WO2023029927A1 - 惯性传感器和电子设备 - Google Patents

惯性传感器和电子设备 Download PDF

Info

Publication number
WO2023029927A1
WO2023029927A1 PCT/CN2022/111629 CN2022111629W WO2023029927A1 WO 2023029927 A1 WO2023029927 A1 WO 2023029927A1 CN 2022111629 W CN2022111629 W CN 2022111629W WO 2023029927 A1 WO2023029927 A1 WO 2023029927A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
axis
block
inertial sensor
mass block
Prior art date
Application number
PCT/CN2022/111629
Other languages
English (en)
French (fr)
Inventor
胡启方
郑元辽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22863068.7A priority Critical patent/EP4379319A1/en
Publication of WO2023029927A1 publication Critical patent/WO2023029927A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation

Definitions

  • the present application relates to the fields of inertial sensing and electronic devices, and more particularly, inertial sensors, electronic devices.
  • An electronic device can detect a motion state such as a tilt angle of the electronic device through an inertial sensor (also called an inertial measurement unit (IMU)).
  • IMU inertial measurement unit
  • Inertial sensors play an important role in application scenarios such as photo stabilization, navigation, game orientation, and rotating screens.
  • Inertial sensors can be used to detect the angular velocity of an electronic device relative to a plurality of rotationally symmetric beams. If the motion of the inertial sensor relative to the rotationally symmetrical beam A affects the detection of the angular velocity around the rotationally symmetrical beam B, the detection result of the inertial sensor may be inaccurate. If, in the inertial sensor, the components for detecting the angular velocity of the rotationally symmetric beam A and the components for detecting the angular velocity of the rotationally symmetric beam B are provided independently without interfering with each other, the overall size of the inertial sensor may increase. How to balance the size and detection accuracy of the inertial sensor is a problem that needs to be solved.
  • the present application provides an inertial sensor and electronic equipment.
  • the purpose is to provide an inertial sensor with a relatively compact structure and relatively high detection accuracy, which is beneficial to improving the application performance of the inertial sensor in the electronic equipment.
  • an inertial sensor including:
  • a first mass and a first detection electrode the first mass can move relative to the first detection electrode, the first mass and the first detection electrode are arranged along a first direction to form a first capacitor , the first capacitor is used to detect the angular velocity around the second direction;
  • a second mass and a second detection electrode the second mass can move relative to the second detection electrode, the second mass and the second detection electrode are arranged along the second direction to form a first Two capacitors, the second capacitor is used to detect the angular velocity around the first direction;
  • the first connecting member is connected between the first end of the first mass block and the first end of the second mass block;
  • the first mass is driven to have a displacement component in a third direction, the first direction, the second direction, and the third direction are mutually orthogonal;
  • the first mass When the first mass has an angular velocity component about the first direction, the first mass has a displacement component along the second direction, the first mass is used to pass through the first connection The component pulls the second mass to move along the second direction, and the displacement component of the second mass along the second direction corresponds to the capacitance variation of the second capacitor;
  • the first mass When the first mass has an angular velocity component around the second direction, the first mass has a displacement component along the first direction, and the first mass has a displacement component along the first direction
  • the displacement component corresponds to the capacitance variation of the first capacitor.
  • the second mass is pulled along the second direction by the first mass, so as to realize the detection of the angular velocity of the second mass in the first direction.
  • the first mass block detects the angular velocity in the second direction
  • the first mass block has displacement components in the first direction and the third direction, and the first mass block can be considered to be stationary in the second direction;
  • the second mass block detects At an angular velocity in the first direction
  • the second mass has a displacement component in the second direction.
  • the first mass when the first mass only has an angular velocity component around the second direction, the first mass may not have a displacement component along the second direction.
  • the angular velocity detected by the first mass block in the second direction basically has no influence on the angular velocity detected by the second mass block in the first direction, which is beneficial to reduce the application of differential decoupling on the inertial sensor and improve the detection accuracy of the inertial sensor.
  • the inertial sensor provided by the present application can provide power for the first mass block and the second mass block through a driving source, which is beneficial to reduce the detection accuracy of the inertial sensor.
  • the second mass only has an angular velocity component around the second direction
  • the smaller the displacement component of the first mass in the second direction the smaller the traction force of the first mass on the second mass in the second direction , so it is more beneficial to reduce the coupling degree between the first mass and the second mass, and reduce the mutual influence between the first mass and the second mass.
  • the first connecting member includes a first elastic connecting member, and the first elastic connecting member is used to provide the first mass block with the first direction and the buffer space in the third direction, so that the displacement component of the first end of the second mass in the first direction is smaller than that of the first end of the first mass in the first direction upward displacement component, and the displacement component of the first end of the second mass in the third direction is smaller than the displacement component of the first end of the first mass in the third direction.
  • a buffering effect can be played between the first mass block and the second mass block.
  • the first elastic connecting member is beneficial to reduce the displacement of the second mass in the first direction after being pulled by the first mass.
  • the displacement of the first mass in the third direction may be relatively large.
  • the first elastic connecting member is beneficial to reduce the displacement of the second mass in the third direction after being pulled by the first mass.
  • the first elastic connecting member can be beneficial to reduce the influence of the displacement components of the first mass in the second direction and the third direction on the second mass.
  • the stiffness of the first elastic connecting member in the second direction may be smaller than the stiffness of the first elastic connecting member in the first direction.
  • the stiffness of the first elastic connecting member in the third direction may be smaller than the stiffness of the first elastic connecting member in the first direction.
  • the first connector further includes:
  • a first support beam, the first support beam is connected between the first elastic connector and the second mass block.
  • first support beam is connected between the first elastic connector and the second mass, it is beneficial to further absorb the displacement component that the first elastic connector cannot absorb, and it is beneficial to reduce the displacement of the second mass after being pulled by the first mass. Displacement in the first direction and/or in the third direction.
  • the first connector further includes:
  • the first transmission beam extends along the third direction, one end of the first transmission beam is connected between the first elastic connector and the second mass block, when the first transmission beam When a mass has an angular velocity component about the first direction, the first transmission beam can rotate about the first direction.
  • the first transmission beam may have a rotation angle about the first direction.
  • the position of a part of the first transmission beam is relatively fixed, and the deformable amount of the first transmission beam is relatively small.
  • the first mass When the first mass is displaced in the first direction, the first mass has a tendency to pull the second mass to move in the first direction.
  • the second mass block can be reversely pulled by the second part of the first transmission beam, which is beneficial to further reduce the displacement of the second mass block in the first direction after being pulled by the first mass block.
  • the rotation angle of the first transmission beam around the second direction smaller than the rotation angle of the first mass around the second direction.
  • the first transmission beam is connected between the first mass block and the second mass block, and the rotation angle of the first transmission beam around the second direction is relatively small, which is beneficial to reduce the deformation of the second mass block.
  • the length of the first transmission beam may be relatively long. For example, half of the length of the first transmission beam in the third direction may be greater than the length of the second mass block in the third direction.
  • the first mass extends from the first end of the second mass to the second end of the second mass
  • the inertial sensor also includes:
  • a second connecting piece is connected between the second end of the first mass block and the second end of the second mass block, the second connecting piece is connected to the first connecting piece Symmetrical with respect to the second proof mass.
  • the first mass can pull the second mass from both ends of the second mass, and the connectors at both ends of the second mass are also symmetrical, which is conducive to improving the symmetry of the displacement of the second mass in the first direction, and then It is beneficial to improve the detection accuracy of the inertial sensor.
  • the inertial sensor further includes:
  • the capacitance formed by the driving electrode and the driving block is used to drive the driving block to reciprocate along the third direction relative to the driving electrode;
  • a second support beam is connected between the drive block and the first mass block, the drive block is used to drive the first mass block through the second support beam, so that The first proof mass has a displacement component in the third direction.
  • the drive block can drive the first mass block from the side far away from the second mass block, which is beneficial to reduce the influence of the drive block on the movement of the second mass block when the drive block pulls the first mass block, which in turn is beneficial to improve the inertial sensor detection accuracy.
  • the inertial sensor further includes:
  • a third mass and a third detection electrode the third mass can move relative to the third detection electrode, the third mass and the third detection electrode are arranged along the first direction to form a first Three capacitors, the third capacitor is used to detect the angular velocity around the third direction, the third mass is driven to have a displacement component in the second direction, when the third mass has a displacement component around the When there is an angular velocity component in the third direction, the third mass has a displacement component along the first direction, and the displacement component of the third mass along the first direction is related to the capacitance of the third capacitor corresponding to the amount of change.
  • the inertial sensor Since the third mass moves back and forth along the second direction, and the third mass and the third detection electrodes are arranged along the first direction, the movement and detection of the third mass have relative influence on the first mass and the second mass Smaller, it is beneficial to enable the inertial sensor to have relatively high accuracy while being able to detect three-axis angular velocity.
  • the first mass is driven by a driving mass, and the driving mass is configured to reciprocate along the third direction, and the third mass and the A turning beam is connected between the driving blocks, and one end of the turning beam close to the driving block is used for reciprocating movement along the third direction, and one end of the turning beam close to the third mass block is used for moving along the The second direction reciprocates so that the third mass has a displacement component along the second direction.
  • the first mass and the third mass are driven by the same driving mass, which is beneficial to reduce the number of components in the inertial sensor, and to improve the coupling degree of the first mass, the second mass and the third mass, and to improve The detection accuracy of the inertial sensor.
  • the inertial sensor further includes:
  • a second elastic connecting piece is connected between the driving block and the first mass block, and is used to provide the third mass block with a buffer space in the first direction.
  • the third mass When the third mass is detecting the angular velocity in the third direction, the third mass can be displaced in the first direction.
  • the second elastic connecting member can be beneficial to absorb the displacement component in the first direction, and further help to reduce the influence of the third mass block on the driving block.
  • the stiffness of the second elastic connecting member in the second direction may be greater than the stiffness of the second elastic connecting member in the first direction.
  • the stiffness of the second elastic connection in the third direction may be greater than the stiffness of the second elastic connection in the first direction.
  • the inertial sensor further includes:
  • the second transmission beam, the second transmission beam is connected between the second elastic connecting member and the driving block, the second transmission beam can rotate around the third direction, and the third mass block When rotating around the third direction, the rotation angle of the second transmission beam around the third direction is smaller than the rotation angle of the third mass block around the third direction.
  • the second transmission beam may be connected between the third mass and a symmetric mass of the third mass.
  • the deformable amount of the second transmission beam is relatively small.
  • the second transmission beam can act on both the third mass and the symmetrical mass of the third mass in reverse traction, and It is beneficial to improve the symmetry of the displacement of the third mass block and the symmetrical mass block of the third mass block in the first direction.
  • the inertial sensor further includes:
  • a third elastic connecting piece is connected to the third mass block, the third elastic connecting piece is used to provide the third mass block with a supporting force in the first direction, and is also used In order to provide the buffer space in the second direction for the third proof mass.
  • the third elastic connecting member can provide torsional force and supporting force for the third mass block, which is beneficial to make the third mass block move in a preset manner.
  • the stiffness of the third elastic connection in the second direction may be smaller than the stiffness of the third elastic connection in the first direction.
  • the stiffness of the third elastic connection in the third direction may be smaller than the stiffness of the third elastic connection in the first direction.
  • the stiffness of the third elastic connection in the second direction may be smaller than the stiffness of the third elastic connection in the third direction, for example.
  • the third elastic connecting member is located on a side of the third mass block away from the second mass block.
  • the embodiment of the present application adjusts the natural frequency mode of the inertial sensor through, for example, stiffness design, decoupling mode design, etc., so that the effective mode of the inertial sensor can be as far away from the interference mode of the inertial sensor as possible, and the filtering effect of the inertial sensor is improved. Reduce the noise level of the inertial sensor. Further, by adjusting the detection frequency and driving frequency of the inertial sensor, it is beneficial to improve the sensitivity of the inertial sensor.
  • the inertial sensor includes a mechanical structure layer, a cover layer, and a substrate layer, the mechanical structure layer is located between the cover layer and the substrate layer, and the The first mass and the second mass are arranged on the mechanical structure layer, the first detection electrode is arranged on the substrate layer, and the second detection electrode is arranged on the substrate layer or the mechanical structure layer.
  • the above-mentioned third proof mass may be arranged on the mechanical structure layer, and the third detection electrode may be arranged on the substrate layer.
  • MEMS micro electro mechanical system
  • the inertial sensor is symmetrical with respect to the second direction, and the inertial sensor is symmetrical with respect to the third direction.
  • the mechanical structure layer has symmetry.
  • the symmetry of the mechanical structure layer is conducive to the application of the differential principle to remove common-mode noise caused by material strain and processing deviation, and to improve the performance of inertial sensors such as temperature drift and zero drift.
  • an electronic device including the inertial sensor described in any one of the implementation manners in the first aspect above.
  • Fig. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of an inertial sensor provided by an embodiment of the present application.
  • Fig. 3A is a schematic structural diagram of an inertial sensor provided by an embodiment of the present application.
  • Fig. 3B is a motion diagram of an inertial sensor provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an inertial sensor detecting an angular velocity around the X-axis provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an inertial sensor detecting an angular velocity around the Y-axis provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an inertial sensor detecting an angular velocity around a Z-axis provided by an embodiment of the present application.
  • Fig. 7A is a perspective view of another inertial sensor provided by an embodiment of the present application.
  • Fig. 7B is a schematic structural diagram of another inertial sensor provided by an embodiment of the present application.
  • Fig. 7C is a motion diagram of another inertial sensor provided by the embodiment of the present application.
  • Fig. 8A is a perspective view of another inertial sensor provided in an embodiment of the present application for detecting angular velocity around the X-axis.
