WO2024077610A1 - 一种测量方法、装置、设备及可读存储介质 - Google Patents

一种测量方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2024077610A1
WO2024077610A1 PCT/CN2022/125474 CN2022125474W WO2024077610A1 WO 2024077610 A1 WO2024077610 A1 WO 2024077610A1 CN 2022125474 W CN2022125474 W CN 2022125474W WO 2024077610 A1 WO2024077610 A1 WO 2024077610A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
configuration information
measurement result
reference signal
signal
Prior art date
Application number
PCT/CN2022/125474
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/125474 priority Critical patent/WO2024077610A1/zh
Priority to CN202280004097.6A priority patent/CN118202779A/zh
Publication of WO2024077610A1 publication Critical patent/WO2024077610A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a measurement method, device, equipment and readable storage medium.
  • Mobility measurement is an important part of wireless communication networks.
  • User equipment can obtain the signal quality of the serving cell and neighboring cells by performing mobility measurement, and report the relevant measurement results to the network equipment.
  • the network equipment determines whether the terminal equipment performs cell switching based on the measurement results reported by the terminal equipment.
  • next generation wireless communication network new radio, NR
  • network equipment can configure synchronization signal block (SSB) or channel state information reference signal (CSI-RS) for terminal devices to perform mobility measurement.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • a main transceiver and a low power receiver are configured in the user equipment.
  • the user equipment can put the main transceiver into sleep mode, and then make the low power receiver listen to the low power wake-up signal (LP WUS). After listening to the LP WUS, the main transceiver is woken up, and data is received and sent through the main transceiver.
  • LP WUS low power wake-up signal
  • the user equipment needs to perform mobility measurement while its main receiver is in a sleep state and the low power receiver is in a listening state, it is necessary to consider how to complete the mobility measurement in this case.
  • the present disclosure provides a measurement method, an apparatus, a device, and a readable storage medium.
  • a measurement method which is performed by a user equipment, and the method includes:
  • a low power consumption receiver is used to measure a first reference signal to obtain a first measurement result, where the first reference signal is a signal sent by a neighboring cell of the user equipment and is used for reception by the low power consumption receiver.
  • the first reference signal is a periodic low-power wake-up signal or a periodic synchronization signal.
  • the method further includes:
  • Measurement configuration information sent by a network device is received, where the measurement configuration information is used to indicate that the reference signal is used as a measurement signal.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • first configuration information sent by a network device is received, where the first configuration information is configuration information of the first reference signal sent by the neighboring cell.
  • the first configuration information includes at least one of the following: a period, a time domain offset, or a frequency domain position.
  • the method further includes:
  • the low power consumption receiver is used to measure a second reference signal to obtain a second measurement result, where the second reference signal is a signal sent by a serving cell of the user equipment.
  • the method further includes:
  • the using a low power consumption receiver to measure the first reference signal includes: determining, according to the second measurement result, whether to use a low power consumption receiver to measure the first reference signal to obtain a first measurement result.
  • determining, according to the second measurement result, to use a low power consumption receiver to measure the first reference signal includes:
  • a low power consumption receiver is used to measure the first reference signal, and the frequency of the neighboring cell is different from the frequency of the serving cell.
  • the method further includes:
  • the main receiver is awakened.
  • the method further includes:
  • the measurement configuration information is used to indicate that a first reference signal of a neighboring cell with a first priority is used as a measurement signal.
  • the method further includes:
  • At least one neighboring cell is determined according to the first measurement result, and a low power consumption wake-up signal of the at least one neighboring cell is monitored.
  • determining at least one neighboring cell according to the first measurement result includes:
  • the first measurement result has the highest measured value.
  • the measured value in the first measurement result is greater than the fifth threshold value
  • the measurement value in the first measurement result is greater than a sixth threshold value and the neighboring cell has the first priority.
  • the method further includes: determining at least one neighboring cell according to the first measurement result and the second measurement result, and monitoring a low power consumption wake-up signal of the at least one neighboring cell.
  • determining at least one neighboring cell according to the first measurement result and the second measurement result includes: determining a neighboring cell that satisfies at least one of the following:
  • the first measurement result is better than the second measurement result, and the difference between the first measurement result and the second measurement result is greater than or equal to a seventh threshold value;
  • a value representing the degree to which the first measurement result is superior to the second measurement result is greater than an eighth threshold value.
  • a method for sending measurement configuration information is provided, which is performed by a network device, and the method includes:
  • Measurement configuration information is sent to a user equipment, where the measurement configuration information is used to indicate that a first reference signal is used as a measurement signal, where the first reference signal is a signal sent by a neighboring cell of the user equipment, and the signal is used to be received by a low power consumption receiver.
  • the signal is a periodic low-power wake-up signal or a periodic synchronization signal.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the method further includes:
  • the first configuration information is configuration information of the first reference signal sent by the neighboring cell.
  • the method further includes:
  • the method further includes:
  • the measurement configuration information is used to instruct to use the first reference signal of the neighboring cell with the first priority as the measurement signal.
  • a measuring device which is configured in a user equipment, and the device includes:
  • the transceiver module is configured to use a low power consumption receiver to measure a first reference signal to obtain a first measurement result, where the first reference signal is a signal sent by a neighboring cell of the user equipment and is used for reception by the low power consumption receiver.
  • a device for sending measurement configuration information which is configured in a network device, and the device includes:
  • the transceiver module is configured to send measurement configuration information to a user equipment, where the measurement configuration information is used to indicate that a first reference signal is used as a measurement signal, where the first reference signal is a signal sent by a neighboring cell of the user equipment, and the signal is used to be received by a low-power receiver.
  • an electronic device including a processor and a memory, wherein:
  • the memory is used to store computer programs
  • the processor is used to execute the computer program to implement the first aspect or any possible design of the first aspect.
  • an electronic device including a processor and a memory, wherein:
  • the memory is used to store computer programs
  • the processor is used to execute the computer program to implement the second aspect or any possible design of the second aspect.
  • a computer-readable storage medium wherein instructions are stored in the computer-readable storage medium.
  • the instructions When the instructions are called and executed on a computer, the computer executes the above-mentioned first aspect or any possible design of the first aspect.
  • a computer-readable storage medium wherein instructions are stored in the computer-readable storage medium.
  • the instructions When the instructions are called and executed on a computer, the computer executes the above-mentioned first aspect or any possible design of the first aspect.
  • the user equipment performs mobility measurement on the signal of the neighboring cell through the low-power receiver, and can smoothly complete the mobility measurement when the main transceiver is in the sleep state, thereby improving the measurement capability of the user equipment.
  • FIG1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure.
  • FIG2 is a schematic diagram of a method for sending measurement configuration information and measuring provided by an embodiment of the present disclosure
  • FIG3 is a schematic diagram of a method for sending measurement configuration information and measuring provided by an embodiment of the present disclosure
  • FIG4 is a schematic diagram of a method for sending measurement configuration information and measuring provided by an embodiment of the present disclosure
  • FIG5 is a schematic diagram of a method for sending measurement configuration information and measuring provided by an embodiment of the present disclosure
  • FIG6 is a flow chart of a measurement method provided by an embodiment of the present disclosure.
  • FIG7 is a flow chart of a measurement method provided by an embodiment of the present disclosure.
  • FIG8 is a flow chart of a measurement method provided by an embodiment of the present disclosure.
  • FIG9 is a flow chart of a measurement method provided by an embodiment of the present disclosure.
  • FIG10 is a flow chart of sending measurement configuration information provided by an embodiment of the present disclosure.
  • FIG11 is a flow chart of sending measurement configuration information provided by an embodiment of the present disclosure.
  • FIG12 is a structural diagram of a measuring device provided in an embodiment of the present disclosure.
  • FIG13 is a structural diagram of a measuring device provided in an embodiment of the present disclosure.
  • FIG. 14 is a structural diagram of a device for sending measurement configuration information provided by an embodiment of the present disclosure.
  • FIG. 15 is a structural diagram of a device for sending measurement configuration information provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein may be interpreted as “at” or "when” or "in response to determination".
  • a method for executing indication information provided by an embodiment of the present disclosure may be applied to a wireless communication system 100, which may include but is not limited to a network device 101 and a user device 102.
  • the user device 102 is configured to support carrier aggregation, and the user device 102 may be connected to multiple carrier components of the network device 101, including a primary carrier component and one or more secondary carrier components.
  • the application scenarios of the wireless communication system 100 include, but are not limited to, long-term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, worldwide interoperability for microwave access (WiMAX) communication system, cloud radio access network (CRAN) system, future fifth-generation (5G) system, new radio (NR) communication system or future evolved public land mobile network (PLMN) system, etc.
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • WiMAX worldwide interoperability for microwave access
  • CDRF cloud radio access network
  • 5G fifth-generation
  • NR new radio
  • PLMN future evolved public land mobile network
  • the user equipment 102 shown above may be a user equipment (UE), a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal, a wireless communication device, a terminal agent or a user equipment, etc.
  • the user equipment 102 may have a wireless transceiver function, and it can communicate with one or more network devices 101 of one or more communication systems (such as wireless communication) and receive network services provided by the network device 101, where the network device 101 includes but is not limited to the base station shown in the figure.
  • the user device 102 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a user device in a future 5G network, or a user device in a future evolved PLMN network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 101 may be an access network device (or access network point).
  • the access network device refers to a device that provides network access functions, such as a radio access network (RAN) base station, etc.
  • the network device may specifically include a base station (BS) device, or a base station device and a wireless resource management device for controlling the base station device, etc.
  • the network device may also include a relay station (relay device), an access point, a base station in a future 5G network, a base station in a future evolved PLMN network, or an NR base station, etc.
  • the network device may be a wearable device or a vehicle-mounted device.
  • the network device may also be a communication chip with a communication module.
  • the network equipment 101 includes, but is not limited to, the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, the radio network controller (radio network controller, RNC), the node B (node B, NB) in the WCDMA system, the wireless controller under the CRAN system, the base station controller (basestation controller, BSC), the base transceiver station (base transceiver station, BTS) in the GSM system or the CDMA system, the home base station (for example, home evolved nodeB, or home node B, HNB), the baseband unit (baseband unit, BBU), the transmitting and receiving point (TRP), the transmitting point (transmitting point, TP) or the mobile switching center, etc.
  • the next generation base station evolved node B, eNB
  • the radio network controller radio network controller
  • RNC radio network controller
  • node B node B
  • BTS base transcei
  • the network equipment may configure one or more measurement objects for the user equipment, and when each measurement object contains a synchronization signal block for mobility measurement configured by the network equipment for the user equipment, the frequency position, subcarrier spacing, etc. of the synchronization signal block will be indicated.
  • the network equipment configures CSI-RS resources for mobility measurement for the user equipment, the frequency position, subcarrier spacing, etc. of the CSI-RS will also be indicated.
  • the main transceiver of the user equipment When the main transceiver of the user equipment is in sleep mode, it will not be able to use the synchronization signal block or CSI-RS resources to perform mobility measurement. Considering that a feasible solution is to use the signal received by the low-power receiver to perform mobility measurement.
  • FIG. 2 is a flow chart of a measurement method according to an exemplary embodiment. As shown in FIG. 2 , the method includes steps S201-S203. Specifically:
  • Step S201 The network device sends measurement configuration information to the user equipment.
  • the measurement configuration information is used to indicate that a first reference signal is used as a measurement signal, the first reference signal is a signal sent by a neighboring cell of the user equipment, and the signal is used to be received by a low-power receiver.
  • the first reference signal may be a low power wake-up signal. Since the low power wake-up signal may be periodic, the first reference signal may be a periodic low power wake-up signal.
  • a synchronization signal for maintaining the local clock can be specially designed for the low-power receiver, for example, the synchronization signal can be: a signal of on-off keying (OOK) or frequency shift keying (FSK) modulation mode.
  • OOK on-off keying
  • FSK frequency shift keying
  • the user equipment can use this synchronization signal to perform mobility measurement
  • the first reference signal can be a synchronization signal
  • the synchronization signal is used for the low-power receiver to maintain the local clock.
  • the synchronization signal can be periodic
  • the first reference signal is a periodic synchronization signal.
  • This synchronization signal can be a separate synchronization signal unrelated to the LP WUS, or it can be included in the LP WUS.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the measurement configuration information may include multiple different measurement window configuration information.
  • the user equipment may use any measurement window configuration information of the multiple different measurement window configuration information to perform mobility measurement, or may use different measurement window configuration information under different conditions. This condition may be a time period, a geographical location of the user equipment, and the like.
  • different measurement windows correspond to first reference signals to be measured from different neighboring cells. When the user is in a specific geographical location, only the first reference signal of the neighboring cell that is most adjacent to the geographical location is selected for measurement, thereby only measuring the first reference signal in the measurement window corresponding to the neighboring cell.
  • the signal sent by the neighboring cell of the user equipment is a signal sent by a network device corresponding to the neighboring cell of the serving cell of the user equipment.
  • Step S202 The user equipment uses a low power consumption receiver to measure a first reference signal to obtain a first measurement result.
