WO2020029293A1 - 无线通信方法、用户设备和基站 - Google Patents

无线通信方法、用户设备和基站 Download PDF

Info

Publication number
WO2020029293A1
WO2020029293A1 PCT/CN2018/100081 CN2018100081W WO2020029293A1 WO 2020029293 A1 WO2020029293 A1 WO 2020029293A1 CN 2018100081 W CN2018100081 W CN 2018100081W WO 2020029293 A1 WO2020029293 A1 WO 2020029293A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
base station
transmission
configuration information
Prior art date
Application number
PCT/CN2018/100081
Other languages
English (en)
French (fr)
Inventor
王静
侯晓林
王新
松村佑辉
永田聪
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN201880096554.2A priority Critical patent/CN112567793A/zh
Priority to US17/267,372 priority patent/US11757586B2/en
Priority to PCT/CN2018/100081 priority patent/WO2020029293A1/zh
Publication of WO2020029293A1 publication Critical patent/WO2020029293A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • H04L1/0081Formats specially adapted to avoid errors in the feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover

Definitions

  • the present application relates to the field of wireless communication, and in particular, to a wireless communication method, user equipment, and base station that can be used in a wireless communication system.
  • each transceiver board can respectively carry one or more transceiver units (TXRUs) to send and receive information, and each transceiver unit also has One or more beams can be formed.
  • TXRUs transceiver units
  • a wireless communication method which is executed by user equipment and includes: receiving beam configuration information sent by a base station by using at least one transmit beam group, where the beam configuration information includes an identifier of at least one transmit beam group and At least one measurement configuration information of the beam group is transmitted; and feedback information about channel quality is fed back according to the beam configuration information.
  • a wireless communication method which is executed by a base station and includes: using at least one transmit beam group to transmit beam configuration information, the beam configuration information includes at least one transmit beam group identifier and at least one transmit Measurement configuration information of a beam group; receiving feedback information about channel quality fed back by the user equipment according to the beam configuration information.
  • a wireless communication method which is executed by user equipment and includes: receiving information about a sending unit sent by a base station, the information about the sending unit indicating an identifier of at least one sending unit and the Configuration information of reference signals possessed by at least one sending unit; selecting one or more reference signals in the at least one sending unit according to the information about the sending unit, and feeding back reference signal selection information indicating a user equipment selection result .
  • a wireless communication method which is executed by a user equipment and includes: receiving feedback indication information sent by a base station, and selecting one or more of at least one receiving unit with the user equipment according to the feedback instruction information. Reference signals corresponding to the two received beams; sending reference signal selection information, the reference signal selection information indicating a reference signal selected by the user equipment.
  • a user equipment including: a receiving unit configured to receive beam configuration information sent by a base station by using at least one transmit beam group, where the beam configuration information includes an identifier of at least one transmit beam group and At least one measurement configuration information of the beam group is transmitted; and a feedback unit is configured to feed back feedback information on channel quality according to the beam configuration information.
  • a base station including: a sending unit configured to send beam configuration information by using at least one transmit beam group, where the beam configuration information includes an identifier of at least one transmit beam group and at least one transmit beam Group measurement configuration information; a receiving unit configured to receive feedback information about channel quality fed back by the user equipment according to the beam configuration information.
  • the base station can use different transmission beams to transmit the corresponding reference signals, the transmission beams can be used equivalently to the reference signals. Therefore, in the following, a transmission beam and a reference signal and a transmission beam group and a reference signal group are used interchangeably.
  • FIG. 1 shows a schematic diagram of a wireless communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of beam transmission of a base station and a user equipment in an embodiment of the present invention
  • FIG. 3 illustrates an example of a beam selection method according to an embodiment of the present invention
  • FIG. 4 (a) shows a schematic diagram of transmitting beam / receiving beam polling
  • FIG. 4 (b) shows determining a transmitting beam group and / or based on the transmitting / receiving beam pair determined in FIG. 4 (a).
  • Fig. 5 (a) shows a schematic diagram of transmitting beam / receiving beam polling separately
  • Fig. 5 (b) shows determining a transmitting beam group of a base station and / or a receiving beam group of a UE based on Fig. 5 (a) Schematic diagram
  • FIG. 6 (a) illustrates a schematic diagram of transmitting beam / receiving beam polling separately
  • FIG. 6 (b) illustrates a schematic diagram of determining a transmitting beam group of a base station and / or a receiving beam group of a UE;
  • FIG. 7 (a) shows a schematic diagram of determining a transmission beam on a first transmission unit of a base station
  • FIG. 7 (b) shows a schematic diagram of determining a transmission beam on a second transmission unit of a base station
  • FIG. 8 (a) shows a schematic diagram of receiving beam polling on each receiving unit of the UE
  • FIG. 8 (b) shows a schematic diagram of transmitting beam polling on each transmitting unit of the base station
  • FIG. 8 (c ) Shows a schematic diagram of polling all transmission beams among one or more transmission beams on a certain transmission unit of the base station 10
  • FIG. 8 (d) shows one or more of a reception unit of a UE Schematic diagram of polling of all receiving beams in the receiving beam;
  • FIG. 9 (a) shows a schematic diagram of receiving beam polling on each receiving unit of the UE
  • FIG. 9 (b) shows a schematic diagram of transmitting beam polling on each transmitting unit of the base station
  • FIG. 9 (c ) Shows a schematic diagram of polling each pair of transmit / receive beam pairs to determine a first transmit / receive beam pair
  • FIG. 9 (d) shows a schematic diagram of determining a second transmit / receive beam pair
  • FIG. 10 shows a flowchart of a wireless communication method according to an embodiment of the present invention
  • FIG. 11 shows a specific content example of CSI resource configuration
  • FIG. 12 (a) shows a schematic diagram of repeated instruction information according to an embodiment of the present invention
  • FIG. 12 (b) shows a schematic diagram of repeated instruction information according to another embodiment of the present invention
  • FIG. 13 (a) illustrates a schematic diagram of repeated instruction information according to an embodiment of the present invention
  • FIG. 13 (b) illustrates a schematic diagram of repeated instruction information according to another embodiment of the present invention
  • FIG. 14 (a) shows an example of intensity measurement of CSI-RS
  • Fig. 14 (b) shows another example of intensity measurement of CSI-RS
  • Fig. 14 (c) shows an example of intensity measurement of SSB.
  • An example, FIG. 14 (d) shows another example of intensity measurement of SSB;
  • FIG. 15 (a) shows an example of reference signal strength and interference strength measurement on the CSI-RS
  • FIG. 15 (b) shows another example of reference signal strength and interference strength measurement on the CSI-RS
  • FIG. 15 ( c) shows another example of reference signal strength and interference strength measurement for CSI-RS
  • FIG. 15 (d) shows an example of reference signal strength and interference strength measurement for SSB;
  • FIG. 16 (a) shows an example of reference signal strength and received signal strength indication measurement for CSI-RS
  • FIG. 16 (b) shows another example of reference signal strength and received signal strength indication measurement for CSI-RS
  • FIG. 16 (c) shows another example of reference signal strength and received signal strength indication measurement for CSI-RS
  • FIG. 16 (d) shows an example of reference signal strength and received signal strength indication measurement for SSB;
  • Fig. 17 (a) shows a schematic diagram of the selected transmission beams by the base station
  • Fig. 17 (b) shows an example of the base station using the selected transmission beam group to transmit the beam configuration information
  • Fig. 17 (c) shows that the base station respectively uses the selected transmission beams.
  • FIG. 18 An example of the set report type parameters is shown in FIG. 18;
  • Figure 19 shows an example of redefined parameters
  • FIG. 20 (a) shows a schematic diagram of a selected transmission beam by the base station
  • FIG. 20 (b) shows an example of the base station using the selected transmission beam group to transmit beam configuration information
  • FIG. 21 (a) shows a measurement result diagram corresponding to different receiving beams obtained by the UE
  • FIG. 21 (b) shows a schematic diagram of a transmission beam selected by a base station
  • FIG. 21 (c) shows that the base station uses the selected transmission beam group, respectively
  • FIG. 23 is a structural block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 24 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 25 is a diagram illustrating an example of a hardware configuration of a user equipment and a base station according to an embodiment of the present invention.
  • the wireless communication system may include a base station 10 and a user equipment (UE) 20.
  • the UE 20 can communicate with the base station 10. It should be recognized that although a base station and a UE are shown in FIG. 1, this is only schematic, and the wireless communication system may include one or more base stations and one or more UEs.
  • FIG. 2 shows a beam transmission diagram of a base station and a user equipment according to an embodiment of the present invention.
  • the base station 10 may have one or more transmit / receive units (TXRU) (two are shown in FIG. 2), and each TXRU may include one or more directional antennas, and accordingly may have one or more transmit beams, each directional The antenna corresponds to one transmission beam, so that the base station can use one or more transmission beams to send signals to the UE.
  • TXRU of the base station 10 may be simply referred to as a transmitting unit.
  • the UE 20 may also have one or more TXRUs (two are shown in FIG.
  • each TXRU may also include one or more directional antennas, and accordingly have one or more receiving beams, so that the UE can use one
  • the one or more receiving beams receive information transmitted by the base station using one or more beams.
  • the TXRU of the UE 20 may be simply referred to as a receiving unit, for example.
  • One or more receive beams of the UE 20 may correspond to one or more transmit beams of the base station 10, so that the UE 20 may use the one or more receive beams to correspond to one or more transmit beams of the corresponding base station 10. Transfer information. It should be noted that although the transmission unit of the base station mentioned above corresponds to TXRU, this is not restrictive.
  • the transmission unit of the base station 10 may correspond to the base station (including the transmit and receive point (TRP)), the transceiver board of the base station, TXRU on the transceiver board of the base station, radio frequency filter of the base station or spatial filter of the base station.
  • TRP transmit and receive point
  • the receiving unit of the UE mentioned above corresponds to TXRU, this is not restrictive, and the receiving unit of UE20 may also correspond to the UE, the transceiver board of the UE, the TXRU of the UE transceiver board, and the UE's RF filter or UE spatial filter.
  • one or more transmission beams on one or more transmission units of the base station 10 to form a transmission beam group, and / or select one or more reception units on the UE 20 respectively.
  • Multiple beam / beam group selection methods can be used to select the transmit beam / receive beam.
  • An example of a beam selection method according to an embodiment of the present invention will be described below with reference to FIGS. 3 to 9.
  • the beam may be selected by an exhaustive search method on the beam.
  • each transmitting unit of the base station 10 and each receiving unit of the UE 20 may sequentially select a transmitting beam and a receiving beam, respectively, and the base station sends the reference signal to the UE using the selected transmitting beam, and the UE uses the selected receiving
  • the beam receives the reference signal, and then, according to preset conditions (for example, according to the reception quality of the reference signal), a transmission beam is selected from the transmission beams of each transmission unit of the base station 10 to form a transmission beam group of the base station 10, and from the UE's
  • a receiving beam is selected from the receiving beams of each receiving unit to form a receiving beam group of the UE 20.
  • FIG. 3 shows an example of this beam selection method.
  • the base station 10 has two transmitting units, and the UE 20 has two receiving units, each transmitting unit has eight transmitting beams, and each receiving unit has eight receiving beams.
  • the transmitting unit / transmitting beam and receiving unit / receiving beam may be other numbers, such as one or more, and may be different from each other. You can select one transmit beam (as shown by the shaded part) on the two transmitting units of the base station 10 to send information (such as a reference signal), and one receive beam (as the shaded part) on the two receiving units of the UE 20 (Shown) to receive the information sent by the base station 10 to obtain parameters (in this example, channel quality measurement results) under this transmission condition.
  • the transmission beam on one or two transmission units or the reception beam on one or two reception units can be replaced, the reference signal can be transmitted using the replaced transmission beam, or the reference signal can be received using the replaced reception beam, and again Obtain the corresponding channel quality measurement results. And so on.
  • one transmission beam of each transmission unit of the base station 10 and UE 20 can be determined according to the obtained channel quality measurement results.
  • One receiving beam of each receiving unit forms a transmitting beam group and a receiving beam group.
  • the beam may be selected by a pair-wise search method for the beam.
  • Figure 4 shows an example of this method. This example may be the beam selection method described in C. Capar et al, "Efficient Beam Selection for Hybrid Beamforming", IEEE doc: 802.11-15 / 1131r0. In this example, it is assumed that the base station has 2 transmit beams and the UE has 2 receive beams.
  • FIG. 4 (a) shows that each transmitting unit of the base station 10 and each receiving unit of the UE 20 perform polling / receiving beam polling to determine a transmitting beam of each transmitting unit of the base station 10 and One receive beam-forming transmit / receive beam pair on each receiving unit; FIG.
  • a first transmitting unit and a first receiving unit of the UE 20 may sequentially select a transmitting beam and a receiving beam as the transmitting / receiving beam pair for information (for example, (Reference signal) transmission and reception, in the first transmitting unit of the base station 10 and the second receiving unit of the UE 20, sequentially select a transmit beam and a receive beam as transmit / receive beam pairs to transmit and receive information (such as reference signals), and the base station 10
  • the second transmitting unit and the first receiving unit of the UE 20 respectively select a transmitting beam and a receiving beam as the transmitting / receiving beam pair to transmit and receive information (for example, reference signals), and the second transmitting unit and the UE of the base station 10
  • one transmit beam and one receive beam are sequentially selected as transmit / receive beam pairs to transmit and
  • the selected transmission / reception beam pair includes one transmission beam of the first transmission unit and one reception beam of the second reception unit (as shown by the black part in FIG. 4 (b)). Subsequently, as shown in FIG. 4 (b), the selected beam of the first transmitting unit of the fixed base station 10 and the selected beam of the second receiving unit of the UE 20 sequentially use the remaining transmitting units (second transmitting units) of the base station 10.
  • Each transmitting beam transmits a reference signal to each of the remaining receiving units (first receiving units) of the UE 20, and determines, according to, for example, the received signal quality, one beam of the second transmitting unit and one of the first receiving unit Beam, thereby determining the selected transmission beam of the first transmission unit and the determined transmission beam of the second transmission unit as the transmission beam group of the base station 10, and the selected reception beam of the second reception unit and the first transmission beam group
  • the determined receiving beam of the receiving unit is determined as a receiving beam group of the UE 20.
  • the beam may be selected by performing a dominant search on the beam.
  • FIG. 5 shows an example of this beam selection method. As shown in FIG. 5 (a), in a similar manner to FIG. 4 (a), by polling, for each transmitting unit of the base station, one or more transmitting beams are selected, and for each receiving unit of the UE, selecting One or more receive beams. Then, as shown in FIG. 5 (b), polling is performed on the selected one or more transmission beams of each transmission unit of the base station 10 and the selected one or more reception beams of each reception unit of the UE 20.
  • each reference beam is used to transmit a reference signal in turn, and each reference beam is used to receive the reference signal, and then according to the received signal quality, a transmission beam is determined for each transmission unit, and a reception is determined for each reception unit. Beam. Thereby, a transmission beam group is determined for each transmission unit of the base station 10, and a reception beam group is determined for each reception unit of the UE 20.
  • the beam selection may be performed according to the K-best beam selection (K-best beam selection) method shown in FIG. 6.
  • the method shown in Fig. 6 is described in F. Felhauer et al., "Low complexity training, for hybrid forming", IEEE doc: 802.11-16 / 0316r0, and will not be described in detail here.
  • FIG. 6 (a) shows that each transmitting unit of the base station 10 and each receiving unit of the UE 20 perform polling / receiving beam polling separately to each transmitting unit of the base station 10 and the UE 20 All transmit beams / receive beams on each receiving unit are sorted (for example, they can be sorted according to the channel status).
  • FIG. 6 (b) shows that according to FIG. 6 (a) All transmitting beam / receiving beam sequencing results on each transmitting unit of the base station 10 and each receiving unit of the UE 20, determine k transmission beams including one of each transmitting unit of the base station 10 and each receiving unit of the UE 20 A beam set of one of the reception beams is determined from the k beam sets, and a transmission beam group of the base station 10 and / or a reception beam group of the UE 20 are determined.
  • the beam may be selected according to the linear selection method shown in FIG. 7.
  • the method shown in Figure 7 is described in S. Rahman and K. Josiam, "Low Complement Lexity RF Beam Search Algorithms for millimeter-wave systems", Proc. IEEE Global Global Telecom.Conf. (GLOBECOM), pp. 3815-3820, 2014 and S. Rahman, Methods for linear, RF, and search in millimeter wave communication system with hybrid forming, US Patent No. 20140341310A1 [p], connecting20 are not described in detail here. Briefly, as shown in FIG.
  • each transmission unit of the base station 10 can be determined to form a transmission beam group
  • one reception beam of each reception unit of the UE 20 can be determined to form a reception beam group.
  • beam selection may be performed according to the method shown in FIG. 8.
  • Fig. 8 (a) shows that receiving beam polling is performed on each receiving unit of the UE 20, and
  • Fig. 8 (b) shows that transmitting beam polling is performed on each transmitting unit of the base station 10, thereby determining the UE 20's One or more receiving beams of each receiving unit and one or more transmitting beams of each transmitting unit of the base station 10.
  • the corresponding reception unit of the UE 20 can maintain an omnidirectional beam, and vice versa.
  • FIG. 8 (c) shows that according to the determined one or more receiving beams of each receiving unit of the UE 20 and one or more transmitting beams of each transmitting unit of the base station 10, a certain transmitting unit of the base station 10 All of the one or more transmission beams on the poll are polled to determine one of the one or more transmission beams.
  • the transmission beams of the other transmitting units of the base station 10 and the receiving beams of each receiving unit of the UE 20 are fixed (can be fixed randomly or can be fixed according to the previous polling process (Determined transmit beam / receive beam).
  • the beam can be selected according to the method shown in FIG. 9.
  • FIG. 9 (a) shows that receiving beam polling is performed on each receiving unit of the UE 20, and
  • FIG. 9 (b) shows that A transmission beam poll is performed on each transmission unit of 10, so as to determine one or more reception beams of each reception unit of the UE 20 and one or more transmission beams of each transmission unit of the base station 10, respectively.
  • the corresponding reception unit of the UE 20 may maintain an omnidirectional beam, and vice versa.
  • FIG. 9 (c) shows each of the one or more receiving beams of each receiving unit of the UE 20 and the one or more transmitting beams of each transmitting unit of the base station 10, respectively.
  • Each transmit / receive beam pair formed by the transmit beam is polled to determine the first transmit / receive beam pair, as shown in the shaded part in FIG. 9 (c).
  • FIG. 9 (d) shows that the first transmit / receive beam is divided by one or more receive beams of each receiving unit of the UE 20 and one or more transmit beams of each transmitting unit of the base station 10.
  • Each transmit / receive beam pair formed by the beams is polled to determine a second transmit / receive beam pair, as shown by the shaded parts at both ends of the line in FIG. 9 (d).
  • the first transmit / receive beam pair can be kept fixed.
  • the wireless communication method, user equipment, and base station according to the embodiments of the present invention may use the foregoing beam selection methods shown in FIGS. 3 to 9 to select a beam and construct a beam group, and use the beam / beam group to perform information interaction. Corresponding beam group identifiers can be assigned to each constructed beam group.
  • each of the beam selection methods listed in the foregoing FIG. 3 to FIG. 9 is merely an example.
  • the wireless communication method, user equipment, and base station according to the embodiments of the present invention may be applicable to any method including one or more transmissions.
  • any beam selection method adopted by this wireless communication system can be used.
  • FIG. 10 shows a flowchart of a wireless communication method 1000 according to an embodiment of the present invention. The method may be executed by a user equipment.
  • the receiving base station sends beam configuration information using at least one transmit beam group, where the beam configuration information includes an identifier of the at least one transmit beam group and measurement configuration information of the at least one transmit beam group.
  • the reference signal can be transmitted through different transmission beams, the reference signal can be used to represent the transmission beam. If the same reference signal is transmitted with different transmission beams, it can be described as transmitting a reference signal with different spatial filters. If the same reference signal is transmitted with the same transmission beam, it can be described as transmitting a reference signal with the same spatial filter.
  • the reference signal may be considered to be transmitted using a different transmission beam, that is, the reference signal may represent a transmission beam. Therefore, the transmission beams described above and here can be replaced with reference signals, and the transmission beam group can be replaced with reference signal groups. Accordingly, the remaining terms related to the transmission beam can also be replaced with terms related to the reference signal. . In the following, for convenience of description, embodiments of the present invention are still described using a transmission beam and a transmission beam group.
  • the base station may select one or more transmission beam groups from at least one transmission beam group, and transmit beam configuration information including the transmission beam group identifier and measurement configuration information through the selected transmission beam group.
  • the at least one transmission beam group may be one or more transmission beam groups constructed by the beam selection method described above.
  • the UE may receive beam configuration information sent by the base station by using at least one transmit beam group.
  • FIG. 11 shows a specific content example of CSI resource configuration according to the 3GPP standard TS 38.311.
  • the information element CSI-ReportConfig may include multiple CSI-ResourceConfigIds, where resourceForChannelMeasurement for channel measurement may be indicated by CSI-ResourceConfigId to indicate the first layer (L1) reference for channel measurement Signal (RS) configuration.
  • the CSI-ResourceConfigId may further include CSI-ResourceConfig, and includes a channel state information reference signal (CSI-RS) resource and / or a synchronization signal block (SSB) measurement configuration information such as resources.
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the transmit beam group in the embodiment of the present invention may be built in the above-mentioned one CSI-ResourceConfig, or correspond to multiple CSI-ResourceConfigs, or may be built in one resourceForChannelMeasurement, or correspond to multiple resourceForChannelMeasurements, which is not limited herein.
  • the measurement configuration information of the transmission beam group may include configuration information (or referred to as indication information) of at least one transmission beam in the transmission beam group of the base station, where the configuration information of the transmission beam may be transmitted through multiple types. Indicating the transmission beam in a manner, for example, the indication information of the transmission beam may be obtained through one or more of a beam index of the transmission beam, a resource allocation index of a beam reference signal, and a spatial filter. Indicating the transmission beam.
  • the measurement configuration information of the transmission beam group may further include: repetition indication information.
  • the repetition indication information may correspond to a certain transmission beam group of the base station to indicate whether the base station currently uses the same transmission beam (or spatial filter) for the beam group to transmit beam configuration information .
  • the repetition indication information corresponds to a transmission beam group whose base station identifier is 1, and is "ON"
  • the base station may be instructed to use the same transmission beam (or spatial filtering) as the previous for the beam group. Transmitter) to send beam configuration information.
  • the UE may perform a beam scan using a different reception beam group than before to select a reception beam group corresponding to the transmission beam group whose identifier is 1.
  • FIG. 12 shows a schematic diagram of repeated indication information according to an embodiment of the present invention. 12 (a) and 12 (b) are different examples in which the repeated indication information corresponds to a transmission beam group of a base station, but the status includes "OFF" or "ON". As shown in FIG.
  • the repetition indication information corresponds to the transmission beam group of the base station and remains “OFF”. At this time, the base station transmits the transmission beam different from the previous transmission beam at each moment.
  • the configuration information as described above, the UE can correspondingly always keep the same receiving beam group for reception, and select a transmitting beam group corresponding to the receiving beam group.
  • the repetition indication information corresponds to the transmission beam group 1 of the base station. In the first half, the repetition indication information is always “ON”. At this time, the base station uses the same transmission beam to transmit the beam configuration information for the transmission beam group 1 at each moment in the first half.
  • the UE may separately Beam scanning is performed using different receiving beam groups to select a receiving beam group corresponding to the transmitting beam group 1.
  • the base station changes the transmission beam group to the transmission beam group 2 and uses the same transmission beam for the transmission beam group 2 at each moment in the second half. Accordingly, the repeated indication information is always maintained as "ON", the UE can scan and receive by using different receiving beam groups at this time, and select a receiving beam group corresponding to the transmitting beam group 2.
  • the repetition indication information may correspond to one or more transmission units of a base station to indicate whether, for one or more transmission units, the base station currently uses the same transmission beam (or spatial filtering) as before. Transmitter) to send beam configuration information. For example, when the repetition indication information corresponds to the transmission unit 1 of the base station and is "ON", the base station may be instructed to transmit the beam configuration information to the transmission unit 1 by using the same transmission beam 1 as before.
  • the UE may perform a beam scan using a different receiving beam group than before to select a receiving beam corresponding to this sending beam 1; and when the repetition indication information corresponds to the sending unit 1 of the base station When it is “OFF”, the base station may be instructed to transmit beam configuration information using a transmission beam 2 different from the previous transmission beam 1. At this time, the UE may maintain the same reception beam group reception as before, and select this The transmit beam corresponding to the receive beam group.
  • FIG. 13 is a schematic diagram of repeated indication information according to an embodiment of the present invention. Among them, FIG.
  • FIG. 13 (a) is a schematic diagram where the repeated indication information 1 and 2 respectively correspond to the transmitting unit 1 and the transmitting unit 2 of the base station and are “ON” and “OFF”, and FIG. 13 (b) is the diagram The repetition indication information 1 and 2 respectively correspond to the transmission unit 1 and the transmission unit 2 of the base station, and are both examples of "ON”.
  • the repetition indication information 1 corresponds to the transmission unit 1 of the base station and remains “ON”.
  • the base station always uses the same transmission beam on the transmission unit 1 as before.
  • the repeated indication information 2 corresponds to the transmission unit 2 of the base station, and remains “OFF”.
  • the base station always uses a different transmission beam for transmission on this transmission unit 2 to address this situation.
  • the UE can use the same reception beam group for reception and select this reception beam
  • the transmission beam on the corresponding transmission unit 2 of the group, or the UE may use the determined reception beam corresponding to the reception unit of the transmission unit 1 and a beam group formed by the same beam of the corresponding transmission unit 2 to determine, The transmit beam on the transmit unit 2 corresponding to this receive beam group.
  • the repetition indication information 1 corresponds to the transmission unit 1 of the base station and remains “ON”. At this time, the base station always uses the same transmission beam to transmit on this transmission unit 1.
  • the repeat instruction information 2 corresponds to the sending unit 2 of the base station and remains “ON”. At this time, the base station also uses the same sending beam to send on this sending unit 2. This situation means that the base station always uses the same transmit beam group for transmission. At this time, the UE may use different receive beam groups for beam scanning to select a receive beam group corresponding to the transmit beam group.
  • the repetition indication information may use a value of one bit to indicate different states of "ON” or "OFF” thereof.
  • a bit with a value of 1 can be used to indicate "ON”
  • a bit with a value of 0 can be used to indicate "OFF”
  • a bit with a value of 0 can be used to indicate "ON”
  • a bit with a value of 1 can be used Means "OFF”.
  • the above various descriptions of the repeated indication information are merely examples. In practical applications, any representation manner of the repeated indication information may be used to perform the transmission beam group and / or the transmission beam repeated representation, which is not limited herein.
  • the beam configuration information sent by the base station may further include: the number of transmit beam groups that the base station needs to receive the feedback information from user equipment; accordingly, the user equipment may The feedback information is fed back by a quantity defined by the beam configuration information.
  • the beam configuration information sent by the base station may include: feedback information of 3 transmission beam groups needs to be received from a user equipment, so that even if the user equipment receives beam configuration information transmitted by, for example, 5 transmission beam groups, It is also possible to feed back only the feedback information corresponding to a maximum of three transmit beam groups.
  • the transmission beam group to which the feedback is directed can be selected in different ways.
  • the (absolute) channel measurement result threshold is configured in the base station
  • the channel quality measurement results of the beams of N (N ⁇ 3) transmission beam groups out of the 5 transmission beam groups exceed the threshold
  • the Among the N transmission beam groups 3 transmission beam groups are selected for feedback.
  • any 3 beam groups or 3 transmission beam groups with the best channel quality measurement results can be selected.
  • the channel quality measurement results of the beams of N (1 ⁇ N ⁇ 3) transmission beam groups exceed a threshold
  • the N transmission beam groups may be selected for feedback.
  • the UE may not feedback, or select the transmission beam group with the best channel quality measurement results of the beams of the five transmission beam groups for feedback.
  • the (relative) channel measurement result threshold is configured by the base station, it is possible to find out that the difference between the optimal channel quality measurement results of the five transmission beam groups and the five transmission beam groups is less than the Relative threshold transmit beam group. If the found transmission beam group is greater than or equal to three, three transmission beam groups (for example, any three transmission beam groups or three transmission beam groups with the smallest difference) may be selected for feedback. If the found transmission beam group is less than three, feedback may be performed on the found transmission beam group. If the transmission beam group is not found, no feedback or a transmission beam group with the smallest difference may be selected for feedback.
  • the above feedback information feedback method is only an example. In practical applications, the number of transmit beam groups that the base station needs to receive the feedback information from the user equipment may be greater than, equal to, or less than the number of transmit beam groups that transmit the beam configuration information. There are no restrictions.
  • the measurement configuration information of the transmission beam group may include a channel quality type measured by a user equipment, and thus, the user equipment may obtain feedback information of a corresponding type of channel quality according to the channel quality type.
  • the type of the channel quality measured by the base station to instruct the user equipment may be, for example, a reference signal received quality (RSRQ), a reference signal received power (RSRP), a signal-to-interference and noise ratio (SINR), a received signal strength indicator (RSSI), and the like.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRQ; in another example, the base station indicates that the type of channel quality measured by the user equipment may be RSRP, for example, it may be the average RSRP corresponding to the transmit beam group; In another example, the type of channel quality measured by the base station instructing the user equipment may be SINR, for example, it may be an average SINR corresponding to the transmit beam group.
  • the measurement configuration information of the transmitted beam group may further include measurement configuration information for indicating one or more reference signal strength measurements, for example, the measurement configuration information of the transmitted beam group may include one or more instructions.
  • CSI-RS Channel state information reference signal
  • the measurement configuration information of the transmission beam group may further include: measurement configuration information of RSSI corresponding to one or more CSI-RS or SSB and / or measurement configuration information of interference strength.
  • step S1002 the UE may feed back feedback information on channel quality according to the beam configuration information.
  • the user equipment may define the beam configuration information according to the beam configuration information. Of the feedback information.
  • the user equipment may obtain corresponding type of channel quality feedback information according to the channel quality type.
  • the type of channel quality measured by the base station to instruct the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRP.
  • the UE may be based on measurement configuration information of a transmission beam group sent by the base station, such as reference signals to one or more CSI-RS or SSB.
  • the resource element (RE) performs measurement to obtain an average L1-RSRP corresponding to the transmission beam group as feedback information on channel quality.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRQ, for example, it may be an average RSRQ corresponding to the transmit beam group.
  • the UE may obtain an average L1-RSRQ of the transmission beam group based on measurement configuration information of the transmission beam group, for example, according to L1-RSRQ obtained by measuring each reference signal configured in the transmission beam group. For example, when the measurement configuration information of the transmission beam group indicates that two reference signals are measured, the average value of the first L1-RSRQ and the second L1-RSRQ obtained can be used to obtain the average L1-RSRQ of the transmission beam group.
  • the L1-RSRQ of each reference signal can be obtained by measuring the strength of the reference signal and measuring the RSSI.
  • the measurement configuration information of the transmission beam group may include measurement configuration information for indicating a reference signal strength measurement.
  • the measurement configuration information of the transmission beam group may include measurement configuration information for CSI-RS intensity measurement or SSB. Measurement configuration information for intensity measurement.
  • the RSSI may be the total energy intensity received on the reference signal resource element or the resource element over the entire bandwidth of the time symbol where the reference signal resource element is located, or multiple references within the group may be received using the same receive beam
  • the reference signal of the signal configuration is used as the interference strength measurement configuration of the reference signal.
  • the measurement configuration information of the transmission beam group may also be explicitly configured with: measurement configuration information of a received signal strength indication of at least one transmission beam in the transmission beam group and / or measurement configuration information of interference strength;
  • the feedback of the channel quality feedback information according to the beam configuration information may include: obtaining a reference of the transmit beam group according to the measurement configuration information indicated by the received signal strength and / or the measurement configuration information of interference strength. Signal reception quality.
  • the feedback of the channel quality feedback information according to the beam configuration information may further include: acquiring a reference signal reception quality of the transmission beam group according to a preset configuration. The preset configuration may be configured implicitly.
  • the preset configuration of the reference signal reception quality corresponding to the transmit beam group acquired according to the received signal strength indication and / or interference strength may be pre-configured on both sides of the UE and the base station; it may also be pre-configured To the base station and notify the UE in advance through signaling; or it may be pre-configured to the UE and reported to the base station through signaling.
  • the content of measurement configuration information and various preset configuration methods described above are merely examples. In practical applications, the content of any measurement configuration information and preset configuration methods may be adopted, and are not limited herein.
  • the type of channel quality measured by the base station to instruct the user equipment may be SINR, for example, it may be an average SINR corresponding to the transmit beam group.
  • the UE may obtain the average L1-SINR of the transmission beam group based on the measurement configuration information of the transmission beam group, for example, according to L1-SINR measured for each reference signal configured in the transmission beam group. For example, when the measurement configuration information of the transmission beam group indicates that two reference signals are measured, the average value of the first L1-SINR and the second L1-SINR obtained can be used to obtain the average L1-SINR of the transmission beam group.
  • the L1-SINR of each reference signal can be obtained by measuring the strength of the reference signal and measuring the strength of the interference.
  • the measurement configuration information of the transmission beam group may include: measurement configuration information for indicating one or more (for example, two) reference signal strength measurements, for example, the measurement configuration information of the transmission beam group may include an indication of CSI-RS Measurement configuration information for intensity measurement, or measurement configuration information that indicates SSB intensity measurement.
  • the measurement configuration information of the transmission beam group may also be explicitly configured with: measurement configuration information of interference intensity; correspondingly, according to the beam configuration information, feeding back feedback information on channel quality may include: The measurement configuration information of the interference intensity is used to obtain a signal-to-interference and noise ratio of the transmission beam group.