  • FIG. 8B is a schematic structural diagram of another inertial sensor detecting an angular velocity around the X-axis according to an embodiment of the present application.
  • FIG. 9A is a perspective view of another inertial sensor provided in an embodiment of the present application for detecting an angular velocity around the Y axis.
  • FIG. 9B is a schematic structural diagram of another inertial sensor detecting an angular velocity around the Y-axis according to an embodiment of the present application.
  • FIG. 10A is a perspective view of another inertial sensor provided in an embodiment of the present application for detecting an angular velocity around the Z axis.
  • FIG. 10B is a schematic structural diagram of another inertial sensor detecting an angular velocity around the Z-axis provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 can be, for example, a terminal consumer product or a 3C electronic product (computer, communication, consumer electronics), such as a mobile phone, a portable computer, a tablet computer, an e-reader, a notebook computer, etc. , digital cameras, wearable devices, earphones, watches, stylus and other devices.
  • the embodiment shown in FIG. 1 is described by taking the electronic device 100 as a mobile phone as an example.
  • the electronic device 100 may include a casing 11 , a display screen 12 and a circuit board assembly 13 .
  • the casing 11 may include a frame and a rear cover.
  • a bezel may be located between the display 12 and the back cover.
  • the frame can surround the periphery of the display screen 12 and surround the periphery of the back cover.
  • the cavity formed among the display screen 12 , the frame, and the rear cover can be used for accommodating the circuit board assembly 13 .
  • the circuit board assembly 13 may include a circuit board, and an inertial sensor 20 disposed on the circuit board.
  • the circuit board may be, for example, a main board, a small board, or the like.
  • FIG. 2 shows two embodiments of an inertial sensor 20 .
  • the inertial sensor 20 may be a gyroscope, or an acceleration sensor and a gyroscope may be integrated.
  • the inertial sensor 20 may be a sensor that can realize both the functions of an acceleration sensor and a gyroscope.
  • the gyro sensor can be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of the electronic device 100 around three axes may be determined by a gyro sensor.
  • the gyro sensor can be used for image stabilization. Exemplarily, when the shutter is pressed, the gyro sensor detects the shaking angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the electronic device 100 through reverse movement to achieve anti-shake.
  • Gyroscope sensors can also be used for navigation and somatosensory game scenes.
  • the acceleration sensor can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of the electronic device 100, and can be applied to applications such as horizontal and vertical screen switching, pedometers, etc.
  • the inertial sensor 20 may include a chip 21 and one or more detection components 22 .
  • a part or the whole of the detection component 22 may also be called a micro electro mechanical system (MEMS).
  • the chip 21 can be electrically connected with the detection part 22 .
  • inertial sensor 20 may include a single detection component 22 .
  • the chip 21 can acquire signals related to acceleration and/or angular velocity through the detection component 22 .
  • inertial sensor 20 may include two detection components 22 .
  • the chip 21 can acquire a signal related to acceleration through one detection component 22 and a signal related to angular velocity through another detection component 22 .
  • the detection component 22 may include a substrate layer, a mechanical structure layer and a cover layer.
  • the mechanical structural layer can be hermetically connected between the mechanical structural layer and the cover layer.
  • the mechanical structure layer may also be referred to as MEMS layer.
  • the mechanical structure layer may be a key component of the detection component 22 for realizing angular velocity detection.
  • the mechanical structure layer can include a mover and a stator.
  • the stator may be fixed within the inertial sensor 20 .
  • the stator can, for example, be fastened to the substrate layer.
  • the capacitance formed by the stator and the mover can be used to drive the mover to move relative to the stator.
  • the mover may, for example, be suspended above the substrate layer and be able to move relative to the substrate layer.
  • the mover and the stator may comprise comb structures, for example.
  • the comb-shaped mover can be a movable comb.
  • the comb-shaped stator may be a fixed comb.
  • the inertial sensor 20 may also include detection electrodes.
  • the detection electrodes may be fixed within the inertial sensor 20 . Capacitance can be formed between the mover and the detection electrode. The capacitance formed by the mover and the detection electrode can be used to detect the motion state of the electronic device 100. In the embodiment shown in FIG. 2, the detection electrodes can be fixed on the substrate layer, for example.
  • the detection electrodes and the mover can be arranged along the Z axis, and both the detection electrodes and the mover can be arranged parallel to the XY plane.
  • the chip 21 can send an alternating current signal to the detection component 22 to drive the mover of the detection component 22 to reciprocate relative to the stator along the X-axis at a preset frequency in a translational manner. This movement does not substantially change the distance between the detection electrode and the mover on the Z axis.
  • the distance between the detection electrode and the mover along the Z axis may correspond to the capacitance formed by the detection electrode and the mover, so the capacitance formed by the detection electrode and the mover may remain basically unchanged.
  • the capacitance of the capacitance formed by the detection electrode and the mover can basically remain unchanged.
  • the mover When the electronic device 100 moves, for example, when the electronic device has an angular velocity component that rotates around the Y-axis under the action of an external force, that is, when the rotation direction of the electronic device is in the direction of the Y-axis, the mover will also rotate around the Y-axis. Tendency of the shaft to rotate and withstand additional forces. This force may be referred to as the Coriolis force.
  • the direction of the acting force (such as the direction of the Z axis) may be orthogonal to the direction of rotation of the mover (such as the direction of the Y axis) and the direction of movement of the mover (such as the direction of the X axis).
  • the acting force can change the distance between the detection electrode and the mover, thereby changing the capacitance of the capacitance formed by the detection electrode and the mover.
  • the chip 21 can acquire the angular velocity ⁇ of the electronic device 100 rotating around the Y axis by acquiring the capacitance variation of the capacitance formed by the detection electrode and the mover.
  • the capacitance change ⁇ C the distance change y between the detection electrode and the mover can be determined.
  • the capacitance variation ⁇ C and the spacing variation y can satisfy the following formula, for example:
  • the Coriolis force F that the mover bears can be determined.
  • the Coriolis force F, the stiffness k and the distance change y can satisfy the following formula:
  • Coriolis force F, the mass m of the mover, and the reciprocating velocity v of the mover, the angular velocity ⁇ of the mover can be determined.
  • Coriolis force F, mover mass m, mover reciprocating velocity v and angular velocity ⁇ can satisfy the following formula:
  • the electronic device 100 When the electronic device 100 actually moves, the electronic device 100 can rotate around the X axis, the Y axis, and the Z axis.
  • the inertial sensor can obtain the angular velocity around the X-axis, Y-axis, and Z-axis respectively by referring to the above principles.
  • the inertial sensor may include three detection systems that are independent of each other. These three detection systems may be driven independently and used to detect angular velocities around the X-axis, Y-axis, and Z-axis respectively. However, this makes the inertial sensor occupy a relatively large space.
  • an inertial sensor may include detection system A.
  • the detection system A can be used to detect the angular velocity of the direction A, and can also be used to detect the angular velocity of the direction B, so as to realize the detection coupling of the direction A and the direction B.
  • the detection system A detects the angular velocity around the direction A, the motion of the detection system A will affect the detection of the angular velocity around the direction B, which may result in poor detection accuracy of the inertial sensor.
  • the machining accuracy of the inertial sensor is also relatively high.
  • the embodiments of the present application provide a series of technical solutions for the above problems, aiming to make the inertial sensor meet various requirements and help improve the application performance of the inertial sensor in electronic equipment.
  • the inertial sensor provided by the embodiment of the present application may have the characteristics of small size, excellent detection accuracy, and low processing difficulty.
  • FIG. 3A is a schematic structural diagram of a mechanical structure layer 300 provided by an embodiment of the present application.
  • FIG. 3B is a schematic diagram of movement of movers of the mechanical structure layer 300 shown in FIG. 3A when the mechanical structure layer 300 does not rotate.
  • the XY plane is parallel to the paper of Fig. 3A and Fig. 3B
  • the Z axis is perpendicular to the paper of Fig. 3A and Fig. 3B.
  • the X axis, the Y axis, and the Z axis are orthogonal to each other.
  • the mechanical structure layer 300 may be arranged parallel to the XY plane.
  • the mechanical structure layer 300 may include a mass 311 , a mass 312 , and a mass 313 .
  • the mass block 311 is used to detect the angular velocity around the X axis.
  • the proof mass 312 is used to detect the angular velocity around the Y axis.
  • the mass block 313 is used to detect the angular velocity around the Z axis.
  • the mechanical structure layer 300 also includes support beams 3201 .
  • the support beam 3201 is driven to have a displacement component in the X-axis direction. When the inertial sensor is not subjected to external force, the support beam 3201 can move back and forth along the X axis.
  • the mechanical structure layer 300 further includes a driving block (not shown in FIGS. 3A and 3B ), which is connected to the supporting beam 3201 , so that the driving block can be used to drive the supporting beam 3201 to reciprocate along the X-axis.
  • a component may have displacement components in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the displacement component of the component along the X-axis direction may be the projection of the displacement of the component on the X-axis.
  • the displacement component of the component along the Y axis may be the projection of the displacement of the component on the Y axis.
  • the displacement component of the component along the Z-axis direction may be the projection of the displacement of the component on the Z-axis.
  • the displacement of the component may be the vector sum of the displacement component of the component in the X-axis direction, the displacement component in the Y-axis direction, and the displacement component in the Z-axis direction.
  • a part can move along the X axis when the part has a displacement component only in the X axis.
  • a part can move along the Y axis when the part has a displacement component only in the Y axis.
  • a part can move along the Z axis when the part has a displacement component only in the Z axis.
  • the driving block may include a driving part 1 and a driving part 2 .
  • the drive element 1 can belong to the stator.
  • the driver 1 and the driver 2 can form a capacitor.
  • the driving part 2 can reciprocate relative to the driving part 1 along the X axis.
  • the supporting beam 3201 can be connected with the driving part 2 , and the supporting beam 3201 can move back and forth under the driving of the driving part 2 . In other embodiments, the support beam 3201 may be driven to move back and forth in other ways.
  • the support beam 3201 may be disposed close to the proof mass 311 .
  • the displacement component of the support beam 3201 in the X-axis direction can be used to drive the proof mass 311 to move along the Y-axis.
  • the mechanical structural layer 300 also includes a turning beam 351 .
  • the steering beam 351 can transmit translational driving force between the support beam 3201 and the mass block 311 , so that the mass block 311 moves back and forth under the drive of the support beam 3201 .
  • the steering beam 351 is also used to convert the translational driving force along the X-axis from the support beam 3201 into a translational driving force along the Y-axis, so that the mass block 311 has a displacement component in the Y-axis direction under the action of the steering beam 351 .
  • the mass block 311 can reciprocate along the Y axis.
  • the steering beam 351 can be connected between the support beam 3201 and the proof mass 311 , for example.
  • the included angle between the turning beam 351 and the X-axis may be approximately 45°
  • the included angle between the turning beam 351 and the Y-axis may be approximately 45°.
  • the mechanical structure layer 300 may also include anchor regions 341 and elastic connectors 3301 .
  • the elastic connecting piece 3301 can be connected between the anchor area 341 and the proof mass 311 .
  • the anchor region may belong to the stator.
  • the anchor region can be fixed, for example, on the substrate layer shown in FIG. 2 .
  • the stiffness of the elastic connector may be relatively small compared to the supporting beam.
  • the elastic connector 3301 can be used to support the mass 311 so that the mass 311 is suspended between the substrate layer and the cover layer shown in FIG. 2 .
  • the elastic connector 3301 can be used to provide suspension support for the mass block 311 along the Z-axis, so that the mass block 311 is suspended between the substrate layer and the cover layer shown in FIG. 2 . That is to say, the rigidity of the elastic connecting member 3301 in the Z-axis direction may be relatively large.
  • the elastic connector 3301 can also be used to provide a buffer space in the Y-axis direction between the mass 311 and the anchor area 34 . That is to say, the rigidity of the elastic connecting member 3301 in the Y-axis direction may be relatively small, or the elastic connecting member 3301 may have elasticity in the Y-axis direction.
  • FIG. 3B shows a schematic structural view of the proof mass 311 moving along the Y-axis under the action of the support beam 3201 .
  • the dotted line in FIG. 3B shows the position of the mass block 311 before moving, and the solid line in FIG. 3B shows the position of the mass block 311 after moving.
  • the mechanical structure layer 300 may further include an elastic connecting piece 3302 .
  • the rigidity of the elastic connecting member 3302 in the X-axis direction and the Y-axis direction may be relatively small or elastic, so as to facilitate the relative movement of the supporting beam 3201 and the proof mass 311 in a predetermined direction.
  • the elastic connector 3302 can be used to absorb the displacement of the X-axis, and reduce the displacement component of the mass block 311 in the direction of the X-axis, so as to facilitate the movement of the mass block 311 along the Y-axis.
  • the elastic connector 3302 can be used to absorb the displacement of the Y axis, and reduce the displacement component of the support beam 3201 in the Y axis direction, so as to facilitate the movement of the support beam 3201 along the X axis.
  • the mechanical structural layer 300 may also include support beams 3202 .
  • the support beam 3202 is driven to have a displacement component in the X-axis direction. When the inertial sensor is not subjected to external force, the supporting beam 3202 can move back and forth along the X axis.
  • the embodiment of driving the support beam 3202 to reciprocate may refer to the above embodiment of driving the support beam 3201 to reciprocate.
  • support beam 3202 may be connected to support beam 3201 . Since the direction of the force driving the support beam 3201 and the support beam 3202 to reciprocate can be along the X axis and in the same direction, the support beam 3201 and the support beam 3202 can be driven by the same driving block.
  • the support beam 3202 can also be connected with the proof mass 312 .
  • the reciprocating movement of the support beam 3202 can be used to drive the mass 312 to move along the X-axis.
