WO2020097813A1 - 一种移动性测量的方法、装置和系统 - Google Patents

一种移动性测量的方法、装置和系统 Download PDF

Info

Publication number
WO2020097813A1
WO2020097813A1 PCT/CN2018/115356 CN2018115356W WO2020097813A1 WO 2020097813 A1 WO2020097813 A1 WO 2020097813A1 CN 2018115356 W CN2018115356 W CN 2018115356W WO 2020097813 A1 WO2020097813 A1 WO 2020097813A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal
receive beam
receive
measurement result
Prior art date
Application number
PCT/CN2018/115356
Other languages
English (en)
French (fr)
Inventor
魏璟鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880089089.XA priority Critical patent/CN111713131B/zh
Priority to PCT/CN2018/115356 priority patent/WO2020097813A1/zh
Publication of WO2020097813A1 publication Critical patent/WO2020097813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to a method, device, and system for mobility measurement.
  • the 3rd Generation Partnership Project (3GPP) in the next generation of evolved new radio (NR) systems includes high-frequency bands in the system design considerations.
  • the antenna array will use more beamforming techniques to improve gain.
  • mobility management In order to ensure the mobility of user equipment (UE), provide a better user experience, and improve the overall performance of the system, mobility management (mobility management) has become an important mechanism in the communication system. Specifically, according to the radio resource control (RRC) related state of the UE, mobility management can be divided into the following two cases:
  • the UE When the UE is in the RRC idle state or the RRC inactive state, the UE will first camp on a cell through cell selection (cell selection), and then the UE will pass cell reselection (cell reselection) ) In order to reside in a cell with higher priority or better channel quality.
  • the network can control the residence of the UE by setting priorities of different frequency points and balance the access load between different frequency points. However, the UE may also choose to camp on the cell with the best signal quality at the corresponding higher frequency point to obtain a better quality of service.
  • the network may handover the UE to an adjacent cell with better signal quality.
  • the above processes of mobility management are all based on the measurement results, so mobility measurement is the basis of mobility management.
  • the reference signal from the wireless network device may be received and measured through different receiving beams of the terminal to obtain the mobility measurement result of the corresponding cell of the wireless network device.
  • mobility measurement will bring more power consumption overhead.
  • Embodiments of the present application provide a method, device, and system for mobility measurement to reduce terminal power consumption and increase standby time.
  • a method for mobility measurement is provided.
  • the method may be performed by a communication device, which may be a terminal, or a chip that may be provided in the terminal.
  • the chip may specifically be a baseband processor or a system chip (SoC).
  • SoC system chip
  • the terminal's receive beam set includes the first receive beam and the second receive beam; according to the reference signal received by the terminal's receive beam set, Determine the measurement result of the first cell and the measurement result of the second cell separately; within the first time period, when the measurement result of the first receiving beam corresponding to the first cell and the second cell is lower than a preset threshold, update The receive beam set of the terminal, and the updated receive beam set of the terminal includes the second receive beam but does not include the first receive beam.
  • the first receiving beam may be one or more receiving beams
  • the second receiving beam may also be one or more receiving beams.
  • the reference signals of the first cell and the second cell may be received through the receive beam set of the terminal multiple times in different time periods, and respectively determined according to the corresponding received reference signals The measurement result of the first cell and the measurement result of the second cell.
  • the update action is performed. Among them, the above measurement results can be used for mobility management of the terminal.
  • the measurement results of the first cell and the second cell corresponding to the first receive beam within the first duration may be understood as the results of multiple consecutive measurements within the first duration. It should be understood that for a measurement period of a cell, the terminal may sequentially receive all synchronization signal blocks in the X synchronization signal burst sets from the cell through the X reception beams in the reception beam set, and obtain corresponding The measurement results of this cell can be understood as a round of measurement.
  • the value of the corresponding first duration may be determined according to the number of consecutive measurement rounds and the measurement period corresponding to the cell. For example, in a discontinuous reception period DRX, the above-mentioned round of measurement may be performed.
  • the measurement period of the terminal for the cell is a discontinuous reception period DRX.
  • the value of the first duration should be M discontinuous reception periods DRX.
  • the reference signals of the first cell and the second cell can be received and measured by one or more receive beams in the updated set of received beams without passing the first
  • the receiving beam is used to receive and measure the reference signals of the first cell and the second cell, thereby reducing the power consumption of the terminal and also speeding up the measurement of mobility.
  • the method further includes:
  • the terminal's updated receive beam set receives the reference signals from the first cell and the second cell through the terminal's updated receive beam set; after the second duration, reconfigure the terminal's receive beam set, the terminal's The configured receive beam set includes the first receive beam and the second receive beam.
  • the above-mentioned period of time may be understood as the second period of time. It should be understood that for a measurement period of a cell, the terminal may sequentially receive all synchronization signal blocks in the X ′ synchronization signal burst set from the cell through the X ′ reception beams in the updated reception beam set, and To obtain the corresponding measurement results for the cell, the above process can be understood as a round of measurement.
  • the value of the corresponding second duration may be determined according to the number of consecutive measurement rounds and the measurement period of the cell. For example, in a discontinuous reception period DRX, the above-mentioned round of measurement may be performed.
  • the measurement period of the terminal for the cell is a discontinuous reception period DRX.
  • the value of the first duration should be 2M discontinuous reception periods DRX.
  • the reference signals of the first cell and the second cell may be received through the updated receive beam set of the terminal multiple times in different time periods, and according to the corresponding received reference signals, The measurement result of the first cell and the measurement result of the second cell are determined separately. It should be understood that the reconfigured receive beam set of the terminal may also include other receive beams.
  • the reconfiguration action can be triggered by controlling the time triggering condition, which further improves the robustness.
  • the method further includes:
  • the receive beam set of the terminal is reconfigured, and the reconfigured receive beam set of the terminal includes the first receive beam and the second receive beam.
  • the method further includes: acquiring the state information of the sensor of the terminal to determine the change in the motion state of the terminal.
  • the sensor of the terminal can monitor the motion state of the terminal to generate a motion state record of the terminal.
  • the sensor of the terminal may also generate an indication of whether the motion state of the terminal changes according to the monitored motion state, for example, when the sensor of the terminal detects that the motion state (such as speed) of the terminal changes beyond a preset range, An indication of a change in the motion state of the terminal is generated to enable the device to determine whether the motion state of the terminal has changed.
  • a reconfiguration action may be triggered according to whether the change of the terminal motion state is within a preset range, to further improve the robustness.
  • any of the optional embodiments of the first aspect described above may be combined with each other.
  • a reconfiguration action may be triggered to reconfigure the receive beam set of the terminal.
  • the reconfigured receive beam set of the terminal includes the first receive beam and The second receive beam.
  • the reconfigured receive beam set of the terminal may also include other receive beams, and the above technical solution is adopted to further improve the robustness.
  • the method further includes:
  • the reference signals of the first cell and the second cell may also be received through the updated receive beam set of the terminal multiple times in different time periods, According to the corresponding received reference signals, the measurement result of the first cell and the measurement result of the second cell are determined respectively. It should be understood that, further, the measurement result can also be used for mobility management judgment.
  • the measurement result includes: measurement of the reference signal received power of layer 1 based on the reference signal. In an optional embodiment, the measurement result includes: measurement of the reference signal reception quality of layer 1 based on the reference signal. In an optional embodiment, the measurement result includes: a measured signal-to-interference and noise ratio of layer 1 based on the reference signal.
  • the measurement result further includes: reference signal received power of layer 3 measured based on the reference signal. In an optional embodiment, the measurement result further includes: a reference signal received quality of the layer 3 measured based on the reference signal. In an optional embodiment, the measurement result further includes: a measured signal-to-interference and noise ratio of the layer 3 based on the reference signal.
  • the above reference signal may be a synchronization signal block, or the above reference signal may be a channel state information reference signal. It should be understood that the measurement result may also include any combination of the foregoing optional embodiments. It should be understood that the above measurement results can be used for the determination of the mobility management of the terminal.
  • the method further includes: reading a preset threshold.
  • the value of the preset threshold may be preset, may be stored in the memory of the decision module corresponding to the software algorithm to implement the software algorithm, or may be stored in the hardware memory of the terminal.
  • the preset threshold can be determined by reading the value in the corresponding memory. It should be understood that the preset threshold is directly determined according to the value in the memory, and the corresponding algorithm is simpler.
  • the method further includes: determining the measurement result corresponding to the optimal reception beam according to the reference signal received by the terminal's reception beam set; according to the measurement result corresponding to the optimal reception beam and the pre-measurement Set the maximum difference to determine the preset threshold.
  • the value of the preset maximum difference may be preset, may be stored in a software module corresponding to the software algorithm that implements the software algorithm, or may be stored in the memory of the terminal.
  • the preset threshold is determined by the measurement result corresponding to the optimal receive beam and the read preset maximum difference.
  • the preset threshold may include a preset threshold.
  • the preset threshold may include a first preset threshold and a second preset threshold.
  • the first receive beam corresponds to the first cell lower than the first preset threshold and the second cell.
  • the above updating action is performed.
  • the preset threshold is directly determined according to the measurement result corresponding to the optimal receive beam and the value in the memory, and the above algorithm can be adjusted more flexibly.
  • both the first cell and the second cell are co-frequency neighboring cells of the serving cell of the terminal .
  • the first cell is a co-frequency neighboring cell of the terminal's serving cell
  • the second cell is an inter-frequency neighboring cell of the terminal's serving cell.
  • the first cell and the second cell are both inter-frequency neighboring cells of the serving cell of the terminal. It should be understood that the frequency of the first cell and the frequency of the second cell may be the same, or the frequency of the first cell and the frequency of the second cell may be different.
  • the first cell is a serving cell of the terminal, and the second cell is a co-frequency neighboring cell of the terminal.
  • the method further includes: determining the first duration according to a discontinuous reception DRX cycle and a positive integer N; In the first time period, the reference signals from the first cell and the second cell are received through the receiving beam set of the terminal N times consecutively. In an optional implementation manner, the method further includes: determining the first duration according to a discontinuous reception DRX cycle and a positive integer N; within the first duration, receiving once from the first The reference signal of the cell and the second cell.
  • the method further includes: presetting the first duration in the timer of the terminal.
  • the method further includes: using a discontinuous reception period timer (such as a discontinuous reception short period timer), and the discontinuous reception period timer expires N (N ⁇ 1) At the next time, the above receiving operation or measuring operation is completed.
  • a discontinuous reception period timer such as a discontinuous reception short period timer
  • an apparatus for mobility measurement of a terminal includes:
  • the receiving unit is used to receive the reference signals from the first cell and the second cell through the terminal's receive beam set.
  • the terminal's receive beam set includes the first receive beam and the second receive beam;
  • the processing unit is used to The reference signal received by the terminal's receive beam set determines the measurement result of the first cell and the measurement result of the second cell, respectively;
  • the processing unit is also used for, within the first duration, the When the measurement results of the first cell and the second cell are lower than a preset threshold, the receive beam set of the terminal is updated, and the updated receive beam set of the terminal includes the second receive beam but not the first receive beam.
  • the device may be a terminal or a chip that may be provided in the terminal.
  • the chip may specifically be a baseband processor or a system chip.
  • the receiving unit and the processing unit may be software program codes for implementing the device, for example, software modules that implement corresponding receiving or processing functions of software algorithms.
  • the receiving unit and the processing unit may also be hardware circuits or devices that implement the device.
  • the receiving unit may be a receiver of a terminal, a receiving circuit, a transceiver, a transceiver, or a transceiver circuit, or an input / output interface or an input / output circuit of a chip.
  • the processing unit may be a general-purpose processor or a dedicated processor of the terminal, or various operation or control cores such as a CPU core or a DSP core of the chip.
  • the first receiving beam may be one or more receiving beams
  • the second receiving beam may also be one or more receiving beams.
  • the receiving unit is further configured to receive, from the first cell and the The reference signal of the second cell; the processing unit is also used to reconfigure the set of receive beams of the terminal after the second duration, the set of reconfigured receive beams of the terminal includes the first receive beam and the second receive Beam.
  • the second duration may be set by setting a software module related to a timing function of a software algorithm or by setting a hardware circuit or device that implements the apparatus.
  • the device may be an SoC chip or a terminal, and a timer in the SoC chip is set.
  • the second duration may also be set by setting a hardware circuit or device connected to the device.
  • the device may be a baseband processor, and a timer connected to the baseband processor may be set through an interface circuit.
  • the second duration may also be set by setting related software modules of the software algorithm and the above-mentioned hardware circuit or device.
  • the device may set the duration of the timer in the SoC chip to a period of discontinuous reception, and set the counter to M (M ⁇ 1) in the relevant software module that implements the software algorithm. Every time the timer expires, the timer decrements by 1. When the counter is cleared, it means that the second time period has passed.
  • the reconfiguration action can be triggered by controlling the time triggering condition to further improve the robustness.
  • the processing unit is further configured to reconfigure the receive beam set of the terminal according to the change in the motion state of the terminal.
  • the receive beam set includes the first receive beam and the second receive beam.
  • the terminal includes a sensor; the processing unit is also used to acquire the status information of the sensor of the terminal to determine the change in the motion state of the terminal.
  • the state information of the sensor of the terminal may be a movement state record of the terminal, and the processing unit determines whether the movement state of the terminal changes according to the read movement state record of the terminal. Or, it may be an instruction generated by a sensor as to whether the terminal is moving, and the processing unit determines whether the movement state of the terminal changes according to the instruction.
  • the device can determine whether to trigger a reconfiguration action according to whether the change of the terminal's motion state is within a predefined range to improve robustness.
  • the processing unit is further configured to receive the reference signal received according to the reconfigured receive beam set of the terminal To re-determine the measurement result of the first cell and the measurement result of the second cell.
  • the measurement result includes: measurement of the reference signal received power of layer 1 based on the reference signal. In an optional embodiment, the measurement result includes: measurement of the reference signal reception quality of layer 1 based on the reference signal. In an optional embodiment, the measurement result includes: a measured signal-to-interference and noise ratio of layer 1 based on the reference signal.
  • the measurement result further includes: reference signal received power of layer 3 measured based on the reference signal. In an optional embodiment, the measurement result further includes: a reference signal received quality of the layer 3 measured based on the reference signal. In an optional embodiment, the measurement result further includes: a measured signal-to-interference and noise ratio of the layer 3 based on the reference signal.
  • the above reference signal may be a synchronization signal block, or the above reference signal may be a channel state information reference signal. It should be understood that the measurement result may also include any combination of the foregoing optional embodiments. It should be understood that, in the idle state or the connected state, the above-mentioned measurement results can be used to determine the mobility management of the terminal. In the connected state, the corresponding measurement results can be reported according to the configuration of the wireless network device for the terminal's mobility Sexual management.
  • the processing unit is further configured to read the preset threshold.
  • the processing unit is further configured to determine the measurement result corresponding to the optimal receiving beam according to the reference signal received by the receiving beam set of the terminal. And determine the preset threshold according to the measurement result corresponding to the optimal receive beam and the preset maximum difference.
  • the measurement result corresponding to the optimal receive beam may be the measurement result corresponding to the beam pair link with the largest measurement result.
  • both the first cell and the second cell are co-frequency neighboring cells of the serving cell of the terminal .
  • the first cell is a co-frequency neighboring cell of the terminal's serving cell
  • the second cell is an inter-frequency neighboring cell of the terminal's serving cell.
  • the first cell and the second cell are both inter-frequency neighboring cells of the serving cell of the terminal. It should be understood that the frequency of the first cell and the frequency of the second cell may be the same, or the frequency of the first cell and the frequency of the second cell may be different.
  • the first cell is a serving cell of the terminal, and the second cell is a co-frequency neighboring cell of the terminal.
  • the processing unit is further configured to determine the first duration according to a discontinuous reception DRX cycle and a positive integer N;
  • the receiving unit is further configured to receive reference signals from the first cell and the second cell through the receiving beam set of the terminal N times consecutively within the first duration.
  • the processing unit is further configured to determine the first duration based on the discontinuous reception DRX cycle and a positive integer N; the receiving unit receives once through the terminal's receive beam set within the first duration Reference signals from the first cell and the second cell.
  • a terminal in a third aspect, includes:
  • a baseband processor and a radio frequency transceiver circuit wherein the radio frequency transceiver circuit is used to receive reference signals from the first cell and the second cell through the terminal's receive beam set, and the terminal's receive beam set includes the first receive beam and A second receive beam; the baseband processor is used to determine the measurement result of the first cell and the measurement result of the second cell respectively according to the reference signal received by the terminal's receive beam set, and within the first duration, When the measurement result of the first receiving beam corresponding to the first cell and the second cell is lower than a preset threshold, the receiving beam set of the terminal is updated, and the updated receiving beam set of the terminal includes the second receiving beam but does not include The first receive beam.
  • the baseband subsystem 430 adjusts the weight of the antenna element used for calculation to adjust the direction of the receiving beam.
  • the baseband subsystem 430 adjusts the weight of the antenna array element and the phase shifter parameters (for example, the weight of the phase shifter) in the radio frequency subsystem 420 to adjust the direction of the received beam.
  • the baseband subsystem 430 adjusts the receiving beam direction by selecting one or more radio frequency channels.
  • the radio frequency transceiver circuit is further configured to receive the first cell and the The reference signal of the second cell; the baseband processor is also used to reconfigure the set of receive beams of the terminal after the second duration, the set of reconfigured receive beams of the terminal includes the first receive beam and the first Two receive beams.
  • the baseband processor is further configured to reconfigure the receive beam set of the terminal according to the change in the motion state of the terminal, and reconfigure the terminal
  • the set of receive beams includes the first receive beam and the second receive beam.
  • the terminal includes a sensor; the baseband processor is also used to obtain status information of the terminal's sensors to determine changes in the terminal's motion state.
  • the baseband processor is further used for the reference received according to the reconfigured receive beam set of the terminal Signal to re-determine the measurement result of the first cell and the measurement result of the second cell.
  • the measurement result includes: measurement of the reference signal received power of layer 1 based on the reference signal. In an optional embodiment, the measurement result includes: measurement of the reference signal reception quality of layer 1 based on the reference signal. In an optional embodiment, the measurement result includes: a measured signal-to-interference and noise ratio of layer 1 based on the reference signal.
  • the measurement result further includes: reference signal received power of layer 3 measured based on the reference signal. In an optional embodiment, the measurement result further includes: a reference signal received quality of the layer 3 measured based on the reference signal. In an optional embodiment, the measurement result further includes: a measured signal-to-interference and noise ratio of the layer 3 based on the reference signal.
  • the aforementioned reference signal may be a synchronization signal block, or the aforementioned reference signal may be channel state information. It should be understood that the measurement result may also include any combination of the foregoing optional embodiments. It should be understood that, in the idle state or the connected state, the above-mentioned measurement results can be used to determine the mobility management of the terminal. In the connected state, the corresponding measurement results can be reported according to the configuration of the wireless network device for the terminal's mobility Sexual management.
  • the baseband processor is further configured to read the preset threshold.
  • the baseband processor is further configured to determine the measurement result corresponding to the optimal reception beam according to the reference signal received by the terminal's reception beam set. According to the measurement result corresponding to the optimal reception beam and The preset maximum difference determines the preset threshold.
  • both the first cell and the second cell are co-frequency neighboring cells of the serving cell of the terminal .
  • the first cell is a co-frequency neighboring cell of the terminal's serving cell
  • the second cell is an inter-frequency neighboring cell of the terminal's serving cell.
  • the first cell and the second cell are both inter-frequency neighboring cells of the serving cell of the terminal. It should be understood that the frequency of the first cell and the frequency of the second cell may be the same, or the frequency of the first cell and the frequency of the second cell may be different.
  • the first cell is a serving cell of the terminal, and the second cell is a co-frequency neighboring cell of the terminal.
  • the baseband processor is further configured to determine the first duration according to a discontinuous reception DRX cycle and a positive integer N
  • the radio frequency receiving circuit is also used to receive reference signals from the first cell and the second cell through the terminal's receive beam set for N consecutive times within the first duration. It should be understood that correspondingly, N consecutive measurements may be performed and the measurement results of the first cell and the second cell corresponding to the N measurements may be obtained.