  • the feedback of the channel quality feedback information according to the beam configuration information may further include: acquiring a signal-to-interference and noise ratio of the transmit beam group according to a preset configuration.
  • the preset configuration may be configured implicitly.
  • the preset configuration for the signal-to-interference and noise ratio corresponding to the transmit beam group obtained according to the interference intensity can be pre-configured on both sides of the UE and the base station; it can also be pre-configured to the base station and passed The signaling is notified to the UE in advance; or it can be configured to the UE in advance and reported to the base station through signaling.
  • an implicit configuration it may be configured such that the interference corresponding to a certain reference signal in the transmit beam group can be measured by measuring the interference received on the reference signal resource element or the entire bandwidth of the time symbol where the reference signal resource element is located. Interference received at a resource element, or interference at the position of another reference signal element within a transmit beam group using the same receive beam.
  • the content of measurement configuration information and various preset configuration methods described above are merely examples. In practical applications, the content of any measurement configuration information and preset configuration methods may be adopted, and are not limited herein.
  • FIG. 14 is a schematic diagram of a reference signal strength measurement according to an embodiment of the present invention.
  • Fig. 14 (a) shows an example of signal strength measurement on CSI-RS
  • Fig. 14 (b) shows another example of signal strength measurement on CSI-RS
  • Fig. 14 (c) shows SSB An example of performing signal strength measurement
  • FIG. 14 (d) shows another example of performing signal strength measurement on SSB.
  • FIG. 14 (a)-(d) in one transmit beam group of the base station, different transmit beams can be used to transmit the same or different reference signal resource elements (RE). Specifically, different transmission beams may correspond to the same or different REs.
  • FIGS. 14 (c) and 14 (d) show that the transmission beam indicated by the vertical line filling in the transmission beam group corresponds to the The RE of the SSB.
  • the transmission beam indicated by the diagonal fill in the transmit beam group corresponds to the RE of the SSB indicated by the diagonal fill.
  • FIGS. 14 (a)-(b) show that reference signal strength measurements are performed on REs of the CSI-RS indicated by vertical line filling.
  • the UE may use one reception beam of one of its receiving units to measure the strength of the reference signal sent by the transmission beam 1 indicated by the vertical line fill in the RE of the reference signal indicated by the vertical line fill, and may use One receiving beam of the other receiving unit performs an intensity measurement of the reference signal transmitted by the transmission beam 2 indicated by the stripe filling corresponding to the RE of the reference signal indicated by the stripe filling. Then, an average value of the two measurement results may be calculated as a reference signal strength measurement result of the transmission beam pair formed by the transmission beam 1 and the transmission beam 2.
  • the UE may use the beams of multiple receiving units to simultaneously measure the reference signal sent by the transmission beam 1 indicated by the vertical line fill and the reference signal sent by the transmission beam 2 indicated by the stripe fill as the transmission beam.
  • Figures 14 (c)-(d) show that the reference signal strength measurement is performed on the RE of the SSB.
  • the channel quality measurement result of the transmission beam group of the base station may be determined in a similar manner to that shown in FIGS. 14 (a)-(b), and details are not described herein again.
  • FIG. 15 shows a schematic diagram of measuring a reference signal strength and an interference strength to determine an SINR of a transmit beam group according to an embodiment of the present invention.
  • Fig. 15 (a) to Fig. 15 (c) show three examples of reference signal strength and interference strength measurement on CSI-RS respectively;
  • Fig. 15 (d) shows reference signal strength and interference strength measurement on SSB An example.
  • FIG. 15 (a)-(d) in one transmission beam group of the base station, different transmission beams are used to transmit the same or different reference signal resource elements (RE).
  • RE reference signal resource elements
  • FIG. 15 (a)-(c) may include the REs of the CSI-RSs indicated by the vertical lines and the CSI-RSs indicated by the diagonal lines, corresponding to the transmission beams in the transmission beam group.
  • RE; FIG. 15 (d) may include the RE of the SSB indicated by the vertical line filling and the RE of the SSB indicated by the diagonal line corresponding to the transmission beam in the transmission beam group.
  • the RE of the CSI-RS for measuring the interference strength indicated by the square filling is also included.
  • FIG. 15 (a) shows that the reference signal strength and interference strength measurement of the RE of the CSI-RS indicated by the vertical line fill corresponding to the transmission beam 1 indicated by the vertical line fill are performed, respectively.
  • the CSI-RS REs indicated by oblique line filling corresponding to transmit beam 2 perform reference signal strength and interference strength measurements, respectively, and then average the reference signal strength measurement results and interference strength measurement results of the two transmit beams to obtain the transmission. Measurement results of the beam group.
  • FIG. 15 (c) shows that the reference signal strength measurement of the RE of the CSI-RS indicated by the vertical line filling corresponding to the transmission beam 1 indicated by the vertical line filling is performed, and the RE of the CSI-RS filled by the square (ie, The RE that coincides with the RE of the CSI-RS indicated by the oblique fill and the neighboring REs corresponding to the transmit beam 2 indicated by oblique fill is used to perform interference strength measurement, so that the SINR corresponding to the transmit beam 1 can be determined; , The reference signal strength measurement of the RE of the CSI-RS indicated by the oblique line filling corresponding to the transmission beam 2 indicated by the oblique line filling may be performed, and the RE and the RE coincident with the RE of the CSI-RS indicated by the vertical line fill and The neighboring REs perform interference intensity measurement to determine
  • FIG. 15 (d) shows that reference signal strength measurement and interference strength measurement are performed on the RE of the SSB indicated by the vertical line filling and corresponding to the transmission beam 1 indicated by the vertical line filling to determine the SINR of the transmission beam 1, and The RE of the SSB indicated by the oblique line filling corresponding to the transmission beam 2 indicated by the line fill is measured for reference signal strength and interference strength to determine the SINR of the transmission beam 2, and the SINRs of the two transmission beams are averaged to obtain the transmission beam.
  • the SINR of the group For the signal strength measurement and interference strength measurement of the same beam (or RS configuration), the UE can use the same receiving unit or receiving beam.
  • FIG. 16 shows a schematic diagram of measuring a reference signal strength and a received signal strength indication according to an embodiment of the present invention.
  • FIG. 16 (a) to FIG. 16 (d) show three examples of reference signal strength and received signal strength indication measurement for CSI-RS respectively;
  • FIG. 16 (d) shows reference signal strength and reception for SSB An example of a signal strength indication measurement.
  • FIG. 16 (a)-(d) in one transmit beam group of the base station, different transmit beams are used to transmit the same or different reference signal resource elements (RE).
  • Figs. 16 (a)-(c) may include REs of CSI-RSs indicated by vertical lines and CSI-RSs indicated by diagonal lines, corresponding to two transmission beams in a transmission beam group.
  • FIG. 16 (d) may include the REs of the SSBs indicated by the vertical lines and the REs of the SSBs indicated by the diagonal lines corresponding to the two transmit beams in the transmit beam group.
  • REs for measuring a CSI-RS indicated by a received signal strength indicated by a dash-dotted line are also included. Specifically, FIG.
  • FIG. 16 (a) shows that the reference signal strength and the received signal strength indication measurement of the RE of the CSI-RS indicated by the vertical line fill corresponding to the transmission beam 1 indicated by the vertical line fill are performed to determine the RSRQ, which performs reference signal strength and received signal strength indication measurements on the RE of the CSI-RS indicated by oblique line fill corresponding to transmit beam 2 indicated by oblique line fill, to determine the RSRQ of transmit beam 2, and then two transmit beams The RSRQ of the transmission beam group is averaged to obtain the RSRQ of the transmission beam group.
  • 16 (b) shows the measurement of the reference signal strength of the RE of the CSI-RS indicated by the vertical line fill corresponding to the transmission beam 1 indicated by the vertical line fill, and the RE of the CSI-RS indicated by the vertical line fill
  • the received signal strength indication measurement is performed together with the RE of the CSI-RS filled with the dot-dash line (that is, the RE that coincides with the RE of the CSI-RS indicated by the slash fill corresponding to the transmission beam 2 indicated by the slash fill).
  • Determine the RSRQ of transmit beam 1 measure the reference signal strength of the RE of the CSI-RS indicated by the oblique fill corresponding to the transmit beam 2 indicated by the oblique fill, and measure the RE of the CSI-RS indicated by the oblique fill.
  • FIG. 16 (c) shows the measurement of the reference signal strength of the RE of the CSI-RS indicated by the vertical line filling corresponding to the transmission beam 1 indicated by the vertical line filling, and the RE of the CSI-RS indicated by the vertical line filling.
  • FIG. 16 (d) shows that the reference signal strength and the received signal strength indication measurement of the RE of the SSB indicated by the vertical line fill corresponding to the transmission beam 1 indicated by the vertical line fill are performed to determine the RSRQ of the transmission beam 1 and
  • the RE of the SSB corresponding to the oblique fill indication indicated by the oblique fill fills the reference signal strength and the received signal strength indication measurement to determine the RSRQ of the transmit beam 2 and average the RSRQs of the two transmit beams to obtain the RSRQ of the transmit beam group.
  • the UE can use the same receiving unit or receiving beam.
  • the UE may feed back the feedback information to a base station, so that the base station sends the beam group on the at least one beam according to the feedback information.
  • the feedback information may be associated with one or more transmission beam groups in at least one transmission beam group, so that the feedback information may further include an identifier of the one or more transmission beam groups.
  • the feedback information reported by the UE may include, for example, the identifier 1 of the transmission beam group and its corresponding channel quality feedback information.
  • the type of channel quality measured by the base station to instruct the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the feedback information fed back by the UE may include one or more of the following feedback information: transmit beam group identifier_RSRP (or, CSI_transmit beam group identifier_RSRP and / or SSB_transmit beam group identifier_RSRP ), Transmit beam group identifier_RSRQ / SINR (or, CSI_transmit beam group identifier_RSRQ / SINR and / or SSB_transmit beam group identifier_RSRQ / SINR, where RSRQ means user feedback RSRQ, SINR means user feedback SINR, RSRQ / SINR means user feedback one or all of RSRQ and SINR), transmit beam group identifier_RSRP_RSRQ / SINR (or, CSI_transmit beam group identifier_RSRP_RSRQ / SINR and
  • the above feedback information of the UE is only an example. In practical applications, the UE may use any feedback information about channel quality obtained according to the beam configuration information for feedback, which is not limited herein.
  • the optimal transmission beam group (such as the transmission channel with the best channel quality) Group) feedback the absolute channel quality measurement results, and feedback the relative difference of the absolute channel quality measurement results of the optimal transmission beam group to other transmission beam groups.
  • the steps of the wireless communication method performed by the user equipment according to the embodiment of the present invention are described above.
  • it is also possible to receive information about a sending unit sent by a base station where the information about the sending unit indicates an identifier of at least one sending unit and a configuration of a sending beam owned by the at least one sending unit.
  • Information ; selecting one or more transmission beams in the at least one transmission unit according to the information about the transmission unit, and feeding back beam selection information indicating a user equipment selection result.
  • the beam selection information may include an identifier of the at least one transmission unit, indication information of a transmission beam selected in the transmission unit, and / or channel feedback information corresponding to the selected transmission beam.
  • the base station may use the information about the sending unit sent by the base station to enable the UE to know that the base station has several sending units, an identification of the sending unit, and a transmitting beam owned by each unit, so that the UE can use different sending units.
  • One or more transmission beams are selected for feedback to the base station, thereby avoiding the situation that the UE cannot feedback the transmission beam to the base station according to the division of the transmission beam by the transmission unit when the UE does not know the correspondence between the transmission unit and the corresponding transmission beam, so
  • the base station can have as many as possible more suitable combination schemes of the transmission beam groups.
  • the sending unit of the base station may be the aforementioned base station, the transceiver board on the base station, the TXRU on the transceiver board of the base station, the radio frequency (RF) filter of the base station, or the spatial filter of the base station.
  • the transmitting units can each transmit at least one transmission beam simultaneously.
  • the indication information of the transmission beam may indicate the transmission beam in multiple ways.
  • the indication information of the transmission beam may be determined by a beam index, a beam reference of the transmission beam, and the like.
  • One or more of a signal resource configuration index and a spatial filter to indicate the transmission beam; in addition, the indication information of the transmission beam possessed by a transmission unit of the base station may be built in a CSI-ResourceConfig shown in FIG.
  • the indication information of the transmission beams of the at least one transmission unit may further include the number of transmission beams that the UE is desired to select for one or more transmission units in the at least one transmission unit, where The sending unit can be configured with the number of transmission beams (or the maximum number of transmission beams to be selected) to be selected by the UE, and these numbers can be the same or different.
  • the UE may be configured to select two transmission beams; for another example, for one transmitting unit, the UE may be configured to select one transmitting beam, and for another transmitting unit, the UE may be configured to Select 3 transmit beams.
  • the information about the sending unit may also include: repeat indication information, which is used to indicate whether the base station currently uses the same sending beam as the previous sending beam to send information about the sending unit to one or more sending units. information.
  • repeat indication information which is used to indicate whether the base station currently uses the same sending beam as the previous sending beam to send information about the sending unit to one or more sending units. information.
  • the principle and application manner of the repeated indication information in the information about the sending unit is similar to the repeated indication information in the measurement configuration information of the foregoing transmission beam group, and details are not described herein again.
  • receiving the beam configuration information sent by the base station by using at least one transmit beam group may also include: receiving, by the base station according to the beam selection information, selecting one transmit beam in at least one transmit unit to form a transmit beam group.
  • the base station may select a transmission beamforming transmission beam group in each transmission unit according to the beam selection information, or may select a transmission beamforming transmission beam group in some of the transmission units, which is not limited herein. .
  • FIG. 17 illustrates an example of beam selection of a wireless communication method according to an embodiment of the present invention.
  • the base station first sends information about the sending unit.
  • the information about the sending unit may include the identity 1 of the sending unit and its Indication information ⁇ 1,2,3,4 ⁇ of the transmitted beam, and identification 2 of the transmission unit and indication information ⁇ 5,6,7,8 ⁇ of the transmitted beam.
  • the UE selects the transmission beam ⁇ 1,2 ⁇ in the transmission unit 1 and the transmission beam ⁇ 7,8 ⁇ in the transmission unit 2 according to the information about the transmission unit sent by the base station, as shown in FIG. 17 (a) .
  • the UE feeds back the selection result to the base station as the beam selection information.
  • the UE may report the identification of the sending unit and the selected transmission beam at the same time; in another example, considering that the indication information of the transmission beam is different, the UE may also report only the selected transmission beam.
  • the beam selection information may further include channel feedback information corresponding to the selected transmission beam.
  • the base station may select a corresponding transmission beam for different transmission units 1 and 2 respectively according to the manner described above, thereby forming a transmission beam group.
  • the base station may select a transmit beam group including 1 & 7, 1 & 8, 2 & 7, 2 & 8 to transmit beam configuration information.
  • FIG. 17 (b) shows an example in which the base station transmits the beam configuration information using the transmission beam groups of 1 & 7, 1 & 8, 2 & 7, 2 & 8.
  • the repetition indication information in the beam configuration information may be “OFF”.
  • FIG. 17 (c) shows an example in which the base station transmits the beam configuration information by using the transmission beam groups of 1 & 7.
  • the repeated indication information in the beam configuration information may be “ON”.
  • feedback indication information sent by a base station may be received, according to the feedback indication information, a transmission beam corresponding to one or more reception beams in at least one reception unit of the user equipment is selected, and the base station is sent to the base station.
  • Sending beam selection information which indicates the transmission beam selected by the user equipment.
  • the beam selection information may include an identifier of the at least one receiving unit and indication information of a transmitting beam corresponding to one or more receiving beams in the at least one receiving unit.
  • the beam selection information may further include channel feedback information corresponding to the transmission beam.
  • the feedback indication information may include the number of the one or more receiving units to be selected by the UE, that is, the number of transmitting beams corresponding to the receiving beams of each receiving unit. According to the number, the UE may select one or more receiving beams from different receiving units, and feedback the indication information of the transmitting beams corresponding to the selected receiving beams to the base station, so that the base station can correspond in the obtaining step S1001. When there are more transmit beam groups, try to have more combinations of transmit beam groups. In one example, the number of receiving beams and corresponding transmission beams selected by the UE from different receiving units may be the same or different.
  • the UE may select 2 transmitting beams; for another example, for one receiving unit, the UE may select one transmitting beam, and for another receiving unit, the UE may select 3 transmitting beams.
  • the number of one or more receiving units fed back by the UE and / or the number of beams selected for different receiving units can be set in advance and known by the UE and the base station, or can be configured by RRC signaling, or through the UE. Parameters such as capability information and the number of UE-side transceiver boards / receiving units / spatial filters are determined.
  • the base station may determine the number of receiving units fed back by the UE and / or the number of transmitting beams selected for different receiving units according to the UE capability information to ensure that the configured number does not exceed the capability of the UE.
  • receiving the beam configuration information sent by the base station by using at least one transmit beam group may also include: receiving, by the base station according to the beam selection information, selecting one transmit beam in at least one transmit unit to form a transmit beam group.
  • the base station may select a transmission beamforming transmission beam group in each transmission unit according to the beam selection information, or may select a transmission beamforming transmission beam group in some of the transmission units, which is not limited herein. .
  • the receiving unit of the UE may be the aforementioned UE, the transceiver board on the UE, the TXRU on the UE transceiver board, the radio frequency (RF) filter of the UE, or the spatial filter of the UE, and the like.
  • Each receiving unit of the UE can receive at least one beam at the same time.
  • the indication information of the transmission beam corresponding to the reception beam may indicate the transmission beam in multiple ways.
  • the indication information of the transmission beam may be determined by a beam index of the transmission beam (beam index), a resource configuration index of a beam reference signal, and one or more of a spatial filter to indicate the transmission beam. According to an example of the present invention, as shown in FIG.
  • the UE may send beam selection information indicating a UE selection result according to a report type preset in, for example, 3GPP R-16.
  • FIG. 18 shows that in 3GPP R-16
  • the UE may report the beam selection information.
  • the UE may also send beam selection information indicating the UE selection result according to the parameters redefined in the existing 3GPP R-15 standard.
  • FIG. 19 shows the redefinition in 3GPP R-15 Parameter examples. When the groupBasedBeamReporting redefined in FIG. 19 is enabled, it may be considered that the UE needs to report the beam selection information.
  • FIG. 20 illustrates an example of beam selection in a wireless communication method according to an embodiment of the present invention.
  • N 3 is assumed to indicate that the UE can report 3 groups of 6 beams.
  • the UE will select 3 sets of transmit beams that it can receive simultaneously.
  • the UE may select 3 groups of transmission beams, which are ⁇ 1,5 ⁇ , ⁇ 2,7 ⁇ , and ⁇ 4,8 ⁇ . Accordingly, as shown in FIG.
  • the base station has a transmission beam ⁇ 1,2,3,4 ⁇ corresponding to the transmission unit 1 and a transmission beam ⁇ 5,6,7,8 ⁇ corresponding to the transmission unit 2, Then, each transmission beam reported by the UE is a transmission beam ⁇ 1,2,4 ⁇ in the transmission unit 1 and a transmission beam ⁇ 5,7,8 ⁇ in the transmission unit 2. Subsequently, as shown in FIG. 20 (b), the base station may select the transmission beam group according to the distribution of the transmission beam on the transmission unit and the beam reported by the UE, for example, select the transmission beam group ⁇ 1,5 ⁇ , ⁇ 2,7 ⁇ , ⁇ 4,8 ⁇ to send beam configuration information to maximize channel transmission quality.
  • FIG. 21 illustrates an example of beam selection in a wireless communication method according to an embodiment of the present invention.
  • the UE has two receiving units, the base station has two transmitting units, and each transmitting / receiving unit has two transmitting / receiving beams, respectively.
  • the UE obtains the channel measurement results of L1-RSRP as shown in FIG. 21 (a) according to its two receiving units and their corresponding beams.
  • the UE may use the channel measurement result to determine beam selection information, which indicates a transmission beam corresponding to each receiving beam in each receiving unit selected by the user equipment.
  • FIG. 21 illustrates an example of beam selection in a wireless communication method according to an embodiment of the present invention.
  • the UE has two receiving units, the base station has two transmitting units, and each transmitting / receiving unit has two transmitting / receiving beams, respectively.
  • the UE obtains the channel measurement results of L1-RSRP as shown in FIG. 21 (a) according to its two receiving units and their corresponding beams.
  • the UE may use
  • the user equipment can select the transmission beam 1 corresponding to the reception beam 1 of its receiving unit 1 and the transmission beam 2 corresponding to the reception beam 2; in addition, it can also select The transmitting beam 4 corresponding to the receiving beam 3 of the receiving unit 2 and the transmitting beam 6 corresponding to the receiving beam 2. That is, corresponding to the receiving unit 1, the user equipment selects the transmission beam ⁇ 1,2 ⁇ ; and corresponding to the receiving unit 2, the user equipment selects the transmission beam ⁇ 4,6 ⁇ . Correspondingly, as shown in FIG.
  • the base station can select a transmission beam forming transmission beam group in each transmission unit according to the beam selection information of the user equipment. As shown in FIG. 21 (c), the transmission beam group can be ⁇ 1,6 ⁇ or ⁇ 2 , 6 ⁇ .
  • the wireless communication method it is possible to provide a specific signaling interaction scheme between the base station and the UE when selecting corresponding beams and formed beam groups for different transceiver units, so that The selection process improves the transmission quality of the wireless communication system, optimizes the allocation of channel transmission resources, and reduces resource overhead.
  • FIG. 22 shows a flowchart of a wireless communication method 2200 according to an embodiment of the present invention, and the method may be performed by a base station. Since many aspects of the method are the same as those described above for the UE, the description of the same aspects is omitted here or only briefly described.
  • step S2201 beam configuration information is transmitted by using at least one transmission beam group, and the beam configuration information includes an identifier of at least one transmission beam group and measurement configuration information of at least one transmission beam group.
  • the base station may select one or more transmission beam groups from at least one transmission beam group, and transmit beam configuration information including the transmission beam group identifier and measurement configuration information through the selected transmission beam group.
  • the at least one transmission beam group may be one or more transmission beam groups constructed by the beam selection method described above.
  • FIG. 11 shows a specific content example of CSI resource configuration according to the 3GPP standard TS 38.311.
  • the information element CSI-ReportConfig may include multiple CSI-ResourceConfigIds, where resourceForChannelMeasurement for channel measurement may be indicated by CSI-ResourceConfigId to indicate the first layer (L1) reference for channel measurement Signal (RS) configuration.
  • the CSI-ResourceConfigId may further include CSI-ResourceConfig, and includes a channel state information reference signal (CSI-RS) resource and / or a synchronization signal block (SSB) measurement configuration information such as resources.
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the transmit beam group in the embodiment of the present invention may be built in the above-mentioned one CSI-ResourceConfig, or correspond to multiple CSI-ResourceConfigs, or may be built in one resourceForChannelMeasurement, or correspond to multiple resourceForChannelMeasurements, which is not limited herein.
  • the measurement configuration information of the transmission beam group may include configuration information (or indication information) of at least one transmission beam in the transmission beam group of the base station, where the configuration information of the transmission beam may be compared in multiple ways.
  • the transmitting beam is instructed.
  • the indication information of the transmitting beam may be indicated by one or more of a beam index of the transmitting beam, a resource configuration index of a beam reference signal, and a spatial filter. The transmission beam is described.
  • the measurement configuration information of the transmission beam group may further include: repetition indication information.
  • the repetition indication information may correspond to a certain transmission beam group of the base station to indicate whether the base station currently uses the same transmission beam group (or spatial filter) for the transmission beam group to transmit Beam configuration information.
  • the base station may be instructed to use the same transmission beam as the previous transmission beam configuration for the transmission beam group for the current beam configuration Information, at this time, the UE may perform a beam scan using a different receiving beam group from before to select a receiving beam group corresponding to the transmitting beam group whose identifier is 1; and when the repetition indication information and the identifier of the base station are 1 When the corresponding transmit beam group is “OFF”, the base station may be instructed to not use the same transmit beam to transmit beam configuration information to the transmit beam group. At this time, the UE may maintain the same receive as before.
  • the beam group receives beam configuration information and selects a transmission beam group corresponding to the reception beam group.
  • the repetitive instruction information may be set and used in the manner shown above, for example, with reference to FIG. 12, and is not repeated here.
  • the repetition indication information may correspond to one or more transmission units of a base station to indicate whether, for one or more transmission units, the base station currently uses the same transmission beam as before to transmit a beam configuration information. For example, when the repetition indication information corresponds to the transmission unit 1 of the base station and is "ON", the base station may be instructed to transmit the beam configuration information to the transmission unit 1 by using the same transmission beam 1 as before. At this time, for this sending unit 1, the UE may perform a beam scan using a different receiving beam group than before to select a receiving beam corresponding to this sending beam 1; and when the repetition indication information corresponds to the sending unit 1 of the base station When it is “OFF”, the base station may be instructed to transmit beam configuration information using a transmission beam 2 different from the previous transmission beam 1.
  • FIG. 13 is a schematic diagram of repeated indication information according to an embodiment of the present invention.
  • FIG. 13 (a) is a schematic diagram where the repeated indication information 1 and 2 respectively correspond to the transmitting unit 1 and the transmitting unit 2 of the base station and are “ON” and “OFF”
  • FIG. 13 (b) is the diagram The repetition indication information 1 and 2 respectively correspond to the transmission unit 1 and the transmission unit 2 of the base station, and are both examples of "ON”.
  • the repetition indication information 1 corresponds to the transmission unit 1 of the base station and remains “ON”.
  • the base station always uses the same transmission beam on the transmission unit 1 as before. Send; and the repeated indication information 2 corresponds to the transmission unit 2 of the base station, and remains “OFF”. At this time, the base station always uses a different transmission beam for transmission on this transmission unit 2 to address this situation. , Means that the base station can always keep the same transmission beam on transmission unit 1 and only scan different transmission beams on transmission unit 2.
  • the UE can use the same reception beam group for reception and select this reception beam
  • the transmission beam on the corresponding transmission unit 2 of the group or the UE may use the determined reception beam corresponding to the reception unit of the transmission unit 1 and a beam group formed by the same beam of the corresponding transmission unit 2 to determine, The transmit beam on the transmit unit 2 corresponding to this receive beam group.
  • the repetition indication information 1 corresponds to the transmission unit 1 of the base station and remains “ON”.
  • the base station always uses the same transmission beam to transmit on this transmission unit 1.
  • the repeat instruction information 2 corresponds to the sending unit 2 of the base station and remains “ON”.
  • the base station also uses the same sending beam to send on this sending unit 2. This situation means that the base station always uses the same transmit beam group for transmission.
  • the UE can use different receive beam groups to perform beam scanning to select a receive beam group corresponding to the transmit beam group.
  • the repetition indication information may use a value of one bit to indicate different states of "ON” or "OFF” thereof.
  • a bit with a value of 1 can be used to indicate "ON”
  • a bit with a value of 0 can be used to indicate "OFF”
  • a bit with a value of 0 can be used to indicate "ON”
  • a bit with a value of 1 can be used Means "OFF”.
  • the above various descriptions of the repeated indication information are merely examples. In practical applications, any representation manner of the repeated indication information may be used to perform the transmission beam group and / or the transmission beam repeated representation, which is not limited herein.
  • the beam configuration information sent by the base station may further include: the number of transmit beam groups that the base station needs to receive the feedback information from user equipment; accordingly, the user equipment may The feedback information is fed back by a quantity defined by the beam configuration information.
  • the beam configuration information sent by the base station may include: feedback information of 3 transmission beam groups needs to be received from a user equipment, so that even if the user equipment receives beam configuration information transmitted by, for example, 5 transmission beam groups, It is also possible to feed back only the feedback information corresponding to a maximum of three transmit beam groups.
  • the transmission beam group to which the feedback is directed can be selected in different ways. I won't repeat them here.
  • the above feedback information feedback method is only an example.
  • the number of transmit beam groups that the base station needs to receive the feedback information from the user equipment may be greater than, equal to, or less than the number of transmit beam groups that transmit the beam configuration information. There are no restrictions.
  • the measurement configuration information of the transmission beam group may include a channel quality type measured by a user equipment, and thus, the user equipment may obtain feedback information of a corresponding type of channel quality according to the channel quality type.
  • the type of channel quality measured by the base station to indicate to the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRQ; in another example, the base station indicates that the type of channel quality measured by the user equipment may be RSRP, for example, it may be the average RSRP corresponding to the transmit beam group; In another example, the type of channel quality measured by the base station instructing the user equipment may be SINR, for example, it may be an average SINR corresponding to the transmit beam group.
  • the measurement configuration information of the transmitted beam group may further include measurement configuration information for indicating one or more reference signal strength measurements, for example, the measurement configuration information of the transmitted beam group may include one or more instructions. Measurement configuration information of one CSI-RS intensity measurement, or measurement configuration information of one or more SSB intensity measurements. In another example, the measurement configuration information of the transmit beam group may further include: measurement configuration information of RSSI corresponding to one or more CSI-RS or SSB and / or measurement configuration information of interference strength.
  • step S2202 the base station receives feedback information on channel quality fed back by the user equipment according to the beam configuration information.
  • the user equipment may define the beam configuration information according to the beam configuration information. Of the feedback information.
  • the user equipment may obtain corresponding type of channel quality feedback information according to the channel quality type.
  • the type of channel quality measured by the base station to instruct the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRP.
  • the UE may be based on the measurement configuration information of the transmission beam group sent by the base station, such as the RE with one or more CSI-RS or SSB. To obtain the average L1-RSRP corresponding to the transmit beam group as feedback information about channel quality.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRQ, for example, it may be an average RSRQ corresponding to the transmit beam group.
  • the UE may obtain an average L1-RSRQ of the transmission beam group based on measurement configuration information of the transmission beam group, for example, according to L1-RSRQ obtained by measuring each reference signal configured in the transmission beam group. For example, when the measurement configuration information of the transmission beam group indicates that two reference signals are measured, the average value of the first L1-RSRQ and the second L1-RSRQ obtained can be used to obtain the average L1-RSRQ of the transmission beam group.
  • the L1-RSRQ of each reference signal can be obtained by measuring the strength of the reference signal and measuring the RSSI.
  • the measurement configuration information of the transmission beam group may include measurement configuration information for indicating a reference signal strength measurement.
  • the measurement configuration information of the transmission beam group may include measurement configuration information for CSI-RS intensity measurement or SSB. Measurement configuration information for intensity measurement.
  • the RSSI may be the total energy intensity received on the reference signal resource element or the resource element over the entire bandwidth of the time symbol where the reference signal resource element is located, or multiple references within the group may be received using the same receive beam
  • the reference signal configuration of the signal configuration is used as the interference strength measurement configuration of the reference signal.
  • the measurement configuration information of the transmission beam group may also be explicitly configured with: measurement configuration information of a received signal strength indication of at least one transmission beam in the transmission beam group and / or measurement configuration information of interference strength;
  • the feedback of the channel quality feedback information according to the beam configuration information may include: obtaining a reference of the transmit beam group according to the measurement configuration information indicated by the received signal strength and / or the measurement configuration information of interference strength. Signal reception quality.
  • the feedback of the channel quality feedback information according to the beam configuration information may further include: acquiring a reference signal reception quality of the transmission beam group according to a preset configuration. The preset configuration may be configured implicitly.
  • the preset configuration of the reference signal reception quality corresponding to the transmit beam group acquired according to the received signal strength indication and / or interference strength may be pre-configured on both sides of the UE and the base station; it may also be pre-configured To the base station and notify the UE in advance through signaling; or it may be pre-configured to the UE and reported to the base station through signaling.
  • the content of measurement configuration information and various preset configuration methods described above are merely examples. In practical applications, the content of any measurement configuration information and preset configuration methods may be adopted, and are not limited herein.
  • the type of channel quality measured by the base station to instruct the user equipment may be SINR, for example, it may be an average SINR corresponding to the transmit beam group.
  • the UE may obtain the average L1-SINR of the transmission beam group based on the measurement configuration information of the transmission beam group, for example, according to L1-SINR measured for each reference signal configured in the transmission beam group. For example, when the measurement configuration information of the transmission beam group indicates that two reference signals are measured, the average value of the first L1-SINR and the second L1-SINR obtained can be used to obtain the average L1-SINR of the transmission beam group.
  • the L1-SINR of each reference signal can be obtained by measuring the strength of the reference signal and measuring the strength of the interference.
  • the measurement configuration information of the transmission beam group may include: measurement configuration information for indicating one or more (for example, two) reference signal strength measurements, for example, the measurement configuration information of the transmission beam group may include an indication of CSI-RS Measurement configuration information for intensity measurement, or measurement configuration information that indicates SSB intensity measurement.
  • the measurement configuration information of the transmission beam group may also be explicitly configured with: measurement configuration information of interference intensity; correspondingly, according to the beam configuration information, feeding back feedback information on channel quality may include: The measurement configuration information of the interference intensity is used to obtain a signal-to-interference and noise ratio of the transmission beam group.
  • the feedback of the channel quality feedback information according to the beam configuration information may further include: acquiring a signal-to-interference and noise ratio of the transmit beam group according to a preset configuration.
