability.
  • the reporting capability includes: a maximum working bandwidth that the terminal can support, a number of receiving antennas of the terminal, and the like.
  • the terminal may send the foregoing measurement capability information to the base station by using RRC signaling or physical layer signaling.
  • the base station sends a measurement configuration including one or more reporting settings to the terminal.
  • the above transmission function can be implemented by the transceiver of the base station.
  • the terminal receives the above measurement configuration from the base station.
  • the above receiving function can be implemented by the transceiver of the terminal.
  • each reporting setting includes one or more of the following information: an index of the report setting, which is used to uniquely identify a report setting; and the pilot measurement report Time domain characteristics (eg, periodic, aperiodic, semi-static); pilot measurement and reported frequency domain granularity (eg sub-band feedback for terminal decision, sub-band feedback for base station configuration, full bandwidth feedback, partial bandwidth) Feedback); measuring the reported content (for example: PMI, RI, CQI, CRI); indication information of the beam scanning method; optionally, the measurement configuration may also include measurement limitation, codebook configuration, if periodic reporting, each The reporting setting also includes a reporting period and a reporting time offset corresponding to the reporting amount.
  • an index of the report setting which is used to uniquely identify a report setting
  • the pilot measurement report Time domain characteristics eg, periodic, aperiodic, semi-static
  • pilot measurement and reported frequency domain granularity eg sub-band feedback for terminal decision, sub-band feedback for base station configuration, full bandwidth feedback, partial bandwidth
  • the measurement configuration may also include
  • the measurement report parameter may be considered to be included in the measurement configuration, or the measurement report parameter may be considered to be included in the report setting.
  • the measurement limit is configured for the report setting, and is used to notify the user of the current measurement behavior, for example, whether it is based on the measurement result of a single sampling point or based on the measurement average result in a period of time; the codebook configuration is used to indicate the PMI.
  • the codebook set index used for retribution.
  • the time domain feature is configured for the reporting settings and is applicable to all measurement reporting parameters included in the reporting settings; the frequency domain characteristics are configured for measuring reporting parameters, such as the above-mentioned measurement reporting parameters 3), 4), 7), 8), 9), 10), 11), 12) Configurable frequency domain characteristics.
  • the measurement configuration can be sent to the terminal through high layer signaling.
  • the high layer signaling may be radio resource control (RRC) signaling.
  • RRC radio resource control
  • the terminal after receiving the measurement configuration, the terminal can make measurements according to the measurement configuration. As shown in S103 and S104 of Figure 4:
  • S103 The base station sends a reference signal (pilot);
  • the transmission function of S103 can be implemented by the transceiver of the base station.
  • S104 The terminal performs measurement on the reference signal, and acquires values of multiple measurement reporting parameters.
  • the measurement and acquisition functions in S104 can be implemented by the processor and transceiver of the terminal.
  • the terminal after receiving the measurement configuration, the terminal does not immediately perform the measurement report according to the measurement configuration, and needs to wait for the report activation indication sent by the base station to determine whether to open the report of the measurement report parameter in the measurement configuration.
  • the base station may send a report activation indication to the terminal according to the function of the reference signal, or the current transmission mode, or the application scenario, or the beam scanning mode, for activating the measurement report that the terminal needs to report.
  • the parameter is the reporting behavior of the active terminal for the measurement reported parameter. As shown in S105 in Figure 4:
  • S105 The base station sends a report activation indication to the terminal.
  • the transmitting function of S105 can be implemented by the transceiver of the base station.
  • the terminal receives the report activation indication from the base station.
  • This receiving function can be implemented by the transceiver of the terminal.
  • the above report activation indication can be understood as a switch for reporting whether the measurement report parameter is to be reported.
  • the measurement configuration indicates that the measurement report reporting parameter 1, the measurement reporting parameter 2, and the measurement reporting parameter 3 are required, and the reporting activation indication may indicate that the measurement reporting parameters 1 and 2 are activated, and the terminal reports the parameters 1 and 2 according to the measurement configuration. Reporting is performed without reporting the reporting of parameter 3.
  • the base station may send the reporting activation indication to the terminal by using RRC signaling, MAC-CE, or DCI.
  • the measurement configuration or the report setting in the S102 part can also be regarded as a report activation indication, and the S105 part does not need to be executed at this time.
  • the base station may perform S103 again to change the measurement reporting parameter of the terminal. For example, you can turn off some of the active measurement reporting parameters or turn on some new measurement reporting parameters. Among them, closing can be understood as deactivation, and opening can be understood as activation.
  • the terminal may report the measurement and report parameters according to the foregoing report setting.
  • S106 The terminal sends a value of the measurement reporting parameter to the base station.
  • the transmitting function in S106 can be implemented by the transceiver of the terminal.
  • the base station receives the value of the measurement reporting parameter from the terminal.
  • This receiving function can be implemented by the transceiver of the base station.
  • the terminal may send a value of the measurement reporting parameter to the base station according to the reporting setting.
  • the terminal may report the measurement reporting parameter according to the measurement reporting parameter and its corresponding reporting period or reporting time offset.
  • the terminal can report the CQ, PMI, receive beam indication, and beam quality in the Kth subframe according to the measurement configuration, and the terminal can report the CQ, PMI, receive beam indication, and beam quality in the Kth subframe.
  • the measurement report type can be agreed upon, which is referred to as the report type.
  • the terminal reports the measurement and report parameters, it needs to report the measurement report parameters specified in the report type.
  • the terminal needs to report CQ, PMI, receive beam indication, and beam quality in the Kth subframe according to the measurement configuration.
  • the measurement report type X specifies that the terminal can simultaneously report CQ, PMI, and in one subframe. The beam quality, and there is no measurement reporting type.
  • the terminal can report CQ, PMI, beam quality and receive beam indication in one subframe at the same time.
  • the terminal will report CQ, PMI and K in the Kth subframe according to the measurement reporting type X. Beam quality without reporting the receive beam indication.
  • Report type 1 beam index indication (beam indication); this reporting type is used to inform the base station which of the receiving/transmitting beams are best for the terminal, or meets the quality requirements, or is available.
  • the beam index indication may indicate one or more (eg, N) receive/transmit beams.
  • the number N may be specified by a communication standard or signaled by a base station through RRC, MAC-CE, DCI, etc., or one or more (e.g., N) receive/transmit beams independently selected by the terminal.
  • Report Type 2 Channel Quality; This report type is used to inform the base station of the channel or beam quality.
  • the terminal selects the best one beam pair (ie, the receiving beam of the terminal and a best transmitting beam of the base station it receives), and reports the channel quality of the beam pair;
  • the channel quality may be layer 1 reference signal received power (L1-RSRP), or layer 1 reference signal received quality (L1-RSRQ), or CQI.
  • Report Type 3 Channel Quality and Corresponding Beam Index Indicator.
  • the reporting type is used to inform the base station which of the receiving/transmitting beams are best for the terminal, or meets quality requirements, or is available, and the corresponding channel quality.
  • the terminal reports one or more (for example, N) beam indexes configured by the base station, and the channel quality corresponding to the foregoing beam.
  • one or more (for example, N) receiving/transmitting beams selected by the terminal independently report the index indication and channel quality of the selected receiving/transmitting beam.
  • Each of the beam index indications may correspond to one or more beam qualities.
  • the channel quality may be one or more of the following parameters: L1-RSRP, L1-RSRQ, CQI.
  • Report Type 4 Channel Quality, Space Division Characteristics, and corresponding beam index indication.
  • the reporting type is used to inform the base station which of the receiving/transmitting beams are best for the terminal, or meets the quality requirements, or is available, and the corresponding channel quality and spatial characteristics of the above beams.
  • the best receiving/transmitting beam is selected, and the receiving/transmitting beam index indication, channel quality, and space division characteristics are reported.
  • the pilot resources of one or more (for example, N) beams configured by the base station report beam index indication, channel quality, and space division characteristics.
  • Each of the beam index indications may correspond to one or more channel qualities and space division characteristics, in accordance with the order of the base station configuration.
  • one or more (for example, N) receive/transmit beams selected by the terminal independently report the receive/transmit beam index indication and the corresponding beam quality and space division characteristics.
  • Each of the receive/transmit beam index indications may correspond to one or more beam quality and space division characteristics.
  • Report Type 5 Report beam index indication and RI.
  • the reporting type is used to inform the base station which of the receiving/transmitting beams are best/good/available for the terminal and the corresponding number of transmission layers. Specifically, as an optional implementation manner, the best one of the transmit beams is selected, and the receive/transmit beam index indication and the RI are reported.
  • the pilot resources of one or more (for example, N) beams configured by the base station report the beam index indication and the RI.
  • one or more (for example, N) receiving/transmitting beams selected by the terminal independently report the receiving/transmitting beam index indication and the RI.
  • Report Type 6 Report beam index indication, RI, and PMI.
  • the reporting type is used to inform the base station which of the receiving/transmitting beams are best/good/available for the terminal and the corresponding number of transmission layers and precoding matrix indications. Specifically, as an optional implementation manner, the best one of the transmit beams is selected, and the receive/transmit beam index indication, the RI, and the precoding matrix indication are reported.
  • one or more (for example, N) receiving/transmitting beams selected by the terminal independently report the receiving/transmitting beam index indication, the RI, and the precoding matrix indication.
  • Report Type 7 Report RI and PMI.
  • the reporting type is used to inform the base station of the number of transmission layers and the precoding matrix indication that the terminal is optimal based on the current channel.
  • the pilot resources of one or more (for example, N) beams configured by the base station report the RI and the precoding matrix indication based on the configuration of the base station.
  • one or more (for example, N) receiving/transmitting beams selected by the terminal independently report the RI and the precoding matrix indication.
  • Report Type 8 Report channel quality and PMI.
  • the reporting type is used to inform the base station that the terminal is based on the current channel quality and the precoding matrix indication. Specifically, as an optional implementation manner, the pilot resources of one or more (for example, N) beams configured by the base station are reported based on the configuration of the base station and the precoding matrix indication. As an optional implementation manner, one or more (for example, N) receiving/transmitting beams selected by the terminal independently report channel quality and precoding matrix indication.
  • the beam index indication may be a receive beam index indication, or may be a transmit beam index indication, or may be a transmit beam index indication and a receive beam index indication.
  • the beam index indication may be set by the resource ID (identity), or may be a resource set ID, or may be a reference and signal resource ID, or may be a port number ID, or may be a resource setting ID, a resource set ID, a reference and a signal resource.
  • Various combinations of the ID and the port number ID may be represented by a SS block time index (SS means Synchronization signal).
  • the ID can mean the meaning of the logo.
  • the receiving beam index indication may be a terminal receiving beam set, a terminal receiving beam, a terminal receiving antenna group, or a terminal receiving antenna. It can also be various combinations of receive beam sets and receive antenna sets.
  • the beam index indication may also be a logical indication, such as a BPL identity, a QCL identity, or a tag identity, or an indicator identity.
  • One identifier corresponds to one or more explicit resource setting IDs, resource collection IDs, and may also refer to various combinations of signal resource IDs, port number IDs, or resource setting IDs, resource collection IDs, reference signal resource IDs, and port number IDs. , or sync signal block time index.
  • the terminal may need to report multiple measurement reporting parameters to the base station at the same time. If there is insufficient resources for reporting the measurement reporting parameters, or there is information redundancy between multiple measurement reporting parameters, it can be understood that the measurement reporting conflicts.
  • the terminal may report the measurement report parameters of the selected part of the plurality of measurement report parameters according to the report rule, that is, the terminal sends the value of the partial measurement report parameter of the plurality of measurement report parameters to the base station, and the partial measurement report is performed.
  • the parameters satisfy the reporting rules.
  • Some of the measurement reporting parameters may be one or more.
  • the above reporting rules may be predefined by a protocol or signaled by a base station to the UE, for example by RRC, MAC-CE or DCI.
  • the reporting rules can include one or more of the following:
  • the reporting priority of the aperiodic measurement is higher than that of the semi-static measurement, that is, the non-periodic measurement is prioritized over the semi-static measurement.
  • the terminal when the terminal is configured to report the measurement reporting parameters corresponding to the aperiodic measurement reporting setting 1 and the semi-static measurement reporting setting 2 in the Kth subframe according to the measurement configuration, the terminal preferentially reports the aperiodic measurement reporting setting 1 correspondingly. The measured parameters are reported.
  • Report rule 2 The aperiodic measurement report takes precedence over the periodic measurement report.