  • the baseband processor is further configured to determine the first duration according to a discontinuous reception DRX cycle and a positive integer N; the radio frequency receiving circuit uses the set of receive beams of the terminal within the first duration The reference signal from the first cell and the second cell is received once. It should be understood that corresponding measurements can also be made and measurement results corresponding to the first cell and the second cell can be obtained.
  • receiving once may be that the radio frequency receiving circuit receives all the synchronization signal blocks in the X synchronization signal burst sets through the X reception beams in the terminal's reception beam set, respectively.
  • an apparatus for terminal mobility measurement includes: a processor and a memory, where the processor is used to execute instructions in the memory, so that the terminal executes the instructions in the memory, to implement the technology provided in the first aspect or any optional implementation manner Program.
  • an apparatus for terminal mobility measurement includes: a processor and an interface circuit, wherein the processor is coupled to the memory through the interface circuit, the processor is used to execute the program code in the memory, and the implementation is provided in the first aspect or any optional implementation manner Technical solutions.
  • a computer-readable storage medium stores a program code, and when the program code is executed by a processor in a terminal, it is implemented as in the first aspect or any one of the optional The technical solution provided by the implementation method.
  • a computer program product is provided.
  • the program code contained in the computer program product is executed by a processor in a terminal, the technical solution provided in the first aspect or any optional implementation manner is implemented.
  • a wireless communication system including a wireless network device, and the apparatus provided in the second aspect or any optional implementation manner, or the apparatus provided in the fourth aspect or the fifth aspect, or as The terminal provided in the third aspect or any optional implementation manner.
  • the beam may be understood as a communication resource.
  • Different transmit beams can be understood as different numbered synchronization signal blocks transmitted by the same transmitting end device, and can also be understood as different codebooks, for example, different codewords or different codebooks in the codebook can realize different Receive beam. It can also be understood as different reference signal ports.
  • Different receive beams can be understood as RF transceiver circuits with different parameters or different RF transceiver circuits configured with different parameters (for example, phase shifter parameters), as well as as different spatial domain filters, or as different Reference signal port.
  • the measurement results corresponding to the first cell and the second cell are determined according to the signals received by the terminal's receive beam set. For multiple consecutive receive beams below the preset threshold, within the next period of time, one or more receive beams in the updated receive beam set may be used to receive and measure the first cell and the second cell.
  • the reference signal it is not necessary to receive and measure the reference signal of the first cell and the second cell through the first receiving beam, thereby reducing power consumption of the terminal and speeding up the measurement of mobility.
  • the reconfiguration of the receive beam set is triggered, which further increases the robustness.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a synchronization signal block provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a synchronization signal burst set provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an activation period and a sleep period in a discontinuous reception cycle provided by an embodiment of this application;
  • FIG. 5 is a schematic flowchart of a mobility measurement method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • the mobility measurement solution provided by the embodiments of the present application includes the mobility measurement method, device, and system. Since the principles of these technical solutions to solve the problem are the same or similar, in the introduction of the following specific embodiments, some repetitions may not be repeated, but it should be considered that these specific embodiments have been mutually cited and can be combined with each other.
  • a beam is a communication resource that can be either a wide beam, a narrow beam, or other types of beams. Different beams can be considered as different communication resources, and the same information or different information can be transmitted through different beams.
  • the beam can also be understood as a synchronization signal block (SSB) of different numbers transmitted by the same transmitting end device.
  • the beam can also be understood as different antenna ports.
  • the beams can also correspond to different codebooks or codewords. For example, different beams can be realized by codebooks with different numbers or codewords with different numbers in the codebook. Alternatively, multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • the transmit beam may refer to the signal intensity distribution formed in different directions of the space after the signal is transmitted through the antenna
  • the receive beam may refer to the signal intensity distribution of the wireless signal received from the antenna in different directions of the space.
  • one or more antenna ports forming a beam can also be regarded as a set of antenna ports.
  • the beam can also be called a spatial filer (spatial filer), and the transmit beam can also be called a spatial domain transmit filter.
  • the beam can also be called a spatial receive filter.
  • Beam pair link (beam pair link) is based on the concept of beam.
  • a beam pair link usually includes a transmit beam of the transmitting end device and a receive beam of the receiving end device. If not stated, the transmit beam in the following can be understood as the transmit beam of the network device, and the receive beam can be understood as the receive beam of the terminal.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 shows a wireless communication system 00 composed of a wireless network device 01 and a terminal 02. It should be understood that although FIG. 1 only shows one wireless network device and one terminal, the wireless communication system may also include other numbers of wireless network devices and terminals, and may also include other network devices.
  • the wireless communication system 00 can be used as an example of a mobile communication system based on the 3rd Generation Partnership Project (3GPP) technical specifications, and can also cover wireless communication systems based on other wireless communication standards, such as the Institute of Electrical and Electronics Engineers ( Institute of Electrical and Electronic Engineers (IEEE) 802 series, such as 802.11, 802.15, 802.20 and other wireless communication standards.
  • 3GPP 3rd Generation Partnership Project
  • IEEE Institute of Electrical and Electronics Engineers
  • 802 series such as 802.11, 802.15, 802.20 and other wireless communication standards.
  • the wireless network device is a computing device with wireless communication function, which can generate beams with different directions through beamforming and other technologies to cover the cell 03, and can communicate with terminals in different positions in the cell 03.
  • the wireless network device may be a wireless access network device such as a base station.
  • the base station may specifically be a general node B (generation Node B, gNB) in a 5G mobile communication system, an evolutional Node B (eNB or eNodeB) in a 4G mobile communication system, and a base station in other possible wireless access technologies .
  • the physical form and transmission power of the base station can also be various, such as a macro base station (macro base station) or a micro base station (micro base station).
  • the terminal may also be called a user equipment (UE), a mobile station (MS) or a subscriber unit (SU).
  • the terminal may specifically be, but not limited to, a mobile phone, a tablet computer, a laptop computer, a wearable device (smart watch, smart bracelet, smart helmet, smart glasses, etc.), and other devices with wireless connection Communication devices with built-in capabilities, such as various Internet of Things devices, including smart home devices (smart meters, smart home appliances, etc.), smart vehicles, etc.
  • the cell may be a serving cell, an intra-frequency neighboring cell (inter-frequency neighboring cell), or an inter-frequency neighboring cell (inter-frequency neighboring cell), or a combination of the above different cells. Both the same-frequency neighboring cell and the different-frequency neighboring cell can be called neighboring cells (neighboring cells). It can be understood that the "serving cell” in this application may sometimes be referred to as “this cell”, and the “neighboring cell” in this application may also be referred to as “non-serving cell", which does not affect its technical meaning. Understanding.
  • the structure of the wireless communication system in FIG. 1 is only an exemplary implementation in the embodiments of the present application, and the structure of the communication system in the embodiments of the present application includes but is not limited to the above structure of the communication system.
  • FIG. 2 is a schematic structural diagram of a synchronization signal block provided by an embodiment of the present application.
  • the primary synchronization signal primary synchronization signal
  • the secondary synchronization signal secondary synchronization signal
  • the physical broadcast channel physical broadcast channel
  • An SSB occupies a total of 4 orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and occupies a total of 240 consecutive subcarriers in the frequency domain, that is, 20 physical resource blocks.
  • the subcarrier spacing of the SSB can be one of 15 kilohertz (KHz), 30 KHz, 120 KHz, and 240 KHz. Among them, 15KHz and 30KHz are used in the frequency band below 6 GHz, and 120KHz and 240KHz are used in the frequency band above 6GHz.
  • FIG. 3 is a schematic structural diagram of a synchronization signal burst set provided by an embodiment of the present application.
  • a synchronization signal burst (synchronization signal burst, SS burst set) can be composed of at most L (L ⁇ 1) SSB, and the synchronization signal burst set can be periodically transmitted .
  • the value of L is related to the frequency band where it is located.
  • the maximum value of L can be 8 in the frequency band below 6 GHz, and the maximum value of L can be 64 in the frequency band above 6 GHz.
  • ms milliseconds
  • the synchronization signal burst set is transmitted according to a preset synchronization signal burst set period (default SS burst period), where the preset period is 20 ms.
  • wireless network devices can use different transmit beam directions to sequentially transmit SSBs with different numbers within the burst period of the synchronization signal burst set, and can also use the same transmit beam direction to sequentially transmit synchronization signal bursts. SSBs with the same number during the transmission period are distributed.
  • the terminal in the idle state or the deactivated state can receive and measure the corresponding SSB in a certain way to obtain the measurement results corresponding to different beam pair links, that is, corresponding to different reception Measurement results of beams and different transmitted beams.
  • the terminal may select the above-mentioned corresponding beam measurement results and combine them in a certain manner for judging cell selection or reselection.
  • the wireless network device may configure transmission beam 1, transmission beam 2, and transmission beam 3, and the above transmission beam may be sequentially in the three synchronization signals.
  • the two SSBs are transmitted in the transmission cycle.
  • the terminal can receive the two SSBs that are sent periodically through receive beam 1, receive beam 2, and receive beam 3, and obtain 9 measurement results corresponding to the link of each beam pair, respectively, and select the corresponding maximum value
  • the measurement results of or the corresponding measurement results with a value greater than a certain threshold are combined to be used for the judgment of cell selection or reselection.
  • the wireless communication channel between the wireless network device and the terminal may be blocked due to the presence of obstacles.
  • the presence of obstacles may cause part of the beam pair link to be blocked by the blocked beam pair.
  • the communication quality obtained by linking to communication is poor.
  • the obstacle may be close, for example, in a scene where the terminal is held, the hand may be an obstacle; in a scene where the terminal is placed on the desktop in parallel, the desktop may be an obstacle. Obstacles may also be long distances, such as tall buildings, vehicles, pedestrians, trees and other objects in the daily environment.
  • the terminal When all beam pair links corresponding to one or more receive beams of the terminal are blocked, according to the prior art, the terminal will still measure the receive beams multiple times. This not only wastes power consumption of the terminal, but may also reduce the speed of terminal mobility measurement.
  • the mobility measurement solution in the prior art will waste a certain amount of power consumption and reduce the speed of mobility measurement, which does not meet the requirements of the NR system for low power consumption.
  • the embodiments of the present application provide an apparatus, method and system for configuring a receiving beam according to the measurement result corresponding to the received signal to reduce the power consumption of the terminal.
  • FIG. 4 is a schematic diagram of an activation period and a sleep period in a discontinuous reception cycle provided by an embodiment of the present application.
  • a discontinuous reception (DRX) method is introduced.
  • DRX can be understood as that the terminal only turns on the receiver at the necessary time to enter the active period to receive downlink data and signaling. At other times, the receiver is turned off and enters the sleep period to stop receiving downlink data and signaling to save power.
  • the DRX cycle may be a short cycle of DRX. When the short cycle timer of the DRX expires, the long cycle of DRX is used.
  • the terminal may perform mobility measurement during the activation period, which may be one mobility measurement in each DRX cycle, or one mobility measurement in multiple DRX cycles.
  • FIG. 5 is a schematic flowchart of a mobility measurement method provided by an embodiment of this application.
  • the method may be performed by a communication device, which may be a terminal, or a chip that may be provided in the terminal.
  • the chip may specifically be a baseband processor or a system chip (SoC).
  • SoC system chip
  • S501 Receive reference signals from the first cell and the second cell through a reception beam set of the terminal, where the reception beam set of the terminal includes the first reception beam and the second reception beam.
  • S502 Determine the measurement result of the first cell and the measurement result of the second cell separately according to the reference signal received by the terminal's receive beam set.
  • the reference signals of the first cell and the second cell may be received through the set of receive beams of the terminal multiple times within different time periods.
  • a specific method may be to configure each receive beam in the set of receive beams for the terminal, and the receive beams respectively receive a plurality of periodic synchronization signal burst sets from the wireless network device in sequence.
  • the measurement results corresponding to different receiving beams or different beam pair links are determined.
  • the update action is performed.
  • the reference signals of the first cell and the second cell may not be received and measured by the first receiving beam, thereby reducing the power consumption of the terminal, or, in the next Within a period of time, the reference signals of the first cell and the second cell can be received and measured by one or more receive beams in the updated receive beam set, which reduces the power consumption of the terminal and can also speed up mobility Measuring speed.
  • the method further includes:
  • S504a within the second duration, receive the reference signals from the first cell and the second cell through the updated receive beam set of the terminal; after the second duration, reconfigure the receive beam set of the terminal, the terminal
  • the set of reconfigured receive beams includes the first receive beam and the second receive beam.
  • the method further includes:
  • S504b within the second duration, receive the reference signals from the first cell and the second cell through the updated receive beam set of the terminal; after the second duration, reconfigure the receive beam set of the terminal, the terminal
  • the set of reconfigured receive beams includes the first receive beam, the second receive beam, and other receive beams.
  • the reference signals of the first cell and the second cell may be received through the updated receive beam set of the terminal multiple times in different time periods, and according to the corresponding received reference signals, The measurement result of the first cell and the measurement result of the second cell are determined separately.
  • the reconfiguration action can be triggered by controlling the time triggering condition, which further improves the robustness.
  • the method further includes:
  • S504c Reconfigure the receive beam set of the terminal according to the change of the motion state of the terminal.
  • the reconfigured receive beam set of the terminal includes the first receive beam and the second receive beam.
  • the method further includes:
  • S504d Reconfigure the receive beam set of the terminal according to the change of the motion state of the terminal.
  • the reconfigured receive beam set of the terminal includes the first receive beam, the second receive beam, and other receive beams.
  • the method further includes: acquiring state information of the sensor of the terminal to determine a change in the motion state of the terminal.
  • the sensor of the terminal can monitor the motion state of the terminal and generate a motion state record of the terminal.
  • the communication device can determine whether the movement state of the terminal changes by reading the movement record of the terminal from the sensor. For example, when the movement state record of the terminal exceeds a predefined range, it is determined that the movement state of the terminal changes. Or, when the movement state record of the terminal changes, it is judged that the movement state of the terminal changes.
  • the sensor of the terminal can also determine whether the motion state of the terminal has changed according to the monitored motion state record and generate a corresponding indication. For example, when the sensor of the terminal detects that the movement state of the terminal (such as speed) changes beyond the predefined range, when the sensor of the terminal detects that the movement state of the terminal (such as speed) changes beyond the predefined range, the sensor indicates the position When the value is 1, the communication device reads the indication bit to know that the movement state of the terminal has changed. On the contrary, when the sensor of the terminal detects that the movement state of the terminal does not exceed the predefined range, the sensor indication bit takes a value of 0, and the communication device reads the indication bit to know that the movement state of the terminal has not changed.
  • a reconfiguration action can be triggered according to whether the motion state of the terminal exceeds a predefined range to improve the robustness of the measurement result.
  • the method further includes: presetting the second duration in a timer of the terminal, when the timer expires To complete the above reconfiguration actions.
  • the method further includes: using a discontinuous reception periodic timer, and completing the above reconfiguration when the discontinuous reception periodic timer expires M (M ⁇ 1) times action.
  • the timer in the embodiment of the present application may be a software timer, and setting the second duration may be understood as a parameter corresponding to a software module that sets a related timing function of a software algorithm.
  • the timer in the embodiment of the present application may also be a hardware circuit or device of the terminal, and setting the second duration may be understood as setting parameters of the hardware timing circuit or timer.
  • the timer in the embodiment of the present application can also be completed by a combination of related software modules of the software algorithm and the above hardware circuit or device, for example, setting the timer parameter in the SoC chip to the duration of the discontinuous reception cycle, and implementing the software algorithm Set the counter to N in the relevant software module. Every time the timer expires, the counter decrements by 1. When the counter is cleared, it indicates that the second time period has passed. It should be understood that the implementation method of the first duration is similar.
  • the reference signals of the first cell and the second cell may also be received through the updated receive beam set of the terminal multiple times in different time periods, According to the corresponding received reference signals, the measurement result of the first cell and the measurement result of the second cell are determined respectively. It should be understood that, further, the measurement result can also be used for mobility management judgment.
  • a reconfiguration action may be triggered to reconfigure the receive beam set of the terminal.
  • the reconfigured receive beam set of the terminal includes the first receive beam and The second receive beam.
  • the reconfigured receive beam set of the terminal may also include other receive beams.
  • the receive beam set of the terminal includes the first receive beam, the second receive beam and Receive beam.
  • the method after reconfiguring the receive beam set of the terminal, the method further includes:
  • the reference signals of the first cell and the second cell may also be received through the updated receive beam set of the terminal multiple times in different time periods, According to the corresponding received reference signals, the measurement result of the first cell and the measurement result of the second cell are determined respectively. It should be understood that, further, the measurement result can also be used for mobility management judgment.
  • the radio frequency transceiving circuit of the terminal can be selected so that the direction of the receiving beam of the terminal can be the same as the receiving beam.
  • the parameters of the RF transceiver circuit of the terminal can also be configured.
  • the weight of the antenna element used for calculation may also be configured.
  • the measurement result includes: measurement of the reference signal received power (reference signal received power, RSRP) of layer 1 based on the reference signal ).
  • the measurement result includes: reference signal received quality (reference signal received quality (RSRQ)) of layer 1 based on the measurement of the reference signal.
  • the measurement result includes: a signal-to-interference and noise ratio (SINR) of layer 1 measured based on the reference signal.
  • the measurement result further includes: RSRP of layer 3 measured based on the reference signal.
  • the measurement result further includes: RSRQ of layer 3 measured based on the reference signal.
  • the optional measurement result further includes: the measured layer 3 SINR based on the reference signal.
  • the above reference signal may be an SSB, or the above reference signal may be a channel state information reference signal (channel-state information reference signal, CSI-RS). It should be understood that the measurement result may also include any combination of the foregoing optional embodiments. It should be understood that the above measurement results can be used for the determination of the mobility management of the terminal.
  • the method further includes: reading a preset threshold.
  • the value of the preset threshold may be preset, may be stored in the memory of the decision module corresponding to the software algorithm to implement the software algorithm, or may be stored in the memory of the terminal.
  • the preset threshold can be determined by reading the value in the corresponding memory. It should be understood that the preset threshold is directly determined according to the value in the memory, and the corresponding algorithm is simpler.
  • the method further includes: determining the measurement result corresponding to the optimal receiving beam according to the reference signal received by the terminal's receiving beam set;
  • the measurement result and the preset maximum difference determine the preset threshold.
  • the value of the preset maximum difference may be preset, may be stored in a software module corresponding to the software algorithm that implements the software algorithm, or may be stored in the memory of the terminal.
  • the preset threshold is determined by the measurement result corresponding to the optimal receive beam and the read preset maximum difference.
  • the preset threshold may include a preset threshold.
  • the preset threshold may include a first preset threshold and a second preset threshold.
  • the first receive beam corresponds to the first cell lower than the first preset threshold and the second cell.
  • the above updating action is performed.
  • the preset threshold is directly determined according to the measurement result corresponding to the optimal receive beam and the value in the memory, and the above algorithm can be adjusted more flexibly.
  • both the first cell and the second cell are co-frequency neighboring cells of the serving cell of the terminal.
  • the first cell is a co-frequency neighboring cell of the terminal's serving cell
  • the second cell is an inter-frequency neighboring cell of the terminal's serving cell.
  • both the first cell and the second cell are inter-frequency neighboring cells of the serving cell of the terminal. It should be understood that the frequency of the first cell and the frequency of the second cell may be the same, or the frequency of the first cell and the frequency of the second cell may be different.
  • the first cell is a serving cell of the terminal, and the second cell is a co-frequency neighboring cell of the terminal.
  • the mobility measurement scheme may be divided into a single-frequency point multi-cell mobility measurement scheme and a multi-frequency point multi-cell mobility measurement scheme.
  • the method further includes: determining the first duration according to a discontinuous reception DRX cycle and a positive integer N; within the first duration, receiving the first cell and The reference signal of the second cell.
  • the method further includes: determining the first duration according to a discontinuous reception DRX cycle and a positive integer N; within the first duration, receiving once from the first cell and the second cell through the terminal's receive beam set The reference signal corresponds to this.
  • the DRX cycle here may be a short DRX cycle or a long DRX cycle. It should be understood that the reception once here may be understood as receiving all SSBs in the burst set of X synchronization signal blocks through the X receive beams in the receive beam set of the terminal.
