WO2021017739A1 - 测量上报的方法与装置 - Google Patents

测量上报的方法与装置 Download PDF

Info

Publication number
WO2021017739A1
WO2021017739A1 PCT/CN2020/099624 CN2020099624W WO2021017739A1 WO 2021017739 A1 WO2021017739 A1 WO 2021017739A1 CN 2020099624 W CN2020099624 W CN 2020099624W WO 2021017739 A1 WO2021017739 A1 WO 2021017739A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiple carriers
pilot
carrier
pilots
measurement
Prior art date
Application number
PCT/CN2020/099624
Other languages
English (en)
French (fr)
Inventor
王晓娜
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20847454.4A priority Critical patent/EP3979693A4/en
Publication of WO2021017739A1 publication Critical patent/WO2021017739A1/zh
Priority to US17/587,870 priority patent/US20220150744A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of communications, in particular to a method and device for measurement reporting.
  • the 5th generation (5G) mobile communication system can communicate through multiple carriers. For example, in the frequency range of 24250MHz-52600MHz (which can be called high frequency or FR2), network equipment can pass multiple carriers. Communicate with terminal equipment.
  • 24250MHz-52600MHz which can be called high frequency or FR2
  • network equipment can pass multiple carriers. Communicate with terminal equipment.
  • the 5G mobile communication system uses beamforming technology for communication.
  • Beamforming technology refers to the use of large-scale antenna arrays to concentrate the signal energy in a small range to form a signal similar to a beam, which can increase the signal transmission distance. This beam-like signal can be called It is an analog beam, referred to as beam.
  • the network equipment can generate beams in different directions, and the specific direction of the beams to communicate with the terminal equipment is determined through beam management.
  • the existing beam management method may cause the network device to be unable to use the multiple carriers to communicate with the terminal device at the same time, resulting in limited user capacity and reduced communication efficiency.
  • the present application provides a method and device for measurement reporting.
  • multiple carriers share a radio frequency channel
  • a method for measuring and reporting is provided.
  • the method may be executed by the terminal device, or may also be executed by a chip or circuit configured in the terminal device.
  • the method includes: receiving pilot measurement configuration information of multiple carriers, where the pilot measurement configuration information of the multiple carriers indicates the pilot association relationship of the multiple carriers, and the pilot association relationship of the multiple carriers indicates the multiple carriers
  • the spatial transmission filtering of the pilots is the same; the measurement is performed according to the pilot measurement configuration information of the multiple carriers to obtain the measurement report results of the multiple carriers; the measurement report results of the multiple carriers are sent.
  • a method for measuring and reporting may be executed by a network device, or may also be executed by a chip or circuit configured in the network device.
  • the method includes: sending pilot measurement configuration information of multiple carriers to a terminal device, the pilot measurement configuration information of the multiple carriers indicates the pilot association relationship of the multiple carriers, and the pilot association relationship of the multiple carriers indicates the The spatial transmission filtering of the pilots of the multiple carriers is the same; the measurement report result of the multiple carriers obtained according to the pilot measurement configuration information of the multiple carriers is received from the terminal device.
  • the pilot association relationship of multiple carriers means that the spatial transmission filtering of the pilots of the multiple carriers is the same. In other words, the pilot association relationship of the multiple carriers indicates that the multiple carriers have the same spatial transmission filtering corresponding to the multiple carriers. Association of pilots.
  • the multiple carriers are Carrier 1, Carrier 2, and Carrier 3, where Carrier 1, Carrier 2 and Carrier 3 all have the first spatial transmission filter, and the pilot association relationship of the multiple carriers may include the first spatial transmission of Carrier 1.
  • the pilot measurement configuration information of the multiple carriers indicates the pilot association relationship of the multiple carriers, which means that the pilot measurement configuration information of the multiple carriers includes information that can indicate the pilot association relationship of the multiple carriers.
  • the terminal device can obtain the pilot association relationship of the multiple carriers according to the received pilot measurement configuration information of the multiple carriers, so that it can report the pilots corresponding to one or more same spatial transmission and filtering for multiple carriers. Measurement results.
  • the network device may send filtered pilots based on the same space domain of the multiple carriers to communicate with the terminal device. Therefore, in the case that multiple carriers share a radio frequency channel, the solution provided in this application can realize that a network device uses multiple carriers to communicate with a terminal device at the same time.
  • the terminal equipment can report the pilot measurement results corresponding to one or more transmission filtering in the same space for multiple carriers, so that multiple carriers share the same radio frequency channel.
  • the network device uses multiple carriers to communicate with the terminal device at the same time, that is, to realize carrier aggregation communication, and therefore, the communication efficiency can be improved.
  • the pilot association relationship of multiple carriers can be implemented in multiple ways.
  • the pilot association relationship of the multiple carriers includes: the same spatial domain transmission filtering corresponding to the multiple carriers has the same resource identifier of the pilot.
  • the terminal device After the terminal device receives the pilot measurement configuration information of multiple carriers sent by the network device, it can learn that the pilot with the same resource identifier corresponds to the same spatial transmission filtering.
  • the resource identifier of the pilot may be any of the following: resource index, resource set identifier, and resource port identifier.
  • the signaling utilization rate can be improved, thereby saving signaling overhead.
  • the pilot association relationship of the multiple carriers includes: resources of the pilots corresponding to the same space domain transmission filtering of the multiple carriers have an intersection.
  • the terminal device After the terminal device receives the pilot measurement configuration information of multiple carriers sent by the network device, it can learn that the pilots whose resources have intersections correspond to the same spatial transmission filtering.
  • the pilot association relationship of multiple carriers is indicated by the resource of the pilot, which can save signaling overhead.
  • the pilot association relationship of the multiple carriers includes: the same spatial domain transmission filtering corresponding to the multiple carriers has the same report resource of the pilot.
  • the terminal device After the terminal device receives the pilot measurement configuration information of multiple carriers sent by the network device, it can learn that the pilot with the same reported resource corresponds to the same spatial transmission filtering.
  • the pilot association relationship of multiple carriers is indicated by the report resource of the pilot, that is, the pilot association relationship of multiple carriers is indicated by multiplexing the information originally contained in the pilot measurement configuration information , Can improve the signaling utilization, which can save signaling overhead.
  • the pilot association relationship of the multiple carriers includes: the same spatial transmission filtering of the multiple carriers has the same spatial transmission filtering identification of the pilots corresponding to the same spatial transmission filtering.
  • the terminal device After the terminal device receives the pilot measurement configuration information of multiple carriers sent by the network device, it can learn that pilots with the same spatial transmission filtering identifier correspond to the same spatial transmission filtering.
  • the pilot association relationship of the multiple carriers may include any one or more of the foregoing several implementation manners.
  • the measurement report results of the multiple carriers include measurement results of multiple pilots corresponding to the same spatial domain transmission and filtering, wherein the multiple pilots These are the pilot frequencies of the multiple carriers.
  • the multiple pilots are respectively the pilots of the multiple carriers, which means that the multiple pilots include one pilot included in each of the multiple carriers.
  • the measurement report results of these three carriers include the measurement results of one pilot of each of the three carriers, that is, the measurement results of three pilots, where the three pilots correspond to Transmission filtering in the same airspace.
  • the terminal equipment can report the measurement results of the pilots corresponding to the same spatial domain transmission filtering for multiple carriers, so that when multiple carriers share the same radio frequency channel, It can be realized that the network device uses multiple carriers to communicate with the terminal device at the same time, that is, the communication of carrier aggregation is realized. Therefore, the communication efficiency can be improved.
  • the measurement report results of the multiple carriers include measurement results of multiple pilots corresponding to the same spatial domain transmission and filtering, wherein the multiple pilots These are the pilots of the multiple carriers, and the multiple pilots include the pilot with the best measurement value.
  • the multiple pilots are respectively the pilots of the multiple carriers, which means that the multiple pilots include one pilot included in each of the multiple carriers.
  • the plurality of pilots include the pilot with the best measurement value, which means that the multiple pilots include the pilot with the best measurement value among all the pilots of the multiple carriers.
  • the multiple carriers are carrier 1, carrier 2, and carrier 3, these three carriers all have three pilots corresponding to spatial transmission filtering 1, spatial transmission filtering 2, and spatial transmission filtering 3.
  • the measurement report results of these three carriers include the measurement results of the pilot corresponding to the spatial transmission filter 1 of carrier 1, carrier 2 and carrier 3. .
  • the measurement report results of the multiple carriers include measurement results of multiple pilots corresponding to the same spatial domain transmission and filtering, wherein the multiple pilots They are the pilots of the multiple carriers respectively, and the same spatial transmission filtering corresponding to the multiple pilots is the spatial transmission filtering with the optimal pilot average measurement value.
  • the multiple pilots are respectively the pilots of the multiple carriers, which means that the multiple pilots include one pilot included in each of the multiple carriers.
  • the pilot average measurement value involved in this article is for spatial transmission filtering.
  • Each spatial transmission filter of multiple carriers corresponds to an average pilot measurement value.
  • the average pilot measurement value of the first spatial domain transmission filtering refers to the average value of the multiple pilot measurement values corresponding to the first spatial domain transmission filtering among all the pilots of the multiple carriers.
  • the multiple carriers are carrier 1, carrier 2, and carrier 3, these three carriers all have three pilots corresponding to spatial transmission filtering 1, spatial transmission filtering 2, and spatial transmission filtering 3.
  • the measurement report results of these three carriers include the measurement of the pilot corresponding to the spatial transmission filter 1 of carrier 1, carrier 2, and carrier 3. result.
  • the measurement report results of multiple carriers may include the measurement results of pilots corresponding to one or more of the same space domain transmission filtering of the multiple carriers.
  • the multiple carriers are carrier 1, carrier 2, and carrier 3
  • these three carriers all have three pilots corresponding to spatial transmission filtering 1, spatial transmission filtering 2, and spatial transmission filtering 3.
  • the measurement report results of these three carriers include the measurement results of the pilots corresponding to the spatial transmission filter 1 of carrier 1, carrier 2 and carrier 3, and the pilots corresponding to the spatial transmission filter 2 of carrier 1, carrier 2 and carrier 3.
  • the measurement result alternatively, may also include the measurement result of the pilot corresponding to the spatial transmission filter 3 of carrier 1, carrier 2, and carrier 3.
  • the solution provided by this application allows the terminal device to report the measurement results corresponding to one or more filtered pilots sent in the same space for multiple carriers by configuring the pilot association relationship of multiple carriers to the terminal device, thereby
  • the network device can use multiple carriers to communicate with the terminal device at the same time, that is, to realize carrier aggregation communication, which can improve communication efficiency.
  • the measurement report results of the multiple carriers include at least one of the following: carrier identification, pilot identification, and pilot measurement value.
  • the pilot measurement value can be characterized by any of the following indicators: reference signal received power (RSRP), reference signal received quality (RSRQ), reference signal received strength indicator ( received signal strength indicator (RSSI), signal to noise ratio (SNR), signal to interference and noise ratio (SINR), block error rate (BLER), signal quality indicator (channel quality indicator, CQI).
  • RSRP reference signal received power
  • RSSI reference signal received quality
  • RSSI received signal strength indicator
  • SNR signal to noise ratio
  • SINR signal to interference and noise ratio
  • BLER block error rate
  • signal quality indicator channel quality indicator, CQI
  • the measurement report results of multiple carriers may be reported jointly for multiple carriers, or separately reported for each of the multiple carriers.
  • the method further includes: determining, from the measurement report results of the multiple carriers, pilots used for communication of the multiple carriers, and the multiple carriers are used for communication.
  • the pilot frequency of corresponds to the same spatial transmission filtering; the pilot frequency used for communication of the multiple carriers is used for carrier aggregation communication with the terminal device.
  • the network device can simultaneously use multiple carriers to communicate with the terminal device. That is, the realization of carrier aggregation communication can improve communication efficiency.
  • the multiple carriers share one radio frequency channel.
  • the multiple carriers share one radio frequency channel, which means that the same radio frequency channel sends pilots (ie beams) of the multiple carriers.
  • the multiple carriers may be component carriers (CC), or may also be bandwidth parts (BWP). ).
  • CC component carriers
  • BWP bandwidth parts
  • a communication device is provided, and the communication device can be used to execute the method in the first aspect or the second aspect.
  • the communication device may include a module for executing the method in the first aspect or the second aspect.
  • the method in the first aspect includes the method provided in the first aspect or any one of the possible implementation manners of the first aspect
  • the method in the second aspect includes either the second aspect or the first aspect The methods provided by one possible implementation.
  • a communication device in a fourth aspect, includes a processor coupled with a memory.
  • the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions stored in the memory, so that the first aspect Or the method in the second aspect is executed.
  • the processor is configured to execute a computer program or instruction stored in the memory, so that the communication device executes the method in the first aspect or the second aspect.
  • the communication device includes one or more processors.
  • the communication device may further include a memory coupled with the processor.
  • the communication device may include one or more memories.
  • the memory can be integrated with the processor or provided separately.
  • the communication device may also include a transceiver.
  • a chip in a fifth aspect, includes a processing module and a communication interface, the processing module is used to control the communication interface to communicate with the outside, and the processing module is also used to implement the method in the first aspect or the second aspect.
  • the processing module is a processor.
  • a computer-readable storage medium on which a computer program (also referred to as an instruction or code) for implementing the method in the first aspect or the second aspect is stored.
  • the computer when the computer program is executed by a computer, the computer can execute the method in the first aspect or the second aspect.
  • the computer may be a communication device.
  • a computer program product includes a computer program (also referred to as an instruction or code), which when executed by a computer causes the computer to implement the method in the first aspect or the second aspect .
  • the computer may be a communication device.
  • this application configures the pilot association relationship of multiple carriers for the terminal device so that the terminal device can report the pilot measurement results corresponding to one or more of the same space domain transmission and filtering for multiple carriers, so that the When the carriers share the same radio frequency channel, the network device can use multiple carriers to communicate with the terminal device at the same time, that is, the communication of carrier aggregation is realized, and therefore, the communication efficiency can be improved.
  • Figure 1 is a schematic diagram of a scenario in which a network device and a terminal device communicate through multiple carriers.
  • FIG. 2 is a schematic flowchart of a measurement report method provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of indicating the pilot association relationship of multiple carriers through pilot resources in an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a measurement report method provided by another embodiment of this application.
  • FIG. 5 is a schematic block diagram of a communication device provided by an embodiment of the application.
  • FIG. 6 is a schematic block diagram of another communication device according to an embodiment of the application.
  • FIG. 7 is a schematic block diagram of a terminal device provided by an embodiment of the application.
  • FIG. 8 is a schematic block diagram of a network device provided by an embodiment of the application.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit a signal can be called a transmission beam (Tx beam), can be called a spatial domain transmission filter or a spatial transmission parameter (spatial transmission parameter); the beam used to receive a signal can be called To receive the beam (reception beam, Rx beam), it may be called a spatial domain receive filter (spatial domain receive filter) or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technology.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, etc.
  • Beams generally correspond to resources. For example, when performing beam measurement, network equipment uses different resources to measure different beams. The terminal equipment feeds back the measured resource quality, and the network equipment knows the quality of the corresponding beam. During data transmission, the beam information is also indicated by its corresponding resource. For example, the network equipment instructs the terminal equipment physical downlink shared channel (PDSCH) beam information through the transmission configuration indication (transmission configuration indication, TCI) resource in the downlink control information (downlink control information, DCI).
  • PDSCH transmission configuration indication
  • TCI transmission configuration indication
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One or more antenna ports can be included in a beam for transmitting data channels, control channels, and sounding signals.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the beam refers to the transmission beam of the network device.
  • each beam of the network device corresponds to a resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the beam forming technology may be beamforming technology (beamforming) or other technical means. Beamforming technology can achieve higher antenna array gain by oriented in a specific direction in space.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology.
  • Analog beamforming can be achieved by phase shifters.
  • a radio frequency chain (RF chain) adjusts the phase through a phase shifter, thereby controlling the change of the analog beam direction. Therefore, a radio frequency link can only shoot one analog beam at the same time.
  • the radio frequency link can also be called a radio frequency channel. That is, one RF channel can only shoot one beam at the same time.
  • the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the resource can be an uplink signal resource or a downlink signal resource.
  • the uplink signal includes, but is not limited to: sounding reference signal (SRS) and demodulation reference signal (DMRS).
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • Downlink signals include but are not limited to: channel state information reference signal (CSI-RS), cell-specific reference signal (CS-RS), UE-specific reference signal (user equipment specific reference signal, US-RS), demodulation reference signal (demodulation reference signal, DMRS), and synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SS/PBCH block).