  • Reporting rule 3 Semi-static measurement reporting takes precedence over periodic measurement reporting. For example, when the terminal is configured to report the measurement report parameters corresponding to the periodic measurement report setting 1 and the semi-static measurement report setting 2 in the Kth subframe, the terminal preferentially reports the measurement report corresponding to the semi-static measurement report setting 2 parameter.
  • the above reporting rules 1-3 can be considered as a time domain reporting rule.
  • the measurement reporting priority reported by the full-bandwidth measurement is higher than the measurement reporting reported by the sub-band measurement, that is, the full-bandwidth measurement reporting is prioritized over the sub-bandwidth measurement reporting; for example, when the terminal according to the measurement configuration, it is known that the K-th subframe needs to be reported.
  • the channel quality of the full bandwidth is preferentially reported by the terminal to the channel quality of the full bandwidth.
  • the channel quality of the full bandwidth and the measurement reporting parameters based on the quality of the subband channel selected by the user may be from the same reporting setting, or may be from different reporting settings.
  • the measurement reporting priority reported by the partial bandwidth measurement is higher than the measurement reporting reported by the sub-band measurement, that is, the partial bandwidth measurement reporting is prioritized over the sub-band measurement reporting; for example, when the terminal according to the measurement configuration, it is known that the K-th subframe needs to be reported.
  • the channel quality of part of the bandwidth and the quality of the sub-band channel selected by the user the terminal preferentially reports the channel quality of the part of the bandwidth.
  • the part of the channel quality and the measurement reporting parameter based on the sub-band channel quality selected by the user may be from the same reporting setting, or may be from different reporting settings.
  • the measurement reporting priority of the partial measurement report is higher than the full bandwidth measurement report, that is, the partial measurement bandwidth report is prioritized over the full bandwidth measurement report; for example, when the terminal according to the measurement configuration, it is known that the full bandwidth channel needs to be reported in the Kth subframe.
  • the terminal preferentially reports the channel quality of the part of the bandwidth.
  • the channel quality measurement reporting parameters of the full-bandwidth channel quality and the partial bandwidth may be from the same reporting setting, or may be from different reporting settings.
  • the above reporting rule 4-6 can be considered as a frequency domain reporting rule.
  • the priority of the first type of measurement reporting parameter is higher than that of the second type of measurement reporting parameter, that is, the first type of measurement reporting parameter takes precedence over the second type of measurement reporting parameter; for example, when the terminal according to the measurement configuration, the Kth subframe is known.
  • the receiving beam and RI are required, and the terminal preferentially reports the receiving beam index identifier.
  • the measurement parameters 1), 2), and 5) are the first type of measurement reporting parameters, and the measurement parameters 3), 6), 7), and 8) are reported as the second type of measurement.
  • Reporting rule 8 The priority of the second type of measurement reporting parameter is higher than that of the third type of measurement reporting parameter, that is, the second type of measurement reporting parameter takes precedence over the third type of measurement reporting parameter. For example, the measurement parameters 3), 6), 7), and 8) are reported for the second type of measurement, and the measurement parameters 4), 9), 11), and 12) are reported for the third type of measurement.
  • the reporting rule 7-8 can be considered as a reporting rule for reporting content.
  • the reporting type including the beam index indication takes precedence over the reporting type including the RI; for example, when the terminal needs to report the measurement reporting type 1 and the measurement reporting type 7 in the Kth subframe according to the measurement configuration, the terminal preferentially reports the measurement report.
  • Type 1 The measurement reporting type 1 including the beam index indication and the measurement reporting parameter of the measurement reporting type 7 including the RI may be from the same reporting setting, or may be from different reporting settings.
  • Reporting rule 10 The reporting type including the beam index indication takes precedence over the reporting type including the PMI; for example, when the terminal needs to report the measurement reporting type 1 and the measurement reporting type 7 in the Kth subframe according to the measurement configuration, the terminal only reports the measurement report. Type 1.
  • the measurement reporting parameters of the measurement report type 1 and the measurement report type 7 may be from the same report setting or from different report settings.
  • Reporting rule 11 The reporting type including the beam index indication takes precedence over the reporting type including the channel quality; for example, when the terminal needs to report the measurement reporting type 1 and the measurement reporting type 2 in the Kth subframe according to the measurement configuration, the terminal only reports the measurement. Report type 1.
  • the measurement reporting parameters of the measurement report type 1 and the measurement report type 2 may be from the same report setting, or may be from different report settings.
  • the reporting type including the RI takes precedence over the reporting type including the PMI; for example, when the terminal needs to report the measurement reporting type 7 and the measurement reporting type 8 in the Kth subframe according to the measurement configuration, the terminal preferentially reports the measurement reporting type 7 .
  • the measurement report type 7 including the RI and the measurement report parameter of the measurement report type 8 including the PMI may be from the same report setting or from different report settings.
  • Reporting rule 13 The reporting type including the PMI takes precedence over the reporting type including the channel quality; for example, when the terminal needs to report the measurement reporting type 8 and the measurement reporting type 2 in the Kth subframe according to the measurement configuration, the terminal preferentially reports the measurement reporting type. 8.
  • the measurement reporting parameters of the measurement reporting type 8 and the measurement reporting type 2 may be from the same reporting setting, or may be from different reporting settings.
  • the above reporting rule 9-13 can be regarded as a reporting type reporting rule.
  • the reporting type of the reporting type has the following priorities: Reporting type with higher priority and less overhead. For example, if the terminal needs to report the type 6 (beam index indication, RI, and PMI) at the current time, but the reporting resource overhead cannot be reported at the same time, the reporting type 6 is rolled back to the report that only includes the beam index indication and the RI. Type 5.
  • the terminal may stipulate a reporting rule of multiple reporting settings according to the configuration information of the report setting.
  • a reporting rule of multiple reporting settings according to the configuration information of the report setting.
  • the reporting rule 14 is configured to report the measurement reporting parameter with the low ID of the reporting ID and the lowering of the reporting setting ID ID. For example, when the terminal according to the measurement configuration, the measurement reporting parameter of reporting setting ID1 and reporting setting ID2 needs to be reported in the Kth subframe. The terminal only reports the measurement reporting parameters corresponding to the reporting setting ID1.
  • the reporting rule 15 the reporting of the lowering of the serving cell ID corresponding to the lowering of the serving cell ID is higher than the measurement reporting parameter of the serving cell ID; for example, when the terminal according to the measurement configuration, the measurement report of the serving cell ID1 and the serving cell ID2 needs to be reported in the Kth subframe.
  • the parameter only reports the measurement reporting parameter corresponding to the service cell ID1.
  • the optional processing method is as follows: firstly, according to the reporting time domain characteristic of the user; if the reporting time domain features have the same priority, the processing is processed according to the reported content; if the reported content has the same priority, the processing is performed according to the reporting type;
  • the domain attribute reporting rule +c* report content reporting rule +d* reporting type reporting rule +e* configuration information reporting rule; wherein, a, b, c, d, e> 0, the specific value may be configured by the base station, or The protocol is pre-agreed; wherein different time domain characteristics, different frequency domain characteristics, different reporting contents, different reporting types, different configuration information may take the same value, or may take different values, for example, periodic and semi-static
  • the time domain feature is 1 and the aperiodic time domain feature is 2.
  • the user is configured with two measurement reporting settings.
  • the periodic measurement reporting setting 1 includes the reporting volume receiving beam index indication and the full bandwidth channel quality.
  • the terminal may feed back the measurement result of the pilot on each spatial resource to the base station as needed, so that the base station can adapt the data transmission scheduling and the space resource management of each spatial resource, thereby improving the performance of the wireless communication system.
  • the method is simple and elegant in implementation, and can be compatible with CSI measurement reporting.
  • the embodiment of the present application further provides a measurement reporting method, where the method includes:
  • the terminal acquires a value of the plurality of measurement reporting parameters; the terminal sends a value of the partial measurement reporting parameter of the plurality of measurement reporting parameters to the base station, where the partial measurement reporting parameter satisfies the reporting rule.
  • the value of the above-mentioned measurement reporting parameter may be obtained by measurement, or may be obtained by measurement after measurement.
  • the above partial measurement reporting parameters may be one, or may be multiple.
  • the above measurement reporting parameters may include one or more measurement reporting parameters associated with spatial resources. For example: air separation feature.
  • the method further includes: the terminal receiving the reporting rule.
  • the reporting rule may be carried in high-level signaling, such as RRC (radio resource control) signaling, and sent to the terminal.
  • RRC radio resource control
  • reporting rules may be as specified by the communication standard.
  • the method further includes: the terminal receiving a report setting, where the report setting includes the plurality of measurement report parameters.
  • the above report settings can be carried in the measurement configuration and sent to the terminal.
  • the measurement configuration can be carried in the RRC signaling and sent to the terminal.
  • the method further includes: the terminal receiving the reporting activation indication associated with the multiple measurement reporting parameters.
  • the above activation indication is used to activate the behavior of reporting the measurement reporting parameters.
  • the reporting activation indication may be carried in the MAC-CE or DCI and sent to the terminal.
  • the method further includes: the terminal sending the reporting capability of the terminal to the base station, where the multiple measurement reporting parameters are associated with the reporting capability of the terminal. It can be understood that the terminal has the capability of measuring and reporting the plurality of measurement reports.
  • the acquiring, by the terminal, the value of the multiple measurement reporting parameters includes: the terminal measuring the pilot of the base station, and obtaining a value of the multiple measurement reporting parameters.
  • the terminal sends, to the base station, a value of a part of the measurement reporting parameters in the multiple measurement reporting parameters, including: if a reporting conflict occurs, the terminal sends the part to the base station Measure the value of the reported parameter.
  • the embodiment of the present application further provides a measurement reporting method.
  • the method includes: the base station sends a pilot; the base station receives, from the terminal, a value of a part of the measurement reporting parameters of the plurality of measurement reporting parameters associated with the pilot, where the partial measurement reporting parameter satisfies a reporting rule.
  • the embodiment of the present application further provides a communication apparatus for implementing the method on the terminal side in FIG.
  • the communication device can be a terminal or a baseband chip.
  • the structure of the terminal can be as shown in FIG. 2.
  • the communication device includes a processor and a transceiver component.
  • the processor and transceiver component can be used to implement the functions of various portions of the method on the terminal side described above.
  • its transceiver component may be a transceiver
  • its transceiver component may be an input/output circuit of a baseband chip.
  • the communication device includes a processor.
  • the processor is configured to run the above program to enable the above terminal side method to be implemented.
  • the communication device may further include a memory for storing a program implementing the terminal side method.
  • the embodiment of the present application further provides a communication apparatus, which is used to implement the method on the base station side.
  • the communication device can be a base station, or a baseband chip, or a baseband single board.
  • the communication device includes a processor and a transceiver component.
  • the processor and transceiver component can be used to implement the functions of various portions of the method at the base station side described above.
  • the communication device is a base station
  • its transceiver component can be a transceiver.
  • the transceiver component can be a baseband chip or an input/output circuit of a baseband single board.
  • the communication device includes a processor.
  • the processor is configured to run the above program to cause the above-described method on the base station side to be implemented.
  • the communication device may further include a memory for storing a program for implementing the base station side method.
  • the embodiment of the present application further provides a computer program product, the program product comprising a program, when the program is executed, causing the terminal side or base station side method to be executed.
  • the embodiment of the present application further provides a computer readable storage medium on which a program is stored, and when it is executed, the terminal side or base station side method is executed.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above software function parts can be stored in the storage unit.
  • the storage unit includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform some of the steps of the methods described in various embodiments of the present application.
  • the storage unit includes: one or more memories, such as a read-only memory (ROM), a random access memory (RAM), and an electrically erasable programmable read only memory (EEPROM). and many more.
  • the storage unit may exist independently or may be integrated with the processor.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • a program may also be referred to as a computer instruction.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种处理封闭用户组签约数据请求的方法、设备和系统。其中一种方法包括:封闭用户组用户服务器接收移动性管理网元发送的封闭用户组签约数据请求,该封闭用户组签约数据请求包含该移动性管理网元的标识和用户设备的标识,用以请求获取该用户设备的封闭用户组签约数据;若该用户设备的封闭用户组签约数据不存在,该封闭用户组用户服务器保存该移动性管理网元的标识和该用户设备的标识。该方法可以避免移动性管理网元无法获取用户设备更新后的封闭用户组签约数据。