  • the preset configuration may be configured implicitly.
  • the preset configuration for the signal-to-interference and noise ratio corresponding to the transmit beam group obtained according to the interference intensity can be pre-configured on both sides of the UE and the base station; it can also be pre-configured to the base station and passed The signaling is notified to the UE in advance; or it can be configured to the UE in advance and reported to the base station through signaling.
  • an implicit configuration it may be configured such that the interference corresponding to a certain reference signal in the transmit beam group can be measured by measuring the interference received on the reference signal resource element or the entire bandwidth of the time symbol where the reference signal resource element is located. Interference received at a resource element, or interference at the position of another reference signal element within a transmit beam group using the same receive beam.
  • the content of measurement configuration information and various preset configuration methods described above are merely examples. In practical applications, the content of any measurement configuration information and preset configuration methods may be adopted, and are not limited herein.
  • the UE may measure the reference signal strength in the manner described above with reference to FIG. 14. Alternatively, the UE may measure the reference signal strength and the interference strength in the manner described above with reference to FIG. 15. Alternatively, the UE may measure the reference signal strength and the received signal strength indication in the manner described above with reference to FIG. 16. Thereby, a channel quality measurement result of the transmission beam group of the base station can be obtained, and the result is fed back to the base station.
  • the base station may select one or more transmission beam groups from the at least one transmission beam group according to the received feedback information on channel quality.
  • the feedback information may be associated with one or more transmission beam groups in at least one transmission beam group, so that the feedback information may further include an identifier of the one or more transmission beam groups.
  • the feedback information reported by the UE may include, for example, the identifier 1 of the transmission beam group and its corresponding channel quality feedback information.
  • the type of channel quality measured by the base station to instruct the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the feedback information fed back by the UE may include one or more of the following feedback information: transmit beam group identifier_RSRP (or, CSI_transmit beam group identifier_RSRP and / or SSB_transmit beam group identifier_RSRP ), Transmit beam group identifier_RSRQ / SINR (or, CSI_transmit beam group identifier_RSRQ / SINR and / or SSB_transmit beam group identifier_RSRQ / SINR, where RSRQ means user feedback RSRQ, SINR means user feedback SINR, RSRQ / SINR means user feedback one or all of RSRQ and SINR), transmit beam group identifier_RSRP_RSRQ / SINR (or, CSI_transmit beam group identifier_RSRP_RSRQ / SINR and / or SSB_transmit beam group identifier_RSRP_RSRQ / SINR
  • RSRP_RSRQ means that the user feeds back both RS
  • the above feedback information of the UE is only an example. In practical applications, the UE may use any feedback information about channel quality obtained according to the beam configuration information for feedback, which is not limited herein.
  • the UE may use any feedback information about channel quality obtained according to the beam configuration information for feedback, which is not limited herein.
  • the optimal transmission beam group (such as the transmission channel with the best channel quality) can be fed back. Group) feedback the absolute channel quality measurement results, and feedback the relative difference of the absolute channel quality measurement results of the optimal transmission beam group to other transmission beam groups.
  • information about a sending unit may also be sent.
  • the information about the sending unit indicates an identifier of at least one sending unit and indication information of a sending beam owned by the at least one sending unit.
  • the user equipment is used to select one or more transmission beams in the at least one transmission unit according to the information about the transmission unit, and feedback beam selection information indicating a user equipment selection result.
  • the beam selection information may include an identifier of the at least one transmission unit, indication information of a transmission beam selected in the transmission unit, and / or channel feedback information corresponding to the selected transmission beam.
  • the base station may enable the UE to know how many base units the base station has, and the identity of the sending unit and the sending beam according to the information about the sending unit sent by the base station, so that the UE can use Select one or more transmit beams to feed back to the base station. This prevents the UE from being unable to feed back the transmission beam to the base station according to the division of the transmission beam by the transmission unit when it does not know the correspondence between the transmission unit and the corresponding transmission beam, so that the base station can determine the transmission beam group in step S2201, Try to have more combinations of transmit beam groups.
  • the sending unit of the base station may be the aforementioned base station, the transceiver board on the base station, the TXRU on the transceiver board of the base station, the radio frequency (RF) filter of the base station, or the spatial filter of the base station.
  • the transmitting units can each transmit at least one transmission beam simultaneously.
  • the indication information of the transmission beam may indicate the transmission beam in multiple ways.
  • the indication information of the transmission beam may be determined by a beam index, a beam reference of the transmission beam, and the like.
  • One or more of a signal resource configuration index and a spatial filter to indicate the transmission beam; in addition, the indication information of the transmission beam possessed by a transmission unit of the base station may be built in a CSI-ResourceConfig shown in FIG.
  • the indication information of the transmission beams of the at least one transmission unit may further include the number of transmission beams that the UE is desired to select for one or more transmission units in the at least one transmission unit, where The sending unit can be configured with the number of transmission beams (or the maximum number of transmission beams to be selected) to be selected by the UE, and these numbers can be the same or different.
  • the information about the sending unit may also include: repetition indication information, which is used to indicate whether, for one or more sending units, the base station currently uses the same sending beam as before to send information about the sending unit. information.
  • repetition indication information which is used to indicate whether, for one or more sending units, the base station currently uses the same sending beam as before to send information about the sending unit. information.
  • the principle and application manner of the repeated indication information in the information about the sending unit is similar to the repeated indication information in the measurement configuration information of the foregoing transmission beam group, and details are not described herein again.
  • transmitting the beam configuration information by using at least one transmission beam group includes: selecting one transmission beam in at least one transmission unit to form the transmission beam group transmission beam configuration information according to the beam selection information fed back by the user equipment.
  • the base station may select a transmission beamforming transmission beam group in each transmission unit according to the beam selection information, or may select a transmission beamforming transmission beam group in some of the transmission units, which is not limited herein. .
  • FIG. 17 illustrates an example of beam selection of a wireless communication method according to an embodiment of the present invention.
  • the base station first sends information about the sending unit.
  • the information about the sending unit may include the identity 1 of the sending unit and its Indication information ⁇ 1,2,3,4 ⁇ of the transmitted beam, and identification 2 of the transmission unit and indication information ⁇ 5,6,7,8 ⁇ of the transmitted beam.
  • the UE selects the transmission beam ⁇ 1,2 ⁇ in the transmission unit 1 and the transmission beam ⁇ 7,8 ⁇ in the transmission unit 2 according to the information about the transmission unit sent by the base station, as shown in FIG. 17 (a) .
  • the UE feeds back the selection result as the beam selection information to the base station.
  • the UE may report the identification of the sending unit and the selected transmission beam at the same time; in another example, considering that the indication information of the transmission beam is different, the UE may also report only the selected transmission beam.
  • the beam selection information may further include channel feedback information corresponding to the selected transmission beam.
  • the base station may respectively select a corresponding transmission beam for different transmission units 1 and 2 to form a transmission beam group.
  • the base station may select a transmit beam group including 1 & 7, 1 & 8, 2 & 7, 2 & 8 to transmit beam configuration information.
  • FIG. 17 (b) shows an example in which the base station transmits the beam configuration information using the transmission beam groups of 1 & 7, 1 & 8, 2 & 7, 2 & 8.
  • the repetition indication information in the beam configuration information may be “OFF”.
  • FIG. 17 (c) shows an example in which the base station transmits the beam configuration information by using the transmission beam groups of 1 & 7.
  • the repeated indication information in the beam configuration information may be “ON”.
  • the base station may send feedback indication information to the user equipment, and receive beam selection information indicating the user equipment selection result sent by the user equipment, and the beam selection information instructs the user equipment according to the feedback indication information A selected transmission beam corresponding to one or more reception beams in at least one reception unit of the user equipment, wherein the feedback indication information may include the one or more reception units to be selected by the UE, that is, to be fed back And / or the number of transmit beams corresponding to the receive beam of each receiving unit.
  • the beam selection information may include an identifier of the at least one receiving unit and indication information of a transmitting beam corresponding to one or more receiving beams in the at least one receiving unit.
  • the beam selection information may further include channel feedback information corresponding to the transmission beam.
  • the UE may separately select one or more receiving beams from different receiving units, and feed back the indication information of the transmitting beams corresponding to the selected receiving beams to the base station, so that the base station can transmit correspondingly in the determining step S2201.
  • the number of receiving beams and corresponding transmission beams selected by the UE from different receiving units may be the same or different. For example, for each receiving unit, the UE may select 2 transmitting beams; for another example, for one receiving unit, the UE may select one transmitting beam, and for another receiving unit, the UE may select 3 transmitting beams.
  • the number of receiving units fed back by the UE and / or the number of beams selected for different receiving units can be preset and known by the UE and the base station, can also be configured by RRC signaling, and can also be determined by UE capability (UE Capability ) Information, the number of UE-side transceiver boards / receiving units / space filters and other parameters are determined.
  • the base station may determine the number of one or more receiving units fed back by the UE and / or the number of beams selected for different receiving units according to the UE capability information to ensure that the configured number does not exceed the capability of the UE. .
  • the transmitting the beam configuration information by using at least one transmission beam group includes: selecting one transmission beam in at least one transmission unit to form the transmission beam group transmission beam configuration information according to the beam selection information transmitted by the user equipment.
  • the base station may select a transmission beamforming transmission beam group in each transmission unit according to the beam selection information, or may select a transmission beamforming transmission beam group in some of the transmission units, which is not limited herein. .
  • the receiving unit of the UE may be the aforementioned UE, the transceiver board on the UE, the TXRU on the UE transceiver board, the radio frequency (RF) filter of the UE, or the spatial filter of the UE, and the like.
  • Each receiving unit of the UE can receive at least one beam at the same time.
  • the indication information of the transmission beam corresponding to the reception beam may indicate the transmission beam in multiple ways.
  • the indication information of the transmission beam may be determined by a beam index of the transmission beam (beam index), resource configuration of a beam reference signal, and one or more of a spatial filter to indicate the transmission beam.
  • the UE may send beam selection information indicating a selection result of the UE according to a report type preset in, for example, 3GPP R-16.
  • the UE may also send beam selection information indicating a UE selection result according to parameters redefined in the existing 3GPP R-15 standard.
  • FIG. 21 illustrates an example of beam selection in a wireless communication method according to an embodiment of the present invention.
  • the UE has two receiving units, the base station has two transmitting units, and each transmitting / receiving unit has two transmitting / receiving beams.
  • the UE obtains the channel measurement results of L1-RSRP as shown in FIG. 21 (a) according to its two receiving units and their corresponding beams.
  • the UE may use the channel measurement result to determine beam selection information, which indicates a transmission beam corresponding to each receiving beam in each receiving unit selected by the user equipment.
  • FIG. 21 illustrates an example of beam selection in a wireless communication method according to an embodiment of the present invention.
  • the UE has two receiving units, the base station has two transmitting units, and each transmitting / receiving unit has two transmitting / receiving beams.
  • the UE obtains the channel measurement results of L1-RSRP as shown in FIG. 21 (a) according to its two receiving units and their corresponding beams.
  • the UE may use the channel measurement result
  • the user equipment can select the transmission beam 1 corresponding to the reception beam 1 of its receiving unit 1 and the transmission beam 2 corresponding to the reception beam 2; in addition, it can also select The transmitting beam 4 corresponding to the receiving beam 3 of the receiving unit 2 and the transmitting beam 6 corresponding to the receiving beam 2. That is, corresponding to the receiving unit 1, the user equipment selects the transmission beam ⁇ 1,2 ⁇ ; and corresponding to the receiving unit 2, the user equipment selects the transmission beam ⁇ 4,6 ⁇ . Correspondingly, as shown in FIG.
  • the base station can select a transmission beam forming transmission beam group in each transmission unit according to the beam selection information of the user equipment. As shown in FIG. 21 (c), the transmission beam group can be ⁇ 1,6 ⁇ or ⁇ 2 , 6 ⁇ .
  • the wireless communication method it is possible to provide a specific signaling interaction scheme between the base station and the UE when selecting corresponding beams and formed beam groups for different transceiver units, so that The selection process improves the transmission quality of the wireless communication system, optimizes the allocation of channel transmission resources, and reduces resource overhead.
  • the user equipment may execute the wireless communication method. Since the operation of the user equipment is basically the same as each step of the wireless communication method described above, it is only briefly described here, and repeated description of the same content is omitted.
  • the user equipment 2300 includes a receiving unit 2310 and a feedback unit 2320. It should be recognized that FIG. 23 only shows components related to the embodiment of the present application, and other components are omitted, but this is only schematic. According to requirements, the user equipment 2300 may include other components.
  • the receiving unit 2310 receives beam configuration information sent by the base station by using at least one transmit beam group, where the beam configuration information includes an identifier of the at least one transmit beam group and measurement configuration information of the at least one transmit beam group.
  • the base station may select one or more transmit beam groups from at least one transmit beam group, and transmit beam configuration information including the transmit beam group identifier and measurement configuration information through the selected transmit beam group.
  • the at least one transmission beam group may be one or more transmission beam groups constructed by the beam selection method described above. Accordingly, the receiving unit 2310 may receive beam configuration information sent by the base station by using at least one transmission beam group.
  • the transmit beam group in the embodiment of the present invention may be built in the above-mentioned one CSI-ResourceConfig, or correspond to multiple CSI-ResourceConfigs, or may be built in one resourceForChannelMeasurement, or correspond to multiple resourceForChannelMeasurements, here No restrictions.
  • the measurement configuration information of the transmission beam group may include configuration information (or indication information) of at least one transmission beam in the transmission beam group, where the configuration information of the transmission beam may be used in various ways to the transmission beam group.
  • the transmission beam indicates, for example, the indication information of the transmission beam may indicate the transmission by one or more of a beam index of the transmission beam, a resource configuration index of a beam reference signal, and a spatial filter. Beam.
  • the measurement configuration information of the transmission beam group may further include: repetition indication information.
  • the repetition indication information may correspond to a certain transmission beam group of the base station to indicate whether the base station currently uses the same transmission beam (or spatial filter) to transmit the beam to the transmission beam group.
  • Configuration information For example, when the repetition indication information corresponds to the transmission beam group with the base station identifier of 1 and is "ON", the base station may be instructed to use the same transmission beam to transmit the beam to the transmission beam group as before Configuration information.
  • the UE may perform a beam scan using a different receiving beam group to select a receiving beam group corresponding to the transmitting beam group whose identifier is 1.
  • the base station may be instructed not to use the same transmission beam to transmit beam configuration information to the transmission beam group.
  • the UE may maintain the same
  • the receiving beam group receives beam configuration information and selects a transmitting beam group corresponding to the receiving beam group.
  • the repetition indication information may correspond to one or more transmission units of a base station to indicate whether, for one or more transmission units, the base station currently uses the same transmission beam as before to transmit a beam configuration information. For example, when the repetition indication information corresponds to the transmission unit 1 of the base station and is "ON", the base station may be instructed to transmit the beam configuration information to the transmission unit 1 by using the same transmission beam 1 as before. At this time, for this sending unit 1, the UE may use a different receiving beam group than before to perform beam scanning to select a receiving beam group corresponding to this sending beam 1.
  • the base station may be instructed to transmit beam configuration information using a transmission beam 2 that is different from the previous transmission beam 1.
  • the UE can maintain the same reception beam group reception as before, and select the same The transmit beam corresponding to this receive beam group.
  • the repetition indication information may use a value of one bit to indicate different states of "ON” or "OFF” thereof.
  • a bit with a value of 1 can be used to indicate "ON”
  • a bit with a value of 0 can be used to indicate "OFF”
  • a bit with a value of 0 can be used to indicate "ON”
  • a bit with a value of 1 can be used Means "OFF”.
  • the above various descriptions of the repeated indication information are merely examples. In practical applications, any representation manner of the repeated indication information may be used to perform the transmission beam group and / or the transmission beam repeated representation, which is not limited herein.
  • the beam configuration information sent by the base station may further include: the number of transmit beam groups that the base station needs to receive the feedback information from user equipment; accordingly, the user equipment may The feedback information is fed back by a quantity defined by the beam configuration information.
  • the beam configuration information sent by the base station may include: feedback information of 3 transmission beam groups needs to be received from a user equipment, so that even if the user equipment receives beam configuration information transmitted by, for example, 5 transmission beam groups, It is also possible to feed back only the feedback information corresponding to a maximum of three transmit beam groups.
  • the transmission beam group to which the feedback is directed can be selected in different ways, and details are not described herein again.
  • the above feedback information feedback method is only an example.
  • the number of transmit beam groups that the base station needs to receive the feedback information from the user equipment may be greater than, equal to, or less than the number of transmit beam groups that transmit the beam configuration information. There are no restrictions.
  • the measurement configuration information of the transmission beam group may include a channel quality type measured by a user equipment, and thus, the user equipment may obtain feedback information of a corresponding type of channel quality according to the channel quality type.
  • the type of channel quality measured by the base station to instruct the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRQ; in another example, the base station indicates that the type of channel quality measured by the user equipment may be RSRP, for example, it may be an average RSRP corresponding to the transmit beam group; In another example, the type of channel quality measured by the base station instructing the user equipment may be SINR, for example, it may be an average SINR corresponding to the transmit beam group.
  • the measurement configuration information of the transmitted beam group may further include measurement configuration information for indicating one or more reference signal strength measurements, for example, the measurement configuration information of the transmitted beam group may include one or more instructions.
  • CSI-RS Channel state information reference signal
  • the measurement configuration information of the transmission beam group may further include: measurement configuration information of RSSI corresponding to one or more CSI-RS or SSB and / or measurement configuration information of interference strength.
  • the feedback unit 2320 may feedback feedback information on channel quality according to the beam configuration information.
  • the feedback unit 2320 may define the The quantity is fed back to the feedback information.
  • the user equipment may obtain corresponding type of channel quality feedback information according to the channel quality type.
  • the type of channel quality measured by the base station to instruct the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRP.
  • the UE may be based on the measurement configuration information of the transmission beam group sent by the base station, for example, perform one or more CSI-RS or SSB REs. Measure to obtain the average L1-RSRP corresponding to the transmit beam group as feedback information about channel quality.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRQ, for example, it may be an average RSRQ corresponding to the transmit beam group.
  • the feedback unit 2320 may obtain the average L1-RSRQ of the transmission beam group based on the measurement configuration information of the transmission beam group, for example, according to L1-RSRQ obtained by measuring each reference signal configured in the transmission beam group. For example, when the measurement configuration information of the transmission beam group indicates that two reference signals are measured, the average value of the first L1-RSRQ and the second L1-RSRQ obtained can be used to obtain the average L1-RSRQ of the transmission beam group.
  • the L1-RSRQ of each reference signal can be obtained by measuring the strength of the reference signal and measuring the RSSI.
  • the measurement configuration information of the transmission beam group may include measurement configuration information for indicating a reference signal strength measurement.
  • the measurement configuration information of the transmission beam group may include measurement configuration information for CSI-RS intensity measurement or SSB. Measurement configuration information for intensity measurement.
  • the RSSI may be the total energy intensity received on the reference signal resource element or the resource element over the entire bandwidth of the time symbol where the reference signal resource element is located, or multiple references within the group may be received using the same receive beam
  • the reference signal configuration of the signal configuration is used as the interference strength measurement configuration of the reference signal.
  • the measurement configuration information of the transmission beam group may also be explicitly configured with: measurement configuration information of a received signal strength indication of at least one transmission beam in the transmission beam group and / or measurement configuration information of interference strength;
  • the feedback of the channel quality feedback information according to the beam configuration information may include: obtaining a reference of the transmit beam group according to the measurement configuration information indicated by the received signal strength and / or the measurement configuration information of interference strength. Signal reception quality.
  • the feedback of the channel quality feedback information according to the beam configuration information may further include: acquiring a reference signal reception quality of the transmission beam group according to a preset configuration. The preset configuration may be configured implicitly.
  • the preset configuration of the reference signal reception quality corresponding to the transmit beam group acquired according to the received signal strength indication and / or interference strength may be pre-configured on both sides of the UE and the base station; it may also be pre-configured To the base station and notify the UE in advance through signaling; or it may be pre-configured to the UE and reported to the base station through signaling.
  • the content of measurement configuration information and various preset configuration methods described above are merely examples. In practical applications, the content of any measurement configuration information and preset configuration methods may be adopted, and are not limited herein.
  • the type of channel quality measured by the base station to instruct the user equipment may be SINR, for example, it may be an average SINR corresponding to the transmit beam group.
  • the UE may obtain the average L1-SINR of the transmission beam group based on the measurement configuration information of the transmission beam group, for example, according to L1-SINR measured for each reference signal configured in the transmission beam group. For example, when the measurement configuration information of the transmission beam group indicates that two reference signals are measured, the average value of the first L1-SINR and the second L1-SINR obtained can be used to obtain the average L1-SINR of the transmission beam group.
  • the L1-SINR of each reference signal can be obtained by measuring the strength of the reference signal and measuring the strength of the interference.
  • the measurement configuration information of the transmission beam group may include: measurement configuration information for indicating one or more (for example, two) reference signal strength measurements, for example, the measurement configuration information of the transmission beam group may include an indication of CSI-RS Measurement configuration information for intensity measurement, or measurement configuration information that indicates SSB intensity measurement.
  • the measurement configuration information of the transmission beam group may also be explicitly configured with: measurement configuration information of interference intensity; correspondingly, according to the beam configuration information, feeding back feedback information on channel quality may include: The measurement configuration information of the interference intensity is used to obtain a signal-to-interference and noise ratio of the transmission beam group.
  • the feedback of the channel quality feedback information according to the beam configuration information may further include: acquiring a signal-to-interference and noise ratio of the transmit beam group according to a preset configuration.
  • the preset configuration may be configured implicitly.
  • the preset configuration for the signal-to-interference and noise ratio corresponding to the transmit beam group obtained according to the interference intensity can be pre-configured on both sides of the UE and the base station; it can also be pre-configured to the base station and passed The signaling is notified to the UE in advance; or it can be configured to the UE in advance and reported to the base station through signaling.
  • an implicit configuration it may be configured such that the interference corresponding to a certain reference signal in the transmit beam group can be measured by measuring the interference received on the reference signal resource element or the entire bandwidth of the time symbol where the reference signal resource element is located. Interference received at a resource element, or interference at the position of another reference signal element within a transmit beam group using the same receive beam.
  • the content of measurement configuration information and various preset configuration methods described above are merely examples. In practical applications, the content of any measurement configuration information and preset configuration methods may be adopted, and are not limited herein.
  • the feedback unit may measure the reference signal strength in the manner shown in FIG. 14.
  • the feedback unit may measure the reference signal strength and the interference strength in the manner shown in FIG. 15.
  • the feedback unit may measure the reference signal strength and the received signal strength indication in the manner shown in FIG. 16. Thereby, a channel quality measurement result of a transmission beam pair of the base station can be obtained.
  • the feedback unit 2320 may feedback the feedback information to a base station, so that the base station sends the at least one transmission information according to the feedback information.
  • the feedback information may be associated with one or more transmission beam groups in at least one transmission beam group, so that the feedback information may further include an identifier of the one or more transmission beam groups.
  • the feedback information reported by the UE may include, for example, the identifier 1 of the transmission beam group and its corresponding channel quality feedback information.
  • the type of channel quality measured by the base station to instruct the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the feedback information fed back by the UE may include one or more of the following feedback information: transmit beam group identifier_RSRP (or, CSI_transmit beam group identifier_RSRP and / or SSB_transmit beam group identifier_RSRP ), Transmit beam group identifier_RSRQ / SINR (or, CSI_transmit beam group identifier_RSRQ / SINR and / or SSB_transmit beam group identifier_RSRQ / SINR, where RSRQ means user feedback RSRQ, SINR means user feedback SINR, RSRQ / SINR means user feedback one or all of RSRQ and SINR), transmit beam group identifier_RSRP_RSRQ / SINR (or, CSI_transmit beam group identifier_RSRP_RSRQ / SINR and
  • the feedback information of the above-mentioned feedback unit 2320 is only an example. In practical applications, the feedback unit 2320 may use any feedback information about channel quality obtained according to the beam configuration information for feedback, which is not limited herein.
  • the feedback unit 2320 may use any feedback information about channel quality obtained according to the beam configuration information for feedback, which is not limited herein.
  • the optimal transmit beam group (for example, the channel with the best channel quality) The transmit beam group) feeds back the absolute channel quality measurement results, and feeds back the relative difference of the absolute channel quality measurement results of the optimal transmit beam group to other transmit beam groups.
  • the receiving unit 2310 may further receive information about the sending unit sent by the base station, where the information about the sending unit indicates at least An identifier of a transmitting unit and indication information of a transmitting beam possessed by the at least one transmitting unit; selecting one or more transmitting beams in the at least one transmitting unit according to the information about the transmitting unit, and feedback indicating the user Beam selection information for device selection results.
  • the beam selection information may include an identifier of the at least one transmission unit, indication information of a transmission beam selected in the transmission unit, and / or channel feedback information corresponding to the selected transmission beam.
  • the base station may enable the UE to know how many base units the base station has, and the identity of the sending unit and the sending beam according to the information about the sending unit sent by the base station, so that the UE can use Select one or more transmit beams to feed back to the base station. In this way, when the UE does not know the correspondence between the transmission unit and the corresponding transmission beam, it cannot feedback the transmission beam to the base station according to the division of the transmission beam by the transmission unit, so that the base station can have as many as possible when acquiring the transmission beam group.
  • the combined scheme of the transmit beam group is not know the correspondence between the transmission unit and the corresponding transmission beam, it cannot feedback the transmission beam to the base station according to the division of the transmission beam by the transmission unit, so that the base station can have as many as possible when acquiring the transmission beam group.
  • the sending unit of the base station may be the aforementioned base station, the transceiver board on the base station, the TXRU on the transceiver board of the base station, the radio frequency (RF) filter of the base station, or the spatial filter of the base station.
  • the transmitting units can each transmit at least one transmission beam simultaneously.
  • the indication information of the transmission beam may indicate the transmission beam in multiple ways.
  • the indication information of the transmission beam may be determined by a beam index, a beam reference of the transmission beam, and the like.
  • the indication information of the transmission beam possessed by a transmission unit of the base station may be built in a CSI-ResourceConfig shown in FIG.
  • the indication information of the transmission beams possessed by the at least one transmission unit may further include the number of transmission beams that the UE is required to select for one or more transmission units in the at least one transmission unit.
  • the sending unit may separately configure the number of transmission beams to be selected by the UE (or the maximum number of transmission beams to be selected), and these numbers may be the same or different.
  • the information about the sending unit may also include: repeat indication information, which is used to indicate whether the base station currently uses the same sending beam as the previous sending beam to send information about the sending unit to one or more sending units. information.
  • repeat indication information which is used to indicate whether the base station currently uses the same sending beam as the previous sending beam to send information about the sending unit to one or more sending units. information.
  • the principle and application manner of the repeated indication information in the information about the sending unit is similar to the repeated indication information in the measurement configuration information of the foregoing transmission beam group, and details are not described herein again.
  • the receiving unit 2310 may receive the beam configuration information sent by the base station according to the beam selection information by selecting a transmission beam in at least one transmission unit to form a transmission beam group.
  • the base station may select a transmission beamforming transmission beam group in each transmission unit according to the beam selection information, or may select a transmission beamforming transmission beam group in some of the transmission units, which is not limited herein. .
  • the base station first sends information about the sending unit, and the information about the sending unit may include an identifier of each sending unit and its The indication information of the transmitted beam. Subsequently, the UE may select a transmission beam in each transmission unit according to the information about the transmission unit sent by the base station, and feedback the selection result to the base station as beam selection information.
  • the UE may report the identification of the sending unit and the selected transmission beam at the same time; in another example, considering that the indication information of the transmission beam is different, the UE may also report only the selected transmission beam.
  • the beam selection information may further include channel feedback information corresponding to the selected transmission beam.
  • the base station may respectively select a corresponding transmission beam for different transmission units to form a transmission beam group.
  • the UE may receive feedback indication information sent by the base station, select a transmission beam corresponding to one or more reception beams in at least one reception unit of the user equipment according to the feedback indication information, and send the The base station sends beam selection information, which indicates the transmission beam selected by the user equipment.
  • the beam selection information may include an identifier of the at least one receiving unit and indication information of a transmitting beam corresponding to one or more receiving beams in the at least one receiving unit.
  • the beam selection information may further include channel feedback information corresponding to the transmission beam.
  • the feedback indication information may include the number of the one or more receiving units to be selected by the UE, that is, the number of transmitting beams corresponding to the receiving beams of each receiving unit.
  • the UE may select one or more receiving beams from different receiving units respectively, and feedback the indication information of the transmitting beam corresponding to the selected receiving beam to the base station, so that the base station can acquire the transmitting beam group At the same time, try to have more combinations of transmit beam groups.
  • the number of receiving beams and corresponding transmission beams selected by the UE according to different receiving units may be the same or different.
  • the number of one or more receiving units fed back by the UE and / or the number of beams selected for different receiving units can be set in advance and known by the UE and the base station, or can be configured by RRC signaling, or through UE capability information ,
  • the number of UE-side transceiver boards / receiving units / space filters and other parameters are determined.
  • the base station may determine the number of one or more receiving units fed back by the UE and / or the number of beams selected for different receiving units according to the UE capability information to ensure that the configured number does not exceed the capability of the UE.
  • the receiving unit 2310 may receive the beam configuration information sent by the base station according to the beam selection information by selecting a transmission beam in at least one transmission unit to form a transmission beam group.
  • the base station may select a transmission beamforming transmission beam group in each transmission unit according to the beam selection information, or may select a transmission beamforming transmission beam group in some of the transmission units, which is not limited herein. .
  • the receiving unit of the UE may be the aforementioned UE, the transceiver board on the UE, the TXRU on the UE transceiver board, the radio frequency (RF) filter of the UE, or the spatial filter of the UE, and the like.
  • Each receiving unit of the UE can receive at least one beam at the same time.
  • the indication information of the transmission beam corresponding to the reception beam may indicate the transmission beam in multiple ways.
  • the indication information of the transmission beam may be determined by a beam index of the transmission beam (beam index), a resource configuration index of a beam reference signal, and one or more of a spatial filter to indicate the transmission beam.
  • the UE may send beam selection information indicating a UE selection result according to a report type preset in, for example, 3GPP R-16, or may send an indication according to parameters newly defined in an existing 3GPP R-15 standard The beam selection information of the UE selection result is not repeated here.
  • the UE of the embodiment of the present invention it is possible to provide a specific signaling interaction scheme when the base station and the UE select corresponding beams and formed beam groups for different transceiver units, so that the signaling interaction and beam selection process can be performed according to the signaling interaction and beam selection process.
  • the signaling interaction and beam selection process can be performed according to the signaling interaction and beam selection process.
  • the base station can execute the above-mentioned wireless communication method. Since the operation of the base station is basically the same as each step of the information receiving method described above, it is only briefly described here, and repeated description of the same content is omitted.
  • the base station 2400 includes a sending unit 2410 and a receiving unit 2420. It should be recognized that FIG. 24 only shows components related to the embodiment of the present application, and other components are omitted, but this is only schematic, and the base station 2400 may include other components according to needs.