  • FIG. 3B shows a schematic structural view of the proof mass 312 moving along the X-axis under the action of the support beam 3202 .
  • the dotted line in FIG. 3B shows the position of the mass block 312 before moving, and the solid line in FIG. 3B shows the position of the mass block 312 after moving.
  • Mechanical structural layer 300 also includes support beams 3203 and anchor regions 342 .
  • the support beam 3203 is connected between the anchor area 342 and the proof mass 313 .
  • the support beam 3203 is used to support the mass block 313 so that the mass block 313 is suspended between the substrate layer and the cover layer shown in FIG. 2 .
  • the support beam 3203 can be used to provide suspension support for the proof mass 313 .
  • the mechanical structure layer 300 may also include elastic connectors 3303 .
  • the elastic connecting piece 3303 can be connected between the mass block 312 and the mass block 313 . As shown in FIGS. 3A and 3B , the mass block 312 and the mass block 313 can be connected with the support beam 3203 through the elastic connecting piece 3303 .
  • the elastic connector 3303 can be used to provide a buffer space for the proof mass 312 along the X-axis. That is to say, the elastic connecting member 3303 can be less rigid or elastic in the X-axis. As mentioned above, the proof mass 312 may have a displacement component along the X-axis direction under the action of the supporting beam 3202 . When the inertial sensor is not subjected to external force, the mass block 312 can reciprocate along the X axis.
  • the elastic connector 3303 can be used to absorb the displacement of the X-axis, and reduce the displacement component of the mass block 313 along the X-axis direction under the traction of the mass block 312 , as shown in FIG. 3B .
  • the mechanical structure layer 300 has symmetry.
  • the mechanical structure layer 300 has symmetry, which is beneficial to apply the differential principle to remove common mode noise caused by material strain and processing deviation, and is beneficial to improve the performance of inertial sensors such as temperature drift and zero drift.
  • the mechanical structure layer 300 may be symmetrical with respect to the symmetry axis x, and may be symmetric with respect to the symmetry axis x, the symmetry axis x may be parallel to the X axis, and the symmetry axis x may be parallel to the Y axis.
  • the moving directions of two structures that are mutually symmetrical with respect to the axis of symmetry x or the axis of symmetry y may be symmetrical or opposite.
  • the support beam 3202 and the support beam 3203 may correspond to the symmetry axis x of the mechanical structure layer 300 .
  • the mechanical structure layer may also include symmetrical beams 371 and symmetric beams 372 .
  • the symmetrical beam 371 and the symmetrical beam 372 are located on both sides of the anchor area 342 , and both the symmetrical beam 371 and the symmetrical beam 372 are connected to the anchor area 342 .
  • the symmetrical beam 371 and the symmetrical beam 372 may correspond to the symmetric axis y of the mechanical structure layer 300 .
  • the anchor region 342 may be disposed at the intersection of the symmetry axis x and the symmetry axis x.
  • the mass 1 itself is symmetrical about the axis of symmetry y.
  • the mass 2 itself may be symmetrical with respect to the axis of symmetry x.
  • the mass 3 itself may be symmetrical with respect to the axis of symmetry x.
  • the mechanical structure layer 300 may further include a mass block 314 , a mass block 315 , and a mass block 316 .
  • the mass block 314 is used to detect the angular velocity of the X axis.
  • the mass block 315 is used to detect the angular velocity of the Y axis.
  • the mass block 316 is used to detect the angular velocity of the Z axis.
  • the mass block 4 is symmetrical with respect to the symmetry axis y.
  • the mass 5 itself may be symmetrical with respect to the axis of symmetry x.
  • the mass 6 itself may be symmetrical with respect to the axis of symmetry x.
  • the mass block 314 and the mass block 311 may be arranged symmetrically with respect to the symmetry axis x.
  • the mass block 315 and the mass block 312 are arranged symmetrically with respect to the symmetry axis y.
  • the mass block 316 and the mass block 313 are arranged symmetrically with respect to the symmetry axis y.
  • the mechanical structure layer 300 may further include support beams 3204 , support beams 3205 , and support beams 3206 .
  • Support beam 3204, support beam 3205, support beam 3206 are driven to have a displacement component along the X-axis direction.
  • the inertial sensor is not subjected to external force, the supporting beam 3204, the supporting beam 3205, and the supporting beam 3206 can reciprocate along the X-axis.
  • the support beam 3204 and the support beam 3201 can be arranged symmetrically with respect to the symmetry axis y; the support beam 3205 and the support beam 3201 are arranged symmetrically with respect to the symmetry axis x; the support beam 3206 and the support beam 3205 are symmetrically arranged with respect to the symmetry axis y set up.
  • the support beam 3201 and the support beam 3205 can be connected through a transmission beam 361 .
  • the drive beam 361 itself may be symmetrical with respect to the axis of symmetry x.
  • the supporting beam 3204 and the supporting beam 3206 can be connected by a transmission beam 362 .
  • the drive beam 362 itself may be symmetrical about the axis of symmetry x.
  • the transmission beam 361 and the transmission beam 2 may be symmetrical with respect to the symmetry axis y.
  • the supporting beam 3204 and the supporting beam 3201 can be respectively connected to two ends of the proof mass 311 .
  • the reciprocating movement of the support beam 3201 can be used to drive one end of the mass block 311 to move along the Y axis
  • the reciprocating movement of the support beam 3204 can be used to drive the other end of the mass block 311 to move along the Y axis, so that the mass block 311 can move on the support beam 3201 and the support beam 3204 has a displacement component along the Y-axis direction.
  • the moving directions of the supporting beam 3201 and the supporting beam 3204 in the X-axis direction may be opposite.
  • the support beam 3201 and the support beam 3204 can be driven by different drive blocks. Therefore, the mass 311 can be driven by two different driving masses.
  • the drive block for driving the support beam 3201 and the drive block for driving the support beam 3204 may be symmetrical with respect to the symmetry axis y.
  • the mechanical structural layer 300 may also include a turning beam 352 .
  • the steering beam 352 and the steering beam 351 may be symmetrical about the axis of symmetry y.
  • the turning beam 351 can transmit a translational driving force between the supporting beam 3201 and one end of the mass block 311, and the turning beam 352 can transmit a translational driving force between the supporting beam 3204 and the other end of the mass block 311, so that the mass block 311 is supported Driven by the beam 3201 and the supporting beam 3204, it moves back and forth.
  • the turning beam 352 is also used to convert the translational driving force along the X-axis from the support beam 3204 into a translational driving force along the Y-axis, so that the mass 311 has a function along the Y-axis under the action of the turning beam 351 and the turning beam 352.
  • the displacement component of the direction For related embodiments of the steering beam 352 , reference may be made to related embodiments of the steering beam 351 .
  • the supporting beam 3205 and the supporting beam 3206 can be respectively connected to two ends of the proof mass 314 .
  • the reciprocating movement of the support beam 3205 can be used to drive one end of the mass block 314 to move along the Y axis
  • the reciprocating movement of the support beam 3206 can be used to drive the other end of the mass block 314 to move along the Y axis, so that the mass block 314 can move on the support beam 3205 and the support beam 3206 has a displacement component along the Y-axis direction.
  • Support beam 3205 and the support beam 3206 in the X-axis direction may be opposite.
  • Support beam 3205 and support beam 3206 may be driven by different drive blocks.
  • the mass 314 can be driven by two different drive masses.
  • the two driving masses used for driving mass 314 can also be used for driving mass 311 .
  • the moving direction of support beam 3205 and support beam 3201 can be the same; support beam 3205 and support beam 3201 can be driven by the same drive block.
  • the direction of movement of support beam 3206 and support beam 3204 may be the same; support beam 3206 and support beam 3204 may be driven by the same drive block.
  • the moving directions of the mass block 314 and the mass block 311 in the Y-axis direction are opposite.
  • the mass block 314 and the mass block 311 can be close to or far away from each other in the Y-axis direction.
  • FIG. 3B shows a schematic structural view of proof mass 314 moving along the Y-axis.
  • the dotted line in FIG. 3B shows the position of the mass block 314 before moving, and the solid line in FIG. 3B shows the position of the mass block 314 after moving.
  • the mechanical structure layer 300 may further include a turning beam 353 and a turning beam 354 .
  • the steering beam 353 and the steering beam 354 may be symmetrical about the axis of symmetry y.
  • the turning beam 353 can transmit a translational driving force between the supporting beam 3205 and one end of the mass block 314, and the turning beam 354 can transmit a translational driving force between the supporting beam 3206 and the other end of the mass block 314, so that the mass block 314 is supported Driven by the beam 3205 and the supporting beam 3206, there is a displacement component along the Y-axis direction.
  • the steering beam 353 is also used to convert the translational driving force along the X axis from the supporting beam 3205 into the translational driving force of the Y axis
  • the steering beam 354 is also used to convert the translational driving force along the X axis from the supporting beam 3206 is the translational driving force of the Y axis, so that the mass block 314 has a displacement component along the Y axis direction under the action of the steering beam 353 and the steering beam 354 .
  • the steering beam 353 and the steering beam 354 reference may be made to the related embodiments of the steering beam 351 and the steering beam 352 .
  • the mechanical structural layer 300 also includes anchor regions 343 and elastic connectors 3304 .
  • the anchor region 343 and the anchor region 341 may be symmetrical about the axis of symmetry x.
  • the elastic connecting piece 3304 and the elastic connecting piece 3301 may be symmetrical with respect to the symmetry axis x.
  • the elastic connector 3304 can be connected between the anchor area 343 and the proof mass 314 .
  • the elastic connector 3304 can be used to provide suspension support for the proof mass 314 along the Z-axis.
  • the elastic connector 3304 can also be used to provide a buffer space on the Y-axis between the proof mass 314 and the anchor area 34 .
  • the mechanical structure layer 300 may further include elastic connectors 3305 , elastic connectors 3306 , and elastic connectors 3307 .
  • the elastic connecting member 3305 and the elastic connecting member 3302 may be symmetrical with respect to the symmetry axis y.
  • the elastic connector 3306 and the elastic connector 3302 may be symmetrical with respect to the axis of symmetry x.
  • the elastic connecting piece 3307 and the elastic connecting piece 3305 may be symmetrical with respect to the axis of symmetry x.
  • the rigidity of the elastic connecting member 3305 in the direction of the X-axis and the Y-axis can be relatively small or elastic, so as to facilitate the movement of the supporting beam 3204 along the X-axis and the movement of the proof mass 311 along the Y-axis.
  • the rigidity of the elastic connecting member 3306 in the direction of the X-axis and the Y-axis can be relatively small or elastic, so as to facilitate the movement of the supporting beam 3205 along the X-axis and the movement of the proof mass 314 along the Y-axis.
  • the rigidity of the elastic connecting member 3307 in the X-axis direction and the Y-axis direction may be relatively small or elastic, so as to facilitate the movement of the support beam 3206 along the X-axis and facilitate the movement of the proof mass 314 along the Y-axis.
  • the mechanical structural layer 300 may also include support beams 3207 .
  • the support beam 3207 is driven to have a displacement component in the X-axis direction.
  • the support beam 3207 can move back and forth along the X axis.
  • the moving directions of the supporting beam 3207 and the supporting beam 3202 in the X-axis direction may be opposite.
  • the support beam 3207 may be symmetrical to the support beam 3202 about the symmetry axis y.
  • the support beam 3207 may be connected to the transmission beam 362 .
  • the reciprocating movement of the support beam 3207 can be used to drive the mass 315 such that the drive mass 315 has a displacement component along the X-axis direction.
  • the moving directions of the mass block 315 and the mass block 312 in the X-axis direction may be opposite.
  • the proof-mass 315 and proof-mass 312 may approach or move away from each other along the X-axis.
  • Proof 315 and proof mass 312 may be driven by different drive masses.
  • the two drive masses for drive mass 315 and for drive mass 312 may also be used for drive mass 311 .
  • FIG. 3B shows a schematic structural view of the proof mass 315 moving along the X-axis.
  • the dotted line in FIG. 3B shows the position of the mass block 315 before moving, and the solid line in FIG. 3B shows the position of the mass block 315 after moving.
  • the mechanical structure layer 300 may further include a support beam 3208 , a support beam 3209 , and a support beam 3210 .
  • support beam 3208 and support beam 3203 may be symmetrical about the axis of symmetry x.
  • the support beam 3209 and the support beam 3203 may be symmetrical about the symmetry axis y.
  • Support beam 3210 and support beam 3208 may be symmetrical about the axis of symmetry y.
  • the support beam 3203 may be connected to the first end of the proof mass 313 .
  • a support beam 3208 may be connected between the anchor region 342 and the second end of the mass 313 .
  • the support beam 3208 and the support beam 3203 are used to support the mass block 313 so that the mass block 313 is suspended between the substrate layer and the cover layer shown in FIG. 2 .
  • the support beam 3208 and the support beam 3203 can cooperate to provide the suspension support for the proof mass 313 along the Z-axis.
  • a support beam 3209 may be connected between the anchor region 342 and the first end of the proof-mass 316 .
  • a support beam 3210 may be connected between the anchor region 342 and the second end of the proof-mass 316 .
  • the support beam 3209 and the support beam 3210 can cooperate to provide the suspension support for the proof mass 316 along the Z-axis.
  • the mechanical structure layer 300 may further include a transmission beam 363 and a transmission beam 364 .
  • the drive beam 363 itself may be symmetrical about the axis of symmetry y.
  • the transmission beam 364 itself may be symmetrical about the axis of symmetry y.
  • the transmission beam 363 and the transmission beam 364 may be symmetrical with respect to the axis of symmetry x.
  • the transmission beam 363 may be connected between the support beam 3203 and the support beam 3208 .
  • Drive beam 363 may be connected between support beam 3208 and support beam 3210 .