  • the device may be a terminal in the wireless communication system of the embodiment of the present application, or may be a chip or a circuit that can be provided in the terminal.
  • the chip may specifically be a baseband processor or an SoC chip, and may implement the mobility measurement method shown in FIG. 5 in the present application, and the foregoing optional embodiments.
  • the device 10 includes a receiving unit 110 and a processing unit 120.
  • the receiving unit 110 may be a receiver, a receiving circuit, a transceiver or a transceiver circuit
  • the processing unit 120 may be a processor.
  • the receiving unit 110 and the processing unit 120 may be software modules.
  • the receiving unit 110 may be a receiver, a receiving circuit, a transceiver or a combination of a transceiver module and a software module
  • the processing unit 120 may be a processor and a software module. Combine.
  • the above three optional implementation manners of the receiving unit 110 and the processing unit 120 may also be combined with each other to form a new implementation manner.
  • the receiving unit 110 is configured to receive the reference signals from the first cell and the second cell through the terminal's receive beam set, and the terminal's receive beam set includes the first receive beam and the second Receiving beam; the processing unit 120 is used to determine the measurement result of the first cell and the measurement result of the second cell respectively according to the reference signal received by the terminal's receiving beam set; the processing unit 120 is also used in the first Within a period of time, when the measurement results of the first cell and the second cell corresponding to the first receive beam are lower than a preset threshold, the receive beam set of the terminal is updated, and the updated receive beam set of the terminal includes the second The receiving beam does not include the first receiving beam.
  • the device may be a terminal in the wireless communication system of the embodiment of the present application, or may be a chip or a circuit that can be provided in the terminal.
  • the chip may specifically be a baseband processor or an SoC chip, and may implement the mobility measurement method shown in FIG. 5 in the present application, and the foregoing optional embodiments.
  • the device 20 includes a receiving circuit 210 and a processor 220 connected to the receiving circuit 210. It should be understood that although only one receiving circuit and one processor are shown in FIG. 7, the device 20 may further include other numbers of receiving circuits or processors. Through the cooperation between the processor and the receiving circuit, the method in the embodiments of the present application can be implemented.
  • the device 20 may further include a transmission circuit 230.
  • the receiving circuit 210 and the transmitting circuit 230 may be integrated in one physical entity, such as a transceiver (transceiver), or may be integrated in different physical entities, such as a receiver (receiver) and a transmitter (transmitter).
  • the receiving circuit 210 and the transmitting circuit 230 may also be coupled to an antenna to wirelessly connect with other communication devices.
  • the device 20 may further include a memory 240, a connecting line 250, and an I / O interface.
  • the memory 240 is used to store computer programs or computer instructions.
  • the apparatus 20 is enabled to implement the steps of the communication apparatus in the wireless communication method of the embodiment of the present application.
  • Such computer programs or instructions may be recorded as function programs of terminal-related communication devices.
  • the I / O interface provides the possibility of interaction with other communication devices or users.
  • the I / O interface may be a screen, keyboard, microphone, speaker, USB interface, etc.
  • connection lines such as a bus system
  • the bus system can include a power bus, a control bus, a status signal bus, and the like in addition to a data bus.
  • the bus system can include a power bus, a control bus, a status signal bus, and the like in addition to a data bus.
  • all buses are collectively referred to as a bus system in this article.
  • the wireless communication device 20 may be a terminal in the wireless communication system of the embodiment of the present application, or may be set in The chip or circuit in the terminal.
  • the device may be a terminal in the wireless communication system of the embodiment of the present application, or may be a chip or a circuit that can be provided in the terminal.
  • the chip may specifically be a baseband processor or an SoC chip, and may implement the mobility measurement method shown in FIG. 5 in the present application, and the foregoing optional embodiments.
  • the device 30 includes an antenna module 310, a radio frequency subsystem 320 coupled with the antenna module 310, and a baseband subsystem 330 coupled with the radio frequency subsystem 320.
  • the antenna module 310 and the radio frequency subsystem 320 are used to receive reference signals from the first cell and the second cell through the terminal's receive beam set, and the terminal's receive beam set includes the first receiving A beam and a second receive beam; the baseband subsystem 330 is used to determine the measurement result of the first cell and the measurement result of the second cell respectively according to the reference signal received by the terminal's receive beam set, and the first duration
  • the receive beam set of the terminal is updated.
  • the updated receive beam set of the terminal includes the second receive beam but The first receive beam is not included.
  • the antenna module 310 may be used to receive a signal and input the radio frequency subsystem 320 in the form of a radio frequency signal corresponding to the signal.
  • the baseband subsystem 320 may be used to process the received radio frequency signal (for example, filtering, noise reduction, amplification, etc.), down-convert the radio frequency signal to the baseband signal for processing by the baseband subsystem 330, wherein the radio frequency subsystem 320 may include two modules of a radio frequency front-end module 321 and a radio frequency transceiver module 342.
  • the baseband subsystem 330 may be used to implement the mobility measurement method shown in FIG. 5 in the present application according to the measurement result corresponding to the received baseband signal based on the received signal, and the foregoing optional embodiments.
  • the device 40 includes an antenna module 410, a radio frequency subsystem 420 coupled with the antenna module 410, and a baseband subsystem 430 coupled with the radio frequency subsystem 420.
  • the device 40 may further include: a first memory 460 coupled to the baseband subsystem 430.
  • the baseband subsystem 430 includes a processor 431 and a second memory 432.
  • the first memory 460 and the second memory 432 in the baseband subsystem 430 are coupled.
  • the first memory 460 may be a non-volatile memory (non-volatile memory)
  • the second memory 432 may be a volatile memory (volatile memory) or a non-volatile memory.
  • volatile memory refers to memory that loses internally stored data when power supply is interrupted.
  • volatile memory is mainly random access memory (random access memory, RAM), including static random access memory (static RAM) and dynamic random access memory (dynamic RAM).
  • Non-volatile memory refers to memory that does not lose data stored internally even if the power supply is interrupted.
  • Common non-volatile memory includes read-only memory (read only memory), optical disks, magnetic disks, solid-state drives, and various memory cards based on flash memory technology.
  • the first memory 460 may be used to store one or more instructions corresponding to any method provided in the embodiments of the present application.
  • the code is loaded into the second memory 432 and executed by the processor 431 .
  • the code may be a code corresponding to the mobility measurement method shown in FIGS. 5 to 7 in the present application, and the foregoing optional embodiments.
  • the processor 431 may further include a cache connected to the second memory 432.
  • the second memory 432 Code is cached in the cache for execution by the processor.
  • the baseband subsystem 330 configures one or more parameters in the antenna module and the radio frequency receiving circuit, so that the terminal can sequentially receive signals from each receiving beam in the receiving beam set of the terminal. Synchronization signal blocks in a plurality of periodic synchronization signal bursts in the first cell and the second cell. During the first time period, when the measurement results of the first receive beam corresponding to the first cell and the second cell are lower than a preset threshold, the baseband subsystem updates the set of receive beams of the terminal, and the updated receive beams of the terminal The set includes the second receive beam but not the first receive beam.
  • the radio frequency receiving circuit may include one or more of an input circuit, a low-noise amplifier, and a receiving circuit, and may further include a radio frequency front-end module 421 and an antenna module 410.
  • the radio frequency transmission circuit may include one or more of an output circuit, a power amplifier, and a transmission circuit, and may further include a radio frequency front-end module 421 and an antenna module 410. It should be understood that some or all of the circuits in the antenna module 410 and the radio frequency subsystem 420 may individually or collectively constitute a radio frequency receiving circuit 440 for receiving radio frequency signals.
  • the baseband subsystem 430 selects a radio frequency receiving circuit 440 to receive the signal through the direction of the receive beam in the receive beam set; optional, it means that the baseband subsystem 430 adjusts the radio frequency receiving circuit 440 Parameter to receive signals through the receive beam direction of the receive beam set.
  • the antenna module 410 receives the signals from the first cell and the second cell, and inputs the radio frequency signal corresponding to the signals from the first cell and the second cell into the selected radio frequency receiving circuit, which is then converted into a baseband signal for The baseband subsystem 430 processes.
  • the following description is based on the assumption that one of the selected radio frequency receiving circuits is the radio frequency receiving circuit 440a, then the antenna module 410 receives the radio frequency signal corresponding to the signal of the serving cell, and the radio frequency front-end module 421 inputs the selected radio frequency in the form of radio frequency signals
  • the circuit 440a and the radio frequency front-end module 421 may include an antenna switch, a duplexer, a diplexer, and so on.
  • the input circuit 441a in the RF receiving circuit 440a is used for preprocessing (eg, filtering, etc.), and is provided to the low noise amplifier 442a in the form of an RF signal.
  • the input circuit 441a may include Matching circuit, receiving filter, etc.
  • the low-noise amplifier 242a amplifies the received signal with the introduction of lower noise and inputs it to the receiving circuit 443a in the form of a radio frequency signal.
  • the receiving circuit 443a amplifies, filters, and downconverts the radio frequency signal from the low-noise amplifier 442a to a baseband signal for processing and judgment by the baseband subsystem.
  • the baseband subsystem 430 performs measurement, processing, and judgment according to the received baseband signal.
  • the parameters of the radio frequency receiving circuit 440 include antenna element weights used for calculation.
  • the corresponding operation may be performed by the baseband subsystem in the digital domain, the analog part uses a fixed connection network, and an antenna array element is connected to a corresponding radio frequency link (RF chain).
  • the device has high flexibility and can be used for digital beam forming.
  • the parameters of the radio frequency receiving circuit 440 include phaser (shifter) parameters, such as the weight of the phase shifter.
  • phaser shifter
  • the corresponding operation is implemented in the analog domain.
  • the device is simple to implement, relatively low in cost and power consumption, and can be used to simulate beamforming.
  • the parameters of the radio frequency receiving circuit 440 include antenna element weights and phase shifter parameters used for calculation, for example, antenna arrays
  • the weight of the element and the weight of the phase shifter are used for calculation, for example, antenna arrays
  • the device has good flexibility and low cost, and can be used for hybrid beamforming.
  • the radio frequency transceiver module 342 may also be a radio frequency receiving module or a radio frequency receiving module, which may be integrated with the baseband subsystem 330 or / and the antenna module 310, or may be integrated with the baseband subsystem 330 or / It is provided separately from the antenna module 310.
  • Embodiment 1 mainly introduces a possible expansion and specific implementation of the solution of this application for a single cell
  • Embodiment 2 mainly focuses on the mobility measurement solution corresponding to a multi-cell of a single frequency point and the multi-frequency point.
  • the mobility measurement solution corresponding to the cell introduces several possible specific implementations.
  • the single-frequency point multi-cell and multi-frequency point multi-cell here may be understood as divided according to whether the frequency points of the first cell and the second cell are the same.
  • Embodiment 3 mainly introduces several possible exemplary designs of the device in the solution of the present application.
  • a single cell will be used as an example to provide a mobility measurement solution that performs individual judgment on a single cell. It should be understood that a single cell here may refer to a co-frequency neighbor cell or an inter-frequency neighbor cell, or a serving cell.
  • the wireless network device periodically transmits a set of synchronization signal bursts.
  • a set of synchronization signal bursts may include two different SSBs, denoted as SSB 1 and SSB 2 respectively , and at 5 milliseconds (ms). Launch within the window.
  • SSB 1 and SSB 2 may be transmitted by the wireless network device corresponding to the cell through transmission beam 1 and transmission beam 2 at different time slots at a time.
  • the terminal in the idle state or the deactivated state can receive and measure the above SSB. Assuming that the currently configurable receive beams are receive beam a, receive beam b, and receive beam c, they can be used to receive SSB 1 and SSB 2 from the cell.
  • the receive beam set ⁇ can be used to receive SSB 1 and SSB 2 from the cell, and determine the communication quality of the cell according to the measurement result of each receive beam.
  • the receive beam a can be configured to receive SSB 1 and SSB 2 in sequence in the first synchronization signal burst set transmission period measured in the round; the second receive beam b can be configured in the second round of measurement A synchronization signal burst set transmission cycle receives SSB 1 and SSB 2 in sequence; the third synchronization signal burst set transmission cycle measured by the receiving beam c in the round can receive SSB 1 and SSB 2 in sequence.
  • the SSB 1 and SSB 2 received by the receiving beam a, the receiving beam b, and the receiving beam c are respectively measured, and measurement results corresponding to different receiving beams and different beam pair links can be obtained, and the communication quality of the cell is determined according to the above measurement results.
  • the measurement result may include RSRP in decibel milliwatts (dBm).
  • dBm decibel milliwatts
  • Table 1 gives an example of a set of measurement results, where i represents the i-th measurement.
  • i represents the i-th measurement.
  • the transmit beam 1 and the receive beam a form a beam pair link 1a, and the corresponding measurement result is recorded as Transmit beam 2 and receive beam a form a beam pair link 2a, and the corresponding measurement result is recorded as Other combinations can be deduced by analogy.
  • the set of receive beams can be updated under certain conditions.
  • the updated receive beam set does not include one or more receive beams whose measurement results corresponding to multiple consecutive measurements are less than the lower threshold, that is, the updated receive beam set includes only the receive in the original receive beam set except the receive beam Beam, the updated set of receive beams can be used to determine the communication quality of the cell according to the measurement results of each receive beam.
  • Using this solution can reduce the number of measurements or the length of each round of measurement, thereby reducing terminal power consumption.
  • the receive beam set is updated, and the updated receive beam set does not include the first receive beam.
  • each receive beam may receive the reference signal from the cell multiple times.
  • the receive beam set may be updated.
  • the measurement result of the cell corresponding to the first receive beam within the first time duration may also be understood as the measurement result of multiple consecutive times within the first time duration, and the specific value of the first time duration may be measured according to consecutive rounds The number of rounds and the measurement period are calculated.
  • a DRX cycle one round of measurement can be performed.
  • the measurement cycle of the terminal can be understood as equal to one DRX cycle.
  • one round of measurement may be performed in multiple DRX cycles.
  • the measurement cycle of the terminal may be understood to be equal to the multiple DRX cycles.
  • the following takes the measurement period equal to one DRX period T as an example, corresponding to the first consecutive time t 1 , the corresponding consecutive multiple measurement rounds are among them The representative rounds down.
  • the following takes multiple consecutive measurement results corresponding to the first duration as an example.
  • the number of consecutive measurement rounds is 3, and the preset lower threshold ⁇ 1 is -100 dBm.
  • the measurement result corresponding to the beam pair link 1b is -102dBm
  • the measurement result corresponding to the beam pair link 2b is -105dBm, both of which are less than the preset lower threshold ⁇ 1 .
  • the measurement results corresponding to the links of the remaining beam pairs are greater than the preset lower threshold.
  • the reception beam corresponding to the measurement result of the second round of measurement and the third round of measurement is lower than the preset lower threshold is also the reception beam b.
  • the measurement result corresponding to the received beam set ⁇ 'configured above can be used for the communication quality evaluation of the cell. For example, after reading the parameter configuration of the maximum average number of SSBs in the measurement configuration parameter set measObject nroSS-BlocksToAverage and SSB mixed threshold absThreshSS-BlocksConsolidation, the measurement results corresponding to the received beam set ⁇ 'configured above are converted into a certain way The measurement results of the cell are used to evaluate the communication quality of the cell.
  • An optional implementation mode is that when any one of the above parameters cannot obtain the parameter configuration, or the parameter value of the SSB mixed threshold absThreshSS-BlocksConsolidation is greater than the value of all the measurement results corresponding to the received beam set ⁇ 'of the above configuration Time. Then, the measurement result of the cell is the measurement result corresponding to the largest value among the measurement results obtained by the above-described configured receiving beam set ⁇ ′.
  • Another optional method is that when any of the above parameters cannot obtain the parameter configuration, or the parameter value of the SSB mixed threshold absThreshSS-BlocksConsolidation is greater than the value of all the measurement results corresponding to the received beam set ⁇ 'of the above configuration Time. Then, among the measurement results obtained by the configured receive beam set ⁇ ', the largest measurement result value corresponding to SSB 1 and the largest measurement result value corresponding to SSB 2 are selected. Value.
  • the measurement results of the above-mentioned cells can also be used for the judgment of cell reselection.
  • the value of the SSB mixed threshold absThreshSS-BlocksConsolidation may be greater than or equal to the preset lower threshold ⁇ 1 .
  • the preset lower threshold ⁇ 1 There are also various design methods for the preset lower threshold ⁇ 1 , and several alternative implementations are given below.
  • the value of the lower threshold ⁇ 1 is determined by a preset parameter; in another alternative embodiment, the value of the lower threshold ⁇ 1 may be determined by the measurement result corresponding to each round of measurement The maximum value and the preset threshold ⁇ are determined.
  • the value of the lower threshold ⁇ 1 is the difference between the maximum value in the measurement result corresponding to each round of measurement and the preset threshold ⁇ ; in another optional embodiment, the value of the lower threshold ⁇ 1 Determined by the SSB mixing threshold absThreshSS-BlocksConsolidation.
  • the value of the lower threshold ⁇ 1 is the value corresponding to the SSB mixed threshold absThreshSS-BlocksConsolidation, or the value of the lower threshold ⁇ 1 is the difference between the value corresponding to the SSB mixed threshold absThreshSS-BlocksConsolidation and the preset threshold ⁇ .
  • the communication environment may change, and the updated receiving beam set ⁇ ' may not be used to obtain reliable communication quality of the cell.
  • the trigger condition may be whether the timer times out.
  • the second duration may be preset to 10s.
  • the trigger condition may be whether the counter is cleared.
  • the second duration may correspond to a measurement result of a positive integer N rounds. With reference to Table 1, it is assumed that the corresponding positive integer N is 10.
  • the duration of the timer in the SoC chip can be set to the DRX cycle (such as DRX short cycle), and the counter can be set to 10 in the software module that implements the timing of the software algorithm or counting. Every time the timer expires, the counter is decremented by 1. When the counter is cleared, it means that the second duration has passed.
  • the triggering condition may be whether the motion state of the terminal changes.
  • the receive beam set may be reconfigured.
  • the related mobility measurement can be divided into a mobility measurement solution corresponding to a multi-cell at a single frequency point, and mobility corresponding to a multi-cell at a multi-frequency point Measurement plan. It should be understood that the embodiments of the present application are based on Embodiment 1, and the repeated parts may refer to the description in Embodiment 1, and will not be repeated here.
  • the first cell may be a serving cell of the terminal, and the second cell may be a co-frequency neighboring cell of the serving cell of the terminal.
  • the first cell and the second cell may be the same-frequency neighboring cells of the serving cell of the terminal.
  • the first cell and the second cell may both be inter-frequency neighboring cells of the serving cell of the terminal, where the frequency of the first cell is the same as the frequency of the second cell.
  • the following takes the first cell and the second cell as inter-frequency neighboring cells of the terminal's serving cell as an example.
  • the frequency of the first cell is the same as the frequency of the second cell, both of which are frequency f 1 .
  • the reconfigured receive beam set does not include the receive beam.
  • the reconfigured receive beam set may be used to receive signals from the first cell and the second cell, and determine measurement results corresponding to the first cell and the second cell according to the received signals.
  • the first duration may be determined by the measurement period of the cell and the corresponding measurement round.
  • the second duration can also be determined by the measurement period of the cell and the corresponding measurement round.
  • the frequency point of the cell to be measured by the terminal includes a frequency point f 1.
  • a total of two inter-frequency neighboring cells corresponding to the terminal's serving cell are recorded as inter-frequency neighboring cells I, respectively.
  • inter-frequency neighborhood II The following introduces a possible solution for the aforementioned frequency points and inter-frequency neighboring cells.
  • a synchronization signal burst set from the inter-frequency neighboring cell I may include two different synchronization signal blocks, denoted as SSB 3 and SSB 4 respectively .
  • the wireless network device corresponding to the inter-frequency neighboring cell I can transmit through the transmission beam 3 and the transmission beam 4 in different time slots, respectively.
  • a sync signal burst set from the inter-frequency neighboring cell II includes two different sync signal blocks, denoted as SSB 5 and SSB 6 respectively .
  • the wireless network device corresponding to the inter-frequency neighboring cell II can transmit on different time slots through the transmission beam 5 and the transmission beam 6 respectively.