Description

一种测量上报的方法和装置
本申请要求在2017年5月5日提交中华人民共和国知识产权局、申请号为CN201710314213.5、发明名称为“一种测量上报的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其是一种测量上报的方法和装置。
背景技术
在长期演进(long term evolution,LTE)系统中,为了提高LTE系统的传输性能,终端通常会测量信道状态信息(channel state information,CSI)参考信号(reference signal,RS),并向基站反馈信道状体信息。
随着技术的演进,例如新空口(new radio,NR)技术的发展,引入了波束以及波束测量,也引入了更多种类的信道状态信息。
为了提高无线通信系统的传输性能,终端如何上报测量结果是一个呈待解决的问题。
发明内容
本申请的实施例提供的信息上报的方法和装置,用于提高无线通信系统的性能。
第一方面,本申请实施例提供一种测量上报方法,包括:终端获取多个测量上报参数的值;所述终端向基站发送所述多个测量上报参数中部分测量上报参数的值,所述部分测量上报参数满足上报规则。
作为一种可选的设计,上述测量上报参数的值可以是通过测量获得,或者可以是通过测量后计算获得。
作为一种可选的设计,上述部分测量上报参数可以是一个,或者可以是多个。
作为一种可选的设计,上述测量上报参数可以包括一个或多个与空间资源有关联的测量上报参数。例如:空分特性。
作为一种可选的设计,该方法还包括:所述终端接收所述上报规则。其中,上报规则可以携带在高层信令,例如RRC(radio resource control,无线资源控制)信令,并发送至终端。
作为一种可选的设计,该上报规则可以是通信标准规定的。
作为一种可选的设计,该方法还包括:所述终端接收上报设置,所述上报设置包括所述多个测量上报参数。上述上报设置可以被携带在测量配置中发送至终端。测量配置可以携带在RRC信令中发送至终端。
作为一种可选的设计,该方法还包括:所述终端接收所述多个测量上报参数关联的上报激活指示。上述激活指示用于激活上报测量上报参数的行为。上报激活指示可以携带在MAC-CE或者DCI中发送至该终端。
作为一种可选的设计,该方法还包括:所述终端向所述基站发送所述终端的上报能力, 所述多个测量上报参数与所述终端的上报能力有关联。可以理解,终端具有测量上报上述多个测量上报的能力。
作为一种可选的设计,该方法中所述终端获取多个测量上报参数的值包括:所述终端对所述基站的导频进行测量,获得所述多个测量上报参数的值。
作为一种可选的设计,该方法中所述终端向基站发送所述多个测量上报参数中部分测量上报参数的值,包括:如果发生上报冲突,所述终端向所述基站发送所述部分测量上报参数的值。
通过第一方面的上述方法,终端可以按需反馈各个空间资源上的导频的测量结果给基站,便于基站自适应各个空间资源的数据传输调度和空间资源管理,从而提高无线通信系统的性能。另外该方法在实现上简单、优雅(elegant),可以兼容CSI测量上报。
第二方面,本申请实施例提供一种测量上报方法,包括:基站发送导频;所述基站从终端接收与所述导频关联的多个测量上报参数中部分测量上报参数的值,所述部分测量上报参数满足上报规则。
作为一种可选的设计,该方法还包括:所述基站向所述终端发送所述上报规则。
作为一种可选的设计,该方法还包括:所述基站向所述终端发送上报设置,所述上报设置包括所述多个测量上报参数。
作为一种可选的设计,该方法还包括:所述基站向所述终端发送所述多个测量上报参数关联的上报激活指示。
作为一种可选的设计,该方法还包括:所述基站接收所述终端的上报能力,所述多个测量上报参数与所述终端的上报能力有关联。
第二方面中的各种可选的设计可以参考第一方面中的内容。
通过第二方面的上述方法,基站可以按需获得各个空间资源上的导频的测量结果,并能根据测量结果自适应各个空间资源的数据传输调度和空间资源管理,从而提高无线通信系统的性能。另外该方法在实现上简单、优雅(elegant),可以兼容CSI测量上报。
第三方面,本申请实施例提供一种通信装置,用于实现第一方面中的方法。该通信装置可以是终端或者基带芯片。
作为一种可选的设计,该通信装置包括处理器和收发组件。该处理器和收发组件可用于实现上述第一方面的方法中各个部分的功能。在该设计中,如果该通信装置是终端,其收发组件可以是收发机,如果该通信装置是基带芯片,其收发组件可以是基带芯片的输入/输出电路。
作为另一种可选的设计,该通信装置包括处理器。处理器用于运行上述程序以使得上述第一方面的方法被实现。可选的,该通信装置还可以包括存储器,该存储器用于存储实现第一方面中方法的程序。
第四方面,本申请实施例提供一种通信装置,用于实现第二方面中的方法。该通信装置可以是基站,或者基带芯片,或者基带单板。
作为一种可选的设计,该通信装置包括处理器和收发组件。该处理器和收发组件可用于实现上述第二方面的方法中各个部分的功能。在该设计中,如果该通信装置是基站,其收发组件可以是收发机,如果该通信装置是基带芯片或基带单板,其收发组件可以是基带芯片或基带单板的输入/输出电路。
作为另一种可选的设计,该通信装置包括处理器。处理器用于运行上述程序,使得上述第二方面的方法被执行。可选的,该通信装置还可以包括存储器,该存储器用于存储实现第二方面中方法的程序。
第五方面,本申请实施例还提供一种计算机程序产品,该程序产品包括程序,当所述程序被运行时,使得上述第一方面或第四方面的方法被执行。
第六方面,本申请实施例还提供一种计算机可读存储介质,其上存储有程序,当其被运行时,使得上述第一方面或第四方面的方法被执行。
在上述各方面中,上报规则包括以下至少一项:
第一类测量上报参数优先于第二类测量上报参数,所述第一类测量上报参数包括:接收波束索引指示,或者发送波束索引指示,或者参考信号资源索引指示,所述第二类测量上报参数包括:秩指示RI,或者预编码矩阵指示PMI,或者信道质量指示;和/或,
部分带宽测量上报优先于子带测量上报;
半静态测量上报优先于周期性测量上报;
全带宽测量上报优先于子带宽测量上报;
部分测量带宽上报优先于全带宽测量上报;
非周期性测量上报优先于半静态测量上报;
非周期性测量上报优先于周期性测量上报;
包括波束索引指示的上报类型优先于包括RI的上报类型;
包括波束索引指示的上报类型优先于包括PMI的上报类型;
包括波束索引指示的上报类型优先于包括信道质量的上报类型;,
上报设置的标识小的优于上报设置标识大的;
服务小区标识小的优于服务小区标识大的。
在上述各方面中,上报类型包括以下至少一项:
波束索引指示;
波束索引指示和信道质量;
信道质量;
信道质量、空分特性和相应的波束索引指示;
波束索引指示和RI;
波束索引指示、RI、和PMI;
RI和PMI;
信道质量和PMI。
本申请的技术方案中,通过对测量信息上报框架的设计,例如上报类型的设计,或者上报优先级的设计等,能够使终端上报网络所需的测量上报参数,提高了无线通信系统的性能。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍。
图1为无线通信系统的简化示意图;
图2为一种终端的结构简化示意图示意图;
图3为一种基站的结构简化示意图;
图4为一种测量上报的方法信令交互图。
具体实施方式
下面将结合本申请中的附图,对本申请的实施例进行描述。
以下对本申请中的一些术语和约定做出说明。
在本申请中,通信装置是一种具有通信功能的装置。例如:通信装置可以是基站、或者终端,或者基带芯片,或者通信芯片,或者传感芯片等。本申请的技术方案可以适用于不同的通信装置。本申请实施例主要以基站和终端为例进行说明。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”;术语“关联的”、“有关联”、“对应的”以及它们的变形可以指“绑定的”,“与……绑定”,“有映射关系的”,“配置的”,“分配的”,“基于……的”,或者“根据……获得的”等;术语“通过”以及其变形可以指“利用”,“使用”,或者“在……上”等;术语“获取”,“确定”以及它们的变形可以指“选择”,“查询”,“计算”等;术语“当……时”可以指“如果”,“在……条件下”等。
在本申请中,字段有时也称为域(field)。
在本申请中例如括号“()”中的内容,可能是一种举例,或者可能是另一种表达方式,可能是可以省略的描述,或者可能是进一步的解释和说明。
在本申请中,序数词的使用,例如“第一”、“第二”是为了区分不同的对象,并不限定先后顺序。
在本申请中,信号是信息的一种表现形式。信号有时可以称为无线信号,通信信号。在无线通信中,信号可以通过电磁波的方式由一个通信节点发送到另一个通信节点。信号根据信息内容的不同,可以具有多种类型。例如,信道状态信息参考信号(channel state information reference signal,CSI-RS)可以归为参考信号。参考信号也可以称为导频。本申请的技术方案主要以CSI-RS为例进行说明。本领域技术人员应知,本申请的技术方案还可以应用与其他参考信道的测量上报。
在本申请中,导频也可以称为导频信号。
在本申请中,波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。波束成形也可以称为波束赋形。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。波束可以分为接收波束和发送波束。作为一种可选的理解,发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。波束可以有多种称谓,例如波束可以称为空间资源,空间权值,空间方向,空间方位等,随着技术的发展,波束可能在不同时期,不同场景中有不同称谓,本申请对此不作限制。
在本申请中,用于接收信号的通信资源可以称为接收资源,用于发送信号的通信资源可以称为发送资源。例如:接收波束是一种接收资源,发送波束是一种发送资源。
在本申请中,可以将一个接收资源和一个发送资源视为一个资源对。例如:一个接收波束和一个发送波束可以形成一个波束对。
在本申请中,无线信号传输的路径空间可以称为链路。利用资源对进行无线信号传输的路径空间可以称为资源对链路。例如:利用波束对进行信号传输的路径空间可以称为波束对链路(beam pari link,BPL)。波束对链路可以通过一个逻辑编号来表达,通过该逻辑编号可以用来指示一个接收波束,或者一个发送波束,或者一个发送波束和接收波束。关于波束对链路的相关内容可以参见第三代合作伙伴计划(third generation partnership project,3GPP)的提案R1-1700748中的相关内容。
在本申请中,通信特征是一种用于表征传输特性的信息。例如通信特征可以包括:平均增益,平均时延,时延分布,多普勒频移,多普勒分布等.
在本申请中,上报有时也称为反馈。
在本申请中,测量上报参数,也可以称为上报参数,导频上报参数,测量量,上报量,测量上报量,测量上报内容,上报内容等。
在本申请中,测量上报类型,也可以称为上报格式,或者测量上报格式等。
在本申请中,测量上报规则,也可以称为上报规则,导频上报规则,优先级规则,或者上报优先级规则等