  • the transmission beam 363 can provide suspension support along the Z-axis for the support beam 3203 and the support beam 3209 .
  • the transmission beam 364 can provide suspension support along the Z-axis for the support beam 3208 and the support beam 3210 .
  • the mechanical structure layer 300 may further include symmetrical beams 371 and symmetrical beams 372 .
  • the symmetrical beam 371 and the symmetrical beam 372 can be fixedly connected to both ends of the anchoring area 342 respectively.
  • a symmetrical beam 371 may be connected between the drive beam 363 and the anchor area 342 .
  • a symmetrical beam 372 may be connected between the drive beam 364 and the anchor area 342 .
  • the symmetrical beam 371 itself may be symmetrical about the axis of symmetry y.
  • the symmetrical beam 372 itself may be symmetrical about the axis of symmetry y.
  • the symmetrical beam 371 and the symmetrical beam 372 may be symmetrical with respect to the axis of symmetry x.
  • the mechanical structure layer 300 further includes elastic connectors 3308 , elastic connectors 3309 , and elastic connectors 3310 .
  • the elastic connecting member 3308 and the elastic connecting member 3303 may be symmetrical with respect to the symmetry axis x.
  • the elastic connecting piece 3309 and the elastic connecting piece 3303 may be symmetrical with respect to the symmetry axis y.
  • the elastic connector 3310 and the elastic connector 3308 may be symmetrical with respect to the symmetry axis y.
  • Proof 312 may extend from a first end of proof mass 313 to a second end of proof mass 313 .
  • the elastic connecting member 3303 may be connected between the first end of the mass block 312 and the first end of the mass block 313 .
  • the elastic connecting piece 3308 can be connected between the second end of the mass block 312 and the second end of the mass block 313 .
  • the first end of the mass block 312 and the first end of the mass block 313 may be connected to the support beam 3203 through an elastic connecting member 3303 .
  • the second end of the mass block 312 and the second end of the mass block 313 can be connected with the support beam 3208 through the elastic connecting piece 3308 .
  • the rigidity of the elastic connecting member 3303 in the X-axis direction may be relatively small or elastic, so as to provide a buffer space along the X-axis between the first end of the mass block 312 and the first end of the mass block 313 .
  • the stiffness of the elastic connecting member 3308 in the X-axis direction can be relatively small or elastic, so as to provide a buffer space along the X-axis between the second end of the mass block 312 and the second end of the mass block 313. Therefore, it is beneficial to reduce the displacement of the mass block 313 in the X-axis direction.
  • Proof 315 may extend from a first end of proof-mass 316 to a second end of proof-mass 316 .
  • the elastic connecting piece 3309 can be connected between the first end of the mass block 315 and the first end of the mass block 316 .
  • the elastic connecting member 3310 can be connected between the second end of the mass block 315 and the second end of the mass block 316 .
  • the first end of the mass block 315 and the first end of the mass block 316 may be connected to the support beam 3209 through an elastic connecting member 3309 .
  • the second end of the mass block 315 and the second end of the mass block 316 may be connected to the support beam 3210 through an elastic connecting member 3310 .
  • the elastic connecting part 3309 refers to the specific embodiment of the elastic connecting part 3303 .
  • the specific embodiment of the elastic connector 3310 refer to the specific embodiment of the elastic connector 3308 .
  • the mass block 312 can pull the mass block 313 through the elastic connector 3303 and the supporting beam 3203, so that the mass block 313 has a displacement component along the Y-axis direction.
  • the mass block 312 and the mass block 313 are connected by the elastic connecting member 3303 and the support beam 3203, which is beneficial to reduce the deformation caused by the elastic connecting member 3303
  • the influence of quantity instability on the asymmetry of the mechanical structure layer 300 is beneficial to reduce the processing requirements of the mechanical structure layer 300 .
  • the width of the supporting beam 3203 along the Y axis may be relatively larger.
  • FIG. 4 Observing the mechanical structure layer 300 shown in FIG. 3B along the X+ direction, a schematic structure diagram shown in FIG. 4 can be obtained.
  • the principle of detecting the angular velocity around the X-axis through the mass block 311 and the mass block 314 will be described below with reference to FIG. 3B and FIG. 4 .
  • the inertial sensor may include a detection electrode 231 and a detection electrode 234 .
  • the detection electrode 231 and the detection electrode 234 may be disposed on the substrate layer shown in FIG. 2 , for example.
  • the detection electrode 231 can be arranged opposite to the mass block 311 , and the detection electrode 234 can be arranged opposite to the mass block 314 .
  • the detection electrodes 231 and the proof mass 311 may be arranged along the Z axis.
  • the detection electrodes 231 and the proof mass 311 can be arranged parallel to the XY plane, so that the detection electrodes 231 and the proof mass 311 can form a capacitor 1 .
  • the detection electrodes 234 and the proof mass 314 may be arranged along the Z axis.
  • the detection electrodes 234 and the proof mass 314 can be arranged parallel to the XY plane, so that the detection electrodes 234 and the proof mass 314 can form a capacitor 4 .
  • the proof mass 311 and proof mass 314 may have a displacement component along the Y-axis direction.
  • the mass block 311 and the mass block 314 may be subjected to a Coriolis force along the Z-axis.
  • the proof-mass 311 and the proof-mass 314 may have a displacement component along the Z-axis direction. Therefore, the distance between the mass block 311 and the detection electrode 231 can be changed, and the capacitance value of the capacitor 1 formed by the mass block 311 and the detection electrode 231 can be changed; The capacitance value of the capacitor 4 can vary.
  • the capacitance variation of the capacitance 1 formed by the mass 311 and the detection electrode 231 may correspond to the displacement component of the mass 311 in the Z-axis direction.
  • the capacitance variation of the capacitance 4 formed by the proof mass 314 and the detection electrode 234 may correspond to the displacement component of the proof mass 314 in the Z-axis direction.
  • the inertial sensor is rotated by external force
  • the inertial sensor may have angular velocity components around the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the projection of the angular velocity direction of the inertial sensor in the X-axis direction may be the angular velocity component of the inertial sensor around the X-axis direction.
  • the projection of the angular velocity direction of the inertial sensor in the Y-axis direction may be the angular velocity component of the inertial sensor around the Y-axis direction.
  • the projection of the angular velocity direction of the inertial sensor in the Z-axis direction may be the angular velocity component of the inertial sensor around the Z-axis direction.
  • the vector sum of the angular velocity components around the X-axis direction, the Y-axis direction, and the Z-axis direction of the inertial sensor may be the angular velocity direction of the inertial sensor.
  • the driving direction of the mass block 311 is Y+
  • the driving direction of the mass block 314 is Y-.
  • the mass 311 can surround the anchor region 341 and have an angular velocity component that rotates around the X axis
  • the mass 314 can surround the anchor region 343 and have an angular velocity component that rotates around the X axis.
  • proof-mass 311 may have a displacement component along the Z+ direction
  • proof-mass 314 may have a displacement component along the Z-direction.
  • the mass block 311 tends to be far away from the detection electrode 231
  • the mass block 314 tends to approach the detection electrode 234 .
  • the detection results of the detection electrode 231 and the detection electrode 234 include common-mode noise, the detection results output by the detection electrode 231 and the detection electrode 234 can be relatively effectively removed. Zero drift performance, etc.
  • a transmission beam 361 is connected between the elastic connector 3302 and the elastic connector 3306 .
  • the transmission beam 361 can be connected between the support beam 3201 and the support beam 3205 . Since the directions of the displacement components of the mass block 311 and mass block 312 in the direction of the Z axis are opposite, the transmission beam 361 is used to rotate around the axis of symmetry x relative to the anchor area 342 .
  • the inclination of the transmission beam 361 can be relatively small, for example, the inclination angle of the transmission beam 361 relative to the Y axis can be smaller than the inclination of the elastic connector 3302 relative to the Y axis horn.
  • the driving block may further include a transmission beam 362 .
  • the transmission beam 362 and the transmission beam 361 are symmetrical with respect to the symmetry axis y.
  • the transmission beam 362 can be connected between the elastic connecting piece 3305 and the elastic connecting piece 3307 .
  • the drive beam 362 may be configured to rotate about the axis of symmetry x relative to the anchor region 342 .
  • the rotation directions of the transmission beam 361 and the transmission beam 362 around the X-axis direction may be opposite.
  • the specific embodiment of the transmission beam 362 can refer to the specific embodiment of the transmission beam 361 .
  • FIG. 5 Observing the mechanical structure layer 300 shown in FIG. 3B along the Y+ direction, a schematic structure diagram shown in FIG. 5 can be obtained.
  • the principle of detecting the angular velocity around the Y axis through the mass block 312 and the mass block 315 will be described below with reference to FIG. 3B and FIG. 5 .
  • the inertial sensor may include a detection electrode 232 and a detection electrode 235 .
  • the detection electrode 232 and the detection electrode 235 may be disposed on the substrate layer shown in FIG. 2 , for example.
  • the detection electrode 232 can be arranged opposite to the mass block 312 , and the detection electrode 235 can be arranged opposite to the mass block 315 .
  • the detection electrodes 232 and the proof mass 312 may be arranged along the Z axis.
  • the detection electrodes 232 and the proof mass 312 can be arranged parallel to the XY plane, so that the detection electrodes 232 and the proof mass 312 can form a capacitor 2 .
  • the detection electrodes 235 and the proof mass 315 may be arranged along the Z axis.
  • the detection electrodes 235 and the proof mass 315 can be arranged parallel to the XY plane, so that the detection electrodes 235 and the proof mass 315 can form a capacitor 5 .
  • the proof mass 312 and proof mass 315 may have a displacement component along the X-axis direction.
  • the mass block 312 and the mass block 315 may be subjected to a Coriolis force along the Z-axis.
  • the proof-mass 312 and the proof-mass 315 have displacement components along the Z-axis direction.
  • the distance between the mass block 312 and the detection electrode 232 can vary, and the capacitance value of the capacitor 2 formed by the mass block 312 and the detection electrode 232 can vary; the distance between the mass block 315 and the detection electrode 235 can vary, and the mass block 315 and the detection electrode 235 form The capacitance value of the capacitor 5 can vary.
  • the capacitance variation of the capacitance 2 formed by the mass 312 and the detection electrode 232 may correspond to the displacement component of the mass 312 in the Z-axis direction.
  • the capacitance variation of the capacitance 5 formed by the proof mass 315 and the detection electrode 235 may correspond to the displacement component of the proof mass 315 in the Z-axis direction.
  • the driving direction of the mass block 312 is X-
  • the driving direction of the mass block 315 is X+.
  • the mass block 312 can surround the anchor area 342 and have an angular velocity component that rotates around the Y axis
  • the mass block 315 can surround the anchor area 342 and have an angular velocity component that rotates around the Y axis.
  • proof-mass 312 may have a displacement component in the Z-direction
  • proof-mass 315 may have a displacement component in the Z+ direction.
  • the mass block 312 tends to be close to the detection electrode 232
  • the mass block 315 tends to be far away from the detection electrode 235 .
  • the detection results of the detection electrode 232 and the detection electrode 235 include common-mode noise, the detection results output by the detection electrode 232 and the detection electrode 235 can be relatively effectively removed. Zero drift performance, etc.
  • a transmission beam 364 is connected between the elastic connector 3308 and the elastic connector 3310 .
  • the transmission beam 364 may be connected to the anchor area 342 . Since the directions of the displacement components of the mass block 312 and mass block 315 along the Z-axis direction are opposite, the transmission beam 364 has a tendency to rotate around the symmetry axis y relative to the anchor area 342 . Since the elastic connecting piece 3308 and the elastic connecting piece 3310 have a buffering effect, and the transmission beam 364 is fixedly connected to the anchor area 342, the inclination of the transmission beam 364 can be relatively small.
  • the elastic connector 3308 and the elastic connector 3310 can help reduce the degree of inclination of the transmission beam 364 relative to the X-axis, and the stiffness of the transmission beam 364 itself can further help reduce the degree of inclination of the transmission beam 364 relative to the X-axis. Therefore, it is beneficial to reduce the amount of rotation of the mass block 313 around the Y axis.
  • the transmission beam 364 can also provide the deformation reaction force of the elastic connector 3308 and the elastic connector 3310 along the X-axis, so as to reduce the mass Displacement components of block 313 and mass block 316 along the X-axis direction.
  • the driving block may further include a transmission beam 364 .
  • the transmission beam 364 and the transmission beam 363 are symmetrical with respect to the axis of symmetry x.
  • the transmission beam 364 can be connected between the elastic connecting piece 3303 and the elastic connecting piece 3309 .
  • the specific embodiment of the transmission beam 364 can refer to the specific embodiment of the transmission beam 363 .
  • FIG. 6 Observing a part of the mechanical structure layer 300 shown in FIG. 3B along the Z-direction, a schematic structure diagram shown in FIG. 6 can be obtained.
  • the principle of detecting the angular velocity around the Z-axis through the mass block 312 , the mass block 313 , the mass block 315 and the mass block 316 will be described below with reference to FIG. 3B and FIG. 6 .
  • the inertial sensor may include a detection electrode 233 and a detection electrode 236 .
  • the detection electrodes 233 and the detection electrodes 236 may be disposed on the substrate layer shown in FIG. 3 , or may be disposed on the mechanical structure layer 300 .
  • the detection electrode 233 and the detection electrode 236 may belong to the stator of the mechanical structure layer 300 .
  • the detection electrode 233 can be arranged opposite to the mass block 313 , and the detection electrode 236 can be arranged opposite to the mass block 316 .
  • the detection electrodes 233 and the proof mass 313 may be arranged along the Y axis.