  • CSI-RS channel state information reference signal
  • CS-RS cell-specific reference signal
  • UE-specific reference signal user equipment specific reference signal
  • US-RS demodulation reference signal
  • DMRS demodulation reference signal
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • the SS/PBCH block may be referred to as a synchronization signal block (synchronization signal block, SSB) for short.
  • the resources can be configured through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • a resource is a data structure, including its corresponding uplink/downlink signal related parameters, such as the type of uplink/downlink signal, the resource element that carries the uplink/downlink signal, the transmission time and period of the uplink/downlink signal , The number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique index to identify the uplink/downlink signal resource. It is understandable that the index of the resource may also be referred to as the identifier of the resource, which is not limited in the embodiment of the present application.
  • the network equipment can generate beams in different directions, and the specific direction of the beams to communicate with the terminal equipment is determined through beam management.
  • Beam management mainly includes the following steps.
  • Step 1 The network device configures beam resources.
  • configuring the beam resource by the network device includes: the network device generates measurement configuration information (that is, beam measurement configuration information), and sends the measurement configuration information to the terminal device.
  • measurement configuration information that is, beam measurement configuration information
  • Measurement configuration information mainly includes two parts: resource configuration information and report configuration information.
  • Resource configuration information refers to information related to measurement resources. Resource configuration information can be configured through a three-level structure (resourceConfig-resourceSet-resource) in the protocol.
  • Reporting configuration information refers to information related to measurement result reporting.
  • the report configuration information can be configured through the report configuration (ReportConfig) in the protocol.
  • the network device may send measurement configuration information to the terminal through radio resource control (radio resource control, RRC) signaling.
  • radio resource control radio resource control, RRC
  • Step 2 The terminal equipment measures the beam communication quality.
  • the network device sends a downlink signal (that is, a beam) on the resource particle corresponding to the resource configured by the resource configuration information.
  • the terminal device receives the downlink signal on the resource particle corresponding to the resource configured by the resource configuration information, and measures the downlink signal according to the measurement configuration information to obtain the quality of the downlink signal, that is, the communication quality of the beam.
  • Step 3 The terminal device selects the best beam and the terminal device reports the best beam to the network device.
  • the terminal device sends a beam measurement report to the network device to indicate the best beam.
  • the beam measurement report may include the index and quality of one or more resources.
  • the beam measurement report may be carried in a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Beam management resources refer to resources used for beam management, and can be embodied as resources used for calculating and measuring beam quality.
  • the beam quality includes layer 1 reference signal received power (layer 1 reference signal received power, L1-RSRP), layer 1 received reference signal quality (layer 1 reference signal received quality, L1-RSRQ), etc.
  • beam management resources may include synchronization signals, broadcast channels, downlink channel measurement reference signals, tracking signals, downlink control channel demodulation reference signals, downlink shared channel demodulation reference signals, uplink sounding reference signals, uplink random access signals, etc. .
  • the beam indication information is used to indicate the beam used for transmission, including the sending beam and/or the receiving beam.
  • the beam management resource number uplink signal resource number, downlink signal resource number, absolute index of beam, relative index of beam, logical index of beam, index of antenna port corresponding to beam, index of antenna port group corresponding to beam, The index of the downlink signal corresponding to the beam, the time index of the downlink synchronization signal block corresponding to the beam, the beam pair link (BPL) information, the transmission parameter (Tx parameter) corresponding to the beam, and the reception parameter (Rx parameter) corresponding to the beam , The transmission weight corresponding to the beam, the weight matrix corresponding to the beam, the weight vector corresponding to the beam, the receiving weight corresponding to the beam, the index of the transmission weight corresponding to the beam, the index of the weight matrix corresponding to the beam, the index of the weight vector corresponding to the beam, the beam At least one of the index of the corresponding reception weight, the reception codebook corresponding to the beam, the transmission codebook corresponding to
  • the downlink signal includes a synchronization signal, Broadcast channel, broadcast signal demodulation signal, channel state information downlink signal (channel state information reference signal, CSI-RS), cell specific reference signal (cell specific reference signal, CS-RS), UE specific reference signal (user equipment specific reference) signal, US-RS), downlink control channel demodulation reference signal, downlink data channel demodulation reference signal, and downlink phase noise tracking signal.
  • the uplink signal includes any of a medium uplink random access sequence, an uplink sounding reference signal, an uplink control channel demodulation reference signal, an uplink data channel demodulation reference signal, and an uplink phase noise tracking signal.
  • the network device may also allocate QCL identifiers to beams having a quasi-co-location (QCL) relationship (described below) among the beams associated with the frequency resource group.
  • the beam may also be called a spatial transmission filter
  • the transmit beam may also be called a spatial transmit filter
  • the receive beam may also be called a spatial receive filter.
  • the beam indication information may also be embodied as a transmission configuration index (TCI).
  • TCI may include various parameters, such as cell number, bandwidth part number, reference signal identifier, synchronization signal block identifier, QCL type, etc.
  • This application does not limit the metrics for measuring beam quality.
  • Metrics to measure beam quality include but are not limited to:
  • Reference signal received power reference signal received power (reference signal received power, RSRP);
  • Reference signal received strength indicator received signal strength indicator, RSSI
  • SINR Signal to interference and noise ratio
  • Signal quality indicator channel quality indicator, CQI
  • the co-location relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics.
  • the same or similar communication configuration can be adopted.
  • Large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal device receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver antenna Spatial correlation, main angle of arrival (angel-of-arrival, AoA), average angle of arrival, expansion of AoA, etc.
  • Airspace quasi-parity can be considered a type of QCL. There are two angles to understand spatial: from the sending end or from the receiving end. From the perspective of the transmitting end, if the two antenna ports are quasi-co-located in the airspace, it means that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are spatially quasi-co-located, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the quasi-parity assumption refers to the assumption that there is a QCL relationship between two ports.
  • the configuration and instructions of the quasi-parity hypothesis can be used to help the receiving end in signal reception and demodulation.
  • the receiving end can confirm that the A port and the B port have a QCL relationship, that is, the large-scale parameters of the signal measured on the A port can be used for the signal measurement and demodulation on the B port.
  • Simultaneous reception includes that the receiving end (such as a terminal device) receives multiple signals on one receiving parameter, and also includes receiving multiple signals on multiple receiving parameters that can be used simultaneously.
  • the receiving end such as a terminal device
  • the signal of wireless communication needs to be received and sent by an antenna.
  • Multiple antenna elements can be integrated on a panel, and this panel can be called an antenna panel.
  • the antenna panel can be expressed as an antenna array (antenna array) or an antenna subarray (antenna subarray).
  • An antenna panel may include one or more antenna arrays/sub-arrays.
  • An antenna panel can be controlled by one or more oscillators.
  • the terminal device may include multiple antenna panels, and each antenna panel includes one or more beams.
  • the network device may also include multiple antenna panels, and each antenna panel includes one or more beams.
  • the antenna unit is driven by the radio frequency link.
  • a radio link can drive one or more antenna elements.
  • An antenna panel can be driven by one RF link or multiple RF links. In this application, the antenna panel can also be replaced with a radio frequency link, or multiple radio frequency links that drive one antenna panel, or one or more radio frequency links controlled by a crystal oscillator.
  • the radio frequency link can also be called a radio frequency channel.
  • the radio frequency channel may include a receiving channel and/or a transmitting channel.
  • the radio frequency link or radio frequency channel may also be referred to as a receiver branch.
  • FR frequency range 450MHz-6000MHz (can be called low frequency, FR1 for short) and frequency range 24250MHz-52600MHz (can be called high frequency range).
  • Frequency referred to as FR2).
  • FR1 and FR2 network devices use different radio frequency channels. For example, for FR2, a high-frequency antenna array is used, which has a larger scale and a narrow output analog beam; for FR1, a low-frequency antenna array is used, which has a smaller scale and a wider output analog beam.
  • the 5G mobile communication system can communicate through multiple carriers.
  • network devices can communicate with terminal devices through multiple carriers.
  • the network equipment can use carrier 1, carrier 2, and carrier 3 to communicate with terminal equipment in Carrier Aggregation (CA), where carrier 1 belongs to frequency band 1, frequency band 1 is located in FR1, and carrier 2 belongs to frequency band 2.
  • Carrier 3 belongs to Band 3, and Band 2 and Band 3 are in FR2.
  • the existing beam management method may cause the network device to be unable to simultaneously use multiple carriers to communicate with the terminal device for the following reasons.
  • One RF channel can only correspond to one spatial transmission filter at a time.
  • the signals of multiple carriers sent out by this radio frequency channel at the same time correspond to the same spatial transmission and filtering.
  • One radio frequency channel corresponds to multiple antenna elements, and the distance between antenna elements will introduce transmission delay, which is reflected in the frequency domain as phase difference, and the same transmission delay is reflected in different phase differences for different frequency points . Therefore, the same transmission delay is embodied as different phase differences for different carriers, which causes the same spatial transmission filter to show different beam gains on different carriers (ie, different frequency points). This phenomenon is called beam tilt.
  • the existing beam management method performs independent beam management for each of the multiple carriers. Since the same spatial transmission filtering presents different beam gains on different carriers, the spatial transmission filtering of the beams reported by the terminal device for different carriers may be different in the traditional solution.
  • the beam measurement results of the terminal equipment on carrier 1, carrier 2, and carrier 3 are shown in Table 1. It is assumed that the terminal device reports the beam with the largest RSRP as the best beam to the network device. In Table 1, for carrier 1, the terminal device reports the beam corresponding to spatial transmission filter 3 to the network device. For carrier 2, the terminal device reports the beam corresponding to spatial transmission filter 1 to the network device. For carrier 3, the terminal What the device reports to the network device is the beam corresponding to the spatial transmission filter 2.
  • carrier 1, carrier 2, and carrier 3 all belong to FR2, and carrier 1, carrier 2 and carrier 3 share a radio frequency channel.
  • one RF channel can only correspond to one set of spatial transmission filters at the same time. Therefore, for the measurement report results of Carrier 1, Carrier 2, and Carrier 3 reported by the terminal equipment in the example shown in Table 1, the network equipment needs to communicate with the terminal equipment on the best beam of each carrier in a sequential order. Use carrier 1, carrier 2, and carrier 3 to communicate with terminal equipment.
  • the existing beam management solution may not be able to enable network equipment to use multiple carriers to serve users at the same time, resulting in limited user capacity and reduced communication efficiency.
  • this application proposes a measurement report method and device.
  • network equipment can use multiple carriers to serve users at the same time, thereby increasing user capacity and improving communication efficiency.
  • the technical solutions of the embodiments of the present application may be applied to a 5G New Radio (NR) communication system, or other future evolving communication systems based on beam communication.
  • NR 5G New Radio
  • the embodiments of the present application may be applicable to carrier aggregation scenarios.
  • an application scenario of an embodiment of the present application is shown in Figure 1 for carrier aggregation.
  • terminal devices include handheld devices, vehicle-mounted devices, wearable devices, or computing devices with wireless communication functions.
  • terminal equipment may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, User agent or user device.
  • the terminal device may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, and wireless terminals in smart homes.
  • the terminal device may be a terminal device in a 5G network or a terminal device in a public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • the network equipment involved in the embodiments of this application can be used to communicate with one or more terminal devices, and can also be used to communicate with one or more base stations with partial terminal functions (such as macro base stations and micro base stations, such as access Point, communication between).
  • Network equipment can be called a base station.
  • Base stations may come in many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the network equipment may be a base station in a 5G system, or a base station in a PLMN that will evolve in the future.
  • the base station in 5G NR may also be called a transmission reception point (TRP) or next generation node B (gNB).
  • TRP transmission reception point
  • gNB next generation node B
  • pilot in the embodiment of this application represents a beam
  • pilot resource in the embodiment of this application represents a resource corresponding to the beam. It can be understood that pilot and beam are two interchangeable expressions.
  • spatial domain transmission filter mentioned in this article can be replaced with “downlink spatial domain transmission filter”, or it can be replaced with any of the following descriptions: “spatial domain filtering", “analog beam” and "Analog weight vector”.
  • FIG. 2 is a schematic flowchart of a measurement report method according to an embodiment of the application. The method includes the following steps.
  • the network device sends pilot measurement configuration information of multiple carriers to the terminal device, the pilot measurement configuration information of the multiple carriers indicates the pilot association relationship of the multiple carriers, and the pilot association relationship of the multiple carriers indicates the The spatial transmission filtering of the pilots of multiple carriers is the same.
  • the "spatial transmission filtering" mentioned in this article can be replaced with any of the following descriptions “downlink spatial transmission filter", “spatial filtering", “analog beam” or “analog weighting vector”.
  • the pilot association relationship of the multiple carriers indicates that the spatial transmission filtering of the pilots of the multiple carriers is the same
  • the pilot association relationship of the multiple carriers indicates the multiple carriers
  • the analog weight vectors of the pilots are the same.
  • the pilot association relationship of multiple carriers means that the spatial transmission filtering of the pilots of the multiple carriers is the same. In other words, the pilot association relationship of the multiple carriers indicates that the multiple carriers have the same spatial transmission filtering corresponding to the multiple carriers. Association of pilots.
  • the multiple carriers are Carrier 1, Carrier 2, and Carrier 3, where Carrier 1, Carrier 2 and Carrier 3 all have the first spatial transmission filter, and the pilot association relationship of the multiple carriers may include the first spatial transmission of Carrier 1.
  • the pilot association relationship of multiple carriers can be implemented in multiple ways, which will be described below.
  • the pilot measurement configuration information of the multiple carriers indicates the pilot association relationship of the multiple carriers, which means that the pilot measurement configuration information of the multiple carriers includes information that can indicate the pilot association relationship of the multiple carriers.
  • pilot measurement configuration information of multiple carriers may also include pilot measurement related configuration information of multiple carriers, and/or pilot report related configuration information.
  • the configuration information related to the pilot measurement may include information indicating the resource used to measure the pilot, and the like.
  • the pilot report related configuration information may include information indicating the resource used to report the measurement result of the pilot.
  • the network device may jointly configure pilot measurement configuration information for multiple carriers.
  • the network device configures a piece of pilot measurement configuration information, and the pilot measurement configuration information includes pilot measurement configuration information for each of the multiple carriers.
  • the network device may separately configure pilot measurement configuration information for each of the multiple carriers.
  • the network device separately configures a piece of pilot measurement configuration information.
  • S220 The terminal device performs measurement according to the pilot measurement configuration information of the multiple carriers, and obtains the measurement report results of the multiple carriers.
  • the network equipment sends pilots of multiple carriers according to the pilot measurement configuration information of multiple carriers, where each carrier may have one or more pilots; the terminal equipment receives and connects the pilots according to the pilot measurement configuration information of multiple carriers.
  • the pilots of multiple carriers are measured, and the measurement report results of the multiple carriers are obtained according to the pilot measurement results of the multiple carriers.
  • the measurement result of the pilot frequency can be characterized by any of the following indicators: RSRP, RSRQ, RSSI, SNR, SINR, BLER, CQI.
  • S230 The terminal device sends the measurement report results of the multiple carriers to the network device.
  • the terminal device can obtain the pilots of the multiple carriers according to the received pilot measurement configuration information of the multiple carriers Correlation relationship, so that the pilot measurement results corresponding to one or more transmission filtering in the same space can be reported for multiple carriers.
  • the network device may send filtered pilots based on the same space domain of the multiple carriers to communicate with the terminal device. Therefore, in the case that multiple carriers share a radio frequency channel, the solution provided in this application can realize that a network device uses multiple carriers to communicate with a terminal device at the same time.
  • the solution provided by this application configures the pilot association relationship of multiple carriers for the terminal device, so that the terminal device can report the pilot measurement results corresponding to one or more of the same spatial transmission filtering for multiple carriers, thereby
  • the network device can use multiple carriers to communicate with the terminal device at the same time, that is, the communication of carrier aggregation is realized, and therefore, the communication efficiency can be improved.
  • the carrier in the embodiment of the present application may be a component carrier (component carrier, CC), or may also be a bandwidth part (bandwidth part, BWP).
  • component carrier component carrier
  • BWP bandwidth part
  • multiple carriers are multiple CCs, or multiple carriers are multiple BWPs.
  • Multiple carriers can belong to the same frequency band or different frequency bands.
  • the multiple carriers belong to the same frequency band in FR2, or belong to different frequency bands in FR2.
  • pilot association relationship of multiple carriers can be implemented in multiple ways, which will be described below.