  • the sending unit 2410 sends beam configuration information by using at least one transmission beam group, where the beam configuration information includes an identifier of the at least one transmission beam group and measurement configuration information of the at least one transmission beam group.
  • the transmitting unit 2410 may select one or more transmission beam groups from at least one transmission beam group, and transmit beam configuration information including the transmission beam group identifier and measurement configuration information through the selected transmission beam group.
  • the at least one transmission beam group may be one or more transmission beam groups constructed by the beam selection method described above.
  • the transmit beam group in the embodiment of the present invention may be built in the above-mentioned one CSI-ResourceConfig, or correspond to multiple CSI-ResourceConfigs, or may be built in one resourceForChannelMeasurement, or correspond to multiple resourceForChannelMeasurements, here No restrictions.
  • the measurement configuration information of the transmission beam group may include configuration information (or indication information) of at least one transmission beam in the transmission beam group of the base station, where the configuration information of the transmission beam may be compared in multiple ways.
  • the transmission beam indicates, for example, the indication information of the transmission beam may be indicated by one or more of a beam index of the transmission beam, a resource allocation index of a beam reference signal, and a spatial filter. The transmission beam is described.
  • the measurement configuration information of the transmission beam group may further include: repetition indication information.
  • the repetition indication information may correspond to a certain transmission beam group of the base station to indicate whether the base station currently uses the same transmission beam as the previous transmission beam to transmit the beam configuration information to the transmission beam group.
  • the base station may be instructed to use the same transmission beam as the previous transmission beam configuration for the transmission beam group for the current beam configuration Information, at this time, the UE may perform a beam scan using a different receiving beam group from before to select a receiving beam group corresponding to the transmitting beam group whose identifier is 1; and when the repetition indication information and the identifier of the base station are 1 When the corresponding transmit beam group is “OFF”, the base station may be instructed to not use the same transmit beam to transmit beam configuration information to the transmit beam group. At this time, the UE may maintain the same receive as before.
  • the beam group receives beam configuration information and selects a transmission beam group corresponding to the reception beam group. .
  • the repetition indication information may correspond to one or more transmission units of a base station to indicate whether, for one or more transmission units, the base station currently uses the same transmission beam as before to transmit a beam configuration information.
  • the base station may be instructed to transmit the beam configuration information to the transmission unit 1 by using the same transmission beam 1 as before.
  • the UE may perform a beam scan using a different receiving beam group than before to select a receiving beam corresponding to this sending beam 1; and when the repetition indication information corresponds to the sending unit 1 of the base station When it is "OFF", the base station may be instructed to use the transmission beam 2 different from the previous transmission beam 1 to transmit beam configuration information.
  • the UE may maintain the same reception beam group reception as before for comparison, And select the transmit beam corresponding to this receive beam group.
  • the repetition indication information may use a value of one bit to indicate different states of "ON” or "OFF” thereof.
  • a bit with a value of 1 can be used to indicate "ON”
  • a bit with a value of 0 can be used to indicate "OFF”
  • a bit with a value of 0 can be used to indicate "ON”
  • a bit with a value of 1 can be used Means "OFF”.
  • the above various descriptions of the repeated indication information are merely examples. In practical applications, any representation manner of the repeated indication information may be used to perform the transmission beam group and / or the transmission beam repeated representation, which is not limited herein.
  • the beam configuration information sent by the base station may further include: the number of transmit beam groups that the base station needs to receive the feedback information from user equipment; accordingly, the user equipment may The feedback information is fed back by a quantity defined by the beam configuration information.
  • the beam configuration information sent by the base station may include: feedback information of 3 transmission beam groups needs to be received from a user equipment, so that even if the user equipment receives beam configuration information transmitted by, for example, 5 transmission beam groups, It is also possible to feed back only the feedback information corresponding to a maximum of three transmit beam groups.
  • the transmission beam group to which the feedback is directed can be selected in different ways. I won't repeat them here.
  • the above feedback information feedback method is only an example.
  • the number of transmit beam groups that the base station needs to receive the feedback information from the user equipment may be greater than, equal to, or less than the number of transmit beam groups that transmit the beam configuration information. There are no restrictions.
  • the measurement configuration information of the transmission beam group may include a channel quality type measured by a user equipment, and thus, the user equipment may obtain feedback information of a corresponding type of channel quality according to the channel quality type.
  • the type of channel quality measured by the base station to indicate to the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the base station indicates that the type of channel quality measured by the user equipment may be RSRQ; in another example, the base station indicates that the type of channel quality measured by the user equipment may be RSRP, for example, it may be the average RSRP corresponding to the transmit beam group; In another example, the type of channel quality measured by the base station instructing the user equipment may be SINR, for example, it may be an average SINR corresponding to the transmit beam group.
  • the measurement configuration information of the transmitted beam group may further include measurement configuration information for indicating one or more reference signal strength measurements, for example, the measurement configuration information of the transmitted beam group may include one or more instructions. Measurement configuration information of one CSI-RS intensity measurement, or measurement configuration information of one or more SSB intensity measurements. In another example, the measurement configuration information of the transmission beam group may further include: measurement configuration information of RSSI corresponding to one or more CSI-RS or SSB and / or measurement configuration information of interference strength.
  • the receiving unit 2420 receives feedback information about channel quality fed back by the user equipment according to the beam configuration information.
  • the user equipment when the beam configuration information sent by the sending unit 2410 includes the number of transmit beam groups that the base station needs to receive the feedback information from the user equipment, the user equipment may be configured according to the beam configuration. The limited amount of information feeds back the feedback information.
  • the user equipment may obtain a corresponding type of channel quality according to the channel quality type.
  • the type of channel quality measured by the base station to instruct the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the sending unit 2410 indicates that the type of channel quality measured by the user equipment may be RSRP.
  • the UE may be based on measurement configuration information of a transmission beam group sent by the base station, for example, for one or more CSI-RS or SSB. Measurement of a reference signal resource element (RE) to obtain an average L1-RSRP corresponding to the transmit beam group as feedback information about channel quality.
  • RE reference signal resource element
  • the sending unit 2410 indicates that the type of channel quality measured by the user equipment may be an RSRQ, for example, it may be an average RSRQ corresponding to a transmit beam group.
  • the UE may obtain an average L1-RSRQ of the transmission beam group based on measurement configuration information of the transmission beam group, for example, according to L1-RSRQ obtained by measuring each reference signal configured in the transmission beam group. For example, when the measurement configuration information of the transmission beam group indicates that two reference signals are measured, the average value of the first L1-RSRQ and the second L1-RSRQ obtained can be used to obtain the average L1-RSRQ of the transmission beam group.
  • the L1-RSRQ of each reference signal can be obtained by measuring the strength of the reference signal and measuring the RSSI.
  • the measurement configuration information of the transmission beam group may include measurement configuration information for indicating a reference signal strength measurement.
  • the measurement configuration information of the transmission beam group may include measurement configuration information for CSI-RS intensity measurement or SSB. Measurement configuration information for intensity measurement.
  • the RSSI may be the total energy intensity received on the reference signal resource element or the resource element over the entire bandwidth of the time symbol where the reference signal resource element is located, or multiple references within the group may be received using the same receive beam
  • the reference signal configuration of the signal configuration is used as the interference strength measurement configuration of the reference signal.
  • the measurement configuration information of the transmission beam group may also be explicitly configured with: measurement configuration information of a received signal strength indication of at least one transmission beam in the transmission beam group and / or measurement configuration information of interference strength;
  • the feedback of the channel quality feedback information according to the beam configuration information may include: obtaining a reference of the transmit beam group according to the measurement configuration information indicated by the received signal strength and / or the measurement configuration information of interference strength. Signal reception quality.
  • the feedback of the channel quality feedback information according to the beam configuration information may further include: acquiring a reference signal reception quality of the transmission beam group according to a preset configuration. The preset configuration may be configured implicitly.
  • the preset configuration of the reference signal reception quality corresponding to the transmit beam group acquired according to the received signal strength indication and / or interference strength may be pre-configured on both sides of the UE and the base station; it may also be pre-configured To the base station and notify the UE in advance through signaling; or it may be pre-configured to the UE and reported to the base station through signaling.
  • the content of measurement configuration information and various preset configuration methods described above are merely examples. In practical applications, the content of any measurement configuration information and preset configuration methods may be adopted, and are not limited herein.
  • the sending unit 2410 indicates that the type of channel quality measured by the user equipment may be SINR, for example, it may be an average SINR corresponding to the transmit beam group.
  • the UE may obtain the average L1-SINR of the transmission beam group based on the measurement configuration information of the transmission beam group, for example, according to L1-SINR measured for each reference signal configured in the transmission beam group. For example, when the measurement configuration information of the transmission beam group indicates that two reference signals are measured, the average value of the first L1-SINR and the second L1-SINR obtained can be used to obtain the average L1-SINR of the transmission beam group.
  • the L1-SINR of each reference signal can be obtained by measuring the strength of the reference signal and measuring the strength of the interference.
  • the measurement configuration information of the transmission beam group may include: measurement configuration information for indicating one or more (for example, two) reference signal strength measurements, for example, the measurement configuration information of the transmission beam group may include an indication of CSI-RS Measurement configuration information for intensity measurement, or measurement configuration information that indicates SSB intensity measurement.
  • the measurement configuration information of the transmission beam group may also be explicitly configured with: measurement configuration information of interference intensity; correspondingly, according to the beam configuration information, feeding back feedback information on channel quality may include: The measurement configuration information of the interference intensity is used to obtain a signal-to-interference and noise ratio of the transmission beam group.
  • the feedback of the channel quality feedback information according to the beam configuration information may further include: acquiring a signal-to-interference and noise ratio of the transmit beam group according to a preset configuration.
  • the preset configuration may be configured implicitly.
  • the preset configuration for the signal-to-interference and noise ratio corresponding to the transmit beam group obtained according to the interference intensity can be pre-configured on both sides of the UE and the base station; it can also be pre-configured to the base station and passed The signaling is notified to the UE in advance; or it can be configured to the UE in advance and reported to the base station through signaling.
  • an implicit configuration it may be configured such that the interference corresponding to a certain reference signal in the transmit beam group can be measured by measuring the interference received on the reference signal resource element or the entire bandwidth of the time symbol where the reference signal resource element is located. Interference received at a resource element, or interference at the position of another reference signal element within a transmit beam group using the same receive beam.
  • the content of measurement configuration information and various preset configuration methods described above are merely examples. In practical applications, the content of any measurement configuration information and preset configuration methods may be adopted, and are not limited herein.
  • the UE may measure the reference signal strength in the manner described above with reference to FIG. 14. Alternatively, the UE may measure the reference signal strength and the interference strength in the manner described above with reference to FIG. 15. Alternatively, the UE may measure the reference signal strength and the received signal strength indication in the manner described above with reference to FIG. 16. Thereby, a channel quality measurement result of the transmission beam group of the base station can be obtained, and the result is fed back to the base station.
  • the base station may select one or more transmission beam groups from the at least one transmission beam group according to the received feedback information about channel quality.
  • the feedback information may be associated with one or more transmission beam groups in at least one transmission beam group, so that the feedback information may further include an identifier of the one or more transmission beam groups.
  • the feedback information reported by the UE may include, for example, the identifier 1 of the transmission beam group and its corresponding channel quality feedback information.
  • the type of channel quality measured by the base station to instruct the user equipment may be, for example, RSRQ, RSRP, SINR, RSSI, and so on.
  • the feedback information fed back by the UE may include one or more of the following feedback information: transmit beam group identifier_RSRP (or, CSI_transmit beam group identifier_RSRP and / or SSB_transmit beam group identifier_RSRP ), Transmit beam group identifier_RSRQ / SINR (or, CSI_transmit beam group identifier_RSRQ / SINR and / or SSB_transmit beam group identifier_RSRQ / SINR, where RSRQ means user feedback RSRQ, SINR means user feedback SINR, RSRQ / SINR means user feedback one or all of RSRQ and SINR), transmit beam group identifier_RSRP_RSRQ / SINR (or, CSI_transmit beam group identifier_RSRP_RSRQ / SINR and / or SSB_transmit beam group identifier_RSRP_RSRQ / SINR
  • RSRP_RSRQ means that the user feeds back both RS
  • the above feedback information of the UE is only an example. In practical applications, the UE may use any feedback information about channel quality obtained according to the beam configuration information for feedback, which is not limited herein.
  • the optimal transmission beam group (such as the transmission channel with the best channel quality) Group) feedback the absolute channel quality measurement results, and feedback the relative difference of the absolute channel quality measurement results of the optimal transmission beam group to other transmission beam groups.
  • the base station may further send information about the sending unit, where the information about the sending unit indicates an identifier of at least one sending unit and indication information of a sending beam owned by the at least one sending unit, So that the user equipment selects one or more transmission beams in the at least one transmission unit according to the information about the transmission unit, and feeds back beam selection information indicating a selection result of the user equipment.
  • the beam selection information may include an identifier of the at least one transmission unit, indication information of a transmission beam selected in the transmission unit, and / or channel feedback information corresponding to the selected transmission beam.
  • the base station may enable the UE to know how many base units the base station has, and the identity of the sending unit and the sending beam according to the information about the sending unit sent by the base station, so that the UE can use Select one or more transmit beams to feed back to the base station. This prevents the UE from being unable to feed back the transmission beam to the base station according to the division of the transmission beam by the transmission unit when it does not know the correspondence between the transmission unit and the corresponding transmission beam, so that the base station can determine the transmission beam group in step S2201, Try to have more combinations of transmit beam groups.
  • the sending unit of the base station may be the aforementioned base station, the transceiver board on the base station, the TXRU on the transceiver board of the base station, the radio frequency (RF) filter of the base station, or the spatial filter of the base station.
  • the transmitting units can each transmit at least one transmission beam simultaneously.
  • the indication information of the transmission beam may indicate the transmission beam in multiple ways.
  • the indication information of the transmission beam may be determined by a beam index, a beam reference of the transmission beam, and the like.
  • One or more of a signal resource configuration index and a spatial filter to indicate the transmission beam; in addition, the indication information of the transmission beam possessed by a transmission unit of the base station may be built in a CSI-ResourceConfig shown in FIG.
  • the indication information of the transmission beams of the at least one transmission unit may further include the number of transmission beams that the UE is desired to select for one or more transmission units in the at least one transmission unit, where The sending unit can be configured with the number of transmission beams (or the maximum number of transmission beams to be selected) to be selected by the UE, and these numbers can be the same or different.
  • the information about the sending unit may also include: repeat indication information, which is used to indicate whether the base station currently uses the same sending beam as the previous sending beam to send information about the sending unit to one or more sending units. information.
  • repeat indication information which is used to indicate whether the base station currently uses the same sending beam as the previous sending beam to send information about the sending unit to one or more sending units. information.
  • the principle and application manner of the repeated indication information in the information about the sending unit is similar to the repeated indication information in the measurement configuration information of the foregoing transmission beam group, and details are not described herein again.
  • the sending unit 2410 may select one sending beam in at least one sending unit according to the beam selection information fed back by the user equipment to form a sending beam group and send the beam configuration information.
  • the base station may select a transmission beamforming transmission beam group in each transmission unit according to the beam selection information, or may select a transmission beamforming transmission beam group in some of the transmission units, which is not limited herein. .
  • the base station first sends information about the sending unit, and the information about the sending unit may include an identifier of each sending unit. And the indication information of the transmitted beam. Subsequently, the UE may select a transmission beam in each transmission unit according to the information about the transmission unit sent by the base station, and feedback the selection result to the base station as beam selection information.
  • the UE may report the identification of the sending unit and the selected transmission beam at the same time; in another example, considering that the indication information of the transmission beam is different, the UE may also report only the selected transmission beam.
  • the beam selection information may further include channel feedback information corresponding to the selected transmission beam.
  • the base station may respectively select a corresponding transmission beam for different transmission units to form a transmission beam group.
  • the base station may further send feedback indication information to the user equipment, and receive, through a receiving unit (not shown), beam selection information indicating the user equipment selection result sent by the user equipment, the beam selection information Instruct the user equipment to select a transmit beam corresponding to one or more receive beams in at least one receiving unit of the user equipment according to the feedback instruction information, where the feedback instruction information may include what the UE wants to select, that is, to feedback The number of the one or more receiving units, and / or the number of transmitting beams corresponding to the receiving beam of each receiving unit.
  • the beam selection information may include an identifier of the at least one receiving unit and indication information of a transmitting beam corresponding to one or more receiving beams in the at least one receiving unit.
  • the beam selection information may further include channel feedback information corresponding to the transmission beam.
  • the UE may select one or more receiving beams respectively from different receiving units, and feedback the indication information of the transmitting beam corresponding to the selected receiving beam to the base station, so that the base station can correspond in the determining step S2201.
  • the number of receiving beams and corresponding transmission beams selected by the UE according to different receiving units may be the same or different. For example, for each receiving unit, the UE may select 2 transmitting beams; for another example, for one receiving unit, the UE may select one transmitting beam, and for another receiving unit, the UE may select 3 transmitting beams.
  • the number of one or more receiving units fed back by the UE and / or the number of beams selected by the UE for different receiving units can be set in advance and known by the UE and the base station, or can be configured by RRC signaling.
  • the parameters such as UE capability information and the number of UE-side transceiver boards / receiving units / spatial filters are determined.
  • the base station may determine the number of one or more receiving units fed back by the UE and / or the number of beams selected for different receiving units according to the UE capability information to ensure that the configured number does not exceed the capability of the UE.
  • the sending unit 2410 may select one sending beam in at least one sending unit according to the beam selection information sent by the user equipment to form a sending beam group and send the beam configuration information.
  • the base station may select a transmission beamforming transmission beam group in each transmission unit according to the beam selection information, or may select a transmission beamforming transmission beam group in some of the transmission units, which is not limited herein. .
  • the receiving unit of the UE may be the aforementioned UE, the transceiver board on the UE, the TXRU on the UE transceiver board, the radio frequency (RF) filter of the UE, or the spatial filter of the UE, and the like.
  • Each receiving unit of the UE can receive at least one beam at the same time.
  • the indication information of the transmission beam corresponding to the reception beam may indicate the transmission beam in multiple ways.
  • the indication information of the transmission beam may be determined by a beam index of the transmission beam (beam index), a resource configuration index of a beam reference signal, and one or more of a spatial filter to indicate the transmission beam.
  • the UE may send beam selection information indicating a UE selection result according to a report type preset in, for example, 3GPP R-16, or may send an indication according to parameters newly defined in an existing 3GPP R-15 standard The beam selection information of the UE selection result is not repeated here.
  • the base station By using the base station according to the embodiment of the present invention, it is possible to provide a specific signaling interaction scheme when the base station and the UE select corresponding beams and formed beam groups for different transceiver units, according to the signaling interaction and the beam selection process. To improve the transmission quality of wireless communication systems, optimize the allocation of channel transmission resources, and reduce resource overhead.
  • a transmitting device, a receiving device, and the like according to an embodiment of the present invention can function as a computer that executes processing of the wireless communication method of the present invention.
  • 25 is a diagram illustrating an example of a hardware configuration of a user equipment and a base station according to an embodiment of the present invention.
  • the above-mentioned user equipment 2300 and base station 2400 may be configured as computer devices that physically include a processor 2510, a memory 2520, a memory 2530, a communication device 2540, an input device 2550, an output device 2560, a bus 2570, and the like.
  • the hardware structure of the user equipment 2300 and the base station 2400 may include one or more devices shown in the figure, or may not include some devices.
  • processor 2510 For example, only one processor 2510 is shown, but multiple processors may be used.
  • processing may be performed by one processor, or processing may be performed by more than one processor simultaneously, sequentially, or by other methods.
  • the processor 2010 may be installed by more than one chip.
  • Each function in the user equipment 2300 and the base station 2400 is implemented, for example, by reading prescribed software (program) into hardware such as the processor 2510 and the memory 2520, so that the processor 2510 performs calculations, and the communication device 2040 The communication performed is controlled, and the reading and / or writing of data in the memory 2520 and the memory 2530 is controlled.
  • prescribed software program
  • the processor 2510 performs calculations
  • the communication device 2040 The communication performed is controlled, and the reading and / or writing of data in the memory 2520 and the memory 2530 is controlled.
  • the processor 2510 controls, for example, the entire computer by operating an operating system.
  • the processor 2510 may be composed of a central processing unit (CPU, Central Processing Unit) including an interface with a peripheral device, a control device, a computing device, a register, and the like.
  • CPU Central Processing Unit
  • the processor 2510 reads a program (program code), software modules, data, and the like from the memory 2030 and / or the communication device 2540 to the memory 2520, and performs various processes according to them.
  • a program program code
  • software modules software modules
  • data data
  • the like data
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments can be adopted.
  • the memory 2520 is a computer-readable recording medium, and may be, for example, a read-only memory (ROM, ReadOnlyMemory), a programmable read-only memory (EPROM, ErasableProgrammableROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), or a random access memory ( RAM, Random Access Memory), or other appropriate storage media.
  • the memory 2020 may also be referred to as a register, a cache, a main memory (main storage device), and the like.
  • the memory 2520 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to an embodiment of the present invention.
  • the memory 2530 is a computer-readable recording medium, and may be, for example, a flexible disk, a floppy (registered trademark) disk, a floppy disk, a magneto-optical disk (for example, a read-only optical disk (CD-ROM (CompactDiscROM), etc.), digital universal Optical disc, Blu-ray (registered trademark) disc), removable disk, hard drive, smart card, flash memory device (e.g., card, stick, key driver), magnetic stripe, database, server And at least one of other suitable storage media.
  • the memory 2530 may also be referred to as an auxiliary storage device.
  • the communication device 2540 is hardware (transmitting / receiving equipment) for performing communication between computers through a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like.
  • the communication device 2540 may include, for example, Frequency Division Duplex (FDD) and / or Time Division Duplex (TDD), and may include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 2550 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 2560 is an output device (for example, a display, a speaker, a light emitting diode (LED, Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 2550 and the output device 2560 may be an integrated structure (for example, a touch panel).
  • bus 2570 for communicating information.
  • the bus 2570 may be composed of a single bus, or may be composed of different buses between devices.
  • the user equipment 2300 and the base station 2400 may include a microprocessor, a digital signal processor (DSP, DigitalSignalProcessor), an application specific integrated circuit (ASIC, Application Specific Integrated Circuit), a programmable logic device (PLD, ProgrammableLogic Device), and a field programmable gate array (FPGA). , FieldProgrammableGateArray) and other hardware, you can use this hardware to implement some or all of the functional blocks.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the processor 2510 may be installed by at least one of these pieces of hardware.
  • the channel and / or symbol may also be a signal (signaling).
  • signals can also be messages.
  • the reference signal may also be simply referred to as RS (ReferenceSignal), and may also be referred to as a pilot, pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may also be referred to as a subframe.
  • a subframe may be composed of one or more time slots in the time domain.
  • the subframe may be a fixed time length (for example, 1 ms) that does not depend on parameter configuration.
  • the time slot can be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • the time slot may also be a time unit based on parameter configuration.
  • the time slot may include multiple micro time slots. Each microslot may be composed of one or more symbols in the time domain.
  • mini-slots can also be called sub-slots.
  • Radio frames, sub-frames, time slots, micro-slots, and symbols all represent time units when transmitting signals. Radio frames, subframes, time slots, mini-slots, and symbols can also use other corresponding names.
  • a sub-frame may be referred to as a Transmission Time Interval (TTI, TransmissionTime Interval)
  • TTI TransmissionTime Interval
  • multiple consecutive sub-frames may also be referred to as a TTI
  • a time slot or a micro-slot may also be referred to as a TTI.
  • the subframe and / or TTI may be a subframe (1 ms) in the existing LTE, or a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms.
  • a unit representing a TTI may also be called a time slot, a micro time slot, etc. instead of a subframe.
  • TTI refers to, for example, a minimum time unit scheduled in wireless communication.
  • a radio base station performs scheduling for all user terminals to allocate radio resources (bandwidth, transmission power, etc. that can be used in each user terminal) in units of TTI.
  • radio resources bandwidth, transmission power, etc. that can be used in each user terminal
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a data packet (transport block), a code block, and / or a codeword that has undergone channel coding, or may be a processing unit such as scheduling, link adaptation, or the like.
  • the time interval for example, the number of symbols
  • the time interval may be shorter than the TTI.
  • TTI time slot or a micro time slot
  • more than one TTI that is, more than one time slot or more than one micro time slot
  • the number of time slots (the number of microslots) constituting the minimum time unit of the schedule can be controlled.
  • a TTI with a time length of 1 ms can also be called a regular TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe.
  • TTIs shorter than regular TTIs may also be referred to as compressed TTIs, short TTIs, partial TTIs (partial or fractional TTIs), compressed subframes, short subframes, mini-slots, or sub-slots.
  • long TTIs such as regular TTIs, subframes, etc.
  • short TTIs such as compressed TTIs
  • TTIs that have a shorter TTI length than 1ms and longer TTI length is replaced by TTI.
  • a resource block is a resource allocation unit in the time and frequency domains. In the frequency domain, one or more consecutive subcarriers (subcarriers) can be included.
  • the RB may include one or more symbols in the time domain, and may also be a length of a time slot, a micro time slot, a subframe, or a TTI.
  • One TTI and one subframe may be respectively composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB, PhysicalRB), a sub-carrier group (SCG, Sub-CarrierGroup), a resource element group (REG, ResourceElementGroup), a PRG pair, and an RB pair.
  • the resource block may be composed of one or more resource elements (RE, ResourceElement).
  • RE resource elements
  • ResourceElement a radio resource region of one subcarrier and one symbol.
  • the above-mentioned structures of the radio frame, the sub-frame, the time slot, the micro time slot, and the symbol are merely examples.
  • the number of subframes included in a radio frame, the number of time slots per subframe or radio frame, the number of microslots included in a time slot, the number of symbols and RBs included in a time slot or microslot The structure of the number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of a cyclic prefix (CP, Cyclic Prefix) can be changed in various ways.
  • the information, parameters, and the like described in this specification may be expressed in absolute values, may be expressed in relative values to a predetermined value, or may be expressed in corresponding other information.
  • radio resources may be indicated by a prescribed index.
  • formulas and the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, etc. described in this specification can be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. that may be mentioned in all the above descriptions can be passed by voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any To represent.
  • information, signals, etc. may be output from the upper layer to the lower layer, and / or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via multiple network nodes.
  • Information or signals input or output can be stored in a specific place (for example, memory), or can be managed through a management table. Information or signals input or output can be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of information is not limited to the methods / embodiments described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (for example, Downlink Control Information (DCI, DownlinkControlInformation), uplink control information (UCI, UplinkControlInformation)), upper layer signaling (for example, Radio Resource Control (RRC, RadioResourceControl) ) Signaling, broadcast information (master information block (MIB, MasterInformationBlock), system information block (SIB, SystemInformationBlock, etc.), media access control (MAC, MediumAccessControl) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC RadioResourceControl
  • Signaling broadcast information (master information block (MIB, MasterInformationBlock), system information block (SIB, SystemInformationBlock, etc.), media access control (MAC, MediumAccessControl) signaling
  • MIB master information block
  • SIB system information block
  • SIB SystemInformationBlock
  • MAC Medium
  • physical layer signaling may also be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling can also be called an RRC message, for example, it can be an RRC Connection Setup (RRC) Connection Setup message, an RRC Connection Reconfiguration message, and so on.
  • the MAC signaling may be notified by, for example, a MAC control unit (MAC CE (Control Element)).
  • notification of prescribed information is not limited to being performed explicitly, and may be performed implicitly (for example, by not performing notification of the prescribed information or by notification of other information).
  • the judgment can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true or false, or by a numerical comparison ( (For example, comparison with a predetermined value).
  • software is called software, firmware, middleware, microcode, hardware description language, or other names, it should be broadly interpreted as referring to commands, command sets, codes, code segments, program codes, programs, subprograms Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, steps, functions, etc.
  • software, commands, information, etc. may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.) and / or wireless technology (infrared, microwave, etc.) to send software from websites, servers, or other remote resources
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” used in this specification are used interchangeably.
  • radio base station (BS, BaseStation)
  • radio base station eNB
  • gNB gNodeB
  • cell a cell group
  • carrier a carrier
  • component carrier a wireless base station
  • a wireless base station is sometimes referred to by a term such as a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, or a small cell.
  • a wireless base station can accommodate one or more (eg, three) cells (also called sectors). When a wireless base station accommodates multiple cells, the entire coverage area of the wireless base station can be divided into multiple smaller areas, and each smaller area can also pass through the wireless base station subsystem (for example, a small wireless base station for indoor use (RF remote Head (RRH, RemoteRadioHead))) to provide communication services.
  • RRH Remote Head
  • the term "cell” or “sector” refers to a part or the whole of the coverage area of a radio base station and / or a radio base station subsystem that performs communication services in the coverage.
  • Wireless base stations are sometimes referred to by terms such as fixed station, NodeB, eNodeB (eNB), access point, access point, transmission point, reception point, femto cell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • Mobile stations are also sometimes used by those skilled in the art as user stations, mobile units, user units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile user stations, access terminals, mobile terminals, wireless Terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • both the user equipment 1800 and the base station 1900 in this specification may be replaced with a wireless base station or a user terminal.
  • a specific operation performed by a radio base station may be performed by an upper node of the radio base station in some cases.
  • various actions performed for communication with the terminal can be performed by the wireless base station, or more than one wireless base station.
  • MME mobility management entity
  • S-GW serving gateway
  • Serving-Gateway Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-Beyond LTE-Beyond 3rd generation mobile communication system
  • IMT-Advanced 4th generation mobile communication system
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • future wireless access FAA, Future Radio Access
  • New Radio Access Technology New-RAT, Radio Access Technology
  • New Radio NR, New Radio
  • New Radio Access NX, New Radio Access
  • New Generation Radio Access New Generation Radio Access
  • GSM Global System for Mobile Communications
  • GSM registered trademark
  • GSM Global System for Mobile Communications
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 ultra wideband (UWB, Ultra-WideBand), Bluetooth
  • any reference to units using the names "first”, “second”, etc. in this specification does not comprehensively limit the number or order of these units. These names can be used in this specification as a convenient method to distinguish two or more units. Therefore, the reference of the first unit and the second unit does not mean that only two units can be used or that the first unit must precede the second unit in several forms.
  • determining used in this specification may include various actions. For example, regarding “determination”, calculating, computing, processing, deriving, investigating, lookingup (e.g., tables, databases, or other data) Searching in the structure), ascertaining, etc. are considered to be “judging (determining)”. In addition, as for “determination”, it is also possible to receive (e.g., receive information), transmit (e.g., send information), input (input), output (output), accessing (e.g., Accessing data in memory) and so on are regarded as “judgment (determination)”. In addition, regarding “determination (determination)”, “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. may be regarded as “determination (determining)”. That is, regarding “determination (determination)", several actions can be regarded as “determination (determination)”.
  • connection refers to any direct or indirect connection or combination between two or more units. This includes the case where there are one or more intermediate units between two units that are “connected” or “combined” with each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • "connect” can also be replaced with "access”.
  • two units can be considered as using one or more wires, cables, and / or printed electrical connections, and as several non-limiting and non-exhaustive examples, by using a radio frequency region , Microwave energy, and / or electromagnetic energy of wavelengths in both the visible and invisible light regions are “connected” or “combined” with each other.