在本申请中,准同定位(quasi-co-location,QCL)关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征。对于具有准同定位关系的多个资源,可以采用相同或者类似的通信配置。例如:对2个具有QCL关系的波束可以认为其波束对链路相同或者近似,可以采用相同或者近似的功率控制。关于QCL的相关内容可以参考3GPP的提案R1-167970,R1-168436,R1-1610825,R1-1610520,R1-1613719,和R1-1613108中相关的内容以及3GPP的标准,例如TS 36.211v13.0.0的章节6.2.1的内容和TS 36.213v14.1.0的章节7.1.9和7.1.10的内容。
本申请的技术方案可以适用于不同网络节点之间的通信。例如,可以适用于基站和终端之间的通信,基站与基站之间的通信,终端与终端之间的通信等。本申请实施例主要以基站和终端之间的通信为例进行说明。
本申请的技术方案可以用于如图1所示的无线通信系统中。在图1所示的无线通信系统中可以采用波束成型技术形成的波束来获得较远距离的信号覆盖。波束成型技术多用于高频资源,也可以用于低频资源。如图1所示,在无线通信系统包括基站B200和终端T100。如图1所示,基站B200通过波束成型技术可以使高频信号形成类似窄波束形状的信号覆盖,简称窄波束,例如B21,B22,B23。窄波束同样具有方向性,其覆盖范围较宽波束的覆盖范围而言较窄。在同一时刻,基站可以发射一个或多个不同的窄波束来进行通信。不同时刻,基站发射的窄波束的数量和方向可以不同。例如,在T1时刻基站B200发生波束B21和B22,在T2时刻发射波束B23。基站可以在同一时刻利用一个或多个窄波束与终端进行通信。例如基站B200可以通过B21和B22向终端T100发送通信信号(例如B22在遇到遮挡物后反射仍可以被终端T100接收到)。对于终端T100而言,也可以利用波束B11和B12向基站B200发送通信信号。不同的窄波束可用于发送不同的信息,也可以用于发送相同的信息。该无线通信系统可以是4G通信系统,例如:LTE(长期演进,long term evolution)系统,5G通信系统,例如NR(new radio,新空口)系统,多种通 信技术融合的通信系统(例如LTE技术和NR技术融合的通信系统)。
终端T100是一种具有无线通信功能的设备,可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中终端可以叫做不同的名称,例如:用户设备,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。
终端T100的结构示意图可以如图2所示。为了便于说明,图2仅示出了终端的主要部件。如图2所示,终端T100包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。有些种类的终端不具有输入输出装置。
当终端开机后,处理器可以读取存储单元中的软件程序(指令),解释并执行软件程序的指令,处理软件程序的数据。当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图2仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图2中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。可选的,终端可以包括多个基带处理器以适应不同的网络制式。可选的,终端可以包括多个中央处理器以增强其处理能力。可选的,可以将基带处理器和中央处理器的功能集成在一个处理器上实现。可选的,终端的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。可选的,对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图2所示,终端T100包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元。接收单元也可以称为接收机、接收器、接 收电路等,发送单元可以称为发射机、发射器或者发射电路等。
基站B200,也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备。例如:在LTE网络中的基站称为演进的节点B(evolved NodeB,eNB或者eNodeB),在NR网络中的基站称为TRP(收发点,transmission reception point)或者gNB(generation nodeB,下一代节点B)。基站B200的结构可以如图3所示。图3所示的基站B200可以是分体式基站,例如图3靠左示出了包括天线(antennas)、无线射频单元(remote radio unit,RRU)和基带单元(baseband unit,BBU)的分布式基站,图3所示的基站也可以是一体式基站,例如图3靠右示出的小站(small cell)。一般而言,基站包括201部分以及202部分。201部分主要用于射频信号的收发以及射频信号与基带信号的转换;202部分主要用于进行基带处理,对基站进行控制等。201部分通常可以称为收发单元、收发机、收发电路、收发器等。202部分通常可以称为处理单元。通常202部分是基站的控制中心。
作为一种可选的实施方式,201部分可以包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将201部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即201部分包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
作为一种可选的实施方式,202部分可以包括一个或多个单板,每个单板可以包括处理器和存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。
作为另一种可选的实施方式,随着片上系统(英文:System-on-chip,简称:SoC)技术的发展,可以将202部分和201部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
上述图2和图3关于终端、基站的举例说明可以适用于本申请中的终端、基站。
为了便于叙述,在本申请中,对于参考信号的测量,也称为对于导频的测量,简称导频测量;对于参考信号的测量上报,也称为对于导频的测量上报,简称为导频测量上报或者测量上报。对于导频测量的上报设置,简称为上报设置。
在上述无线通信系统中,对于导频测量上报,从时域的角度,可以分为非周期性测量上报,周期性测量上报,以及半静态测量上报。
非周期性测量上报是是动态触发的;通过高层,例如无线资源控制(radio resource control,RRC)层,配置测量上报参数,通过MAC-CE(media access control control element,媒体接入控制控制元素)或DCI(downlink control information,下行控制信息)动态的激活上报测量上报参数;例如在用户的移动过程中,当基站检测到当前链路信号质量较差时,动态触发用户进行邻区的测量及上报。
周期性测量上报是指以特定的时间间隔周期性的上报测量上报参数;通过高层(例如RRC层)配置测量上报参数、及上报周期;例如用户接入基站后,会接收基站发送的测量配置,其中包括了需要周期性上报的测量上报参数,终端会根据上报周期周期性得上报上述测量上报参数的值。
半静态测量上报是指测量上报是可以动态激活和去激活的;通过高层(例如RRC层)配置测量上报参数、及上报周期,通过MAC-CE或DCI动态的激活或去激活上述测量上报参数的上报;当激活时,该测量上报类似于周期性测量上报;当去激活时,不需要上述测量上报参数的上报。
在上述无线通信系统中,对于导频测量上报,从频域的角度,可以分为全带宽(wideband)测量上报,部分带宽(partial band)测量上报,以及子带(subband)测量上报。
全带宽测量上报是指针对服务基站的整个工作频段的测量上报;例如当前工作频段为10MHz,用户需要对全带宽的导频进行测量及合并,上报针对全带宽的测量上报参数的值。
部分带宽测量上报是指针对服务基站的部分工作频段的测量上报;例如服务基站可支持不同的业务类型服务,不同的业务类型占用整个工作频段的部分带宽,根据用户的当前业务类型,只需要上报针对部分带宽的测量上报参数的值。
子带测量上报是指将服务基站的整个工作频段划分为多个子带,由基站或用户侧选取所上报的针对一个或多个子带的测量上报参数的值。
在上述无线通信系统中使用波束进行传输,可以实现更高的天线阵列增益。在使用波束进行通信的过程中,需要对波束进行管理,例如如何选择通信质量较佳的波束,如何建立波束的通信链路,如何优化所选择波束来提供通信信道容量等。为了实现有效的波束管理,可以通过对导频的测量实现波束管理。例如:基站通过不同的波束发送导频(可以简单地理解为在不同方向上发送导频),终端测量不同波束上的导频以获得各个波束上导频的测量结果,并将测量结果反馈给基站,以便进行波束管理。上述利用不同波束发送的导频可以是CSI-RS。
导频的测量上报既可用于波束管理也可用于链路自适应调度。作为一种可选的设计,终端上报的测量上报参数可以包括以下一种或多种:
1)接收波束指示:用于指示用户侧或基站侧接收波束索引或编号。接收波束指示可以指示一个接收波束,也可以指示多个接收波束。接收波束指示可以使用逻辑标识表达。其中,该逻辑标识可以标识单个波束,或者可以标识一组波束。例如该逻辑标识可以是波束的标识。当逻辑标识用于标识一组波束时,该逻辑标识可以认为是一种组标识。例如一个接收波束集的标识,或者一接收天线组的标识。通常,组标识可以是BPL的标识,或者QCL的标识。通常,归为一组的标识具有某种或者某些相同或者相似的通信特征或者空间特性。接收波束指示也可以称为接收波束索引指示,接收波束索引指示是一种波束索引指示。
2)发送波束指示:用于指示用户侧或基站侧发送波束索引或编号。发送波束指示可以指示一个发送波束,也可以指示多个发送波束。与接收波束指示类似的,可以使用逻辑标识表达,相关内容请参见接收波束指示的相关内容。作为另一种可选的方式,发送波束指示还可以使用参考信号的资源标识,或者天线端口号来标识。例如:使用CSI-RS的资源标识或者天线端口号来标识发送波束,或者使用CSI-RS的资源标识和天线端口号的组合来标识发送波束。发送波束指示也可以称为发送波束索引指示,发送波束索引指示是一种波束索引指示。
3)波束质量(beam quality):用于体现波束的质量。波束质量可以使用参考信号的接收功率来表示,例如层一CSI-RS接收功率(L1CSI-RS reference signal received power,L1CSI-RS RSRP),即在终端的天线连接处测得的CSI-RS的线性平均功率,单位为瓦特[W]。
4)空分特性(spatial parameters):用于指示基站与用户之传输信道的空间特性。例如:平均到达角度(mean zenith angle of arrival)或者平均到达角(mean angle of arrival)可以理解为是一种空分特性。
5)资源选取指示(resource selection indicator,RSI),用于指示当前测量上报对应的导频的资源集合,或者导频资源,或者导频端口,或者导频资源的波束信息。例如,资源选取指示可以参考LTE中的信道状态信息参考信号资源指示(channel state information reference singal resource indicator,CRI)。