  • the user equipment uses a low power consumption receiver to measure the first reference signal, including: when the main transceiver of the user equipment is in a sleep state, using the low power consumption receiver to measure the first reference signal to obtain a first measurement result.
  • the user equipment uses a low power consumption receiver to measure the first reference signal, including: the user equipment uses the low power consumption receiver to measure the first reference signal according to configuration information of the first reference signal.
  • the user equipment may obtain the configuration information of the first reference signal in different ways.
  • the user equipment may obtain the configuration information of the first reference signal in the following two ways:
  • default configuration information is pre-stored in the user equipment, and the configuration information is configuration information of the first reference signal.
  • the configuration information includes at least one of the following: a period, a time domain offset, or a frequency domain position.
  • the user equipment receives first configuration information sent by the network equipment, where the first configuration information is configuration information of the first reference signal sent by the neighboring cell, and the first configuration information includes at least one of the following: period, time domain offset, or frequency domain position.
  • the first measurement result is one of the following:
  • RSRP Reference Signal Receiving Power
  • RSSI Received Signal Strength Indicator
  • RSRQ Reference Signal Receiving Quality
  • Step S203 When the first measurement result does not satisfy the cell reselection condition, the user equipment does not perform cell reselection (ie, stays in the current serving cell).
  • the cell reselection condition is related to the first measurement result. For example, when the measurement value of the first measurement result does not meet the cell reselection condition, cell reselection is not performed. When the measurement value of the first measurement result meets the cell reselection condition, cell reselection is performed based on the first measurement result.
  • Step S204 After the user equipment receives the LP WUS of the serving cell through the low power receiver, it wakes up the main transceiver.
  • the user equipment stays in the original serving cell and receives the LP WUS sent by the original serving cell. If the user equipment receives the LP WUS sent by the original serving cell, the user equipment will wake up the main transceiver.
  • Step S205 reporting the first measurement result through the main transceiver.
  • the embodiments of the present disclosure are applicable to various scenarios in which a user equipment needs to perform mobility measurement, including a scenario in which the user equipment needs to perform mobility measurement when it moves to the edge of a serving cell, or a scenario in which the user equipment needs to perform mobility measurement periodically, or a scenario in which the user equipment determines that a mobility measurement condition is met based on the signal quality of the serving cell.
  • the user equipment performs mobility measurement on the signal of the neighboring cell through a low-power receiver according to the first measurement configuration information configured by the network device, and can successfully complete the mobility measurement when the main transceiver is in a sleep state, thereby improving the measurement capability of the user equipment.
  • the present disclosure provides a measurement method, which includes steps S201'-S203', specifically:
  • Step S201' is the same as step S201;
  • Step S202' is the same as step S202;
  • Step S203' when the first measurement result meets the cell reselection condition, the user equipment performs cell reselection according to the first measurement result, and listens to the LP WUS of the reselected neighboring cell.
  • the cell reselection condition is related to the first measurement result. For example, when the measurement value of the first measurement result does not meet the cell reselection condition, the cell reselection condition is not performed. When the measurement value of the first measurement result meets the cell reselection condition, the cell reselection is performed according to the first measurement result.
  • performing cell reselection according to the first measurement result includes determining at least one neighboring cell according to the first measurement result.
  • determining at least one neighboring cell according to the first measurement result includes: determining a neighboring cell that meets at least one of the following conditions according to the first measurement result:
  • the first measurement result has the highest measured value.
  • the measured value in the first measurement result is greater than the fifth threshold value
  • the measurement value in the first measurement result is greater than a sixth threshold value and the neighboring cell has the first priority.
  • the user equipment can successfully complete the mobility measurement and cell reselection when the main transceiver is in the sleep state, thereby improving the measurement capability and cell reselection capability of the user equipment.
  • the process may further include step S204'.
  • Step S204’ After the user equipment receives the LP WUS of the neighboring cell through the low power receiver, it wakes up the main transceiver.
  • the user equipment receives the LP WUS signal of the neighboring cell determined after the reselection, and determines to wake up the main transceiver based on it.
  • FIG3 is a flow chart of a measurement method according to an exemplary embodiment. As shown in FIG3 , the method includes steps S301-S304. Specifically:
  • Step S301 A network device sends measurement configuration information to a user equipment, where the measurement configuration information is used to instruct to use a first reference signal as a measurement signal.
  • the measurement configuration information is used to indicate that a first reference signal is used as a measurement signal, the first reference signal is a signal sent by a neighboring cell of the user equipment, and the signal is used to be received by a low-power receiver.
  • the first reference signal may be a low power wake-up signal. Since the low power wake-up signal may be periodic, the first reference signal may be a periodic low power wake-up signal.
  • the first reference signal can be a synchronization signal, and the synchronization signal is used for the low power receiver to maintain the local clock. Since the synchronization signal can be periodic, the first reference signal is a periodic synchronization signal. This synchronization signal can be a separate synchronization signal unrelated to the LP WUS, or it can be included in the LP WUS.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the measurement configuration information may include multiple different measurement window configuration information.
  • the user equipment may use any measurement window configuration information of the multiple different measurement window configuration information to perform mobility measurement, or may use different measurement window configuration information under different conditions. This condition may be a time period, a location, etc.
  • the signal sent by the neighboring cell of the user equipment is a signal sent by a network device corresponding to a cell adjacent to the serving cell of the user equipment.
  • Step S302 The user equipment uses a low power consumption receiver to measure a second reference signal to obtain a second measurement result, and determines whether to use a low power consumption receiver to measure a first reference signal to obtain a first measurement result according to the second measurement result.
  • the second reference signal is a signal sent by a serving cell of the user equipment.
  • the user equipment may obtain the configuration information of the first reference signal and the configuration information of the second reference signal in different ways. For example:
  • default configuration information is pre-stored in the user equipment, and the configuration information is configuration information of the first reference signal.
  • the configuration information includes at least one of the following: a period, a time domain offset, or a frequency domain position.
  • the user equipment receives first configuration information sent by the network equipment, where the first configuration information is configuration information of the first reference signal sent by the neighboring cell, and the first configuration information includes at least one of the following: period, time domain offset, or frequency domain position.
  • the user equipment obtains the configuration information of the second reference signal in the following two ways:
  • default configuration information is pre-stored in the user equipment, and the configuration information is configuration information of the second reference signal.
  • the configuration information includes at least one of the following: a period, a time domain offset, or a frequency domain position.
  • the user equipment receives second configuration information sent by the network equipment, where the second configuration information is configuration information of the second reference signal sent by the serving cell, and the second configuration information includes at least one of the following: period, time domain offset, or frequency domain position.
  • determining, according to the second measurement result, to use a low power consumption receiver to measure the first reference signal includes any one of the following:
  • the first one is that when the second measurement result is lower than the first threshold value T1, a low power consumption receiver is used to measure the first reference signal, and the frequency of the neighboring cell is the same as the frequency of the serving cell.
  • the second type is to use a low-power receiver to measure the first reference signal when the second measurement result is lower than a second threshold value T2, and the frequency of the neighboring cell is different from the frequency of the serving cell.
  • determining not to use the low-power receiver to measure the first reference signal according to the second measurement result includes: when the second measurement result is higher than the first threshold value T1 or the second threshold value T2, not using the low-power receiver to measure the first reference signal. It can also be understood that when the second measurement result is good, there is no need to measure the first reference signal of the neighboring cell.
  • step S302 further includes: determining at least one neighboring cell according to the first measurement result and the second measurement result, and monitoring a low power consumption wake-up signal of the at least one neighboring cell.
  • determining at least one neighboring cell according to the first measurement result and the second measurement result includes determining a neighboring cell that satisfies at least one of the following:
  • the first type is that the first measurement result is better than the second measurement result, and the difference between the first measurement result and the second measurement result is greater than or equal to a seventh threshold value;
  • a value representing the degree to which the first measurement result is superior to the second measurement result is greater than an eighth threshold value.
  • the degree characterization value may be a ratio of a difference between the first measurement result and the second measurement result to the first measurement result, the second measurement result or a fixed value, or may be a logarithmic representation of the degree to which the first measurement result is superior to the second measurement result.
  • Step S303 When the first measurement result is lower than the third threshold value and the second measurement result is lower than the fourth threshold value, wake up the main receiver.
  • step S303 if the first measurement result is lower than the third threshold value and the second measurement result is lower than the fourth threshold value, it means that the signal quality of the first reference signal of the neighboring cell and the second reference signal of the serving cell is poor, and it is impossible to determine how to perform cell reselection using only the low-power receiver. Therefore, it is necessary to wake up the main receiver to perform measurement and determine whether it is necessary and how to perform cell reselection.
  • the third threshold value is the same as the fourth threshold value, and in another example, the third threshold value is different from the fourth threshold value.
  • Step S304 After waking up the main transceiver, the user equipment reports the first measurement result and the second measurement result to the network device.
  • the embodiments of the present disclosure are applicable to various scenarios in which a user equipment needs to perform mobility measurement, including a scenario in which the user equipment needs to perform mobility measurement when it moves to the edge of a serving cell, or a scenario in which the user equipment needs to perform mobility measurement periodically, or a scenario in which the user equipment determines that a mobility measurement condition is met based on the signal quality of the serving cell.
  • the user equipment performs mobility measurement on the signal of the serving cell through the low-power receiver to obtain a second measurement result, and determines whether to perform mobility measurement on the signal of the neighboring cell according to the second measurement result, thereby completing the measurement of the neighboring cell according to the measurement result of the serving cell, and successfully completing the mobility measurement when the main transceiver is in a sleep state in a case that is more in line with the current signal reception state of the user equipment in the serving cell, thereby improving the measurement capability of the user equipment.
  • the user equipment can move within the coverage area of multiple cells while keeping the main receiver turned off, while ensuring that the user equipment can receive paging from the network, which has the effect of terminal energy saving.
  • FIG4 is a flow chart of a measurement method according to an exemplary embodiment. As shown in FIG4 , the method includes steps S401-S403. Specifically:
  • Step S401 A network device sends measurement configuration information to a user equipment, where the measurement configuration information is used to indicate that a first reference signal of a neighboring cell with a first priority is used as a measurement signal.
  • the signal is used for reception by a low-power receiver.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the measurement configuration information may include multiple different measurement window configuration information.
  • the user equipment may use any measurement window configuration information of the multiple different measurement window configuration information to perform mobility measurement, or may use different measurement window configuration information under different conditions. This condition may be a time period, a location, etc.
  • Step S402 The user equipment uses a low power receiver to measure a second reference signal to obtain a second measurement result, and the user equipment measures a first reference signal of a neighboring cell with a first priority according to the measurement configuration information to obtain a first measurement result.
  • Step S403 After waking up the main transceiver, the user equipment reports the first measurement result and the second measurement result to the network device.
  • the user equipment performs mobility measurement on the signal of the serving cell through a low-power receiver to obtain a second measurement result.
  • the network device clearly indicates to the user equipment the neighboring cell that needs to be measured, regardless of the second measurement result (i.e., regardless of the comparison between the second measurement result and the corresponding threshold), the user equipment shall use the low-power receiver to measure the first reference signal of the neighboring cell with the first priority according to the instruction of the network device.
  • FIG5 is a flow chart of a measurement method according to an exemplary embodiment. As shown in FIG5 , the method includes steps S501-S503. Specifically:
  • Step S501 A network device sends measurement configuration information to a user equipment, where the measurement configuration information is used to instruct to use a first reference signal of a neighboring cell whose priority is greater than or equal to a second priority as a measurement signal.
  • the signal is used for reception by a low-power receiver.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the measurement configuration information may include multiple different measurement window configuration information.
  • the user equipment may use any measurement window configuration information of the multiple different measurement window configuration information to perform mobility measurement, or may use different measurement window configuration information under different conditions. This condition may be a time period, a location, etc.
  • Step S502 The user equipment uses a low power receiver to measure a second reference signal to obtain a second measurement result, and the user equipment measures a first reference signal of a neighboring cell having a priority greater than or equal to the second priority according to the measurement configuration information to obtain a first measurement result.
  • Step S503 After waking up the main transceiver, the user equipment reports the first measurement result and the second measurement result to the network device.
  • the user equipment performs mobility measurement on the signal of the serving cell through a low-power receiver to obtain a second measurement result.
  • the network device clearly indicates to the user equipment the neighboring cell that needs to be measured, regardless of the second measurement result (i.e., regardless of the comparison between the second measurement result and the corresponding threshold), the user equipment must use the low-power receiver to measure the first reference signal of the neighboring cell whose priority is greater than or equal to the second priority according to the instruction of the network device.
  • FIG6 is a flowchart of a measurement method according to an exemplary embodiment. As shown in FIG6 , the method includes steps S601-S604. Specifically:
  • Step S601 receiving measurement configuration information sent by a network device.
  • the measurement configuration information is used to indicate that a first reference signal is used as a measurement signal, the first reference signal is a signal sent by a neighboring cell of the user equipment, and the signal is used to be received by a low-power receiver.
  • the first reference signal can be a low power wake-up signal. Since the low power wake-up signal can be periodic, the first reference signal is a periodic low power wake-up signal.