  • the detection electrode 233 and the proof mass 313 can be arranged parallel to the XZ plane, so that the detection electrode 233 and the proof mass 313 can form a capacitor 3 .
  • the detection electrodes 236 and the proof mass 316 may be arranged along the Y axis.
  • the detection electrode 236 and the proof mass 316 can be arranged parallel to the XZ plane, so that the detection electrode 236 and the proof mass 316 can form a capacitor 6 .
  • the proof-mass 312, 315 can be driven to have a displacement component along the X-axis direction.
  • the mass block 312 and the mass block 315 may be subjected to a Coriolis force along the Y-axis.
  • Proof 312 and proof mass 315 have a tendency to move along the Y axis.
  • the mass block 313 can have a displacement component along the Y-axis direction under the traction of the mass block 312, so the distance between the mass block 313 and the detection electrode 233 can be changed , the capacitance of the capacitor 3 formed by the proof mass 313 and the detection electrode 233 can vary.
  • the capacitance variation of the capacitance 3 formed by the mass 313 and the detection electrode 233 may correspond to the displacement component of the mass 313 in the Y-axis direction.
  • the mass block 316 can have a displacement component along the Y-axis direction under the traction of the mass block 315, so the distance between the mass block 316 and the detection electrode 236 can be changed , the capacitance of the capacitor 6 formed by the proof mass 316 and the detection electrode 236 can vary.
  • the capacitance variation of the capacitor 6 formed by the mass block 316 and the detection electrode 236 may correspond to the displacement component of the mass block 316 in the Y-axis direction.
  • the driving direction of the mass block 312 is X-
  • the driving direction of the mass block 315 is X+.
  • the masses 312 and 313 can surround the anchor region 342 and have an angular velocity component that rotates around the Z axis
  • the masses 315 and 316 can surround the anchor region 342 and have an angular velocity component that rotates around the Z axis.
  • proof-mass 312 and proof-mass 313 may have a displacement component along the Z-direction
  • proof-mass 315 and proof-mass 316 may have a displacement component along the Z+ direction.
  • the mass block 313 may have a tendency to approach the detection electrode 233
  • the mass block 316 may have a tendency to move away from the detection electrode 236 .
  • the transmission beam 363 can provide a balance force in the X direction, so as to reduce the displacement of the mass block 313 and the mass block 316 in the X direction.
  • the transmission beam 363 can also provide torsion support for the masses 312 and 313 to rotate around the Z axis.
  • the other end of the mass block 313 and the other end of the mass block 316 can be connected by a transmission beam 364 .
  • the transmission beam 364 can provide the balance force in the X direction and the torsion support for the mass block 313 and the mass block 316 to rotate around the Z axis.
  • the detection results of the detection electrode 233 and the detection electrode 236 include common-mode noise, the detection results output by the detection electrode 233 and the detection electrode 236 can be relatively effectively removed. Zero drift performance, etc.
  • Mechanical decoupling can mean that component A and component B are laid out independently, and the movement of component A (movement may include movement driven by the chip and rotation under external force) will not affect the movement of component A.
  • Principled decoupling can mean that component A and component B do not belong to independent layouts, component A detects capacitance changes in the direction of axis a, component B does not move on axis a, or the amount of movement of component B on axis a is negligible. That is, the resonance of component B will not affect the detection of component A.
  • the principle structure is to avoid or reduce the gap between two components from the perspective of detection principle.
  • Differential decoupling may mean that component A and component B are symmetrical, and the motion modes of component A and component B belong to differential motion. Through the differential movement of the symmetrical structure, it can be beneficial to eliminate the common mode effect to reduce the effect between part A and part B. Differential decoupling relies strongly on symmetry and places relatively high processing requirements on inertial sensors.
  • the proof mass 311 can have a displacement component along the Y-axis direction under the action of the driving mass, and the detection direction is the Z-axis direction, so the decoupling mode of the proof mass 311 and the driving mass can be decoupling in principle.
  • the proof mass 312 can have a displacement component along the X-axis direction under the action of the driving mass, and the detection direction is the Z-axis direction, so the decoupling mode of the proof mass 312 and the driving mass can be decoupling in principle.
  • the mass block 313 and the driving block can be regarded as independent settings, that is, the mass block 313 can be approximately considered not to move under the action of the driving block, so the decoupling mode of the mass block 313 and the driving block can be mechanical decoupling.
  • the movement of the mass block 311 and the mass block 312 do not interfere with each other, so the decoupling mode of the mass block 311 and the mass block 312 can be mechanical decoupling.
  • the movement of the mass block 311 and the mass block 313 do not interfere with each other, so the decoupling mode of the mass block 311 and the mass block 313 can be mechanical decoupling.
  • the detection direction of the mass block 312 is the Z-axis direction, and the mass block 313 may not move in the Z-axis direction. Therefore, from this point of view, the solution of the mass block 312 and the mass block 313 Coupling modes can be mechanically decoupled.
  • the decoupling mode of the mass block 313 and the mass block 312 can be a principled decoupling.
  • Table 1 shows the decoupling modes of the mechanical structure layer 300 shown in FIG. 3A.
  • the mechanical structure layer provided by the embodiment of the present application can reduce the application of the differential decoupling mode, which is beneficial to reduce the machining accuracy requirements of the inertial sensor, and is also beneficial to improve the detection accuracy of the inertial sensor. Since the inertial sensor can be driven coaxially, it is beneficial to reduce the number of driving blocks in the inertial sensor, improve the integration of the inertial sensor, and further reduce the size of the inertial sensor.
  • FIG. 7A is a perspective view of another mechanical structure layer 300 provided by the embodiment of the present application. Looking at the mechanical structure layer 300 along the Z-direction shown in FIG. 7A, a plan view shown in FIG. 7B can be obtained.
  • FIG. 7C is a schematic diagram of movement of movers of the mechanical structure layer 300 shown in FIG. 7B when the mechanical structure layer 300 does not rotate.
  • FIG. 7A , FIG. 7B , and FIG. 7C it is assumed that there is an XYZ coordinate system, and the X-axis, Y-axis, and Z-axis are orthogonal to each other.
  • the mechanical structure layer 300 may be arranged parallel to the XY plane.
  • the mechanical structure layer 300 may include: an anchor region 341, an anchor region 342, an anchor region 343, a mass block 311, a mass Block 312, mass block 313, mass block 314, mass block 315, mass block 316, support beam 3201, support beam 3202, support beam 3203, support beam 3204, support beam 3205, support beam 3206, support beam 3207, support beam 3208 , support beam 3209, support beam 3210, elastic connector 3301, elastic connector 3302, elastic connector 3303, elastic connector 3304, elastic connector 3305, elastic connector 3306, elastic connector 3307, elastic connector 3308, elastic Connecting piece 3309 , elastic connecting piece 3310 , transmission beam 361 , transmission beam 362 , transmission beam 363 , transmission beam 364 .
  • the mass block 311, mass block 312, mass block 313, mass block 314, mass block 315, and mass block 316 of the mechanical structure layer 300 can be respectively connected with the detection electrode 231, detection electrode 232, detection electrode 233, detection electrode 234,
  • the detection electrode 235 and the detection electrode 236 form capacitance 1, capacitance 2, capacitance 3, capacitance 4, capacitance 5, and capacitance 6, so that the angular velocity around the X axis can be detected through capacitance 1 and capacitance 4, and the angular velocity around the Y axis can be detected through capacitance 2 and capacitance 5.
  • the angular velocity around the Z axis is detected by capacitor 3 and capacitor 6.
  • the mechanical structure layer 300 may further include an anchor region 344 and a driving block 381 .
  • the anchor region 344 may belong to the stator of the mechanical structure layer 300 .
  • the drive block 381 may belong to movers of the mechanical structure layer 300 .
  • the driving mass 381 is movable along the X-axis relative to the anchor area 344 .
  • the mechanical structure layer 300 may further include fixed comb teeth 39291 and movable comb teeth 396 .
  • the fixed comb teeth 39291 can be fixed on the anchor area 344 .
  • the movable comb teeth can be fixed on the driving block 381 .
  • the fixed comb teeth 39291 and the movable comb teeth 396 can be arranged at intervals.
  • the fixed comb teeth may belong to the stator of the mechanical structure layer 300
  • the movable comb teeth may belong to the mover of the mechanical structure layer 300
  • the fixed comb teeth may include multiple fixed teeth
  • the movable comb teeth may include multiple movable teeth.
  • the intersecting interval between fixed comb teeth and movable comb teeth can mean that there is one movable tooth between two adjacent fixed teeth, one fixed tooth between two adjacent movable teeth, and one movable tooth between adjacent fixed teeth and movable teeth. Interval setting.
  • the interaction force between the movable comb 396 and the fixed comb 39291 can drive the movable comb 396 to move along the X-axis relative to the fixed comb 39291, thereby making the driving block 381 relatively Move along the X axis in the anchor region 344 .
  • the displacement of the driving block 381 in the Y-axis direction and the Z-axis direction may be relatively small or even negligible.
  • drive mass 381 may be attached to the substrate layer or anchor region 34, constrained to move along the X-axis.
  • the mechanical structure layer 300 may also include an anchor region 345 and a drive block 382 .
  • Anchor region 345 and anchor region 344 may be symmetrical with respect to symmetrical beam 371 or symmetrical beam 372 .
  • the driving block 381 and the driving block 382 may be symmetrical with respect to the symmetrical beam 371 or the symmetrical beam 372 .
  • Drive mass 382 is movable along the X-axis relative to anchor region 345 .
  • the moving direction of the driving block 382 and the moving direction of the driving block 381 can be reversed.
  • the specific embodiment of the driving block 382 can refer to the driving block 381
  • the specific embodiment of the anchor area 345 can refer to the anchor area 344 .
  • the mechanical structural layer 300 may also include symmetrical beams 373 .
  • Symmetry beam 373 may itself be symmetrical with respect to the axis of symmetry x shown in FIG. 3A .
  • the symmetrical beam 373 may be connected to a side of the driving block 381 away from the driving block 382 .
  • the symmetrical beam 373 may extend along the X-axis direction.
  • the drive block 381 itself may be symmetrical with respect to the symmetrical beam 373 .
  • the anchor region 344 itself may be symmetrical with respect to the symmetrical beam 373 .
  • An end of the symmetrical beam 373 away from the driving block 381 may be connected to the transmission beam 361 .
  • the transmission beam 361 may extend along the Y-axis direction. Therefore, the driving block 381 can drive the transmission beam 361 through the symmetrical beam 373, so that the transmission beam 361 has a displacement component along the X-axis direction.
  • Two ends of the transmission beam 361 are respectively connected with a support beam 3201 and a support beam 3205 .
  • the supporting beam 3201 and the supporting beam 3205 have a displacement component along the X-axis direction under the action of the transmission beam 361 .
  • the end of the support beam 3201 away from the transmission beam 361 is connected to the first end of the mass block 311 through the steering beam and the elastic connector 3302, and the first end of the mass block 311 can be driven to have a displacement component along the Y-axis direction.
  • an anchor region 341 and an elastic connector 3301 are provided on the side of the mass block 311 away from the mass block 314 and close to the first end of the mass block 311 .
  • the elastic connector 3301 is connected between the first end of the mass 311 and the anchor area 341 .
  • the elastic connecting member 3301 can provide a buffer space for the mass block 311 in the Y-axis direction.
  • the elastic connecting member 3301 can also provide support for the mass block 311 in the Z direction. That is to say, the rigidity of the elastic connecting member 3301 along the Z-axis can be relatively large, and the rigidity along the Y-axis can be relatively small.
  • the elastic connector 3301 can also provide a buffer space for the mass block 311 in the X-axis direction, and the displacement component of the mass block 311 in the X-axis direction has a large impact on the anchor area 341.
  • the traction force can be relatively small, which is beneficial to reduce the stress effect of the displacement component of the mass block 311 in the X-axis direction on the substrate layer.
  • the anchor area 341 is set at one end of the mass block 311, and is softly connected to the mass block 311 in at least one direction (that is, the elastic connector 3301 has elasticity in at least one direction), which can facilitate the adjustment of the mechanical structure layer
  • the interference modes of the mechanical structure layer 300 are beneficial to make the effective modes of the mechanical structure layer 300 far away from the interference modes of the mechanical structure layer 300 .
  • the mechanical structural layer 300 may also include anchor regions 346 and elastic connectors 3311 .
  • the anchor region 346 and the anchor region 341 may be symmetrical with respect to the symmetrical beam 371 .
  • the elastic connecting piece 3311 and the elastic connecting piece 3301 may be symmetrical with respect to the symmetrical beam 371 .
  • the anchor region 346 and the elastic connector 3301 are disposed on a side of the mass 311 away from the mass 314 and close to the second end of the mass 311 .
  • the elastic connecting piece 3311 is connected between the second end of the mass 314 and the anchor region 346 .
  • the specific embodiment of the anchor region 346 can refer to the anchor region 341.
  • the end of the support beam 3205 away from the transmission beam 361 is connected to the first end of the mass block 314 through the steering beam and the elastic connector 3306, and the first end of the mass block 314 can be driven so that the mass block 314 has a direction along the Y axis. displacement component.
  • the direction of the displacement component of the first end of the mass block 311 may be opposite to that of the displacement component of the first end of the mass block 314 .
  • an anchor region 343 and an elastic connector 3304 are provided on the side of the mass block 314 away from the mass block 311 and close to the first end of the mass block 314.
  • the elastic connecting piece 3304 is connected between the first end of the mass 314 and the anchor area 343 .
  • the elastic connecting part 3304 reference may be made to the specific embodiment of the elastic connecting part 3301.
  • Mechanical structural layer 300 may also include symmetrical beams 374 .
  • Symmetry beam 374 may itself be symmetrical about the axis of symmetry x shown in FIG. 3A .