  • Table 2 gives an example of the measurement results corresponding to a set of frequency points f 1.
  • the first duration corresponds to 3 DRX cycles, and each DRX cycle can correspond to the inter-frequency neighboring area I and the inter-frequency neighboring area II Carry out a round of measurement and preset the lower threshold ⁇ 2 to be -100dBm.
  • the reception beam corresponding to the inter-frequency neighboring zone I whose measurement result is less than the preset lower threshold ⁇ 2 is the reception beam a, reception beam b, reception beam b, and reception beam b in this order
  • the receiving beams whose measurement results corresponding to the inter-frequency neighboring zone II are less than the preset lower threshold ⁇ 2 are , in order, the receiving beam b, the receiving beam b, the receiving beam b, and the receiving beam b. Therefore, for the measurement results of the second to fourth rounds, the measurement results of the first cell and the measurement results of the second cell corresponding to the receive beam b are both less than the preset lower threshold ⁇ 2 .
  • the receive beam set ⁇ ' can be used to receive the SSB of the inter-frequency neighbor cell I and the SSB of the inter-frequency neighbor cell II, or,
  • the receiving beam set ⁇ ' can also be used to determine the measurement results of the inter-frequency neighboring area I and the inter-frequency neighboring area II corresponding to the frequency point according to the measurement results of the respective receiving beams.
  • the second duration corresponds to 9 DRX cycles, and each DRX cycle can perform one round of measurement on the inter-frequency neighbor cell I and the inter-frequency neighbor cell II.
  • the solution provided by the embodiment of the present application can reduce the number of measurements and the measurement duration of each round, reduce power consumption, and increase the standby duration.
  • the first cell may be a serving cell of the terminal, and the second cell may be an inter-frequency neighboring cell of the serving cell of the terminal.
  • the first cell may be a co-frequency neighboring cell of the terminal's serving cell, and the second cell may be an inter-frequency neighboring cell of the terminal's serving cell.
  • the first cell and the second cell may both be inter-frequency neighboring cells of the serving cell of the terminal, where the frequency of the first cell and the frequency of the second cell are different.
  • the following takes the first cell as the co-frequency neighboring cell of the terminal's serving cell and the second cell as the inter-frequency neighboring cell of the terminal's serving cell as an example.
  • the frequency point of the first cell is denoted as f 2
  • the frequency point of the second cell is denoted as f 3 .
  • the reconfigured receive beam set does not include the receive beam.
  • the reconfigured receive beam set may be used to receive signals from the first cell and the second cell, and determine measurement results corresponding to the first cell and the second cell according to the received signals.
  • the first duration may be a measurement period and a corresponding measurement round for the first cell within the first duration, and the second cell's The measurement period and the corresponding measurement round are determined together.
  • the first duration can be determined according to the following formula:
  • t 1 max ⁇ N 1 ⁇ T 1 , N 2 ⁇ T 2 ⁇
  • N 1 and T 1 are the measurement round and measurement period for the first cell respectively
  • N 2 and T 2 are the measurement round and measurement for the second cell respectively cycle.
  • max ⁇ can be understood as taking the maximum value for ⁇ .
  • the first duration may be determined according to the following formula:
  • t 1 is the value of the first duration
  • n inter is the number of frequency points in the multi-frequency point other than the frequency point of the serving cell of the terminal.
  • N inter and T inter are the measurement rounds and measurement cycles for the inter- frequency neighboring cells of the terminal's serving cell, respectively
  • N intra and T intra are the measurement rounds and measurements for the same-frequency neighboring cells of the terminal's serving cell, respectively. cycle.
  • the value of the second duration reference may be made to the above-mentioned method for determining the second duration.
  • the cell frequency point to be measured by the terminal includes a frequency point f 2 and a frequency point f 3 , which correspond to the co-frequency neighboring cell I and the inter-frequency neighboring cell III , respectively.
  • a synchronization signal burst set from the same-frequency neighboring cell I may include two different synchronization signal blocks, denoted as SSB 7 and SSB 8 respectively .
  • the wireless network device corresponding to the same-frequency neighboring cell I may transmit on different time slots through the transmission beam 7 and the transmission beam 8 respectively.
  • a synchronization signal burst set from the inter-frequency neighboring cell III includes two different synchronization signal blocks, which are respectively denoted as SSB 9 and SSB 10 .
  • the wireless network device corresponding to the inter-frequency neighboring cell II may transmit on different time slots through the transmission beam 9 and the transmission beam 10 respectively.
  • Table 3 (a) gives an example of the measurement results of a group of co-frequency neighbors I corresponding to the frequency f 2
  • Table 2 (b) gives the measurement results of a group of inter-frequency neighbors III corresponding to the frequency f 3 Example.
  • the first duration corresponds to 3 DRX cycles, and each DRX cycle can perform one round of measurement on the same-frequency neighboring region I and the inter-frequency neighboring region III, and the preset lower threshold ⁇ 3 is taken as -100dBm.
  • the reception beams corresponding to the measurement results of the same-frequency neighboring cell I are lower than the lower threshold ⁇ 3 are the reception beam c, the reception beam b, the reception beam b, Receive beam b.
  • the reception beams corresponding to the measurement results of the inter-frequency neighboring zone III that are lower than the lower threshold ⁇ 3 are all reception beams b. Therefore, for the measurement results of the second to fourth rounds, the measurement results of the first cell and the measurement results of the second cell corresponding to the receive beam b are both less than the preset lower threshold ⁇ 2 .
  • the receive beam set ⁇ ' may be used to receive the SSB of the co-frequency neighbor cell I and the SSB of the inter-frequency neighbor cell III, or,
  • the receiving beam set ⁇ ' can also be used to determine the measurement results of the inter-frequency neighboring area I and the inter-frequency neighboring area II corresponding to the frequency point according to the measurement results of the respective receiving beams.
  • the second duration corresponds to 9 DRX cycles, and each DRX cycle can perform one round of measurement on the inter-frequency neighbor cell I and the inter-frequency neighbor cell II.
  • the solution provided by the embodiment of the present application can effectively reduce the number of measurements and the measurement duration of each round, reduce power consumption, and increase the standby duration.
  • This embodiment of the present application will take a single cell as an example in conjunction with Embodiment 1, to provide an exemplary design of an apparatus adopting the solution of the present application.
  • the structural design of the device reference may be made to the descriptions of FIG. 6 to FIG. 9 above, and the details will not be repeated here.
  • the following describes an exemplary design scheme using the device shown in FIG. 9 as an example.
  • the wireless network device corresponding to the cell may periodically transmit the synchronization signal burst set, and each synchronization signal burst set may include two different SSBs, denoted as SSB 1 and SSB 2 respectively .
  • SSB 1 and SSB 2 may be sequentially transmitted by the wireless network device corresponding to the cell through transmission beam 1 and transmission beam 2 on different time slots.
  • the currently configurable receive beams are the receive beam a, the receive beam b, and the receive beam c, which can be used to receive SSB 1 and SSB 2 from the above wireless network device.
  • the baseband subsystem 430 may adjust the parameters of the radio frequency receiving circuit or select one or more corresponding radio frequency receiving circuits to configure the receive beam set to receive the SSB of the cell.
  • the baseband subsystem 430 may adjust the phase shifter parameters (eg, phase shifter weights) in the radio frequency subsystem to adjust the direction of the received beam to the direction of the received beam a, SSB 1 and SSB 2 from the wireless network device are received through the antenna module 410. It is sent by the antenna module 410 to the radio frequency subsystem 420, and the radio frequency subsystem 420 filters, reduces noise, and amplifies the received signal, and reduces the radio frequency signal to a baseband signal for the baseband subsystem 430 to process. The baseband subsystem 430 performs operations such as measurement and calculation on the received signal to obtain corresponding calculation results.
  • phase shifter parameters eg, phase shifter weights
  • the receiving beam b and the receiving beam c are sequentially configured to receive the SSB 1 and SSB 2 of the wireless network device, and the specific implementation manner is the same as the configuration of the receiving beam a.
  • the measurement result includes RSRP in decibel milliwatts (dBm).
  • the corresponding calculation result can be stored in the second memory 432 in the baseband subsystem 430.
  • the tables in the embodiments of the present application can also use other data structures when they are implemented, for example, an array, queue, container, stack, Linear table, pointer, linked list, tree, graph, structure, class, heap, hash table or hash table, etc.
  • the measurement result corresponding to the beam pair link 1b is -102dBm
  • the measurement result corresponding to the beam pair link 2b is -105dBm, both of which are less than the preset lower threshold. ⁇ 1 .
  • the measurement results corresponding to the links of the remaining beam pairs are greater than the preset lower threshold.
  • the baseband subsystem 430 updates the receive beam set.
  • the updated receive beam set ⁇ ' It can be used to receive the SSB of the cell, or it can be used to measure the signal quality of the cell later.
  • the timer in the baseband subsystem 430 can be used to calculate whether the second duration is currently reached.
  • the receive beam set ⁇ ⁇ a, b, c ⁇ is reconfigured.
  • the receive beam set can be used to receive the SSB of the cell.
  • a counter in the baseband subsystem 430 may also be used to calculate whether the preset scheduling round threshold is currently reached.
  • the receive beam set ⁇ ⁇ a, b, c ⁇ , the reconfigured receive beam set can be used to receive the SSB of the cell.
  • the motion state of the current terminal can also be detected by the sensor of the terminal, and the baseband subsystem 430 can read the motion state record of the terminal stored by the sensor.
  • the configured receive beam set can be used to receive the SSB of the cell.