  • a synchronization signal for maintaining the local clock can be specially designed for the low-power receiver, for example, the synchronization signal can be: a signal of on-off keying (OOK) or frequency shift keying (FSK) modulation mode.
  • OOK on-off keying
  • FSK frequency shift keying
  • the user equipment can use this synchronization signal to perform mobility measurement
  • the first reference signal can be a synchronization signal
  • the synchronization signal is used for the low-power receiver to maintain the local clock.
  • the synchronization signal can be periodic
  • the first reference signal is a periodic synchronization signal.
  • This synchronization signal can be a separate synchronization signal unrelated to the LP WUS, or it can be included in the LP WUS.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the measurement configuration information may include multiple different measurement window configuration information.
  • the user equipment may use any measurement window configuration information of the multiple different measurement window configuration information to perform mobility measurement, or may use different measurement window configuration information under different conditions. This condition may be a time period, a geographical location of the user equipment, and the like.
  • different measurement windows correspond to first reference signals to be measured from different neighboring cells. When the user is in a specific geographical location, only the first reference signal of the neighboring cell that is most adjacent to the geographical location is selected for measurement, thereby only measuring the first reference signal in the measurement window corresponding to the neighboring cell.
  • the signal sent by the neighboring cell of the user equipment is a signal sent by a network device corresponding to the neighboring cell of the serving cell of the user equipment.
  • Step S602 Use a low power receiver to measure a first reference signal to obtain a first measurement result.
  • the user equipment uses a low power consumption receiver to measure the first reference signal, including: when the main transceiver of the user equipment is in a sleep state, using the low power consumption receiver to measure the first reference signal to obtain a first measurement result.
  • the user equipment uses a low power consumption receiver to measure the first reference signal, including: the user equipment uses the low power consumption receiver to measure the first reference signal according to configuration information of the first reference signal.
  • the user equipment may obtain the configuration information of the first reference signal in different ways.
  • the user equipment may obtain the configuration information of the first reference signal in the following two ways:
  • default configuration information is pre-stored in the user equipment, and the configuration information is configuration information of the first reference signal.
  • the configuration information includes at least one of the following: a period, a time domain offset, or a frequency domain position.
  • the user equipment receives first configuration information sent by the network equipment, where the first configuration information is configuration information of the first reference signal sent by the neighboring cell, and the first configuration information includes at least one of the following: period, time domain offset, or frequency domain position.
  • the first measurement result is one of the following:
  • RSRP Reference Signal Receiving Power
  • RSSI Received Signal Strength Indicator
  • RSRQ Reference Signal Receiving Quality
  • Step S603 when the first measurement result does not satisfy the cell reselection condition, cell reselection is not performed (ie, the current serving cell is retained).
  • the cell reselection condition is related to the first measurement result. For example, when the measurement value of the first measurement result does not meet the cell reselection condition, cell reselection is not performed. When the measurement value of the first measurement result meets the cell reselection condition, cell reselection is performed based on the first measurement result.
  • Step S604 after receiving the LP WUS of the service cell through the low power receiver, wake up the main transceiver.
  • the user equipment stays in the original serving cell and receives the LP WUS sent by the original serving cell. If the user equipment receives the LP WUS sent by the original serving cell, the user equipment will wake up the main transceiver.
  • Step S605 reporting the first measurement result through the main transceiver.
  • the embodiments of the present disclosure are applicable to various scenarios in which a user equipment needs to perform mobility measurement, including a scenario in which the user equipment needs to perform mobility measurement when it moves to the edge of a serving cell, or a scenario in which the user equipment needs to perform mobility measurement periodically, or a scenario in which the user equipment determines that a mobility measurement condition is met based on the signal quality of the serving cell.
  • the user equipment performs mobility measurement on the signal of the neighboring cell through a low-power receiver according to the first measurement configuration information configured by the network device, and can successfully complete the mobility measurement when the main transceiver is in a sleep state, thereby improving the measurement capability of the user equipment.
  • the present disclosure embodiment provides a measurement method, which is performed by a user equipment.
  • the method includes steps S601'-S603', specifically:
  • Step S601' is the same as step S601;
  • Step S602' is the same as step S602;
  • Step S603' when the first measurement result meets the cell reselection condition, the user equipment performs cell reselection according to the first measurement result, and listens to the LP WUS of the reselected neighboring cell.
  • the cell reselection condition is related to the first measurement result. For example, when the measurement value of the first measurement result does not meet the cell reselection condition, the cell reselection condition is not performed. When the measurement value of the first measurement result meets the cell reselection condition, the cell reselection is performed according to the first measurement result.
  • performing cell reselection according to the first measurement result includes determining at least one neighboring cell according to the first measurement result.
  • determining at least one neighboring cell according to the first measurement result includes: determining a neighboring cell that meets at least one of the following conditions according to the first measurement result:
  • the first measurement result has the highest measured value.
  • the measured value in the first measurement result is greater than the fifth threshold value
  • the measurement value in the first measurement result is greater than a sixth threshold value and the neighboring cell has the first priority.
  • the user equipment can successfully complete the mobility measurement and cell reselection when the main transceiver is in the sleep state, thereby improving the measurement capability and cell reselection capability of the user equipment.
  • the process may further include step S604'.
  • Step S604' after receiving the LP WUS of the neighboring cell through the low power receiver, wake up the main transceiver.
  • the user equipment receives the LP WUS signal of the neighboring cell determined after the reselection, and determines to wake up the main transceiver based on it.
  • FIG. 7 is a flowchart of a measurement method according to an exemplary embodiment. As shown in FIG. 7 , the method includes steps S701-S704. Specifically:
  • Step S701 receiving measurement configuration information sent by a network device, where the measurement configuration information is used to indicate to use a first reference signal as a measurement signal.
  • the measurement configuration information is used to indicate that a first reference signal is used as a measurement signal, the first reference signal is a signal sent by a neighboring cell of the user equipment, and the signal is used to be received by a low-power receiver.
  • the first reference signal may be a low power wake-up signal. Since the low power wake-up signal may be periodic, the first reference signal may be a periodic low power wake-up signal.
  • the first reference signal can be a synchronization signal, and the synchronization signal is used for the low power receiver to maintain the local clock. Since the synchronization signal can be periodic, the first reference signal is a periodic synchronization signal. This synchronization signal can be a separate synchronization signal unrelated to the LP WUS, or it can be included in the LP WUS.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the measurement configuration information may include multiple different measurement window configuration information.
  • the user equipment may use any measurement window configuration information of the multiple different measurement window configuration information to perform mobility measurement, or may use different measurement window configuration information under different conditions. This condition may be a time period, a location, etc.
  • the signal sent by the neighboring cell of the user equipment is a signal sent by a network device corresponding to the neighboring cell of the serving cell of the user equipment.
  • Step S702 Use a low power receiver to measure a second reference signal to obtain a second measurement result, and determine whether to use a low power receiver to measure a first reference signal to obtain a first measurement result according to the second measurement result.
  • the second reference signal is a signal sent by a serving cell of the user equipment.
  • the user equipment may obtain the configuration information of the first reference signal and the configuration information of the second reference signal in different ways. For example:
  • default configuration information is pre-stored in the user equipment, and the configuration information is configuration information of the first reference signal.
  • the configuration information includes at least one of the following: a period, a time domain offset, or a frequency domain position.
  • the user equipment receives first configuration information sent by the network equipment, where the first configuration information is configuration information of the first reference signal sent by the neighboring cell, and the first configuration information includes at least one of the following: period, time domain offset, or frequency domain position.
  • the user equipment obtains the configuration information of the second reference signal in the following two ways:
  • default configuration information is pre-stored in the user equipment, and the configuration information is configuration information of the second reference signal.
  • the configuration information includes at least one of the following: a period, a time domain offset, or a frequency domain position.
  • the user equipment receives second configuration information sent by the network equipment, where the second configuration information is configuration information of the second reference signal sent by the serving cell, and the second configuration information includes at least one of the following: period, time domain offset, or frequency domain position.
  • determining, according to the second measurement result, to use a low power consumption receiver to measure the first reference signal includes any one of the following:
  • the first one is that when the second measurement result is lower than the first threshold value T1, a low power consumption receiver is used to measure the first reference signal, and the frequency of the neighboring cell is the same as the frequency of the serving cell.
  • the second type is to use a low-power receiver to measure the first reference signal when the second measurement result is lower than a second threshold value T2, and the frequency of the neighboring cell is different from the frequency of the serving cell.
  • the low-power receiver is started to measure the first reference signal of a neighboring cell with a frequency different from that of the serving cell.
  • determining not to use the low power receiver to measure the first reference signal according to the second measurement result includes: when the second measurement result is higher than the first threshold value T1 or the second threshold value T2, not using the low power receiver to measure the first reference signal. It can also be understood that when the second measurement result is good, there is no need to measure the first reference signal of the neighboring cell.
  • step S702 further includes: determining at least one neighboring cell according to the first measurement result and the second measurement result, and monitoring a low power consumption wake-up signal of the at least one neighboring cell.
  • determining at least one neighboring cell according to the first measurement result and the second measurement result includes at least one of the following:
  • the first type is that the first measurement result is better than the second measurement result, and the difference between the first measurement result and the second measurement result is greater than or equal to a seventh threshold value;
  • a value representing the degree to which the first measurement result is superior to the second measurement result is greater than an eighth threshold value.
  • the degree characterization value may be a ratio of a difference between the first measurement result and the second measurement result to the first measurement result, the second measurement result or a fixed value, or may be a logarithmic representation of the degree to which the first measurement result is superior to the second measurement result.
  • Step S703 When the first measurement result is lower than the third threshold and the second measurement result is lower than the fourth threshold, wake up the main receiver.
  • step S703 if the first measurement result is lower than the third threshold value and the second measurement result is lower than the fourth threshold value, it means that the signal quality of the first reference signal of the neighboring cell and the second reference signal of the serving cell is poor, and it is impossible to determine how to perform cell reselection using only the low-power receiver. Therefore, it is necessary to wake up the main receiver to perform measurement and determine whether it is necessary and how to perform cell reselection.
  • the third threshold value is the same as the fourth threshold value, and in another example, the third threshold value is different from the fourth threshold value.
  • Step S704 After waking up the main transceiver, report the first measurement result and the second measurement result to the network device.
  • the embodiments of the present disclosure are applicable to various scenarios in which a user equipment needs to perform mobility measurement, including a scenario in which the user equipment needs to perform mobility measurement when it moves to the edge of a serving cell, or a scenario in which the user equipment needs to perform mobility measurement periodically, or a scenario in which the user equipment determines that a mobility measurement condition is met based on the signal quality of the serving cell.
  • the user equipment performs mobility measurement on the signal of the serving cell through a low-power receiver to obtain a second measurement result, and determines whether to perform mobility measurement on the signal of the neighboring cell according to the second measurement result, thereby completing the measurement of the neighboring cell according to the measurement result of the serving cell, and successfully completing the mobility measurement when the main transceiver is in a sleep state under a condition that is more in line with the current signal reception status of the user equipment in the serving cell, thereby improving the measurement capability of the user equipment.
  • the user equipment can move in the coverage area of multiple cells while keeping the main receiver turned off, while ensuring that the terminal can receive network paging, which has the effect of terminal energy saving.
  • FIG8 is a flowchart of a measurement method according to an exemplary embodiment. As shown in FIG8 , the method includes steps S801-S803. Specifically:
  • Step S801 receiving measurement configuration information sent by a network device, where the measurement configuration information is used to indicate that a first reference signal of a neighboring cell with a first priority is used as a measurement signal.
  • the signal is used for reception by a low-power receiver.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the measurement configuration information may include multiple different measurement window configuration information.
  • the user equipment may use any measurement window configuration information of the multiple different measurement window configuration information to perform mobility measurement, or may use different measurement window configuration information under different conditions. This condition may be a time period, a location, etc.
  • Step S802 Use a low power receiver to measure a second reference signal to obtain a second measurement result, and the user equipment measures a first reference signal of a neighboring cell with a first priority according to the measurement configuration information to obtain a first measurement result.
  • Step S803 After waking up the main transceiver, report the first measurement result and the second measurement result to the network device.
  • the user equipment performs mobility measurement on the signal of the serving cell through a low-power receiver to obtain a second measurement result.
  • the network device clearly indicates to the user equipment the neighboring cell that needs to be measured, regardless of the second measurement result (i.e., regardless of the comparison between the second measurement result and the corresponding threshold), the user equipment must use the low-power receiver to measure the first reference signal of the neighboring cell with the first priority according to the instruction of the network device.
  • FIG9 is a flowchart of a measurement method according to an exemplary embodiment. As shown in FIG9 , the method includes steps S901-S903. Specifically:
  • Step S901 receiving measurement configuration information sent by a network device, where the measurement configuration information is used to indicate that a first reference signal of a neighboring cell whose priority is greater than or equal to a second priority is used as a measurement signal.
  • the signal is used for reception by a low-power receiver.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the measurement configuration information may include multiple different measurement window configuration information.