  • the pilot association relationship of the multiple carriers includes: the resource identifiers of the pilots corresponding to the same spatial transmission filtering of the multiple carriers are the same, or the same analog weight vector of the multiple carriers The resource identifiers of the corresponding pilots are the same.
  • the terminal device After the terminal device receives the pilot measurement configuration information of multiple carriers sent by the network device, it can learn that pilots with the same resource identifier correspond to the same spatial transmission filtering or the same analog weight vector.
  • pilots with the same resource identifier correspond to the same spatial domain to send filtering, or the same analog weight vector.
  • one indication information in the pilot measurement configuration information of multiple carriers may be used to indicate that pilots with the same resource identifier correspond to the same spatial domain transmission filtering, or the same analog weight vector.
  • the pilot measurement configuration information of carrier 1, carrier 2 and carrier 3 includes the information shown in Table 2.
  • the resource identification of pilot 11 of carrier 1, the resource identification of pilot 21 of carrier 2 and the resource identification of pilot 31 of carrier 3 are the same, indicating that pilot 11, pilot 21, and pilot 31 correspond to the same A spatial transmission filter.
  • the resource identifier of the pilot 12 of carrier 1, the resource identifier of the pilot 22 of carrier 2 and the resource identifier of the pilot 32 of carrier 3 are the same, which means that the pilot 12, the pilot 22, and the pilot 32 correspond to the same spatial transmission filtering.
  • the resource identifier of the pilot 13 of carrier 1, the resource identifier of the pilot 23 of carrier 2 and the resource identifier of the pilot 33 of carrier 3 are the same, which means that the pilot 13, pilot 23, and pilot 33 correspond to the same spatial transmission filtering.
  • Table 2 only presents part of the information in the pilot measurement configuration information of multiple carriers, and the pilot measurement configuration information of multiple carriers may also include other necessary configuration information.
  • the resource identifier of the pilot may be any of the following: resource Index, resource set identifier, resource port identifier.
  • the CSI-ResourceConfigId in Table 2 may also be any of the following: SSB-Index, CSI-SSB-ResourceSetId, NZP-CSI-RS-ResourceSetId, CSI-IM-ResourceSetId, NZP-CSI-RS-ResourceId, portID , ReportConfigId.
  • SSB-Index represents the SSB resource index
  • CSI-SSB-ResourceSetId represents the CSI-SSB resource set identifier
  • NZP-CSI-RS-ResourceSetId represents the NZP-CSI-RS resource set identifier
  • CSI-IM-ResourceSetId represents the CSI-IM resource Set ID
  • NZP-CSI-RS-ResourceId means NZP-CSI-RS resource ID
  • portID means port ID.
  • NZP-CSI-RS represents a non-zero power channel state information-reference signal (NZP CSI-RS).
  • CSI-IM stands for channel state information interference measurement (channel state information-interference measurement, CSI-IM).
  • the signaling utilization rate can be improved, thereby saving signaling overhead.
  • the pilot association relationship of the multiple carriers includes: the resources of the pilots corresponding to the same spatial transmission filtering of the multiple carriers have intersections, or the same analog weight vectors of the multiple carriers correspond The resources of the pilot frequency have intersection.
  • the terminal device After the terminal device receives the pilot measurement configuration information of multiple carriers sent by the network device, it can learn that the pilots with intersection of resources correspond to the same spatial transmission filtering or the same analog weight vector.
  • pilots with intersection of resources correspond to the same spatial domain to send filtering, or the same analog weight vector.
  • one indication information in the pilot measurement configuration information of multiple carriers may also be used to indicate that the pilots with intersection of resources correspond to the same spatial domain transmission filtering, or the same analog weight vector.
  • the resources with intersection mentioned herein may include resources with intersection in frequency domain, and/or resources with intersection in time domain.
  • the resources with intersection mentioned in this article may include completely overlapping resources, and may also include partially overlapping resources.
  • FIG. 3 An example is given in conjunction with Figure 3. Taking multiple carriers as carrier 1, carrier 2, and carrier 3 as an example, the schematic diagram of the pilot resources of carrier 1, carrier 2, and carrier 3 indicated by the pilot measurement configuration information of carrier 1, carrier 2 and carrier 3 is shown in Figure 3. Shown. It can be seen from Figure 3 that the symbol positions of the pilot resources of carrier 2 (denoted as corresponding pilot 2x) and the symbol positions of the pilot resources of carrier 3 (denoted as corresponding pilot 3x) completely overlap, and the pilot resources of carrier 1 (denoted as corresponding Pilot 1x) partially overlaps with the symbol position of the pilot resource of carrier 2 (denoted as the corresponding pilot 2x), indicating that the pilot 1x of carrier 1, the pilot 2x of carrier 2 and the pilot 3x of carrier 3 correspond to the same one Spatial transmission filtering.
  • the pilot association relationship of multiple carriers is indicated by the pilot resource, which can save signaling overhead.
  • the pilot association relationship of the multiple carriers includes: the same space-domain transmission filtering corresponding to the multiple carriers has the same report resources of the pilots, or the same analog weight vector of the multiple carriers corresponds to The report resources of the pilot are the same.
  • the terminal device After the terminal device receives the pilot measurement configuration information of multiple carriers sent by the network device, it can learn that the pilots with the same reported resource correspond to the same spatial transmission filtering, or the same analog weight vector.
  • pilots with the same reporting resource correspond to the same spatial domain transmission filtering, or the same analog weight vector.
  • pilots with the same reporting resource correspond to the same spatial domain transmission filtering, or the same analog weight vector.
  • one indication information in the pilot measurement configuration information of multiple carriers may be used to indicate that the pilots with the same reported resource correspond to the same spatial domain transmission filtering, or the same analog weight vector.
  • the pilot measurement configuration information of carrier 1, carrier 2 and carrier 3 includes the information shown in Table 3.
  • the report resources of pilot 11 of carrier 1, pilot 21 of carrier 2 and pilot 31 of carrier 3 are the same, which means that pilot 11, pilot 21, and pilot 31 correspond to the same spatial transmission filter.
  • the report resources of the pilot 12 of the carrier 1, the pilot 22 of the carrier 2 and the pilot 32 of the carrier 3 are the same, which means that the pilot 12, the pilot 22, and the pilot 32 correspond to the same spatial transmission filtering.
  • the report resources of the pilot 13 of the carrier 1, the pilot 23 of the carrier 2 and the pilot 33 of the carrier 3 are the same, which means that the pilot 13, the pilot 23, and the pilot 33 correspond to the same spatial transmission filtering.
  • Table 3 only presents part of the information in the pilot measurement configuration information of multiple carriers, and the pilot measurement configuration information of multiple carriers may also include other necessary configuration information.
  • the pilot association relationship of multiple carriers is indicated by the report resource of the pilot, that is, the pilot association relationship of multiple carriers is indicated by multiplexing the information originally contained in the pilot measurement configuration information. , Can improve the signaling utilization, which can save signaling overhead.
  • the pilot measurement configuration information of multiple carriers includes the spatial transmission filter identifier of the pilot, wherein the pilot association relationship of the multiple carriers includes: the same spatial transmission filtering of the multiple carriers The spatial transmission filter identification of the pilot frequency is the same.
  • the pilot measurement configuration information of the multiple carriers includes the analog weight vector identifier of the pilot, wherein the pilot association relationship of the multiple carriers includes: the analog weight vector of the pilots of the same analog weight vector of the multiple carriers The identity is the same.
  • the terminal device After the terminal device receives the pilot measurement configuration information of multiple carriers sent by the network device, it can learn that the pilots with the same spatial transmission filter identifier correspond to the same spatial transmission filter, or the pilots with the same analog weight vector identifier correspond to the same simulation Weight vector.
  • the pilot measurement configuration information of carrier 1, carrier 2 and carrier 3 includes the information shown in Table 4.
  • the spatial transmission filter identification of pilot 11 of carrier 1, the spatial transmission filtering identification of pilot 21 of carrier 2, and the spatial transmission filtering identification of pilot 31 of carrier 3 are the same, indicating that pilot 11 and pilot 21 And the pilot 31 corresponds to the same spatial domain to send filtering.
  • the spatial transmission filter identification of pilot 12 of carrier 1, the spatial transmission filtering identification of pilot 22 of carrier 2, and the spatial transmission filtering identification of pilot 32 of carrier 3 are the same, indicating that pilot 12, pilot 22, and pilot 32 correspond Send filtering in the same airspace.
  • the spatial transmission filter identification of pilot 13 of carrier 1, the spatial transmission filtering identification of pilot 23 of carrier 2, and the spatial transmission filtering identification of pilot 33 of carrier 3 are the same, indicating that pilot 13, pilot 23, and pilot 33 correspond Send filtering in the same airspace.
  • Table 4 only presents part of the information in the pilot measurement configuration information of multiple carriers, and the pilot measurement configuration information of multiple carriers may also include other necessary configuration information.
  • the pilot association relationship of the multiple carriers may include any one or more of the foregoing implementation manner 1, implementation manner 2, implementation manner three, and implementation manner 4.
  • the pilot association relationship of multiple carriers may also have other feasible implementation manners.
  • the terminal device can obtain the pilot association of the multiple carriers according to the received pilot measurement configuration information of the multiple carriers Therefore, it is possible to report pilot measurement results corresponding to one or more transmission filtering in the same space for multiple carriers.
  • the following describes the strategy for the terminal device to report the measurement report results of multiple carriers.
  • the measurement report results of multiple carriers include the measurement report results of the multiple carriers including the measurement results of multiple pilots corresponding to the same spatial domain transmission filtering, wherein the The multiple pilots are the pilots of the multiple carriers, respectively.
  • the multiple pilots are respectively the pilots of the multiple carriers, which means that the multiple pilots include one pilot included in each of the multiple carriers.
  • the measurement report results of these three carriers include the measurement results of one pilot of each of the three carriers, that is, the measurement results of three pilots, where the three pilots correspond to Transmission filtering in the same airspace.
  • the pilot measurement results may include pilot measurement values.
  • the pilot measurement value can be characterized by any of the following indicators: RSRP, RSRQ, RSSI, SNR, SINR, BLER, CQI.
  • the measurement result of the pilot frequency may also include the pilot frequency identification.
  • the multiple carriers are Carrier 1, Carrier 2, and Carrier 3 shown in Table 1.
  • the terminal equipment reports to the network equipment the RSRP of the carrier 1, the carrier 2 and the carrier 3 in the airspace sending the pilot frequency of the filter 1.
  • the terminal device reports to the network device the RSRP of the carrier 1, the carrier 2 and the carrier 3 in the airspace sending the pilot of the filter 2.
  • the terminal device reports to the network device the RSRP of the pilot of the carrier 1, the carrier 2 and the carrier 3 in the airspace.
  • the terminal equipment can report the measurement results of the pilots corresponding to the same spatial domain transmission filtering for multiple carriers, so that when multiple carriers share the same radio frequency channel, It can be realized that the network device uses multiple carriers to communicate with the terminal device at the same time, that is, the communication of carrier aggregation is realized. Therefore, the communication efficiency can be improved.
  • the measurement report results of multiple carriers may include measurement results of pilots corresponding to one or more of the same space domain transmission filtering of the multiple carriers.
  • the terminal device reports to the network device the RSRP of the pilots of the carrier 1, carrier 2 and carrier 3 in the airspace sending filter 1 and the airspace sending filter 2.
  • the terminal device reports to the network device the RSRP of the pilots of carrier 1, carrier 2 and carrier 3 in the spatial transmission filter 1 and spatial domain transmission filter 3.
  • the terminal device reports to the network device the RSRP of the pilots of carrier 1, carrier 2 and carrier 3 in the spatial transmission filter 2 and spatial domain transmission filter 3.
  • the terminal device reports to the network device the RSRP of the pilots of carrier 1, carrier 2 and carrier 3 in the spatial transmission filter 1, spatial transmission filter 2, and spatial transmission filter 3.
  • the terminal equipment can report the measurement results corresponding to one or more filtered pilots sent in the same space for multiple carriers, thereby sharing the same radio frequency channel on multiple carriers
  • the network device can use multiple carriers to communicate with the terminal device at the same time, that is, the communication of carrier aggregation can be realized, and the communication efficiency can be improved.
  • the measurement report results of the multiple carriers include the measurement results of multiple pilots corresponding to the same spatial domain transmission filter, where the multiple pilots are the pilots of the multiple carriers respectively.
  • the plurality of pilots include the pilot with the best measured value.
  • the multiple pilots are respectively the pilots of the multiple carriers, which means that the multiple pilots include one pilot included in each of the multiple carriers.
  • the plurality of pilots include the pilot with the best measurement value, which means that the multiple pilots include the pilot with the best measurement value among all the pilots of the multiple carriers.
  • the pilot with the best pilot measurement result is selected for reporting.
  • the multiple carriers are carrier 1, carrier 2, and carrier 3, these three carriers all have three pilots corresponding to spatial transmission filtering 1, spatial transmission filtering 2, and spatial transmission filtering 3.
  • the measurement report results of these three carriers include the measurement results of the pilot corresponding to the spatial transmission filter 1 of carrier 1, carrier 2 and carrier 3. .
  • Table 1 Take Table 1 as an example. Assume that the multiple carriers are carrier 1, carrier 2, and carrier 3 shown in Table 1. It can be seen from Table 1 that among all the measured pilots, the RSRP of the pilot under the filter 1 in the space of carrier 2 is the largest, and the measurement report results of multiple carriers include carrier 1, carrier 2 and carrier 3 sent in the space Filter the measurement result of the pilot frequency under 1.
  • the measurement report results of multiple carriers may include the pilot measurement results of carrier 1, carrier 2, and carrier 3 under spatial transmission filtering 1 and spatial transmission filtering 2.
  • the terminal device adopts the first strategy to report the measurement report results of multiple carriers. It can also be expressed that the terminal device reports according to the carrier-level optimal first N pilots, and N is a positive integer.
  • the measurement report results of the multiple carriers include the measurement results of multiple pilots corresponding to the same spatial domain transmission filtering, wherein the multiple pilots are the pilots of the multiple carriers respectively.
  • the same space-domain transmission filter corresponding to the multiple pilots is a space-domain transmission filter with the best pilot average measurement value.
  • the multiple pilots are respectively the pilots of the multiple carriers, which means that the multiple pilots include one pilot included in each of the multiple carriers.
  • the pilot average measurement value involved in this article is for spatial transmission filtering.
  • Each spatial transmission filter of multiple carriers corresponds to an average pilot measurement value.
  • the average pilot measurement value of the first spatial domain transmission filtering refers to the average value of the multiple pilot measurement values corresponding to the first spatial domain transmission filtering among all the pilots of the multiple carriers.
  • the multiple carriers are carrier 1, carrier 2, and carrier 3, these three carriers all have three pilots corresponding to spatial transmission filtering 1, spatial transmission filtering 2, and spatial transmission filtering 3.
  • the measurement report results of these three carriers include the measurement of the pilot corresponding to the spatial transmission filter 1 of carrier 1, carrier 2, and carrier 3. result.
  • the multiple carriers are carrier 1, carrier 2, and carrier 3 shown in Table 1. It can be seen from Table 1 that in the spatial transmission filters (1,2,3) of carrier 1, carrier 2 and carrier 3, the average value of RSRP of the pilot corresponding to spatial transmission filter 2 is the largest, and that of spatial transmission filter 1 The average value of the RSRP of the pilot is the second largest, and the average value of the RSRP of the pilot corresponding to the spatial transmission filter 3 is the smallest.
  • the measurement report results of multiple carriers include the measurement results of the pilot under the spatial transmission filter 2 of carrier 1, carrier 2, and carrier 3.
  • the measurement report results of multiple carriers include the measurement results of the pilots under the spatial transmission filter 2 and the spatial transmission filter 1 of carrier 1, carrier 2, and carrier 3.
  • the terminal device uses the second strategy to report the measurement report results of multiple carriers, which can also be expressed as: the terminal device reports the average optimal first N pilots of multiple carriers for reporting, and N is a positive integer.
  • the terminal device also adopts other feasible strategies to determine the measurement report results of multiple carriers, as long as it is guaranteed to report the measurement of the pilot corresponding to the same space domain transmission filter of multiple carriers. The result is fine.
  • the measurement report results of the multiple carriers include at least one of the following: a carrier identifier, a pilot measurement value, and a pilot identifier.
  • the measurement report results of carrier 1, carrier 2, and carrier 3 include the following information: carrier identity of carrier 1, carrier The RSRP and resource identifier of the pilot in the spatial transmission filter 2 of 1, the carrier identifier of the carrier 2, the RSRP and resource identifier of the pilot in the spatial transmission filter 2 of the carrier 2, the carrier identifier of the carrier 3, and the spatial transmission filter of the carrier 3 The RSRP and resource identifier of the lower pilot.
  • the terminal device may jointly report to multiple carriers.
  • the terminal device reports a measurement report result to the network device, and this measurement report result includes pilot measurement results of one or more carriers.
  • the terminal device uses the first strategy to report the measurement report results of multiple carriers, take Table 1 as an example. It can be seen from Table 1 that the RSRP of the pilot under carrier 2 spatial transmission filter 1 is the largest, and the RSRP of the pilot under carrier 1 spatial transmission filter 1 is greater than the RSRP of the pilot under carrier 3 spatial transmission filter 1. .
  • the measurement report result includes the resource identifier of a spatial transmission filter and the measurement result of a carrier
  • the measurement report result includes: the carrier identifier of carrier 2, the resource identifier of the pilot under the spatial transmission filter 1 of carrier 2, and the resource identifier of carrier 2.
  • the RSRP value of the pilot under filter 1 is transmitted in the spatial domain.
  • the measurement report result includes the resource identifier of one spatial transmission filter and the measurement results of two carriers
  • the measurement report result includes: the carrier identifier of carrier 2, the resource identifier of the pilot under the spatial transmission filter 1 of carrier 2, and the resource identifier of carrier 2.
  • the measurement report result includes: the carrier identifier of carrier 2, the resource identifier of the pilot under the spatial transmission filter 1 of carrier 2, and the resource identifier of carrier 2.
  • the RSRP value of the pilot under the spatial transmission filter 1, the carrier identifier of the carrier 1, the resource identifier of the pilot under the spatial transmission filter 1 of the carrier 1, the RSRP value of the pilot under the spatial transmission filter 1, and the carrier 3 The carrier identifier of the carrier 3, the resource identifier of the pilot under filter 1 in the space of carrier 3, and the RSRP value of the pilot under filter 1 in the space of carrier 3.