  • the baseband subsystem 430 adjusts the weight of the antenna element used for calculation to adjust the direction of the receiving beam.
  • the degree of freedom is higher.
  • the baseband subsystem 430 adjusts the antenna array element weights and the phase shifter parameters (eg, phase shifter weights) in the radio frequency subsystem 420 to adjust the direction of the receive beam.
  • the complexity of the structure can be reduced, the number of phase shifters can be reduced, the cost can be reduced, and the degree of freedom can be improved.
  • the baseband subsystem 430 selects one or more radio frequency channels to adjust the receiving beam direction.
  • the complexity of the structure can be reduced, the number of phase shifters can be reduced, the cost can be reduced, and the degree of freedom can be improved.
  • the above-mentioned receive beam sets ⁇ and ⁇ ' are just for convenience of expression, and there is no special difference. In the process of implementation, it can be a set or a different set. It should be understood that the aforementioned intra-frequency neighboring cell refers to the intra-frequency neighboring cell of the terminal's serving cell, and the aforementioned inter-frequency neighboring cell refers to the inter-frequency neighboring cell of the terminal's serving cell.
  • Using the device provided by the embodiment of the present application described above can effectively reduce the number of measurements and the measurement duration of each round, reduce power consumption, and increase the standby duration.
  • adjust the receive beam direction by adjusting the phase shifter parameters, which is simple to implement, and the cost and power consumption are relatively low; ;
  • adjust the receive beam direction by adjusting the parameters of the phase shifter and the weight of the communication array element, which can reduce the complexity of the structure while reducing the number of phase shifters, reducing costs, and increasing the degree of freedom.
  • a processor refers to a device or a circuit with computational processing capabilities, and may be called a chip or a central processing unit (English: central processing unit, CPU).
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic devices, or transistor logic devices, and discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the processor can be integrated in a system on chip (SOC).
  • SOC system on chip
  • the baseband processor may also be called a modem (Modem).
  • Memory refers to devices or circuits that have data or information storage capabilities, and can provide instructions and data to the processor.
  • Memory includes read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), non-volatile random access memory (NVRAM), programmable read-only memory or electrically erasable and programmable Memory, registers, etc.
  • the present application can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center via wire (For example, coaxial cable, optical fiber, etc.) or wireless (for example, infrared, radio, microwave, etc.) to another website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device that includes one or more available medium integrated servers, data centers, and the like.
  • the available media may be magnetic media, such as floppy disks, hard disks, and magnetic tapes; optical media, such as DVDs; or semiconductor media, such as solid state disks (SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种移动性测量的方法、装置及系统。该方法包括:通过终端的接收波束集合来接收来自第一小区和第二小区的参考信号,该终端的接收波束集合包括第一接收波束和第二接收波束;根据该终端的接收波束集合所接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果;在第一时长内,该第一接收波束对应该第一小区和该第二小区的测量结果低于预设门限时,更新该终端的接收波束集合,该终端的更新的接收波束集合包括该第二接收波束但不包括该第一接收波束。采用上述方法,可以降低终端功耗,加快移动性测量的速度。

Description

一种移动性测量的方法、装置和系统 技术领域
本申请涉及通信领域,尤其涉及一种移动性测量的方法、装置和系统。
背景技术
随着移动通信技术的发展,通信速率和容量需求日益增长。第三代合作伙伴计划(3rd generation partnership project,3GPP)在下一代演进的新无线电(new radio,NR)系统中,将高频频段纳入系统设计的考虑范围内。为了在高频场景下对抗路径损耗,天线阵列会更多地采用波束赋形(beamforming)技术来提高增益。
为了保障用户终端(user equipment,UE)的移动性、提供更好的用户体验以及提高系统整体性能,移动性管理(mobility management)成为通信系统中重要的机制。具体地,根据UE所处的无线资源控制(radio resource control,RRC)相关状态可以将移动性管理分为下列两种情况:
在UE处于RRC空闲(idle)态或RRC去激活(inactive)态下时,UE会先通过小区选择(cell selection)以驻留在某个小区上,之后该UE会通过小区重选(cell reselection)以便驻留在优先级更高或信道质量更好的小区中。网络可以通过设置不同频点的优先级来控制UE的驻留,平衡不同频点之间的接入负荷。而UE也可以在相应优先级较高的频点上选择驻留在对应信号质量最好的小区,以获取更好的服务质量。
在UE处于RRC连接(connected)态时,随着UE的移动,服务小区的信号质量可能会逐渐变差,相邻小区的信号质量可能会逐渐增强。为了降低业务的中断概率,网络可能会将该UE切换(handover)至信号质量更好的相邻小区。
上述移动性管理的过程都是基于测量的结果进行的,因此移动性测量是移动性管理的基础。具体地,可以通过终端的不同接收波束接收并测量来自无线网络设备的参考信号,以获取该无线网络设备相应小区的移动性测量结果。对于终端来说,特别是在高频场景,移动性测量会带来较多的功耗开销。
发明内容
本申请实施例提供了一种移动性测量的方法、装置及系统,以降低终端功耗,提升待机时长。
第一方面,提供了一种移动性测量的方法。该方法可以由通信装置执行,该通信装置可以是终端,或者是可被设置在终端中的芯片。该芯片具体可以是基带处理器或系统芯片(system on chip,SoC)。该方法包括:
通过终端的接收波束集合来接收来自第一小区和第二小区的参考信号,该终端的接收波束集合包括第一接收波束和第二接收波束;根据该终端的接收波束集合所接收的参考信 号,分别确定该第一小区的测量结果和该第二小区的测量结果;在第一时长内,该第一接收波束对应该第一小区和该第二小区的测量结果低于预设门限时,更新该终端的接收波束集合,该终端的更新的接收波束集合包括该第二接收波束但不包括该第一接收波束。
应理解,该第一接收波束可以是一个或多个接收波束,该第二接收波束也可以是一个或多个接收波束。应理解,在该第一时长内,可以在不同时间段内多次通过该终端的接收波束集合来接收该第一小区和该第二小区的参考信号,并根据相应接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果。在该第一时长内,该第一接收波束对应的该第一小区和该第二小区的测量结果低于预设门限时,执行该更新动作。其中,上述测量结果可以用于该终端的移动性管理。
应理解,该第一时长内该第一接收波束所对应的第一小区和第二小区的测量结果可以理解为在该第一时长内连续多次测量的结果。应理解,对于一个小区的测量周期,该终端可以通过该接收波束集合中的X个接收波束分别依次接收来自该小区的X个同步信号突发集内的全部同步信号块,并获得相应的对于该小区的测量结果,上述过程可以理解为一轮测量。可以根据连续多次测量的轮次数以及对应该小区的测量周期来确定相应第一时长的取值。例如,在一个非连续接收周期DRX内,可以进行上述一轮测量,这里,该终端对于该小区的测量周期为一个非连续接收周期DRX。对于连续M次测量,该第一时长的取值应为M个非连续接收周期DRX。
采用上述技术方案,在接下来的一段时长内,可以通过该更新的接收波束集合中一个或多个接收波束来接收、测量该第一小区和该第二小区的参考信号,无需通过该第一接收波束来接收、测量该第一小区和该第二小区的参考信号,从而降低了终端的功耗,并且还可以加快移动性测量的速度。
结合上述第一方面提供的技术方案,在一种可选的实施方式中,在更新该终端的接收波束集合之后,该方法还包括:
在第二时长内,通过该终端的更新的接收波束集合接收来自该第一小区和该第二小区的参考信号;在该第二时长之后,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。
应理解,上述一段时长可以理解为该第二时长。应理解,对于一个小区的测量周期,该终端可以通过该更新的接收波束集合中的X'个接收波束分别依次接收来自该小区的X'个同步信号突发集内的全部同步信号块,并获得相应的对于该小区的测量结果,上述过程可以理解为一轮测量。可以根据连续多次测量的轮次数以及该小区的测量周期来确定相应第二时长的取值。例如,在一个非连续接收周期DRX内,可以进行上述一轮测量,这里,该终端对于该小区的测量周期为一个非连续接收周期DRX。对于连续2M次测量,该第一时长的取值应为2M个非连续接收周期DRX。
应理解,在该第二时长内,可以在不同时间段内多次通过该终端的更新的接收波束集合来接收该第一小区和该第二小区的参考信号,并根据相应接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果。应理解,该终端的重配置的接收波束集合还可以包括其他接收波束。
应理解,采用上述技术方案,可以通过控制时间触发条件来触发重配置动作,进一步提升鲁棒性。
结合上述第一方面提供的技术方案,在一种可选的实施方式中,在更新该终端的接收波束集合之后,该方法还包括:
根据该终端的运动状态的变化,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。
在此基础上,该方法还包括:获取该终端的传感器的状态信息,以确定该终端的运动状态的变化。
应理解,该终端的传感器可以监测该终端的运动状态,以生成该终端的运动状态记录。或者,该终端的传感器还可以根据该监测到的运动状态,生成该终端运动状态是否变化的指示,例如,当该终端的传感器监测到该终端运动状态(如速度)变化超出预设的范围,生成该终端运动状态变化的指示,以使能该装置判断该终端的运动状态是否发生变化。
应理解,采用上述技术方案,可以根据该终端运动状态变化是否在所预设的范围内,触发重配置动作,进一步提升鲁棒性。
应理解,上述第一方面中任一种可选的实施方式可以相互结合。在更新该终端的接收波束集合之后,在满足其中任一触发条件时,可以触发重配置动作,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。或者,该终端的重配置的接收波束集合还可以包括其他接收波束,采用上述技术方案,进一步提升鲁棒性。
结合上述第一方面中任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,在重配置该终端的接收波束集合之后,该方法还包括:
通过该终端的重配置的接收波束集合接收来自该第一小区和该第二小区的参考信号;根据该终端的重配置的接收波束所接收的参考信号,分别重新确定该第一小区的测量结果和该第二小区的测量结果。
应理解,在进行该重配置动作后,在接下来一段时间,还可以在不同时间段内多次通过该终端的更新的接收波束集合来接收该第一小区和该第二小区的参考信号,并根据相应接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果。应理解,进一步地,该测量结果还可以用于移动性管理的判断。
结合上述第一方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的参考信号接收功率。在一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的参考信号接收质量。在一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的信干噪比。
在此基础上,在一种可选的实施方式中,该测量结果还包括:基于参考信号的测量的层3的参考信号接收功率。在一种可选的实施方式中,该测量结果还包括:基于参考信号 的测量的层3的参考信号接收质量。在一种可选的实施方式中,该测量结果还包括:基于参考信号的测量的层3的信干噪比。
应理解,上述参考信号可以是同步信号块,或者,上述参考信号可以是信道状态信息参考信号。应理解,测量结果还可以包括上述各可选的实施方式的任一组合。应理解,上述测量结果可以用于该终端的移动性管理的判断。
结合上述第一方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该方法还包括:读取预设门限。应理解,该预设门限的取值可以预设,可以存储在软件算法对应的实现软件算法的判决模块的存储器中,或者可以存储在该终端的硬件存储器中。可以通过读取相应存储器中的取值确定该预设门限。应理解,根据存储器中的取值直接确定该预设门限,对应的算法更简单。
在一种可选的实施方式中,该方法还包括:根据该终端的接收波束集合所接收的参考信号,确定最优接收波束对应的测量结果;根据该最优接收波束对应的测量结果和预设最大差值确定该预设门限。应理解,该预设最大差值的取值可以预设,可以存储在软件算法对应的实现软件算法的软件模块中,或者可以存储在该终端的存储器中。通过该最优接收波束对应的测量结果和读取的预设最大差值来确定该预设门限。
应理解,该预设门限可以包括一个预设门限,在第一时长内,该第一接收波束对应该第一小区和该第二小区的测量结果均低于预设门限时,执行上述更新动作。或者,该预设门限可以包括第一预设门限和第二预设门限,在第一时长内,该第一接收波束对应该第一小区低于该第一预设门限和该第二小区的测量结果低于该第二预设门限时,执行上述更新动作。
应理解,根据最优接收波束对应的测量结果和存储器中的取值直接确定该预设门限,可以更灵活地调控上述算法。
结合上述第一方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该第一小区和该第二小区均为该终端的服务小区的同频邻区。在一种可选的实施方式中,该第一小区为该终端的服务小区的同频邻区,该第二小区为该终端的服务小区的异频邻区。在一种可选的实施方式中,该第一小区和该第二小区均为该终端的服务小区的异频邻区。应理解,该第一小区的频点和该第二小区的频点可以相同,或者,该第一小区的频点和该第二小区的频点可以不同。在一种可选的实施方式中,该第一小区为该终端的服务小区,该第二小区为该终端的同频邻区。
结合上述第一方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该方法还包括:根据非连续接收DRX周期和正整数N确定该第一时长;在该第一时长内,连续N次通过终端的接收波束集合来接收来自该第一小区和该第二小区的参考信号。在一种可选的实施方式中,该方法还包括:根据非连续接收DRX周期和正整数N确定该第一时长;在该第一时长内,通过终端的接收波束集合来接收一次来自该第一小区和该第二小区的参考信号。
在此基础上,在一种可选的实施方式中,该方法还包括:在该终端的定时器中预先设置该第一时长。在一种可选的实施方式中,该方法还包括:采用非连续接收的周期定时器(如非连续接收的短周期定时器),在非连续接收的周期定时器超期N(N≥1)次时,完成上述接收动作或者测量动作。
第二方面,提供了一种用于终端的移动性测量的装置。该装置包括:
接收单元,用于通过该终端的接收波束集合来接收来自第一小区和第二小区的参考信号,该终端的接收波束集合包括第一接收波束和第二接收波束;处理单元,用于根据该终端的接收波束集合所接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果;该处理单元还用于在该第一时长内,该第一接收波束对应的该第一小区和该第二小区的测量结果低于预设门限时,更新该终端的接收波束集合,该终端的更新的接收波束集合包括该第二接收波束但不包括该第一接收波束。
应理解,该装置可以是终端,或者是可被设置在终端中的芯片。该芯片具体可以是基带处理器或系统芯片。相应地,该接收单元和该处理单元可以是用于实现该装置的软件程序代码,例如实现软件算法的相应接收或处理功能的软件模块。或者,该接收单元和该处理单元也可以是实现该装置的硬件电路或器件。例如,该接收单元可以是终端的接收器、接收电路、收发机、收发器或收发电路,或者是芯片的输入/输出接口或输入/输出电路。该处理单元可以是终端的通用处理器或专用处理器,或者是芯片的CPU核或DSP核等各种运算或控制核心。
应理解,该第一接收波束可以是一个或多个接收波束,该第二接收波束也可以是一个或多个接收波束。采用上述技术方案,在接下来的一段时长内,可以通过该更新的接收波束集合中一个或多个接收波束来接收、测量该第一小区和该第二小区的参考信号,无需通过该第一接收波束来接收、测量该第一小区和该第二小区的参考信号,从而降低了终端的功耗,并且还可以加快移动性测量的速度。
结合上述第二方面提供的技术方案,在一种可选的实施方式中,该接收单元还用于在第二时长内,通过该终端的更新的接收波束集合来接收来自该第一小区和该第二小区的参考信号;该处理单元还用于在经过该第二时长后,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。
应理解,可以是通过设置软件算法的相关定时功能的软件模块或者通过设置实现该装置的硬件电路或器件来设置该第二时长。例如,该装置可以是SoC芯片或终端,设置该SoC芯片内的定时器。或者,还可以通过设置该装置所连接的硬件电路或器件来设置该第二时长。例如,该装置可以是基带处理器,可以通过接口电路设置该基带处理器所连接的定时器。或者,还可以通过设置软件算法的相关软件模块,以及上述硬件电路或器件来设置该第二时长。例如,该装置可以将SoC芯片中的定时器的时长设置成非连续接收的周期,并在实现软件算法的相关软件模块中设置计数器为M(M≥1)。定时器每超期一次,计时器减1,在计数器清零时,代表已经过该第二时长。
应理解,采用上述技术方案,可以通过控制时间触发条件来触发重配置动作,进一步 提升鲁棒性。
结合上述第二方面提供的技术方案,在一种可选的实施方式中,该处理单元还用于根据该终端的运动状态的变化,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。
在此基础上,在一种可选的实施方式中,该终端包括传感器;该处理单元还用于获取该终端的传感器的状态信息,以确定该终端的运动状态的变化。
应理解,该终端的传感器的状态信息可以是该终端的运动状态记录,该处理单元根据读取的该终端的运动状态记录,判断该终端是否发生运动状态的变化。或者,也可以是由传感器生成的该终端是否运动的指示,该处理单元根据该指示,判断该终端是否发生运动状态的变化。
应理解,采用上述技术方案,该装置可以根据该终端运动状态变化是否在所预定义的范围内,来判断是否触发重配置动作,以提升鲁棒性。
结合上述第二方面中任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该处理单元还用于根据该终端的重配置的接收波束集合所接收的参考信号,重新确定该第一小区的测量结果和该第二小区的测量结果。
结合上述第二方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的参考信号接收功率。在一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的参考信号接收质量。在一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的信干噪比。
在此基础上,在一种可选的实施方式中,该测量结果还包括:基于参考信号的测量的层3的参考信号接收功率。在一种可选的实施方式中,该测量结果还包括:基于参考信号的测量的层3的参考信号接收质量。在一种可选的实施方式中,该测量结果还包括:基于参考信号的测量的层3的信干噪比。
应理解,上述参考信号可以是同步信号块,或者,上述参考信号可以是信道状态信息参考信号。应理解,测量结果还可以包括上述各可选的实施方式的任一组合。应理解,在空闲态或连接态,可以通过上述测量结果进行该终端的移动性管理的判断,在连接态,可以根据无线网络设备的配置,上报相应的测量结果,以用于该终端的移动性管理。
结合上述第二方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该处理单元还用于读取该预设门限。在一种可选的实施方式中,该处理单元还用于根据该终端的接收波束集合所接收的参考信号,确定最优接收波束对应的测量结果。并根据该最优接收波束对应的测量结果和预设最大差值确定该预设门限。
应理解,该最优接收波束对应的测量结果可以为对应测量结果最大的波束对链接的测量结果。
结合上述第二方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该第一小区和该第二小区均为该终端的服务小区的同频邻区。在一种可选的实施方式中,该第一小区为该终端的服务小区的同频邻区,该第二小区为该终端的服务小区的异频邻区。在一种可选的实施方式中,该第一小区和该第二小区均为该终端的服务小区的异频邻区。应理解,该第一小区的频点和该第二小区的频点可以相同,或者,该第一小区的频点和该第二小区的频点可以不同。在一种可选的实施方式中,该第一小区为该终端的服务小区,该第二小区为该终端的同频邻区。
结合上述第二方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该处理单元还用于根据非连续接收DRX周期和正整数N确定该第一时长;该接收单元还用于在该第一时长内,连续N次通过终端的接收波束集合来接收来自该第一小区和该第二小区的参考信号。
在一种可选的实施方式中,该处理单元还用于根据非连续接收DRX周期和正整数N确定该第一时长;该接收单元在该第一时长内,通过终端的接收波束集合来接收一次来自该第一小区和该第二小区的参考信号。
第三方面,提供了一种终端,该终端包括:
基带处理器和射频收发电路,其中,该射频收发电路,用于通过该终端的接收波束集合来接收来自第一小区和第二小区的参考信号,该终端的接收波束集合包括第一接收波束和第二接收波束;该基带处理器,用于根据该终端的接收波束集合所接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果,以及在第一时长内,该第一接收波束对应该第一小区和该第二小区的测量结果低于预设门限时,更新该终端的接收波束集合,该终端的更新的接收波束集合包括该第二接收波束但不包括该第一接收波束。
应理解,配置接收波束集合的方法可以有不同的实施方式。可选的,基带子系统430通过调节用于计算的天线阵元权值,以调整接收波束方向。或者,可选的,基带子系统430通过调节天线阵元权值和射频子系统420中的移相器参数(例如,移相器权值),以调整接收波束方向。或者,可选的,基带子系统430通过选择一条或多条射频通道,以调整接收波束方向。
结合上述第三方面提供的技术方案,在一种可选的实施方式中,该射频收发电路还用于在第二时长内,通过该终端的更新的接收波束集合来接收来自该第一小区和该第二小区的参考信号;该基带处理器还用于在经过该第二时长后,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。
结合上述第三方面提供的技术方案,在一种可选的实施方式中,该基带处理器还用于根据该终端的运动状态的变化,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。
在此基础上,在一种可选的实施方式中,该终端包括传感器;该基带处理器还用于获 取该终端的传感器的状态信息,以确定该终端的运动状态的变化。
结合上述第三方面中任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该基带处理器还用于根据该终端的重配置的接收波束集合所接收的参考信号,重新确定该第一小区的测量结果和该第二小区的测量结果。
结合上述第三方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的参考信号接收功率。在一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的参考信号接收质量。在一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的信干噪比。
在此基础上,在一种可选的实施方式中,该测量结果还包括:基于参考信号的测量的层3的参考信号接收功率。在一种可选的实施方式中,该测量结果还包括:基于参考信号的测量的层3的参考信号接收质量。在一种可选的实施方式中,该测量结果还包括:基于参考信号的测量的层3的信干噪比。
应理解,上述参考信号可以是同步信号块,或者,上述参考信号可以是信道状态信息。应理解,测量结果还可以包括上述各可选的实施方式的任一组合。应理解,在空闲态或连接态,可以通过上述测量结果进行该终端的移动性管理的判断,在连接态,可以根据无线网络设备的配置,上报相应的测量结果,以用于该终端的移动性管理。
结合上述第三方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该基带处理器还用于读取该预设门限。在一种可选的实施方式中,该基带处理器还用于根据该终端的接收波束集合所接收的参考信号,确定最优接收波束对应的测量结果根据该最优接收波束对应的测量结果和预设最大差值确定该预设门限。
结合上述第三方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该第一小区和该第二小区均为该终端的服务小区的同频邻区。在一种可选的实施方式中,该第一小区为该终端的服务小区的同频邻区,该第二小区为该终端的服务小区的异频邻区。在一种可选的实施方式中,该第一小区和该第二小区均为该终端的服务小区的异频邻区。应理解,该第一小区的频点和该第二小区的频点可以相同,或者,该第一小区的频点和该第二小区的频点可以不同。在一种可选的实施方式中,该第一小区为该终端的服务小区,该第二小区为该终端的同频邻区。
结合上述第三方面或任一种可选的实施方式提供的技术方案,在一种可选的实施方式中,该基带处理器还用于根据非连续接收DRX周期和正整数N确定该第一时长;该射频接收电路还用于在该第一时长内,连续N次通过终端的接收波束集合来接收来自该第一小区和该第二小区的参考信号。应理解,相应的也可以进行连续N次测量并获得该N次测量对应的该第一小区和该第二小区的测量结果。
在一种可选的实施方式中,该基带处理器还用于根据非连续接收DRX周期和正整数N 确定该第一时长;该射频接收电路在该第一时长内,通过终端的接收波束集合来接收一次来自该第一小区和该第二小区的参考信号。应理解,相应的也可以进行测量并获得对应该第一小区和该第二小区的测量结果。
应理解,接收一次可以是该射频接收电路通过终端的接收波束集合中的X个接收波束分别来接收X个同步信号突发集中的全部同步信号块。
第四方面,提供了一种用于终端的移动性测量的装置。该装置包括:处理器和存储器,其中,该处理器用于执行该存储器中的指令,以使得该终端执行该存储器中的指令,实现如第一方面或者任一种可选的实现方式提供的技术方案。
第五方面,提供了一种用于终端的移动性测量的装置。该装置包括:处理器与接口电路,其中,该处理器通过该接口电路与存储器耦合,该处理器用于执行该存储器中的程序代码,实现如第一方面或者任一种可选的实现方式提供的技术方案。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储了程序代码,该程序代码被终端中的处理器执行时,实现如第一方面或者任一种可选的实现方式提供的技术方案。
第七方面,提供了一种计算机程序产品,该计算机程序产品包含的程序代码被终端中的处理器执行时,实现如第一方面或者任一种可选的实现方式提供的技术方案。
第八方面,提供了一种无线通信系统,包括无线网络设备,以及如第二方面或任一种可选的实现方式提供的装置,或如第四方面或第五方面提供的装置,或如第三方面或任一种可选的实现方式提供的终端。
应理解,在上述任一方面或任一可选的实施方式提供的技术方案中,波束可以理解为一种通信资源。不同的发射波束可以理解为同一发射端设备所发射的不同编号的同步信号块,也可以理解为不同的码本,例如通过码本中不同编号的码字或不同编号的码本可以实现不同的接收波束。还可以理解为不同的参考信号端口。不同的接收波束可以理解为具有不同参数的射频收发电路或者不同的射频收发电路配置不同的参数(例如,移相器参数),还可以理解为不同的空域滤波器,或者还可以理解为不同的参考信号端口。
应理解,与现有技术相比,本申请实施例的技术方案中,根据该终端的接收波束集合所接收的信号,确定对应于第一小区和第二小区的测量结果。对于连续多次低于预设门限的接收波束,在接下来的一段时长内,可以通过该更新的接收波束集合中一个或多个接收波束来接收、测量该第一小区和该第二小区的参考信号,无需通过该第一接收波束来接收、测量该第一小区和该第二小区的参考信号,从而降低了终端的功耗,并且还可以加快移动性测量的速度。根据时间触发条件或该终端的运动状态,触发重配置该接收波束集合,进 一步增加了鲁棒性。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例所提供的一种同步信号块的结构示意图;
图3为本申请实施例所提供的一种同步信号突发集的结构示意图;
图4为本申请实施例提供的一种非连续接收周期中的激活期与休眠期的示意图;
图5为本申请实施例提供的一种移动性测量的方法流程示意图;
图6为本申请实施例提供的一种装置的结构示意图;
图7为本申请实施例提供的一种装置的结构示意图;
图8为本申请实施例提供的一种装置的结构示意图;
图9为本申请实施例提供的一种装置的结构示意图。
应理解,上述结构示意图中,各框图的尺寸和形态仅供参考,不应构成对本申请实施例的排他性的解读。结构示意图所呈现的各框图间的相对位置和包含关系,仅为示意性地表示各框图间的结构关联,而非限制本申请实施例的物理连接方式。
具体实施方式
下面结合附图并举实施例,对本申请提供的技术方案作进一步说明。应理解,本申请实施例中提供的系统结构和业务场景主要是为了说明本申请的技术方案的可能的实施方式,不应被解读为对本申请的技术方案的唯一限定。本领域普通技术人员可知,随着系统结构的演进和新业务场景的出现,本申请提供的技术方案对类似技术问题同样适用。
应理解,本申请实施例提供的移动性测量的方案,包括移动性测量的方法、装置及系统。由于这些技术方案解决问题的原理相同或相似,在如下具体实施例的介绍中,某些重复之处可能不再赘述,但应视为这些具体实施例之间已有相互引用,可以相互结合。
为了便于理解本申请实施例,下面简单对部分用语进行解释说明,以便本领域技术人员理解。
波束(beam):波束是一种通信资源,既可以是宽波束,也可为窄波束,或其他类型的波束。不同的波束可认为是不同的通信资源,通过不同的波束可发射相同的信息或不同的信息。可选的,波束还可以理解为由同一发射端设备所发射的不同编号的同步信号块(synchronization signal block,SSB)。可选的,波束还可以理解为不同的天线端口。可选的,波束还可以对应编号不同码本或码字,例如,通过编号不同的码本或码本中编号不同的码字来实现不同的波束。可选的,可以将具有相同或类似通信特征的多个波束视为一个波束。例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集,波束还可以称为空域滤波器(spatial filer),发射波束也可称为空域发射滤波器,接收波束也可称为空域接收滤波器。
波束对链接(beam pair link)是建立在波束的概念上。一个波束对链接通常包括发射 端设备的一个发射波束和接收端设备的一个接收波束。如果不加说明,下文中的发射波束可理解为网络设备的发射波束,接收波束可理解为终端的接收波束。
图1为本申请实施例提供的一种通信系统的结构示意图。图1示出了一个由无线网络设备01和终端02组成的无线通信系统00。应理解,虽然图1仅示出了一个无线网络设备和一个终端,该无线通信系统也可以包括其他数目的无线网络设备和终端,还可以包括其他网络设备。
无线通信系统00可以作为基于第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)技术规范的移动通信系统的一个示例,也可以涵盖基于其他无线通信标准的无线通信系统,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列,如802.11、802.15、802.20等无线通信标准。
其中,无线网络设备是一种具备无线通信功能的计算设备,可以通过波束赋形等技术生成不同指向的波束,以覆盖小区03,可以与处于小区03内不同方位的终端通信。应理解的是,无线网络设备可以是像基站这样的无线接入网设备。基站具体可以是5G移动通信系统中的通用节点B(generation Node B,gNB),4G移动通信系统的演进节点B(evolutional Node B,eNB或eNodeB),以及其他可能的无线接入技术中的基站。基站的物理形态和发射功率也可以有多种,例如宏基站(macro base station)或微基站(micro base station)。
终端也可以被称为用户设备(user equipment,UE),移动台(mobile station,MS)或订户单元(subscriber unit,SU)。终端具体可以是但不限于移动电话、平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(智能手表、智能手环,智能头盔,智能眼镜等),以及其他具备无线接入能力的通信设备,如各种物联网设备,包括智能家居设备(智能电表、智能家电等),智能车辆等。
小区,可以是服务小区(serving cell),也可以是同频邻区(intra-frequency neighboring cell),或者还可以是异频邻区(inter-frequency neighboring cell),或者上述不同小区的组合。同频邻区和异频邻区都可以称作相邻小区(neighboring cell)。可以理解的是,本申请中的“服务小区”有时也可以称为“本小区”,本申请中的“相邻小区”有时也可以称为“非服务小区”,并不影响对其技术含义的理解。
可以理解的是,图1中的无线通信系统结构只是本申请实施例中的一种示例性的实施方式,本申请实施例中的通信系统结构包括但不仅限于以上通信系统结构。
图2为本申请实施例所提供的一种同步信号块的结构示意图。如图2所示,在NR通信系统中,主同步信号(primary synchronization signal)、辅同步信号(secondary synchronization signal)和物理广播信道(physical broadcast channel)共同组成一个SSB。一个SSB在时域上共占用4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,在频域中共占用240个连续的子载波,即20个物理资源块(physical resource block)。SSB的子载波间隔可以取值为15千赫兹(KHz)、30KHz、120KHz、240KHz中的一个。其中,15KHz、30KHz用于6吉赫兹(GHz)以下频段,120KHz、240KHz用于6GHz 以上频段。
图3为本申请实施例所提供的一种同步信号突发集的结构示意图。如图3上半部分所示,一个同步信号突发集(synchronization signal burst set,SS burst set)可以由至多L(L≥1)个SSB组成,并且同步信号突发集可以被周期性地发射。L的取值与所在频段有关,在6GHz以下频段中L取值最大可以为8,在6GHz以上频段中L取值最大可以为64。对于一个同步信号突发集内的SSB应在5毫秒(ms)的窗口时间内发射。在初始驻留阶段,同步信号突发集根据预设的同步信号突发集周期(default SS burst set period)进行发射,其中,预设周期为20ms。
如图3下半部分所示,无线网络设备可以采用不同的发射波束方向来依次发射同步信号突发集发射周期内的不同编号的SSB,还可以采用相同的发射波束方向来依次发射同步信号突发集发射周期间的相同编号的SSB。
为了评估该无线网络设备所提供的小区通信质量,处于空闲态或去激活态的终端可以按照一定的方式接收、并测量相应的SSB,以获取对应不同波束对链接的测量结果,即对应不同接收波束和不同发射波束的测量结果。终端可以按照一定的方式选择上述相应的波束测量结果并合并,以用于小区选择或重选的判断。具体地,例如,结合图1,假设一个同步信号突发集共有两个SSB,则无线网络设备可以配置发射波束1、发射波束2以及发射波束3,上述发射波束可以依次在三个同步信号突发集发射周期上来发射上述两个SSB。相应的,终端可以通过接收波束1、接收波束2以及接收波束3来接收上述被周期性发送的两个SSB,并分别获得9个对应各波束对链接的测量结果,并选择其中对应取值最大的测量结果或者选择对应取值大于一定门限的测量结果进行合并,以用于小区选择或重选的判断。
在实际环境中,无线网络设备与终端之间的无线通信信道可能会由于障碍物的存在而被遮挡,换句话说,障碍物的存在可能导致部分波束对链接被遮挡,通过被遮挡的波束对链接来通信所获得的通信质量不佳。对于终端而言,障碍物可能是近距离的,例如,在手握终端的场景,手可能是障碍物;在终端平行放置在桌面的场景,桌面可能是障碍物。障碍物也可能是远距离的,例如,日常环境中的高楼、车辆、行人、树木等物体。
当终端的一个或多个的接收波束所对应的全部波束对链接都受到遮挡时,根据现有技术,终端仍会多次测量上述接收波束。这不仅浪费了终端的功耗,还可能会降低终端移动性测量的速度。
综上该,现有技术中的移动性测量方案会浪费一定功耗并降低移动性测量的速度,不满足NR系统对于低功耗的需求。为了解决上述问题,本申请实施例提供了一种根据所接收到的信号对应的测量结果,配置接收波束,以降低终端功耗的装置、方法和系统。
图4为本申请实施例提供的一种非连续接收周期中的激活期与休眠期的示意图。为了节省功耗,引入了非连续接收(discontinuous reception,DRX)的方法。DRX可以理解为终端只在必要的时间打开接收机进入激活期,以接收下行数据和信令。而在其他时间关闭接收机进入休眠期,停止接收下行数据和信令,以节省功耗。如图4所示,DRX的周期可 以是DRX的短周期,当该DRX的短周期定时器超时后,使用DRX的长周期。应理解,终端可以在激活期进行移动性测量,可以是在每个DRX周期内都进行一次移动性测量,也可以是在多个DRX周期内进行一次移动性测量。
图5为本申请实施例所提供的一种移动性测量的方法流程示意图。该方法可以由通信装置执行,该通信装置可以是终端,或者是可被设置在终端中的芯片。该芯片具体可以是基带处理器或系统芯片(system on chip,SoC)。如图5所示,该方法包括:
S501:通过终端的接收波束集合来接收来自第一小区和第二小区的参考信号,该终端的接收波束集合包括第一接收波束和第二接收波束。
S502:根据该终端的接收波束集合所接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果。
S503:在第一时长内,该第一接收波束对应该第一小区和该第二小区的测量结果低于预设门限时,更新该终端的接收波束集合,该终端的更新的接收波束集合包括该第二接收波束但不包括该第一接收波束。
应理解,在该第一时长内,可以在不同时间段内多次通过该终端的接收波束集合来接收该第一小区和该第二小区的参考信号。具体的方法可以是,为该终端配置该接收波束集合中的各接收波束,上述接收波束分别依次接收来自无线网络设备的多个周期的同步信号突发集。根据各接收波束所接收到的SSB,确定对应于不同接收波束或不同波束对链接的测量结果。在该第一时长内,该第一接收波束对应的全部该第一小区和该第二小区的测量结果满足低于预设门限时,执行该更新动作。
采用上述技术方案,在接下来的一段时长内,可以不通过该第一接收波束来接收、测量该第一小区和该第二小区的参考信号,降低了终端的功耗,或者,在接下来的一段时长内,可以通过该更新的接收波束集合中一个或多个接收波束来接收、测量该第一小区和该第二小区的参考信号,降低了终端的功耗,并且还可以加快移动性测量的速度。
一种可选的实施方式中,在更新该终端的接收波束集合之后,该方法还包括:
S504a:在第二时长内,通过该终端的更新的接收波束集合接收来自该第一小区和该第二小区的参考信号;在该第二时长之后,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。
一种可选的实施方式中,在更新该终端的接收波束集合之后,该方法还包括:
S504b:在第二时长内,通过该终端的更新的接收波束集合接收来自该第一小区和该第二小区的参考信号;在该第二时长之后,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束、该第二接收波束以及其他接收波束。
应理解,在该第二时长内,可以在不同时间段内多次通过该终端的更新的接收波束集合来接收该第一小区和该第二小区的参考信号,并根据相应接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果。
应理解,采用上述技术方案,可以通过控制时间触发条件来触发重配置动作,进一步提升鲁棒性。
一种可选的实施方式中,在更新该终端的接收波束集合之后,该方法还包括:
S504c:根据该终端的运动状态的变化,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。
一种可选的实施方式中,在更新该终端的接收波束集合之后,该方法还包括:
S504d:根据该终端的运动状态的变化,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束、该第二接收波束以及其他接收波束。
进一步,可选的,该方法还包括:获取该终端的传感器的状态信息,以确定该终端的运动状态的变化。
应理解,该终端的传感器可以监测该终端的运动状态,生成该终端的运动状态记录。该通信装置可以通过读取来自该传感器的该终端的运动记录,判断该终端的运动状态是否变化。例如,当该终端的运动状态记录超出预定义的范围,则判断该终端的运动状态发生变化。或者,当该终端的运动状态记录一发生改变,就判断该终端的运动状态发生变化。
或者,该终端的传感器还可以根据所监测到的运动状态记录,自行判断该终端的运动状态是否发生改变,生成相应指示。例如,当该终端的传感器监测到该终端运动状态(如速度)变化超出预定义的范围,当该终端的传感器监测到该终端运动状态(如速度)变化超出预定义的范围,该传感器指示位取值为1,该通信装置通过读取该指示位获知该终端的运动状态发生了改变。相反,当该终端的传感器监测到该终端运动状态变化未超出预定义的范围,该传感器指示位取值为0,该通信装置通过读取该指示位获知该终端的运动状态未发生了改变。
采用上述技术方案,可以根据该终端的运动状态是否超出预定义的范围,触发重配置动作,以提升测量结果的鲁棒性。
在上述两种可选实施方式的基础上,本申请实施例的一种可选实施方式中,该方法还包括:在该终端的定时器中预先设置该第二时长,在该定时器超时时,完成上述重配置动作。本申请实施例的另一种可选实施方式中,该方法还包括:采用非连续接收的周期定时器,在非连续接收的周期定时器超期M(M≥1)次时,完成上述重配置动作。
应理解,本申请实施例中的定时器可以是软件定时器,设置该第二时长可以理解为设置软件算法的相关定时功能的软件模块所对应的参数。本申请实施例中的定时器也可以是该终端的硬件电路或器件,设置该第二时长可以理解为设置该硬件定时电路或定时器的参数。本申请实施例中的定时器还可以是通过软件算法的相关软件模块以及上述硬件电路或器件结合完成,例如,设置SoC芯片中的定时器参数为非连续接收周期的时长,并在实现软件算法的相关软件模块中设置计数器为N。定时器每超期一次,计数器减1,当计数器清零,则指示经过了该第二时长。应理解,该第一时长的实现方法类似。
应理解,在进行该重配置动作后,在接下来一段时间,还可以在不同时间段内多次通过该终端的更新的接收波束集合来接收该第一小区和该第二小区的参考信号,并根据相应接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果。应理解,进一步地,该测量结果还可以用于移动性管理的判断。
应理解,上述任一种可选的实施方式可以相互结合。在更新该终端的接收波束集合之后,在满足其中任一触发条件时,可以触发重配置动作,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束和该第二接收波束。或者,该终端的重配置的接收波束集合还可以包括其他接收波束。
例如,在第二时长内,检测到该终端的运动状态发生变化,重配置该终端的接收波束集合,该终端的重配置的接收波束集合包括该第一接收波束、该第二接收波束以及其他接收波束。
采用上述技术方案,可以进一步提升鲁棒性。
在上述多种可选实施方式的基础上,本申请实施例的一种可选实施方式中,在重配置该终端的接收波束集合之后,该方法还包括:
通过该终端的重配置的接收波束集合接收来自该第一小区和该第二小区的参考信号;根据该终端的重配置的接收波束所接收的参考信号,分别重新确定该第一小区的测量结果和该第二小区的测量结果。
应理解,在进行该重配置动作后,在接下来一段时间,还可以在不同时间段内多次通过该终端的更新的接收波束集合来接收该第一小区和该第二小区的参考信号,并根据相应接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果。应理解,进一步地,该测量结果还可以用于移动性管理的判断。
应理解,配置该终端通过某个接收波束来接收信号有多种实施方式。可以通过选择该终端的射频收发电路,使该终端的接收波束的方向可以与该接收波束相同。或者,还可以通过配置该终端的射频收发电路的参数(如移相器的参数)。或者,还可以配置用于计算的天线阵元的权重。
在上述多种可选实施方式的基础上,本申请实施例的一种可选实施方式中,该测量结果包括:基于参考信号的测量的层1的参考信号接收功率(reference signal received power,RSRP)。本申请实施例的一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的参考信号接收质量(reference signal received quality,RSRQ)。本申请实施例的一种可选的实施方式中,该测量结果包括:基于参考信号的测量的层1的信干噪比(signal to interference plus noise ratio,SINR)。
进一步,可选的,该测量结果还包括:基于参考信号的测量的层3的RSRP。可选的,该测量结果还包括:基于参考信号的测量的层3的RSRQ。可选的该测量结果还包括:基于参考信号的测量的层3的SINR。
应理解,上述参考信号可以是SSB,或者,上述参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)。应理解,测量结果还可以包括上述各可选的实施方式的任一组合。应理解,上述测量结果可以用于该终端的移动性管理的判断。
在上述多种可选实施方式的基础上,本申请实施例的一种可选实施方式中,该方法还包括:读取预设门限。应理解,该预设门限的取值可以预设,可以存储在软件算法对应的实现软件算法的判决模块的存储器中,或者可以存储在该终端的存储器中。可以通过读取相应存储器中的取值确定该预设门限。应理解,根据存储器中的取值直接确定该预设门限,对应的算法更简单。本申请实施例的另一种可选实施方式中,该方法还包括:根据该终端的接收波束集合所接收的参考信号,确定最优接收波束对应的测量结果;根据该最优接收波束对应的测量结果和预设最大差值确定该预设门限。应理解,该预设最大差值的取值可以预设,可以存储在软件算法对应的实现软件算法的软件模块中,或者可以存储在该终端的存储器中。通过该最优接收波束对应的测量结果和读取的预设最大差值来确定该预设门限。
应理解,该预设门限可以包括一个预设门限,在第一时长内,该第一接收波束对应该第一小区和该第二小区的测量结果均低于预设门限时,执行上述更新动作。或者,该预设门限可以包括第一预设门限和第二预设门限,在第一时长内,该第一接收波束对应该第一小区低于该第一预设门限和该第二小区的测量结果低于该第二预设门限时,执行上述更新动作。
应理解,根据最优接收波束对应的测量结果和存储器中的取值直接确定该预设门限,可以更灵活地调控上述算法。
进一步,可选的,该第一小区和该第二小区均为该终端的服务小区的同频邻区。可选的,该第一小区为该终端的服务小区的同频邻区,该第二小区为该终端的服务小区的异频邻区。可选的,该第一小区和该第二小区均为该终端的服务小区的异频邻区。应理解,该第一小区的频点和该第二小区的频点可以相同,或者,该第一小区的频点和该第二小区的频点可以不同。可选的,该第一小区为该终端的服务小区,该第二小区为该终端的同频邻区。
应理解,可以根据第一小区和第二小区的频点是否相同,将移动性测量方案可以分为单频点多小区移动性测量方案和多频点多小区移动性测量方案。