  • the user equipment may use any measurement window configuration information of the multiple different measurement window configuration information to perform mobility measurement, or may use different measurement window configuration information under different conditions. This condition may be a time period, a location, etc.
  • Step S902 Use a low power receiver to measure a second reference signal to obtain a second measurement result, and the user equipment measures a first reference signal of a neighboring cell whose priority is greater than or equal to the second priority according to the measurement configuration information to obtain a first measurement result.
  • Step S903 After waking up the main transceiver, report the first measurement result and the second measurement result to the network device.
  • the user equipment performs mobility measurement on the signal of the serving cell through a low-power receiver to obtain a second measurement result.
  • the network device clearly indicates to the user equipment the neighboring cell that needs to be measured, regardless of the second measurement result (i.e., regardless of the comparison between the second measurement result and the corresponding threshold), the user equipment must use the low-power receiver to measure the first reference signal of the neighboring cell whose priority is greater than or equal to the second priority according to the instruction of the network device.
  • FIG10 is a flowchart of a method for sending measurement configuration information according to an exemplary embodiment. As shown in FIG10 , the method includes step S1001, specifically:
  • Step S1001 Send measurement configuration information to a user equipment, where the measurement configuration information is used to indicate to use a first reference signal as a measurement signal, where the first reference signal is a signal sent by a neighboring cell of the user equipment, and the signal is used to be received by a low power consumption receiver.
  • the signal is a periodic low-power wake-up signal or a periodic synchronization signal.
  • the first measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • FIG11 is a flowchart of a method for sending measurement configuration information according to an exemplary embodiment. As shown in FIG11, the method includes steps S1101-S1102, specifically:
  • Step S1101 determining a neighboring cell with a first priority among neighboring cells of a user equipment
  • Step S1102 Send measurement configuration information to the user equipment, where the measurement configuration information is used to indicate that a first reference signal of the neighboring cell with a first priority is used as a measurement signal, where the first reference signal is a signal sent by the neighboring cell of the user equipment, and the signal is used to be received by a low power consumption receiver.
  • the embodiment of the present disclosure further provides a communication device, which may have the functions of the user equipment 102 in the above method embodiment, and is used to execute the steps performed by the user equipment 102 provided in the above embodiment.
  • the function may be implemented by hardware, or by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1200 shown in FIG. 12 may serve as the user equipment 102 involved in the above method embodiment, and execute the steps executed by the user equipment 102 in the above method embodiment.
  • the communication device 1200 includes a transceiver module 1201 and a processing module 1202 .
  • the transceiver module 1201 is configured to use a low power receiver to measure a first reference signal to obtain a first measurement result, where the first reference signal is a signal sent by a neighboring cell of the user equipment and is used for reception by the low power receiver.
  • the first reference signal is a periodic low-power wake-up signal or a periodic synchronization signal.
  • the transceiver module 1201 is further configured to receive measurement configuration information sent by a network device, where the measurement configuration information is used to indicate that the reference signal is used as a measurement signal.
  • the measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the transceiver module 1201 is further configured to receive first configuration information sent by a network device, where the first configuration information is configuration information of the first reference signal sent by the neighboring cell.
  • the first configuration information includes at least one of the following: a period, a time domain offset, or a frequency domain position.
  • the transceiver module 1201 is further configured to use the low-power receiver to measure a second reference signal to obtain a second measurement result, where the second reference signal is a signal sent by a serving cell of the user equipment.
  • the transceiver module 1201 is further configured to receive second configuration information sent by the network device, where the second configuration information is configuration information of the second reference signal sent by the serving cell.
  • the transceiver module 1201 is further configured to determine, according to the second measurement result, whether to use a low power consumption receiver to measure the first reference signal to obtain the first measurement result.
  • the transceiver module 1201 is also configured to, when the second measurement result is lower than a first threshold value, use a low power consumption receiver to measure the first reference signal, and the frequency of the neighboring cell is the same as the frequency of the serving cell; or, when the second measurement result is lower than a second threshold value, use a low power consumption receiver to measure the first reference signal, and the frequency of the neighboring cell is different from the frequency of the serving cell.
  • the transceiver module 1201 is further configured to wake up the main receiver when the first measurement result is lower than a third threshold value and the second measurement result is lower than a fourth threshold value.
  • the measurement configuration information is used to indicate that a first reference signal of a neighboring cell with a first priority is used as a measurement signal.
  • the transceiver module 1201 is further configured to determine at least one neighboring cell according to the first measurement result, and monitor a low power consumption wake-up signal of the at least one neighboring cell.
  • the processing module 1202 is further configured to determine, according to the first measurement result, a neighboring cell that meets at least one of the following conditions:
  • the first measurement result has the highest measured value.
  • the measured value in the first measurement result is greater than the fifth threshold value
  • the measurement value in the first measurement result is greater than a sixth threshold value and the neighboring cell has the first priority.
  • the transceiver module 1201 is further configured to determine at least one neighboring cell according to the first measurement result and the second measurement result, and monitor a low power consumption wake-up signal of the at least one neighboring cell.
  • the processing module 1202 is further configured to determine a neighboring cell that satisfies at least one of the following: the first measurement result is better than the second measurement result, and the difference between the first measurement result and the second measurement result is greater than or equal to a seventh threshold value;
  • a value representing the degree to which the first measurement result is superior to the second measurement result is greater than an eighth threshold value.
  • the communication device When the communication device is user equipment 102, its structure may also be as shown in FIG. 13 .
  • device 1300 may include one or more of the following components: a processing component 1302 , a memory 1304 , a power component 1306 , a multimedia component 1308 , an audio component 1310 , an input/output (I/O) interface 1312 , a sensor component 1314 , and a communication component 1316 .
  • a processing component 1302 may include one or more of the following components: a processing component 1302 , a memory 1304 , a power component 1306 , a multimedia component 1308 , an audio component 1310 , an input/output (I/O) interface 1312 , a sensor component 1314 , and a communication component 1316 .
  • a processing component 1302 may include one or more of the following components: a processing component 1302 , a memory 1304 , a power component 1306 , a multimedia component 1308 , an audio component 1310 , an input/output (I/O) interface 1312 , a sensor component 1314 , and a communication
  • the processing component 1302 generally controls the overall operation of the device 1300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1302 may include one or more processors 1320 to execute instructions to perform all or part of the steps of the above-described method.
  • the processing component 1302 may include one or more modules to facilitate the interaction between the processing component 1302 and other components.
  • the processing component 1302 may include a multimedia module to facilitate the interaction between the multimedia component 1308 and the processing component 1302.
  • the memory 1304 is configured to store various types of data to support operations on the device 1300. Examples of such data include instructions for any application or method operating on the device 1300, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 1304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 1306 provides power to the various components of the device 1300.
  • the power component 1306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to the device 1300.
  • the multimedia component 1308 includes a screen that provides an output interface between the device 1300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1308 includes a front camera and/or a rear camera. When the device 1300 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 1310 is configured to output and/or input audio signals.
  • the audio component 1310 includes a microphone (MIC), which is configured to receive external audio signals when the device 1300 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode.
  • the received audio signal may be further stored in the memory 1304 or sent via the communication component 1316.
  • the audio component 1310 also includes a speaker for outputting audio signals.
  • I/O interface 1312 provides an interface between processing component 1302 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 1314 includes one or more sensors for providing various aspects of the status assessment of the device 1300.
  • the sensor assembly 1314 can detect the open/closed state of the device 1300, the relative positioning of components, such as the display and keypad of the device 1300, the sensor assembly 1314 can also detect the position change of the device 1300 or a component of the device 1300, the presence or absence of user contact with the device 1300, the orientation or acceleration/deceleration of the device 1300, and the temperature change of the device 1300.
  • the sensor assembly 1314 can include a proximity sensor configured to detect the presence of a nearby object without any physical contact.
  • the sensor assembly 1314 can also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1314 can also include an accelerometer, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1316 is configured to facilitate wired or wireless communication between the device 1300 and other devices.
  • the device 1300 can access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 1316 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 1300 can be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to perform the above-mentioned methods.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to perform the above-mentioned methods.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 1304 including instructions, and the instructions can be executed by the processor 1320 of the device 1300 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • the embodiment of the present disclosure also provides a communication device, which can have the function of the network device 101 in the above method embodiment, and is used to execute the steps performed by the network device 101 provided in the above embodiment.
  • the function can be implemented by hardware, or by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1400 shown in FIG. 14 may be used as the network device 101 involved in the above method embodiment, and execute the steps performed by the network device 101 in the above method embodiment.
  • the communication device 1400 includes a processing module 1402 , or includes a transceiver module 1401 and a processing module 1402 .
  • the communication device 1400 shown in FIG. 14 may serve as the network device 102 involved in the above method embodiment, and execute the steps executed by the network device 102 in the above method embodiment.
  • the communication device 1400 includes a transceiver module 1401 and a processing module 1402 .
  • the transceiver module 1401 is configured to send measurement configuration information to the user equipment, where the measurement configuration information is used to indicate that a first reference signal is used as a measurement signal, where the first reference signal is a signal sent by a neighboring cell of the user equipment, and the signal is used to be received by a low power consumption receiver.
  • the signal is a periodic low-power wake-up signal or a periodic synchronization signal.
  • the first measurement configuration information includes at least one measurement window configuration information
  • the measurement window configuration information includes at least one of the following: a window period, a window length, a window time domain offset, and a window frequency domain position.
  • the method further includes: sending first configuration information to the user equipment, where the first configuration information is configuration information of the first reference signal sent by the neighboring cell.
  • the method further includes: sending second configuration information to the user equipment, where the second configuration information is configuration information of the second reference signal sent by the serving cell.
  • the processing module 1402 is configured to determine a neighboring cell with a first priority among neighboring cells of the user equipment; and the measurement configuration information is used to indicate to use a first reference signal of the neighboring cell with the first priority as a measurement signal.
  • the communication device When the communication device is a network device, its structure can also be shown in Figure 15. Take the network device 101 as a base station as an example to illustrate the structure of the communication device. As shown in Figure 15, the device 1500 includes a memory 1501, a processor 1502, a transceiver component 1503, and a power supply component 1506. Among them, the memory 1501 is coupled to the processor 1502, and can be used to store the programs and data necessary for the communication device 1500 to implement various functions.
  • the processor 1502 is configured to support the communication device 1500 to perform the corresponding functions in the above method, and this function can be implemented by calling the program stored in the memory 1501.
  • the transceiver component 1503 can be a wireless transceiver, which can be used to support the communication device 1500 to receive signaling and/or data through a wireless air interface, and send signaling and/or data.
  • the transceiver component 1503 may also be referred to as a transceiver unit or a communication unit.
  • the transceiver component 1503 may include a radio frequency component 1504 and one or more antennas 1505, wherein the radio frequency component 1504 may be a remote radio unit (RRU), which may be specifically used for transmission of radio frequency signals and conversion of radio frequency signals into baseband signals, and the one or more antennas 1505 may be specifically used for radiation and reception of radio frequency signals.
  • RRU remote radio unit
  • the processor 1502 can perform baseband processing on the data to be sent, and then output the baseband signal to the RF unit.
  • the RF unit performs RF processing on the baseband signal and then sends the RF signal in the form of electromagnetic waves through the antenna.
  • the RF unit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor 1502.