Abstract

本发明的实施例提供了无线通信方法、用户设备和基站。由用户设备执行的无线通信方法包括:接收基站利用至少一个参考信号组发送的参考信号配置信息,所述参考信号配置信息包括至少一个参考信号组的标识和至少一个参考信号组的测量配置信息;根据所述参考信号配置信息,反馈关于信道质量的反馈信息。

Description

无线通信方法、用户设备和基站 技术领域
本申请涉及无线通信领域,并且具体涉及可以在无线通信系统中使用的无线通信方法、用户设备和基站。
背景技术
在5G场景中,特别是5G高频场景中,或者在用户设备(UE)通过双重连接(Dual Connectivity)而连接到5G的基站和/或长期演进(LTE)基站的场景中,提出在基站和UE中使用波束成形技术,即基站和UE均可以使用一个或多个波束来进行信息的发送和接收。进一步地,在基站和UE均包含一个或多个收发板(panel)的场景中,每一个收发板上分别可以承载一个或多个收发单元(TXRU)来收发信息,而每个收发单元也均可以形成一个或多个波束。但是,在上述场景中,一旦基站发送的具有指向性的波束偏离了用户设备的方向,则会导致用户设备无法接收到高质量的无线信号。
因此,希望在基站和UE选择不同收发单元对应的波束及所形成的波束组时,在基站和UE之间进行信令交互,从而能够根据上述波束选择和信令交互来提高无线通信系统的传输质量,优化信道传输资源的配置,减少资源开销。
发明内容
根据本发明的一个方面,提供了一种无线通信方法,由用户设备执行,包括:接收基站利用至少一个发送波束组发送的波束配置信息,所述波束配置信息包括至少一个发送波束组的标识和至少一个发送波束组的测量配置信息;根据所述波束配置信息,反馈关于信道质量的反馈信息。
根据本发明的另一方面,提供了一种无线通信方法,由基站执行,包括:利用至少一个发送波束组发送波束配置信息,所述波束配置信息包括至少一个发送波束组的标识和至少一个发送波束组的测量配置信息;接收用户设备根据所述波束配置信息反馈的关于信道质量的反馈信息。
根据本发明的另一方面,提供了一种无线通信方法,由用户设备执行,包括:接收基站发送的关于发送单元的信息,所述关于发送单元的信息指示至少一个发送单元的标识及所述至少一个发送单元所具有的参考信号的配置信息;根据所述关于发送单元的信息,选择所述至少一个发送单元中的一个或多个参考信号,并反馈指示用户设备选择结果的参考信号选择信息。
根据本发明的另一方面,提供了一种无线通信方法,由用户设备执行,包括:接收基站发送的反馈指示信息,根据该反馈指示信息选择与用户设备的至少一个接收单元中的一个或多个接收波束对应的参考信号;发送参考信号选择信息,所述参考信号选择信息指示用户设备所选择的参考信号。
根据本发明的另一方面,提供了一种用户设备,包括:接收单元,配置为接收基站利用至少一个发送波束组发送的波束配置信息,所述波束配置信息包括至少一个发送波束组的标识和至少一个发送波束组的测量配置信息;反馈单元,配置为根据所述波束配置信息,反馈关于信道质量的反馈信息。
根据本发明的另一方面,提供了一种基站,包括:发送单元,配置为利用至少一个发送波束组发送波束配置信息,所述波束配置信息包括至少一个发送波束组的标识和至少一个发送波束组的测量配置信息;接收单元,配置为接收用户设备根据所述波束配置信息反馈的关于信道质量的反馈信息。
如下文所述,由于基站可以使用不同的发送波束来发送相应的参考信号,因此,可以将发送波束与参考信号等同地使用。因此,在下文中,可互换地使用发送波束和参考信号以及发送波束组和参考信号组。
利用本发明的上述方面,能够在基站和UE之间,在对不同收发单元选择对应的波束及所形成的波束组时,提供具体的信令交互方案,以根据信令交互和波束选择过程来提高无线通信系统的传输质量,优化信道传输资源的配置,减少资源开销。
附图说明
通过结合附图对本发明的实施例进行详细描述,本发明的上述和其它目的、特征、优点将会变得更加清楚。
图1示出根据本发明一个实施例的无线通信系统的示意图;
图2示出了本发明一个实施例中基站和用户设备的波束传输示意图;
图3示出如本发明一个实施例的波束选择方法的示例;
图4(a)示出进行发送波束/接收波束轮询的示意图,图4(b)示出在图4(a)所确定的发送/接收波束对的基础上,确定发送波束组和/或接收波束组的示意图;
图5(a)示出分别进行发送波束/接收波束轮询的示意图,图5(b)示出在图5(a)的基础上,确定基站的发送波束组和/或UE的接收波束组的示意图;
图6(a)示出分别进行发送波束/接收波束轮询的示意图,图6(b)示出确定基站的发送波束组和/或UE的接收波束组的示意图;
图7(a)示出确定基站第一发送单元上的发送波束的示意图,图7(b)示出确定基站第二发送单元上的发送波束的示意图;
图8(a)示出在UE的每个接收单元上进行接收波束轮询的示意图,图8(b)示出在基站的每个发送单元上进行发送波束轮询的示意图,图8(c)示出对基站10的某个发送单元上的一个或多个发送波束中的所有发送波束进行轮询的示意图,图8(d)示出对UE的某个接收单元上的一个或多个接收波束中的所有接收波束进行轮询的示意图;
图9(a)示出在UE的每个接收单元上进行接收波束轮询的示意图,图9(b)示出在基站的每个发送单元上进行发送波束轮询的示意图,图9(c)示出对每对发送/接收波束对进行轮询,以确定第一发送/接收波束对的示意图,图9(d)示出确定第二发送/接收波束对的示意图;
图10示出根据本发明一个实施例的无线通信方法的流程图;
图11示出CSI资源配置的具体内容示例;
图12(a)示出根据本发明一个实施例的重复指示信息的示意图,图12(b)示出根据本发明另一个实施例的重复指示信息的示意图;
图13(a)示出根据本发明一个实施例的重复指示信息的示意图,图13(b)示出根据本发明另一个实施例的重复指示信息的示意图;
图14(a)示出对CSI-RS进行强度测量的一个示例,图14(b)示出对CSI-RS进行强度测量的另一个示例,图14(c)示出对SSB进行强度测量的一个示例,图14(d)示出对SSB进行强度测量的另一个示例;
图15(a)示出对CSI-RS进行参考信号强度和干扰强度测量的一个示例, 图15(b)示出对CSI-RS进行参考信号强度和干扰强度测量的另一个示例,图15(c)示出对CSI-RS进行参考信号强度和干扰强度测量的再一个示例,图15(d)示出对SSB进行参考信号强度和干扰强度测量的一个示例;
图16(a)示出对CSI-RS进行参考信号强度和接收信号强度指示测量的一个示例,图16(b)示出对CSI-RS进行参考信号强度和接收信号强度指示测量的另一个示例,图16(c)示出对CSI-RS进行参考信号强度和接收信号强度指示测量的再一个示例,图16(d)示出对SSB进行参考信号强度和接收信号强度指示测量的一个示例;
图17(a)示出基站选择的发送波束示意图,图17(b)示出基站分别采用所选择的发送波束组发送波束配置信息的一个示例,图17(c)示出基站分别采用所选择的发送波束组发送波束配置信息的另一个示例;
图18中示出所设置的上报类型参数示例;
图19示出重新定义的参数示例;
图20(a)示出基站选择的发送波束示意图,图20(b)示出基站分别采用所选择的发送波束组发送波束配置信息的一个示例;
图21(a)示出UE获取的对应不同的接收波束的测量结果示意图,图21(b)示出基站选择的发送波束示意图;图21(c)示出基站分别采用所选择的发送波束组发送波束配置信息的一个示例;
图22示出根据本发明一个实施例的无线通信方法的流程图;
图23示出根据本发明一个实施例的用户设备的结构框图;
图24示出根据本发明一个实施例的基站的结构框图;
图25示出根据本发明的一个实施例所涉及的用户设备和基站的硬件结构的示例的图。
具体实施方式
下面将参照附图来描述根据本发明实施例的无线通信方法、用户设备和基站。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本发明的范围。
首先,参照图1来描述根据本发明一个实施例的无线通信系统。如图1所示,该无线通信系统可以包括基站10和用户设备(UE)20。UE 20可以 与基站10通信。需要认识到,尽管在图1中示出了一个基站和一个UE,但这只是示意性的,该无线通信系统可以包括一个或多个基站和一个或多个UE。
图2示出了根据本发明一个实施例的基站和用户设备的波束传输示意图。基站10可以具有一个或多个发送/接收单元(TXRU)(图2示出两个),每个TXRU可以包含一个或多个定向天线,相应地可以有一个或多个发送波束,每个定向天线对应一个发送波束,使得基站可以使用一个或多个发送波束对UE发送信号。在本发明的实施例中,可以将基站10的TXRU简称为发送单元。此外,UE 20也可以具有一个或多个TXRU(图2示出两个),每个TXRU同样可以包含一个或多个定向天线,从而相应地具有一个或多个接收波束,使得UE可以使用一个或多个接收波束接收基站使用一个或多个波束发送的信息。在本发明实施例中,UE 20的TXRU例如可以简称为接收单元。UE 20的一个或多个接收波束可以与基站10的一个或多个发送波束分别对应,以使UE 20可以利用该一个或多个接收波束来与对应的基站10的一个或多个发送波束之间传输信息。需要注意的是,尽管在上文中提到基站的发送单元对应于TXRU,但这不是限制性的,基站10的发送单元可以对应于基站(包括发送接收点(TRP))、基站的收发板、基站的收发板上的TXRU、基站的射频滤波器或基站的空间滤波器(spatial filter)。同样地,尽管在上文中提到UE的接收单元对应于TXRU,但这不是限制性的,UE 20的接收单元也可以对应于UE、UE的收发板、UE的收发板上的TXRU、UE的射频滤波器或UE的空间滤波器。
为了实现更好的通信质量,希望在基站10的一个或多个发送单元上分别选择一个或多个发送波束以组成发送波束组,和/或在UE 20的一个或多个接收单元上分别选择一个或多个接收波束以组成接收波束组,并且基站使用发送波束组,和/或UE使用接收波束组,来彼此通信。
可以采用多种波束/波束组选择方法来选择发送波束/接收波束。以下将结合图3-图9描述根据本发明实施例的波束选择方法的示例。
在一个实现方式中,可以通过对波束进行穷举搜索(Exhaustive search)的方法来选择波束。具体地,可以在基站10的每个发送单元和UE 20的每个接收单元中分别依次选择发送波束和接收波束,并且基站使用所选择的发送波束向UE发送参考信号,UE使用所选择的接收波束接收该参考信号,然 后,根据预设条件(例如根据参考信号的接收质量),从基站10的各个发送单元的发送波束中选择一个发送波束,形成基站10的发送波束组,并且从UE的各个接收单元的接收波束中选择一个接收波束,形成UE 20的接收波束组。图3示出该波束选择方法的示例。如图3所示,在该示例中,假设基站10具有两个发送单元,UE 20具有两个接收单元,每个发送单元分别具有8个发送波束,每个接收单元分别具有8个接收波束,在其他例子中,发送单元/发送波束和接收单元/接收波束可以是其他数目,例如一个或多个,并且可以彼此不同。可以在基站10的两个发送单元上分别选择一个发送波束(如阴影部分所示)以发送信息(例如参考信号),并在UE 20的两个接收单元上分别选择一个接收波束(如阴影部分所示)以接收基站10发送的所述信息,从而获取这一传输条件下的参数(在此示例中,可以为信道质量测量结果)。随后,可以更换其中的一个或两个发送单元上的发送波束或一个或两个接收单元上的接收波束,使用更换的发送波束发送参考信号,或者使用更换的接收波束接收该参考信号,并再次获取相应的信道质量测量结果。以此类推。当遍历基站10和UE 20上所有发送单元和所有接收单元的各个发送波束和各个接收波束之后,可以根据所获取的信道质量测量结果确定基站10的每个发送单元的一个发送波束以及UE 20的每个接收单元的一个接收波束,形成发送波束组和接收波束组。
在另一实现方式中,可以通过对波束进行逐对搜索的方法来选择波束。图4示出了该方法的示例。该示例可以是C.Capar et al,“Efficient beam selection for hybrid beamforming”,IEEE doc:802.11-15/1131r0所述的波束选择方法。在该示例中,假设基站有2个发送波束,UE有2个接收波束。图4(a)示出在基站10的各个发送单元和UE 20的各个接收单元上分别进行发送波束/接收波束轮询,以确定由基站10的每个发送单元的一个发波束和UE 20的每个接收单元上的一个接收波束形成的发送/接收波束对;图4(b)示出在图4(a)所确定的发送/接收波束对的基础上,确定基站10的发送波束组和/或UE 20的接收波束组。具体地,如图4(a)所示,可以在基站10的第一发送单元和UE 20的第一接收单元中分别依次选择一个发送波束和一个接收波束作为发送/接收波束对进行信息(例如参考信号)收发,在基站10的第一发送单元和UE 20的第二接收单元中分别依次选择一个发送波束和一 个接收波束作为发送/接收波束对进行信息(例如参考信号)收发,在基站10的第二发送单元和UE 20的第一接收单元中分别依次选择一个发送波束和一个接收波束作为发送/接收波束对进行信息(例如参考信号)收发,并且在基站10的第二发送单元和UE 20的第二接收单元中分别依次选择一个发送波束和一个接收波束作为发送/接收波束对进行信息(例如参考信号)收发,然后,从全部发送/接收波束对中,选择满足预设条件(例如信号接收质量)的一个发送/接收波束对。在这里,假设所选择的发送/接收波束对包括第一发送单元的一个发送波束和第二接收单元的一个接收波束(如图4(b)中黑色部分所示)。随后,如图4(b)所示,固定基站10的第一发送单元的所选波束和UE 20的第二接收单元的所选波束,依次使用基站10的其余发送单元(第二发送单元)的每个发送波束对UE 20的其余接收单元(第一接收单元)中的每个接收波束发送参考信号,并且根据例如接收信号质量,确定第二发送单元的一个波束和第一接收单元的一个波束,从而,将第一发送单元的所选择的发送波束和第二发送单元的所确定的发送波束确定为基站10的发送波束组,并且将第二接收单元的所选择的接收波束和第一接收单元的所确定的接收波束确定为UE 20的接收波束组。
在另一实现方式中,可以通过对波束进行主导搜索(Dominant search)来选择波束。图5示出该波束选择方法的示例。如图5(a)所示,按照与图4(a)类似的方式,通过轮询,对于基站的每个发送单元,选择一个或多个发送波束,并且对于UE的每个接收单元,选择一个或多个接收波束。然后,如图5(b)所示,对基站10的每个发送单元的所选择的一个或多个发送波束和UE 20的每个接收单元的所选择的一个或多个接收波束进行轮询,即,依次使用每个发送波束发送参考信号,并且分别使用每个接收波束接收该参考信号,然后根据接收信号质量,对于每个发送单元确定一个发送波束,并且对于每个接收单元确定一个接收波束。由此,对于基站10的各个发送单元确定的发送波束形成发送波束组,对于UE 20的每个接收单元确定的接收波束形成接收波束组。
在另一实现方式中,可以按照图6所示的K最佳波束选择(K-best beam selection)方法来进行波束选择。图6所示的方法在F.Felhauer et al,“Low complexity beam training for hybrid beamforming”,IEEE doc:802.11-16/0316r0 中进行了描述,在这里不再详细描述。简单地说,图6(a)示出在基站10的每个发送单元和UE 20的每个接收单元上分别进行发送波束/接收波束轮询,以对基站10的每个发送单元和UE 20的每个接收单元上的所有发送波束/接收波束进行排序(例如可以根据信道状态进行排序)。其中,在对基站10的某个发送单元的发送波束进行轮询时,UE 20的相应的接收单元可以保持全向波束,反之亦然;图6(b)示出根据图6(a)中基站10的每个发送单元和UE 20的每个接收单元上的所有发送波束/接收波束排序结果,确定k个包含基站10的每个发送单元中的一个发送波束和UE 20的每个接收单元中的一个接收波束的波束集合,并从这k个波束集合中确定基站10的发送波束组和/或UE 20的接收波束组。
在另一实现方式中,可以按照图7所示的线性选择方法来选择波束。图7所示的方法在S.Rahman and K.Josiam,"Low comp lexity RF beam search algorithms for millimeter-wave systems",Proc.IEEE Global Telecom.Conf.(GLOBECOM),pp.3815-3820,2014和S.Rahman,Methods for linear RF beam search in millimeter wave communication system with hybrid beamforming,U.S Patent No.20140341310A1[p],2014-11-20中进行了描述,在这里不再详细描述。简单地说,如图7(a)所示,对基站10的第一发送单元上的所有发送波束进行轮询(即,依次使用每个发送波束发送信息),并例如根据信号接收质量确定此发送单元上的一个发送波束,在轮询过程中,基站10的其他发送单元上的发送波束和UE 20的每个接收单元上的接收波束均可以随机固定;然后,如图7(b)所示,对基站10的第二发送单元上的所有发送波束进行轮询,并确定此发送单元上的一个发送波束,在轮询过程中,基站10的其他发送单元上的发送波束可以被随机固定或规定为之前通过轮询确定的发送波束,而UE 20的每个接收单元上的接收波束可以随机固定。以此类推,可以分别确定基站10的每个发送单元的一个发送波束以形成发送波束组,并且分别确定UE 20的每个接收单元的一个接收波束以形成接收波束组。
在另一实现方式中,可以按照图8所示的方法进行波束选择。图8(a)示出在UE 20的每个接收单元上进行接收波束轮询,图8(b)示出在基站10的每个发送单元上进行发送波束轮询,从而分别确定UE 20的每个接收单元的一个或多个接收波束和基站10的每个发送单元的一个或多个发送波束。 其中,在例如对基站10的某个发送单元的发送波束进行轮询时,UE 20的相应接收单元可以保持全向波束,反之亦然。图8(c)示出了根据所确定的UE 20的每个接收单元的一个或多个接收波束和基站10的每个发送单元的一个或多个发送波束,对基站10的某个发送单元上的一个或多个发送波束中的所有发送波束进行轮询,以确定一个或多个发送波束中的一个发送波束。在轮询过程中,如阴影部分所示,基站10的其他发送单元的发送波束和UE 20的每个接收单元上的接收波束均固定(可以随机固定,也可以固定为根据之前的轮询过程确定的发送波束/接收波束)。图8(d)示出了根据所确定的UE20的每个接收单元的一个或多个接收波束和基站10的每个发送单元的一个或多个发送波束,对UE 20的某个接收单元上的一个或多个接收波束中的所有接收波束进行轮询,以确定一个或多个接收波束中的一个接收波束。在轮询过程中,如阴影部分所示,UE 20的其他接收单元的接收波束和基站10的每个发送单元上的发送波束均固定(可以随机固定,也可以固定为根据之前的轮询过程确定的发送波束/接收波束)。最终,可以根据轮询结果确定基站10的每个发送单元的一个发送波束,形成发送波束组,并且确定UE 20的每个接收单元的一个接收波束,形成接收波束组。
在另一实现方式中,可以按照图9所示的方法来选择波束,图9(a)示出在UE 20的每个接收单元上进行接收波束轮询,图9(b)示出在基站10的每个发送单元上进行发送波束轮询,从而分别确定UE 20的每个接收单元的一个或多个接收波束和基站10的每个发送单元的一个或多个发送波束。其中,在例如对基站10的某个发送单元的发送波束进行轮询时,UE 20的相应的接收单元可以保持全向波束,反之亦然。图9(c)示出了对分别由UE 20的每个接收单元的一个或多个接收波束中的每个接收波束和基站10的每个发送单元的一个或多个发送波束中的每个发送波束所组成的每个发送/接收波束对进行轮询,以确定第一发送/接收波束对,如图9(c)中阴影部分所示。图9(d)示出了根据所确定的UE 20的每个接收单元的一个或多个接收波束和基站10的每个发送单元的一个或多个发送波束,对除第一发送/接收波束对所在的发送单元/接收单元之外的,UE 20的其他接收单元的一个或多个接收波束集中的每个接收波束和基站10的其他发送单元的一个或多个发送波束中的每个发送波束所组成的每个发送/接收波束对进行轮询,以确定第二发 送/接收波束对,如图9(d)中连线两端的阴影部分所示。其中,在如图9(d)的轮询过程中,可以保持第一发送/接收波束对固定。
本发明实施例的无线通信方法、用户设备和基站可以使用上述如图3-图9所示的各个波束选择方法来选择波束并构建波束组,并且利用所述波束/波束组进行信息交互。可以给所构建的各个波束组分配相应的波束组标识。当然,上述图3-图9所列举的各个波束选择方法均仅为示例,在实际应用过程中,本发明实施例的无线通信方法、用户设备和基站可以适用于任何包括具有一个或多个发送单元的一个或多个基站以及具有一个或多个接收单元的一个或多个UE的无线通信系统中,并且可以使用由此无线通信系统所采用的任何波束选择方法。
图10示出根据本发明一个实施例的无线通信方法1000的流程图,所述方法可以由用户设备执行。
如图10所示,在步骤S1001中,接收基站利用至少一个发送波束组发送的波束配置信息,所述波束配置信息包括至少一个发送波束组的标识和至少一个发送波束组的测量配置信息。如上所述,尽管在上文中以及在这里使用了术语“发送波束”和“发送波束组”,但是,由于可以通过不同的发送波束来发送参考信号,因此可以用参考信号来代表发送波束。如果同一参考信号用不同的发送波束发送,可以描述成用不同的空间滤波器来发送参考信号,如果同一参考信号用相同的发送波束发送,可以描述成用相同的空间滤波器来发送参考信号。不做特殊说明的情况下,参考信号可以认为使用不同的发送波束发送,即参考信号可以代表发送波束。因此,在上文中以及在这里所述的发送波束可以替换为参考信号,发送波束组可以替换为参考信号组,相应地,其余与发送波束有关的术语也均可以替换为与参考信号有关的术语。在下文中,为了便于描述,仍然使用发送波束和发送波束组来描述本发明的实施例。
在本步骤中,基站可以在至少一个发送波束组中选择一个或多个发送波束组,并通过所选择的发送波束组发送包括该发送波束组标识和测量配置信息的波束配置信息。所述至少一个发送波束组可以是通过上文描述的波束选择方法构建的一个或多个发送波束组。相应地,UE可以接收基站利用至少一个发送波束组发送的波束配置信息。
图11示出根据3GPP标准TS 38.311,CSI资源配置的具体内容示例。如图11所示,信息元素CSI-ReportConfig可以包括多个CSI-ResourceConfigId,其中,用于信道测量的资源resourceForChannelMeasurement可以由CSI-ResourceConfigId指示,以表示第一层(L1)的用于信道测量的参考信号(RS)配置。进一步地,如右侧阴影部分框图所示,CSI-ResourceConfigId中还可以包括CSI-ResourceConfig,并包括用于指示信道测量资源的信道状态信息参考信号(CSI-RS)资源和/或同步信号块(SSB)资源等的测量配置信息。本发明实施例中的发送波束组可以构建在上述一个CSI-ResourceConfig内部,或对应于多个CSI-ResourceConfig,或可以构建在一个resourceForChannelMeasurement内部,或对应于多个resourceForChannelMeasurement,在此不做限制。可选地,发送波束组的测量配置信息可以包括基站的所述发送波束组中的至少一个发送波束的配置信息(或称为指示信息),其中,所述发送波束的配置信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束。
在一个实现方式中,所述发送波束组的测量配置信息还可以包括:重复指示信息。
在一个示例中,所述重复指示信息可以与基站的某个发送波束组相对应,以指示所述基站当前是否对于波束组使用与之前相同的发送波束(或空间滤波器)来发送波束配置信息。例如,当所述重复指示信息与基站的标识为1的发送波束组相对应,且为“ON”时,可以指示所述基站对于该波束组,当前使用与之前相同的发送波束(或空间滤波器)来发送波束配置信息,此时,UE可以利用与之前不同的接收波束组进行波束扫描,以选择与此标识为1的发送波束组相对应的接收波束组;而当所述重复指示信息与基站的标识为1的发送波束组相对应,且为“OFF”时,可以指示所述基站对于该波束组,当前不使用与之前相同的发送波束(或空间滤波器)来发送波束配置信息(例如,基站可以更换使用标识为2的发送波束组发送波束配置信息),此时,UE可以保持与之前相同的接收波束组接收波束配置信息,并选择与此接收波束组相对应的发送波束组。图12示出根据本发明一个实施例的重复指示信 息的示意图。其中,图12(a)和图12(b)为所述重复指示信息对应于基站的发送波束组,但状态包含“OFF”或“ON”的不同示例。如图12(a)所示,所述重复指示信息与基站的发送波束组相对应,且一直保持为“OFF”,此时,基站在每个时刻都分别采用与之前不同的发送波束发送波束配置信息,如上所述,UE可以相应地一直保持相同的接收波束组接收,并选择与此接收波束组相对应的发送波束组。如图12(b)所示,所述重复指示信息与基站的发送波束组1相对应。在前半部分,所述重复指示信息一直保持为“ON”,此时,基站在前半部分的每个时刻对于该发送波束组1都采用相同的发送波束发送波束配置信息,相应地,UE可以分别利用不同的接收波束组进行波束扫描,以选择与发送波束组1相对应的接收波束组。在后半部分,基站将发送波束组改变为发送波束组2,并且在后半部分的每个时刻对于该发送波束组2都采用相同的发送波束,相应地,所述重复指示信息一直保持为“ON”,UE此时可以利用不同的接收波束组进行扫描接收,并选择与发送波束组2相对应的接收波束组。
在另一个示例中,所述重复指示信息可以与基站的一个或多个发送单元相对应,以指示对一个或多个发送单元,所述基站当前是否使用与之前相同的发送波束(或空间滤波器)来发送波束配置信息。例如,当所述重复指示信息与基站的发送单元1相对应,且为“ON”时,可以指示所述基站对发送单元1,当前使用与之前相同的发送波束1来发送波束配置信息,此时,针对此发送单元1,UE可以利用与之前不同的接收波束组进行波束扫描,以选择与此发送波束1相对应的接收波束;而当所述重复指示信息与基站的发送单元1相对应,且为“OFF”时,可以指示所述基站当前使用与之前发送波束1不同的发送波束2来发送波束配置信息,此时,UE可以保持与之前相同的接收波束组接收,并选择与此接收波束组相对应的发送波束。图13示出根据本发明一个实施例的重复指示信息的示意图。其中,图13(a)为所述重复指示信息1和2分别对应于基站的发送单元1和发送单元2,且分别为“ON”和“OFF”的示意图,图13(b)为所述重复指示信息1和2分别对应于基站的发送单元1和发送单元2,且均为“ON”的示例。如图13(a)所示,所述重复指示信息1与基站的发送单元1相对应,且一直保持为“ON”,此时,基站在此发送单元1上一直采用与之前相同的发送波束进行发送;而 重复指示信息2与基站的发送单元2相对应,且一直保持为“OFF”,此时,基站在此发送单元2上一直采用与之前不同的发送波束进行发送,针对这种情况,意味着基站可以一直保持发送单元1上的相同发送波束,而仅对发送单元2上的不同发送波束进行扫描,此时,UE可以利用相同的接收波束组进行接收,并选择与此接收波束组相对应的发送单元2上的发送波束,或者,UE可以利用对应发送单元1的接收单元的已经确定的接收波束和对应发送单元2的某一个相同波束构成的波束组来接收,以确定与此接收波束组相对应的发送单元2上的发送波束。如图13(b)所示,所述重复指示信息1与基站的发送单元1相对应,且一直保持为“ON”,此时,基站在此发送单元1上一直采用相同的发送波束进行发送;重复指示信息2与基站的发送单元2相对应,且一直保持为“ON”,此时,基站在此发送单元2上也一直采用相同的发送波束进行发送。这种情况意味着基站一直采用相同的发送波束组进行发送,此时,UE可以利用不同的接收波束组进行波束扫描,以选择与发送波束组相对应的接收波束组。
可选地,重复指示信息可以利用一个比特的取值来表示其“ON”或“OFF”的不同状态。例如,可以用取值为1的比特表示“ON”,用取值为0的比特表示“OFF”;反之,也可以用取值为0的比特表示“ON”,用取值为1的比特表示“OFF”。上述关于重复指示信息的各种描述仅为示例,在实际应用中,可以采用任何重复指示信息的表示方式来进行发送波束组和/或发送波束的重复性表示,在此不做限制。
在一个实现方式中,所述基站发送的所述波束配置信息还可以包括:所述基站需要从用户设备接收所述反馈信息的发送波束组的数量;相应地,所述用户设备可以根据所述波束配置信息限定的数量反馈所述反馈信息。例如,所述基站发送的所述波束配置信息可以包括:需要从用户设备接收3个发送波束组的反馈信息,从而,所述用户设备即使接收到了例如5个发送波束组发送的波束配置信息,也可以仅反馈最多3个发送波束组对应的反馈信息。可以按照不同的方式来选择反馈所针对的发送波束组。例如,在基站配置了(绝对)信道测量结果阈值的情况下,如果在5个发送波束组中,有N(N≥3)个发送波束组的波束的信道质量测量结果超过阈值,则可以从这N个发送波束组中选择3个发送波束组进行反馈,例如可以选择任意3个波束组 或信道质量测量结果最好的3个发送波束组。如果在5个发送波束组中,有N(1≤N<3)个发送波束组的波束的信道质量测量结果超过阈值,则可以选择这N个发送波束组进行反馈。如果这5个发送波束组的波束的信道质量测量结果都没有超过阈值,则UE可以不反馈,或者选择这5个发送波束组的波束的信道质量测量结果最好的一个发送波束组进行反馈。可替换地,在基站配置了(相对)信道测量结果阈值的情况下,可以找出在5个发送波束组中,与这5个发送波束组中的最优信道质量测量结果的差值小于该相对阈值的发送波束组。如果所找出的发送波束组大于或等于三个,则可以选择其中三个发送波束组(例如任意三个发送波束组或差值最小的三个发送波束组)进行反馈。如果所找出的发送波束组少于三个,则可以针对所找出的发送波束组进行反馈。如果没有找出所述发送波束组,则可以不反馈或选择差值最小的一个发送波束组进行反馈。当然,上述反馈信息的反馈方式仅为示例,在实际应用中,基站需要从用户设备接收反馈信息的发送波束组的数量,可以大于、等于或小于发送波束配置信息的发送波束组的数量,在此不做限制。
在一个实现方式中,所述发送波束组的测量配置信息可以包括用户设备所测量的信道质量类型,由此,所述用户设备可以根据所述信道质量类型获取相应类型的信道质量的反馈信息。其中,基站指示用户设备所测量的信道质量类型可以例如为参考信号接收质量(RSRQ)、参考信号接收功率(RSRP)、信号与干扰噪声比(SINR)、接收信号强度指示(RSSI)等。在一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRQ;在另一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRP,例如可以为发送波束组对应的平均RSRP;在另一个示例中,基站指示用户设备所测量的信道质量类型可以为SINR,例如可以为发送波束组对应的平均SINR。相应地,在一个示例中,发送波束组的测量配置信息还可以包括:用于指示一个或多个参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示一个或多个信道状态信息参考信号(CSI-RS)强度测量的测量配置信息,或一个或多个SSB强度测量的测量配置信息。在另一个示例中,发送波束组的测量配置信息还可以包括:与一个或多个CSI-RS或者SSB对应的RSSI的测量配置信息和/或干扰强度的测量配置信息。
在步骤S1002中,UE可以根据所述波束配置信息,反馈关于信道质量 的反馈信息。
在本发明一个实现方式中,当基站发送的所述波束配置信息包括所述基站需要从用户设备接收所述反馈信息的发送波束组的数量时,所述用户设备可以根据所述波束配置信息限定的数量反馈所述反馈信息。
在本发明一个实现方式中,当基站发送的发送波束组的测量配置信息包括用户设备所测量的信道质量类型时,所述用户设备可以根据所述信道质量类型获取相应类型的信道质量的反馈信息。如上所述,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。
在一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRP,具体地,UE可以基于基站发送的发送波束组的测量配置信息,例如对一个或多个CSI-RS或SSB的参考信号资源元素(RE)进行测量,来获取所述发送波束组对应的平均L1-RSRP,作为关于信道质量的反馈信息。
在另一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRQ,例如可以为发送波束组对应的平均RSRQ。具体地,UE可以基于发送波束组的测量配置信息,例如根据对发送波束组内配置的每个参考信号测量得到的L1-RSRQ,得到发送波束组的平均L1-RSRQ。例如,当发送波束组的测量配置信息指示测量两个参考信号时,可以利用所获得的第一L1-RSRQ和第二L1-RSRQ的平均值得到发送波束组的平均L1-RSRQ。其中,每个参考信号的L1-RSRQ可以通过对参考信号强度的测量和对RSSI的测量得到。此时,发送波束组的测量配置信息可以包括:用于指示参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示CSI-RS强度测量的测量配置信息,或指示SSB强度测量的测量配置信息。另外,可选地,RSSI可以为在参考信号资源元素上或在参考信号资源元素所在时间符号的整个带宽上的资源元素上接收的总能量强度,或可以使用相同接收波束接收组内多个参考信号配置的参考信号作为该参考信号的干扰强度测量配置。例如,所述发送波束组的测量配置信息还可以显式地配置有:所述发送波束组中的至少一个发送波束的接收信号强度指示的测量配置信息和/或干扰强度的测量配置信息;相应地,所述根据所述波束配置信息,反馈关于信道质量的反馈信息可以包括:根据所述接收信号强度指示的测量配置信息和/或干扰强度的测量配置信息,获取所述发送波束组的参考信号接收质量。 再例如,所述根据所述波束配置信息,反馈关于信道质量的反馈信息还可以包括:根据预设配置获取所述发送波束组的参考信号接收质量。其中,所述预设配置可以被隐式地配置。在一个示例中,用于根据接收信号强度指示和/或干扰强度获取的与发送波束组对应的参考信号接收质量的预设配置,可以被预先配置在UE和基站两侧;也可以被预先配置给基站,并通过信令预先告知UE;或者可以预先配置给UE,并通过信令上报基站。上述关于测量配置信息的内容及各种预设配置方式仅为示例,在实际应用中,可以采用任何测量配置信息的内容和预设配置方式,在此不做限制。
在再一个示例中,基站指示用户设备所测量的信道质量类型可以为SINR,例如可以为发送波束组对应的平均SINR。具体地,UE可以基于发送波束组的测量配置信息,例如根据对发送波束组内配置的每个参考信号测量得到的L1-SINR,得到发送波束组的平均L1-SINR。例如,当发送波束组的测量配置信息指示测量两个参考信号时,可以利用所获得的第一L1-SINR和第二L1-SINR的平均值得到发送波束组的平均L1-SINR。其中,每个参考信号的L1-SINR可以通过对参考信号强度的测量和对干扰强度的测量得到。此时,发送波束组的测量配置信息可以包括:用于指示一个或多个(例如:两个)参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示CSI-RS强度测量的测量配置信息,或指示SSB强度测量的测量配置信息。例如,所述发送波束组的测量配置信息还可以显式地配置有:干扰强度的测量配置信息;相应地,所述根据所述波束配置信息,反馈关于信道质量的反馈信息可以包括:根据所述干扰强度的测量配置信息,获取所述发送波束组的信号与干扰和噪声比。再例如,所述根据所述波束配置信息,反馈关于信道质量的反馈信息还可以包括:根据预设配置获取所述发送波束组的信号与干扰和噪声比。其中,所述预设配置可以被隐式地配置。在一个示例中,用于根据干扰强度获取的与发送波束组对应的信号与干扰和噪声比的预设配置,可以被预先配置在UE和基站两侧;也可以被预先配置给基站,并通过信令预先告知UE;或者可以预先配置给UE,并通过信令上报基站。例如,作为隐式配置的例子,可以配置为使得发送波束组内某一个参考信号对应的干扰可以通过测量参考信号资源元素上接收的干扰,或在参考信号资源元素所在时间符号的整个带宽上的资源元素上接收的干扰,或使用相同接 收波束接收发送波束组内另一个参考信号元素位置上的干扰。上述关于测量配置信息的内容及各种预设配置方式仅为示例,在实际应用中,可以采用任何测量配置信息的内容和预设配置方式,在此不做限制。
图14示出根据本发明一个实施例对参考信号强度测量的示意图。其中,图14(a)示出对CSI-RS进行信号强度测量的一个示例;图14(b)示出对CSI-RS进行信号强度测量的另一个示例;图14(c)示出对SSB进行信号强度测量的一个示例;图14(d)示出对SSB进行信号强度测量的另一个示例。如图14(a)-(d)可知,在基站的一个发送波束组中,可以分别利用不同的发送波束发送相同的或不同的参考信号资源元素(RE)。具体地,不同的发送波束可以对应相同或不同的RE。例如,图14(a)和图14(b)示出发送波束组中的由竖线填充指示的发送波束对应由竖线填充指示的CSI-RS的RE,发送波束组中的由斜线填充指示的发送波束对应由斜线填充指示的CSI-RS的RE;图14(c)和图14(d)示出发送波束组中的由竖线填充指示的发送波束对应由竖线填充指示的SSB的RE,发送波束组中的由斜线填充指示的发送波束对应由斜线填充指示的SSB的RE。在接收到基站利用发送波束组发送的测量配置信息之后,UE可以在指示的RE资源上利用相应的接收波束进行参考信号强度测量。具体地,图14(a)-(b)示出对由竖线填充指示的CSI-RS的RE进行参考信号强度测量。例如,UE可以采用其一个接收单元的一个接收波束对由竖线填充表示的参考信号的RE进行与该RE对应的由竖线填充表示的发送波束1发送的参考信号的强度测量,并且可以采用其另一个接收单元的一个接收波束对由条纹填充表示的参考信号的RE进行与该RE对应的由条纹填充表示的发送波束2发送的参考信号的强度测量。然后,可以计算这两个测量结果的平均值,作为由所述发送波束1和发送波束2形成的发送波束对的参考信号强度测量结果。可替换地,UE可以使用多个接收单元的波束同时对由竖线填充表示的发送波束1发送的参考信号和由条纹填充表示的发送波束2发送的参考信号进行测量,作为由所述发送波束1和发送波束2形成的发送波束对的参考信号强度测量结果。图14(c)-(d)示出对SSB的RE进行参考信号强度测量。在这种情况下,可以按照与图14(a)-(b)相似的方式确定基站的发送波束组的信道质量测量结果,在这里不再赘述。
图15示出根据本发明一个实施例对参考信号强度和干扰强度进行测量从而确定发送波束组的SINR的示意图。其中,图15(a)至图15(c)分别示出对CSI-RS进行参考信号强度和干扰强度测量的三个示例;图15(d)示出对SSB进行参考信号强度和干扰强度测量的一个示例。如图15(a)-(d)可知,在基站的一个发送波束组中,分别利用不同的发送波束发送相同或不同的参考信号资源元素(RE)。例如,图15(a)-(c)中可以包括与发送波束组中的发送波束相对应的,分别由竖线填充指示的CSI-RS的RE,以及由斜线填充指示的CSI-RS的RE;图15(d)中可以包括与发送波束组中的发送波束相对应的,分别由竖线填充指示的SSB的RE,以及由斜线填充指示的SSB的RE。另外,在图15(b)-(c)中,还包括由方格填充指示的用于测量干扰强度的CSI-RS的RE。具体地,图15(a)示出对由竖线填充指示的发送波束1对应的由竖线填充指示的CSI-RS的RE分别进行参考信号强度和干扰强度测量,对由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE分别进行参考信号强度和干扰强度测量,而后对两个发送波束的参考信号强度测量结果和干扰强度测量结果分别进行平均,得到该发送波束组的测量结果。图15(b)示出对由竖线填充指示的发送波束1对应的由竖线填充指示的CSI-RS的RE进行参考信号强度的测量,而对方格填充的CSI-RS的RE(即,与由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE重合的RE)进行干扰强度测量,由此可以确定与发送波束1对应的SINR;然后,可以对由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE进行参考信号强度的测量,而对与由竖线填充指示的CSI-RS的RE重合的RE进行干扰强度测量,由此可以确定与发送波束2对应的SINR;然后,可以对发送波束1和2的SINR进行平均,得到该发送波束组的SINR。图15(c)示出对由竖线填充指示的发送波束1对应的由竖线填充指示的CSI-RS的RE进行参考信号强度的测量,而对方格填充的CSI-RS的RE(即,与由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE重合的RE以及其邻近的RE)进行干扰强度测量,由此可以确定与发送波束1对应的SINR;然后,可以对由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE进行参考信号强度的测量,而对与由竖线填充指示的CSI-RS的RE重合的RE及其邻近的RE进行干扰强度测量,由此 可以确定与发送波束2对应的SINR;然后,可以对发送波束1和2的SINR进行平均,得到该发送波束组的SINR。图15(d)示出对由竖线填充指示的发送波束1对应的由竖线填充指示的SSB的RE进行参考信号强度测量和干扰强度测量,以确定发送波束1的SINR,并且对由斜线填充指示的发送波束2对应的由斜线填充指示的SSB的RE进行参考信号强度和干扰强度测量,以确定发送波束2的SINR,并且对两个发送波束的SINR求平均,得到该发送波束组的SINR。对于同一个波束(或者RS配置)的信号强度测量和干扰强度测量,UE可以使用相同的接收单元或者接收波束。
图16示出根据本发明一个实施例对参考信号强度和接收信号强度指示进行测量的示意图。其中,图16(a)-图16(d)分别示出对CSI-RS进行参考信号强度和接收信号强度指示测量的三个示例;图16(d)示出对SSB进行参考信号强度和接收信号强度指示测量的一个示例。如图16(a)-(d)可知,在基站的一个发送波束组中,分别利用不同的发送波束发送相同或不同的参考信号资源元素(RE)。例如,图16(a)-(c)中可以包括与发送波束组中的两个发送波束相对应的,分别由竖线填充指示的CSI-RS的RE以及由斜线填充指示的CSI-RS的RE;图16(d)中可以包括与发送波束组中的两个发送波束相对应的,分别由竖线填充指示的SSB的RE,以及由斜线填充指示的SSB的RE。另外,在图16(b)-(c)中,还包括由点划线填充指示的用于测量接收信号强度指示的CSI-RS的RE。具体地,图16(a)示出对由竖线填充指示的发送波束1对应的由竖线填充指示的CSI-RS的RE分别进行参考信号强度和接收信号强度指示测量以确定发送波束1的RSRQ,对由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE分别进行参考信号强度和接收信号强度指示测量以确定发送波束2的RSRQ,而后对两个发送波束的RSRQ进行平均,得到该发送波束组的RSRQ。图16(b)示出对由竖线填充指示的发送波束1对应的由竖线填充指示的CSI-RS的RE进行参考信号强度的测量,而对由竖线填充指示的CSI-RS的RE和点划线填充的CSI-RS的RE(即,与由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE重合的RE)共同进行接收信号强度指示测量,以确定发送波束1的RSRQ,对由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE进行参考信号强度的测量,而对由斜线填充指示的CSI-RS 的RE和与由竖线填充指示的CSI-RS的RE重合的RE共同进行接收信号强度指示测量,以确定发送波束2的RSRQ,然后对两个发送波束的RSRQ求平均,作为该发送波束组的RSRQ。图16(c)示出对由竖线填充指示的发送波束1对应的由竖线填充指示的CSI-RS的RE进行参考信号强度的测量,而对由竖线填充指示的CSI-RS的RE和点划线填充的CSI-RS的RE(即,与由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE重合的RE及其邻近的RE)共同进行接收信号强度指示测量,以确定发送波束1的RSRQ,对由斜线填充指示的发送波束2对应的由斜线填充指示的CSI-RS的RE进行参考信号强度的测量,而对由斜线填充指示的CSI-RS的RE以及与由竖线填充指示的CSI-RS的RE重合的RE和该RE邻近的RE共同进行接收信号强度指示测量,以确定发送波束2的RSRQ,然后对两个发送波束的RSRQ求平均,作为该发送波束组的RSRQ。图16(d)示出对由竖线填充指示的发送波束1对应的由竖线填充指示的SSB的RE分别进行参考信号强度和接收信号强度指示测量以确定发送波束1的RSRQ,并且对由斜线填充指示的发送波束2对应的由斜线填充指示的SSB的RE进行参考信号强度和接收信号强度指示测量以确定发送波束2的RSRQ,并且对两个发送波束的RSRQ进行平均,得到该发送波束组的RSRQ。对于同一个波束(或者RS配置)的参考信号强度和接收信号强度测量,UE可以使用相同的接收单元或者接收波束。