进一步,可选的,该方法还包括:根据非连续接收DRX周期和正整数N确定该第一时长;在该第一时长内,连续N次通过终端的接收波束集合来接收来自该第一小区和该第二小区的参考信号。可选的,该方法还包括:根据非连续接收DRX周期和正整数N确定该第一时长;在该第一时长内,通过终端的接收波束集合来接收一次来自该第一小区和该第二小区的参考信号,对应的在该。这里的DRX周期,可以是DRX短周期,也可以是DRX长周期。应理解,这里的接收一次可以理解为通过该终端的接收波束集合中的X个接收波束分别来接收X个同步信号块突发集中的全部SSB。
图6为本申请实施例提供的一种装置的结构示意图。该装置可以是本申请实施例的无线通信系统中的终端,也可以是可被设置在终端中的芯片或电路。该芯片具体可以是基带处理器或SoC芯片,可以实现本申请中如图5所示的移动性测量方法,以及上述各可选实 施例。如图6所示的示例性设计中,装置10包括:接收单元110和处理单元120。
在一种可选的实施方式中,接收单元110可以是接收器,接收电路,收发器或收发电路,处理单元120可以是处理器。在一种可选软件实现方式中,接收单元110和处理单元120可以是软件模块。在一种可选软硬结合的实现方式中,接收单元110可以是接收器,接收电路,收发器或收发电路中的一种与软件模块的结合,处理单元120可以是处理器和软件模块的结合。在另一种可选实现方式,上述接收单元110和处理单元120的三种可选实现方式还可以相互组合,构成新的实现方式。
在一种可选的实施方式中接收单元110,用于通过该终端的接收波束集合来接收来自第一小区和第二小区的参考信号,该终端的接收波束集合包括第一接收波束和第二接收波束;处理单元120,用于根据该终端的接收波束集合所接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果;该处理单元120还用于在该第一时长内,该第一接收波束对应的该第一小区和该第二小区的测量结果低于预设门限时,更新该终端的接收波束集合,该终端的更新的接收波束集合包括该第二接收波束但不包括该第一接收波束。
图7为本申请实施例提供的一种装置的结构示意图。该装置可以是本申请实施例的无线通信系统中的终端,也可以是可被设置在终端中的芯片或电路。该芯片具体可以是基带处理器或SoC芯片,可以实现本申请中如图5所示的移动性测量方法,以及上述各可选实施例。如图7所示的示例性设计中,装置20包括:接收电路210、与接收电路210相连接的处理器220。应理解,虽然图7中仅示出了一个接收电路和一个处理器,装置20还可以包括其他数目的接收电路或处理器。通过上述处理器和接收电路的相互配合,可以实现本申请实施例的方法。
此外,该装置20还可以包括发射电路230。应理解,接收电路210和发射电路230可以集成在一个物理实体中,例如收发器(transceiver),也可以集成在不同的物理实体中,例如接收器(receiver)和发射器(transmitter)。接收电路210和发射电路230还可以耦合到天线,与其他通信设备无线连接。
此外,该装置20还可以包括存储器240、连接线250、I/O接口。其中,存储器240用于存储计算机程序或计算机指令。在计算机程序或指令被处理器220执行时,使得装置20实现本申请实施例的无线通信方法中通信装置的步骤。这类计算机程序或指令可记为终端相关通信装置的功能程序。I/O接口提供了与其他通信设备或用户交互的可能性。例如,该I/O接口可以为屏幕,键盘,话筒,扬声器,USB接口等。该装置20内部的各个组件可以通过各种连接线(如总线系统)耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,本文中将各种总线都统称为总线系统。
应理解,本申请实施例中,当存储器240中存储了终端相关通信装置的功能程序时,该无线通信装置20可以是本申请实施例的无线通信系统中的终端,也可以是可被设置在终端中的芯片或电路。
图8为本申请实施例提供的一种装置的结构示意图。该装置可以是本申请实施例的无 线通信系统中的终端,也可以是可被设置在终端中的芯片或电路。该芯片具体可以是基带处理器或SoC芯片,可以实现本申请中如图5所示的移动性测量方法,以及上述各可选实施例。如图8所示的示例性设计中,装置30包括:天线模块310、与天线模块310耦合的射频(radio frequency)子系统320、以及与射频子系统320耦合的基带子系统330。
一种可选的实施方式,天线模块310和射频子系统320,用于通过该终端的接收波束集合来接收来自第一小区和第二小区的参考信号,该终端的接收波束集合包括第一接收波束和第二接收波束;基带子系统330,用于根据该终端的接收波束集合所接收的参考信号,分别确定该第一小区的测量结果和该第二小区的测量结果,以及在第一时长内,该第一接收波束对应该第一小区和该第二小区的测量结果低于预设门限时,更新该终端的接收波束集合,该终端的更新的接收波束集合包括该第二接收波束但不包括该第一接收波束。
其中,具体的,天线模块310可以用于接收信号,以该信号对应的射频信号形式输入射频子系统320。基带子系统320可以用于对接收到的射频信号进行处理(例如,滤波、降噪、放大等),将该射频信号降频至基带信号以供基带子系统330进行处理,其中,射频子系统320可以包括射频前端模块321和射频收发模块342两个模块。基带子系统330可以用于根据基于接收到的该信号对应基带信号的测量结果,实现本申请中如图5所示的移动性测量方法,以及上述各可选实施例。
图9为本申请实施例提供的一种装置的结构示意图。该装置是在图9所示装置的基础上,进一步介绍本申请实施例的一些可选实施方式,可参见对图9的描述,重复内容此处不再赘述。如图9所示的示例性设计中,装置40包括:天线模块410、与天线模块410耦合的射频子系统420、与射频子系统420耦合的基带子系统430。
此外,该装置40还可以包括:与基带子系统430耦合的第一存储器460。基带子系统430包括处理器431、第二存储器432。第一存储器460和基带子系统430中的第二存储器432耦合。第一存储器460可以为非易失性存储器(non-volatile memory),第二存储器432可以为易失性存储器(volatile memory)或非易失性存储器。具体的,易失性存储器是指当电源供应中断后,内部存放的数据便会丢失的存储器。目前,易失性存储器主要是随机存取存储器(random access memory,RAM),包括静态随机存取存储器(static RAM)和动态随机存取存储器(dynamic RAM)。非易失性存储器是指即使电源供应中断,内部存放的数据也不会因此丢失的存储器。常见的非易失性存储器包括只读存储器(read only memory)、光盘、磁盘、固态硬盘以及基于闪存(flash memory)技术的各种存储卡等。具体地,第一存储器460可以用于存储任意本申请实施例提供的方法所对应的一条或多条指令,在装置40上电后,该代码加载至第二存储器432中,通过处理器431执行。参见图11,该代码可以是实现本申请中如图5至图7所示的移动性测量方法,以及上述各可选实施例所对应的代码。应理解,处理器431中还可以包括一个缓存(cache),与该第二存储器432相连,在执行本申请实施例中的移动性测量方法以及上述各可选实施例时,将第二存储器432的代码缓存至该缓存中,以通过该处理器执行。
一种可能的实施方式是,基带子系统330配置该天线模块和该射频接收电路中的一个或多个参数,以使该终端可以通过该终端的接收波束集合中各接收波束来依次分别接收来 自第一小区和第二小区的多个周期的同步信号突发集中的同步信号块。在第一时长内,该第一接收波束对应该第一小区和该第二小区的测量结果低于预设门限时,该基带子系统更新该终端的接收波束集合,该终端的更新的接收波束集合包括该第二接收波束但不包括该第一接收波束。
应理解,本申请实施例中,射频接收电路可以包括输入电路、低噪放大器、接收电路中的一个或多个,还可以包括射频前端模块421、以及天线模块410。射频发射电路可以包括输出电路、功率放大器、发射电路中的一个或多个,还可以包括射频前端模块421、以及天线模块410。应理解的是,天线模块410和射频子系统420中的部分电路或全部电路可以单独或共同组成射频接收电路440,以用于射频信号的接收。
应理解,配置接收波束集合中的一个接收波束,有多种实施方式。可选的,是指基带子系统430通过选择一条射频接收电路440,以通过接收波束集合内的该接收波束方向来接收信号;可选的,是指基带子系统430通过调节射频接收电路440的参数,以通过接收波束集合的接收波束方向来接收信号。
应理解,天线模块410接收来自第一小区和第二小区的信号,并将该来自第一小区和第二小区的信号对应的射频信号输入选定的射频接收电路,进而转换成基带信号,供基带子系统430处理。下面的描述基于假定其中一条选定的射频接收电路为射频接收电路440a,则天线模块410接收该服务小区的信号对应的射频信号,通过射频前端模块421以射频信号的形式输入选定的射频接收电路440a,射频前端模块421可以包括天线开关、双工器、合路器(diplexer)等。对于来自射频前端模块421的射频信号,射频接收电路440a中的输入电路441a用于对其进行预处理(例如,滤波等),以射频信号的形式提供给低噪放大器442a,输入电路441a可以包括匹配电路、接收滤波器等。低噪放大器242a在引入较低噪声的情况下对接收到的信号进行放大,并以射频信号的形式输入接收电路443a。接收电路443a对来自低噪放大器442a的射频信号进行放大、滤波、下变频至基带信号,以供基带子系统进行处理判断。基带子系统430根据接收到的基带信号进行测量、处理、判断。
在上述可选的实施方式的基础上,本申请实施例中一种可选实施方式中,该射频接收电路440的参数包括用于计算的天线阵元权重。此时,对应的操作可能是由基带子系统在数字域中进行,模拟部分采用固定的连接网络,一个天线阵元与一个相对应的射频链路(RF chain)连接。该装置的灵活度较高,可以用于数字波束赋形。
在上述可选的实施方式的基础上,本申请实施例中一种可选实施方式中,该射频接收电路440的参数包括移相器(phaser shift)参数,例如移相器的权值。此时,对应的操作是在模拟域中实现,该装置的实现简单、成本与功耗相对较低,可以用于模拟波束赋形。
在上述可选的实施方式的基础上,本申请实施例中一种可选实施方式中,该射频接收电路440的参数包括用于计算的天线阵元权值和移相器参数,例如天线阵元的权重和移相器的权值。该装置具有较好的灵活性和低成本,可以用于混合波束赋形。
应理解,本申请实施例中的各部分器件可以集成在一个芯片或集成电路,也可以相应组合成不同芯片或电路,也可以组成整机(例如,终端)均属于本申请实施例的保护范围。应理解,本申请实施例中,射频收发模块342也可以是射频接收模块或射频接收模块,可以与该基带子系统330或/和天线模块310进行集成,也可以与该基带子系统330或/和天线 模块310分开设置。
为了更详细地介绍本申请实施例的技术方案,本申请还提供了如下可选实施例。其中,实施例1主要针对单个小区介绍了一种本申请方案可能的拓展以及具体的实施方式,实施例2主要分别针对单频点的多小区对应的移动性测量方案、以及多频点的多小区对应的移动性测量方案介绍了几种可能的具体实施方式。应理解,这里的单频点多小区和多频点多小区可以理解为根据第一小区和第二小区的频点是否相同而划分。实施例3主要介绍了本申请方案中的装置几种可能的示例性设计。
实施例1
本申请实施例将以单个小区来举例,提供一种针对单个小区进行单独判断的移动性测量方案。应理解,这里的单个小区可以指的是一个同频邻区或一个异频邻区,或者是服务小区。
无线网络设备周期性地发射同步信号突发集,例如,参见图3,一个同步信号突发集可包括两个不同的SSB,分别记作SSB 1和SSB 2,并且在5毫秒(ms)的窗口范围内发射。具体地,SSB 1和SSB 2可由该小区对应的无线网络设备通过发射波束1和发射波束2在不同的时隙上一次发射。
为了评估该小区的通信质量,处于空闲态或去激活态的终端可以接收并测量上述SSB。假设当前可配置的接收波束为接收波束a、接收波束b、接收波束c,可以用于接收来自该小区的SSB 1和SSB 2
配置接收波束集合,该配置后的接收波束集合Φ包括接收波束a、接收波束b和接收波束c,记作Φ={a,b,c}。该接收波束集合Φ可以用于接收来自该小区的SSB 1和SSB 2,根据各接收波束的测量结果确定该小区的通信质量。具体地,在一轮测量过程内,可配置接收波束a在该轮测量的第一个同步信号突发集发射周期依次接收SSB 1和SSB 2;可配置接收波束b在该轮测量的第二个同步信号突发集发射周期依次接收SSB 1和SSB 2;可配置接收波束c在该轮测量的第三个同步信号突发集发射周期依次接收SSB 1和SSB 2。分别测量接收波束a、接收波束b以及接收波束c分别接收到的SSB 1和SSB 2,可以得到对应于不同接收波束和不同波束对链接的测量结果,根据上述测量结果确定该小区的通信质量。这里,测量结果可包括RSRP,单位为分贝毫瓦(dBm)。为了便于描述,将上述过程记作一轮测量,对应一个测量周期。
表1给出了一组测量结果示例,其中,i代表第i轮测量,对于第i轮测量,发射波束1与接收波束a组成波束对链接1a,对应的测量结果记作
Figure PCTCN2018115356-appb-000001
发射波束2与接收波束a组成波束对链接2a,对应的测量结果记作
Figure PCTCN2018115356-appb-000002
其他组合以此类推,下文不再重复赘述。
为了降低终端功耗,在一定条件下,可更新该接收波束集合。更新后的接收波束集合不包括由对应连续多次测量的测量结果均小于下门限的一个或多个接收波束,即更新后的接收波束集合只包括原接收波束集合中除该接收波束以外的接收波束,该更新后的接收波束集合可以用于根据各接收波束的测量结果确定该小区的通信质量。采用本方案可以减少测量的次数或每轮测量的时长,从而降低终端功耗。
例如,在第一时长内,该第一接收波束对应该小区的测量结果低于下门限时,更新该接收波束集合,更新后的接收波束集合不包括该第一接收波束。应理解,在第一时长内,各接收波束可以多次地接收来自该小区的参考信号,对应的该小区的连续多次的测量结果低于预设门限时,可更新该接收波束集合。应理解,在该第一时长内该第一接收波束对应该小区的测量结果也可以理解为在第一时长内连续多次的测量结果,具体的第一时长的取值可以根据连续多轮测量的轮数和测量周期计算得到。在一个DRX周期内,可以进行一轮测量,这里,该终端的测量周期可以理解为等于一个DRX周期。或者,也可以在多个DRX周期内,进行一轮测量,这里,该终端的测量周期可以理解为等于该多个DRX周期。
为了便于表述,下面以测量周期等于一个DRX周期T为例,对应的在该第一时长t 1内,对应的连续多次测量轮次为
Figure PCTCN2018115356-appb-000003
其中
Figure PCTCN2018115356-appb-000004
代表对·向下取整。为了便于表述,下面以该第一时长所对应的连续多次测量结果为例。
假设,在预定义的第一时长内,可以对应连续测量的轮次为3轮,预设的下门限Γ 1取值为-100dBm。参见表1,对于第一轮测量,波束对链接1b对应的测量结果取值为-102dBm,波束对链接2b对应的测量结果取值为-105dBm,均小于预设的下门限Γ 1。其余波束对链接对应的测量结果均大于预设的下门限。同理,对应于第二轮测量和第三轮测量的测量结果低于预设的下门限的接收波束也是接收波束b。因此,更新接收波束集合,更新后的接收波束集合Φ'只包括接收波束a和接收波束c,记作Φ'={a,c},该接收波束集合Φ'可以用于测量该小区的信号质量。
上述配置的接收波束集合Φ'所对应的测量结果可以用于该小区的通信质量评估。例如,读取测量配置参数集合measObject中最大被平均SSB数量nroSS-BlocksToAverage以及SSB混合门限absThreshSS-BlocksConsolidation的参数配置后,将上述配置的接收波束集合Φ'所对应的测量结果按照一定的方式换算成该小区的测量结果,以用于该小区的通信质量评估。
一种可选的实施方式是,当任意一个上述参数无法获取参数配置,或者,SSB混合门限absThreshSS-BlocksConsolidation的参数取值均大于上述配置的接收波束集合Φ'所对应的全部测量结果的取值时。则该小区的测量结果为上述配置的接收波束集合Φ'所获得的测量结果中对应的取值最大的测量结果。
否则,读取测量配置参数集合measObject中的参数取值,假设读取到最大被平均SSB数量nroSS-BlocksToAverage为m个,以及SSB混合门限absThreshSS-BlocksConsolidation为ndBm,从上述配置的接收波束集合Φ'所获得的测量结果中选择至多m个大于ndBm的测量结果,将上述m个大于ndBm的测量结果进行线性平均后获得的取值作为该小区的测量结果。
另一种可选的方式是,当任意一个上述参数无法获取参数配置,或者,SSB混合门限absThreshSS-BlocksConsolidation的参数取值均大于上述配置的接收波束集合Φ'所对应的全部测量结果的取值时。则在由配置的接收波束集合Φ'所获得的测量结果中,选取对应于SSB 1的测量结果中最大的测量结果取值以及对应于SSB 2的测量结果中最大的测量结果取值中最大的取值。
否则,读取测量配置参数集合measObject中的参数取值,假设读取到最大被平均SSB数量nroSS-BlocksToAverage为m个,以及SSB混合门限absThreshSS-BlocksConsolidation为ndBm,则在由配置的接收波束集合Φ'所获得的测量结果中,确定对应于SSB 1的测量结果中大于SSB混合门限ndBm的测量结果,以及对应于SSB 2的测量结果中大于SSB混合门限ndBm的测量结果,选择m个上述大于SSB混合门限ndBm的测量结果进行线性平均后获得的取值作为该小区的测量结果。
上述小区的测量结果还可以用于小区重选的判断。这里,可以理解的是,SSB混合门限absThreshSS-BlocksConsolidation的取值可以大于或等于预设的下门限Γ 1。该预设的下门限Γ 1也有多种设计方法,下面给出几个可选的实施方式。例如,一种可选的实施方式,下门限Γ 1的取值由预设参数确定;另一种可选的实施方式,下门限Γ 1的取值可以由每轮测量所对应的测量结果中最大的取值和预设门限ΔΓ确定。具体地,比如下门限Γ 1的取值为每轮次测量所对应的测量结果中最大的取值与预设门限ΔΓ之差;另一种可选的实施方式,下门限Γ 1的取值由SSB混合门限absThreshSS-BlocksConsolidation确定。具体地,比如下门限Γ 1的取值为SSB混合门限absThreshSS-BlocksConsolidation对应的取值,或者,下门限Γ 1的取值为SSB混合门限absThreshSS-BlocksConsolidation对应的取值与预设门限ΔΓ之差。
通过更新的接收波束集合Φ'来接收信号经过一段时长后,通信环境可能会改变,一直沿用该更新的接收波束集合Φ'可能无法获得可靠的该小区的通信质量。为了获得更好的鲁棒性,在满足触发条件时,可以重配置接收波束集合,重配置的接收波束集合为Φ={a,b,c}。该重配置的接收波束集合可以用于下一轮的测量。否则,可以保持当前接收波束集合的配置。
例如,该触发条件可以是定时器是否超时。具体地,可以预设该第二时长为10s。当定时器超时的时候,可以重配置该接收波束集合,重配置的接收波束集合为Φ={a,b,c}。
例如,该触发条件可以是计数器是否清零。应理解,该第二时长可以对应正整数N轮次的测量结果。结合表1,这里假设对应的正整数N取10。可以将SoC芯片中的定时器的时长设置为设置为DRX的周期(如DRX短周期),在实现软件算法的定时或计数相关软件模块中设置计数器为10。该定时器每超期一次,计数器减1,在计数器清零时,代表经过该第二时长。可以重配置该接收波束集合,重配置的接收波束集合为Φ={a,b,c}。
例如,该触发条件可以是该终端的运动状态是否发生变化,在检测到该终端的运动状态发生变化时,可以重配置该接收波束集合,重配置的接收波束集合为Φ={a,b,c}。
应理解,采用本申请实施例提供的上述方案,可以有效降低测量次数和每轮测量的时长,降低功耗,提高待机时长。
表1测量结果示例
Figure PCTCN2018115356-appb-000005
Figure PCTCN2018115356-appb-000006
实施例2
应理解,根据第一小区和第二小区的频点是否相同,可以将相关的移动性测量分为单频点的多小区对应的移动性测量方案,以及多频点的多小区对应的移动性测量方案。应理解,本申请实施例基于实施例1的基础,重复的部分可以参见实施例1中的描述,此处不再赘述。
对于单频点的多小区对应的移动性测量方案,该第一小区可以是该终端的服务小区,该第二小区可以是该终端的服务小区的同频邻区。或者,该第一小区和该第二小区可以都是该终端的服务小区的同频邻区。或者,该第一小区和该第二小区可以都是该终端的服务小区的异频邻区,其中该第一小区的频点和该第二小区的频点相同。
为了便于表述,下面以该第一小区和第二小区为该终端的服务小区的异频邻区为例,该第一小区的频点与该第二小区的频点相同,均为频点f 1
应理解,在单频点的多小区对应的移动性测量方案中,在第一时长内,对应的第一小区的测量结果和对应的第二小区的测量结果小于预定义的下门限的接收波束时,重配置该接收波束集合,重配置后的接收波束集合不包括该接收波束。该重配置的接收波束集合可以用于接收来自该第一小区和该第二小区的信号,并根据所接收到的信号确定对应该第一小区的测量结果和该第二小区的测量结果。
应理解,该单频点的多小区对应的移动性测量方案中,该第一时长可以由对该小区的测量周期和相应测量轮次来确定。类似的,第二时长也可以由对该小区的测量周期和相应测量轮次来确定。
这里,鉴于简单表述起见,假定终端所需测量的小区频点包括一个频点f 1,对于该频点共对应两个该终端的服务小区的异频邻区,分别记作异频邻区I和异频邻区II。下面针对上述频点和异频邻区介绍一种可能的方案。来自异频邻区I的一个同步信号突发集可以包括两个不同的同步信号块,分别记作SSB 3和SSB 4。可以由对应该异频邻区I的无线网络设备通过发射波束3和发射波束4在不同的时隙上分别发射。来自异频邻区II的一个同步信号突发集包括两个不同的同步信号块,分别记作SSB 5和SSB 6。可以由对应于异频邻区II的无线网络设备通过发射波束5和发射波束6在不同的时隙上分别发射。配置接收波束集合为Φ={a,b,c},该接收波束集合Φ可以用于接收来自上述的SSB 3、SSB 4、SSB 5以 及SSB 6,根据相应测量结果确定对应小区的通信质量。
表2给出了一组频点f 1对应的测量结果示例,这里,假设该第一时长对应3个DRX周期,并且每个DRX周期可以对该异频邻区I和该异频邻区II进行一轮测量,预设下门限Γ 2取值为-100dBm。对于第一轮至第四轮,根据测量结果确定异频邻区I对应的测量结果小于预设下门限Γ 2的接收波束依次是接收波束a、接收波束b、接收波束b、接收波束b,异频邻区II对应的测量结果小于预设下门限Γ 2的接收波束依次是接收波束b、接收波束b、接收波束b、接收波束b。因此,对于第二轮至第四轮的测量结果中,接收波束b所对应的该第一小区的测量结果和该第二小区的测量结果均小于预设下门限Γ 2。更新该接收波束集合,更新后的接收波束集合为Φ'={a,c},该接收波束集合Φ'可以用于接收异频邻区I的SSB和异频邻区II的SSB,或者,该接收波束集合Φ'还可以用于根据各接收波束的测量结果确定对应该频点的异频邻区I和异频邻区II的测量结果。
假设该第二时长对应9个DRX周期,并且每个DRX周期可以对该异频邻区I和该异频邻区II进行一轮测量。经过9轮测量后,可以重配置该接收波束集合为Φ={a,b,c},该重配置的接收波束集合可以用于接收该异频邻区I和该异频邻区II的SSB,根据上述接收到的SSB分别重新确定对应该异频邻区I的测量结果和对应该异频邻区II的测量结果。
若在该第二时长内,检测到该终端的运动状态发生变化,可以重配置该接收波束集合为Φ={a,b,c}。
应理解,对于某个接收波束对链接无测量结果,可以理解为该接收波束对链接对应的测量结果小于预设下门限。
采用本申请实施例提供的方案,可以降低测量次数和每轮测量时长,降低功耗,提高待机时长。
表2频点f 1测量结果示例
Figure PCTCN2018115356-appb-000007
Figure PCTCN2018115356-appb-000008
对于多频点的多小区对应的移动性测量方案,该第一小区可以是该终端的服务小区,该第二小区可以是该终端的服务小区的异频邻区。或者,该第一小区可以是该终端的服务小区的同频邻区,该第二小区可以是该终端的服务小区的异频邻区。或者,该第一小区和该第二小区可以都是该终端的服务小区的异频邻区,其中该第一小区的频点和该第二小区的频点不同。
为了便于表述,下面以该第一小区为该终端的服务小区的同频邻区、第二小区为该终端的服务小区的异频邻区为例。其中,该第一小区的频点记作f 2,该第二小区的频点记作f 3
应理解,在多频点的多小区对应的移动性测量方案中,在第一时长内,对应的第一小区的测量结果和对应的第二小区的测量结果小于预定义的下门限的接收波束时,重配置该接收波束集合,重配置后的接收波束集合不包括该接收波束。该重配置的接收波束集合可以用于接收来自该第一小区和该第二小区的信号,并根据所接收到的信号确定对应该第一小区的测量结果和该第二小区的测量结果。
应理解,该多频点的多小区对应的移动性测量方案中,该第一时长可以由在第一时长内对该第一小区的测量周期和相应的测量轮次,以及该第二小区的测量周期和相应的测量轮次来共同确定。例如,该第一时长可以根据下式确定相应的取值:
t 1=max{N 1×T 1,N 2×T 2}
其中,t 1为第一时长的取值,N 1和T 1分别为对于该第一小区的测量轮次和测量周期,N 2和T 2分别为对于该第二小区的测量轮次和测量周期。max{·}可以理解为对·取最大值。
应理解,进一步地,在频点数大于2时,该第一时长可以根据下式确定相应的取值:
t 1=max{n inter×N inter×T inter,N intra×T intra}
其中,t 1为第一时长的取值,n inter为该多频点中除该终端的服务小区的频点以外的频点数。N inter和T inter分别为对于该终端的服务小区的异频邻区的测量轮次和测量周期,N intra和T intra分别为对于该终端的服务小区的同频邻区的测量轮次和测量周期。该第二时长的取值可参考上述第二时长的取值方法。
这里,鉴于简单表述起见,假定终端所需测量的小区频点包括一个频点f 2和一个频点f 3,分别对应同频邻区I和异频邻区III。下面针对上述频点、同频邻区以及异频邻区介绍一种可能的方案。来自同频邻区I的一个同步信号突发集可以包括两个不同的同步信号块,分别记作SSB 7和SSB 8。可以由对应该同频邻区I的无线网络设备通过发射波束7和发射波束8在不同的时隙上分别发射。来自异频邻区III的一个同步信号突发集包括两个不同的 同步信号块,分别记作SSB 9和SSB 10。可以由对应于异频邻区II的无线网络设备通过发射波束9和发射波束10在不同的时隙上分别发射。配置接收波束集合为Φ={a,b,c},该接收波束集合Φ可以用于接收来自上述的SSB 7、SSB 8、SSB 9以及SSB 10,根据相应测量结果确定对应小区的通信质量。