  • the processor 1502 converts the baseband signal into data and processes the data.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 604 including instructions, and the instructions can be executed by a processor 620 of the device 600 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • the user equipment performs mobility measurement on the signals of the neighboring cells through the low-power receiver, and can smoothly complete the mobility measurement when the main transceiver is in the sleep state, thereby improving the measurement capability of the user equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本公开提供了一种测量方法、装置、设备及可读存储介质,应用于无线通信技术领域,所述方法包括:使用低功耗接收机测量第一参考信号,获得第一测量结果,所述第一参考信号为所述用户设备的邻小区发送的信号,第一参考信号用于低功耗接收机接收。

Description

一种测量方法、装置、设备及可读存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种测量方法、装置、设备及可读存储介质。
背景技术
移动性测量是无线通信网络的一个重要环节。用户设备可以通过进行移动性测量获得服务小区以及邻小区的信号质量,并且将相关的测量结果上报给网络设备。网络设备根据终端设备上报的测量结果确定终端设备是否进行小区切换。
在下一代无线通信网络(new radio,NR)中,网络设备可以为终端设备配置同步信号块(synchronization signal block,SSB)或者信道状态信息参考信号(channel state information reference signal,CSI-RS)来进行移动性测量。
为了节省用户设备的功耗,在用户设备内配置主收发机和低功耗接收机。用户设备可以使主收发机处于睡眠状态后,使低功耗接收机监听低功耗唤醒信号(Low Power wake up signal,LP WUS),在监听到LP WUS后,唤醒主收发机,通过主收发机进行数据的接收和发送。
如果用户设备需要进行移动性测量时,其主接收机处于睡眠状态并且低功耗接收机处于监听状态,那么需要考虑如何在这种情况下完成移动性测量。
发明内容
本公开提供了一种测量方法、装置、设备及可读存储介质。
第一方面,提供了测量方法,由用户设备执行,所述方法包括:
使用低功耗接收机测量第一参考信号,获得第一测量结果,所述第一参考信号为所述用户设备的邻小区发送的信号,第一参考信号用于低功耗接收机接收。
在一些可能的实施方式中,所述第一参考信号为周期性的低功耗唤醒信号或者周期性的同步信号。
在一些可能的实施方式中,所述方法还包括:
接收网络设备发送的测量配置信息,所述测量配置信息用于指示将所述参考信号作为测量信号。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口 的频域位置。
在一些可能的实施方式中,接收网络设备发送的第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息。
在一些可能的实施方式中,所述第一配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
在一些可能的实施方式中,所述方法还包括:
使用所述低功耗接收机测量第二参考信号,获得第二测量结果,所述第二参考信号为所述用户设备的服务小区发送的信号。
在一些可能的实施方式中,所述方法还包括:
接收所述网络设备发送的第二配置信息,所述第二配置信息为所述服务小区发送的所述第二参考信号的配置信息。
在一些可能的实施方式中,所述使用低功耗接收机测量第一参考信号,包括:根据所述第二测量结果确定是否使用低功耗接收机测量第一参考信号,以获得第一测量结果。
在一些可能的实施方式中,所述根据所述第二测量结果确定使用低功耗接收机测量第一参考信号,包括:
在所述第二测量结果低于第一门限值的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率相同;
或者,
在所述第二测量结果低于第二门限值的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率不相同。
在一些可能的实施方式中,所述方法还包括:
在第一测量结果低于第三门限值并且第二测量结果低于第四门限值的情况下,唤醒主接收机。
在一些可能的实施方式中,所述方法还包括:
所述测量配置信息用于指示将具有第一优先级的邻小区的第一参考信号作为测量信号。
在一些可能的实施方式中,所述方法还包括:
根据所述第一测量结果确定至少一邻小区,监听所述至少一邻小区的低功耗唤醒信号。
在一些可能的实施方式中,所述根据所述第一测量结果确定至少一邻小区包括:
根据所述第一测量结果确定符合下述至少一条件的邻小区:
第一测量结果中的测量值最高、
第一测量结果中的测量值大于第五门限值、
第一测量结果中的测量值大于第六门限值并且邻小区具有第一优先级。
在一些可能的实施方式中,所述方法还包括:根据所述第一测量结果和所述第二测量结果确定至少一邻小区,监听所述至少一邻小区的低功耗唤醒信号。
在一些可能的实施方式中,所述根据所述第一测量结果和所述第二测量结果确定至少一邻小区,包括:确定满足以下至少一种的邻小区:
第一测量结果优于第二测量结果,并且,所述第一测量结果与第二测量结果的差值大于或等于第七门限值;
第一测量结果优于第二测量结果的程度表征值大于第八门限值。
第二方面,提供了发送测量配置信息的方法,由网络设备执行,所述方法包括:
向用户设备发送测量配置信息,所述测量配置信息用于指示将第一参考信号作为测量信号,所述第一参考信号为所述用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
在一些可能的实施方式中,所述信号为周期性的低功耗唤醒信号或者周期性的同步信号。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送第二配置信息,所述第二配置信息为所述服务小区发送的所述第 二参考信号的配置信息。
在一些可能的实施方式中,所述方法还包括:
在用户设备的邻小区中确定具有第一优先级的邻小区;
所述测量配置信息用于指示将所述具有第一优先级的邻小区的第一参考信号作为测量信号。
第三方面,提供了一种测量装置,被配置于用户设备,所述装置包括:
收发模块,被配置为使用低功耗接收机测量第一参考信号,获得第一测量结果,所述第一参考信号为所述用户设备的邻小区发送的信号,第一参考信号用于低功耗接收机接收。
第四方面,提供了一种发送测量配置信息的装置,被配置于网络设备,所述装置包括:
收发模块,被配置为向用户设备发送测量配置信息,所述测量配置信息用于指示将第一参考信号作为测量信号,所述第一参考信号为所述用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
第五方面,提供一种电子设备,包括处理器以及存储器,其中,
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第六方面,提供一种电子设备,包括处理器以及存储器,其中,
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
本公开中,用户设备通过低功耗接收机对邻小区的信号进行移动性测量,可以在主收发机处于睡眠状态时依然顺利的完成移动性测量,提高用户设备的测量能力。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是本公开实施例提供的一种发送测量配置信息和测量的方法的示意图;
图3是本公开实施例提供的一种发送测量配置信息和测量的方法的示意图;
图4是本公开实施例提供的一种发送测量配置信息和测量的方法的示意图;
图5是本公开实施例提供的一种发送测量配置信息和测量的方法的示意图;
图6是本公开实施例提供的一种测量方法的流程图;
图7是本公开实施例提供的一种测量方法的流程图;
图8是本公开实施例提供的一种测量方法的流程图;
图9是本公开实施例提供的一种测量方法的流程图;
图10是本公开实施例提供的一种发送测量配置信息的流程图;
图11是本公开实施例提供的一种发送测量配置信息的流程图;
图12是本公开实施例提供的一种测量装置的结构图;
图13是本公开实施例提供的一种测量装置的结构图;
图14是本公开实施例提供的一种发送测量配置信息的装置的结构图;
图15是本公开实施例提供的一种发送测量配置信息的装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与 如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种执行指示信息的方法可应用于无线通信系统100,该无线通信系统可以包括但不限于网络设备101和用户设备102。用户设备102被配置为支持载波聚合,用户设备102可连接至网络设备101的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备102可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或用户设备等。该用户设备102可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备101进行通信(如无线通信),并接受网络设备101提供的网络服务,这里的网络设备101包括但不限于图示基 站。
其中,用户设备102可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的用户设备或者未来演进的PLMN网络中的用户设备等。
网络设备101可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备具体可包括基站(base station,BS)设备,或包括基站设备以及用于控制基站设备的无线资源管理设备等。该网络设备还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备可以是可穿戴设备或车载设备。网络设备也可以是具有通信模块的通信芯片。
比如,网络设备101包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
在用户设备的主收发机处于工作状态时,为了使用户设备顺利进行移动性测量,网络设备可以为用户设备配置一个或者多个测量对象,在每个测量对象中包含网络设备为用户设备配置的用于移动性测量的同步信号块时,会指示同步信号块所在的频率位置、子载波间隔等。同样地,网络设备在为用户设备配置用于移动性测量的CSI-RS资源时,也会指示CSI-RS的频率位置、子载波间隔等。
用户设备的主收发机处于睡眠状态后将无法利用同步信号块或CSI-RS资源进行移动性测量,考虑到一种可行的方案是可以利用低功耗接收机接收的信号进行移动性测量。
本公开实施例提供了一种测量方法,图2是根据一示例性实施例示出的一种执行测量方法的流程图,如图2所示,该方法包括步骤S201-S203,具体的:
步骤S201,网络设备向用户设备发送测量配置信息。
其中,测量配置信息用于指示将第一参考信号作为测量信号,第一参考信号为用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
鉴于低功耗接收机可以接收LP WUS,从而用户设备可以使用LP WUS进行移动性测量,则所述第一参考信号可以为低功耗唤醒信号,由于低功耗唤醒信号可以是周期性的,则所述第一参考信号为周期性的低功耗唤醒信号。
鉴于,为了使低功耗接收机维护本地时钟,可以专门为低功耗接收机设计用于维护本地时钟的同步信号,例如同步信号可以为:开关键控(on-off keying,OOK)或者频移键控(frequency shift keying,FSK)调制方式的信号。从而用户设备可以利用此同步信号进行移动性测量,则所述第一参考信号可以为同步信号,所述同步信号用于所述低功耗接收机维护本地时钟。由于同步信号可以是周期性的,则所述第一参考信号为周期性的同步信号。此同步信号可以是与LP WUS无关的单独的同步信号,也可以是包含于LP WUS内。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。所述测量配置信息可以包括多个不同的测量窗口配置信息。用户设备可以采用所述多个不同的测量窗口配置信息中任一测量窗口配置信息进行移动性测量,或者,可以在不同条件下使用不同的测量窗口配置信息。此条件可以是时段、用户设备的地理位置等。例如,不同的测量窗口对应于来自不同邻小区的待测量的第一参考信号,当用户处于某一特定地理位置时,只选择测量与该地理位置最为紧邻的邻小区的第一参考信号,由此只在与该邻小区对应的测量窗口中去测量第一参考信号即可。
可以理解的是,用户设备的邻小区发送的信号是,与用户设备的服务小区的邻小区对应的网络设备发送的信号。
步骤S202,用户设备使用低功耗接收机测量第一参考信号,获得第一测量结果。
在一些可能的实施方式中,用户设备使用低功耗接收机测量第一参考信号,包括:用户设备在主收发机处于睡眠状态时,使用低功耗接收机测量第一参考信号,获得第一测量结果。
在一些可能的实施方式中,用户设备使用低功耗接收机测量第一参考信号,包括:用户设备根据第一参考信号的配置信息使用低功耗接收机测量第一参考信号。
用户设备可以通过不同的方式获知第一参考信号的配置信息,例如:用户设备获知第一参考信号的配置信息的方式包括以下两种:
第一种,用户设备中预存有默认的配置信息,此配置信息是第一参考信号的配置信息,此配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
第二种,用户设备接收网络设备发送的第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息,此所述第一配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
在一些可能的实施方式中,第一测量结果为以下中的一种:
参考信号接收功率(Reference Signal Receiving Power,RSRP)、
接收信号的强度指示(Received Signal Strength Indicator,RSSI)、
参考信号接收质量(Reference Signal Receiving Quality,RSRQ),其中,RSRQ为RSRP与RSSI的比值。
步骤S203,用户设备在第一测量结果不满足小区重选条件时,不执行小区重选(即驻留在当前的服务小区)。
在一些可能的实施方式中,小区重选条件与第一测量结果相关,例如第一测量结果的测量值未满足小区重选条件时,不进行小区重选,第一测量结果的测量值满足小区重选条件时,依据第一测量结果进行小区重选。
步骤S204,用户设备通过低功耗接收机接收到服务小区的LP WUS后,唤醒主收发机。
即用户设备驻留在原服务小区,并接收原服务小区发送的LP WUS。如果用户设备收到原服务小区发送的LP WUS,用户设备将唤醒主收发机。
步骤S205,通过主收发机上报第一测量结果。
本公开实施例适用于用户设备需要进行移动性测量的各种场景,包括用户设备移动到服务小区的边缘时需要进行移动性测量的场景,或者,用户设备定时的需要进行移动性测量的场景,或者用户设备根据服务小区的信号质量确定满足移动性测量条件的场景。
本公开实施例中,用户设备根据网络设备配置的第一测量配置信息,通过低功耗接收机对邻小区的信号进行移动性测量,可以在主收发机处于睡眠状态时依然顺利的完成移动性测量,提高用户设备的测量能力。
本公开实施例提供了一种测量方法,该方法包括步骤S201’-S203’,具体的:
步骤S201’与步骤S201相同;
步骤S202’,与步骤S202相同;
步骤S203’,用户设备在第一测量结果满足小区重选条件时,根据所述第一测量结 果执行小区重选,监听重选后的邻小区的LP WUS。
在一些可能的实施方式中,小区重选条件与第一测量结果相关,例如第一测量结果的测量值未满足小区重选条件时,不进行小区重选条件,第一测量结果的测量值满足小区重选条件时,依据第一测量结果进行小区重选。