  • the measurement report results include the resource identifiers of two spatial transmission filters and the measurement results of three carriers
  • the measurement report results include: carrier identifiers of carriers 1, 2, and 3, and spatial transmission filter 1 of carriers 1, 2, and 3
  • the resource identifier of the pilot under the sending filter 2 the RSRP value of the pilot under the spatial sending filter 1 of the carrier 1, 2, and 3 and the pilot under the spatial sending filter 2.
  • the number of resource identifiers for spatial transmission filtering and the number of reported carriers included in the measurement report result can be instructed by the base station, or can be decided by the terminal itself.
  • the terminal device separately reports for each carrier or part of the carriers among the multiple carriers. For example, in one reporting operation, the terminal device reports the measurement report result of one carrier among multiple carriers; in another reporting operation, the terminal device reports the measurement report result of another carrier among the multiple carriers, and so on.
  • the terminal device reports the measurement report results of some of the multiple carriers; in another reporting operation, the terminal device reports the measurement report results of the remaining portions of the multiple carriers, and so on.
  • the terminal device reports the carrier identification of carrier 1, the spatial transmission of carrier 1 to the network device, the resource identification of the pilot under 1, and the spatial transmission of carrier 1.
  • the RSRP value of the pilot under 1 in another reporting operation, the terminal device reports to the network device the carrier ID of carrier 2, the space domain of carrier 2 and the resource ID of the pilot under 1, and the space domain of carrier 2 is filtered 1
  • the RSRP value of the pilot below in the reporting operation again, the terminal device reports to the network device the carrier identification of carrier 3, the space domain of carrier 3, the resource identification of the pilot in filter 1, and the space domain of carrier 3.
  • the RSRP value of the pilot in one reporting operation, the terminal device reports the carrier identification of carrier 1, the spatial transmission of carrier 1 to the network device, the resource identification of the pilot under 1, and the spatial transmission of carrier 1.
  • the RSRP value of the pilot under 1 in another reporting operation, the terminal device reports to the network device the carrier ID of carrier 2, the space domain of carrier 2 and the resource ID of the pilot under 1, and the space domain of carrier 2 is filtered 1
  • the terminal device reports the carrier identification of carrier 1, the spatial transmission of carrier 1 to the network device, the resource identification of the pilot under filter 1, and the spatial transmission of carrier 1.
  • the terminal device reports the carrier identification of carrier 3, the resource identification of the pilot under filter 1 in the space of carrier 3, and the RSRP value of the pilot under filter 1 in the space of carrier 3 to the network device.
  • the multiple reporting operations in this example may be performed simultaneously or time-sharing.
  • the terminal device may also report measurement results of some of the multiple carriers configured by the network.
  • the method further includes: after receiving the measurement report results of multiple carriers, the network device determines from the measurement report results of the multiple carriers that the multiple carriers are used for communication
  • the pilots used for communication of the multiple carriers correspond to the same spatial transmission filtering; the filtered transmission signals are transmitted based on the same spatial domain of the multiple carriers, and the carrier aggregation communication is performed with the terminal device.
  • the solution provided by this application allows the terminal device to report the measurement results of multiple pilots corresponding to the same space domain transmission and filtering for multiple carriers by configuring the pilot association relationship of multiple carriers, so that the In the case of sharing the same radio frequency channel, the network device can simultaneously use multiple carriers to communicate with the terminal device, that is, to realize carrier aggregation communication, which can improve communication efficiency.
  • Fig. 4 is a schematic flowchart of a measurement report method according to another embodiment of the present application. The method includes step S410 and step S420.
  • the network device sends configuration information of multiple carriers to the terminal device, where the configuration information instructs the same space domain of the multiple carriers to send pilots corresponding to filtering.
  • the terminal device sends the report result of the multiple carriers to the network device according to the configuration information of the multiple carriers, the report result instructs the same space domain of the multiple carriers to send the pilot corresponding to the filtering.
  • the network device may send filtered corresponding multiple pilots (pilots of multiple carriers respectively) based on the same spatial domain, and simultaneously use multiple carriers to communicate with the terminal device. Therefore, when multiple carriers share a radio frequency channel, this embodiment can realize that the network device uses multiple carriers to communicate with the terminal device at the same time, thereby increasing user capacity and improving communication efficiency.
  • the terminal device may send the report results of the multiple carriers to the network device by measuring the pilots of the multiple carriers, where the report result may include the measurement of multiple pilots corresponding to the same spatial domain transmission filter. As a result; or, according to the configuration information of multiple carriers, the terminal device can directly select the same space domain of the multiple carriers to send multiple pilots corresponding to the filtering for reporting.
  • step S410 is step S210 in the foregoing embodiment, that is, the configuration information of multiple carriers in step S410 is the pilot measurement configuration information of multiple carriers; the implementation of step S420 is that of the foregoing embodiment Steps S220 and S230, that is, the report results of multiple carriers in step S420 are measurement report results of multiple carriers.
  • step S410 is step S210 in the above embodiment, that is, the configuration information of multiple carriers in step S410 is the pilot measurement configuration information of multiple carriers; the implementation of step S420 includes: The carrier's pilot measurement configuration information, measure part or all of the pilots of multiple carriers, and determine the target pilot; send the report results of multiple carriers to the network equipment, and the report results indicate the same spatial domain transmission filter ( (Denoted as the target airspace transmission filter) corresponding to multiple pilots, the multiple pilots are respectively the pilots of the multiple carriers, and the target airspace transmission filter is the airspace transmission filter corresponding to the target pilot.
  • the target airspace transmission filter is the airspace transmission filter corresponding to the target pilot.
  • the target pilot may be the pilot with the best measured value among all the pilots of multiple carriers, or the target pilot may be a part of the pilots (for example, 50% of the pilots) of multiple carriers with the best measured value.
  • the optimal pilot or, alternatively, the target pilot may be a pilot whose measurement value exceeds the threshold.
  • step S410 includes but is not limited to step S210 in the above-mentioned embodiment, as long as the configuration information of multiple carriers can indicate that the same spatial domain of multiple carriers sends the corresponding pilots for filtering; implementation of step S420 Including, according to the configuration information of multiple carriers, the terminal device directly selects a same space domain to send multiple pilots corresponding to filtering to report to the network device.
  • the terminal device by configuring the terminal device with multiple carriers in the same space to send the pilot corresponding to the filtering, the terminal device can report to the network device the same space with multiple carriers to send the filtered pilot, thereby In the case that multiple carriers share the same radio frequency channel, the network device can use multiple carriers to communicate with the terminal device at the same time, that is, the communication of carrier aggregation is realized, and the communication efficiency can be improved.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices; the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each device such as a transmitter device or a receiver device, includes hardware structures and/or software modules corresponding to each function in order to realize the aforementioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to realize the described functions, but this realization should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the application.
  • the communication device 500 includes a transceiver unit 510 and a processing unit 520.
  • the transceiver unit 510 can communicate with the outside, and the processing unit 510 is used for data processing.
  • the transceiving unit 510 may also be referred to as a communication interface or a communication unit.
  • the communication device 500 may be used to perform the actions performed by the terminal device in the above method embodiment.
  • the communication device 500 may be called a terminal device, and the transceiver unit 510 is used to execute the terminal device side in the above method embodiment.
  • the processing unit 520 is configured to perform processing-related operations on the terminal device side in the above method embodiments.
  • the communication device 500 may be used to perform the actions performed by the network device in the above method embodiment.
  • the communication device 500 may be called a network device, and the transceiver unit 510 is used to perform the network device in the above method embodiment.
  • the processing unit 520 is configured to perform processing-related operations on the network device side in the above method embodiments.
  • the transceiver unit 510 is configured to receive pilot measurement configuration information of multiple carriers.
  • the pilot measurement configuration information of multiple carriers indicates the pilot association relationship of multiple carriers, and the pilot association relationship of multiple carriers It indicates that the spatial transmission filtering of the pilots of the multiple carriers is the same;
  • the processing unit 520 is configured to perform measurement according to the pilot measurement configuration information of the multiple carriers to obtain the measurement report results of the multiple carriers;
  • the transceiver unit 510 is also configured to transmit Measurement and report results of multiple carriers.
  • the processing unit 520 is configured to generate pilot measurement configuration information of multiple carriers, the pilot measurement configuration information of multiple carriers indicates the pilot association relationship of multiple carriers, and the pilot association relationship of multiple carriers It means that the spatial transmission filtering of the pilots of the multiple carriers is the same; the transceiver unit 510 is configured to: send pilot measurement configuration information of multiple carriers to a terminal device; receive pilot measurement configuration information of multiple carriers from the terminal device. The measurement report results of multiple carriers.
  • the pilot association relationship of the multiple carriers may include any one or more of the following: the same space domain of the multiple carriers transmits and filters the corresponding pilot resource identifiers Same; the resources of the pilots corresponding to the same spatial transmission filtering of the multiple carriers have an intersection; the reporting resources of the pilots corresponding to the same spatial transmission filtering of the multiple carriers are the same; the same spatial transmission filtering of the multiple carriers corresponds to the pilot The spatial transmission filter identification of the frequency is the same.
  • the measurement report results of the multiple carriers include measurement results of multiple pilots corresponding to the same spatial domain transmission filtering, wherein the multiple pilots are the Pilots for multiple carriers.
  • the measurement report results of the multiple carriers include measurement results of multiple pilots corresponding to the same spatial domain transmission filtering, wherein the multiple pilots are the Pilots of multiple carriers, and the multiple pilots include the pilot with the best measured value.
  • the measurement report results of the multiple carriers include measurement results of multiple pilots corresponding to the same spatial domain transmission filtering, wherein the multiple pilots are the For pilots of multiple carriers, the same spatial transmission filtering corresponding to the multiple pilots is a spatial transmission filtering with the optimal pilot average measurement value.
  • the measurement report results of multiple carriers may include the measurement results of pilots corresponding to one or more of the same space domain transmission filtering of the multiple carriers.
  • the measurement report results of the multiple carriers include at least one of the following: carrier identification, pilot identification, and pilot measurement value.
  • multiple carriers share one radio frequency channel.
  • multiple carriers are component carriers CC or bandwidth part BWP.
  • the solution provided by this application allows the terminal device to report the measurement results corresponding to one or more filtered pilots sent in the same space for multiple carriers by configuring the pilot association relationship of multiple carriers to the terminal device, thereby
  • the network device can use multiple carriers to communicate with the terminal device at the same time, that is, to realize carrier aggregation communication, which can improve communication efficiency.
  • the transceiver unit 510 is configured to receive configuration information of multiple carriers, and the configuration information indicates that the pilots corresponding to the filtering are transmitted in the same space of the multiple carriers; the processing unit 520 is configured to receive the configuration information of the multiple carriers.
  • the configuration information is configured to obtain the report results of multiple carriers.
  • the report results of the multiple carriers indicate that the same space domain of the multiple carriers sends the pilot corresponding to the filtering; the transceiver unit 510 is also used to send the reports of the multiple carriers to the network device result.
  • the processing unit 520 is configured to generate configuration information of multiple carriers, and the configuration information indicates that the same space domain of the multiple carriers sends the pilot corresponding to the filtering; the transceiver unit 510 is configured to send the multiple carriers to the terminal device.
  • the configuration information of each carrier is received from the terminal device and the report results of the multiple carriers obtained according to the configuration information of the multiple carriers are received, and the report results of the multiple carriers indicate that the same space domain of the multiple carriers sends the filter corresponding to the pilot.
  • the network device may send filtered pilots based on the corresponding same space domain, and simultaneously use multiple carriers to communicate with the terminal device. It can be understood that when multiple carriers share a radio frequency channel, this embodiment can realize that the network device uses multiple carriers to communicate with the terminal device at the same time, thereby increasing user capacity and improving communication efficiency.
  • processing unit 520 in the above embodiments may be implemented by a processor or a processor-related circuit
  • transceiver unit 510 may be implemented by a transceiver or a transceiver-related circuit.
  • an embodiment of the present application also provides a communication device 600.
  • the communication device 600 includes a processor 610, which is coupled with a memory 620, and the memory 620 is used to store computer programs or instructions, and the processor 610 is used to execute the computer programs or instructions stored in the memory 620, so that the The method is executed.
  • the communication device 600 may further include a memory 620.
  • the communication device 600 may further include a transceiver 630, wherein the processor 610 executes the computer program or instruction stored in the memory 620 so that the processor 610 is used to execute the above method
  • the processing-related steps in the embodiment enable the transceiver 630 to perform the transceiving-related steps in the above method embodiment.
  • the communication device 600 is used to perform the actions on the terminal device side in the above method embodiments.
  • the communication device 600 is configured to perform actions on the network device side in the above method embodiments.
  • the embodiment of the present application also provides a communication device 700, and the communication device 700 may be a terminal device or a chip.
  • the communication apparatus 700 can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 7 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the radio frequency circuit may include the radio frequency channel mentioned in the above embodiments.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 710 and a processing unit 720.
  • the transceiver unit 710 may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit 720 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 710 may be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 710 as the sending unit, that is, the transceiver unit 710 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiver unit 710 is configured to perform the receiving operation on the terminal device side in step S210 shown in FIG. 2 and the sending operation on the terminal device side in step S230, and/or the transceiver unit 710 also uses To perform other receiving and sending steps on the terminal device side.
  • the processing unit 720 is configured to execute step S220 shown in FIG. 2, and/or the processing unit 720 is also configured to execute other processing steps on the terminal device side.
  • the transceiver unit 710 is configured to perform the receiving operation on the terminal device side in step S410 shown in FIG. 4 and the sending operation on the terminal device side in step S420, and/or the transceiver unit 710 also Used to perform other receiving and sending steps on the terminal device side.
  • FIG. 7 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 7.
  • the chip When the communication device 700 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 800, which may be a network device or a chip.
  • the communication device 800 may be used to perform actions performed by a network device in the foregoing method embodiments.
  • FIG. 8 shows a simplified schematic diagram of the base station structure.
  • the base station includes part 810 and part 820.
  • the 810 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 820 part is mainly used for baseband processing and control of the base station.
  • the 810 part can usually be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 820 part is usually the control center of the base station, and can usually be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiment.
  • the transceiver unit of part 810 can also be called a transceiver or a transceiver, etc. It includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 810 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 810 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the radio frequency circuit in part 810 may include the radio frequency channel mentioned in the above embodiment.
  • the 820 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, the boards can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • part 810 is used to execute the sending operation on the network device side in step S210 shown in FIG. 2 and the receiving operation on the network device side in step S230, and/or part 810 is also used to execute Other receiving and sending steps on the network device side.
  • part 810 is used to perform the sending operation on the network device side in step S410 shown in FIG. 4 and the receiving operation on the network device side in step S420, and/or part 810 is also used to Perform other receiving and sending steps on the network device side.
  • FIG. 8 is only an example and not a limitation, and the foregoing network device including the transceiver unit and the processing unit may not rely on the structure shown in FIG. 8.
  • the chip When the communication device 800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer realizes the method on the terminal device side or the method on the network device side in the above method embodiments.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method on the terminal device side or the method on the network device side in the foregoing method embodiments.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program that can be accessed from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described in this application may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSP), or application specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memory described in this application includes but is not limited to the foregoing memory, and also includes any other suitable type of memory.
  • the provided device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units described above is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units . Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions described above are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method of each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请提供一种测量上报的方法与装置,该方法包括:接收多个载波的导频测量配置信息,多个载波的导频测量配置信息指示多个载波的导频关联关系,多个载波的导频关联关系表示多个载波的导频的空域发送滤波相同;根据多个载波的导频测量配置信息进行测量,获得多个载波的测量上报结果;发送多个载波的测量上报结果。通过向终端设备配置多个载波的导频关联关系,以便于终端设备可以针对多个载波上报对应于一个或多个相同空域发送滤波的导频测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,因此,可以提高通信效率。