表3(a)给出了一组对应频点f 2的同频邻区I的测量结果示例,表2(b)给出了一组对应频点f 3的异频邻区III的测量结果示例。这里,假设该第一时长对应3个DRX周期,并且每个DRX周期可以对该同频邻区I和该异频邻区III进行一轮测量,预设下门限Γ 3取值为-100dBm。参见表3(a),对于第一轮至第四轮测量,确定对应同频邻区I的测量结果低于下门限Γ 3的接收波束依次为接收波束c、接收波束b、接收波束b、接收波束b。参见表3(b),对于第一轮至第四轮测量,确定对应异频邻区III的测量结果低于下门限Γ 3的接收波束均为接收波束b。因此,对于第二轮至第四轮的测量结果中,接收波束b所对应的该第一小区的测量结果和该第二小区的测量结果均小于预设下门限Γ 2。更新该接收波束集合,更新后的接收波束集合为Φ'={a,c},该接收波束集合Φ'可以用于接收同频邻区I的SSB和异频邻区III的SSB,或者,该接收波束集合Φ'还可以用于根据各接收波束的测量结果确定对应该频点的异频邻区I和异频邻区II的测量结果。
假设该第二时长对应9个DRX周期,并且每个DRX周期可以对该异频邻区I和该异频邻区II进行一轮测量。经过9轮测量后,可以重配置该接收波束集合为Φ={a,b,c},该重配置的接收波束集合可以用于接收该同频邻区I和该异频邻区III的SSB,根据上述接收到的SSB分别重新确定对应该同频邻区I的测量结果和对应该异频邻区III的测量结果。
若在该第二时长内,检测到该终端的运动状态发生变化,可以重配置该接收波束集合为Φ={a,b,c}。
应理解,对于某个接收波束对链接无测量结果,可以理解为该接收波束对链接对应的测量结果小于预设下门限。
采用本申请实施例提供的方案,可以有效降低测量次数和每轮测量时长,降低功耗,提高待机时长。
表3(a)同频邻区I测量结果示例
Figure PCTCN2018115356-appb-000009
Figure PCTCN2018115356-appb-000010
表3(b)异频邻区III测量结果示例
Figure PCTCN2018115356-appb-000011
实施例3
本申请实施例将结合实施例1以单个小区举例,提供一种采用本申请方案的装置示例性设计。其中,该装置的结构设计可以参考上文中对图6至图9的描述,这里不再重复赘述。为了便于表述,下面以如图9所示的装置为例介绍示例性设计方案。
对应于该小区的无线网络设备可以周期性地发射同步信号突发集,并且每个同步信号突发集可以包括两个不同的SSB,分别记作SSB 1和SSB 2。SSB 1和SSB 2可以由该小区对应的无线网络设备通过发射波束1和发射波束2在不同的时隙上依次发射。
参见图9所示的装置40,假设当前可配的接收波束为接收波束a、接收波束b以及接收波束c,可以用于接收来自上述无线网络设备的SSB 1和SSB 2。为了评估该小区的通信质量,基带子系统430配置接收波束集合Φ包括接收波束a、接收波束b和接收波束集合c,记作Φ={a,b,c},该配置的接收波束集合用于接收该小区的SSB以确定该小区的通信质量。具体地,可以通过基带子系统430调节射频接收电路参数或选择一条或多条相应的射频接 收电路以实现配置接收波束集合来接收该小区的SSB。
例如,在一个同步信号突发集发射周期,基带子系统430可以通过调节射频子系统中的移相器参数(例如,移相器权值),以调整接收波束方向为接收波束a的方向,通过天线模块410接收来自无线网络设备的SSB 1和SSB 2。由天线模块410发送至射频子系统420内,由射频子系统420对接收到的信号进行滤波、降噪、放大等处理,将该射频信号降频至基带信号以供基带子系统430进行处理。基带子系统430对接收到的信号进行测量、计算等操作,获得相应计算结果。在下两个同步信号突发集发射周期,依次配置接收波束b、接收波束c来接收无线网络设备的SSB 1和SSB 2,具体的实现方式同接收波束a的配置。这里,测量结果包括RSRP,单位为分贝毫瓦(dBm)。对应的计算结果可以存储在基带子系统430中的第二存储器432中,本申请实施例中的各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
参见表1所示的测量结果,对于第一轮测量,波束对链接1b对应的测量结果取值为-102dBm,波束对链接2b对应的测量结果取值为-105dBm,均小于预设的下门限Γ 1。其余波束对链接对应的测量结果均大于预设的下门限。同理,由第二轮测量结果和第三轮测量结果确定对应测量结果小于预设的下门限的接收波束为接收波束b。
因此,基带子系统430更新该接收波束集合,更新后的接收波束集合Φ'只包括接收波束a和接收波束c,记作Φ'={a,c},该更新后的接收波束集合Φ'可以用于接收该小区的SSB,或者也可以用于之后测量该小区的信号质量。
基带子系统430内的计时器(timer)可以用于计算当前是否达到该第二时长,当达到该第二时长时,重配置接收波束集合Φ={a,b,c},该重配置的接收波束集合可以用于接收该小区的SSB。
或者,还可以通过基带子系统430内的计数器(counter)用于计算当前是否达到预设调度轮次门限,当达到预设调度轮次门限时,重配置接收波束集合Φ={a,b,c},该重配置的接收波束集合可以用于接收该小区的SSB。
或者,还可以通过该终端的传感器检测当前终端的运动状态,基带子系统430可以读取上述传感器所存储的该终端的运动状态记录。当基带子系统确定当前终端的运动状态改变时,重配置接收波束集合Φ={a,b,c},该重配置的接收波束集合可以用于接收该小区的SSB。
或者,还可以通过基带子系统430判断当前接收波束a所对应该小区的连续多次测量结果均小于预设下门限Γ 1,重配置接收波束集合Φ={a,b,c},该重配置的接收波束集合可以用于接收该小区的SSB。
应理解,配置接收波束集合的方法还有其他不同的实施方式。
可选的,基带子系统430通过调节用于计算的天线阵元权值,以调整接收波束方向。采用这种实施方式的装置设计方法,自由度更高。
可选的,基带子系统430通过调节天线阵元权值和射频子系统420中的移相器参数(例如,移相器权值),以调整接收波束方向。采用这种实施方式的装置设计方法,可以降低结构复杂度的同时减少移相器数量,降低成本,提高自由度。
或者,基带子系统430通过选择一条或多条射频通道,以调整接收波束方向。采用这种实施方式的装置设计方法,可以降低结构复杂度的同时减少移相器数量,降低成本,提高自由度。
应理解,上述接收波束集合Φ与Φ'只是为了便于表达,无特殊区别。在实现的过程中可以是一个集合也可以是不同集合。应理解,上述同频邻区指的是该终端的服务小区的同频邻区,上述异频邻区指的是该终端的服务小区的异频邻区。
采用上述本申请实施例提供的装置,可以有效降低测量次数和每轮测量时长,降低功耗,提高待机时长。并且,可选的,通过调节移相器参数来调整接收波束方向,实现简单,成本和功耗相对较低;可选的,通过调节天线阵元权值来调整接收波束方向,自由度更高;可选的,通过调节移相器参数和通信阵元权值来调整接收波束方向,可以降低结构复杂度的同时减少移相器数量,降低成本,提高自由度。
本申请实施例及附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于表示不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必仅限于字面列出的那些步骤或单元,而是可包括没有字面列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。
应理解,本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,“A,和/或,B”,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
应理解,在本申请中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。本申请提到的“耦合”一词,用于表达不同组件之间的互通或互相作用,可以包括直接相连或通过其他组件间接相连。
本申请中,处理器,是指具有计算处理能力的器件或电路,可称为芯片或中央处理单元(英文:central processing unit,CPU)。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、或者晶体管逻辑器件、分立硬件组件通用处理器、微处理器。处理器可以集成在一个片上系统(system on chip,SOC)中。其中,基带处理器也可以称作调制解调器(Modem)。
存储器,是指具有数据或信息存储能力的器件或电路,并可向处理器提供指令和数据。存储器包括只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、非易失性随机存取存储器(NVRAM),可编程只读存储器或者电可擦写可编程存储器、寄存器等。
在本申请的上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中, 或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤等)或无线(例如红外、无线电、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,例如,软盘、硬盘和磁带;可以是光介质,例如DVD;也可以是半导体介质,例如固态硬盘(Solid State Disk,SSD)等。
以上该,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (32)

  1. 一种移动性测量的方法,其特征在于,包括:
    通过终端的接收波束集合来接收来自第一小区和第二小区的参考信号,所述终端的接收波束集合包括第一接收波束和第二接收波束;
    根据所述终端的接收波束集合所接收的参考信号,分别确定所述第一小区的测量结果和所述第二小区的测量结果;
    在第一时长内,所述第一接收波束对应所述第一小区和所述第二小区的测量结果低于预设门限时,更新所述终端的接收波束集合,所述终端的更新的接收波束集合包括所述第二接收波束但不包括所述第一接收波束。
  2. 根据权利要求1所述的方法,其特征在于,在更新所述终端的接收波束集合之后,所述方法还包括:
    在第二时长内,通过所述终端的更新的接收波束集合接收来自所述第一小区和所述第二小区的参考信号;
    在所述第二时长之后,重配置所述终端的接收波束集合,所述终端的重配置的接收波束集合包括所述第一接收波束和所述第二接收波束。
  3. 根据权利要求1所述的方法,其特征在于,在更新所述终端的接收波束集合之后,所述方法还包括:
    根据所述终端的运动状态的变化,重配置所述终端的接收波束集合,所述终端的重配置的接收波束集合包括所述第一接收波束和所述第二接收波束。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    获取所述终端的传感器的状态信息,以确定所述终端的运动状态。
  5. 根据权利要求2至4任一所述的方法,其特征在于,在重配置所述终端的接收波束集合之后,所述方法还包括:
    通过所述终端的重配置的接收波束集合接收来自所述第一小区和所述第二小区的参考信号;
    根据所述终端的重配置的接收波束集合所接收的参考信号,分别重新确定所述第一小区的测量结果和所述第二小区的测量结果。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述测量结果包括基于同步信号块的测量的层1的参考信号接收功率。
  7. 根据权利要求6所述的方法,其特征在于,所述测量结果还包括基于同步信号块的测量的层3的参考信号接收功率。
  8. 根据权利要求1至5任一所述的方法,其特征在于,所述测量结果包括基于信道状态信息参考信号的层1的参考信号接收功率。
  9. 根据权利要求8所述的方法,其特征在于,所述测量结果包括基于信道状态信息参考信号的层3的参考信号接收功率。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述方法还包括:
    根据所述终端的接收波束集合所接收的参考信号,确定最优接收波束对应的测量结果;
    根据所述最优接收波束对应的测量结果和预设最大差值确定所述预设门限。
  11. 根据权利要求1至10任一所述的方法,其特征在于:
    所述第一小区和所述第二小区均为所述终端的服务小区的同频邻区。
  12. 根据权利要求1至10任一所述的方法,其特征在于:
    所述第一小区为所述终端的服务小区的同频邻区,所述第二小区为所述终端的服务小区的异频邻区。
  13. 根据权利要求1至12任一所述的方法,其特征在于,所述方法还包括:
    根据非连续接收DRX周期和正整数N确定所述第一时长;
    在所述第一时长内,连续N次通过终端的接收波束集合来接收来自所述第一小区和所述第二小区的参考信号。
  14. 根据权利要求1至12任一所述的方法,其特征在于,所述方法还包括:
    根据非连续接收DRX周期和正整数N确定所述第一时长;
    在所述第一时长内,通过终端的接收波束集合来接收一次来自所述第一小区和所述第二小区的参考信号。
  15. 一种用于终端的移动性测量的装置,其特征在于,包括:
    接收单元,用于通过所述终端的接收波束集合来接收来自第一小区和第二小区的参考信号,所述终端的接收波束集合包括第一接收波束和第二接收波束;
    处理单元,用于:
    根据所述终端的接收波束集合所接收的参考信号,分别确定所述第一小区的测量结果和所述第二小区的测量结果;
    在所述第一时长内,所述第一接收波束对应的所述第一小区和所述第二小区的测量结果低于预设门限时,更新所述终端的接收波束集合,所述终端的更新的接收波束集合包括所述第二接收波束但不包括所述第一接收波束。
  16. 根据权利要求15所述的装置,其特征在于:
    所述接收单元还用于在第二时长内,通过所述终端的更新的接收波束集合来接收来自所述第一小区和所述第二小区的参考信号;
    所述处理单元还用于在经过所述第二时长后,重配置所述终端的接收波束集合,所述终端的重配置的接收波束集合包括所述第一接收波束和所述第二接收波束。
  17. 根据权利要求15所述的装置,其特征在于:
    所述处理单元还用于根据所述终端的运动状态的变化,重配置所述终端的接收波束集合,所述终端的重配置的接收波束集合包括所述第一接收波束和所述第二接收波束。
  18. 根据权利要求17所述的装置,其特征在于:
    所述终端包括传感器;
    所述处理单元还用于获取所述终端的传感器的状态信息,以确定所述终端的运动状态的变化。
  19. 根据权利要求16至18任一所述的装置,其特征在于:
    所述处理单元还用于根据所述终端的重配置的接收波束集合所接收的参考信号,重新确定所述第一小区的测量结果和所述第二小区的测量结果。
  20. 根据权利要求15至19任一所述的装置,其特征在于:所述测量结果包括基于同步信号块的测量的层1的参考信号接收功率。
  21. 根据权利要求20所述的装置,其特征在于,所述测量结果还包括基于同步信号块的测量的层3的参考信号接收功率。
  22. 根据权利要求15至19任一所述的装置,其特征在于,所述测量结果包括基于信道状态信息参考信号的层1的参考信号接收功率。
  23. 根据权利要求22所述的装置,其特征在于,所述测量结果包括基于信道状态信息参考信号的层3的参考信号接收功率。
  24. 根据权利要求15至23任一所述的方法,其特征在于,所述处理单元还用于:
    根据所述终端的接收波束集合所接收的参考信号,确定最优接收波束对应的测量结果;
    根据所述最优接收波束对应的测量结果和预设最大差值确定所述预设门限。
  25. 根据权利要求15至24任一所述的装置,其特征在于:
    所述第一小区和所述第二小区均为所述终端的服务小区的同频邻区。
  26. 根据权利要求15至24任一所述的装置,其特征在于:
    所述第一小区为所述终端的服务小区的同频邻区,所述第二小区为所述终端的服务小区的异频邻区。
  27. 根据权利要求15至26任一所述的装置,其特征在于:
    所述处理单元还用于根据非连续接收DRX周期和正整数N确定所述第一时长;
    所述接收单元还用于在所述第一时长内,连续N次通过终端的接收波束集合来接收来自所述第一小区和所述第二小区的参考信号。
  28. 根据权利要求15至26任一所述的装置,其特征在于:
    所述处理单元还用于根据非连续接收DRX周期和正整数N确定所述第一时长;
    所述接收单元在所述第一时长内,通过终端的接收波束集合来接收一次来自所述第一小区和所述第二小区的参考信号。
  29. 一种用于终端的移动性测量的装置,其特征在于,包括:
    处理器和存储器,所述处理器用于执行所述存储器中的指令,以使得所述终端执行权利要求1至14中任一所述的方法。
  30. 一种用于终端的移动性测量的装置,其特征在于,包括:
    处理器与接口电路,其中,所述处理器通过所述接口电路与存储器耦合,所述处理器用于执行所述存储器中的程序代码,以使得所述终端执行权利要求1至14中任一所述的方法。
  31. 一种计算机可读存储介质,其特征在于:
    所述计算机可读存储介质中存储了程序代码,所述程序代码被终端的处理器执行时,实现权利要求1至14中任一所述的方法。
  32. 一种计算机程序产品,其特征在于:
    所述计算机程序产品包含的程序代码被终端的处理器执行时,实现权利要求1至14中任一所述的方法。
PCT/CN2018/115356 2018-11-14 2018-11-14 一种移动性测量的方法、装置和系统 WO2020097813A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880089089.XA CN111713131B (zh) 2018-11-14 2018-11-14 一种移动性测量的方法、装置和系统
PCT/CN2018/115356 WO2020097813A1 (zh) 2018-11-14 2018-11-14 一种移动性测量的方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115356 WO2020097813A1 (zh) 2018-11-14 2018-11-14 一种移动性测量的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2020097813A1 true WO2020097813A1 (zh) 2020-05-22

Family

ID=70730978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115356 WO2020097813A1 (zh) 2018-11-14 2018-11-14 一种移动性测量的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN111713131B (zh)
WO (1) WO2020097813A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023011535A1 (zh) * 2021-08-06 2023-02-09 维沃移动通信有限公司 低移动性状态的确定方法、装置、终端及网络侧设备
WO2023164831A1 (en) * 2022-03-02 2023-09-07 Qualcomm Incorporated Performing cell measurements using specific network deployment flags
US11805474B2 (en) * 2019-06-28 2023-10-31 Qualcomm Incorporated UE beam detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077610A1 (zh) * 2022-10-14 2024-04-18 北京小米移动软件有限公司 一种测量方法、装置、设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO系统中上行导频的选择与分配方法
CN108024278A (zh) * 2016-11-04 2018-05-11 电信科学技术研究院 一种移动性管理方法、用户终端和网络侧设备
WO2018202310A1 (en) * 2017-05-05 2018-11-08 Nokia Technologies Oy Radio link monitoring for multi-beam communications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108668312B (zh) * 2017-03-29 2021-10-26 华为技术有限公司 一种测量参数发送方法及其装置
CN108810931A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 测量方法、终端设备和接入网设备
CN108810967B (zh) * 2017-05-05 2023-12-12 华为技术有限公司 一种测量上报的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO系统中上行导频的选择与分配方法
CN108024278A (zh) * 2016-11-04 2018-05-11 电信科学技术研究院 一种移动性管理方法、用户终端和网络侧设备
WO2018202310A1 (en) * 2017-05-05 2018-11-08 Nokia Technologies Oy Radio link monitoring for multi-beam communications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11805474B2 (en) * 2019-06-28 2023-10-31 Qualcomm Incorporated UE beam detection
WO2023011535A1 (zh) * 2021-08-06 2023-02-09 维沃移动通信有限公司 低移动性状态的确定方法、装置、终端及网络侧设备
WO2023164831A1 (en) * 2022-03-02 2023-09-07 Qualcomm Incorporated Performing cell measurements using specific network deployment flags

Also Published As

Publication number Publication date
CN111713131A (zh) 2020-09-25
CN111713131B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
TWI748392B (zh) 用於無線電資源管理測量與測量配置之電子裝置和方法
RU2631257C2 (ru) Сгруппированные в кластеры периодические зазоры для измерений в гетерогенной сети
US11496935B2 (en) Cell measurement method and terminal device
WO2020097813A1 (zh) 一种移动性测量的方法、装置和系统
KR101838842B1 (ko) 반송파 호핑을 위한 액세스 노드, 통신 디바이스, 그에 의해 수행되는 각각의 방법
JP5406939B2 (ja) 分散アンテナシステムにおけるサブセル測定手順
TW201935869A (zh) 通道狀態資訊參考訊號之測量定時配置方法及使用者設備
CN104811962B (zh) 小小区基站状态切换方法及装置
CN105191443B (zh) 用于传送探测参考信号的用户设备和方法
CN113543193B (zh) 一种放松测量方法和通信装置
JP2022104925A (ja) サービング周波数測定のためのビーム報告設定
JP2020520571A (ja) 無線デバイス、無線ネットワークノード、及び、無線通信ネットワークで通信を処理するために実行される方法
US20220014943A1 (en) Measurement method and apparatus, and device
WO2014057441A2 (en) Reselection
WO2015114458A2 (en) Methods and systems for controlling cells in a network
WO2020093323A1 (zh) 一种波束管理的方法、装置和系统
EP3178260B1 (en) Methods of controlling user equipment communication with a network and corresponding apparatuses and computer program product
JP2013034053A (ja) 無線通信システムおよび通信制御方法
WO2015066861A1 (en) Optimizing cre configuration
EP3501205B1 (en) Uplink measurement based mobility management
WO2014110758A1 (en) Configurable reference signal type for rrm/rlm measurement
WO2022022673A1 (zh) 一种通信方法及装置
US10652778B2 (en) Method and apparatus for mobility management
EP4104527A1 (en) Methods for performing measurements under ue power saving modes
KR20220122668A (ko) 전환 방법, 단말 장치, 네트워크 장치 및 통신 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940431

Country of ref document: EP

Kind code of ref document: A1