在一些可能的实施方式中,根据所述第一测量结果执行小区重选包括根据所述第一测量结果确定至少一邻小区。
在一示例中,在一示例中,根据所述第一测量结果确定至少一邻小区包括:根据所述第一测量结果确定符合下述至少一条件的邻小区:
第一测量结果中的测量值最高、
第一测量结果中的测量值大于第五门限值、
第一测量结果中的测量值大于第六门限值并且邻小区具有第一优先级。
本公开实施例中,用户设备可以在主收发机处于睡眠状态时依然顺利的完成移动性测量以及小区重选,提高用户设备的测量能力和小区重选能力。
用户设备在完成小区重选后,还可以包括步骤S204’。
步骤S204’用户设备通过低功耗接收机接收到邻小区的LP WUS后,唤醒主收发机。
即,用户设备在执行小区重选后,接收重选后确定的邻小区的LP WUS信号,并据此确定唤醒主收发机。
本公开实施例提供了一种测量方法,图3是根据一示例性实施例示出的一种执行测量方法的流程图,如图3所示,该方法包括步骤S301-S304,具体的:
步骤S301,网络设备向用户设备发送测量配置信息,所述测量配置信息用于指示将第一参考信号作为测量信号。
其中,测量配置信息用于指示将第一参考信号作为测量信号,第一参考信号为用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
鉴于低功耗接收机可以接收LP WUS,从而用户设备可以使用LP WUS进行移动性测量,则所述第一参考信号可以为低功耗唤醒信号,由于低功耗唤醒信号可以是周期性的,则所述第一参考信号为周期性的低功耗唤醒信号。
鉴于,低功耗接收机需要接收同步信号以维护本地时钟,从而用户设备可以利用此同步信号进行移动性测量,则所述第一参考信号可以为同步信号,所述同步信号用于所述低功耗接收机维护本地时钟。由于同步信号可以是周期性的,则所述第一参考信号为周期 性的同步信号。此同步信号可以是与LP WUS无关的单独的同步信号,也可以是包含于LP WUS内。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。所述测量配置信息可以包括多个不同的测量窗口配置信息。用户设备可以采用所述多个不同的测量窗口配置信息中任一测量窗口配置信息进行移动性测量,或者,可以在不同条件下使用不同的测量窗口配置信息。此条件可以是时段、位置等。
可以理解的是,用户设备的邻小区发送的信号是,与用户设备的服务小区相邻的小区对应的网络设备发送的信号。
步骤S302,用户设备使用低功耗接收机测量第二参考信号获得第二测量结果,根据所述第二测量结果确定是否使用低功耗接收机测量第一参考信号,以获得第一测量结果。
其中,所述第二参考信号为所述用户设备的服务小区发送的信号。
用户设备可以通过不同的方式获知第一参考信号的配置信息和第二参考信号的配置信息。例如:
获知第一参考信号的配置信息的方式包括以下两种:
第一种,用户设备中预存有默认的配置信息,此配置信息是第一参考信号的配置信息,此配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
第二种,用户设备接收网络设备发送的第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息,此所述第一配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
用户设备获知第二参考信号的配置信息的方式包括以下两种:
第一种,用户设备中预存有默认的配置信息,此配置信息是第二参考信号的配置信息,此配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
第二种,用户设备接收网络设备发送的第二配置信息,所述第二配置信息为服务小区发送的所述第二参考信号的配置信息,此所述第二配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
在一些可能的实施方式中,根据所述第二测量结果确定使用低功耗接收机测量第一参考信号,包括以下中的任一种:
第一种,在第二测量结果低于第一门限值T1的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率相同。
也可以理解为,在第二测量结果低于第一门限值T1的情况下,启动使用低功耗接收机测量与服务小区的频率相同的邻小区的第一参考信号。
第二种,在所述第二测量结果低于第二门限值T2的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率不相同。
也可以理解为,在第二测量结果低于第二门限值T2的情况下,启动使用低功耗接收机测量与服务小区的频率不同的邻小区的第一参考信号。
在一些可能的实施方式中,根据所述第二测量结果确定不使用低功耗接收机测量第一参考信号,包括:在第二测量结果高于第一门限值T1或者第二门限值T2的情况下,不使用低功耗接收机测量第一参考信号。也可以理解为,在第二测量结果较好的,不需要测量邻小区的第一参考信号。
在一些可能的实施方式中,在一些可能的实施方式中,步骤S302还包括:根据所述第一测量结果和所述第二测量结果确定至少一邻小区,监听所述至少一邻小区的低功耗唤醒信号。
在一示例中,根据所述第一测量结果和所述第二测量结果确定至少一邻小区,包括确定满足以下至少一种的邻小区:
第一种,第一测量结果优于第二测量结果,并且,所述第一测量结果与第二测量结果的差值大于或等于第七门限值;
第二种,第一测量结果优于第二测量结果的程度表征值大于第八门限值。
其中,程度表征值可以是第一测量结果与第二测量结果的差异值与第一测量结果、第二测量结果或一固定值的比值,程度表征值还可以是对数形式表示的第一测量结果优于第二测量结果的程度。
步骤S303,在第一测量结果低于第三门限值并且第二测量结果低于第四门限值的情况下,唤醒主接收机。
此步骤S303中,第一测量结果低于第三门限值并且第二测量结果低于第四门限值的情况,表示邻小区的第一参考信号和服务小区的第二参考信号的信号质量较差,仅使用低功耗接收机无法判断如何做小区重选。所以需要唤醒主接收机来做测量和判断是否需要以及如何做小区重选。
在一示例中,第三门限值与第四门限值相同,在另一示例中,第三门限值与第四门限值不相同。
步骤S304,用户设备在唤醒主收发机后,向网络设备上报第一测量结果和第二测量结果。
本公开实施例适用于用户设备需要进行移动性测量的各种场景,包括用户设备移动到服务小区的边缘时需要进行移动性测量的场景,或者,用户设备定时的需要进行移动性测量的场景,或者用户设备根据服务小区的信号质量确定满足移动性测量条件的场景。
本公开实施例中,用户设备通过低功耗接收机对服务小区的信号进行移动性测量获得第二测量结果,根据第二测量结果确定是否对邻小区的信号进行移动性测量,从而根据对服务小区的测量结果完成对邻小区的测量,在更符合用户设备在服务小区的当前的信号接收状态的情况下,在主收发机处于睡眠状态时顺利完成移动性测量,提高用户设备的测量能力。另外,用户设备可以在保持主接收机关闭的状态下,在多个小区的覆盖区域内移动,同时保证本用户设备能够接收到网络的寻呼,具有终端节能的效果。
本公开实施例提供了一种测量方法,图4是根据一示例性实施例示出的一种执行测量方法的流程图,如图4所示,该方法包括步骤S401-S403,具体的:
步骤S401,网络设备向用户设备发送测量配置信息,所述测量配置信息用于指示将具有第一优先级的邻小区的第一参考信号作为测量信号。
其中,所述信号用于低功耗接收机接收。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。所述测量配置信息可以包括多个不同的测量窗口配置信息。用户设备可以采用所述多个不同的测量窗口配置信息中任一测量窗口配置信息进行移动性测量,或者,可以在不同条件下使用不同的测量窗口配置信息。此条件可以是时段、位置等。
步骤S402,用户设备使用低功耗接收机测量第二参考信号获得第二测量结果,并且,用户设备根据测量配置信息对具有第一优先级的邻小区的第一参考信号进行测量,获得第一测量结果。
步骤S403,用户设备在唤醒主收发机后,向网络设备上报第一测量结果和第二测量结果。
本公开实施例中,用户设备通过低功耗接收机对服务小区的信号进行移动性测量获得第二测量结果,在网络设备向用户设备明确指示需要测量的邻小区的情况下,无论第二测量结果的情况如何(即无论第二测量结果与相应的门限的比较情况如何),用户设备都 要根据网络设备的指示使用低功耗接收机测量具有第一优先级的邻小区的第一参考信号。
本公开实施例提供了一种测量方法,图5是根据一示例性实施例示出的一种执行测量方法的流程图,如图5所示,该方法包括步骤S501-S503,具体的:
步骤S501,网络设备向用户设备发送测量配置信息,所述测量配置信息用于指示将优先级大于或等于第二优先级的邻小区的第一参考信号作为测量信号。
其中,所述信号用于低功耗接收机接收。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。所述测量配置信息可以包括多个不同的测量窗口配置信息。用户设备可以采用所述多个不同的测量窗口配置信息中任一测量窗口配置信息进行移动性测量,或者,可以在不同条件下使用不同的测量窗口配置信息。此条件可以是时段、位置等。
步骤S502,用户设备使用低功耗接收机测量第二参考信号获得第二测量结果,并且,用户设备根据测量配置信息对优先级大于或等于第二优先级的邻小区的第一参考信号进行测量,获得第一测量结果。
步骤S503,用户设备在唤醒主收发机后,向网络设备上报第一测量结果和第二测量结果。
本公开实施例中,用户设备通过低功耗接收机对服务小区的信号进行移动性测量获得第二测量结果,在网络设备向用户设备明确指示需要测量的邻小区的情况下,无论第二测量结果的情况如何(即无论第二测量结果与相应的门限的比较情况如何),用户设备都要根据网络设备的指示使用低功耗接收机测量优先级大于或等于第二优先级的邻小区的第一参考信号。
本公开实施例提供了一种测量方法,由用户设备执行,图6是根据一示例性实施例示出的一种执行测量方法的流程图,如图6所示,该方法包括步骤S601-S604,具体的:
步骤S601,接收网络设备发送的测量配置信息。
其中,测量配置信息用于指示将第一参考信号作为测量信号,第一参考信号为用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
鉴于,低功耗接收机可以接收LP WUS,从而用户设备可以使用LP WUS进行移动性测量,则所述第一参考信号可以为低功耗唤醒信号,由于低功耗唤醒信号可以是周期性的, 则所述第一参考信号为周期性的低功耗唤醒信号。
鉴于,为了使低功耗接收机维护本地时钟,可以专门为低功耗接收机设计用于维护本地时钟的同步信号,例如同步信号可以为:开关键控(on-off keying,OOK)或者频移键控(frequency shift keying,FSK)调制方式的信号。从而用户设备可以利用此同步信号进行移动性测量,则所述第一参考信号可以为同步信号,所述同步信号用于所述低功耗接收机维护本地时钟。由于同步信号可以是周期性的,则所述第一参考信号为周期性的同步信号。此同步信号可以是与LP WUS无关的单独的同步信号,也可以是包含于LP WUS内。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。所述测量配置信息可以包括多个不同的测量窗口配置信息。用户设备可以采用所述多个不同的测量窗口配置信息中任一测量窗口配置信息进行移动性测量,或者,可以在不同条件下使用不同的测量窗口配置信息。此条件可以是时段、用户设备的地理位置等。例如,不同的测量窗口对应于来自不同邻小区的待测量的第一参考信号,当用户处于某一特定地理位置时,只选择测量与该地理位置最为紧邻的邻小区的第一参考信号,由此只在与该邻小区对应的测量窗口中去测量第一参考信号即可。
可以理解的是,用户设备的邻小区发送的信号是,与用户设备的服务小区的邻小区对应的网络设备发送的信号。
步骤S602,使用低功耗接收机测量第一参考信号,获得第一测量结果。
在一些可能的实施方式中,用户设备使用低功耗接收机测量第一参考信号,包括:用户设备在主收发机处于睡眠状态时,使用低功耗接收机测量第一参考信号,获得第一测量结果。
在一些可能的实施方式中,用户设备使用低功耗接收机测量第一参考信号,包括:用户设备根据第一参考信号的配置信息使用低功耗接收机测量第一参考信号。
用户设备可以通过不同的方式获知第一参考信号的配置信息,例如:用户设备获知第一参考信号的配置信息的方式包括以下两种:
第一种,用户设备中预存有默认的配置信息,此配置信息是第一参考信号的配置信息,此配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
第二种,用户设备接收网络设备发送的第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息,此所述第一配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
在一些可能的实施方式中,第一测量结果为以下中的一种:
参考信号接收功率(Reference Signal Receiving Power,RSRP)、
接收信号的强度指示(Received Signal Strength Indicator,RSSI)、
参考信号接收质量(Reference Signal Receiving Quality,RSRQ),其中,RSRQ为RSRP与RSSI的比值。
步骤S603,在第一测量结果不满足小区重选条件时,不执行小区重选(即驻留在当前的服务小区)。
在一些可能的实施方式中,小区重选条件与第一测量结果相关,例如第一测量结果的测量值未满足小区重选条件时,不进行小区重选,第一测量结果的测量值满足小区重选条件时,依据第一测量结果进行小区重选。
步骤S604,通过低功耗接收机接收到服务小区的LP WUS后,唤醒主收发机。
即用户设备驻留在原服务小区,并接收原服务小区发送的LP WUS。如果用户设备收到原服务小区发送的LP WUS,用户设备将唤醒主收发机。
步骤S605,通过主收发机上报第一测量结果。
本公开实施例适用于用户设备需要进行移动性测量的各种场景,包括用户设备移动到服务小区的边缘时需要进行移动性测量的场景,或者,用户设备定时的需要进行移动性测量的场景,或者用户设备根据服务小区的信号质量确定满足移动性测量条件的场景。
本公开实施例中,用户设备根据网络设备配置的第一测量配置信息,通过低功耗接收机对邻小区的信号进行移动性测量,可以在主收发机处于睡眠状态时依然顺利的完成移动性测量,提高用户设备的测量能力。
本公开实施例提供了一种测量方法,由用户设备执行,该方法包括步骤S601’-S603’,具体的:
步骤S601’与步骤S601相同;
步骤S602’,与步骤S602相同;
步骤S603’,用户设备在第一测量结果满足小区重选条件时,根据所述第一测量结果执行小区重选,监听重选后的邻小区的LP WUS。
在一些可能的实施方式中,小区重选条件与第一测量结果相关,例如第一测量结果的测量值未满足小区重选条件时,不进行小区重选条件,第一测量结果的测量值满足小区重选条件时,依据第一测量结果进行小区重选。
在一些可能的实施方式中,根据所述第一测量结果执行小区重选包括根据所述第一测量结果确定至少一邻小区。
在一示例中,在一示例中,根据所述第一测量结果确定至少一邻小区包括:根据所述第一测量结果确定符合下述至少一条件的邻小区:
第一测量结果中的测量值最高、
第一测量结果中的测量值大于第五门限值、
第一测量结果中的测量值大于第六门限值并且邻小区具有第一优先级。
本公开实施例中,用户设备可以在主收发机处于睡眠状态时依然顺利的完成移动性测量以及小区重选,提高用户设备的测量能力和小区重选能力。
用户设备在完成小区重选后,还可以包括步骤S604’。
步骤S604’,通过低功耗接收机接收到邻小区的LP WUS后,唤醒主收发机。
即,用户设备在执行小区重选后,接收重选后确定的邻小区的LP WUS信号,并据此确定唤醒主收发机。
本公开实施例提供了一种测量方法,由用户设备执行,图7是根据一示例性实施例示出的一种执行测量方法的流程图,如图7所示,该方法包括步骤S701-S704,具体的:
步骤S701,接收网络设备发送的测量配置信息,所述测量配置信息用于指示将第一参考信号作为测量信号。
其中,测量配置信息用于指示将第一参考信号作为测量信号,第一参考信号为用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
鉴于低功耗接收机可以接收LP WUS,从而用户设备可以使用LP WUS进行移动性测量,则所述第一参考信号可以为低功耗唤醒信号,由于低功耗唤醒信号可以是周期性的,则所述第一参考信号为周期性的低功耗唤醒信号。