6)秩指示(rank indicator,RI),用于指示当前用户可采用的传输层数。
7)预编码矩阵指示(precoding matrix indicator,PMI),用于指示当前用户可采用的预编码信息。例如,对于下行传输,当基站只有一个天线面板(antenna panel)时,PMI可以分为2个部分,一部分为长期的信道质量的预编码信息或波束选取(可用W1表示),另一部分为短期/瞬时的信道质量的预编码信息(可用W2表示);当基站采用多个天线面板时,PMI可以分为3个部分,一部分为W1,一部分为W2,另一部分为多个天线面板之间的带宽或者子带的相位信息(co-phasing factor)(可用W3表示)。其中,W3可以独立上报,也可以嵌入到W1或W2内联合上报。W1有时也称为第一PMI,W2有时也称为第二PMI。
8)信道质量(channel quality,CQ),用于指示当前用户的信道质量。例如可以参考LTE中的信道质量指示(channel quality indicator,CQI。信道质量可量化为调制编码方案(modulaiton and coding scheme,MCS)的等级指示。
9)基于线性合并码本的预编码(反馈),用于指示最终的预编码信息。例如,对于两级码本反馈,W1用于反馈选取的多个波束指示,W2用于指示W1所选取的多个波束的一组或多组加权向量,通过上述2个部分可以联合指示最终的预编码信息。
10)协方差矩阵(反馈),用于指示长期的、宽带的信道协方差矩阵。
11)混合CSI(反馈),用于指示基于线性合并码本的预编码与基于波束成形的CSI-RS(beamformed CSI-RS)测量的联合反馈。
12)干扰量(反馈),用于指示小区内配对用户的干扰量,或者小区间干扰量,或者波束间干扰量。
对于上述参考信号(导频)的测量,可以由网络侧为终端下发测量配置(measurement setting)。例如,测量配置可以包括一个或多个链接(link),该链接对应一个上报设置(reporting setting)和一个资源设置(resource setting);每一个资源设置(resource setting)包括一个或多个资源集合(resource sets),每个资源集合(resource sets)进一步包括一个或多个导频(例如:CSI-RS)资源,每个导频资源对应一个资源索引,用于唯一标识该导频资源。该测量配置可以用于上述波束测量,也可以用于上述导频测量。根据不同的测量需求,终端所需要上报的测量上报参数不同。例如,对于P2波束扫描,需要上报发送波束指示,对于P3波束扫描,需要上报接收波束指示。因此,终端具体上报的测量上报参 数会根据网络应用场景或者波束扫描的模式不同而发生变化。通过上述测量配置,可以运用于波束管理,以及链路自适应调度。
在本申请中,索引可以理解为一种标识,索引也可以称为编号。
作为一种简化的理解,资源设置可以理解为指示参考信号(导频)在哪些资源(例如频域资源,时域资源,或者空间资源)上传输,上报设置可以理解为指示要上报的测量上报参数,链接可以理解为测量资源设置和测量报告设置的关联关系。通过上述测量配置,终端可以知道测量特定资源上传输的参考信号需要获得哪些测量上报参数,以及如何获得这些测量上报参数的值,并且以何种方式上报。
以下给出如何配置终端需要上报哪些测量上报参数的方法示意。图4中的基站和终端可以是图2和图3中的基站和终端,图4的网络场景可以如图1所示。
如图4的S101和S102所示:
S101:终端向基站发送上报能力。
上述发送功能可以由终端的收发机实现。
换而言之,基站从终端接收上报能力。上述接收功能可以由基站的收发机实现。
上报能力可以理解为测量能力,测量上报能力。作为一种示例,上报能力包括:终端可支持的最大工作带宽、终端的接收天线个数等。
可选的,终端可以通过RRC信令或者物理层信令向基站发送上述测量能力信息。
S102:基站向终端发送包括一个或多个上报设置(reporting setting)的测量配置。
上述发送功能可以由基站的收发机实现。
换而言之,在S102部分,终端从基站接收上述测量配置。上述接收功能可以由终端的收发机实现。
上述上报设置包含在测量配置(measurement setting)消息内,每一个上报设置(reporting setting)包括以下信息中的一个或多个:上报设置的索引,用于唯一标识一个上报设置;导频测量上报的时域特性(例如:周期的,非周期的,半静态的);导频测量及上报的频域粒度(例如:终端决策的子带反馈,基站配置的子带反馈,全带宽反馈,部分带宽反馈);测量上报的内容(例如:PMI,RI,CQI,CRI);波束扫描方法的指示信息;可选的,测量配置还可以包括测量限制,码本配置,如果为周期性上报,每一个上报设置(reporting setting)还包括上报量所对应的上报周期及上报时间偏移量。
在本申请中,可以认为测量上报参数是被包括在测量配置中的,或者可以认为测量上报参数是被包括在上报设置中的。
其中,测量限制是针对上报设置而配置的,用于通知用户当前的测量行为,例如,是基于单次采样点的测量结果还是基于一段时间内的测量平均结果;码本配置用于指示PMI上报应采用的码本集合索引。时域特性是针对上报设置而配置的,适用于上报设置所包含的所有测量上报参数;频域特性是针对测量上报参数而配置的,例如上述的测量上报参数3)、4)、7)、8)、9)、10)、11)、12)可配置频域特性。
可选的,测量配置可以通过高层信令发送至终端。例如,该高层信令可以是无线资源控制(radio resource control,RRC)信令。
作为一种可选的设计,终端接收到测量配置后,可以根据测量配置进行测量。如图4的S103和S104所示:
S103:基站发送参考信号(导频);
S103的发送功能可以由基站的收发机实现。
S104:终端对上述参考信号进行测量,获取多个测量上报参数的值。
S104中测量和获取功能可以由终端的处理器和收发机实现。
作为另一种可选的设计,终端接收到测量配置后,并不立即根据测量配置进行测量上报,还需要等待基站发送的上报激活指示来确定是否开启测量配置中测量上报参数的上报。
例如:在将测量配置发送至终端后,基站可以根据参考信号的功能,或者当前的传输模式,或者,应用场景,或者波束扫描模式向终端发送上报激活指示,用于激活终端需要上报的测量上报参数,即激活终端对于该测量上报参数的上报行为。如图4中S105所示:
S105:基站向终端发送上报激活指示。
S105的发送功能可以由基站的收发机实现。
换而言之,终端从基站接收上报激活指示。该接收功能可以由终端的收发机实现。
其中,上述上报激活指示可以理解为对于是否要对测量上报参数进行上报的开关。例如测量配置中指示了需要上报测量上报参数1,测量上报参数2,测量上报参数3,上述上报激活指示可以指示激活测量上报参数1和2,则终端会根据测量配置对测量上报参数1和2进行上报,而不进行测量上报参数3的上报。
可选的,基站可以通过RRC信令,MAC-CE,或者DCI向终端发送上报激活指示。
可以理解,S102部分中的测量配置或者上报设置也可以认为是一种上报激活指示,此时S105部分无需执行。
作为一种可选的实施方式,当参考信号的功能,或者当前的传输模式,或者,应用场景,或者波束扫描模式发生变化时,基站可以再次执行S103,以改变终端的测量上报参数。例如,可以关闭一些激活的测量上报参数,或者打开一些新的测量上报参数。其中,关闭可以理解为去激活,打开可以理解为激活。
之后,终端可以根据上述上报设置上报测量上报参数。例如:
S106:终端向基站发送测量上报参数的值。
S106中的发送功能可以由终端的收发机实现。
换而言之,基站从终端接收测量上报参数的值。该接收功能可以由基站的收发机实现。
终端可以根据上报设置向基站发送测量上报参数的值。
作为一种可选的设计,终端可以根据测量上报参数以及其对应的上报周期或者上报时间偏移量来上报测量上报参数。例如:终端根据测量配置可知在第K个子帧需要上报CQ,PMI,接收波束指示,波束质量,则终端可以在第K个子帧上报上述CQ,PMI,接收波束指示和波束质量。
作为一种可选的设计,可以对上报测量上报参数的方式进行约定。例如,可以约定测量上报类型,简称上报类型。终端在上报测量上报参数时,需要按照上报类型中所规定的测量上报参数进行上报。例如,终端根据测量配置可知在第K个子帧需要上报CQ,PMI,接收波束指示,波束质量;如果存在测量上报类型X,测量上报类型X规定终端可以在一 个子帧内同时上报CQ,PMI和波束质量,且不存在一种测量上报类型规定终端可以在一个子帧内同时上报CQ,PMI,波束质量和接收波束指示,则终端将按照测量上报类型X在第K个子帧上报CQ,PMI和波束质量,而不会上报接收波束指示。
上报类型的一种可选的设计如下:
上报类型1:波束索引指示(波束指示);该上报类型用于告知基站,对于终端哪些接收/发送波束是最好的,或者符合质量要求的,或者是可用的。波束索引指示可指示一个或多个(例如N个)接收/发送波束。数目N可以由通信标准规定或者由基站通过RRC,MAC-CE,DCI等信令通知,或终端自主选择的一个或多个(例如N个)接收/发送波束。
上报类型2:信道质量;该上报类型用于告知基站信道或者波束质量。作为一种可选的实现方式:终端选取最好的一个波束对(即该终端的接收波束和它所收到的基站的一个最好的发送波束),上报波束对的信道质量;作为另一种可选的实现方式:基站配置的一个或多个(例如N个)波束的导频资源,终端侧按照基站配置依照基站配置的顺序上报一个或多个(例如N个)波束的信道质量,。其中,信道质量可以是层一参考信号接收功率(layer 1 reference signal received power,L1-RSRP),或者是层一参考信号接收质量(layer1 reference signal received quality,L1-RSRQ),或者CQI。
上报类型3:信道质量和相应的波束索引指示。该上报类型用于告知基站,对于对于终端哪些接收/发送波束是最好的,或者符合质量要求的,或者可用的,以及相应的信道质量。作为一种可选的实施方式:终端上报基站配置的一个或多个(例如N个)波束索引,以及上述波束所对应的信道质量。作为一种可选的实现方式:终端自主选择的一个或多个(例如N个)接收/发送波束,上报所选择的接收/发送波束所索引指示和信道质量。其中,每一个波束索引指示可以对应一个或多个波束质量。其中,信道质量可以是以下参数的一种或多种:L1-RSRP,L1-RSRQ,CQI。
上报类型4:信道质量、空分特性和相应的波束索引指示。该上报类型用于告知基站,对于终端哪些接收/发送波束是最好的,或者符合质量要求的,或者可用的,以及上述波束相应的信道质量和空间特性。作为一种可选的实现方式:选取最好的一个接收/发送波束,上报接收/发送波束索引指示、信道质量和空分特性。作为另一种可选的实现方式:基站配置的一个或多个(例如N个)波束的导频资源,上报波束索引指示、信道质量和空分特性。其中,每一个波束索引指示可以对应一个或多个信道质量和空分特性,依照基站配置的顺序。作为一种可选的实现方式:终端自主选择的一个或多个(例如N个)接收/发送波束,上报接收/发送波束索引指示和对应的波束质量和空分特性。其中,每一个接收/发送波束索引指示可以对应一个或多个波束质量和空分特性。