在本发明实施例中,UE在根据所述波束配置信息获取关于信道质量的反馈信息之后,可以向基站反馈所述反馈信息,以使基站根据所述反馈信息,在所述至少一个发送波束组中选择一个或多个发送波束组。具体地,所述反馈信息可以与至少一个发送波束组中的一个或多个发送波束组相关联,从而所述反馈信息还可以包括所述一个或多个发送波束组的标识。例如,UE上报的所述反馈信息可以包括例如发送波束组的标识1,及其相应的信道质量反馈信息。如上所述,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。在一个示例中,UE反馈的反馈信息可以包括如下反馈信息中的一个或多个:发送波束组标识_RSRP(或,CSI_发送波束组标识_RSRP和/或SSB_发送波束组标识_RSRP)、发送波束组标识_RSRQ/SINR(或,CSI_发送波束组标识_RSRQ/SINR和/或SSB_发送波束组 标识_RSRQ/SINR,这里RSRQ表示用户反馈RSRQ,SINR表示用户反馈SINR,RSRQ/SINR表示用户反馈RSRQ和SINR中的一个或全部)、发送波束组标识_RSRP_RSRQ/SINR(或,CSI_发送波束组标识_RSRP_RSRQ/SINR和/或SSB_发送波束组标识_RSRP_RSRQ/SINR,这里RSRP_RSRQ表示用户同时反馈RSRP和RSRQ)。上述UE的反馈信息仅为示例,在实际应用中,UE可以采用任何根据波束配置信息获得的关于信道质量的反馈信息进行反馈,在此不做限制。另外,用户反馈多个发送波束组的信号质量测量结果RSRQ、RSRP、SINR或者RSSI时,可以反馈这些结果的多个绝对值,也可以对最优发送波束组(例如信道质量最好的发送波束组)反馈绝对信道质量测量结果,对其他发送波束组反馈相对于该最优发送波束组的绝对信道质量测量结果的相对差值。
以上描述了根据本发明实施例的由用户设备执行的无线通信方法的步骤。在本发明的另一个实现方式中,还可以接收基站发送的关于发送单元的信息,所述关于发送单元的信息指示至少一个发送单元的标识及所述至少一个发送单元所具有的发送波束的配置信息;根据所述关于发送单元的信息,选择所述至少一个发送单元中的一个或多个发送波束,并反馈指示用户设备选择结果的波束选择信息。其中,所述波束选择信息可以包括所述至少一个发送单元的标识、在所述发送单元中选择的发送波束的指示信息和/或与所选择的发送波束对应的信道反馈信息。具体地,基站可以通过其发送的关于发送单元的信息,使UE获知所述基站具有几个发送单元,发送单元的标识和每个单元所具有的发送波束,以使UE能够从不同的发送单元中分别选择一个或多个发送波束反馈给基站,从而避免UE在不知道发送单元和相应的发送波束的对应关系时,无法根据发送单元对发送波束的划分来向基站反馈发送波束的情况,使得基站能够在获取步骤S1001中对应的发送波束组时,尽量具有更多更合适的发送波束组的组合方案。
可选地,基站的发送单元可以是前述的基站、基站上的收发板、基站的收发板上的TXRU、基站的射频(RF)滤波器或基站的空间滤波器(spatial filter),基站的各个发送单元能够各自同时发送至少一个发送波束。在一个示例中,所述发送波束的指示信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam  index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束,此外,基站的一个发送单元所具有的发送波束的指示信息可以构建在图11所示的一个CSI-ResourceConfig内部,或对应于多个CSI-ResourceConfig,或可以构建在一个resourceForChannelMeasurement内部,或对应于多个resourceForChannelMeasurement,在此不做限制。可选地,所述至少一个发送单元所具有的发送波束的指示信息还可以包括希望UE针对所述至少一个发送单元中的一个或多个发送单元所选择的发送波束的数量,其中,针对不同的发送单元,可以分别配置UE要选择的发送波束的数量(或者要选择的发送波束的最大数量),并且这些数量可以相同或不同。例如,对每个发送单元,UE可以被配置成均选择2个发送波束;再例如,针对一个发送单元,UE可以被配置成选择一个发送波束,而针对另一个发送单元,UE可以被配置成选择3个发送波束。
此外,可选地,所述关于发送单元的信息也可以包括:重复指示信息,用于指示对一个或多个发送单元,所述基站当前是否使用与之前相同的发送波束来发送关于发送单元的信息。所述关于发送单元的信息中的重复指示信息的原理和应用方式与前述的发送波束组的测量配置信息中的重复指示信息相似,在此不再赘述。
相应地,所述接收基站利用至少一个发送波束组发送的波束配置信息也可以包括:接收所述基站根据所述波束选择信息,在至少一个发送单元中分别选择一个发送波束以形成发送波束组所发送的波束配置信息。所述基站可以根据所述波束选择信息在每个发送单元中分别选择一个发送波束形成发送波束组,也可以在其中的部分发送单元中分别选择一个发送波束形成发送波束组,在此不做限制。
图17示出根据本发明一个实施例的无线通信方法的波束选择的示例。具体地,基站首先发送关于发送单元的信息,在本示例中,假设基站包括两个发送单元,每个单元具有4个发送波束,则该关于发送单元的信息可以包括发送单元的标识1及其具有的发送波束的指示信息{1,2,3,4},和发送单元的标识2及其具有的发送波束的指示信息{5,6,7,8}。随后,UE根据基站发送的关于发送单元的信息,在发送单元1中选择发送波束{1,2},并在发送单元2中选择发送波束{7,8},如图17(a)所示。并且,UE将选择的结果作为波束 选择信息反馈给基站。在一个示例中,UE可以同时上报发送单元的标识及所选择的发送波束;在另一个示例中,考虑到发送波束的指示信息各不相同,UE也可以仅上报所选择的发送波束。可选地,所述波束选择信息还可以包括与所选择的发送波束对应的信道反馈信息。
可选地,基站在接收到UE反馈的波束选择信息之后,可以例如按照上文所述的方式,针对不同的发送单元1和2,分别选择其对应的一个发送波束,从而形成发送波束组。例如,基站可以选择包括1&7,1&8,2&7,2&8的发送波束组,以发送波束配置信息。图17(b)示出基站分别采用1&7,1&8,2&7,2&8的发送波束组发送波束配置信息的示例,在这一示例中,波束配置信息中的重复指示信息可以为“OFF”。图17(c)示出基站采用1&7的发送波束组发送波束配置信息的示例,在这一示例中,波束配置信息中的重复指示信息可以为“ON”。
在本发明的又一个实现方式中,可以接收基站发送的反馈指示信息,根据该反馈指示信息,选择与用户设备的至少一个接收单元中的一个或多个接收波束对应的发送波束,并且向基站发送波束选择信息,该波束选择信息指示用户设备选择的发送波束。其中,所述波束选择信息可以包括所述至少一个接收单元的标识,以及与所述至少一个接收单元中的一个或多个接收波束对应的发送波束的指示信息。可选地,所述波束选择信息还可以包括与所述发送波束对应的信道反馈信息。具体地,所述反馈指示信息可以包括UE要选择的,即要反馈的所述一个或多个接收单元的数量,和/或每个接收单元的接收波束对应的发送波束的数量。根据该数量,UE可以从不同的接收单元中分别选择一个或多个接收波束,并将与所选择的接收波束对应的发送波束的指示信息反馈给基站,以使基站能够在获取步骤S1001中对应的发送波束组时,尽量具有更多的发送波束组的组合方案。在一个示例中,UE从不同的接收单元所选择的接收波束及其对应的发送波束的数量可以相同或不同。例如,对每个接收单元,UE可以均选择2个发送波束;再例如,针对一个接收单元,UE可以选择一个发送波束,而针对另一个接收单元,UE可以选择3个发送波束。其中,UE反馈的一个或多个接收单元的数量,以及/或者针对不同接收单元所选择的波束的数量可以预先设置并由UE和基站获知,也可以由RRC信令进行配置,还可以通过UE能力(UE capability)信息、 UE端收发板/接收单元/空间滤波器的数量等参数确定。例如,基站可以根据UE能力信息确定UE反馈的接收单元的数量,以及/或者针对不同接收单元所选择的发送波束的数量,以确保所配置的数量不会超过UE的能力。
相应地,所述接收基站利用至少一个发送波束组发送的波束配置信息也可以包括:接收所述基站根据所述波束选择信息,在至少一个发送单元中分别选择一个发送波束以形成发送波束组所发送的波束配置信息。所述基站可以根据所述波束选择信息在每个发送单元中分别选择一个发送波束形成发送波束组,也可以在其中的部分发送单元中分别选择一个发送波束形成发送波束组,在此不做限制。
可选地,UE的接收单元可以是前述的UE、UE上的收发板、UE的收发板上的TXRU、UE的射频(RF)滤波器或UE的空间滤波器等。UE的各个接收单元能够各自同时接收至少一个波束。在一个示例中,与接收波束对应的所述发送波束的指示信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束。根据本发明的一个示例,如图18所示,UE可以根据在例如3GPP R-16中预设的上报类型发送指示UE选择结果的波束选择信息,例如,图18中示出3GPP R-16中新设置的上报类型参数示例,当图18中的groupBasedBeamReporting为enabled时,UE可以上报所述波束选择信息。根据本发明的另一个示例,UE还可以根据在现有的3GPP R-15标准中重新定义的参数来发送指示UE选择结果的波束选择信息,例如,图19示出3GPP R-15中重新定义的参数示例。当图19中重新定义的groupBasedBeamReporting为enabled时,可以认为UE需上报所述波束选择信息。此外,还可以利用例如图19中ENUMERATED项中重新定义的参数N与UE上报发送波束的数量相关联。图20示出根据本发明一个实施例的无线通信方法中波束选择的示例。在图20中,假设N=3,以表示UE可以上报3组6个波束。在这种情况下,UE将选择3组其可以同时接收的发送波束。例如,UE可以选择3组发送波束,其分别为{1,5}、{2,7}和{4,8}。相应地,如图20(a)所示,基站具有与发送单元1对应的发送波束{1,2,3,4}和与发送单元2对应的发送波束{5,6,7,8},则UE所上报的各发送波束分别为发送单 元1中的发送波束{1,2,4}和发送单元2中的发送波束{5,7,8}。随后,如图20(b)所示,基站可以根据发送波束在发送单元上的分布情况和UE上报的波束来分别选择发送波束组,例如选择发送波束组{1,5}、{2,7}、{4,8}来发送波束配置信息,以尽量提高信道传输质量。
图21示出根据本发明一个实施例的无线通信方法中波束选择的示例。在这一示例中,UE具有两个接收单元,基站具有两个发送单元,每个发送/接收单元分别具有两个发送/接收波束。首先,UE根据其两个接收单元及其对应的波束,分别获取如图21(a)所示的L1-RSRP的信道测量结果。随后,UE可以利用所述信道测量结果,确定波束选择信息,其指示用户设备所选择的每个接收单元中的每个接收波束对应的发送波束。根据图21(a),根据L1-RSRP的信道测量结果,用户设备可以选择其接收单元1的接收波束1对应的发送波束1,和接收波束2对应的发送波束2,另外,还可以选择其接收单元2的接收波束3对应的发送波束4,和接收波束2对应的发送波束6。也就是说,对应于接收单元1,用户设备选择发送波束{1,2};对应于接收单元2,用户设备选择发送波束{4,6}。相应地,如图21(b)所示,对应于基站的发送单元1,所选择的发送波束包括{1,2,4};对应于基站的发送单元2,所选择的发送波束包括{6}。由此,基站可以根据用户设备的波束选择信息,在每个发送单元中分别选择一个发送波束形成发送波束组,如图21(c)所示,发送波束组可以{1,6}或{2,6}。
利用本发明实施例的无线通信方法,能够提供基站和UE之间在对不同收发单元选择对应的波束及所形成的波束组时,提供具体的信令交互的方案,以根据信令交互和波束选择过程来提高无线通信系统的传输质量,优化信道传输资源的配置,减少资源开销。
图22示出根据本发明一个实施例的无线通信方法2200的流程图,所述方法可以由基站执行。由于该方法的很多方面与在上文中针对UE描述的方法相同,因此在这里省略对相同方面的描述或仅对其进行简要描述。
如图22所示,在步骤S2201中,利用至少一个发送波束组发送波束配置信息,所述波束配置信息包括至少一个发送波束组的标识和至少一个发送波束组的测量配置信息。
在本步骤中,基站可以在至少一个发送波束组中选择一个或多个发送波 束组,并通过所选择的发送波束组发送包括该发送波束组标识和测量配置信息的波束配置信息。所述至少一个发送波束组可以是通过上文描述的波束选择方法构建的一个或多个发送波束组。图11示出根据3GPP标准TS 38.311,CSI资源配置的具体内容示例。如图11所示,信息元素CSI-ReportConfig可以包括多个CSI-ResourceConfigId,其中,用于信道测量的资源resourceForChannelMeasurement可以由CSI-ResourceConfigId指示,以表示第一层(L1)的用于信道测量的参考信号(RS)配置。进一步地,如右侧阴影部分框图所示,CSI-ResourceConfigId中还可以包括CSI-ResourceConfig,并包括用于指示信道测量资源的信道状态信息参考信号(CSI-RS)资源和/或同步信号块(SSB)资源等的测量配置信息。本发明实施例中的发送波束组可以构建在上述一个CSI-ResourceConfig内部,或对应于多个CSI-ResourceConfig,或可以构建在一个resourceForChannelMeasurement内部,或对应于多个resourceForChannelMeasurement,在此不做限制。可选地,发送波束组的测量配置信息可以包括基站的所述发送波束组中的至少一个发送波束的配置信息(或指示信息),其中,所述发送波束的配置信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束。
在一个实现方式中,所述发送波束组的测量配置信息还可以包括:重复指示信息。在一个示例中,所述重复指示信息可以与基站的某个发送波束组相对应,以指示所述基站对该发送波束组当前是否使用与之前相同的发送波束组(或空间滤波器)来发送波束配置信息。例如,当所述重复指示信息与基站的标识为1的发送波束组相对应,且为“ON”时,可以指示所述基站对该发送波束组当前使用与之前相同的发送波束来发送波束配置信息,此时,UE可以利用与之前不同的接收波束组进行波束扫描,以选择与此标识为1的发送波束组相对应的接收波束组;而当所述重复指示信息与基站的标识为1的发送波束组相对应,且为“OFF”时,可以指示所述基站对该发送波束组当前不使用与之前相同的发送波束来发送波束配置信息,此时,UE可以保持与之前相同的接收波束组接收波束配置信息,并选择与此接收波束组相对应的发送波束组。可以按照在上文中例如参照图12所示的方式来设置和使 用该重复指示信息,在这里不再赘述。
在另一个示例中,所述重复指示信息可以与基站的一个或多个发送单元相对应,以指示对一个或多个发送单元,所述基站当前是否使用与之前相同的发送波束来发送波束配置信息。例如,当所述重复指示信息与基站的发送单元1相对应,且为“ON”时,可以指示所述基站对发送单元1,当前使用与之前相同的发送波束1来发送波束配置信息,此时,针对此发送单元1,UE可以利用与之前不同的接收波束组进行波束扫描,以选择与此发送波束1相对应的接收波束;而当所述重复指示信息与基站的发送单元1相对应,且为“OFF”时,可以指示所述基站当前使用与之前发送波束1不同的发送波束2来发送波束配置信息,此时,UE可以保持与之前相同的接收波束组接收,并选择与此接收波束组相对应的发送波束。图13示出根据本发明一个实施例的重复指示信息的示意图。其中,图13(a)为所述重复指示信息1和2分别对应于基站的发送单元1和发送单元2,且分别为“ON”和“OFF”的示意图,图13(b)为所述重复指示信息1和2分别对应于基站的发送单元1和发送单元2,且均为“ON”的示例。如图13(a)所示,所述重复指示信息1与基站的发送单元1相对应,且一直保持为“ON”,此时,基站在此发送单元1上一直采用与之前相同的发送波束进行发送;而重复指示信息2与基站的发送单元2相对应,且一直保持为“OFF”,此时,基站在此发送单元2上一直采用与之前不同的发送波束进行发送,针对这种情况,意味着基站可以一直保持发送单元1上的相同发送波束,而仅对发送单元2上的不同发送波束进行扫描,此时,UE可以利用相同的接收波束组进行接收,并选择与此接收波束组相对应的发送单元2上的发送波束,或者,UE可以利用对应发送单元1的接收单元的已经确定的接收波束和对应发送单元2的某一个相同波束构成的波束组来接收,以确定与此接收波束组相对应的发送单元2上的发送波束。如图13(b)所示,所述重复指示信息1与基站的发送单元1相对应,且一直保持为“ON”,此时,基站在此发送单元1上一直采用相同的发送波束进行发送;重复指示信息2与基站的发送单元2相对应,且一直保持为“ON”,此时,基站在此发送单元2上也一直采用相同的发送波束进行发送。这种情况意味着基站一直采用相同的发送波束组进行发送,此时,UE可以利用不同的接收波束组进行波束扫描,以选择与发送波束组相对应 的接收波束组。
可选地,重复指示信息可以利用一个比特的取值来表示其“ON”或“OFF”的不同状态。例如,可以用取值为1的比特表示“ON”,用取值为0的比特表示“OFF”;反之,也可以用取值为0的比特表示“ON”,用取值为1的比特表示“OFF”。上述关于重复指示信息的各种描述仅为示例,在实际应用中,可以采用任何重复指示信息的表示方式来进行发送波束组和/或发送波束的重复性表示,在此不做限制。
在一个实现方式中,所述基站发送的所述波束配置信息还可以包括:所述基站需要从用户设备接收所述反馈信息的发送波束组的数量;相应地,所述用户设备可以根据所述波束配置信息限定的数量反馈所述反馈信息。例如,所述基站发送的所述波束配置信息可以包括:需要从用户设备接收3个发送波束组的反馈信息,从而,所述用户设备即使接收到了例如5个发送波束组发送的波束配置信息,也可以仅反馈最多3个发送波束组对应的反馈信息。如上文所述,可以按照不同的方式来选择反馈所针对的发送波束组。在这里不再赘述。当然,上述反馈信息的反馈方式仅为示例,在实际应用中,基站需要从用户设备接收反馈信息的发送波束组的数量,可以大于、等于或小于发送波束配置信息的发送波束组的数量,在此不做限制。
在一个实现方式中,所述发送波束组的测量配置信息可以包括用户设备所测量的信道质量类型,由此,所述用户设备可以根据所述信道质量类型获取相应类型的信道质量的反馈信息。其中,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。在一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRQ;在另一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRP,例如可以为发送波束组对应的平均RSRP;在另一个示例中,基站指示用户设备所测量的信道质量类型可以为SINR,例如可以为发送波束组对应的平均SINR。相应地,在一个示例中,发送波束组的测量配置信息还可以包括:用于指示一个或多个参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示一个或多个CSI-RS强度测量的测量配置信息,或一个或多个SSB强度测量的测量配置信息。在另一个示例中,发送波束组的测量配置信息还可以包括:与一个或多个CSI-RS或者SSB对应的RSSI的测量配置信息和/或 干扰强度的测量配置信息。
在步骤S2202中,基站接收用户设备根据所述波束配置信息反馈的关于信道质量的反馈信息。
在本发明一个实现方式中,当基站发送的所述波束配置信息包括所述基站需要从用户设备接收所述反馈信息的发送波束组的数量时,所述用户设备可以根据所述波束配置信息限定的数量反馈所述反馈信息。
在本发明一个实现方式中,当基站发送的发送波束组的测量配置信息包括用户设备所测量的信道质量类型时,所述用户设备可以根据所述信道质量类型获取相应类型的信道质量的反馈信息。如上所述,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。
在一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRP,具体地,UE可以基于基站发送的发送波束组的测量配置信息,例如对与一个或多个CSI-RS或SSB的RE的测量,来获取所述发送波束组对应的平均L1-RSRP,作为关于信道质量的反馈信息。
在另一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRQ,例如可以为发送波束组对应的平均RSRQ。具体地,UE可以基于发送波束组的测量配置信息,例如根据对发送波束组内配置的每个参考信号测量得到的L1-RSRQ,得到发送波束组的平均L1-RSRQ。例如,当发送波束组的测量配置信息指示测量两个参考信号时,可以利用所获得的第一L1-RSRQ和第二L1-RSRQ的平均值得到发送波束组的平均L1-RSRQ。其中,每个参考信号的L1-RSRQ可以通过对参考信号强度的测量和对RSSI的测量得到。此时,发送波束组的测量配置信息可以包括:用于指示参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示CSI-RS强度测量的测量配置信息,或指示SSB强度测量的测量配置信息。另外,可选地,RSSI可以为在参考信号资源元素上或在参考信号资源元素所在时间符号的整个带宽上的资源元素上接收的总能量强度,或可以使用相同接收波束接收组内多个参考信号配置的参考信号配置作为该参考信号的干扰强度测量配置。例如,所述发送波束组的测量配置信息还可以显式地配置有:所述发送波束组中的至少一个发送波束的接收信号强度指示的测量配置信息和/或干扰强度的测量配置信息;相应地,所述根据所述波束配置信息,反馈 关于信道质量的反馈信息可以包括:根据所述接收信号强度指示的测量配置信息和/或干扰强度的测量配置信息,获取所述发送波束组的参考信号接收质量。再例如,所述根据所述波束配置信息,反馈关于信道质量的反馈信息还可以包括:根据预设配置获取所述发送波束组的参考信号接收质量。其中,所述预设配置可以被隐式地配置。在一个示例中,用于根据接收信号强度指示和/或干扰强度获取的与发送波束组对应的参考信号接收质量的预设配置,可以被预先配置在UE和基站两侧;也可以被预先配置给基站,并通过信令预先告知UE;或者可以预先配置给UE,并通过信令上报基站。上述关于测量配置信息的内容及各种预设配置方式仅为示例,在实际应用中,可以采用任何测量配置信息的内容和预设配置方式,在此不做限制。
在再一个示例中,基站指示用户设备所测量的信道质量类型可以为SINR,例如可以为发送波束组对应的平均SINR。具体地,UE可以基于发送波束组的测量配置信息,例如根据对发送波束组内配置的每个参考信号测量得到的L1-SINR,得到发送波束组的平均L1-SINR。例如,当发送波束组的测量配置信息指示测量两个参考信号时,可以利用所获得的第一L1-SINR和第二L1-SINR的平均值得到发送波束组的平均L1-SINR。其中,每个参考信号的L1-SINR可以通过对参考信号强度的测量和对干扰强度的测量得到。此时,发送波束组的测量配置信息可以包括:用于指示一个或多个(例如:两个)参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示CSI-RS强度测量的测量配置信息,或指示SSB强度测量的测量配置信息。例如,所述发送波束组的测量配置信息还可以显式地配置有:干扰强度的测量配置信息;相应地,所述根据所述波束配置信息,反馈关于信道质量的反馈信息可以包括:根据所述干扰强度的测量配置信息,获取所述发送波束组的信号与干扰和噪声比。再例如,所述根据所述波束配置信息,反馈关于信道质量的反馈信息还可以包括:根据预设配置获取所述发送波束组的信号与干扰和噪声比。其中,所述预设配置可以被隐式地配置。在一个示例中,用于根据干扰强度获取的与发送波束组对应的信号与干扰和噪声比的预设配置,可以被预先配置在UE和基站两侧;也可以被预先配置给基站,并通过信令预先告知UE;或者可以预先配置给UE,并通过信令上报基站。例如,作为隐式配置的例子,可以配置为使得发送波束组内某一个参考信号 对应的干扰可以通过测量参考信号资源元素上接收的干扰,或在参考信号资源元素所在时间符号的整个带宽上的资源元素上接收的干扰,或使用相同接收波束接收发送波束组内另一个参考信号元素位置上的干扰。上述关于测量配置信息的内容及各种预设配置方式仅为示例,在实际应用中,可以采用任何测量配置信息的内容和预设配置方式,在此不做限制。
UE可以按照在上文中参照图14描述的方式对参考信号强度测量。可替换地,UE可以按照在上文中参照图15描述的方式对参考信号强度和干扰强度进行测量。可替换地,UE可以按照在上文中参照图16描述的方式对参考信号强度和接收信号强度指示进行测量。由此,可以获得基站的发送波束组的信道质量测量结果,并且向基站反馈该结果。
在本发明实施例中,基站在接收到所述反馈信息之后,可以根据所接收的关于信道质量的反馈信息,在所述至少一个发送波束组中选择一个或多个发送波束组。具体地,所述反馈信息可以与至少一个发送波束组中的一个或多个发送波束组相关联,从而所述反馈信息还可以包括所述一个或多个发送波束组的标识。例如,UE上报的所述反馈信息可以包括例如发送波束组的标识1,及其相应的信道质量反馈信息。如上所述,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。在一个示例中,UE反馈的反馈信息可以包括如下反馈信息中的一个或多个:发送波束组标识_RSRP(或,CSI_发送波束组标识_RSRP和/或SSB_发送波束组标识_RSRP)、发送波束组标识_RSRQ/SINR(或,CSI_发送波束组标识_RSRQ/SINR和/或SSB_发送波束组标识_RSRQ/SINR,这里RSRQ表示用户反馈RSRQ,SINR表示用户反馈SINR,RSRQ/SINR表示用户反馈RSRQ和SINR中的一个或全部)、发送波束组标识_RSRP_RSRQ/SINR(或,CSI_发送波束组标识_RSRP_RSRQ/SINR和/或SSB_发送波束组标识_RSRP_RSRQ/SINR,这里RSRP_RSRQ表示用户同时反馈RSRP和RSRQ)。上述UE的反馈信息仅为示例,在实际应用中,UE可以采用任何根据波束配置信息获得的关于信道质量的反馈信息进行反馈,在此不做限制。另外,用户反馈多个发送波束组的信号质量测量结果RSRQ、RSRP、SINR或者RSSI时,可以反馈这些结果的多个绝对值,也可以对最优发送波束组(例如信道质量最好的发送波束组)反馈绝对信道质量测量结果,对其他发送波束组反 馈相对于该最优发送波束组的绝对信道质量测量结果的相对差值。
以上描述了根据本发明实施例的由基站执行的无线通信方法的步骤。在本发明的另一个实现方式中,还可以发送关于发送单元的信息,所述关于发送单元的信息指示至少一个发送单元的标识及所述至少一个发送单元所具有的发送波束的指示信息,以使用户设备根据所述关于发送单元的信息选择所述至少一个发送单元中的一个或多个发送波束,并反馈指示用户设备选择结果的波束选择信息。其中,所述波束选择信息可以包括所述至少一个发送单元的标识、在所述发送单元中选择的发送波束的指示信息和/或与所选择的发送波束对应的信道反馈信息。具体地,基站可以根据其发送的关于发送单元的信息,使UE获知所述基站具有几个发送单元,及发送单元的标识和所具有的发送波束,以使UE能够根据不同的发送单元,从中分别选择一个或多个发送波束反馈给基站。从而避免UE在不知道发送单元和相应的发送波束的对应关系时,无法根据发送单元对发送波束的划分来向基站反馈发送波束的情况,使得基站能够在确定步骤S2201中的发送波束组时,尽量具有更多的发送波束组的组合方案。
可选地,基站的发送单元可以是前述的基站、基站上的收发板、基站的收发板上的TXRU、基站的射频(RF)滤波器或基站的空间滤波器(spatial filter),基站的各个发送单元能够各自同时发送至少一个发送波束。在一个示例中,所述发送波束的指示信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束,此外,基站的一个发送单元所具有的发送波束的指示信息可以构建在图11所示的一个CSI-ResourceConfig内部,或对应于多个CSI-ResourceConfig,或可以构建在一个resourceForChannelMeasurement内部,或对应于多个resourceForChannelMeasurement,在此不做限制。可选地,所述至少一个发送单元所具有的发送波束的指示信息还可以包括希望UE针对所述至少一个发送单元中的一个或多个发送单元所选择的发送波束的数量,其中,针对不同的发送单元,可以分别配置UE要选择的发送波束的数量(或者要选择的发送波束的最大数量),并且这些数量可以相同或不同。
此外,可选地,所述关于发送单元的信息也可以包括:重复指示信息, 用于指示对一个或多个发送单元,所述基站当前是否使用与之前相同的发送波束来发送关于发送单元的信息。所述关于发送单元的信息中的重复指示信息的原理和应用方式与前述的发送波束组的测量配置信息中的重复指示信息相似,在此不再赘述。
相应地,利用至少一个发送波束组发送波束配置信息包括:根据用户设备反馈的所述波束选择信息,在至少一个发送单元中分别选择一个发送波束以形成发送波束组发送波束配置信息。所述基站可以根据所述波束选择信息在每个发送单元中分别选择一个发送波束形成发送波束组,也可以在其中的部分发送单元中分别选择一个发送波束形成发送波束组,在此不做限制。
图17示出根据本发明一个实施例的无线通信方法的波束选择的示例。具体地,基站首先发送关于发送单元的信息,在本示例中,假设基站包括两个发送单元,每个单元具有4个发送波束,则该关于发送单元的信息可以包括发送单元的标识1及其具有的发送波束的指示信息{1,2,3,4},和发送单元的标识2及其具有的发送波束的指示信息{5,6,7,8}。随后,UE根据基站发送的关于发送单元的信息,在发送单元1中选择发送波束{1,2},并在发送单元2中选择发送波束{7,8},如图17(a)所示。并且,UE将选择的结果作为波束选择信息反馈给基站。在一个示例中,UE可以同时上报发送单元的标识及所选择的发送波束;在另一个示例中,考虑到发送波束的指示信息各不相同,UE也可以仅上报所选择的发送波束。可选地,所述波束选择信息还可以包括与所选择的发送波束对应的信道反馈信息。
可选的,基站在接收到UE反馈的波束选择信息之后,可以针对不同的发送单元1和2,分别选择其对应的一个发送波束,从而形成发送波束组。例如,基站可以选择包括1&7,1&8,2&7,2&8的发送波束组,以发送波束配置信息。图17(b)示出基站分别采用1&7,1&8,2&7,2&8的发送波束组发送波束配置信息的示例,在这一示例中,波束配置信息中的重复指示信息可以为“OFF”。图17(c)示出基站采用1&7的发送波束组发送波束配置信息的示例,在这一示例中,波束配置信息中的重复指示信息可以为“ON”。
在本发明的又一个实现方式中,基站可以向用户设备发送反馈指示信息,并且接收用户设备发送的指示用户设备选择结果的波束选择信息,所述波束选择信息指示用户设备根据所述反馈指示信息所选择的,与用户设备的至少 一个接收单元中的一个或多个接收波束对应的发送波束,其中所述反馈指示信息可以包括UE要选择的,即要反馈的所述一个或多个接收单元的数量,和/或每个接收单元的接收波束对应的发送波束的数量。其中,所述波束选择信息可以包括所述至少一个接收单元的标识,以及与所述至少一个接收单元中的一个或多个接收波束对应的发送波束的指示信息。可选地,所述波束选择信息还可以包括与所述发送波束对应的信道反馈信息。具体地,UE可以从不同的接收单元分别选择一个或多个接收波束,并将与所选择的接收波束对应的发送波束的指示信息反馈给基站,以使基站能够在确定步骤S2201中对应的发送波束组时,尽量具有更多的发送波束组的组合方案。在一个示例中,UE从不同的接收单元所选择的接收波束及其对应的发送波束的数量可以相同或不同。例如,对每个接收单元,UE可以均选择2个发送波束;再例如,针对一个接收单元,UE可以选择一个发送波束,而针对另一个接收单元,UE可以选择3个发送波束。其中,UE反馈的接收单元的数量,以及/或者针对不同接收单元所选择的波束的数量可以预先设置并由UE和基站获知,也可以由RRC信令进行配置,还可以通过UE能力(UE capability)信息、UE端收发板/接收单元/空间滤波器的数量等参数确定。例如,基站可以根据UE能力信息确定UE反馈的一个或多个接收单元的数量,以及/或者针对不同接收单元所选择的波束的数量,以确保所配置的数量不会超过UE的能力。。
相应地,所述利用至少一个发送波束组发送波束配置信息包括:根据用户设备发送的波束选择信息,在至少一个发送单元中分别选择一个发送波束以形成发送波束组发送波束配置信息。所述基站可以根据所述波束选择信息在每个发送单元中分别选择一个发送波束形成发送波束组,也可以在其中的部分发送单元中分别选择一个发送波束形成发送波束组,在此不做限制。
可选地,UE的接收单元可以是前述的UE、UE上的收发板、UE的收发板上的TXRU、UE的射频(RF)滤波器或UE的空间滤波器等。UE的各个接收单元能够各自同时接收至少一个波束。在一个示例中,与接收波束对应的所述发送波束的指示信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置、空间滤波器中的一个或多个来指示所述 发送波束。根据本发明的一个示例,如上所述,UE可以根据在例如3GPP R-16中预设的上报类型发送指示UE选择结果的波束选择信息。根据本发明的另一个示例,UE还可以根据在现有的3GPP R-15标准中重新定义的参数来发送指示UE选择结果的波束选择信息。
图21示出根据本发明一个实施例的无线通信方法中波束选择的示例。在这一示例中,UE分别具有两个接收单元,基站分别具有两个发送单元,每个发送/接收单元均分别具有两个发送/接收波束。首先,UE根据其两个接收单元及其对应的波束,分别获取如图21(a)所示的L1-RSRP的信道测量结果。随后,UE可以利用所述信道测量结果,确定波束选择信息,其指示用户设备所选择的每个接收单元中的每个接收波束对应的发送波束。根据图21(a),根据L1-RSRP的信道测量结果,用户设备可以选择其接收单元1的接收波束1对应的发送波束1,和接收波束2对应的发送波束2,另外,还可以选择其接收单元2的接收波束3对应的发送波束4,和接收波束2对应的发送波束6。也就是说,对应于接收单元1,用户设备选择发送波束{1,2};对应于接收单元2,用户设备选择发送波束{4,6}。相应地,如图21(b)所示,对应于基站的发送单元1,所选择的发送波束包括{1,2,4};对应于基站的发送单元2,所选择的发送波束包括{6}。由此,基站可以根据用户设备的波束选择信息,在每个发送单元中分别选择一个发送波束形成发送波束组,如图21(c)所示,发送波束组可以{1,6}或{2,6}。
利用本发明实施例的无线通信方法,能够提供基站和UE之间在对不同收发单元选择对应的波束及所形成的波束组时,提供具体的信令交互的方案,以根据信令交互和波束选择过程来提高无线通信系统的传输质量,优化信道传输资源的配置,减少资源开销。
以下参照图23来描述根据本申请实施例的用户设备。该用户设备可以执行上述无线通信方法。由于该用户设备的操作与上文所述的无线通信方法的各个步骤基本相同,因此在这里只对其进行简要的描述,而省略对相同内容的重复描述。
如图23所示,用户设备2300包括接收单元2310和反馈单元2320。需要认识到,图23仅示出与本申请的实施例相关的部件,而省略了其他部件,但这只是示意性的,根据需要,用户设备2300可以包括其他部件。
接收单元2310接收基站利用至少一个发送波束组发送的波束配置信息,所述波束配置信息包括至少一个发送波束组的标识和至少一个发送波束组的测量配置信息。
其中,基站可以在至少一个发送波束组中选择一个或多个发送波束组,并通过所选择的发送波束组发送包括该发送波束组标识和测量配置信息的波束配置信息。所述至少一个发送波束组可以是通过上文描述的波束选择方法构建的一个或多个发送波束组。相应地,接收单元2310可以接收基站利用至少一个发送波束组发送的波束配置信息。
如上文所述,本发明实施例中的发送波束组可以构建在上述一个CSI-ResourceConfig内部,或对应于多个CSI-ResourceConfig,或可以构建在一个resourceForChannelMeasurement内部,或对应于多个resourceForChannelMeasurement,在此不做限制。可选地,发送波束组的测量配置信息可以包括所述发送波束组中的至少一个发送波束的配置信息(或指示信息),其中,所述发送波束的配置信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束。
在一个实现方式中,所述发送波束组的测量配置信息还可以包括:重复指示信息。在一个示例中,所述重复指示信息可以与基站的某个发送波束组相对应,以指示所述基站对该发送波束组当前是否使用与之前相同的发送波束(或空间滤波器)来发送波束配置信息。例如,当所述重复指示信息与基站的标识为1的发送波束组相对应,且为“ON”时,可以指示所述基站对该发送波束组,当前使用与之前相同的发送波束来发送波束配置信息,此时,UE可以利用与之前不同的接收波束组进行波束扫描,以选择与此标识为1的发送波束组相对应的接收波束组;而当所述重复指示信息与基站的标识为1的发送波束组相对应,且为“OFF”时,可以指示所述基站对该发送波束组当前不使用与之前相同的发送波束来发送波束配置信息,此时,UE可以保持与之前相同的接收波束组接收波束配置信息,并选择与此接收波束组相对应的发送波束组。
在另一个示例中,所述重复指示信息可以与基站的一个或多个发送单元 相对应,以指示对一个或多个发送单元,所述基站当前是否使用与之前相同的发送波束来发送波束配置信息。例如,当所述重复指示信息与基站的发送单元1相对应,且为“ON”时,可以指示所述基站对发送单元1,当前使用与之前相同的发送波束1来发送波束配置信息,此时,针对此发送单元1,UE可以利用与之前不同的接收波束组进行波束扫描,以选择与此发送波束1相对应的接收波束组;而当所述重复指示信息与基站的发送单元1相对应,且为“OFF”时,可以指示所述基站当前使用与之前发送波束1不同的发送波束2来发送波束配置信息,此时,UE可以保持与之前相同的接收波束组接收,并选择与此接收波束组相对应的发送波束。
可选地,重复指示信息可以利用一个比特的取值来表示其“ON”或“OFF”的不同状态。例如,可以用取值为1的比特表示“ON”,用取值为0的比特表示“OFF”;反之,也可以用取值为0的比特表示“ON”,用取值为1的比特表示“OFF”。上述关于重复指示信息的各种描述仅为示例,在实际应用中,可以采用任何重复指示信息的表示方式来进行发送波束组和/或发送波束的重复性表示,在此不做限制。
在一个实现方式中,所述基站发送的所述波束配置信息还可以包括:所述基站需要从用户设备接收所述反馈信息的发送波束组的数量;相应地,所述用户设备可以根据所述波束配置信息限定的数量反馈所述反馈信息。例如,所述基站发送的所述波束配置信息可以包括:需要从用户设备接收3个发送波束组的反馈信息,从而,所述用户设备即使接收到了例如5个发送波束组发送的波束配置信息,也可以仅反馈最多3个发送波束组对应的反馈信息。如上文所述,可以按照不同的方式来选择反馈所针对的发送波束组,在这里不再赘述。当然,上述反馈信息的反馈方式仅为示例,在实际应用中,基站需要从用户设备接收反馈信息的发送波束组的数量,可以大于、等于或小于发送波束配置信息的发送波束组的数量,在此不做限制。
在一个实现方式中,所述发送波束组的测量配置信息可以包括用户设备所测量的信道质量类型,由此,所述用户设备可以根据所述信道质量类型获取相应类型的信道质量的反馈信息。如上文所述,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。在一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRQ;在另一个示例中, 基站指示用户设备所测量的信道质量类型可以为RSRP,例如可以为发送波束组对应的平均RSRP;在另一个示例中,基站指示用户设备所测量的信道质量类型可以为SINR,例如可以为发送波束组对应的平均SINR。相应地,在一个示例中,发送波束组的测量配置信息还可以包括:用于指示一个或多个参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示一个或多个信道状态信息参考信号(CSI-RS)强度测量的测量配置信息,或一个或多个SSB强度测量的测量配置信息。在另一个示例中,发送波束组的测量配置信息还可以包括:与一个或多个CSI-RS或者SSB对应的RSSI的测量配置信息和/或干扰强度的测量配置信息。
反馈单元2320可以根据所述波束配置信息,反馈关于信道质量的反馈信息。
在本发明一个实现方式中,当基站发送的所述波束配置信息包括所述基站需要从用户设备接收所述反馈信息的发送波束组的数量时,反馈单元2320可以根据所述波束配置信息限定的数量反馈所述反馈信息。
在本发明一个实现方式中,当基站发送的发送波束组的测量配置信息包括用户设备所测量的信道质量类型时,所述用户设备可以根据所述信道质量类型获取相应类型的信道质量的反馈信息。如上所述,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。
在一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRP,具体地,UE可以基于基站发送的发送波束组的测量配置信息,例如对一个或多个CSI-RS或SSB的RE进行测量,来获取所述发送波束组对应的平均L1-RSRP,作为关于信道质量的反馈信息。