鉴于,低功耗接收机需要接收同步信号以维护本地时钟,从而用户设备可以利用此同步信号进行移动性测量,则所述第一参考信号可以为同步信号,所述同步信号用于所述低功耗接收机维护本地时钟。由于同步信号可以是周期性的,则所述第一参考信号为周期性的同步信号。此同步信号可以是与LP WUS无关的单独的同步信号,也可以是包含于LP WUS内。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。所述测量配置信息可以包括多个不同的测量窗口配置信息。用户设备可以 采用所述多个不同的测量窗口配置信息中任一测量窗口配置信息进行移动性测量,或者,可以在不同条件下使用不同的测量窗口配置信息。此条件可以是时段、位置等。
可以理解的是,用户设备的邻小区发送的信号是,与用户设备的服务小区的邻小区对应的网络设备发送的信号。
步骤S702,使用低功耗接收机测量第二参考信号获得第二测量结果,根据所述第二测量结果确定是否使用低功耗接收机测量第一参考信号,以获得第一测量结果。
其中,所述第二参考信号为所述用户设备的服务小区发送的信号。
用户设备可以通过不同的方式获知第一参考信号的配置信息和第二参考信号的配置信息。例如:
获知第一参考信号的配置信息的方式包括以下两种:
第一种,用户设备中预存有默认的配置信息,此配置信息是第一参考信号的配置信息,此配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
第二种,用户设备接收网络设备发送的第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息,此所述第一配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
用户设备获知第二参考信号的配置信息的方式包括以下两种:
第一种,用户设备中预存有默认的配置信息,此配置信息是第二参考信号的配置信息,此配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
第二种,用户设备接收网络设备发送的第二配置信息,所述第二配置信息为服务小区发送的所述第二参考信号的配置信息,此所述第二配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
在一些可能的实施方式中,根据所述第二测量结果确定使用低功耗接收机测量第一参考信号,,包括以下中的任一种:
第一种,在第二测量结果低于第一门限值T1的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率相同。
也可以理解为,在第二测量结果低于第一门限值T1的情况下,启动使用低功耗接收机测量与服务小区的频率相同的邻小区的第一参考信号。
第二种,在所述第二测量结果低于第二门限值T2的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率不相同。
也可以理解为,在第二测量结果低于第二门限值T2的情况下,启动使用低功耗接收 机测量与服务小区的频率不同的邻小区的第一参考信号。
在一些可能的实施方式中,根据所述第二测量结果确定不使用低功耗接收机测量第一参考信号,包括:在第二测量结果高于第一门限值T1或者第二门限值T2的情况下,不使用低功耗接收机测量第一参考信号。也可以理解为,在第二测量结果较好时,不需要测量邻小区的第一参考信号。
在一些可能的实施方式中,在一些可能的实施方式中,步骤S702还包括:根据所述第一测量结果和所述第二测量结果确定至少一邻小区,监听所述至少一邻小区的低功耗唤醒信号。
在一示例中,根据所述第一测量结果和所述第二测量结果确定至少一邻小区,包括以下中的至少一种:
第一种,第一测量结果优于第二测量结果,并且,所述第一测量结果与第二测量结果的差值大于或等于第七门限值;
第二种,第一测量结果优于第二测量结果的程度表征值大于第八门限值。
其中,程度表征值可以是第一测量结果与第二测量结果的差异值与第一测量结果、第二测量结果或一固定值的比值,程度表征值还可以是对数形式表示的第一测量结果优于第二测量结果的程度。
步骤S703,在第一测量结果低于第三门限值并且第二测量结果低于第四门限值的情况下,唤醒主接收机。
此步骤S703中,第一测量结果低于第三门限值并且第二测量结果低于第四门限值的情况,表示邻小区的第一参考信号和服务小区的第二参考信号的信号质量较差,仅使用低功耗接收机无法判断如何做小区重选。所以需要唤醒主接收机来做测量和判断是否需要以及如何做小区重选。
在一示例中,第三门限值与第四门限值相同,在另一示例中,第三门限值与第四门限值不相同。
步骤S704,在唤醒主收发机后,向网络设备上报第一测量结果和第二测量结果。
本公开实施例适用于用户设备需要进行移动性测量的各种场景,包括用户设备移动到服务小区的边缘时需要进行移动性测量的场景,或者,用户设备定时的需要进行移动性测量的场景,或者用户设备根据服务小区的信号质量确定满足移动性测量条件的场景。
本公开实施例中,用户设备通过低功耗接收机对服务小区的信号进行移动性测量获 得第二测量结果,根据第二测量结果确定是否对邻小区的信号进行移动性测量,从而根据对服务小区的测量结果完成对邻小区的测量,在更符合用户设备在服务小区的当前的信号接收状态的情况下,在主收发机处于睡眠状态时顺利完成移动性测量,提高用户设备的测量能力。
另外,用户设备可以在保持主接收机关闭的状态下,在多个小区的覆盖区域内移动,同时保证本终端能够接收到网络的寻呼,具有终端节能的效果。
本公开实施例提供了一种测量方法,由用户设备执行,图8是根据一示例性实施例示出的一种执行测量方法的流程图,如图8所示,该方法包括步骤S801-S803,具体的:
步骤S801,接收网络设备发送的测量配置信息,所述测量配置信息用于指示将具有第一优先级的邻小区的第一参考信号作为测量信号。
其中,所述信号用于低功耗接收机接收。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。所述测量配置信息可以包括多个不同的测量窗口配置信息。用户设备可以采用所述多个不同的测量窗口配置信息中任一测量窗口配置信息进行移动性测量,或者,可以在不同条件下使用不同的测量窗口配置信息。此条件可以是时段、位置等。
步骤S802,使用低功耗接收机测量第二参考信号获得第二测量结果,并且,用户设备根据测量配置信息对具有第一优先级的邻小区的第一参考信号进行测量,获得第一测量结果。
步骤S803,在唤醒主收发机后,向网络设备上报第一测量结果和第二测量结果。
本公开实施例中,用户设备通过低功耗接收机对服务小区的信号进行移动性测量获得第二测量结果,在网络设备向用户设备明确指示需要测量的邻小区的情况下,无论第二测量结果的情况如何(即无论第二测量结果与相应的门限的比较情况如何),用户设备都要根据网络设备的指示使用低功耗接收机测量具有第一优先级的邻小区的第一参考信号。
本公开实施例提供了一种测量方法,由用户设备执行,图9是根据一示例性实施例示出的一种执行测量方法的流程图,如图9所示,该方法包括步骤S901-S903,具体的:
步骤S901,接收网络设备发送的测量配置信息,所述测量配置信息用于指示将优先级大于或等于第二优先级的邻小区的第一参考信号作为测量信号。
其中,所述信号用于低功耗接收机接收。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。所述测量配置信息可以包括多个不同的测量窗口配置信息。用户设备可以采用所述多个不同的测量窗口配置信息中任一测量窗口配置信息进行移动性测量,或者,可以在不同条件下使用不同的测量窗口配置信息。此条件可以是时段、位置等。
步骤S902,使用低功耗接收机测量第二参考信号获得第二测量结果,并且,用户设备根据测量配置信息对优先级大于或等于第二优先级的邻小区的第一参考信号进行测量,获得第一测量结果。
步骤S903,在唤醒主收发机后,向网络设备上报第一测量结果和第二测量结果。
本公开实施例中,用户设备通过低功耗接收机对服务小区的信号进行移动性测量获得第二测量结果,在网络设备向用户设备明确指示需要测量的邻小区的情况下,无论第二测量结果的情况如何(即无论第二测量结果与相应的门限的比较情况如何),用户设备都要根据网络设备的指示使用低功耗接收机测量优先级大于或等于第二优先级的邻小区的第一参考信号。
本公开实施例提供了一种发送测量配置信息的方法,由网络设备执行,图10是根据一示例性实施例示出的一种发送测量配置信息的方法的流程图,如图10所示,该方法包括步骤S1001,具体的:
步骤S1001,向用户设备发送测量配置信息,所述测量配置信息用于指示将第一参考信号作为测量信号,所述第一参考信号为所述用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
在一些可能的实施方式中,所述信号为周期性的低功耗唤醒信号或者周期性的同步信号。
在一些可能的实施方式中,所述第一测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。
本公开实施例提供了一种发送测量配置信息的方法,由网络设备执行,图11是根据一示例性实施例示出的一种发送测量配置信息的方法的流程图,如图11所示,该方法包括 步骤S1101-S1102,具体的:
步骤S1101,在用户设备的邻小区中确定具有第一优先级的邻小区;
步骤S1102,向用户设备发送测量配置信息,所述测量配置信息用于指示将所述具有第一优先级的邻小区的第一参考信号作为测量信号,所述第一参考信号为所述用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的用户设备102的功能,并用于执行上述实施例提供的由用户设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图12所示的通信装置1200可作为上述方法实施例所涉及的用户设备102,并执行上述一种方法实施例中由用户设备102执行的步骤。
所述通信装置1200包括收发模块1201和处理模块1202。
收发模块1201被配置为使用低功耗接收机测量第一参考信号,获得第一测量结果,所述第一参考信号为所述用户设备的邻小区发送的信号,第一参考信号用于低功耗接收机接收。
在一些可能的实施方式中,所述第一参考信号为周期性的低功耗唤醒信号或者周期性的同步信号。
在一些可能的实施方式中,收发模块1201还被配置为接收网络设备发送的测量配置信息,所述测量配置信息用于指示将所述参考信号作为测量信号。
在一些可能的实施方式中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。
在一些可能的实施方式中,收发模块1201还被配置为接收网络设备发送的第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息。
在一些可能的实施方式中,所述第一配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
在一些可能的实施方式中,收发模块1201还被配置为使用所述低功耗接收机测量第 二参考信号,获得第二测量结果,所述第二参考信号为所述用户设备的服务小区发送的信号。
在一些可能的实施方式中,收发模块1201还被配置为接收所述网络设备发送的第二配置信息,所述第二配置信息为所述服务小区发送的所述第二参考信号的配置信息。
在一些可能的实施方式中,收发模块1201还被配置为根据所述第二测量结果确定是否使用低功耗接收机测量第一参考信号,以获得第一测量结果。
在一些可能的实施方式中,收发模块1201还被配置为在所述第二测量结果低于第一门限值的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率相同;或者,在所述第二测量结果低于第二门限值的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率不相同。
在一些可能的实施方式中,收发模块1201还被配置为在第一测量结果低于第三门限值并且第二测量结果低于第四门限值的情况下,唤醒主接收机。
在一些可能的实施方式中,所述测量配置信息用于指示将具有第一优先级的邻小区的第一参考信号作为测量信号。
在一些可能的实施方式中,收发模块1201还被配置为根据所述第一测量结果确定至少一邻小区,监听所述至少一邻小区的低功耗唤醒信号。
在一些可能的实施方式中,处理模块1202还被配置为根据所述第一测量结果确定符合下述至少一条件的邻小区:
第一测量结果中的测量值最高、
第一测量结果中的测量值大于第五门限值、
第一测量结果中的测量值大于第六门限值并且邻小区具有第一优先级。
在一些可能的实施方式中,收发模块1201还被配置为根据所述第一测量结果和所述第二测量结果确定至少一邻小区,监听所述至少一邻小区的低功耗唤醒信号。
在一些可能的实施方式中,处理模块1202还被配置为确定满足以下至少一种的邻小区:第一测量结果优于第二测量结果,并且,所述第一测量结果与第二测量结果的差值大于或等于第七门限值;
第一测量结果优于第二测量结果的程度表征值大于第八门限值。
当该通信装置为用户设备102时,其结构还可如图13所示。
参照图13,装置1300可以包括以下一个或多个组件:处理组件1302,存储器1304,电力组件1306,多媒体组件1308,音频组件1310,输入/输出(I/O)的接口1312,传感器组件1314,以及通信组件1316。
处理组件1302通常控制装置1300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1302可以包括一个或多个处理器1320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1302可以包括一个或多个模块,便于处理组件1302和其他组件之间的交互。例如,处理组件1302可以包括多媒体模块,以方便多媒体组件1308和处理组件1302之间的交互。
存储器1304被配置为存储各种类型的数据以支持在设备1300的操作。这些数据的示例包括用于在装置1300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件1306为装置1300的各种组件提供电力。电力组件1306可以包括电源管理系统,一个或多个电源,及其他与为装置1300生成、管理和分配电力相关联的组件。
多媒体组件1308包括在所述装置1300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1308包括一个前置摄像头和/或后置摄像头。当设备1300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1310被配置为输出和/或输入音频信号。例如,音频组件1310包括一个麦克风(MIC),当装置1300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1304或经由通信组件1316发送。在一些实施例中,音频组件1310还包括一个扬声器,用于输出音 频信号。
I/O接口1312为处理组件1302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1314包括一个或多个传感器,用于为装置1300提供各个方面的状态评估。例如,传感器组件1314可以检测到设备1300的打开/关闭状态,组件的相对定位,例如所述组件为装置1300的显示器和小键盘,传感器组件1314还可以检测装置1300或装置1300一个组件的位置改变,用户与装置1300接触的存在或不存在,装置1300方位或加速/减速和装置1300的温度变化。传感器组件1314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1316被配置为便于装置1300和其他设备之间有线或无线方式的通信。装置1300可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件1316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1304,上述指令可由装置1300的处理器1320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的网络设备101的功能,并用于执行上述实施例提供的由网络 设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图14所示的通信装置1400可作为上述方法实施例所涉及的网络设备101,并执行上述一种方法实施例中由网络设备101执行的步骤
所述通信装置1400包括处理模块1402,或者包括收发模块1401和处理模块1402。
在一种可能的实现方式中,如图14所示的通信装置1400可作为上述方法实施例所涉及的网络设备102,并执行上述一种方法实施例中由网络设备102执行的步骤。
所述通信装置1400包括收发模块1401和处理模块1402。