上报类型5:上报波束索引指示和RI。该上报类型用于告知基站,对于终端哪些接收/发送波束是最好的/好的/可用的以及所对应的传输层数。具体的,作为一种可选的实现方式:选取最好的一个发送波束,上报接收/发送波束索引指示和RI。作为一种可选的实现方式:基站配置的一个或多个(例如N个)波束的导频资源,上报波束索引指示和RI。作为一种可选的实现方式:终端自主选择的一个或多个(例如N个)接收/发送波束,上报接收/发送波束索引指示和RI。
上报类型6:上报波束索引指示、RI和PMI。该上报类型用于告知基站,对于终端 哪些接收/发送波束是最好的/好的/可用的以及所对应的传输层数和预编码矩阵指示。具体的,作为一种可选的实现方式:选取最好的一个发送波束,上报接收/发送波束索引指示、RI和预编码矩阵指示。作为一种可选的实现方式:基站配置的一个或多个(例如N个)波束的导频资源,上报波束索引指示、RI和预编码矩阵指示。作为一种可选的实现方式:终端自主选择的一个或多个(例如N个)接收/发送波束,上报接收/发送波束索引指示、RI和预编码矩阵指示。
上报类型7:上报RI和PMI。该上报类型用于告知基站,对于终端基于当前信道最优的传输层数和预编码矩阵指示。具体的,作为一种可选的实现方式:基站配置的一个或多个(例如N个)波束的导频资源,基于基站的配置上报RI和预编码矩阵指示。作为一种可选的实现方式:终端自主选择的一个或多个(例如N个)接收/发送波束,上报RI和预编码矩阵指示。
上报类型8:上报信道质量和PMI。该上报类型用于告知基站,对于终端基于当前信道质量和预编码矩阵指示。具体的,作为一种可选的实现方式:基站配置的一个或多个(例如N个)波束的导频资源,基于基站的配置上报信道质量和预编码矩阵指示。作为一种可选的实现方式:终端自主选择的一个或多个(例如N个)接收/发送波束,上报信道质量和预编码矩阵指示。
波束索引指示可以是接收波束索引指示,也可以是发送波束索引指示,也可以是发送波束索引指示和接收波束索引指示。
波束索引指示可以用资源设置ID(identity),也可以是资源集合ID,也可以是参考与信号资源ID,也可以是端口号ID,还可以是资源设置ID、资源集合ID、参考与信号资源ID、端口号ID的各种组合,也可以是同步信号块时间索引(SS block time index,SS means Synchronization signal)来表示。
在本申请中,ID可以表示标识的意思。
接收波束索引指示可以是终端接收波束集合,也可以是终端接收波束,也可以是终端接收天线组,也可以是终端接收天线。也可以是接收波束集合与接收天线组的各种组合。
波束索引指示也可以是一个逻辑指示,例如BPL标识,QCL标识,或者tag标识,或者indicator标识。一个标识对应一个或者多个显式的资源设置ID,资源集合ID,也可参考信号资源ID,端口号ID,或者资源设置ID、资源集合ID、参考信号资源ID、端口号ID的各种组合,或者同步信号块时间索引。
根据测量配置,可能会出现终端需要同时向基站上报多个测量上报参数的情况。如果用于上报测量上报参数的资源不足,或者多个测量上报参数之间存在信息冗余的情况,则可以理解为测量上报发生了冲突。
当测量上报发生冲突时,终端可以在多个测量上报参数中按照上报规则选择部分的测量上报参数进行上报,即终端向基站发送多个测量上报参数中部分测量上报参数的值,上述部分测量上报参数满足上报规则。其中部分测量上报参数可以是一个也可以是多个。
上述的上报规则可以通过协议预定义或者由基站通过信令通知UE,例如通过RRC,MAC-CE或者DCI。
作为一种可选的设计,上报规则可以包括以下一项或多项:
上报规则1:非周期性测量上报的上报优先级高于半静态测量上报,即非周期性测 量上报优先于半静态测量上报。例如,当终端根据测量配置可知在第K个子帧需要上报非周期性测量上报设置1、和半静态测量上报设置2所对应的测量上报参数,则终端优先上报非周期性测量上报设置1所对应的测量上报参数。
上报规则2,:非周期性测量上报优先于周期性测量上报。
上报规则3:半静态测量上报优先于周期性测量上报。例如:当终端根据测量配置可知在第K个子帧需要上报周期性测量上报设置1和半静态测量上报设置2所对应的测量上报参数,则终端优先上报半静态测量上报设置2所对应的测量上报参数。
上述上报规则1-3可以认为是一种时域的上报规则。
上报规则4:全宽带测量上报的测量上报优先级高于子带测量上报的测量上报,即全带宽测量上报优先于子带宽测量上报;例如,当终端根据测量配置可知在第K个子帧需要上报全带宽的信道质量和基于用户选取的子带信道质量,则终端优先上报全带宽的信道质量。其中,全带宽的信道质量和基于用户选取的子带信道质量的测量上报参数可来自于同一个上报设置,也可来自于不同的上报设置。
上报规则5:部分带宽测量上报的测量上报优先级高于子带测量上报的测量上报,即部分带宽测量上报优先于子带测量上报;例如,当终端根据测量配置可知在第K个子帧需要上报部分带宽的信道质量和基于用户选取的子带信道质量,则终端优先上报部分带宽的信道质量。其中,部分的信道质量和基于用户选取的子带信道质量的测量上报参数可来自于同一个上报设置,也可来自于不同的上报设置。
上报规则6:部分测量上报的测量上报优先级高于全带宽测量上报,即部分测量带宽上报优先于全带宽测量上报;例如,当终端根据测量配置可知在第K个子帧需要上报全带宽的信道质量、部分带宽的信道质量,则终端优先上报部分带宽的信道质量。其中,全带宽的信道质量、部分带宽的信道质量测量上报参数可来自于同一个上报设置,也可来自于不同的上报设置。
上述上报规则4-6可以认为是一种频域的上报规则。
上报规则7:第一类测量上报参数优先级高于第二类测量上报参数,即第一类测量上报参数优先于第二类测量上报参数;例如,当终端根据测量配置可知在第K个子帧需要接收波束和RI,则终端优先上报接收波束索引标识。其中,上报测量参数1)、2)、5)为第一类测量上报参数,上报测量参数3)、6)、7)、8)为第二类测量上报参数。
上报规则8:第二类测量上报参数优先级高于第三类测量上报参数,即第二类测量上报参数优先于第三类测量上报参数。例如上报测量参数3)、6)、7)、8)为第二类测量上报参数,上报测量参数4),9),11),12)为第三类测量上报参数。
上报规则7-8可以认为是一种上报内容的上报规则。
上报规则9:包含波束索引指示的上报类型优先于包含RI的上报类型;例如,当终端根据测量配置可知在第K个子帧需要上报测量上报类型1和测量上报类型7,则终端优先上报测量上报类型1。其中,包含波束索引指示的测量上报类型1和包含RI的测量上报类型7的测量上报参数可来自于同一个上报设置,也可来自于不同的上报设置。
上报规则10:包含波束索引指示的上报类型优先于包含PMI的上报类型;例如,当终端根据测量配置可知在第K个子帧需要上报测量上报类型1和测量上报类型7,则终端只上报测量上报类型1。其中,测量上报类型1和测量上报类型7的测量上报参数可 来自于同一个上报设置,也可来自于不同的上报设置。
上报规则11:包含波束索引指示的上报类型优先于包含信道质量的上报类型;例如,当终端根据测量配置可知在第K个子帧需要上报测量上报类型1和测量上报类型2,则终端只上报测量上报类型1。其中,测量上报类型1和测量上报类型2的测量上报参数可来自于同一个上报设置,也可来自于不同的上报设置。
上报规则12:包含RI的上报类型优先于包含PMI的上报类型;例如,当终端根据测量配置可知在第K个子帧需要上报测量上报类型7和测量上报类型8,则终端优先上报测量上报类型7。其中,包含RI的测量上报类型7和包含PMI的测量上报类型8的测量上报参数可来自于同一个上报设置,也可来自于不同的上报设置。
上报规则13:包含PMI的上报类型优先于包含信道质量的上报类型;例如,当终端根据测量配置可知在第K个子帧需要上报测量上报类型8和测量上报类型2,则终端优先上报测量上报类型8。其中,测量上报类型8和测量上报类型2的测量上报参数可来自于同一个上报设置,也可来自于不同的上报设置。
上述上报规则9-13可以认为是一种上报类型的上报规则
基于上报类型的上报规则,当上行资源受限时,即上报资源无法承载某些上报类型的上报开销时,前述上报的上报类型优先级如下,即优先级低且开销大的上报类型可以回退到优先级较高而开销小的上报类型。例如,终端在当前时刻需要上报类型6(波束索引指示、RI和PMI),但上报资源开销不能承载所有上报量的同时上报,则将上报类型6回退到只包含波束索引指示和RI的上报类型5。
作为一种可选的设计,终端可以根据上报设置的配置信息约定多个上报设置(reporting setting)的上报规则。例如,
上报规则14:上报设置标识ID低的上报优先于上报设置标识ID低的测量上报参数;例如,当终端根据测量配置可知在第K个子帧需要上报reporting setting ID1和reporting setting ID2的测量上报参数,则终端只上报reporting setting ID1所对应的测量上报参数。
上报规则15:上报设置对应的服务小区ID低的上报优先于服务小区ID高的测量上报参数;例如,当终端根据测量配置可知在第K个子帧需要上报服务小区ID1和服务小区ID2的测量上报参数,则终端只上报服务小区ID1所对应的测量上报参数。
基于以上多种上报规则,在多种规则同时满足,需要约定多种规则的处理方式:
可选的处理方法一:首先根据用户的上报时域特性处理;如果上报时域特性优先级相同时,根据上报内容处理;如果上报内容优先级相同时,根据上报类型处理;
可选的处理方法二:将各种上报规则进行加权处理,合并后值大的上报优先级高于值小的测量上报参数;例如:优先级值=a*时域特性上报规则+b*频域特性上报规则+c*上报内容上报规则+d*上报类型上报规则+e*配置信息上报规则;其中,a,b,c,d,e>=0,具体取值可由基站配置,也可是协议事先约定;其中,不同的时域特性、不同的频域特性、不同的上报内容、不同的上报类型、不同的配置信息可取相同的值,也可取不同的值,例如,周期性和半静态时域特性为1,非周期性时域特性为2;具体的,假设为用户配置了两个测量上报设置,周期性测量上报设置1包含上报量接收波束索引指识和全带宽信道质量;非周期性测量上报设置2包含全带宽PMI和RI;当这两个上报设置的测量上报参数发生在同一时刻,计算其所对应的优先级值:上报设置1优级级值=a*周期性权值+b*全带宽权 值+c*第一类上报内容权值+d*上报类型3权值;上报设置2优级级值=a*非周期性权值+b*全带宽权值+c*第二类上报内容权值+d*上报类型7权值;如果上报设置1优级级值大于上报设置2优级级值,则终端只上报上报设置1所对应的测量上报参数。如果上报设置2优级级值大于上报设置1优级级值,则终端只上报上报设置2所对应的测量上报参数。
在上述方法中,终端可以按需反馈各个空间资源上的导频的测量结果给基站,便于基站自适应各个空间资源的数据传输调度和空间资源管理,从而提高无线通信系统的性能。另外该方法在实现上简单、优雅(elegant),可以兼容CSI测量上报。
以下对图4中终端侧的方法做一些概括说明。具体内容可以参考上述图4中终端侧执行动作的相关描述。
本申请实施例还提供一种测量上报方法,该方法包括:
终端获取多个测量上报参数的值;所述终端向基站发送所述多个测量上报参数中部分测量上报参数的值,所述部分测量上报参数满足上报规则。
作为一种可选的设计,上述测量上报参数的值可以是通过测量获得,或者可以是通过测量后计算获得。