在另一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRQ,例如可以为发送波束组对应的平均RSRQ。具体地,反馈单元2320可以基于发送波束组的测量配置信息,例如根据对发送波束组内配置的每个参考信号测量得到的L1-RSRQ,得到发送波束组的平均L1-RSRQ。例如,当发送波束组的测量配置信息指示测量两个参考信号时,可以利用所获得的第一L1-RSRQ和第二L1-RSRQ的平均值得到发送波束组的平均L1-RSRQ。其中,每个参考信号的L1-RSRQ可以通过对参考信号强度的测量和对RSSI的测量得到。此时,发送波束组的测量配置信息可以包括:用于指示参考信 号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示CSI-RS强度测量的测量配置信息,或指示SSB强度测量的测量配置信息。另外,可选地,RSSI可以为在参考信号资源元素上或在参考信号资源元素所在时间符号的整个带宽上的资源元素上接收的总能量强度,或可以使用相同接收波束接收组内多个参考信号配置的参考信号配置作为该参考信号的干扰强度测量配置。例如,所述发送波束组的测量配置信息还可以显式地配置有:所述发送波束组中的至少一个发送波束的接收信号强度指示的测量配置信息和/或干扰强度的测量配置信息;相应地,所述根据所述波束配置信息,反馈关于信道质量的反馈信息可以包括:根据所述接收信号强度指示的测量配置信息和/或干扰强度的测量配置信息,获取所述发送波束组的参考信号接收质量。再例如,所述根据所述波束配置信息,反馈关于信道质量的反馈信息还可以包括:根据预设配置获取所述发送波束组的参考信号接收质量。其中,所述预设配置可以被隐式地配置。在一个示例中,用于根据接收信号强度指示和/或干扰强度获取的与发送波束组对应的参考信号接收质量的预设配置,可以被预先配置在UE和基站两侧;也可以被预先配置给基站,并通过信令预先告知UE;或者可以预先配置给UE,并通过信令上报基站。上述关于测量配置信息的内容及各种预设配置方式仅为示例,在实际应用中,可以采用任何测量配置信息的内容和预设配置方式,在此不做限制。
在再一个示例中,基站指示用户设备所测量的信道质量类型可以为SINR,例如可以为发送波束组对应的平均SINR。具体地,UE可以基于发送波束组的测量配置信息,例如根据对发送波束组内配置的每个参考信号测量得到的L1-SINR,得到发送波束组的平均L1-SINR。例如,当发送波束组的测量配置信息指示测量两个参考信号时,可以利用所获得的第一L1-SINR和第二L1-SINR的平均值得到发送波束组的平均L1-SINR。其中,每个参考信号的L1-SINR可以通过对参考信号强度的测量和对干扰强度的测量得到。此时,发送波束组的测量配置信息可以包括:用于指示一个或多个(例如:两个)参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示CSI-RS强度测量的测量配置信息,或指示SSB强度测量的测量配置信息。例如,所述发送波束组的测量配置信息还可以显式地配置有:干扰强度的测量配置信息;相应地,所述根据所述波束配置信息,反馈关于信道 质量的反馈信息可以包括:根据所述干扰强度的测量配置信息,获取所述发送波束组的信号与干扰和噪声比。再例如,所述根据所述波束配置信息,反馈关于信道质量的反馈信息还可以包括:根据预设配置获取所述发送波束组的信号与干扰和噪声比。其中,所述预设配置可以被隐式地配置。在一个示例中,用于根据干扰强度获取的与发送波束组对应的信号与干扰和噪声比的预设配置,可以被预先配置在UE和基站两侧;也可以被预先配置给基站,并通过信令预先告知UE;或者可以预先配置给UE,并通过信令上报基站。例如,作为隐式配置的例子,可以配置为使得发送波束组内某一个参考信号对应的干扰可以通过测量参考信号资源元素上接收的干扰,或在参考信号资源元素所在时间符号的整个带宽上的资源元素上接收的干扰,或使用相同接收波束接收发送波束组内另一个参考信号元素位置上的干扰。上述关于测量配置信息的内容及各种预设配置方式仅为示例,在实际应用中,可以采用任何测量配置信息的内容和预设配置方式,在此不做限制。
如上文所述,反馈单元可以按照图14所示的方式对参考信号强度测量。可替换地,反馈单元可以按照图15所示的方式对参考信号强度和干扰强度进行测量。可替换地,反馈单元可以按照图16所示的方式对参考信号强度和接收信号强度指示进行测量。由此,可以获得基站的发送波束对的信道质量测量结果。
在本发明实施例中,反馈单元2320在根据所述波束配置信息获取关于信道质量的反馈信息之后,可以向基站反馈所述反馈信息,以使基站根据所述反馈信息,在所述至少一个发送波束组中选择一个或多个发送波束组。具体地,所述反馈信息可以与至少一个发送波束组中的一个或多个发送波束组相关联,从而所述反馈信息还可以包括所述一个或多个发送波束组的标识。例如,UE上报的所述反馈信息可以包括例如发送波束组的标识1,及其相应的信道质量反馈信息。如上所述,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。在一个示例中,UE反馈的反馈信息可以包括如下反馈信息中的一个或多个:发送波束组标识_RSRP(或,CSI_发送波束组标识_RSRP和/或SSB_发送波束组标识_RSRP)、发送波束组标识_RSRQ/SINR(或,CSI_发送波束组标识_RSRQ/SINR和/或SSB_发送波束组标识_RSRQ/SINR,这里RSRQ表示用户反馈RSRQ,SINR表示用户 反馈SINR,RSRQ/SINR表示用户反馈RSRQ和SINR中的一个或全部)、发送波束组标识_RSRP_RSRQ/SINR(或,CSI_发送波束组标识_RSRP_RSRQ/SINR和/或SSB_发送波束组标识_RSRP_RSRQ/SINR,这里RSRP_RSRQ表示用户同时反馈RSRP和RSRQ)。上述反馈单元2320的反馈信息仅为示例,在实际应用中,反馈单元2320可以采用任何根据波束配置信息获得的关于信道质量的反馈信息进行反馈,在此不做限制。另外,反馈单元2320反馈多个发送波束组的信号质量测量结果RSRQ、RSRP、SINR或者RSSI时,可以反馈这些结果的多个绝对值,也可以对最优发送波束组(例如信道质量最好的发送波束组)反馈绝对信道质量测量结果,对其他发送波束组反馈相对于该最优发送波束组的绝对信道质量测量结果的相对差值。
以上描述了根据本发明实施例的用户设备2300。在本发明的另一个实现方式中,在接收单元2310接收基站利用至少一个发送波束组发送的波束配置信息之前,还可以接收基站发送的关于发送单元的信息,所述关于发送单元的信息指示至少一个发送单元的标识及所述至少一个发送单元所具有的发送波束的指示信息;根据所述关于发送单元的信息,选择所述至少一个发送单元中的一个或多个发送波束,并反馈指示用户设备选择结果的波束选择信息。其中,所述波束选择信息可以包括所述至少一个发送单元的标识、在所述发送单元中选择的发送波束的指示信息和/或与所选择的发送波束对应的信道反馈信息。具体地,基站可以根据其发送的关于发送单元的信息,使UE获知所述基站具有几个发送单元,及发送单元的标识和所具有的发送波束,以使UE能够根据不同的发送单元,从中分别选择一个或多个发送波束反馈给基站。从而避免UE在不知道发送单元和相应的发送波束的对应关系时,无法根据发送单元对发送波束的划分来向基站反馈发送波束的情况,使得基站能够在获取发送波束组时,尽量具有更多的发送波束组的组合方案。
可选地,基站的发送单元可以是前述的基站、基站上的收发板、基站的收发板上的TXRU、基站的射频(RF)滤波器或基站的空间滤波器(spatial filter),基站的各个发送单元能够各自同时发送至少一个发送波束。在一个示例中,所述发送波束的指示信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置、空间滤波器中的一个或多个来指示所述 发送波束,此外,基站的一个发送单元所具有的发送波束的指示信息可以构建在图11所示的一个CSI-ResourceConfig内部,或对应于多个CSI-ResourceConfig,或可以构建在一个resourceForChannelMeasurement内部,或对应于多个resourceForChannelMeasurement,在此不做限制。可选地,所述至少一个发送单元所具有的发送波束的指示信息还可以包括希望UE针对所述至少一个发送单元中的一个或多个发送单元所选择的发送波束的数量,,针对不同的发送单元,可以分别配置UE要选择的发送波束的数量(或者要选择的发送波束的最大数量),并且这些数量可以相同或不同。
此外,可选地,所述关于发送单元的信息也可以包括:重复指示信息,用于指示对一个或多个发送单元,所述基站当前是否使用与之前相同的发送波束来发送关于发送单元的信息。所述关于发送单元的信息中的重复指示信息的原理和应用方式与前述的发送波束组的测量配置信息中的重复指示信息相似,在此不再赘述。
相应地,所述接收单元2310可以接收所述基站根据所述波束选择信息,在至少一个发送单元中分别选择一个发送波束以形成的发送波束组所发送的波束配置信息。所述基站可以根据所述波束选择信息在每个发送单元中分别选择一个发送波束形成发送波束组,也可以在其中的部分发送单元中分别选择一个发送波束形成发送波束组,在此不做限制。
如在上文中参照图17描述的,在根据本发明一个实施例的无线通信方法的波束选择中,基站首先发送关于发送单元的信息,该关于发送单元的信息可以包括各个发送单元的标识及其具有的发送波束的指示信息。随后,UE可以根据基站发送的关于发送单元的信息,在各个发送单元中分别选择发送波束,并且将选择的结果作为波束选择信息反馈给基站。在一个示例中,UE可以同时上报发送单元的标识及所选择的发送波束;在另一个示例中,考虑到发送波束的指示信息各不相同,UE也可以仅上报所选择的发送波束。可选地,所述波束选择信息还可以包括与所选择的发送波束对应的信道反馈信息。
可选地,基站在接收到UE反馈的波束选择信息之后,可以针对不同的发送单元,分别选择其对应的一个发送波束,从而形成发送波束组。
在本发明的又一个实现方式中,UE可以接收基站发送的反馈指示信息, 根据该反馈指示信息,选择与用户设备的至少一个接收单元中的一个或多个接收波束对应的发送波束,并且向基站发送波束选择信息,该波束选择信息指示用户设备所选择的发送波束。其中,所述波束选择信息可以包括所述至少一个接收单元的标识,以及与所述至少一个接收单元中的一个或多个接收波束对应的发送波束的指示信息。可选地,所述波束选择信息还可以包括与所述发送波束对应的信道反馈信息。具体地,所述反馈指示信息可以包括UE要选择的,即要反馈的所述一个或多个接收单元的数量,和/或每个接收单元的接收波束对应的发送波束的数量。根据该数量,UE可以根据不同的接收单元,从中分别选择一个或多个接收波束,并将与所选择的接收波束对应的发送波束的指示信息反馈给基站,以使基站能够在获取发送波束组时,尽量具有更多的发送波束组的组合方案。在一个示例中,UE根据不同的接收单元所选择的接收波束及其对应的发送波束的数量可以相同或不同。UE反馈的一个或多个接收单元的数量,以及/或者针对不同接收单元所选择的波束的数量可以预先设置并由UE和基站获知,也可以由RRC信令进行配置,还可以通过UE能力信息、UE端收发板/接收单元/空间滤波器的数量等参数确定。例如,基站可以根据UE能力信息确定UE反馈的一个或多个接收单元的数量,以及/或者针对不同接收单元所选择的波束的数量,以确保所配置的数量不会超过UE的能力。
相应地,所述接收单元2310可以接收所述基站根据所述波束选择信息,在至少一个发送单元中分别选择一个发送波束以形成的发送波束组所发送的波束配置信息。所述基站可以根据所述波束选择信息在每个发送单元中分别选择一个发送波束形成发送波束组,也可以在其中的部分发送单元中分别选择一个发送波束形成发送波束组,在此不做限制。
可选地,UE的接收单元可以是前述的UE、UE上的收发板、UE的收发板上的TXRU、UE的射频(RF)滤波器或UE的空间滤波器等。UE的各个接收单元能够各自同时接收至少一个波束。在一个示例中,与接收波束对应的所述发送波束的指示信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束。如上文所述,UE可以根据在例如3GPP R-16中预设的上报 类型发送指示UE选择结果的波束选择信息,或者可以根据在现有的3GPP R-15标准中重新定义的参数来发送指示UE选择结果的波束选择信息,在这里不再赘述。
利用本发明实施例的UE,能够提供基站和UE之间在对不同收发单元选择对应的波束及所形成的波束组时,提供具体的信令交互的方案,以根据信令交互和波束选择过程来提高无线通信系统的传输质量,优化信道传输资源的配置,减少资源开销。
以下参照图24来描述根据本申请实施例的基站。该基站可以执行上述无线通信方法。由于该基站的操作与上文所述的信息接收方法的各个步骤基本相同,因此在这里只对其进行简要的描述,而省略对相同内容的重复描述。
如图24所示,基站2400包括发送单元2410和接收单元2420。需要认识到,图24仅示出与本申请的实施例相关的部件,而省略了其他部件,但这只是示意性的,根据需要,基站2400可以包括其他部件。
发送单元2410利用至少一个发送波束组发送波束配置信息,所述波束配置信息包括至少一个发送波束组的标识和至少一个发送波束组的测量配置信息。
发送单元2410可以在至少一个发送波束组中选择一个或多个发送波束组,并通过所选择的发送波束组发送包括该发送波束组标识和测量配置信息的波束配置信息。所述至少一个发送波束组可以是通过上文描述的波束选择方法构建的一个或多个发送波束组。如上文所述,本发明实施例中的发送波束组可以构建在上述一个CSI-ResourceConfig内部,或对应于多个CSI-ResourceConfig,或可以构建在一个resourceForChannelMeasurement内部,或对应于多个resourceForChannelMeasurement,在此不做限制。可选地,发送波束组的测量配置信息可以包括基站的所述发送波束组中的至少一个发送波束的配置信息(或指示信息),其中,所述发送波束的配置信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam  index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束。
在一个实现方式中,所述发送波束组的测量配置信息还可以包括:重复指示信息。在一个示例中,所述重复指示信息可以与基站的某个发送波束组 相对应,以指示所述基站对该发送波束组当前是否使用与之前相同的发送波束来发送波束配置信息。例如,当所述重复指示信息与基站的标识为1的发送波束组相对应,且为“ON”时,可以指示所述基站对该发送波束组当前使用与之前相同的发送波束来发送波束配置信息,此时,UE可以利用与之前不同的接收波束组进行波束扫描,以选择与此标识为1的发送波束组相对应的接收波束组;而当所述重复指示信息与基站的标识为1的发送波束组相对应,且为“OFF”时,可以指示所述基站对该发送波束组当前不使用与之前相同的发送波束来发送波束配置信息,此时,UE可以保持与之前相同的接收波束组接收波束配置信息,并选择与此接收波束组相对应的发送波束组。。
在另一个示例中,所述重复指示信息可以与基站的一个或多个发送单元相对应,以指示对一个或多个发送单元,所述基站当前是否使用与之前相同的发送波束来发送波束配置信息。例如,当所述重复指示信息与基站的发送单元1相对应,且为“ON”时,可以指示所述基站对发送单元1,当前使用与之前相同的发送波束1来发送波束配置信息,此时,针对此发送单元1,UE可以利用与之前不同的接收波束组进行波束扫描,以选择与此发送波束1相对应的接收波束;而当所述重复指示信息与基站的发送单元1相对应,且为“OFF”时,可以指示所述基站当前使用与之前发送波束1不同的发送波束2来发送波束配置信息,此时,UE可以保持与之前相同的接收波束组接收,以进行比较,并选择与此接收波束组相对应的发送波束。
可选地,重复指示信息可以利用一个比特的取值来表示其“ON”或“OFF”的不同状态。例如,可以用取值为1的比特表示“ON”,用取值为0的比特表示“OFF”;反之,也可以用取值为0的比特表示“ON”,用取值为1的比特表示“OFF”。上述关于重复指示信息的各种描述仅为示例,在实际应用中,可以采用任何重复指示信息的表示方式来进行发送波束组和/或发送波束的重复性表示,在此不做限制。
在一个实现方式中,所述基站发送的所述波束配置信息还可以包括:所述基站需要从用户设备接收所述反馈信息的发送波束组的数量;相应地,所述用户设备可以根据所述波束配置信息限定的数量反馈所述反馈信息。例如,所述基站发送的所述波束配置信息可以包括:需要从用户设备接收3个发送波束组的反馈信息,从而,所述用户设备即使接收到了例如5个发送波束组 发送的波束配置信息,也可以仅反馈最多3个发送波束组对应的反馈信息。如上文所述,可以按照不同的方式来选择反馈所针对的发送波束组。在这里不再赘述。当然,上述反馈信息的反馈方式仅为示例,在实际应用中,基站需要从用户设备接收反馈信息的发送波束组的数量,可以大于、等于或小于发送波束配置信息的发送波束组的数量,在此不做限制。
在一个实现方式中,所述发送波束组的测量配置信息可以包括用户设备所测量的信道质量类型,由此,所述用户设备可以根据所述信道质量类型获取相应类型的信道质量的反馈信息。其中,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。在一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRQ;在另一个示例中,基站指示用户设备所测量的信道质量类型可以为RSRP,例如可以为发送波束组对应的平均RSRP;在另一个示例中,基站指示用户设备所测量的信道质量类型可以为SINR,例如可以为发送波束组对应的平均SINR。相应地,在一个示例中,发送波束组的测量配置信息还可以包括:用于指示一个或多个参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示一个或多个CSI-RS强度测量的测量配置信息,或一个或多个SSB强度测量的测量配置信息。在另一个示例中,发送波束组的测量配置信息还可以包括:与一个或多个CSI-RS或者SSB对应的RSSI的测量配置信息和/或干扰强度的测量配置信息。
接收单元2420接收用户设备根据所述波束配置信息反馈的关于信道质量的反馈信息。
在本发明一个实现方式中,当发送单元2410发送的所述波束配置信息包括所述基站需要从用户设备接收所述反馈信息的发送波束组的数量时,所述用户设备可以根据所述波束配置信息限定的数量反馈所述反馈信息。
在本发明一个实现方式中,当发送单元2410发送的发送波束组的测量配置信息包括用户设备所测量的信道质量类型时,所述用户设备可以根据所述信道质量类型获取相应类型的信道质量的反馈信息。如上所述,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。
在一个示例中,发送单元2410指示用户设备所测量的信道质量类型可以为RSRP,具体地,UE可以基于基站发送的发送波束组的测量配置信息,例 如对与一个或多个CSI-RS或SSB的参考信号资源元素(RE)的测量,来获取所述发送波束组对应的平均L1-RSRP,作为关于信道质量的反馈信息。
在另一个示例中,发送单元2410指示用户设备所测量的信道质量类型可以为RSRQ,例如可以为发送波束组对应的平均RSRQ。具体地,UE可以基于发送波束组的测量配置信息,例如根据对发送波束组内配置的每个参考信号测量得到的L1-RSRQ,得到发送波束组的平均L1-RSRQ。例如,当发送波束组的测量配置信息指示测量两个参考信号时,可以利用所获得的第一L1-RSRQ和第二L1-RSRQ的平均值得到发送波束组的平均L1-RSRQ。其中,每个参考信号的L1-RSRQ可以通过对参考信号强度的测量和对RSSI的测量得到。此时,发送波束组的测量配置信息可以包括:用于指示参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示CSI-RS强度测量的测量配置信息,或指示SSB强度测量的测量配置信息。另外,可选地,RSSI可以为在参考信号资源元素上或在参考信号资源元素所在时间符号的整个带宽上的资源元素上接收的总能量强度,或可以使用相同接收波束接收组内多个参考信号配置的参考信号配置作为该参考信号的干扰强度测量配置。例如,所述发送波束组的测量配置信息还可以显式地配置有:所述发送波束组中的至少一个发送波束的接收信号强度指示的测量配置信息和/或干扰强度的测量配置信息;相应地,所述根据所述波束配置信息,反馈关于信道质量的反馈信息可以包括:根据所述接收信号强度指示的测量配置信息和/或干扰强度的测量配置信息,获取所述发送波束组的参考信号接收质量。再例如,所述根据所述波束配置信息,反馈关于信道质量的反馈信息还可以包括:根据预设配置获取所述发送波束组的参考信号接收质量。其中,所述预设配置可以被隐式地配置。在一个示例中,用于根据接收信号强度指示和/或干扰强度获取的与发送波束组对应的参考信号接收质量的预设配置,可以被预先配置在UE和基站两侧;也可以被预先配置给基站,并通过信令预先告知UE;或者可以预先配置给UE,并通过信令上报基站。上述关于测量配置信息的内容及各种预设配置方式仅为示例,在实际应用中,可以采用任何测量配置信息的内容和预设配置方式,在此不做限制。
在再一个示例中,发送单元2410指示用户设备所测量的信道质量类型可以为SINR,例如可以为发送波束组对应的平均SINR。具体地,UE可以基 于发送波束组的测量配置信息,例如根据对发送波束组内配置的每个参考信号测量得到的L1-SINR,得到发送波束组的平均L1-SINR。例如,当发送波束组的测量配置信息指示测量两个参考信号时,可以利用所获得的第一L1-SINR和第二L1-SINR的平均值得到发送波束组的平均L1-SINR。其中,每个参考信号的L1-SINR可以通过对参考信号强度的测量和对干扰强度的测量得到。此时,发送波束组的测量配置信息可以包括:用于指示一个或多个(例如:两个)参考信号强度测量的测量配置信息,例如,发送波束组的测量配置信息可以包括指示CSI-RS强度测量的测量配置信息,或指示SSB强度测量的测量配置信息。例如,所述发送波束组的测量配置信息还可以显式地配置有:干扰强度的测量配置信息;相应地,所述根据所述波束配置信息,反馈关于信道质量的反馈信息可以包括:根据所述干扰强度的测量配置信息,获取所述发送波束组的信号与干扰和噪声比。再例如,所述根据所述波束配置信息,反馈关于信道质量的反馈信息还可以包括:根据预设配置获取所述发送波束组的信号与干扰和噪声比。其中,所述预设配置可以被隐式地配置。在一个示例中,用于根据干扰强度获取的与发送波束组对应的信号与干扰和噪声比的预设配置,可以被预先配置在UE和基站两侧;也可以被预先配置给基站,并通过信令预先告知UE;或者可以预先配置给UE,并通过信令上报基站。例如,作为隐式配置的例子,可以配置为使得发送波束组内某一个参考信号对应的干扰可以通过测量参考信号资源元素上接收的干扰,或在参考信号资源元素所在时间符号的整个带宽上的资源元素上接收的干扰,或使用相同接收波束接收发送波束组内另一个参考信号元素位置上的干扰。上述关于测量配置信息的内容及各种预设配置方式仅为示例,在实际应用中,可以采用任何测量配置信息的内容和预设配置方式,在此不做限制。
UE可以按照在上文中参照图14描述的方式对参考信号强度测量。可替换地,UE可以按照在上文中参照图15描述的方式对参考信号强度和干扰强度进行测量。可替换地,UE可以按照在上文中参照图16描述的方式对参考信号强度和接收信号强度指示进行测量。由此,可以获得基站的发送波束组的信道质量测量结果,并且向基站反馈该结果。
在本发明实施例中,基站在接收到所述反馈信息之后,可以根据所接收的关于信道质量的反馈信息,在所述至少一个发送波束组中选择一个或多个 发送波束组。具体地,所述反馈信息可以与至少一个发送波束组中的一个或多个发送波束组相关联,从而所述反馈信息还可以包括所述一个或多个发送波束组的标识。例如,UE上报的所述反馈信息可以包括例如发送波束组的标识1,及其相应的信道质量反馈信息。如上所述,基站指示用户设备所测量的信道质量类型可以例如为RSRQ、RSRP、SINR、RSSI等。在一个示例中,UE反馈的反馈信息可以包括如下反馈信息中的一个或多个:发送波束组标识_RSRP(或,CSI_发送波束组标识_RSRP和/或SSB_发送波束组标识_RSRP)、发送波束组标识_RSRQ/SINR(或,CSI_发送波束组标识_RSRQ/SINR和/或SSB_发送波束组标识_RSRQ/SINR,这里RSRQ表示用户反馈RSRQ,SINR表示用户反馈SINR,RSRQ/SINR表示用户反馈RSRQ和SINR中的一个或全部)、发送波束组标识_RSRP_RSRQ/SINR(或,CSI_发送波束组标识_RSRP_RSRQ/SINR和/或SSB_发送波束组标识_RSRP_RSRQ/SINR,这里RSRP_RSRQ表示用户同时反馈RSRP和RSRQ)。上述UE的反馈信息仅为示例,在实际应用中,UE可以采用任何根据波束配置信息获得的关于信道质量的反馈信息进行反馈,在此不做限制。另外,用户反馈多个发送波束组的信号质量测量结果RSRQ、RSRP、SINR或者RSSI时,可以反馈这些结果的多个绝对值,也可以对最优发送波束组(例如信道质量最好的发送波束组)反馈绝对信道质量测量结果,对其他发送波束组反馈相对于该最优发送波束组的绝对信道质量测量结果的相对差值。
以上描述了根据本发明实施例的基站。在本发明的另一个实现方式中,基站还可以发送关于发送单元的信息,所述关于发送单元的信息指示至少一个发送单元的标识及所述至少一个发送单元所具有的发送波束的指示信息,以使用户设备根据所述关于发送单元的信息选择所述至少一个发送单元中的一个或多个发送波束,并反馈指示用户设备选择结果的波束选择信息。其中,所述波束选择信息可以包括所述至少一个发送单元的标识、在所述发送单元中选择的发送波束的指示信息和/或与所选择的发送波束对应的信道反馈信息。具体地,基站可以根据其发送的关于发送单元的信息,使UE获知所述基站具有几个发送单元,及发送单元的标识和所具有的发送波束,以使UE能够根据不同的发送单元,从中分别选择一个或多个发送波束反馈给基站。从而避免UE在不知道发送单元和相应的发送波束的对应关系时,无法根据 发送单元对发送波束的划分来向基站反馈发送波束的情况,使得基站能够在确定步骤S2201中的发送波束组时,尽量具有更多的发送波束组的组合方案。
可选地,基站的发送单元可以是前述的基站、基站上的收发板、基站的收发板上的TXRU、基站的射频(RF)滤波器或基站的空间滤波器(spatial filter),基站的各个发送单元能够各自同时发送至少一个发送波束。在一个示例中,所述发送波束的指示信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束,此外,基站的一个发送单元所具有的发送波束的指示信息可以构建在图11所示的一个CSI-ResourceConfig内部,或对应于多个CSI-ResourceConfig,或可以构建在一个resourceForChannelMeasurement内部,或对应于多个resourceForChannelMeasurement,在此不做限制。可选地,所述至少一个发送单元所具有的发送波束的指示信息还可以包括希望UE针对所述至少一个发送单元中的一个或多个发送单元所选择的发送波束的数量,其中,针对不同的发送单元,可以分别配置UE要选择的发送波束的数量(或者要选择的发送波束的最大数量),并且这些数量可以相同或不同。
此外,可选地,所述关于发送单元的信息也可以包括:重复指示信息,用于指示对一个或多个发送单元,所述基站当前是否使用与之前相同的发送波束来发送关于发送单元的信息。所述关于发送单元的信息中的重复指示信息的原理和应用方式与前述的发送波束组的测量配置信息中的重复指示信息相似,在此不再赘述。
相应地,发送单元2410可以根据用户设备反馈的所述波束选择信息,在至少一个发送单元中分别选择一个发送波束以形成发送波束组发送波束配置信息。所述基站可以根据所述波束选择信息在每个发送单元中分别选择一个发送波束形成发送波束组,也可以在其中的部分发送单元中分别选择一个发送波束形成发送波束组,在此不做限制。
此外,如在上文中参照图17描述的,在根据本发明一个实施例的无线通信方法的波束选择中,基站首先发送关于发送单元的信息,该关于发送单元的信息可以包括各个发送单元的标识及其具有的发送波束的指示信息。随后,UE可以根据基站发送的关于发送单元的信息,在各个发送单元中分别选择 发送波束,并且将选择的结果作为波束选择信息反馈给基站。在一个示例中,UE可以同时上报发送单元的标识及所选择的发送波束;在另一个示例中,考虑到发送波束的指示信息各不相同,UE也可以仅上报所选择的发送波束。可选地,所述波束选择信息还可以包括与所选择的发送波束对应的信道反馈信息。
可选地,基站在接收到UE反馈的波束选择信息之后,可以针对不同的发送单元,分别选择其对应的一个发送波束,从而形成发送波束组。
在本发明的又一个实现方式中,基站还可以向用户设备发送反馈指示信息,并且通过接收单元(未示出)接收用户设备发送的指示用户设备选择结果的波束选择信息,所述波束选择信息指示用户设备根据所述反馈指示信息所选择的,与用户设备的至少一个接收单元中的一个或多个接收波束对应的发送波束,其中所述反馈指示信息可以包括UE要选择的,即要反馈的所述一个或多个接收单元的数量,和/或每个接收单元的接收波束对应的发送波束的数量。其中,所述波束选择信息可以包括所述至少一个接收单元的标识,以及与所述至少一个接收单元中的一个或多个接收波束对应的发送波束的指示信息。可选地,所述波束选择信息还可以包括与所述发送波束对应的信道反馈信息。具体地,UE可以根据不同的接收单元,从中分别选择一个或多个接收波束,并将与所选择的接收波束对应的发送波束的指示信息反馈给基站,以使基站能够在确定步骤S2201中对应的发送波束组时,尽量具有更多的发送波束组的组合方案。在一个示例中,UE根据不同的接收单元所选择的接收波束及其对应的发送波束的数量可以相同或不同。例如,对每个接收单元,UE可以均选择2个发送波束;再例如,针对一个接收单元,UE可以选择一个发送波束,而针对另一个接收单元,UE可以选择3个发送波束。其中,UE反馈的一个或多个接收单元的数量,以及/或者UE针对不同接收单元所选择的波束的数量可以预先设置并由UE和基站获知,也可以由RRC信令进行配置,还可以通过UE能力(UE capability)信息、UE端收发板/接收单元/空间滤波器的数量等参数确定。例如,基站可以根据UE能力信息确定UE反馈的一个或多个接收单元的数量,以及/或者针对不同接收单元所选择的波束的数量,以确保所配置的数量不会超过UE的能力。
相应地,所述发送单元2410可以根据用户设备发送的波束选择信息,在 至少一个发送单元中分别选择一个发送波束以形成发送波束组发送波束配置信息。所述基站可以根据所述波束选择信息在每个发送单元中分别选择一个发送波束形成发送波束组,也可以在其中的部分发送单元中分别选择一个发送波束形成发送波束组,在此不做限制。
可选地,UE的接收单元可以是前述的UE、UE上的收发板、UE的收发板上的TXRU、UE的射频(RF)滤波器或UE的空间滤波器等。UE的各个接收单元能够各自同时接收至少一个波束。在一个示例中,与接收波束对应的所述发送波束的指示信息可以通过多种方式对所述发送波束进行指示,例如,所述发送波束的指示信息可以通过所述发送波束的波束索引(beam index)、波束参考信号的资源配置索引、空间滤波器中的一个或多个来指示所述发送波束。如上文所述,UE可以根据在例如3GPP R-16中预设的上报类型发送指示UE选择结果的波束选择信息,或者可以根据在现有的3GPP R-15标准中重新定义的参数来发送指示UE选择结果的波束选择信息,在这里不再赘述。
利用本发明实施例的基站,能够提供基站和UE之间在对不同收发单元选择对应的波束及所形成的波束组时,提供具体的信令交互的方案,以根据信令交互和波束选择过程来提高无线通信系统的传输质量,优化信道传输资源的配置,减少资源开销。
<硬件结构>
本发明的一实施方式中的发送设备和接收设备等可以作为执行本发明的无线通信方法的处理的计算机来发挥功能。图25是示出本发明的一实施方式所涉及的用户设备和基站的硬件结构的一例的图。上述的用户设备2300和基站2400可以作为在物理上包括处理器2510、内存2520、存储器2530、通信装置2540、输入装置2550、输出装置2560、总线2570等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户设备2300和基站2400的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器2510仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或 采用其它方法来执行处理。另外,处理器2010可以通过一个以上的芯片来安装。
用户设备2300和基站2400中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器2510、内存2520等硬件上,从而使处理器2510进行运算,对由通信装置2040进行的通信进行控制,并对内存2520和存储器2530中的数据的读出和/或写入进行控制。
处理器2510例如使操作系统进行工作从而对计算机整体进行控制。处理器2510可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,CentralProcessing Unit)构成。
此外,处理器2510将程序(程序代码)、软件模块、数据等从存储器2030和/或通信装置2540读出到内存2520,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。
内存2520是计算机可读取记录介质,例如可以由只读存储器(ROM,ReadOnlyMemory)、可编程只读存储器(EPROM,ErasableProgrammableROM)、电可编程只读存储器(EEPROM,ElectricallyEPROM)、随机存取存储器(RAM,RandomAccessMemory)、其它适当的存储介质中的至少一个来构成。内存2020也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存2520可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器2530是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(CompactDiscROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器2530也可以称为辅助存储装置。
通信装置2540是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置2540为了实现例如频分双工(FDD,FrequencyDivisionDuplex)和/或时分双工(TDD,TimeDivisionDuplex),可以包括高频开关、双工器、滤波器、频率合成器等。
输入装置2550是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置2560是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,LightEmittingDiode)灯等)。另外,输入装置2550和输出装置2560也可以为一体的结构(例如触控面板)。
此外,处理器2510、内存2520等各装置通过用于对信息进行通信的总线2570连接。总线2570可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,用户设备2300和基站2400可以包括微处理器、数字信号处理器(DSP,DigitalSignalProcessor)、专用集成电路(ASIC,ApplicationSpecificIntegratedCircuit)、可编程逻辑器件(PLD,ProgrammableLogicDevice)、现场可编程门阵列(FPGA,FieldProgrammableGateArray)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器2510可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(ReferenceSignal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,ComponentCarrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或多个期间(帧)构成。构成无线帧的该一个或多个期间(帧)中的每一个也可以称为子帧。进而,子帧在时域中可以由一个或多个时隙构成。子帧可以是不依赖于参数配置(numerology)的固定的时间长度(例如1ms)。
进而,时隙在时域中可以由一个或多个符号(正交频分复用(OFDM,OrthogonalFrequencyDivisionMultiplexing)符号、单载波频分多址(SC-FDMA,SingleCarrierFrequencyDivisionMultipleAccess)符号等)构成。此外,时隙也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个符号构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及符号均表示传输信号时的时间单元。无线帧、子帧、时隙、微时隙以及符号也可以使用各自对应的其它名称。例如,一个子帧可以被称为传输时间间隔(TTI,TransmissionTimeInterval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个符号),还可以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE系统中,无线基站对各用户终端进行以TTI为单位分配无线资源(在各用户终端中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(传输块)、码块、和/或码字的发送时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与传输块、码块、和/或码字映射的时间区间(例如符号数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,ResourceBlock)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包括一个或多个符号,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,PhysicalRB)、子载波 组(SCG,Sub-CarrierGroup)、资源单元组(REG,Resource ElementGroup)、PRG对、RB对等。
此外,资源块也可以由一个或多个资源单元(RE,ResourceElement)构成。例如,一个RE可以是一个子载波和一个符号的无线资源区域。
另外,上述的无线帧、子帧、时隙、微时隙以及符号等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的符号和RB的数目、RB中包括的子载波数、以及TTI内的符号数、符号长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,PhysicalUplink ControlChannel)、物理下行链路控制信道(PDCCH,PhysicalDownlink ControlChannel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信 息(DCI,DownlinkControlInformation)、上行链路控制信息(UCI,UplinkControlInformation))、上层信令(例如,无线资源控制(RRC,RadioResourceControl)信令、广播信息(主信息块(MIB,MasterInformationBlock)、系统信息块(SIB,SystemInformationBlock)等)、媒体存取控制(MAC,MediumAccessControl)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC ConnectionSetup)消息、RRC连接重配置(RRC ConnectionReconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,DigitalSubscriberLine)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“无线基站(BS,BaseStation)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。无线基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、 接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
无线基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当无线基站容纳多个小区时,无线基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过无线基站子系统(例如,室内用小型无线基站(射频拉远头(RRH,RemoteRadioHead)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的无线基站和/或无线基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,MobileStation)”、“用户终端(userterminal)”、“用户装置(UE,UserEquipment)”以及“终端”这样的用语可以互换使用。无线基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的用户设备1800和基站1900均可以用无线基站或用户终端来替换。
在本说明书中,设为通过无线基站进行的特定动作根据情况有时也通过其上级节点(uppernode)来进行。显然,在具有无线基站的由一个或多个网络节点(networknodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过无线基站、除无线基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,MobilityManagementEntity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,LongTermEvolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演 进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4thgeneration mobile communicationsystem)、第5代移动通信系统(5G,5thgeneration mobile communicationsystem)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global Systemfor Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(lookingup)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。