  • the symmetrical beam 374 and the symmetrical beam 373 may be symmetrical with respect to the symmetrical beam 371 or the symmetrical beam 372 .
  • the symmetrical beam 374 may be connected to the side of the driving block 382 away from the driving block 381 .
  • the specific embodiment of the symmetrical beam 374 can refer to the symmetrical beam 371 .
  • the anchor region 345 itself may be symmetrical with respect to the symmetrical beam 374 .
  • the drive mass 382 itself may be symmetrical about the symmetrical beam 374 .
  • An end of the symmetrical beam 374 away from the driving block 382 may be connected to the transmission beam 362 . Therefore, the driving block 382 can drive the transmission beam 362 through the symmetrical beam 374, so that the driving beam 362 has a displacement component along the X-axis direction.
  • the displacement component of the transmission beam 362 may be opposite to the displacement component of the transmission beam 361 .
  • Two ends of the transmission beam 362 are respectively connected with a support beam 3204 and a support beam 3206 .
  • the supporting beam 3204 and the supporting beam 3206 may have a displacement component along the X-axis direction under the action of the transmission beam 362 .
  • the specific embodiment of the transmission beam 362 can refer to the transmission beam 361 .
  • the end of the support beam 3204 away from the transmission beam 362 is connected to the second end of the mass block 311 through the steering beam and the elastic connector 3305, and the second end of the mass block 311 can be driven to have a displacement component along the Y-axis direction.
  • the end of the supporting beam 3206 away from the transmission beam 362 is connected to the second end of the mass block 314 through the steering beam and the elastic connector 3307, and the second end of the mass block 314 can be driven to have a displacement component along the Y-axis direction.
  • the direction of the displacement component of the second end of the proof mass 311 may be opposite to the direction of the displacement component of the second end of the proof mass 314 .
  • the mechanical structural layer 300 may also include anchor regions 347 and elastic connectors 3312 .
  • the anchor region 347 and the anchor region 343 may be symmetrical with respect to the symmetrical beam 372 .
  • the elastic connector 3312 and the elastic connector 3304 may be symmetrical with respect to the symmetrical beam 372 .
  • Anchor region 347 and anchor region 346 may be symmetrical with respect to symmetrical beam 374 .
  • the elastic connecting piece 3312 and the elastic connecting piece 3311 may be symmetrical with respect to the symmetrical beam 374 .
  • the anchor region 347 and the elastic connector 3312 are disposed on a side of the mass 314 away from the mass 311 and close to the second end of the mass 314 .
  • the elastic connector 3312 is connected between the second end of the mass 314 and the anchor region 347 .
  • the elastic connector 3312 refer to the elastic connector 3311 or the elastic connector 3304 .
  • the specific embodiment of the anchor region 347 can refer to the anchor region 346 or the anchor region 343 .
  • FIG. 7C shows a schematic structural view of the mass 311 and the mass 314 moving along the Y axis and moving in opposite directions.
  • the dashed line in FIG. 7C shows the positions of the mass block 311 and the mass block 314 before moving, and the solid line in FIG. 7C shows the positions of the mass block 311 and the mass block 314 after moving.
  • the mechanical structural layer 300 may include a plurality of support beams 3202 .
  • Plurality of support beams 3202 may be symmetrical with respect to symmetrical beam 373 .
  • a side of the driving block 381 close to the driving block 382 may be connected to the support beam 3202 .
  • One support beam 3202 can be connected with the end of the driving block 381 close to the mass block 311
  • the other support beam 3202 can be connected with the end of the driving block 381 close to the mass block 314 .
  • An end of a support beam 3202 away from the driving block 381 may be connected to an end of the mass block 312 close to the mass block 311 .
  • An end of another support beam 3202 away from the driving block 381 can be connected to an end of the mass block 312 close to the mass block 314.
  • the driving block 381 can be used to drive the mass block 312 through the supporting beam 3202, so that the mass block 312 has a displacement component along the X-axis direction.
  • the mechanical structural layer 300 may include a plurality of support beams 3207 .
  • Plurality of support beams 3207 may be symmetrical with respect to symmetrical beam 374 .
  • Number of support beams 3202 and number of support beams 3207 may be symmetrical with respect to symmetrical beam 372 .
  • a side of the driving block 382 close to the driving block 381 may be connected to the supporting beam 3207 .
  • a side of the support beam 3207 away from the driving block 382 may be connected to the mass block 315 .
  • the driving block 382 can be used to move the mass block 315 through the support beam 3207, so that the mass block 315 has a displacement component along the X-axis direction.
  • the displacement component of the proof mass 315 along the X-axis direction may be opposite to the displacement component of the proof mass 312 along the X-axis direction.
  • the displacement component of the support beam 3207 along the X-axis direction may be opposite to the displacement component of the support beam 3202 along the X-axis direction.
  • the specific embodiment of the support beam 3207 can refer to the specific embodiment of the support beam 3202 .
  • Fig. 7C shows a schematic structural diagram of proof mass 312 and proof mass 315 moving along the X-axis and in opposite directions.
  • the dashed line in FIG. 7C shows the positions of the mass block 312 and the mass block 315 before moving, and the solid line in FIG. 7C shows the positions of the mass block 312 and the mass block 315 after moving.
  • the mechanical structure layer 300 may also include an anchor region 348 .
  • the anchor region 348 itself may be symmetrical with respect to the symmetrical beam 373 .
  • Fixed comb teeth 392 are fixed on the anchor area 348 .
  • Movable comb teeth 397 are fixed on the mass block 313 .
  • the fixed combs 392 themselves may be symmetrical with respect to the symmetrical beam 373 .
  • the movable combs 397 themselves may be symmetrical with respect to the symmetrical beam 373 .
  • the fixed comb teeth 392 and the movable comb teeth 397 are arranged at intervals.
  • Detection electrodes are arranged on the fixed comb teeth 392 .
  • the movable comb teeth 397 and the detection electrodes can form a capacitance.
  • the angular velocity component of the proof mass 313 around the Z axis can be determined by detecting the capacitance variation of the capacitance formed by the movable comb 397 and the detection
  • the mechanical structure layer 300 may also include anchor regions 349 .
  • the anchor region 349 itself may be symmetrical with respect to the symmetrical beam 374 .
  • Anchor region 348 and anchor region 349 may be symmetrical with respect to symmetrical beam 371 or symmetrical beam 372 .
  • the detection electrodes on the proof mass 316 and the anchor area 349 can form a capacitance, and by detecting the capacitance variation of the capacitance, the angular velocity component of the proof mass 316 around the Z-axis can be determined.
  • the anchor region 349 refer to the anchor region 348
  • the specific embodiment of the proof mass 316 refer to the proof mass 313 .
  • FIG. 8A shows a schematic structural diagram of the mechanical structure layer 300 detecting angular velocity around the X-axis. Observing the mechanical structure layer 300 shown in FIG. 8A along the X+ direction, a schematic structure diagram shown in FIG. 8B can be obtained. The principle of detecting the angular velocity around the X-axis through the mass block 311 and the mass block 314 will be described below with reference to FIG. 8A and FIG. 8B .
  • the mass block 311 and the mass block 314 have a displacement component along the Z-axis direction, and the displacement components of the mass block 311 and the mass block 314 along the Z-axis direction are in opposite directions .
  • proof-mass 311 may have a displacement component along the Z+ direction
  • proof-mass 314 may have a displacement component along the Z-direction.
  • the mass block 311 tends to be far away from the detection electrode 231 , and the mass block 314 tends to approach the detection electrode 234 .
  • the mass block 311 can be connected to the anchor region 341 through the elastic connector 3301, the other end of the mass block 311 can be connected to the anchor region 346 through the elastic connector 3311, and the side of the mass block 311 close to the anchor region 341 and the anchor region 346 is in the
  • the displacement in the Z-axis direction is relatively small, and the displacement in the Z-axis direction on the side of the proof mass 311 away from the anchor region 341 and the anchor region 346 is relatively large.
  • the proof mass 311 may be inclined toward the first direction relative to the Y axis.
  • the mass 314 can be tilted toward a second direction relative to the Y axis, and the first direction and the second direction are opposite.
  • the masses 311 and 314 may have angular velocity components rotating around the X axis, and the directions of the angular velocity components rotating around the X axis of the masses 311 and 314 may be opposite.
  • the elastic connector 3301 and the elastic connector 3311 can provide torsional support for the mass block 311 to rotate around the Y axis.
  • the elastic connector 3304 and the elastic connector 3312 can provide torsional support for the mass block 314 to rotate around the Y axis.
  • the transmission beam 361 Under the traction of the mass block 311 and the mass block 314 , the transmission beam 361 has a tendency to rotate around the symmetrical beam 371 .
  • the elastic connecting piece 3302 can be connected between the transmission beam 361 and the mass block 311 . Since the rigidity of the transmission beam 361 may be greater than that of the elastic connecting member 3302 , the elastic connecting member 3302 may be relatively more elastic in the Z-axis direction, so as to provide a buffer space for the mass block 311 in the Z-axis direction.
  • the inclination angle of the elastic connecting member 3302 relative to the Y axis may be greater than the inclination angle of the transmission beam 361 relative to the Y axis.
  • the inclination angle of the proof mass 311 relative to the Y axis may be larger than the inclination angle of the transmission beam 361 relative to the Y axis. That is to say, the rotation angle of the transmission beam 361 around the X-axis is smaller than the rotation angle of the proof mass 311 around the X-axis.
  • the width of the elastic connecting member 3302 in the Y-axis direction may be smaller than the width of the proof mass 311 in the Y-axis direction.
  • the inclination angles of the elastic connecting member 3302 and the elastic connecting member 3306 relative to the Y axis may be greater than the inclination angle of the proof mass 311 relative to the Y axis.
  • the inclination angle of the elastic connecting member 3306 relative to the Y axis may be greater than the inclination angle of the transmission beam 361 relative to the Y axis.
  • the elastic connector 3306 refer to the elastic connector 3302 .
  • the transmission beam 362 and the elastic connector connected to the transmission beam 362 refer to the transmission beam 361 and the elastic connector connected to the transmission beam 361 .
  • FIG. 9A shows a schematic structural diagram of the mechanical structure layer 300 detecting the angular velocity around the Y axis. Observing the mechanical structure layer 300 shown in FIG. 9A along the Y+ direction, a schematic structure diagram shown in FIG. 9B can be obtained. The principle of detecting the angular velocity around the Y axis through the mass block 312 and the mass block 315 will be described below with reference to FIG. 9A and FIG. 9B .
  • the mass block 312 and the mass block 315 have a displacement component along the Z axis direction, and the displacement components of the mass block 312 and the mass block 315 along the Z axis direction are in opposite directions .
  • proof-mass 312 may have a displacement component along the Z+ direction
  • proof-mass 315 may have a displacement component along the Z-direction.
  • the mass 312 tends to be far away from the detection electrode 232
  • the mass 315 tends to be close to the detection electrode 235 .
  • the proof mass 312 may be inclined toward the first direction relative to the X axis.
  • the proof mass 315 may be tilted toward a second direction relative to the X axis, and the first direction and the second direction are opposite. That is to say, the mass 312 and the mass 315 may have an angular velocity component rotating around the Y axis. The directions of the angular velocity components of the rotation of the proof mass 312 and the proof mass 315 around the Y axis may be opposite.
  • the elastic connecting piece 3303 can be connected between the transmission beam 363 and the mass block 312 .
  • the elastic connector 3303 can expand and contract in the Z-axis direction to reduce the displacement component of the transmission beam 363 along the Z-axis direction, provide the mass block 312 with a buffer space in the Z-axis direction and torsional stiffness around the Y-axis direction, and reduce the mass block 312 And the impact of the mass block 315 on the transmission beam 363.
  • the transmission beam 363 can further absorb part of the torque rotating around the Y axis, reducing the displacement of the mass block 313 and the mass block 316 along the Z axis.
  • the rigidity of the transmission beam 363 may be greater than that of the elastic connector 3303, and the inclination angle of the elastic connector 3303 relative to the X-axis may be greater than the inclination angle of the transmission beam 363 relative to the X-axis.
  • the inclination angle of the proof mass 312 relative to the X-axis may be greater than the inclination angle of the transmission beam 363 relative to the X-axis. That is to say, the rotation angle of the transmission beam 363 around the Y axis is smaller than the rotation angle of the proof mass 312 around the Y axis.
  • the width of the elastic connecting member 3303 in the X-axis direction may be smaller than the width of the proof mass 312 in the X-axis direction.
  • the inclination angle of the elastic connecting member 3303 relative to the X-axis may be greater than the inclination angle of the proof mass 312 relative to the X-axis.
  • the inclination angle of the elastic connecting member 3309 relative to the X-axis can be greater than the inclination angle of the transmission beam 363 relative to the X-axis.
  • the elastic connector 3309 refer to the elastic connector 3303 .
  • the transmission beam 364 and the elastic connector connected to the transmission beam 364 refer to the transmission beam 363 and the elastic connector connected to the transmission beam 363 .
  • FIG. 10A shows a schematic structural diagram of the mechanical structure layer 300 detecting angular velocity around the Y-axis. Observing the mechanical structure layer 300 shown in FIG. 10A along the Y+ direction, a schematic structure diagram shown in FIG. 10B can be obtained. 10A and 10B below illustrate the principle of detecting the angular velocity around the Z-axis through the mass block 313 and the mass block 316 .
  • the mass block 312 and the mass block 315 have a displacement component along the Y axis direction, and the displacement components of the mass block 312 and the mass block 315 along the Y axis direction are in opposite directions , so that the mass block 313 and the mass block 316 have displacement components along the Y-axis direction, and the displacement components of the mass block 313 and the mass block 316 along the Y-axis direction are in opposite directions.