Description

测量上报的方法与装置
本申请要求于2019年07月29日提交国家知识产权局、申请号为201910689898.0、申请名称为“测量上报的方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体涉及一种测量上报的方法与装置。
背景技术
第五代(5th generation,5G)移动通信系统可以通过多个载波进行通信,例如,在频段24250MHz-52600MHz(可以称为高频,也可以称为FR2)范围内,网络设备可以通过多个载波与终端设备进行通信。
5G移动通信系统采用波束成型(beam forming)技术进行通信。波束成型技术指的是,通过大规模天线阵列将信号能量集中在一个较小的范围内,形成一个类似于光束一样的信号,从而可以增大信号传输距离,这个类似于光束一样的信号可以称为模拟波束,简称波束。网络设备可以生成不同方向的波束,具体采用什么方向的波束与终端设备进行通信,通过波束管理来确定。
当多个载波共享一个射频通道时,现有的波束管理方法,可能会导致网络设备无法同时使用该多个载波与终端设备进行通信,导致用户容量受限,通信效率降低。
发明内容
本申请提供一种测量上报的方法与装置,在多个载波共享一个射频通道的情况下,可以实现网络设备同时采用多个载波与终端设备进行通信,从而提高通信效率。
第一方面,提供一种测量上报的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行。该方法包括:接收多个载波的导频测量配置信息,该多个载波的导频测量配置信息指示该多个载波的导频关联关系,该多个载波的导频关联关系表示该多个载波的导频的空域发送滤波相同;根据该多个载波的导频测量配置信息进行测量,获得该多个载波的测量上报结果;发送该多个载波的测量上报结果。
第二方面,提供一种测量上报的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行。该方法包括:向终端设备发送多个载波的导频测量配置信息,该多个载波的导频测量配置信息指示该多个载波的导频关联关系,该多个载波的导频关联关系表示该多个载波的导频的空域发送滤波相同;从该终端设备接收根据该多个载波的导频测量配置信息获得的该多个载波的测量上报结果。
多个载波的导频关联关系表示该多个载波的导频的空域发送滤波相同,换言之,多个载波的导频关联关系表示该多个载波均具有的同一个空域发送滤波所对应的多个导频的 关联关系。
例如,多个载波为载波1、载波2与载波3,其中,载波1、载波2与载波3均具有第一空域发送滤波,多个载波的导频关联关系可以包括载波1的第一空域发送滤波对应的导频、载波2的第一空域发送滤波对应的导频以及载波3的第一空域发送滤波对应的导频之间的关联关系。
该多个载波的导频测量配置信息指示该多个载波的导频关联关系,表示,该多个载波的导频测量配置信息中包括可以指示该多个载波的导频关联关系的信息。
应理解,终端设备根据接收的该多个载波的导频测量配置信息可以获得该多个载波的导频关联关系,从而可以针对多个载波上报对应于一个或多个相同空域发送滤波的导频测量结果。网络设备接收到多个载波的测量上报结果后,可以基于多个载波的相同空域发送滤波的导频与终端设备进行通信。因此,在多个载波共享一个射频通道的情况下,本申请提供的方案可以实现网络设备同时使用多个载波与终端设备进行通信。
通过向终端设备配置多个载波的导频关联关系,以便于终端设备针对多个载波上报对应于一个或多个相同空域发送滤波的导频测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,因此,可以提高通信效率。
在本申请中,多个载波的导频关联关系可以有多种实现方式。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波的导频关联关系包括:该多个载波的相同空域发送滤波对应的导频的资源标识相同。
终端设备接收到网络设备发送的多个载波的导频测量配置信息后,可以获知资源标识相同的导频对应同一个空域发送滤波。
在本实现方式中,在该多个载波的导频测量配置信息中,导频的资源标识可以为如下任一种:资源索引、资源集标识、资源端口标识。
应理解,在本实现方式中,通过复用导频测量配置信息中原有的信息来指示多个载波的导频关联关系,可以提高信令利用率,从而节省信令开销。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波的导频关联关系包括:该多个载波的相同空域发送滤波对应的导频的资源具有交集。
终端设备接收到网络设备发送的多个载波的导频测量配置信息后,可以获知资源具有交集的导频对应同一个空域发送滤波。
应理解,在本实现方式中,通过导频的资源来指示多个载波的导频关联关系,可以节省信令开销。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波的导频关联关系包括:该多个载波的相同空域发送滤波对应的导频的上报资源相同。
终端设备接收到网络设备发送的多个载波的导频测量配置信息后,可以获知上报资源相同的导频对应同一个空域发送滤波。
应理解,在本实现方式中,通过导频的上报资源来指示多个载波的导频关联关系,即通过复用导频测量配置信息中本来具有的信息来指示多个载波的导频关联关系,可以提高信令利用率,从而可以节省信令开销。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波的导频关联关系包 括:该多个载波的相同空域发送滤波对应的导频的空域发送滤波标识相同。
终端设备接收到网络设备发送的多个载波的导频测量配置信息后,可以获知空域发送滤波标识相同的导频对应同一个空域发送滤波。
该多个载波的导频关联关系可以包括上述几种实现方式中的任一种或多种。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,该多个导频分别为该多个载波的导频。
该多个导频分别为该多个载波的导频,指的是,该多个导频包括该多个载波各自包括的一个导频。
假设多个载波为3个载波,这3个载波的测量上报结果中包括3个载波各自的一个导频的测量结果,即包括3个导频的测量结果,其中,这3个导频对应于相同的空域发送滤波。
通过向终端设备配置多个载波的导频关联关系,可以使得终端设备针对多个载波上报对应于相同空域发送滤波的导频的测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,因此,可以提高通信效率。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,该多个导频分别为该多个载波的导频,且该多个导频中包括测量值最优的导频。
该多个导频分别为该多个载波的导频,指的是,该多个导频包括该多个载波各自包括的一个导频。
该多个导频中包括测量值最优的导频,指的是,该多个导频中包括在该多个载波的所有导频中测量值最优的导频。
假设多个载波为载波1、载波2与载波3,这3个载波均具有空域发送滤波1、空域发送滤波2与空域发送滤波3对应的3个导频。假设,载波1的空域发送滤波1对应的导频的测量值最优,则这3个载波的测量上报结果中包括载波1、载波2与载波3的空域发送滤波1对应的导频的测量结果。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,该多个导频分别为该多个载波的导频,其该多个导频所对应的相同空域发送滤波为导频平均测量值最优的空域发送滤波。
该多个导频分别为该多个载波的导频,指的是,该多个导频包括该多个载波各自包括的一个导频。
本文中涉及的导频平均测量值是针对空域发送滤波而言的。多个载波具有的每个空域发送滤波都对应一个导频平均测量值。例如,第一空域发送滤波的导频平均测量值指的是,在多个载波的所有导频中,第一空域发送滤波所对应的多个导频的测量值的平均值。
假设多个载波为载波1、载波2与载波3,这3个载波均具有空域发送滤波1、空域发送滤波2与空域发送滤波3对应的3个导频。假设,空域发送滤波1所对应的3个导频的平均测量值最优,则这3个载波的测量上报结果中包括载波1、载波2与载波3的空域 发送滤波1对应的导频的测量结果。
结合第一方面或第二方面,在一种可能的实现方式中,多个载波的测量上报结果中可以包括多个载波的一个或多个相同空域发送滤波对应的导频的测量结果。
假设多个载波为载波1、载波2与载波3,这3个载波均具有空域发送滤波1、空域发送滤波2与空域发送滤波3对应的3个导频。这3个载波的测量上报结果中包括载波1、载波2与载波3的空域发送滤波1对应的导频的测量结果,以及载波1、载波2与载波3的空域发送滤波2对应的导频的测量结果,或者,还可以包括载波1、载波2与载波3的空域发送滤波3对应的导频的测量结果。
因此,本申请提供的方案,通过向终端设备配置多个载波的导频关联关系,可以使得终端设备针对多个载波上报对应于一个或多个相同空域发送滤波的导频的测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,可以提高通信效率。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波的测量上报结果中包括以下内容的至少一种:载波标识,导频标识,导频测量值。
可选地,导频测量值可以由如下任一种指标来表征:参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)、参考信号接收强度指示(received signal strength indicator,RSSI)、信噪比(signal to noise ratio,SNR)、信号干扰噪声比(signal to interference and noise ratio,SINR)、块误码率(block error rate,BLER)、信号质量指示(channel quality indicator,CQI)。
结合第一方面或第二方面,在一种可能的实现方式中,多个载波的测量上报结果,可以针对多个载波联合上报,或者,针对多个载波中每个载波单独上报。
结合第二方面,在一种可能的实现方式中,该方法还包括:从该多个载波的测量上报结果中确定该多个载波的用于通信的导频,该多个载波的用于通信的导频对应相同的空域发送滤波;基于该多个载波的用于通信的导频,与终端设备进行载波聚合的通信。
因此,本申请提供的方案,通过向终端设备配置多个载波的导频关联关系,在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,可以提高通信效率。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波共享一个射频通道。
该多个载波共享一个射频通道,表示,由同一个射频通道发送该多个载波的导频(即波束)。
结合第一方面或第二方面,在一种可能的实现方式中,该多个载波为该多个载波可以为成员载波(component carrier,CC),或者,也可以为带宽部分(bandwidth part,BWP)。
第三方面,提供一种通信装置,该通信装置可以用于执行第一方面或者第二方面中的方法。
可选地,该通信装置可以包括用于执行第一方面或者第二方面中的方法的模块。
需要说明的是,第一方面中的方法包括,第一方面或第一方面中任一种可能的实现方式提供的方法,第二方面中的方法包括,第二方面或第一方面中任一种可能的实现方式提供的方法。
第四方面,提供一种通信装置,该通信装置包括处理器,该处理器与存储器耦合,该 存储器用于存储计算机程序或指令,处理器用于执行存储器存储的计算机程序或指令,使得第一方面或者第二方面中的方法被执行。
例如,处理器用于执行存储器存储的计算机程序或指令,使得该通信装置执行第一方面或者第二方面中的方法。
可选地,该通信装置包括的处理器为一个或多个。
可选地,该通信装置中还可以包括与处理器耦合的存储器。
可选地,该通信装置包括的存储器可以为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者分离设置。
可选地,该通信装置中还可以包括收发器。
第五方面,提供一种芯片,该芯片包括处理模块与通信接口,处理模块用于控制所述通信接口与外部进行通信,处理模块还用于实现第一方面或者第二方面中的方法。
可选地,处理模块为处理器。
第六方面,提供一种计算机可读存储介质,其上存储有用于实现第一方面或者第二方面中的方法的计算机程序(也可称为指令或代码)。
例如,该计算机程序被计算机执行时,使得该计算机可以执行第一方面或者第二方面中的方法。该计算机可以为通信装置。
第七方面,提供一种计算机程序产品,该计算机程序产品包括计算机程序(也可称为指令或代码),该计算机程序被计算机执行时使得所述计算机实现第一方面或者第二方面中的方法。该计算机可以为通信装置。
基于上述描述,本申请通过为终端设备配置多个载波的导频关联关系,以便于终端设备可以针对多个载波上报对应于一个或多个相同空域发送滤波的导频测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,因此,可以提高通信效率。
附图说明
图1为网络设备与终端设备通过多个载波进行通信的场景示意图。
图2为本申请实施例提供的测量上报的方法的示意性流程图。
图3为本申请实施例中通过导频的资源指示多个载波的导频关联关系的示意图。
图4为本申请另一实施例提供的测量上报的方法的示意性流程图。
图5为本申请实施例提供的通信装置的示意性框图。
图6为本申请实施例提供的另一通信装置的示意性框图。
图7为本申请实施例提供的终端设备的示意性框图。
图8为本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
为了便于理解本申请实施例,下文先介绍一些相关概念。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其它类型波束。形成波束的技术可以是波束赋形技术或者其它技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过下行控制信息(downlink control information,DCI)中的传输配置指示(transmission configuration indication,TCI)资源,来指示终端设备物理下行共享信道(physical downlink shared channel,PDSCH)波束的信息。
可选地,具有相同或者类似的通信特征的多个波束可以视为一个波束。
一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在本申请实施例中,若未做出特别说明,波束是指网络设备的发送波束。
在波束测量中,网络设备的每一个波束对应一个资源,因此可以资源的索引来唯一标识该资源对应的波束。
形成波束的技术可以是波束成型技术(beamforming)或者其他技术手段。波束成型技术可以通过在空间上朝向特定的方向来实现更高的天线阵列增益。波束成型技术可以具体为数字波束成型技术,模拟波束成型技术,混合数字/模拟波束成型技术。模拟波束成型可以通过移相器实现。一个射频链路(radio frequency chain,RF chain)通过移相器来调整相位,从而控制模拟波束方向的改变。因此,一个射频链路在同一时刻只能打出一个模拟波束。
射频链路也可以称为射频通道。即一个射频通道在同一时刻只能打出一个波束。
2、波束资源
在波束测量中,可以通过资源的索引来唯一标识该资源对应的波束。
资源可以是上行信号资源,也可以是下行信号资源。
上行信号包括但不限于:探测参考信号(sounding reference signal,SRS)与解调参考信号(demodulation reference signal,DMRS)。
下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用 参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)以及同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
资源可以通过无线资源控制(radio resource control,RRC)信令配置。
在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。
每一个上行/下行信号的资源具有唯一的索引,以标识该上行/下行信号的资源。可以理解的是,资源的索引也可以称为资源的标识,本申请实施例对此不作任何限制。
3、波束管理
网络设备可以生成不同方向的波束,具体采用什么方向的波束与终端设备进行通信,通过波束管理来确定。
波束管理主要包括如下步骤。
步骤一,网络设备配置波束资源。
作为示例,网络设备配置波束资源包括:网络设备生成测量配置信息(即波束测量配置信息),并向终端设备发送测量配置信息。
测量配置信息主要包括两部分:资源配置信息和上报配置信息。
资源配置信息是指测量资源相关的信息。资源配置信息在协议里可以通过三级结构(资源配置(resourceConfig)-资源集(resourceSet)-资源(resource))进行配置。
上报配置信息是指测量结果上报相关的信息。上报配置信息在协议里可以通过上报配置(ReportConfig)进行配置。
网络设备可以通过无线资源控制(radio resource control,RRC)信令向终端发送测量配置信息。
步骤二,终端设备测量波束通信质量。
网络设备在资源配置信息所配置的资源对应的资源粒上发送下行信号(即波束)。终端设备在资源配置信息所配置的资源对应的资源粒上接收下行信号,并根据测量配置信息对下行信号进行测量,获得下行信号的质量,即波束的通信质量。
步骤三,终端设备选择最佳的波束以及终端设备向网络设备上报最佳波束。
作为示例,终端设备向网络设备发送波束测量报告,用于指示最佳波束。波束测量报告可以包括一个或多个资源的索引与质量等。
波束测量报告可以承载在物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道中(physical uplink shared channel,PUSCH)。
4、波束管理资源
波束管理资源指用于波束管理的资源,又可以体现为用于计算和测量波束质量的资源。波束质量包括层一接收参考信号功率(layer 1 reference signal received power,L1-RSRP),层一接收参考信号质量(layer 1 reference signal received quality,L1-RSRQ)等。具体的,波束管理资源可以包括同步信号,广播信道,下行信道测量参考信号,跟踪信号,下行控制信道解调参考信号,下行共享信道解调参考信号,上行探测参考信号,上 行随机接入信号等。
5、波束指示信息
波束指示信息用于指示传输所使用的波束,包括发送波束和/或接收波束。包括波束编号、波束管理资源编号,上行信号资源号,下行信号资源号、波束的绝对索引、波束的相对索引、波束的逻辑索引、波束对应的天线端口的索引、波束对应的天线端口组索引、波束对应的下行信号的索引、波束对应的下行同步信号块的时间索引、波束对连接(beam pair link,BPL)信息、波束对应的发送参数(Tx parameter)、波束对应的接收参数(Rx parameter)、波束对应的发送权重、波束对应的权重矩阵、波束对应的权重向量、波束对应的接收权重、波束对应的发送权重的索引、波束对应的权重矩阵的索引、波束对应的权重向量的索引、波束对应的接收权重的索引、波束对应的接收码本、波束对应的发送码本、波束对应的接收码本的索引、波束对应的发送码本的索引中的至少一种,下行信号包括同步信号、广播信道、广播信号解调信号、信道状态信息下行信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号,下行数据信道解调参考信号,下行相位噪声跟踪信号中任意一种。上行信号包括中上行随机接入序列,上行探测参考信号,上行控制信道解调参考信号,上行数据信道解调参考信号,上行相位噪声跟踪信号任意一种。可选的,网络设备还可以为频率资源组关联的波束中具有准同位(quasi-co-location,QCL)(下文将介绍)关系的波束分配QCL标示符。波束也可以称为空域传输滤波器,发射波束也可以称为空域发射滤波器,接收波束也可以称为空域接收滤波器。波束指示信息还可以体现为传输配置编号(transmission configuration index,TCI),TCI中可以包括多种参数,例如,小区编号,带宽部分编号,参考信号标识,同步信号块标识,QCL类型等。
6、波束质量
本申请不限制衡量波束质量的度量指标。
衡量波束质量的度量指标包括但不限于:
参考信号接收功率(reference signal received power,RSRP);
参考信号接收质量(reference signal received quality,RSRQ);
参考信号接收强度指示(received signal strength indicator,RSSI);
信号干扰噪声比(signal to interference and noise ratio,SINR);
块误码率(block error rate,BLER);
信号质量指示(channel quality indicator,CQI)。
7、准同位(quasi-co-location,QCL)
同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。
8、空域准同位(spatial QCL)
空域准同位可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
9、准同位假设(QCL assumption)
准同位假设是指假设两个端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如接收端能确认A端口和B端口具有QCL关系,即可以将A端口上测得的信号的大尺度参数用于B端口上的信号测量和解调。
10、同时接收
同时接收包括,接收端(例如终端设备)在一个接收参数上接收到多个信号,也包括在多个可同时使用的接收参数上收到多个信号。
11、天线面板(panel)
无线通信的信号需要由天线进行接收和发送,多个天线单元(antenna element)可以集成在一个面板(panel)上,这个面板可以称为天线面板。天线面板又可表示为天线阵列(antenna array)或者天线子阵列(antenna subarray)。一个天线面板可以包括一个或多个天线阵列/子阵列。一个天线面板可以有一个或多个晶振(oscillator)控制。
在本申请实施例中,终端设备可以包括多个天线面板,每个天线面板包括一个或者多个波束。网络设备也可以包括多个天线面板,每个天线面板包括一个或者多个波束。
天线单元由射频链路驱动。一个射频链路可以驱动一个或多个天线单元。一个天线面板可以由一个射频链路驱动,也可以由多个射频链路驱动。在本申请中,天线面板也可以替换为射频链路,或者驱动一个天线面板的多个射频链路,或者由一个晶振控制的一个或多个射频链路。
射频链路也可以称为射频通道。
例如,射频通道可以包括接收通道和/或发送通道。
射频链路或射频通道,也可以称为接收机支路(receiver branch)。
作为5G标准的第一个版本,Release 15可以支持两种频率范围(frequency range,FR):频率范围450MHz-6000MHz(可以称为低频,简称FR1,)以及频率范围24250MHz-52600MHz(可以称为高频,简称FR2)。针对FR1和FR2,网络设备使用不同的射频通道。例如,针对FR2,使用高频天线阵列,高频天线阵列规模较大,输出的模拟波束较窄;针对FR1,使用低频天线阵列,低频天线阵列规模较小,输出的模拟波束较宽。