Claims (25)

  1. 一种无线通信方法,由用户设备执行,包括:
    接收基站利用至少一个参考信号组发送的参考信号配置信息,所述参考信号配置信息包括至少一个参考信号组的标识和至少一个参考信号组的测量配置信息;
    根据所述参考信号配置信息,反馈关于信道质量的反馈信息。
  2. 如权利要求1所述的方法,其中,
    所述参考信号组的测量配置信息包括所述参考信号组中的至少一个参考信号的配置信息。
  3. 如权利要求1所述的方法,其中,
    所述参考信号组的测量配置信息还包括:重复指示信息,
    所述重复指示信息用于指示所述基站当前是否对于参考信号组使用与之前相同的空间滤波器进行传输;或所述重复指示信息用于指示对一个或多个发送单元,所述基站当前是否使用与之前相同的空间滤波器进行传输。
  4. 如权利要求1所述的方法,其中,
    所述反馈信息与至少一个参考信号组中的一个或多个参考信号组相关联;
    所述反馈信息还包括所述一个或多个参考信号组的标识。
  5. 如权利要求1所述的方法,其中,
    所述参考信号配置信息还包括:所述基站需要从用户设备接收所述反馈信息的参考信号组的数量;
    所述用户设备根据所述参考信号配置信息限定的数量反馈所述反馈信息。
  6. 如权利要求1所述的方法,其中,
    所述参考信号组的测量配置信息还包括:用户设备所测量的信道质量类型;
    所述用户设备根据所述信道质量类型获取相应类型的信道质量的反馈信息。
  7. 如权利要求6所述的方法,其中,
    所述参考信号组的测量配置信息还包括:所述参考信号组中的至少一个参考信号的接收信号强度指示的测量配置信息和/或干扰强度的测量配置信 息;以及所述根据所述参考信号配置信息,反馈关于信道质量的反馈信息包括:根据所述接收信号强度指示的测量配置信息和/或干扰强度的测量配置信息,获取所述参考信号组的参考信号接收质量和/或信号与干扰和噪声比;或
    所述根据所述参考信号配置信息,反馈关于信道质量的反馈信息包括:根据预设配置获取所述参考信号组的参考信号接收质量和/或信号与干扰和噪声比。
  8. 一种无线通信方法,由用户设备执行,包括:
    接收基站发送的关于发送单元的信息,所述关于发送单元的信息指示至少一个发送单元的标识及所述至少一个发送单元所具有的参考信号的配置信息;
    根据所述关于发送单元的信息,选择所述至少一个发送单元中的一个或多个参考信号,并反馈指示用户设备选择结果的参考信号选择信息。
  9. 如权利要求8所述的方法,其中,
    所述参考信号选择信息包括所述至少一个发送单元的标识、在所述发送单元中选择的参考信号的指示信息和/或与所选择的参考信号对应的信道反馈信息。
  10. 一种无线通信方法,由用户设备执行,包括:
    接收基站发送的反馈指示信息,根据该反馈指示信息选择与用户设备的至少一个接收单元中的一个或多个接收波束对应的参考信号;
    发送参考信号选择信息,所述参考信号选择信息指示用户设备所选择的参考信号。
  11. 如权利要求10所述的方法,其中,
    所述参考信号选择信息包括所述至少一个接收单元的标识、与所述至少一个接收单元中的一个或多个接收波束对应的参考信号的指示信息、和/或与所述参考信号对应的信道反馈信息。
  12. 如权利要求10所述的方法,其中,所述反馈指示信息包括所述至少一个接收单元的数量,所述数量是根据用户设备的能力信息确定的。
  13. 一种无线通信方法,由基站执行,包括:
    利用至少一个参考信号组发送参考信号配置信息,所述参考信号配置信息包括至少一个参考信号组的标识和至少一个参考信号组的测量配置信息;
    接收用户设备根据所述参考信号配置信息反馈的关于信道质量的反馈信息。
  14. 如权利要求13所述的方法,其中,
    所述参考信号组的测量配置信息包括所述参考信号组中的至少一个参考信号的配置信息。
  15. 如权利要求13所述的方法,其中,
    所述参考信号组的测量配置信息还包括:重复指示信息,
    所述重复指示信息用于指示所述基站当前是否对于参考信号组使用与之前相同的空间滤波器进行传输;或所述重复指示信息用于指示对一个或多个发送单元,所述基站当前是否使用与之前相同的空间滤波器进行传输。
  16. 如权利要求13所述的方法,其中,
    所述反馈信息与至少一个参考信号组中的一个或多个参考信号组相关联;
    所述反馈信息还包括所述一个或多个参考信号组的标识。
  17. 如权利要求13所述的方法,其中,所述波束配置信息还包括:
    需要从用户设备接收所述反馈信息的参考信号组的数量。
  18. 如权利要求13-17中任一项所述的方法,其中,所述方法还包括:
    根据所接收的关于信道质量的反馈信息,在所述至少一个参考信号组中选择一个或多个参考信号组。
  19. 一种无线通信方法,由基站执行,包括:
    发送关于发送单元的信息,所述关于发送单元的信息指示至少一个发送单元的标识及所述至少一个发送单元所具有的参考信号的指示信息;
    从用户设备接收反馈信息,该反馈信息指示用户设备根据所述关于发送单元的信息选择的所述至少一个发送单元中的一个或多个参考信号。
  20. 如权利要求19所述的方法,其中,
    所述波束选择信息包括所述至少一个发送单元的标识、在所述发送单元中选择的参考信号的指示信息和/或与所选择的参考信号对应的信道反馈信息。
  21. 一种无线通信方法,由基站执行,包括:
    发送反馈指示信息;
    接收用户设备发送的波束选择信息,所述波束选择信息指示用户设备所 选择的、与用户设备的至少一个接收单元中的一个或多个接收波束对应的参考信号。
  22. 如权利要求21所述的方法,其中,
    所述波束选择信息包括所述至少一个接收单元的标识,与所述至少一个接收单元中的一个或多个接收波束对应的参考信号的指示信息,和/或与所述参考信号对应的信道反馈信息。
  23. 如权利要求21所述的方法,其中,所述反馈指示信息包括所述至少一个接收单元的数量,所述数量是根据用户设备的能力信息确定的。
  24. 一种用户设备,包括:
    接收单元,配置为接收基站利用至少一个参考信号组发送的参考信号配置信息,所述参考信号配置信息包括至少一个参考信号组的标识和至少一个参考信号组的测量配置信息;
    反馈单元,配置为根据所述参考信号配置信息,反馈关于信道质量的反馈信息。
  25. 一种基站,包括:
    发送单元,配置为利用至少一个参考信号组发送参考信号配置信息,所述参考信号配置信息包括至少一个参考信号组的标识和至少一个参考信号组的测量配置信息;
    接收单元,配置为接收用户设备根据所述参考信号配置信息反馈的关于信道质量的反馈信息。
PCT/CN2018/100081 2018-08-10 2018-08-10 无线通信方法、用户设备和基站 WO2020029293A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880096554.2A CN112567793A (zh) 2018-08-10 2018-08-10 无线通信方法、用户设备和基站
US17/267,372 US11757586B2 (en) 2018-08-10 2018-08-10 Wireless communication method and user equipment for receiving information and performing feedback
PCT/CN2018/100081 WO2020029293A1 (zh) 2018-08-10 2018-08-10 无线通信方法、用户设备和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100081 WO2020029293A1 (zh) 2018-08-10 2018-08-10 无线通信方法、用户设备和基站

Publications (1)

Publication Number Publication Date
WO2020029293A1 true WO2020029293A1 (zh) 2020-02-13

Family

ID=69414406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100081 WO2020029293A1 (zh) 2018-08-10 2018-08-10 无线通信方法、用户设备和基站

Country Status (3)

Country Link
US (1) US11757586B2 (zh)
CN (1) CN112567793A (zh)
WO (1) WO2020029293A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3857773A4 (en) * 2018-09-26 2022-05-18 ZTE Corporation INTERFERENCE-AWARE BEAM MESSAGE IN WIRELESS COMMUNICATIONS
CN111107575B (zh) * 2018-11-02 2021-05-07 维沃移动通信有限公司 一种信号质量参数测量方法和设备
US11588602B2 (en) * 2019-12-13 2023-02-21 Samsung Electronics Co., Ltd. Beam management and coverage enhancements for semi-persistent and configured grant transmissions
US11523297B2 (en) * 2020-05-08 2022-12-06 Qualcomm Incorporated SINR-based group beam reporting
WO2023130261A1 (en) * 2022-01-05 2023-07-13 Apple Inc. Beam selection based on power management maximum power reduction (p-mpr) report according to an event from a body proximity sensor (bps)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160807A (zh) * 2015-04-09 2016-11-23 株式会社Ntt都科摩 波束选择方法、移动台和基站
CN106412942A (zh) * 2015-07-31 2017-02-15 株式会社Ntt都科摩 波束参考信号的发送方法、波束选择方法、基站及用户终端
WO2017196491A1 (en) * 2016-05-13 2017-11-16 Intel IP Corporation Beam measurement in a wireless communication network for identifying candidate beams for a handover
CN107371194A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 资源预留方法、资源确定方法、基站和移动台
CN108024278A (zh) * 2016-11-04 2018-05-11 电信科学技术研究院 一种移动性管理方法、用户终端和网络侧设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524150B2 (en) * 2016-01-14 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for generating cell measurement information in a wireless communication system
CN109923896B (zh) * 2016-11-04 2021-11-19 瑞典爱立信有限公司 针对参考信号组的测量报告触发

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160807A (zh) * 2015-04-09 2016-11-23 株式会社Ntt都科摩 波束选择方法、移动台和基站
CN106412942A (zh) * 2015-07-31 2017-02-15 株式会社Ntt都科摩 波束参考信号的发送方法、波束选择方法、基站及用户终端
CN107371194A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 资源预留方法、资源确定方法、基站和移动台
WO2017196491A1 (en) * 2016-05-13 2017-11-16 Intel IP Corporation Beam measurement in a wireless communication network for identifying candidate beams for a handover
CN108024278A (zh) * 2016-11-04 2018-05-11 电信科学技术研究院 一种移动性管理方法、用户终端和网络侧设备

Also Published As

Publication number Publication date
US20220116167A1 (en) 2022-04-14
CN112567793A (zh) 2021-03-26
US11757586B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
JP7130832B2 (ja) アップリンク送信のための電力制御の方法
CN110546929B (zh) 传输信道状态信息参考信号(csi-rs)的方法和装置及计算机可读存储介质
US11638168B2 (en) Terminal, radio communication method, base station, and system
JP7132329B2 (ja) 端末、無線通信方法、基地局及びシステム
US10728810B2 (en) User terminal and radio communication method
JP7321161B2 (ja) 端末、無線通信方法及びシステム
US11394445B2 (en) User terminal
WO2018143390A1 (ja) ユーザ端末及び無線通信方法
CN110809321A (zh) 接收和发送信号的方法以及通信装置
WO2020029293A1 (zh) 无线通信方法、用户设备和基站
WO2019092859A1 (ja) ユーザ端末及び無線通信方法
JP7426171B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020021725A1 (ja) ユーザ端末及び無線通信方法
KR20210040083A (ko) 유저단말 및 무선 통신 방법
JP7351829B2 (ja) 端末及び無線通信方法
WO2019130506A1 (ja) ユーザ端末及び無線通信方法
JP7323535B2 (ja) 端末、無線通信方法、基地局及びシステム
US11812433B2 (en) User terminal and radio communication method
US11564203B2 (en) User terminal and radio communication method
US11012127B2 (en) Apparatus and radio communication method
JP7227248B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018025907A1 (ja) ユーザ端末及び無線通信方法
EP3496444B1 (en) User terminal, wireless base station, and wireless communication method
RU2773130C1 (ru) Пользовательский терминал и базовая станция
AU2017427495B2 (en) User terminal and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929124

Country of ref document: EP

Kind code of ref document: A1