  • proof-mass 313 may have a displacement component along the Y+ direction
  • proof-mass 316 may have a displacement component along the Y-direction.
  • the mass block 313 has a tendency to be far away from the detection electrode, and the mass block 316 has a tendency to be close to the detection electrode.
  • the driving block 381 may not move in the Y-axis direction, and the displacement of the side of the mass block 312 close to the driving block 381 in the Y-axis direction is relatively small.
  • the displacement of the side of the mass block 312 away from the driving block 381 in the Y-axis direction is relatively large.
  • the proof mass 312 may be inclined toward the first direction relative to the X axis.
  • the proof mass 315 may be tilted toward a second direction relative to the X axis, and the first direction and the second direction are opposite.
  • the masses 312 and 315 may have angular velocity components rotating around the Z axis, and the directions of the angular velocity components of the masses 312 and 315 rotating around the Z axis may be opposite.
  • the transmission beam 363 can provide torsion support for the mass block 313 and the mass block 316 to rotate around the Z axis.
  • the mass block 312 extends from one end of the mass block 313 to the other end of the mass block 313 .
  • the elastic connecting piece 3303 can be connected between one end of the mass block 312 and one end of the mass block 313 .
  • the elastic connecting piece 3308 can be connected between the other end of the mass block 312 and the other end of the mass block 313 .
  • the elastic connector 3303 and the elastic connector 3308 can expand and contract in the Y-axis direction, and the elastic forces of the elastic connector 3303 and the elastic connector 3308 can cancel each other out, so that the mass block 313 can follow the mass block 312 along the Y-axis and toward the first Displacement component in one direction.
  • the elastic connecting piece 3303 and the elastic connecting piece 3308 can be elastic in the Y-axis direction, so as to reduce the displacement component of the mass block 313 along the Y-axis direction, and provide a buffer space for the mass block 312 in the Y-axis direction.
  • the displacement component of the proof mass 312 along the Y axis may be greater than the displacement component of the proof mass 313 along the Y axis.
  • the displacement component of proof-mass 315 along the Y-axis may be greater than the displacement component of proof-mass 316 along the Y-axis.
  • the width of the support beam 3203 in the X-axis direction may be smaller than the width of the proof mass 312 in the X-axis direction.
  • the inclination angle of the support beam 3202 relative to the X-axis may be greater than the inclination angle of the proof mass 312 relative to the X-axis.
  • the width of the support beam 3202 in the X-axis direction may be smaller than half of the width of the transmission beam 363 in the X-axis direction.
  • the inclination angle of the support beam 3202 relative to the X-axis may be greater than the inclination angle of the transmission beam 363 relative to the X-axis.
  • the embodiment of the present application adjusts the natural frequency mode of the inertial sensor through, for example, stiffness design, decoupling mode design, etc., so that the effective mode of the inertial sensor can be as far away from the interference mode of the inertial sensor as possible, and the filtering effect of the inertial sensor is improved. Reduce the noise level of the inertial sensor. Further, by adjusting the detection frequency and driving frequency of the inertial sensor, it is beneficial to improve the sensitivity of the inertial sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)

Abstract

一种惯性传感器(20)和电子设备(100)。惯性传感器(20)的用于检测Y轴的质量块(312,315)被驱动以在X轴方向上具有位移分量。在惯性传感器(20)受到绕Z轴的角速度分量时,检测Y轴的质量块(312,315)可以牵引检测Z轴的质量块(313,316),以使得检测Z轴的质量块(313,316)可以在Y轴方向上具有位移分量。惯性传感器(20)在Y轴检测和Z轴检测上可以实现原理性解耦,有利于兼顾惯性传感器(20)的尺寸和检测精度。

Description

惯性传感器和电子设备
本申请要求于2021年08月31日提交中国专利局、申请号为202111016671.3、申请名称为“惯性传感器和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及惯性传感领域和电子设备领域,并且更具体地,涉及惯性传感器、电子设备。
背景技术
电子设备可以通过惯性传感器(又可以被称为惯性测量单元(inertial measurement unit,IMU)),检测电子设备的倾斜角度等运动状态。惯性传感器在例如拍照防抖、导航、游戏定向、旋转屏幕等应用场景中起重要作用。
惯性传感器可以用于检测电子设备相对于多个旋对称梁的角速度。如果惯性传感器相对于旋对称梁A的运动,会影响绕旋对称梁B的角速度的检测,则惯性传感器的检测结果可能不准确。如果在惯性传感器中,检测绕旋对称梁A的角速度的部件,与检测绕旋对称梁B的角速度的部件独立设置、互不干涉,则可能增大惯性传感器的整体尺寸。如何兼顾惯性传感器的尺寸和检测精度,是需要解决的问题。
发明内容
本申请提供一种惯性传感器和电子设备,目的是提供一种结构相对小巧、检测精度相对较高的惯性传感器,有利于提高惯性传感器在电子设备内的应用性能。
第一方面,提供了一种惯性传感器,包括:
第一质量块和第一检测电极,所述第一质量块能够相对于所述第一检测电极移动,所述第一质量块和所述第一检测电极沿第一方向排列以形成第一电容,所述第一电容用于检测绕第二方向的角速度;
第二质量块和第二检测电极,所述第二质量块能够相对于所述第二检测电极移动,所述第二质量块和所述第二检测电极沿所述第二方向排列以形成第二电容,所述第二电容用于检测绕所述第一方向的角速度;
第一连接件,所述第一连接件连接在所述第一质量块的第一端与所述第二质量块的第一端之间;
所述第一质量块被驱动以在第三方向具有位移分量,所述第一方向、所述第二方向、所述第三方向相互正交;
当所述第一质量块具有绕所述第一方向的角速度分量时,所述第一质量块具有沿所述第二方向的位移分量,所述第一质量块用于通过所述第一连接件牵引所述第二质量块沿所 述第二方向移动,所述第二质量块的沿所述第二方向的位移分量与所述第二电容的容值变化量对应;
当所述第一质量块具有绕所述第二方向的角速度分量时,所述第一质量块具有沿所述第一方向的位移分量,所述第一质量块的沿所述第一方向的位移分量与所述第一电容的容值变化量对应。
本申请通过第一质量块沿第二方向牵引第二质量块,以实现第二质量块针对第一方向的角速度的检测。当第一质量块检测第二方向的角速度时,第一质量块在第一方向和第三方向具有位移分量,第一质量块在第二方向上可以认为是静止的;当第二质量块检测第一方向的角速度时,第二质量块在第二方向上具有位移分量。根据检测原理,当第一质量块仅具有绕第二方向的角速度分量时,第一质量块可以不具有沿第二方向的位移分量。因此第一质量块检测第二方向的角速度对第二质量块检测第一方向的角速度基本不构成影响,有利于减少差分解耦在惯性传感器上的应用,有利于提高惯性传感器的检测精度。并且,本申请提供的惯性传感器可以通过一个驱动源为第一质量块、第二质量块提供动力,有利于缩小惯性传感器的检测精度。
第二质量块在仅具有绕第二方向的角速度分量时,第一质量块在第二方向上的位移分量越小,第一质量块对第二质量块在第二方向上的牵引力就越小,因此越有利于减少第一质量块和第二质量块的耦合度,减少第一质量块和第二质量块之间的相互影响。
结合第一方面,在第一方面的某些实现方式中,所述第一连接件包括第一弹性连接件,所述第一弹性连接件用于为所述第一质量块提供所述第一方向和所述第三方向的缓冲空间,以使得所述第二质量块的第一端在所述第一方向上的位移分量小于所述第一质量块的第一端在所述第一方向上的位移分量,且所述第二质量块的第一端在所述第三方向上的位移分量小于所述第一质量块的第一端在所述第三方向上的位移分量。
通过第一弹性连接件,可以在第一质量块和第二质量块之间起缓冲作用。当第一质量块检测第二方向的角速度时,第一质量块在第一方向上的位移可能相对较大。第一弹性连接件有利于减小第二质量块被第一质量块牵引后在第一方向上的位移。当第一质量块沿第三方向往复移动时,第一质量块在第三方向上的位移可能相对较大。第一弹性连接件有利于减小第二质量块被第一质量块的牵引后在第三方向上的位移。第一弹性连接件可以有利于减少第一质量块在第二方向和第三方向上的位移分量对第二质量块的影响。
第一弹性连接件在第二方向的刚度例如可以小于第一弹性连接件在第一方向上的刚度。第一弹性连接件在第三方向的刚度例如可以小于第一弹性连接件在第一方向上的刚度。
结合第一方面,在第一方面的某些实现方式中,所述第一连接件还包括:
第一支撑梁,所述第一支撑梁连接在所述第一弹性连接件和所述第二质量块之间。
由于第一支撑梁连接在第一弹性连接件和第二质量块之间,有利于进一步吸收第一弹性连接件无法吸收的位移分量,有利于减少第二质量块被第一质量块牵引后在第一方向和/或第三方向上的位移。
结合第一方面,在第一方面的某些实现方式中,所述第一连接件还包括:
第一传动梁,所述第一传动梁沿所述第三方向延伸,所述第一传动梁的一端连接在所述第一弹性连接件和所述第二质量块之间,当所述第一质量块具有绕所述第一方向的角速度分量时,所述第一传动梁能够绕所述第一方向旋转。
也就是说,当所述第一质量块具有绕所述第一方向的角速度分量时,所述第一传动梁可以具有绕所述第一方向的旋转角。
第一传动梁的一部分的位置相对固定,第一传动梁的可变形量相对较少。当第一质量块在第一方向上发生位移时,第一质量块有牵引第二质量块沿第一方向移动的趋势。第二质量块可以被第一传动梁的第二部分反向牵引,有利于进一步减少第二质量块被第一质量块牵引后在第一方向上的位移。
结合第一方面,在第一方面的某些实现方式中,当所述第一质量块具有绕所述第二方向的角速度分量时,所述第一传动梁绕所述第二方向的旋转角小于所述第一质量块绕所述第二方向的旋转角。
第一传动梁连接在第一质量块和第二质量块之间,第一传动梁绕所述第二方向的旋转角相对较小,有利于减少第二质量块的变形量。
在一个实施例中,第一传动梁的长度可以相对较长。例如,第一传动梁在第三方向上的长度的一半可以大于第二质量块在第三方向上的长度。
结合第一方面,在第一方面的某些实现方式中,所述第一质量块从所述第二质量块的第一端延伸至所述第二质量块的第二端,所述惯性传感器还包括:
第二连接件,所述第二连接件连接在所述第一质量块的第二端和所述第二质量块的第二端之间,所述第二连接件与所述第一连接件相对于所述第二质量块对称。