5G移动通信系统可以通过多个载波进行通信,例如,在频段24250MHz-52600MHz(即高频,也可以称为FR2)范围内,网络设备可以通过多个载波与终端设备进行通信。如图1所示,网络设备可以采用载波1、载波2和载波3与终端设备进行载波聚合(Carrier aggregation,CA)的通信,其中,载波1属于频带1,频带1位于FR1,载波2属于频带2,载波3属于频带3,频带2与频带3位于FR2。
在多个载波共享一个射频通道的情况下,现有的波束管理方法可能导致网络设备无法 同时采用多个载波与终端设备进行通信,原因如下。
1)一个射频通道同一时刻只能对应一个空域发送滤波。当多个载波共享一个射频通道,这个射频通道同时发出的多个载波的信号对应同一个空域发送滤波。
2)一个射频通道对应多个天线阵子,天线阵子间距会引入传输时延,该传输时延在频域体现为相位差,而且,相同的传输时延对于不同的频点体现为不同的相位差。因此,相同的传输时延对于不同载波体现为不同的相位差,这导致同一个空域发送滤波在不同载波(即不同频点)呈现不同的波束增益,这种现象称为波束倾斜。
由1)与2)可知,当多个载波共享一个射频通道,该射频通道同时发出的对应同一个空域发送滤波的多个载波的波束的波束增益不同。
3)在多个载波共享一个射频通道的情况下,现有波束管理方法针对多个载波中的每个载波进行独立波束管理。由于同一个空域发送滤波在不同载波呈现不同的波束增益,因此,传统方案中终端设备针对不同载波上报的波束的空域发送滤波可能不同。
作为示例,假设终端设备对载波1、载波2与载波3的波束测量结果如表1所示。假设终端设备将RSRP最大的波束作为最佳波束向网络设备上报。在表1中,对于载波1,终端设备向网络设备上报的是空域发送滤波3对应的波束,对于载波2,终端设备向网络设备上报的是空域发送滤波1对应的波束,对于载波3,终端设备向网络设备上报的是空域发送滤波2对应的波束。
表1
  空域发送滤波1 空域发送滤波2 空域发送滤波3
载波1 RSRP=-94 RSRP=-90 RSRP=-85
载波2 RSRP=-80 RSRP=-92 RSRP=-96
载波3 RSRP=-96 RSRP=-82 RSRP=-90
假设载波1、载波2与载波3都属于FR2,载波1、载波2与载波3共享一个射频通道。前文已描述,一个射频通道同一时刻只能对应一组空域发送滤波。因此,针对表1所示的示例中终端设备上报的载波1、载波2与载波3的测量上报结果,网络设备需要按照先后顺序在各个载波的最佳波束上与终端设备进行通信,因此无法同时使用载波1、载波2与载波3与终端设备进行通信。
因此,在多个载波共享一个射频通道的情况下,现有的波束管理方案可能无法使网络设备同时使用多个载波为用户服务,从而导致用户容量受限,通信效率降低。
针对上述问题,本申请提出一种测量上报的方法与装置,在多个载波共享一个射频通道的情况下,可以使网络设备同时使用多个载波为用户服务,从而增加用户容量,提高通信效率。
本申请实施例的技术方案可以应用于5G的新无线(New Radio,NR)通信系统,或者其他未来演进的基于波束进行通信的通信系统。
本申请实施例可以适用于载波聚合场景。例如,本申请实施例的一个应用场景如图1所示的载波聚合。
本申请实施例中涉及的终端设备包括具有无线通信功能的手持式设备、车载式设备、可穿戴设备或计算设备。作为示例,终端设备可以指用户设备(user equipment,UE)、 接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备可以是5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
本申请实施例中涉及的网络设备可以用于与一个或多个终端设备进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。网络设备可以称为基站。基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。网络设备可以是5G系统中的基站,或者未来演进的PLMN中的基站等。5G NR中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(next generation node B,gNB)。
本申请实施例中的导频表示波束,本申请实施例中的导频资源表示波束对应的资源。可以理解到,导频与波束是两种可相互替换的表达方式。
本文中提及的“空域发送滤波”可以替换为“下行空域传输滤波器(downlink spatial domain transmission filter)”,或者,也可以替换为如下任一种描述:“空域滤波”、“模拟波束”与“模拟加权向量”。
图2为本申请实施例的测量上报的方法的示意性流程图。该方法包括如下步骤。
S210,网络设备向终端设备发送多个载波的导频测量配置信息,该多个载波的导频测量配置信息指示该多个载波的导频关联关系,该多个载波的导频关联关系表示该多个载波的导频的空域发送滤波相同。
如前文描述,本文中提及的“空域发送滤波”可以替换为如下任一种描述“下行空域传输滤波器”、“空域滤波”、“模拟波束”或“模拟加权向量”。例如,本申请实施例中的“该多个载波的导频关联关系表示该多个载波的导频的空域发送滤波相同”可替换为“该多个载波的导频关联关系表示该多个载波的导频的模拟加权向量相同”。
多个载波的导频关联关系表示该多个载波的导频的空域发送滤波相同,换言之,多个载波的导频关联关系表示该多个载波均具有的同一个空域发送滤波所对应的多个导频的关联关系。
例如,多个载波为载波1、载波2与载波3,其中,载波1、载波2与载波3均具有第一空域发送滤波,多个载波的导频关联关系可以包括载波1的第一空域发送滤波对应的导频、载波2的第一空域发送滤波对应的导频以及载波3的第一空域发送滤波对应的导频之间的关联关系。
多个载波的导频关联关系可以有多种实现方式,下文将描述。
该多个载波的导频测量配置信息指示该多个载波的导频关联关系,表示,该多个载波的导频测量配置信息中包括可以指示该多个载波的导频关联关系的信息。
此外,多个载波的导频测量配置信息中还可以包括多个载波的导频测量相关配置信息,和/或导频上报相关配置信息。导频测量相关配置信息可以包括指示用于测量该导频 的资源的信息等。导频上报相关配置信息可以包括指示用于上报该导频的测量结果的资源的信息。
可选地,网络设备可以针对多个载波联合配置导频测量配置信息。
例如,针对多个载波,网络设备配置一份导频测量配置信息,该导频测量配置信息中包括多个载波中每个载波的导频测量配置信息。
可选地,网络设备可以针对多个载波中的每个载波单独配置导频测量配置信息。
例如,针对多个载波中的每个载波,网络设备单独配置一份导频测量配置信息。
S220,终端设备根据该多个载波的导频测量配置信息进行测量,获得该多个载波的测量上报结果。
例如,网络设备根据多个载波的导频测量配置信息发送多个载波的导频,其中,每个载波可以具有一个或多个导频;终端设备根据多个载波的导频测量配置信息接收并测量多个载波的导频,根据多个载波的导频测量结果获得多个载波的测量上报结果。
导频的测量结果可以通过如下任一种指标来表征:RSRP、RSRQ、RSSI、SNR、SINR、BLER、CQI。
S230,终端设备向网络设备发送该多个载波的测量上报结果。
应理解,因为该多个载波的导频测量配置信息指示了该多个载波的导频关联关系,终端设备根据接收的该多个载波的导频测量配置信息可以获得该多个载波的导频关联关系,从而可以针对多个载波上报对应于一个或多个相同空域发送滤波的导频测量结果。网络设备接收到多个载波的测量上报结果后,可以基于多个载波的相同空域发送滤波的导频与终端设备进行通信。因此,在多个载波共享一个射频通道的情况下,本申请提供的方案可以实现网络设备同时使用多个载波与终端设备进行通信。
因此,本申请提供的方案,通过向终端设备配置多个载波的导频关联关系,以便于终端设备可以针对多个载波上报对应于一个或多个相同空域发送滤波的导频测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,因此,可以提高通信效率。
本申请实施例中的载波可以为成员载波(component carrier,CC),或者,也可以为带宽部分(bandwidth part,BWP)。
例如,多个载波为多个CC,或者多个载波为多个BWP。
多个载波可以属于相同的频段,也可以属于不同的频段。例如,该多个载波属于FR2中的同一个频段,或者,属于FR2中的不同频段。
前文已述,多个载波的导频关联关系可以有多种实现方式,下文将描述。
可选地,作为实现方式一,该多个载波的导频关联关系,包括:该多个载波的相同空域发送滤波对应的导频的资源标识相同,或者,该多个载波的相同模拟加权向量对应的导频的资源标识相同。
应理解,终端设备接收到网络设备发送的多个载波的导频测量配置信息后,可以获知资源标识相同的导频对应同一个空域发送滤波,或同一个模拟加权向量。
例如,可以通过协议规定,资源标识相同的导频对应同一个空域发送滤波,或同一个模拟加权向量。或者,也可以通过多个载波的导频测量配置信息中的一个指示信息来指示资源标识相同的导频对应同一个空域发送滤波,或同一个模拟加权向量。
结合表2给出一个示例。以多个载波为载波1、载波2与载波3为例,载波1、载波2与载波3的导频测量配置信息包括如表2所示的信息。
表2
Figure PCTCN2020099624-appb-000001
从表2可知,载波1的导频11的资源标识、载波2的导频21的资源标识以及载波3的导频31的资源标识相同,表示导频11、导频21以及导频31对应同一个空域发送滤波。载波1的导频12的资源标识、载波2的导频22的资源标识以及载波3的导频32的资源标识相同,表示导频12、导频22以及导频32对应同一个空域发送滤波。载波1的导频13的资源标识、载波2的导频23的资源标识以及载波3的导频33的资源标识相同,表示导频13、导频23以及导频33对应同一个空域发送滤波。
应理解,表2只呈现出多个载波的导频测量配置信息中的部分信息,多个载波的导频测量配置信息还可以包括其他必要的配置信息。
可选地,在多个载波的导频测量配置信息通过方式一指示多个载波的导频之间的空域发送滤波关联关系的实施例中,导频的资源标识可以为如下任一种:资源索引、资源集标识、资源端口标识。
例如,表2中的CSI-ResourceConfigId也可以是如下任一种:SSB-Index、CSI-SSB-ResourceSetId、NZP-CSI-RS-ResourceSetId、CSI-IM-ResourceSetId、NZP-CSI-RS-ResourceId、portID、reportConfigId。
其中,SSB-Index表示SSB资源索引;CSI-SSB-ResourceSetId表示CSI-SSB资源集标识;NZP-CSI-RS-ResourceSetId表示NZP-CSI-RS资源集标识;CSI-IM-ResourceSetId表示CSI-IM资源集标识;NZP-CSI-RS-ResourceId表示NZP-CSI-RS资源标识;portID表示端口标识。
其中,NZP-CSI-RS表示非零功率信道状态信息参考信号(non-zero power channel state information-reference signal,NZP CSI-RS)。CSI-IM表示信道状态信息干扰测量(channel state information-interference measurement,CSI-IM)。
应理解,在本实施例中,通过复用导频测量配置信息中原有的信息来指示多个载波的导频关联关系,可以提高信令利用率,从而节省信令开销。
可选地,作为实现方式二,该多个载波的导频关联关系,包括:该多个载波的相同空域发送滤波对应的导频的资源具有交集,或该多个载波的相同模拟加权向量对应的导频的资源具有交集。
应理解,终端设备接收到网络设备发送的多个载波的导频测量配置信息后,可以获知资源具有交集的导频对应同一个空域发送滤波,或同一个模拟加权向量。
例如,可以通过协议规定,资源具有交集的导频对应同一个空域发送滤波,或同一个模拟加权向量。或者,也可以通过多个载波的导频测量配置信息中的一个指示信息来指示资源具有交集的导频对应同一个空域发送滤波,或同一个模拟加权向量。
本文中提及的具有交集的资源可以包括频域具有交集的资源,和/或,时域具有交集的资源。
本文中提及的具有交集的资源可以包括完全重叠的资源,还可以包括具有部分交叠的资源。
结合图3给出一个示例。以多个载波为载波1、载波2与载波3为例,载波1、载波2与载波3的导频测量配置信息所指示的载波1、载波2与载波3的导频资源的示意图如图3所示。从图3可知,载波2的导频资源(记为对应导频2x)与载波3的导频资源(记为对应导频3x)的符号位置完全重叠,载波1的导频资源(记为对应导频1x)与载波2的导频资源(记为对应导频2x)的符号位置部分重叠,表示,载波1的导频1x、载波2的导频2x以及载波3的导频3x对应同一个空域发送滤波。
应理解,在本实施例中,通过导频的资源来指示多个载波的导频关联关系,可以节省信令开销。
可选地,作为实现方式三,该多个载波的导频关联关系包括:该多个载波的相同空域发送滤波对应的导频的上报资源相同,或该多个载波的相同模拟加权向量对应的导频的上报资源相同。
应理解,终端设备接收到网络设备发送的多个载波的导频测量配置信息后,可以获知上报资源相同的导频对应同一个空域发送滤波,或同一个模拟加权向量。
例如,可以通过协议规定,上报资源相同的导频对应同一个空域发送滤波,或同一个模拟加权向量。或者,也可以通过多个载波的导频测量配置信息中的一个指示信息来指示上报资源相同的导频对应同一个空域发送滤波,或同一个模拟加权向量。
结合表3给出一个示例。以多个载波为载波1、载波2与载波3为例,载波1、载波2与载波3的导频测量配置信息包括如表3所示的信息。
表3
Figure PCTCN2020099624-appb-000002
从表3可知,载波1的导频11、载波2的导频21以及载波3的导频31的上报资源 相同,表示导频11、导频21以及导频31对应同一个空域发送滤波。载波1的导频12、载波2的导频22以及载波3的导频32的上报资源相同,表示导频12、导频22以及导频32对应同一个空域发送滤波。载波1的导频13、载波2的导频23以及载波3的导频33的上报资源相同,表示导频13、导频23以及导频33对应同一个空域发送滤波。
应理解,表3只呈现出多个载波的导频测量配置信息中的部分信息,多个载波的导频测量配置信息还可以包括其他必要的配置信息。
应理解,在本实施例中,通过导频的上报资源来指示多个载波的导频关联关系,即通过复用导频测量配置信息中本来具有的信息来指示多个载波的导频关联关系,可以提高信令利用率,从而可以节省信令开销。
可选地,作为实现方式四,多个载波的导频测量配置信息中包括导频的空域发送滤波标识,其中,该多个载波的导频关联关系包括:该多个载波的相同空域发送滤波的导频的空域发送滤波标识相同。
或者,多个载波的导频测量配置信息中包括导频的模拟加权向量标识,其中,该多个载波的导频关联关系包括:该多个载波的相同模拟加权向量的导频的模拟加权向量标识相同。
终端设备接收到网络设备发送的多个载波的导频测量配置信息后可以获知,空域发送滤波标识相同的导频对应同一个空域发送滤波,或者,模拟加权向量标识相同的导频对应同一个模拟加权向量。
结合表4给出一个示例。以多个载波为载波1、载波2与载波3为例,载波1、载波2与载波3的导频测量配置信息中包括如表4所示的信息。
表4
Figure PCTCN2020099624-appb-000003
从表4可知,载波1的导频11的空域发送滤波标识、载波2的导频21的空域发送滤波标识以及载波3的导频31的空域发送滤波标识相同,表示导频11、导频21以及导频31对应同一个空域发送滤波。载波1的导频12的空域发送滤波标识、载波2的导频22的空域发送滤波标识以及载波3的导频32的空域发送滤波标识相同,表示导频12、导频22以及导频32对应同一个空域发送滤波。载波1的导频13的空域发送滤波标识、载波2的导频23的空域发送滤波标识以及载波3的导频33的空域发送滤波标识相同,表示导频13、导频23以及导频33对应同一个空域发送滤波。
应理解,表4只呈现出多个载波的导频测量配置信息中的部分信息,多个载波的导频测量配置信息还可以包括其他必要的配置信息。
可选地,该多个载波的导频关联关系可以包括上述实现方式一、实现方式二、实现方式三与实现方式四中的任一种或多种。
除了上述实现方式一、实现方式二、实现方式三与实现方式四之外,多个载波的导频关联关系还可以具有其它可行的实现方式。
应理解,因为多个载波的导频测量配置信息指示了该多个载波的导频关联关系,终端设备根据接收的该多个载波的导频测量配置信息可以获得该多个载波的导频关联关系,从而可以针对多个载波上报对应于一个或多个相同空域发送滤波的导频测量结果。
下文将描述终端设备上报多个载波的测量上报结果的策略。
可选地,在图2所示实施例中,多个载波的测量上报结果中包括该多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,该多个导频分别为该多个载波的导频。
该多个导频分别为该多个载波的导频,指的是,该多个导频包括该多个载波各自包括的一个导频。
假设多个载波为3个载波,这3个载波的测量上报结果中包括3个载波各自的一个导频的测量结果,即包括3个导频的测量结果,其中,这3个导频对应于相同的空域发送滤波。
导频的测量结果可以包括导频测量值。导频测量值可以由如下任一种指标来表征:RSRP、RSRQ、RSSI、SNR、SINR、BLER、CQI。导频的测量结果还可以包括导频标识。
以表1为例,多个载波为表1中所示的载波1、载波2与载波3。终端设备向网络设备上报载波1、载波2与载波3的空域发送滤波1的导频的RSRP。或者,终端设备向网络设备上报载波1、载波2与载波3的空域发送滤波2的导频的RSRP。或者,终端设备向网络设备上报载波1、载波2与载波3的空域发送滤波3的导频的RSRP。
通过向终端设备配置多个载波的导频关联关系,可以使得终端设备针对多个载波上报对应于相同空域发送滤波的导频的测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,因此,可以提高通信效率。
可选地,多个载波的测量上报结果中可以包括多个载波的一个或多个相同空域发送滤波对应的导频的测量结果。
还以表1为例,终端设备向网络设备上报载波1、载波2与载波3的空域发送滤波1与空域发送滤波2的导频的RSRP。或者,终端设备向网络设备上报载波1、载波2与载波3的空域发送滤波1与空域发送滤波3的导频的RSRP。或者,终端设备向网络设备上报载波1、载波2与载波3的空域发送滤波2与空域发送滤波3的导频的RSRP。或者,终端设备向网络设备上报载波1、载波2与载波3的空域发送滤波1、空域发送滤波2与、空域发送滤波3的导频的RSRP。
通过向终端设备配置多个载波的导频关联关系,可以使得终端设备针对多个载波上报对应于一个或多个相同空域发送滤波的导频的测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚 合的通信,可以提高通信效率。
可选地,作为第一种策略,该多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,该多个导频分别为该多个载波的导频,且该多个导频中包括测量值最优的导频。
该多个导频分别为该多个载波的导频,指的是,该多个导频包括该多个载波各自包括的一个导频。
该多个导频中包括测量值最优的导频,指的是,该多个导频中包括在该多个载波的所有导频中测量值最优的导频。
换言之,在上报的各个载波的导频对应于同一空域发送滤波的前提下,选择导频测量结果最优的导频进行上报。
假设多个载波为载波1、载波2与载波3,这3个载波均具有空域发送滤波1、空域发送滤波2与空域发送滤波3对应的3个导频。假设,载波1的空域发送滤波1对应的导频的测量值最优,则这3个载波的测量上报结果中包括载波1、载波2与载波3的空域发送滤波1对应的导频的测量结果。
以表1为例。假设多个载波为表1中所示的载波1、载波2与载波3。从表1可知,在所测量的所有导频中,载波2的空域发送滤波1下的导频的RSRP最大,则多个载波的测量上报结果中包括载波1、载波2与载波3在空域发送滤波1下的导频的测量结果。
从表1还可知,载波3的空域发送滤波2下的导频的RSRP次大。可选地,多个载波的测量上报结果中可以包括载波1、载波2与载波3在空域发送滤波1以及空域发送滤波2下的导频的测量结果。
终端设备采用第一种策略上报多个载波的测量上报结果的操作,还可以表述为,终端设备按载波级的最优前N个导频进行上报,N为正整数。
可选地,作为第二种策略,该多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,该多个导频分别为该多个载波的导频,其该多个导频所对应的相同空域发送滤波为导频平均测量值最优的空域发送滤波。
该多个导频分别为该多个载波的导频,指的是,该多个导频包括该多个载波各自包括的一个导频。
本文中涉及的导频平均测量值是针对空域发送滤波而言的。多个载波具有的每个空域发送滤波都对应一个导频平均测量值。例如,第一空域发送滤波的导频平均测量值指的是,在多个载波的所有导频中,第一空域发送滤波所对应的多个导频的测量值的平均值。
假设多个载波为载波1、载波2与载波3,这3个载波均具有空域发送滤波1、空域发送滤波2与空域发送滤波3对应的3个导频。假设,空域发送滤波1所对应的3个导频的平均测量值最优,则这3个载波的测量上报结果中包括载波1、载波2与载波3的空域发送滤波1对应的导频的测量结果。
还以表1为例。假设多个载波为表1中所示的载波1、载波2与载波3。从表1可知,在载波1、载波2与载波3所具有的空域发送滤波(1,2,3)中,空域发送滤波2对应的导频的RSRP的平均值最大,空域发送滤波1对应的导频的RSRP的平均值次大,空域发送滤波3对应的导频的RSRP的平均值最小。可选地,多个载波的测量上报结果中包括载波1、载波2与载波3的空域发送滤波2下的导频的测量结果。可选地,多个载波的测量上 报结果中包括载波1、载波2与载波3的空域发送滤波2与空域发送滤波1下的导频的测量结果。
终端设备采用第二种策略上报多个载波的测量上报结果的操作,还可以表述为,终端设备上报多个载波的平均最优的前N个导频进行上报,N为正整数。
应理解,除了上述的第一种策略与第二种策略,终端设备还采用其它可行的策略确定多个载波的测量上报结果,只要保证上报多个载波的相同空域发送滤波对应的导频的测量结果即可。
可选地,该多个载波的测量上报结果中包括以下内容的至少一种:载波标识,导频测量值与导频标识。
例如,在终端设备采用第一种策略上报多个载波的测量上报结果的实施例中,作为一个示例,载波1、载波2与载波3的测量上报结果包括如下信息:载波1的载波标识,载波1的空域发送滤波2的导频的RSRP与资源标识,载波2的载波标识,载波2的空域发送滤波2的导频的RSRP与资源标识,载波3的载波标识,载波3的空域发送滤波2下的导频的RSRP与资源标识。
在本申请中,多个载波的测量上报结果的上报方式可以包括多种。
可选地,在一些实施例中,在步骤S230中,终端设备可以对多个载波进行联合上报。
例如,终端设备向网络设备上报一份测量上报结果,这一份测量上报结果中包括一个或多个载波的导频测量结果。
在终端设备采用第一种策略上报多个载波的测量上报结果的实施例中,以表1为例。从表1可以看出,载波2的空域发送滤波1下的导频的RSRP最大,且载波1的空域发送滤波1下的导频的RSRP大于载波3的空域发送滤波1下的导频的RSRP。