收发模块1401被配置为向用户设备发送测量配置信息,所述测量配置信息用于指示将第一参考信号作为测量信号,所述第一参考信号为所述用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
在一种可能的实施方式中,所述信号为周期性的低功耗唤醒信号或者周期性的同步信号。
在一种可能的实施方式中,所述第一测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。
在一种可能的实施方式中,所述方法还包括:向所述用户设备发送第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息。
在一种可能的实施方式中,所述方法还包括:向所述用户设备发送第二配置信息,所述第二配置信息为所述服务小区发送的所述第二参考信号的配置信息。
在一种可能的实施方式中,处理模块1402被配置为在用户设备的邻小区中确定具有第一优先级的邻小区;所述测量配置信息用于指示将所述具有第一优先级的邻小区的第一参考信号作为测量信号。
当该通信装置为网络设备时,其结构还可如图15所示。以网络设备101为基站为例说明通信装置的结构。如图15所示,装置1500包括存储器1501、处理器1502、收发组件1503、电源组件1506。其中,存储器1501与处理器1502耦合,可用于保存通信装置1500实现各功能所必要的程序和数据。该处理器1502被配置为支持通信装置1500执行上述方法中相应的功能,此功能可通过调用存储器1501存储的程序实现。收发组件1503可以是无线收发器,可用于支持通信装置1500通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。 收发组件1503也可被称为收发单元或通信单元,收发组件1503可包括射频组件1504以及一个或多个天线1505,其中,射频组件1504可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1505具体可用于进行射频信号的辐射和接收。
当通信装置1500需要发送数据时,处理器1502可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1500时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1502,处理器1502将基带信号转换为数据并对该数据进行处理。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器604,上述指令可由装置600的处理器620执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
用户设备通过低功耗接收机对邻小区的信号进行移动性测量,可以在主收发机处于睡眠状态时依然顺利的完成移动性测量,提高用户设备的测量能力。

Claims (27)

  1. 一种测量方法,由用户设备执行,所述方法包括:
    使用低功耗接收机测量第一参考信号,获得第一测量结果,所述第一参考信号为所述用户设备的邻小区发送的信号,第一参考信号用于低功耗接收机接收。
  2. 如权利要求1所述的方法,其中,所述第一参考信号为周期性的低功耗唤醒信号或者周期性的同步信号。
  3. 如权利要求1所述的方法,其中,所述方法还包括:
    接收网络设备发送的测量配置信息,所述测量配置信息用于指示将所述参考信号作为测量信号。4、如权利要求3所述的方法,其中,所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。
  4. 如权利要求1所述的方法,其中,所述方法还包括:
    接收网络设备发送的第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息。
  5. 如权利要求5所述的方法,其中,所述第一配置信息包括以下中的至少一种:周期、时域偏移、或频域位置。
  6. 如权利要求1所述的方法,其中,所述方法还包括:
    使用所述低功耗接收机测量第二参考信号,获得第二测量结果,所述第二参考信号为所述用户设备的服务小区发送的信号。
  7. 如权利要求7所述的方法,其中,所述方法还包括:
    接收所述网络设备发送的第二配置信息,所述第二配置信息为所述服务小区发送的所述第二参考信号的配置信息。
  8. 如权利要求7所述的方法,其中,所述使用低功耗接收机测量第一参考信号,包括:
    根据所述第二测量结果确定是否使用低功耗接收机测量第一参考信号,以获得第一测量结果。
  9. 如权利要求9所述的方法,其中,所述根据所述第二测量结果确定使用低功耗接 收机测量第一参考信号,包括:
    在所述第二测量结果低于第一门限值的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率相同;
    或者,
    在所述第二测量结果低于第二门限值的情况下,使用低功耗接收机测量第一参考信号,所述邻小区的频率与所述服务小区的频率不相同。
  10. 如权利要求7所述的方法,其中,所述方法还包括:
    在第一测量结果低于第三门限值并且第二测量结果低于第四门限值的情况下,唤醒主接收机。
  11. 如权利要求1所述的方法,其中,所述方法还包括:
    所述测量配置信息用于指示将具有第一优先级的邻小区的第一参考信号作为测量信号。
  12. 如权利要求1所述的方法,其中,所述方法还包括:
    根据所述第一测量结果确定至少一邻小区,监听所述至少一邻小区的低功耗唤醒信号。
  13. 如权利要求13所述的方法,其中,所述根据所述第一测量结果确定至少一邻小区包括:根据所述第一测量结果确定符合下述至少一条件的邻小区:
    第一测量结果中的测量值最高、
    第一测量结果中的测量值大于第五门限值、
    第一测量结果中的测量值大于第六门限值并且邻小区具有第一优先级。
  14. 如权利要求7至10中任一权利要求所述的方法,其中,所述方法还包括:
    根据所述第一测量结果和所述第二测量结果确定至少一邻小区,监听所述至少一邻小区的低功耗唤醒信号。
  15. 如权利要求15所述的方法,其中,所述根据所述第一测量结果和所述第二测量结果确定至少一邻小区,包括:确定满足以下至少一种的邻小区:
    第一测量结果优于第二测量结果,并且,所述第一测量结果与第二测量结果的差值大于或等于第七门限值;
    第一测量结果优于第二测量结果的程度表征值大于第八门限值。
  16. 一种发送测量配置信息的方法,由网络设备执行,所述方法包括:
    向用户设备发送测量配置信息,所述测量配置信息用于指示将第一参考信号作为测量信号,所述第一参考信号为所述用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
  17. 如权利要求17所述的方法,其中,
    所述信号为周期性的低功耗唤醒信号或者周期性的同步信号。
  18. 如权利要求17所述的方法,其中,
    所述测量配置信息包括至少一个测量窗口配置信息,所述测量窗口配置信息包括以下至少一种:窗口的周期、窗口的长度、窗口的时域偏移、窗口的频域位置。
  19. 如权利要求17所述的方法,其中,所述方法还包括:
    向所述用户设备发送第一配置信息,所述第一配置信息为所述邻小区发送的所述第一参考信号的配置信息。
  20. 如权利要求17所述的方法,其中,所述方法还包括:
    向所述用户设备发送第二配置信息,所述第二配置信息为所述服务小区发送的所述第二参考信号的配置信息。
  21. 如权利要求17所述的方法,其中,所述方法还包括:
    在用户设备的邻小区中确定具有第一优先级的邻小区;
    所述测量配置信息用于指示将所述具有第一优先级的邻小区的第一参考信号作为测量信号。
  22. 一种测量装置,被配置于用户设备,所述装置包括:
    收发模块,被配置为使用低功耗接收机测量第一参考信号,获得第一测量结果,所述第一参考信号为所述用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
  23. 一种发送测量配置信息的装置,被配置于网络设备,所述装置包括:
    收发模块,被配置为向用户设备发送测量配置信息,所述测量配置信息用于指示将第一参考信号作为测量信号,所述第一参考信号为所述用户设备的邻小区发送的信号,所述信号用于低功耗接收机接收。
  24. 一种电子设备,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-16中任一项所述的方法。
  25. 一种电子设备,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求17-22中任一项所述的方法。
  26. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-16中任一项所述的方法。
  27. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求17-22中任一项所述的方法。
PCT/CN2022/125474 2022-10-14 2022-10-14 一种测量方法、装置、设备及可读存储介质 WO2024077610A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/125474 WO2024077610A1 (zh) 2022-10-14 2022-10-14 一种测量方法、装置、设备及可读存储介质
CN202280004097.6A CN118202779A (zh) 2022-10-14 2022-10-14 一种测量方法、装置、设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125474 WO2024077610A1 (zh) 2022-10-14 2022-10-14 一种测量方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024077610A1 true WO2024077610A1 (zh) 2024-04-18

Family

ID=90668550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125474 WO2024077610A1 (zh) 2022-10-14 2022-10-14 一种测量方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN118202779A (zh)
WO (1) WO2024077610A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785215A (zh) * 2007-08-13 2010-07-21 Lg电子株式会社 在无线通信系统中执行切换的方法
CN111656823A (zh) * 2018-01-26 2020-09-11 索尼公司 多小区唤醒信号配置
CN111713131A (zh) * 2018-11-14 2020-09-25 华为技术有限公司 一种移动性测量的方法、装置和系统
US20200337110A1 (en) * 2019-04-16 2020-10-22 Electronics And Telecommunications Research Institute Method and apparatus for low power consumption operation of terminal in mobile communication system
US20220022279A1 (en) * 2020-07-15 2022-01-20 Electronics And Telecommunications Research Institute Low power operation method of terminal supporting direct communication, and apparatus for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785215A (zh) * 2007-08-13 2010-07-21 Lg电子株式会社 在无线通信系统中执行切换的方法
CN111656823A (zh) * 2018-01-26 2020-09-11 索尼公司 多小区唤醒信号配置
CN111713131A (zh) * 2018-11-14 2020-09-25 华为技术有限公司 一种移动性测量的方法、装置和系统
US20200337110A1 (en) * 2019-04-16 2020-10-22 Electronics And Telecommunications Research Institute Method and apparatus for low power consumption operation of terminal in mobile communication system
US20220022279A1 (en) * 2020-07-15 2022-01-20 Electronics And Telecommunications Research Institute Low power operation method of terminal supporting direct communication, and apparatus for the same

Also Published As

Publication number Publication date
CN118202779A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2024007338A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024077610A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024103314A1 (zh) 一种唤醒网络设备的方法、装置、设备及可读存储介质
WO2024077624A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024082289A1 (zh) 一种监听或发送信息的方法、装置、设备以及存储介质
WO2023193185A1 (zh) 一种传输同步信号功率信息的方法、装置及可读存储介质
WO2024045137A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2023231016A1 (zh) 一种唤醒网络设备的方法、装置、设备及存储介质
WO2024087069A1 (zh) 一种接收发送唤醒信号的方法、装置及可读存储介质
WO2024098389A1 (zh) 一种唤醒网络设备的方法、装置、设备及存储介质
WO2023201471A1 (zh) 一种传输信号质量阈值信息的方法、装置及可读存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023178698A1 (zh) 一种传输寻呼下行控制信息的方法、装置及存储介质
WO2024130496A1 (zh) 一种监听系统信息的方法、装置及可读存储介质
WO2023159443A1 (zh) 一种传输唤醒信号的方法、装置及可读存储介质
WO2023236116A1 (zh) 一种传输唤醒信号的方法、装置、电子设备及存储介质
WO2023193193A1 (zh) 一种传输唤醒信号功率信息的方法、装置及可读存储介质
WO2023178696A1 (zh) 一种传输寻呼搜索空间配置信息的方法、装置及存储介质
WO2023231017A1 (zh) 一种唤醒网络设备的方法、装置、设备及存储介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2023164907A1 (zh) 一种传输下行控制信息的方法、装置、设备及存储介质
WO2024065204A1 (zh) 一种发送或监听下行控制信息的方法、装置、设备及介质
WO2024130495A1 (zh) 一种传输唤醒信号的方法、装置及可读存储介质
WO2024060029A1 (zh) 一种传输系统消息的方法、装置以及可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280004097.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961796

Country of ref document: EP

Kind code of ref document: A1