作为一种可选的设计,上述部分测量上报参数可以是一个,或者可以是多个。
作为一种可选的设计,上述测量上报参数可以包括一个或多个与空间资源有关联的测量上报参数。例如:空分特性。
作为一种可选的设计,该方法还包括:所述终端接收所述上报规则。其中,上报规则可以携带在高层信令,例如RRC(radio resource control,无线资源控制)信令,并发送至终端。
作为一种可选的设计,该上报规则可以是通信标准规定的。
作为一种可选的设计,该方法还包括:所述终端接收上报设置,所述上报设置包括所述多个测量上报参数。上述上报设置可以被携带在测量配置中发送至终端。测量配置可以携带在RRC信令中发送至终端。
作为一种可选的设计,该方法还包括:所述终端接收所述多个测量上报参数关联的上报激活指示。上述激活指示用于激活上报测量上报参数的行为。上报激活指示可以携带在MAC-CE或者DCI中发送至该终端。
作为一种可选的设计,该方法还包括:所述终端向所述基站发送所述终端的上报能力,所述多个测量上报参数与所述终端的上报能力有关联。可以理解,终端具有测量上报上述多个测量上报的能力。
作为一种可选的设计,该方法中所述终端获取多个测量上报参数的值包括:所述终端对所述基站的导频进行测量,获得所述多个测量上报参数的值。
作为一种可选的设计,该方法中所述终端向基站发送所述多个测量上报参数中部分测量上报参数的值,包括:如果发生上报冲突,所述终端向所述基站发送所述部分测量上报参数的值。
以下对图4中基站侧的方法做一些概括说明。具体内容可以参考上述图4中基站侧执行动作的相关描述。
本申请实施例还提供一种测量上报方法。
该方法包括:包括:基站发送导频;所述基站从终端接收与所述导频关联的多个测 量上报参数中部分测量上报参数的值,所述部分测量上报参数满足上报规则。
基站侧方法的各种可选的设计可以参考终端侧的方法,此处不做赘述。
本申请实施例还提供一种通信装置,用于实现图4中终端侧的方法。该通信装置可以是终端或者基带芯片。该终端的结构可以如图2所示。
作为一种可选的设计,该通信装置包括处理器和收发组件。该处理器和收发组件可用于实现上述终端侧的方法中各个部分的功能。在该设计中,如果该通信装置是终端,其收发组件可以是收发机,如果该通信装置是基带芯片,其收发组件可以是基带芯片的输入/输出电路。
作为另一种可选的设计,该通信装置包括处理器。处理器用于运行上述程序以使上述终端侧的方法被实现。可选的,该通信装置还可以包括存储器,该存储器用于存储实现上述终端侧方法的程序。
本申请实施例还提供一种通信装置,用于实现上述基站侧的方法。该通信装置可以是基站,或者基带芯片,或者基带单板。
作为一种可选的设计,该通信装置包括处理器和收发组件。该处理器和收发组件可用于实现上述基站侧的方法中各个部分的功能。在该设计中,如果该通信装置是基站,其收发组件可以是收发机,如果该通信装置是基带芯片或基带单板,其收发组件可以是基带芯片或基带单板的输入/输出电路。
作为另一种可选的设计,该通信装置包括处理器。处理器用于运行上述程序以使得上述基站侧的方法被实现。可选的,该通信装置还可以包括存储器,该存储器用于存储实现上述基站侧方法的程序。
本申请实施例还提供一种计算机程序产品,该程序产品包括程序,当该程序被运行时,使得上述终端侧或者基站侧方法被执行。
本申请实施例还提供一种计算机可读存储介质,其上存储有程序,当其被运行时,使得上述终端侧或者基站侧方法被执行。
本领域技术人员应知,上述不同的可选部分/实现方式等可以根据不同的网络需要进行组合和替换。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述软件功能部分可以存储在存储单元中。所述存储单元包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的部分步骤。所述存储单元包括:一个或多个存储器,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM),电可擦写可编程只读存储器(EEPROM),等等。所述存储单元可以独立存在,也可以和处理器集成在一起。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以理解:本文中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在本申请中,程序也可以被称为计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种测量上报的方法,其特征在于,包括:
    获取多个测量上报参数的值;
    向基站发送所述多个测量上报参数中部分测量上报参数的值,所述部分测量上报参数满足上报规则;
    其中,所述上报规则包括:
    (a)上报设置的标识小的优先于上报设置标识大的;
    (b)服务小区标识小的优先于服务小区标识大的;
    (c)包括波束索引指示的上报类型优先于包括RI的上报类型;
    (d)非周期性测量上报优先于半静态测量上报,或者半静态测量上报优先于周期性测量上报。
  2. 如权利要求1所述的方法,其特征在于,所述包括波束索引指示的上报类型为包括波束索引指示和波束质量的上报类型;
    所述部分测量上报参数满足所述包括波束索引指示和波束质量的上报类型。
  3. 如权利要求1或2所述的方法,其特征在于,所述部分测量上报参数属于第一测量上报设置,所述多个测量上报参数中除所述部分测量上报参数以外的测量上报参数属于第二测量上报设置;
    所述方法还包括:
    对所述上报规则进行加权以及合并处理,获取所述第一测量上报设置的优先级和所述第二测量上报设置的优先级;其中,所述第一测量上报设置的优先级高于所述第二测量上报设置的优先级。
  4. 如权利要求1-3任一所述的方法,其特征在于,还包括:
    接收所述第一测量上报设置和所述第二测量上报设置。
  5. 如权利要求1-4任一所述的方法,其特征在于,还包括:
    接收所述多个测量上报参数关联的上报激活指示。
  6. 如权利要求1-5任一所述的方法,其特征在于,还包括:
    所述基站发送所述终端的上报能力,所述多个测量上报参数与所述终端的上报能力有关联。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述获取多个测量上报参数的值包括:
    对所述基站的导频进行测量,获得所述多个测量上报参数的值。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述向基站发送所述多个测量上报参数中部分测量上报参数的值,包括:
    如果发生上报冲突,向所述基站发送所述部分测量上报参数的值。
  9. 一种测量上报的方法,其特征在于,包括:
    发送导频;
    从终端接收与所述导频关联的多个测量上报参数中部分测量上报参数的值,所述部分测量上报参数满足上报规则;
    其中,所述上报规则包括:
    (a)上报设置的标识小的优先于上报设置标识大的;
    (b)服务小区标识小的优先于服务小区标识大的;
    (c)包括波束索引指示的上报类型优先于包括RI的上报类型;
    (d)非周期性测量上报优先于半静态测量上报,或者半静态测量上报优先于周期性测量上报。
  10. 如权利要求9所述的方法,其特征在于,所述包括波束索引指示的上报类型为包括波束索引指示和波束质量的上报类型;
    所述部分测量上报参数满足所述包括波束索引指示和波束质量的上报类型。
  11. 如权利要求9或10所述的方法,其特征在于,所述部分测量上报参数属于第一测量上报设置,所述多个测量上报参数中除所述部分测量上报参数以外的测量上报参数属于第二测量上报设置;
    其中,所述第一测量上报设置的优先级高于所述第二测量上报设置的优先级,所述第一测量上报设置的优先级和所述第二测量上报设置的优先级是基于对所述上报规则进行加权以及合并处理获得的。
  12. 如权利要求9-11任一所述的方法,其特征在于,还包括:
    向所述终端发送所述第一测量上报设置和所述第二测量上报设置。
  13. 如权利要求9-12任一所述的方法,其特征在于,还包括:
    向所述终端发送所述多个测量上报参数关联的上报激活指示。
  14. 如权利要求9-13任一所述的方法,其特征在于,还包括:
    接收所述终端的上报能力,所述多个测量上报参数与所述终端的上报能力有关联。
  15. 一种通信装置,其特征在于,包括:处理器和接口组件;
    所述处理器用于通过接口组件读取并执行存储器中的指令,以实现如权1-8任一所述的方法。
  16. 如权利要求15所述的通信装置,其特征在于,还包括:
    所述存储器。
  17. 一种通信装置,其特征在于,包括:处理器和接口组件;
    所述处理器用于通过接口组件读取并执行存储器中的指令,以实现如权9-14任一所述的方法。
  18. 如权利要求17所述的通信装置,其特征在于,还包括:
    所述存储器。
  19. 一种计算机可读存储介质,包括指令,当其在通信装置上运行时,使得所述通信装置执行如权1-8任一所述的方法。
  20. 一种计算机可读存储介质,包括指令,当其在通信装置上运行时,使得所述通信装置执行如权9-14任一所述的方法。
  21. 一种计算机程序产品,包括指令,当其在通信装置上运行时,使得所述通信装置执行如权1-8任一所述的方法。
  22. 一种计算机程序产品,包括指令,当其在通信装置上运行时,使得所述通信装置执行如权9-14任一所述的方法。
PCT/CN2018/085758 2017-05-05 2018-05-05 一种测量上报的方法和装置 WO2018202191A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112019023213-3A BR112019023213A2 (pt) 2017-05-05 2018-05-05 Método e aparelho de relatório de medição, meio de armazenamento legível por computador, e produto de programa de computador
EP18794673.6A EP3618491B1 (en) 2017-05-05 2018-05-05 Reporting measurement method and apparatus
US16/671,712 US11134406B2 (en) 2017-05-05 2019-11-01 Measurement reporting method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710314213.5 2017-05-05
CN201710314213.5A CN108810967B (zh) 2017-05-05 2017-05-05 一种测量上报的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/671,712 Continuation US11134406B2 (en) 2017-05-05 2019-11-01 Measurement reporting method and apparatus