若测量上报结果包含一个空域发送滤波的资源标识和一个载波的测量结果,则测量上报结果包括:载波2的载波标识、载波2的空域发送滤波1下的导频的资源标识、以及载波2的空域发送滤波1下的导频的RSRP值。
若测量上报结果包含一个空域发送滤波的资源标识和两个载波的测量结果,则测量上报结果包括:载波2的载波标识、载波2的空域发送滤波1下的导频的资源标识、载波2的空域发送滤波1下的导频的RSRP值、载波1的载波标识、载波1的空域发送滤波1下的导频的资源标识、以及载波1的空域发送滤波1下的导频的RSRP值。
若测量上报结果包含一个空域发送滤波的资源标识和三个载波的测量结果,则测量上报结果包括:载波2的载波标识、载波2的空域发送滤波1下的导频的资源标识、载波2的空域发送滤波1下的导频的RSRP值、载波1的载波标识、载波1的空域发送滤波1下的导频的资源标识、载波1的空域发送滤波1下的导频的RSRP值、载波3的载波标识、载波3的空域发送滤波1下的导频的资源标识、载波3的空域发送滤波1下的导频的RSRP值。
若测量上报结果包含两个空域发送滤波的资源标识和三个载波的测量结果,则测量上报结果包括:载波1、2、3的载波标识,载波1、2、3的空域发送滤波1与空域发送滤波2下的导频的资源标识,载波1、2、3的空域发送滤波1与空域发送滤波2下的导频的RSRP值。
需要说明的是,测量上报结果所包含的空域发送滤波的资源标识数量和上报的载波数 量可以由基站指示,也可以由终端自行决策。
可选地,在一些实施例中,在步骤S230中,终端设备针对多个载波中的每个载波或者部分载波进行单独上报。例如,在一次上报操作中,终端设备上报多个载波中一个载波的测量上报结果;在另一次上报操作中,终端设备上报多个载波中另一个载波的测量上报结果,以此类推。
再例如,在一次上报操作中,终端设备上报多个载波中一部分载波的测量上报结果;在另一次上报操作中,终端设备上报多个载波中剩余部分载波的测量上报结果,以此类推。
作为一个示例,在表1的示例中,在一次上报操作中,终端设备向网络设备上报载波1的载波标识、载波1的空域发送滤波1下的导频的资源标识、载波1的空域发送滤波1下的导频的RSRP值;在另一次上报操作中,终端设备向网络设备上报载波2的载波标识、载波2的空域发送滤波1下的导频的资源标识、载波2的空域发送滤波1下的导频的RSRP值;在再一次上报操作中,终端设备向网络设备上报载波3的载波标识、载波3的空域发送滤波1下的导频的资源标识、载波3的空域发送滤波1下的导频的RSRP值。
作为另一个示例,在表1的示例中,在一次上报操作中,终端设备向网络设备上报载波1的载波标识、载波1的空域发送滤波1下的导频的资源标识、载波1的空域发送滤波1下的导频的RSRP值、载波2的载波标识、载波2的空域发送滤波1下的导频的资源标识、载波2的空域发送滤波1下的导频的RSRP值;在另一次上报操作中,终端设备向网络设备上报载波3的载波标识、载波3的空域发送滤波1下的导频的资源标识、载波3的空域发送滤波1下的导频的RSRP值。可选地,其中,本示例中的多次上报操作可以是同时进行,也可以是分时进行。
可选地,在一些实施例中,在步骤S230中,终端设备也可以上报网络配置的多个载波中的部分载波的测量结果。
可选地,在图2所示实施例中,该方法还包括:网络设备在接收多个载波的测量上报结果后,从该多个载波的测量上报结果中确定该多个载波的用于通信的导频,该多个载波的用于通信的导频对应相同的空域发送滤波;基于该多个载波的相同空域发送滤波发送信号,与该终端设备进行载波聚合的通信。
因此,本申请提供的方案,通过向终端设备配置多个载波的导频关联关系,可以使得终端设备针对多个载波上报对应相同空域发送滤波的多个导频的测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,可以提高通信效率。
图4为根据本申请另一实施例的测量上报的方法的示意性流程图。该方法包括步骤S410和步骤S420。
S410,网络设备向终端设备发送多个载波的配置信息,该配置信息指示该多个载波的相同空域发送滤波对应的导频。
S420,终端设备根据该多个载波的配置信息,向网络设备发送该多个载波的上报结果,该上报结果指示该多个载波的相同空域发送滤波对应的导频。
网络设备接收终端设备发送的该多个载波的上报结果之后,可以基于相同空域发送滤波对应的多个导频(分别为多个载波的导频),同时使用多个载波与终端设备进行通信。因此,在多个载波共享一个射频通道的情况下,本实施例可以实现网络设备同时使用多个 载波与终端设备进行通信,从而可以提高用户容量,提高通信效率。
在步骤S420中,终端设备可以通过对多个载波的导频进行测量而向网络设备发送多个载波的上报结果,其中,上报结果中可以包括对应于相同空域发送滤波的多个导频的测量结果;或者,终端设备可以根据多个载波的配置信息,直接选择该多个载波的相同空域发送滤波对应的多个导频进行上报。
可选地,步骤S410的实施方式为上述实施例中的步骤S210,即步骤S410中的多个载波的配置信息为多个载波的导频测量配置信息;步骤S420的实施方式为上述实施例中的步骤S220和S230,即步骤S420中的多个载波的上报结果为多个载波的测量上报结果。
可选地,步骤S410的实施方式为上述实施例中的步骤S210,即步骤S410中的多个载波的配置信息为多个载波的导频测量配置信息;步骤S420的实施方式包括:根据多个载波的导频测量配置信息,对多个载波的导频中的部分或全部导频进行测量,确定目标导频;向网络设备发送多个载波的上报结果,该上报结果指示相同空域发送滤波(记为目标空域发送滤波)对应的多个导频,该多个导频分别为该多个载波的导频,其中,目标空域发送滤波为该目标导频对应的空域发送滤波。
其中,目标导频可以为多个载波的所有导频中测量值最优的导频,或者,目标导频可以为多个载波的部分导频(例如,50%的导频)中测量值最优的导频,再或者,目标导频可以为测量值超过阈值的导频。
可选地,步骤S410的实施方式包括但不限于上述实施例中的步骤S210,只要多个载波的配置信息可以指示多个载波的相同空域发送滤波对应的导频即可;步骤S420的实施方式包括,终端设备根据多个载波的配置信息,直接选择一个相同空域发送滤波对应的多个导频上报给网络设备。
因此,在本申请实施例中,通过为终端设备配置多个载波的相同空域发送滤波对应的导频,可以使得终端设备向网络设备上报多个载波的相同空域发送滤波下的导频,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,可以提高通信效率。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现;由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上文描述了本申请实施例提供的方法实施例,下文将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个设备,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图5为本申请实施例提供的通信装置500的示意性框图。该通信装置500包括收发单元510和处理单元520。收发单元510可以与外部进行通信,处理单元510用于进行数据处理。收发单元510还可以称为通信接口或通信单元。
该通信装置500可以用于执行上文方法实施例中终端设备所执行的动作,这时,该通信装置500可以称为终端设备,收发单元510用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元520用于执行上文方法实施例中终端设备侧的处理相关的操作。
或者,该通信装置500可以用于执行上文方法实施例中网络设备所执行的动作,这时,该通信装置500可以称为网络设备,收发单元510用于执行上文方法实施例中网络设备侧的收发相关的操作,处理单元520用于执行上文方法实施例中网络设备侧的处理相关的操作。
作为第一种设计,收发单元510,用于接收多个载波的导频测量配置信息,多个载波的导频测量配置信息指示多个载波的导频关联关系,多个载波的导频关联关系表示该多个载波的导频的空域发送滤波相同;处理单元520,用于根据多个载波的导频测量配置信息进行测量,获得多个载波的测量上报结果;收发单元510还用于,发送多个载波的测量上报结果。
作为第二种设计,处理单元520,用于生成多个载波的导频测量配置信息,多个载波的导频测量配置信息指示多个载波的导频关联关系,多个载波的导频关联关系表示该多个载波的导频的空域发送滤波相同;收发单元510,用于:向终端设备发送多个载波的导频测量配置信息;从终端设备接收根据多个载波的导频测量配置信息获得的多个载波的测量上报结果。
可选地,在第一种设计或第二设计中,该多个载波的导频关联关系可以包括如下任一种或多种:述多个载波的相同空域发送滤波对应的导频的资源标识相同;该多个载波的相同空域发送滤波对应的导频的资源具有交集;该多个载波的相同空域发送滤波对应的导频的上报资源相同;该多个载波的相同空域发送滤波对应的导频的空域发送滤波标识相同。
可选地,在第一种设计或第二设计中,该多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,该多个导频分别为该多个载波的导频。
可选地,在第一种设计或第二设计中,该多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,该多个导频分别为该多个载波的导频,且该多个导频中包括测量值最优的导频。
可选地,在第一种设计或第二设计中,该多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,该多个导频分别为该多个载波的导频,其该多个导频所对应的相同空域发送滤波为导频平均测量值最优的空域发送滤波。
可选地,在第一种设计或第二设计中,多个载波的测量上报结果中可以包括多个载波的一个或多个相同空域发送滤波对应的导频的测量结果。
可选地,在第一种设计或第二设计中,该多个载波的测量上报结果中包括以下内容的至少一种:载波标识,导频标识,导频测量值。
可选地,在第一种设计或第二设计中,多个载波共享一个射频通道。
可选地,在第一种设计或第二设计中,多个载波为成员载波CC,或带宽部分BWP。
因此,本申请提供的方案,通过向终端设备配置多个载波的导频关联关系,可以使得终端设备针对多个载波上报对应于一个或多个相同空域发送滤波的导频的测量结果,从而在多个载波共享同一个射频通道的情况下,可以实现网络设备同时使用多个载波与终端设备进行通信,即实现载波聚合的通信,可以提高通信效率。
作为第三种设计,收发单元510,用于接收多个载波的配置信息,该配置信息指示该多个载波的相同空域发送滤波对应的导频;处理单元520,用于根据该多个载波的配置信息,获得多个载波的上报结果,该多个载波的上报结果指示该多个载波的相同空域发送滤波对应的导频;收发单元510还用于,向网络设备发送该多个载波的上报结果。
作为第四种设计,处理单元520,用于生成多个载波的配置信息,该配置信息指示该多个载波的相同空域发送滤波对应的导频;收发单元510,用于向终端设备发送该多个载波的配置信息,从终端设备接收根据该多个载波的配置信息得到的多个载波的上报结果,该多个载波的上报结果指示该多个载波的相同空域发送滤波对应的导频。
网络设备接收终端设备发送的该多个载波的上报结果之后,可以基于对应相同空域发送滤波的导频,同时使用多个载波与终端设备进行通信。可以理解到,在多个载波共享一个射频通道的情况下,本实施例可以实现网络设备同时使用多个载波与终端设备进行通信,从而可以提高用户容量,提高通信效率。
应理解,上文实施例中的处理单元520可以由处理器或处理器相关电路实现,收发单元510可以由收发器或收发器相关电路实现。
如图6所示,本申请实施例还提供一种通信装置600。通信装置600包括处理器610,处理器610与存储器620耦合,该存储器620用于存储计算机程序或指令,处理器610用于执行存储器620存储的计算机程序或指令,使得上文方法实施例中的方法被执行。
可选地,如图6所示,该通信装置600中还可以包括存储器620。
可选地,如图6所示,该通信装置600中还可以包括收发器630,其中,处理器610对存储器620中存储的计算机程序或指令的执行,使得处理器610用于执行上文方法实施例中的处理相关的步骤,使得收发器630用于执行上文方法实施例中的收发相关的步骤。
作为一种实现,该通信装置600用于执行上文方法实施例中终端设备侧的动作。
作为另一种实现,该通信装置600用于执行上文方法实施例中网络设备侧的动作。
本申请实施例还提供一种通信装置700,该通信装置700可以是终端设备也可以是芯片。该通信装置700可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置700为终端设备时,图7示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器 主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。射频电路可以包含上文实施例中提及的射频通道。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图7所示,终端设备包括收发单元710和处理单元720。收发单元710也可以称为收发器、收发机、收发装置等。处理单元720也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元710用于执行图2中所示的步骤S210中终端设备侧的接收操作,以及步骤S230中终端设备侧的发送操作,和/或收发单元710还用于执行终端设备侧的其他收发步骤。处理单元720用于执行图2中所示的步骤S220,和/或处理单元720还用于执行终端设备侧的其他处理步骤。
又例如,在一种实现方式中,收发单元710用于执行图4中所示的步骤S410中终端设备侧的接收操作,以及步骤S420中终端设备侧的发送操作,和/或收发单元710还用于执行终端设备侧的其他收发步骤。
应理解,图7仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图7所示的结构。
当该通信装置700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置800,该通信装置800可以是网络设备也可以是芯片。该通信装置800可以用于执行上述方法实施例中由网络设备所执行的动作。
当该通信装置800为网络设备时,例如为基站。图8示出了一种简化的基站结构示意图。基站包括810部分以及820部分。810部分主要用于射频信号的收发以及射频信号与基带信号的转换;820部分主要用于基带处理,对基站进行控制等。810部分通常可以称为收发单元、收发机、收发电路、或者收发器等。820部分通常是基站的控制中心,通常 可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
810部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将810部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即810部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
810部分中的射频电路可以包括上文实施例提及的射频通道。
820部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,810部分用于执行图2中所示的步骤S210中网络设备侧的发送操作,以及步骤S230中网络设备侧的接收操作,和/或810部分还用于执行网络设备侧的其他收发步骤。
又例如,在一种实现方式中,810部分用于执行图4中所示的步骤S410中网络设备侧的发送操作,以及步骤S420中网络设备侧的接收操作,和/或810部分还用于执行网络设备侧的其他收发步骤。
应理解,图8仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图8所示的结构。
当该通信装置800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法,或网络设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法,或网络设备侧的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备, 或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本申请描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本申请描述的存储器包括但不限于上述存储器,还包括其它任意适合类型的存储器。
本领域普通技术人员可以意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请所提供的几个实施例中,应该理解到,所提供的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,以上描述的单元的划 分,仅仅是一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上描述的作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的技术效果。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上描述的功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例的方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种测量上报的方法,其特征在于,包括:
    接收多个载波的导频测量配置信息,所述多个载波的导频测量配置信息指示所述多个载波的导频关联关系,所述多个载波的导频关联关系表示所述多个载波的导频的空域发送滤波相同;
    根据所述多个载波的导频测量配置信息进行测量,获得所述多个载波的测量上报结果;
    发送所述多个载波的测量上报结果。
  2. 一种测量上报的方法,其特征在于,包括:
    向终端设备发送多个载波的导频测量配置信息,所述多个载波的导频测量配置信息指示所述多个载波的导频关联关系,所述多个载波的导频关联关系表示所述多个载波的导频的空域发送滤波相同;
    从所述终端设备接收根据所述多个载波的导频测量配置信息获得的所述多个载波的测量上报结果。
  3. 根据权利要求1或2所述的方法,其特征在于,所述多个载波的导频关联关系包括如下任一种或多种:
    所述多个载波的相同空域发送滤波对应的导频的资源标识相同;
    所述多个载波的相同空域发送滤波对应的导频的资源具有交集;
    所述多个载波的相同空域发送滤波对应的导频的上报资源相同;
    所述多个载波的相同空域发送滤波对应的导频的空域发送滤波标识相同。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,所述多个导频分别为所述多个载波的导频。
  5. 根据权利要求4所述的方法,其特征在于,
    所述多个导频中包括测量值最优的导频;或
    所述多个导频所对应的相同空域发送滤波为导频平均测量值最优的空域发送滤波。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述多个载波的测量上报结果中包括以下内容的至少一种:载波标识,导频标识,导频测量值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述多个载波共享一个射频通道。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述多个载波为成员载波CC,或带宽部分BWP。
  9. 一种通信装置,其特征在于,包括:
    收发单元,用于接收多个载波的导频测量配置信息,所述多个载波的导频测量配置信息指示所述多个载波的导频关联关系,所述多个载波的导频关联关系表示所述多个载波的导频的空域发送滤波相同;
    处理单元,用于根据所述多个载波的导频测量配置信息进行测量,获得所述多个载波 的测量上报结果;
    所述收发单元还用于,发送所述多个载波的测量上报结果。
  10. 一种通信装置,其特征在于,包括:
    处理单元,用于生成多个载波的导频测量配置信息,所述多个载波的导频测量配置信息指示所述多个载波的导频关联关系,所述多个载波的导频关联关系表示所述多个载波的导频的空域发送滤波相同;
    收发单元,用于:
    向终端设备发送所述多个载波的导频测量配置信息;
    从所述终端设备接收根据所述多个载波的导频测量配置信息获得的所述多个载波的测量上报结果。
  11. 根据权利要求9或10所述的通信装置,其特征在于,所述多个载波的导频关联关系包括如下任一种或多种:
    所述多个载波的相同空域发送滤波对应的导频的资源标识相同;
    所述多个载波的相同空域发送滤波对应的导频的资源具有交集;
    所述多个载波的相同空域发送滤波对应的导频的上报资源相同;
    所述多个载波的相同空域发送滤波对应的导频的空域发送滤波标识相同。
  12. 根据权利要求9至11中任一项所述的通信装置,其特征在于,所述多个载波的测量上报结果中包括对应于相同空域发送滤波的多个导频的测量结果,其中,所述多个导频分别为所述多个载波的导频。
  13. 根据权利要求12所述的通信装置,其特征在于,
    所述多个导频中包括测量值最优的导频;或
    所述多个导频所对应的相同空域发送滤波为导频平均测量值最优的空域发送滤波。
  14. 一种通信装置,其特征在于,包括:
    处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器存储的所述计算机程序或指令,使得权利要求1至8中任一项所述的方法被执行。
  15. 一种计算机可读存储介质,其特征在于,其上存储有用于实现权利要求1至8中任一项所述的方法的计算机程序或指令。
PCT/CN2020/099624 2019-07-29 2020-07-01 测量上报的方法与装置 WO2021017739A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20847454.4A EP3979693A4 (en) 2019-07-29 2020-07-01 MEASUREMENT REPORTING METHOD AND DEVICE
US17/587,870 US20220150744A1 (en) 2019-07-29 2022-01-28 Measurement reporting method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910689898.0 2019-07-29
CN201910689898.0A CN112312460B (zh) 2019-07-29 2019-07-29 测量上报的方法与装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/587,870 Continuation US20220150744A1 (en) 2019-07-29 2022-01-28 Measurement reporting method and apparatus

Publications (1)

Publication Number Publication Date
WO2021017739A1 true WO2021017739A1 (zh) 2021-02-04

Family

ID=74229206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099624 WO2021017739A1 (zh) 2019-07-29 2020-07-01 测量上报的方法与装置

Country Status (4)

Country Link
US (1) US20220150744A1 (zh)
EP (1) EP3979693A4 (zh)
CN (1) CN112312460B (zh)
WO (1) WO2021017739A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11937114B2 (en) * 2020-08-05 2024-03-19 Qualcomm Incorporated Selective measurement reporting for a user equipment
WO2023019464A1 (zh) * 2021-08-18 2023-02-23 Oppo广东移动通信有限公司 无线通信方法、第一终端设备和第二终端设备
CN115835278A (zh) * 2021-09-15 2023-03-21 维沃软件技术有限公司 波束信息的确定方法、终端及网络侧设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883341A (zh) * 2011-07-11 2013-01-16 华为技术有限公司 信道信息的测量方法和相关装置
CN109314945A (zh) * 2016-06-23 2019-02-05 高通股份有限公司 波束成形通信中的定位
WO2019097356A1 (en) * 2017-11-17 2019-05-23 Nokia Technologies Oy Methods and apparatuses for time and frequency tracking reference signal use in new radio
US20190215712A1 (en) * 2018-01-09 2019-07-11 Alireza Babaei Physical And Mac Layer Processes In A Wireless Device
US20190230646A1 (en) * 2016-09-30 2019-07-25 Huawei Technologies Co., Ltd. Method for indicating quasi co-location indication information and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883341A (zh) * 2011-07-11 2013-01-16 华为技术有限公司 信道信息的测量方法和相关装置
CN109314945A (zh) * 2016-06-23 2019-02-05 高通股份有限公司 波束成形通信中的定位
US20190230646A1 (en) * 2016-09-30 2019-07-25 Huawei Technologies Co., Ltd. Method for indicating quasi co-location indication information and device
WO2019097356A1 (en) * 2017-11-17 2019-05-23 Nokia Technologies Oy Methods and apparatuses for time and frequency tracking reference signal use in new radio
US20190215712A1 (en) * 2018-01-09 2019-07-11 Alireza Babaei Physical And Mac Layer Processes In A Wireless Device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on necessity and details for physical-layer procedures to support UE/gNB measurements,", 3GPP TSG RAN WG1 #97, R1-1906910,, 17 May 2019 (2019-05-17), XP051708945 *
See also references of EP3979693A4

Also Published As

Publication number Publication date
CN112312460B (zh) 2022-05-13
US20220150744A1 (en) 2022-05-12
EP3979693A1 (en) 2022-04-06
EP3979693A4 (en) 2022-08-03
CN112312460A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2020164601A1 (zh) 传输配置编号状态指示的方法和通信装置
CN110839290B (zh) 信号传输的方法和通信装置
EP3817479B1 (en) Communication method and communication apparatus
WO2021017739A1 (zh) 测量上报的方法与装置
WO2018082641A1 (zh) 传输信息的方法和设备
WO2022007967A1 (zh) 一种参考信号资源的配置方法和装置
WO2021022952A1 (zh) 信号传输的方法与装置
CN111510267A (zh) 波束指示的方法和通信装置
US11855928B2 (en) Reference signal management method, apparatus, and system
WO2020114294A1 (zh) 一种天线面板及波束的管理方法和设备
CN110971359B (zh) 一种无线通信网络中的指示波束信息的方法和设备
CN112019313B (zh) 确定小区激活时延的方法和装置
US11658753B2 (en) Signal measurement method and communication apparatus
WO2021017874A1 (zh) 一种通信方法及通信装置
WO2021134626A1 (zh) 传输同步信号块的方法和装置
CN110913477B (zh) 管理资源的方法和通信装置
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2021159528A1 (zh) 一种通信方法和装置
CN111865542B (zh) 通信方法和通信装置
WO2024032180A1 (zh) 上行资源指示方法及通信装置
WO2023088114A1 (zh) 波束恢复方法、波束失败检测方法以及相关装置
WO2024067748A1 (zh) 通信方法及装置
CN117042135A (zh) 通信方法及装置
CN117676869A (zh) 传输配置指示tci模式配置方法、tci状态指示方法及装置
CN116095702A (zh) 波束使用方法以及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020847454

Country of ref document: EP

Effective date: 20220103

NENP Non-entry into the national phase

Ref country code: DE