Publications (1)

Publication Number Publication Date
WO2018202191A1 true WO2018202191A1 (zh) 2018-11-08

Family

ID=64016806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085758 WO2018202191A1 (zh) 2017-05-05 2018-05-05 一种测量上报的方法和装置

Country Status (5)

Country Link
US (1) US11134406B2 (zh)
EP (1) EP3618491B1 (zh)
CN (1) CN108810967B (zh)
BR (1) BR112019023213A2 (zh)
WO (1) WO2018202191A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164626A1 (en) 2019-02-15 2020-08-20 Qualcomm Incorporated Partial-bandwidth feedback for beam combination codebook
CN113766525A (zh) * 2020-06-04 2021-12-07 中国移动通信集团吉林有限公司 一种波束扫描方法、装置、存储介质和基站

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391344B (zh) 2017-08-03 2021-04-23 维沃移动通信有限公司 上报信息的传输方法、用户侧设备和网络侧设备
CN109803310A (zh) 2017-11-17 2019-05-24 华为技术有限公司 信道质量信息传输方法、装置及系统、存储介质
CN110913477B (zh) * 2018-09-14 2023-01-06 成都华为技术有限公司 管理资源的方法和通信装置
WO2020097813A1 (zh) * 2018-11-14 2020-05-22 华为技术有限公司 一种移动性测量的方法、装置和系统
CN111355627B (zh) * 2018-12-24 2022-08-26 成都华为技术有限公司 资源上报的方法及装置
CN111436095B (zh) * 2019-01-11 2024-04-16 华为技术有限公司 一种通信方法及通信装置
CN111294145B (zh) * 2019-03-29 2022-09-27 北京紫光展锐通信技术有限公司 Csi反馈参数的上报方法及装置、存储介质、终端
WO2020248101A1 (zh) * 2019-06-10 2020-12-17 Oppo广东移动通信有限公司 上报csi的方法和终端设备
CN112398603B (zh) * 2019-08-13 2022-05-27 大唐移动通信设备有限公司 波束调度方法、装置、设备及存储介质
CN110805181A (zh) * 2019-10-18 2020-02-18 西安中易建科技有限公司 5g小基站幕墙模组、小基站群幕墙系统
CN113365301A (zh) * 2020-03-04 2021-09-07 华为技术有限公司 一种测量方法及装置
US11533733B2 (en) * 2020-04-28 2022-12-20 Qualcomm Incorporated Payload multiplexing with orthogonal sequences
CN113573353A (zh) * 2020-04-29 2021-10-29 维沃移动通信有限公司 波束报告上报方法、终端设备和网络设备
CN113973330A (zh) * 2020-07-24 2022-01-25 中国移动通信有限公司研究院 测量或上报方法、配置方法、装置、终端及网络侧设备
US20220078656A1 (en) * 2020-09-09 2022-03-10 Qualcomm Incorporated Resource set configuration reporting with multiple channel and interference measurements
US11678317B2 (en) * 2021-02-24 2023-06-13 Qualcomm Incorporated Subband-based measurement reporting
CN117242817A (zh) * 2021-05-12 2023-12-15 中兴通讯股份有限公司 利用针对测量任务的优先级指示来配置ue的方法、设备和系统
CN115484554B (zh) * 2021-06-15 2024-05-17 普天信息技术有限公司 正交频分复用系统的用户设备能力上报方法及装置
CN113678495A (zh) * 2021-07-14 2021-11-19 北京小米移动软件有限公司 波束测量上报激活方法及装置
CN116506867A (zh) * 2022-01-19 2023-07-28 华为技术有限公司 一种测量上报方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997195A (zh) * 2006-01-06 2007-07-11 中兴通讯股份有限公司 蜂窝式移动通讯系统及该系统专用测量报告处理方法
CN101321373A (zh) * 2007-06-07 2008-12-10 华为技术有限公司 最小信道码需求的测量上报、负载控制方法及装置
CN101534518A (zh) * 2008-03-10 2009-09-16 华为技术有限公司 一种测量信息的上报方法、系统和装置
CN102595476A (zh) * 2011-01-10 2012-07-18 华为技术有限公司 上报信道状态信息的方法和装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772063A (zh) * 2008-12-26 2010-07-07 华为技术有限公司 上报测量报告的方法、终端设备、网络设备和通信系统
CN101931961A (zh) * 2009-06-23 2010-12-29 华为技术有限公司 实现中继系统回程链路控制信道传输的方法、系统和设备
US9119101B2 (en) * 2010-12-17 2015-08-25 Samsung Electronics Co., Ltd. Apparatus and method for periodic channel state reporting in a wireless network
US8817647B2 (en) 2011-02-15 2014-08-26 Mediatek Inc. Priority rules of periodic CSI reporting in carrier aggregation
US9119102B2 (en) * 2011-04-04 2015-08-25 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node and method for using positioning gap indication for enhancing positioning performance
CN102223666A (zh) * 2011-06-03 2011-10-19 电信科学技术研究院 一种基于优先级的测量上报方法和设备
KR101647007B1 (ko) * 2012-06-04 2016-08-10 인터디지탈 패튼 홀딩스, 인크 다중 전송 포인트의 통신 채널 상태 정보(csi)
WO2014047832A1 (zh) * 2012-09-27 2014-04-03 华为技术有限公司 测量报告处理方法、基站及用户设备
KR102049772B1 (ko) * 2013-01-15 2019-11-28 삼성전자 주식회사 빔포밍 시스템에서 신호 측정 방법 및 장치
CN103825663B (zh) * 2014-02-21 2016-04-20 电信科学技术研究院 信道状态信息测量方法以及装置
CN105099603B (zh) * 2014-04-28 2020-07-10 北京三星通信技术研究有限公司 一种信道状态信息的汇报方法及装置
US20150327106A1 (en) * 2014-05-06 2015-11-12 Acer Incorporated Method of Handling Channel Status Information and Related Communication Device
CN105472651A (zh) * 2014-08-06 2016-04-06 夏普株式会社 基站、用户设备及相关方法
US20180007667A1 (en) * 2015-01-29 2018-01-04 Lg Electronics Inc. Signal receiving method and user equipment, and signal receiving method and base station
ES2947835T3 (es) * 2015-01-30 2023-08-21 Ericsson Telefon Ab L M Comunicación de datos de control en una red de comunicación inalámbrica
US10425921B2 (en) * 2015-04-01 2019-09-24 Acer Incorporated Method of uplink control information transmission
US11641255B2 (en) * 2015-04-05 2023-05-02 Comcast Cable Communications, Llc Uplink control information transmission in a wireless network
KR20160120250A (ko) * 2015-04-07 2016-10-17 삼성전자주식회사 빔 포밍을 이용하는 무선 통신 시스템에서 핸드오버 방법 및 장치
CN112187432A (zh) * 2015-05-14 2021-01-05 北京三星通信技术研究有限公司 传输上行控制信息的方法和设备
US10211964B2 (en) 2015-07-29 2019-02-19 Samsung Electronics Co., Ltd. Method and apparatus for CSI reporting
US10182467B2 (en) * 2015-08-06 2019-01-15 Innovative Technology Lab Co., Ltd. Apparatus and method for transmitting uplink control information through a physical uplink control channel
US10623147B2 (en) * 2015-12-18 2020-04-14 Lg Electronics Inc. Method for transmitting uplink control information and user apparatus for carrying out same
WO2017138750A1 (en) * 2016-02-12 2017-08-17 Samsung Electronics Co., Ltd. Method and apparatus for channel status information feedback in mobile communication system
US10951290B2 (en) * 2017-10-26 2021-03-16 Apple Inc. Channel state information report for phase tracking reference signal port selection
CA3028778A1 (en) * 2017-12-29 2019-06-29 Comcast Cable Communications, Llc Selection of grant and csi
US10834777B2 (en) * 2018-01-11 2020-11-10 Ofinnon, LLC Discontinuous reception and CSI
JP7421640B2 (ja) * 2019-09-30 2024-01-24 コムキャスト ケーブル コミュニケーションズ, エルエルシー 通信チャネル障害検出および復旧
US11910430B2 (en) * 2019-10-07 2024-02-20 Qualcomm Incorporated Collision resolution for channel state information reporting on a physical uplink control channel
US11558773B2 (en) * 2019-11-07 2023-01-17 Ofinno, Llc Sidelink scheduling request in a wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997195A (zh) * 2006-01-06 2007-07-11 中兴通讯股份有限公司 蜂窝式移动通讯系统及该系统专用测量报告处理方法
CN101321373A (zh) * 2007-06-07 2008-12-10 华为技术有限公司 最小信道码需求的测量上报、负载控制方法及装置
CN101534518A (zh) * 2008-03-10 2009-09-16 华为技术有限公司 一种测量信息的上报方法、系统和装置
CN102595476A (zh) * 2011-01-10 2012-07-18 华为技术有限公司 上报信道状态信息的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618491A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164626A1 (en) 2019-02-15 2020-08-20 Qualcomm Incorporated Partial-bandwidth feedback for beam combination codebook
CN113454923A (zh) * 2019-02-15 2021-09-28 高通股份有限公司 用于波束组合码本的部分带宽反馈
EP3925091A4 (en) * 2019-02-15 2022-11-02 Qualcomm Incorporated PARTIAL BANDWIDTH FEEDBACK FOR BEAM COMBINATION CODE BOOK
US11595097B2 (en) * 2019-02-15 2023-02-28 Qualcomm Incorporated Partial-bandwidth feedback for beam combination codebook
CN113766525A (zh) * 2020-06-04 2021-12-07 中国移动通信集团吉林有限公司 一种波束扫描方法、装置、存储介质和基站
CN113766525B (zh) * 2020-06-04 2023-09-19 中国移动通信集团吉林有限公司 一种波束扫描方法、装置、存储介质和基站

Also Published As

Publication number Publication date
EP3618491A1 (en) 2020-03-04
CN108810967A (zh) 2018-11-13
EP3618491A4 (en) 2020-03-25
EP3618491B1 (en) 2021-08-11
CN108810967B (zh) 2023-12-12
BR112019023213A2 (pt) 2020-05-26
US11134406B2 (en) 2021-09-28
US20200068422A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2018202191A1 (zh) 一种测量上报的方法和装置
JP7321707B2 (ja) 方法、システムおよび装置
WO2018141272A1 (zh) 终端、网络设备和通信方法
EP3515107B1 (en) Measurement and reporting method, and terminal and base station
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
CN109890079A (zh) 一种资源配置方法及其装置
WO2020248779A1 (zh) 更新传输配置指示tci信息的方法与通信装置
WO2018095305A1 (zh) 一种波束训练方法及装置
CN111586858A (zh) 信号传输方法和通信装置
WO2018202137A1 (zh) 一种通信方法及装置
WO2016082224A1 (zh) 一种资源配置的方法、用户设备及基站
WO2020029293A1 (zh) 无线通信方法、用户设备和基站
WO2022001241A1 (zh) 一种波束管理方法及装置
US20230024879A1 (en) Indication information transmission method and communication device
CN108282807B (zh) 信道质量信息的测量、选择和上报方法及装置
JP2024500395A (ja) より高いランクの送信をサポートするためのタイプiiポート選択コードブックを拡張する方法
CN109478918A (zh) 波束失败报告发送方法、接收方法、用户设备和网络设备
US20230189038A1 (en) Acquisition and reporting of channel measurements and interference measurements
CN111435846B (zh) 一种信道状态信息上报方法、终端和网络侧设备
US20220295297A1 (en) Methods and apparatuses for time-domain beam-sweeping
CN113711522A (zh) 速率匹配模式的有效信令
WO2022249821A1 (ja) 通信制御方法、無線端末、及び基地局
WO2022249820A1 (ja) 通信制御方法、無線端末、基地局、及びris装置
EP3869897B1 (en) Methods and apparatus of spatial relation switching in new radio system
CN114616864B (zh) 一种上行传输的方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019023213

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018794673

Country of ref document: EP

Effective date: 20191125

ENP Entry into the national phase

Ref document number: 112019023213

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191105