第一质量块可以从第二质量块的两端牵引第二质量块,且第二质量块两端的连接件也对称,有利于提高第二质量块在第一方向上的位移的对称性,进而有利于提高惯性传感器的检测精度。
结合第一方面,在第一方面的某些实现方式中,所述惯性传感器还包括:
驱动电极和驱动块,所述驱动电极和所述驱动块形成的电容用于驱动所述驱动块相对于所述驱动电极沿所述第三方向往复移动;
第二支撑梁,所述第二支撑梁连接在所述驱动块与所述第一质量块之间,所述驱动块用于通过所述第二支撑梁驱动所述第一质量块,以使所述第一质量块在所述第三方向具有位移分量。
驱动块可以从远离第二质量块的一侧驱动第一质量块,有利于减少驱动块在牵引第一质量块时,驱动块对第二质量块的运动产生的影响,进而有利于提高惯性传感器的检测精度。
结合第一方面,在第一方面的某些实现方式中,所述惯性传感器还包括:
第三质量块和第三检测电极,所述第三质量块能够相对于所述第三检测电极移动,所述第三质量块和所述第三检测电极沿所述第一方向排列以形成第三电容,所述第三电容用于检测绕所述第三方向的角速度,所述第三质量块被驱动以在所述第二方向具有位移分量,当所述第三质量块具有绕所述第三方向的角速度分量时,所述第三质量块具有沿所述第一方向的位移分量,所述第三质量块的沿所述第一方向的位移分量与所述第三电容的容值变化量对应。
由于第三质量块沿第二方向往复移动,且第三质量块与第三检测电极沿第一方向排列,因此第三质量块的运动和检测对第一质量块和第二质量块的影响相对较小,有利于使惯性传感器在能够检测三轴角速度的同时具有相对较高的精度。
结合第一方面,在第一方面的某些实现方式中,所述第一质量块被驱动块驱动,所述驱动块被配置沿所述第三方向往复移动,所述第三质量块和所述驱动块之间连接有转向梁,所述转向梁的靠近所述驱动块的一端用于沿所述第三方向往复移动,所述转向梁的靠近所述第三质量块的一端用于沿所述第二方向往复移动,以使所述第三质量块具有沿所述第二方向的位移分量。
第一质量块和第三质量块通过相同的驱动块驱动,有利于减少惯性传感器内的器件数量,有利于提高第一质量块、第二质量块和第三质量块的耦合度,有利于提高惯性传感器的检测精度。
结合第一方面,在第一方面的某些实现方式中,所述惯性传感器还包括:
第二弹性连接件,所述第二弹性连接件连接在所述驱动块和所述第一质量块之间,用于为所述第三质量块提供所述第一方向的缓冲空间。
当第三质量块在检测第三方向的角速度时,第三质量块可以在第一方向上发生位移。第二弹性连接件件可以有利于吸收第一方向上的位移分量,进而有利于减少第三质量块对驱动块影响。
第二弹性连接件在第二方向的刚度例如可以大于第二弹性连接件在第一方向上的刚度。第二弹性连接件在第三方向的刚度例如可以大于第二弹性连接件在第一方向上的刚度。
结合第一方面,在第一方面的某些实现方式中,所述惯性传感器还包括:
第二传动梁,所述第二传动梁连接在所述第二弹性连接件和所述驱动块之间,所述第二传动梁能够绕所述第三方向旋转,在所述第三质量块绕所述第三方向旋转时,所述第二传动梁绕所述第三方向的旋转角小于所述第三质量块绕所述第三方向的旋转角。
第二传动梁可以连接在第三质量块和第三质量块的对称质量块之间。第二传动梁的可变形量相对较少。当第三质量块和第三质量块的对称质量块在第一方向上发生相反位移时,第二传动梁可以在第三质量块和第三质量块的对称质量块均作用反向牵引,有利于提高第三质量块和第三质量块的对称质量块在第一方向上的位移的对称性。
结合第一方面,在第一方面的某些实现方式中,所述惯性传感器还包括:
第三弹性连接件,所述第三弹性连接件与所述第三质量块相连,所述第三弹性连接件用于为所述第三质量块提供所述第一方向的支撑力,还用于为所述第三质量块提供所述第二方向的缓冲空间。
第三弹性连接件可以为第三质量块提供扭转力以及支撑力,有利于使第三质量块按照预设的方式运动。
第三弹性连接件在第二方向的刚度例如可以小于第三弹性连接件在第一方向上的刚度。第三弹性连接件在第三方向的刚度例如可以小于第三弹性连接件在第一方向上的刚度。第三弹性连接件在第二方向的刚度例如可以小于第三弹性连接件在第三方向上的刚度。
结合第一方面,在第一方面的某些实现方式中,所述第三弹性连接件位于所述第三质量块的远离所述第二质量块的一侧。
本申请实施例通过例如刚度设计、解耦模式设计等,调整惯性传感器的固有频率模态,以促使惯性传感器的有效模态可以尽可能远离惯性传感器的干扰模态,提高惯性传感器的滤波效果,降低惯性传感器的噪声水平。进一步地,通过调整惯性传感器的检测频率和驱动频率,有利于提高惯性传感器的灵敏度。
结合第一方面,在第一方面的某些实现方式中,所述惯性传感器包括机械结构层、覆盖层和衬底层,所述机械结构层位于所述覆盖层和所述衬底层之间,所述第一质量块、所述第二质量块设置在所述机械结构层,所述第一检测电极设置在所述衬底层,所述第二检测电极设置在所述衬底层或所述机械结构层。
在一个实施例中,上述第三质量块可以设置在机械结构层,第三检测电极可以设置在衬底层。
本申请提供的方案可以应用于微电子机械系统(micro electro mechanical system,MEMS)场景,有利于与电子设备内的其他器件兼容。
结合第一方面,在第一方面的某些实现方式中,所述惯性传感器相对于所述第二方向对称,且所述惯性传感器相对于所述第三方向对称。
为了抑制材料应变、加工偏差等因素带来的影响,机械结构层具有对称性。机械结构层具有对称性,有利于应用差分原理,去除材料应变、加工偏差等引起的共模噪声,有利于提高惯性传感器的例如温漂性能、零漂性能等。
第二方面,提供了一种电子设备,包括如上述第一方面中的任意一种实现方式中所述的惯性传感器。
附图说明
图1是本申请实施例提供的一种电子设备的示意性结构图。
图2是本申请实施例提供的一种惯性传感器的示意性结构图。
图3A是本申请实施例提供的一种惯性传感器的示意性结构图。
图3B是本申请实施例提供的一种惯性传感器的运动图。
图4是本申请实施例提供的一种惯性传感器检测绕X轴的角速度的原理图。
图5是本申请实施例提供的一种惯性传感器检测绕Y轴的角速度的原理图。
图6是本申请实施例提供的一种惯性传感器检测绕Z轴的角速度的原理图。
图7A是本申请实施例提供的另一种惯性传感器的立体图。
图7B是本申请实施例提供的另一种惯性传感器的示意性结构图。
图7C是本申请实施例提供的另一种惯性传感器的运动图。
图8A是本申请实施例提供的另一种惯性传感器检测绕X轴的角速度的立体图。
图8B是本申请实施例提供的另一种惯性传感器检测绕X轴的角速度的示意性结构图。
图9A是本申请实施例提供的另一种惯性传感器检测绕Y轴的角速度的立体图。
图9B是本申请实施例提供的另一种惯性传感器检测绕Y轴的角速度的示意性结构图。
图10A是本申请实施例提供的另一种惯性传感器检测绕Z轴的角速度的立体图。
图10B是本申请实施例提供的另一种惯性传感器检测绕Z轴的角速度的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例提供的一种电子设备100的示意性结构图。电子设备100例如可以是终端消费产品或3C电子产品(计算机类(computer)、通信类(communication)、消费类(consumer)电子产品),如手机、便携机、平板电脑、电子阅读器、笔记本电脑、数码相机、可穿戴设备、耳机、手表、手写笔等设备。图1所示实施例以电子设备100是手机为例进行说明。
电子设备100可以包括壳体11、显示屏12和电路板组件13。具体的,壳体11可以包括边框和后盖。边框可以位于显示屏12和后盖之间。边框可以环绕在显示屏12的外周且环绕在后盖的外周。显示屏12、边框、后盖之间形成的空腔可以用于收容电路板组件13。电路板组件13可以包括电路板,以及设置在电路板上的惯性传感器20。电路板例如可以是主板、小板等。
图2示出了惯性传感器20的两个实施例。在图2所示的实施例中,惯性传感器20可以是陀螺仪,或者可以集成加速度传感器和陀螺仪。在惯性传感器20集成加速度传感器和陀螺仪的实施例中,惯性传感器20可以是既能够实现加速度传感器的功能,又能够实现陀螺仪的功能的传感器。
陀螺仪传感器可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器确定电子设备100围绕三个轴(即,X,Y和Z轴)的角速度。陀螺仪传感器可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器还可以用于导航,体感游戏场景。
加速度传感器可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备100姿态,应用于横竖屏切换,计步器等应用。
如图2所示,惯性传感器20可以包括芯片21,以及一个或多个检测部件22。检测部件22的部分或整体又可以被称为微电子机械系统(micro electro mechanical system,MEMS)。芯片21可以与检测部件22电连接。在图2所示的实施例中,惯性传感器20可以包括单个检测部件22。芯片21可以通过该检测部件22获取与加速度和/或角速度相关的信号。在另一个实施例中,惯性传感器20可以包括两个检测部件22。芯片21可以通过一个检测部件22获取与加速度相关的信号,通过另一个检测部件22获取与角速度相关的信号。
下面结合图1、图2,阐述通过惯性传感器20获取电子设备100的运动状态的原理。
检测部件22可以包括衬底层、机械结构层和覆盖层。机械结构层可以密封连接在机械结构层和覆盖层之间。机械结构层还可以被称为MEMS层。机械结构层可以是检测部件22用于实现角速度检测的关键部件。
机械结构层可以包括动子、定子。定子可以固定于惯性传感器20内。定子例如可以被固定在衬底层上。定子和动子之间具有间隙,从而定子和动子可以形成电容。定子和动子形成的电容可以用于驱动动子相对于定子移动。动子例如可以悬浮于衬底层上,并能够相对于衬底层移动。在一个实施例中,动子和定子例如可以包括梳齿结构。梳齿状的动子可以是活动梳齿。梳齿状的定子可以是固定梳齿。
惯性传感器20还可以包括检测电极。检测电极可以固定于惯性传感器20内。动子和检测电极之间可以形成电容。动子和检测电极形成的电容可以用于检测电子设备100的运 动状态。在图2所示的实施例中,检测电极例如可以被固定在衬底层上。
现假设存在XYZ坐标系,X轴、Y轴、Z轴相互正交。以图2所示的实施例为例,检测电极和动子可以沿Z轴排列,且检测电极和动子均可以相对于XY面平行设置。芯片21可以向检测部件22发出交流电信号,以驱动检测部件22的动子以预设频率,按照平移的方式,相对于定子沿X轴往复移动。该移动基本不会改变检测电极和动子在Z轴上的间距。检测电极和动子沿Z轴的间距可以对应检测电极和动子形成的电容的容值,因此检测电极和动子形成的电容的容值可以基本保持不变。
在电子设备100未发生任何运动(包括平移、转动等)的情况下,检测电极和动子形成的电容的容值可以基本保持不变。
当电子设备100发生运动时,例如,当电子设备在外力作用下具有绕Y轴旋转的角速度分量时,也就是说,当电子设备的旋转方向为Y轴方向时,动子也会有绕Y轴旋转的趋势,并承受额外的作用力。该作用力可以被称为科氏力。该作用力的方向(如Z轴方向)可以与动子的旋转方向(如Y轴方向)和动子的移动方向(如X轴方向)均正交。因此,该作用力可以改变检测电极和动子之间的间距,从而改变检测电极和动子形成的电容的容值。芯片21可以通过获取检测电极和动子形成的电容的容值变化量,以获取与电子设备100围绕Y轴旋转的角速度ω。
根据容值变化量ΔC,可以确定检测电极和动子之间的间距变化量y。容值变化量ΔC和间距变化量y例如可以满足以下公式:
Figure PCTCN2022111629-appb-000001
根据动子的刚度k和间距变化量y,可以确定动子承受的柯氏力F。柯氏力F、刚度k和间距变化量y例如可以满足以下公式:
F=k·y。
根据柯氏力F、动子质量m、动子往复移动的速率v,可以确定动子的角速度ω。柯氏力F、动子质量m、动子往复移动的速率v和角速度ω例如可以满足以下公式:
Figure PCTCN2022111629-appb-000002
在电子设备100实际运动时,电子设备100可以绕X轴、Y轴、Z轴三轴旋转。惯性传感器可以参照上述原理,分别获取绕X轴、Y轴、Z轴的角速度。
在一个示例中,惯性传感器可以包括相互独立的三个检测系统,这三个检测系统可以独立驱动,且分别用于检测绕X轴、Y轴、Z轴的角速度。然而这使得惯性传感器的占用空间相对较大。
在另一个示例中,惯性传感器可以包括检测系统A。通过结构设计,检测系统A可以用于检测方向A的角速度,还可以用于检测方向B的角速度,以实现方向A和方向B的检测耦合。然而,如果在检测系统A检测绕方向A的角速度时,检测系统A的运动会影响绕方向B的角速度的检测,则可能导致惯性传感器的检测精度较差。
为确保惯性传感器的检测精度,惯性传感器的加工精度同样相对较高。
本申请实施例针对上述问题,提供一系列技术方案,目的是使惯性传感器可以满足多方面要求,有利于提高惯性传感器在电子设备内的应用性能。例如,本申请实施例提供的 惯性传感器可以具有尺寸小巧、检测精度优良、加工难度较低等特性。
图3A是本申请实施例提供的一种机械结构层300的示意性结构图。图3B是图3A所示的机械结构层300在未发生旋转时机械结构层300的动子的运动示意图。为便于描述,如图3A、图3B所示,假设存在XYZ坐标系,XY面平行于图3A、图3B的纸面,Z轴垂直于图3A、图3B的纸面。X轴、Y轴、Z轴相互正交。机械结构层300可以相对于XY面平行设置。
机械结构层300可以包括质量块311、质量块312、质量块313。质量块311用于检测绕X轴的角速度。质量块312用于检测绕Y轴的角速度。质量块313用于检测绕Z轴的角速度。
机械结构层300还包括支撑梁3201。支撑梁3201被驱动以在X轴方向具有位移分量。在惯性传感器未受到外力作用时,支撑梁3201可以沿X轴往复移动。例如,机械结构层300还包括驱动块(图3A、图3B未示出),驱动块和支撑梁3201相连,从而驱动块可以用于驱动支撑梁3201沿X轴往复移动。
在本申请中,部件可以在X轴方向、Y轴方向、Z轴方向具有位移分量。部件沿X轴方向的位移分量可以是部件的位移在X轴的投影。部件沿Y轴方向的位移分量可以是部件的位移在Y轴的投影。部件沿Z轴方向的位移分量可以是部件的位移在Z轴的投影。部件的位移可以是部件在X轴方向的位移分量、在Y轴方向的位移分量和在Z轴方向的位移分量的矢量和。当部件仅在X轴具有位移分量时,部件可以沿X轴移动。当部件仅在Y轴具有位移分量时,部件可以沿Y轴移动。当部件仅在Z轴具有位移分量时,部件可以沿Z轴移动。
在一个实施例中,驱动块可以包括驱动件1和驱动件2。驱动件1可以属于定子。驱动件1和驱动件2可以形成电容。通过在驱动件1和驱动件2上配置交流信号,驱动件2可以相对于驱动件1沿X轴往复移动。支撑梁3201可以与驱动件2相连,支撑梁3201可以在驱动件2的驱动下往复移动。在其他实施例中,可以通过其他方式驱动支撑梁3201往复移动。
支撑梁3201的一端可以靠近质量块311设置。支撑梁3201在X轴方向的位移分量可以用于驱动质量块311沿Y轴移动。机械结构层300还包括转向梁351。转向梁351可以在支撑梁3201和质量块311之间传递平移驱动力,以使得质量块311在支撑梁3201的驱动下往复移动。并且,转向梁351还用于将来自支撑梁3201的沿X轴的平移驱动力转换为沿Y轴的平移驱动力,以使得质量块311在转向梁351的作用下在Y轴方向具有位移分量。在惯性传感器未受到外力作用时,质量块311可以沿Y轴往复移动。转向梁351例如可以连接在支撑梁3201和质量块311之间。在一个实施例中,转向梁351与X轴的夹角可以近似为45°,转向梁351与Y轴的夹角可以近似为45°。
机械结构层300还可以包括锚区341和弹性连接件3301。弹性连接件3301可以连接在锚区341和质量块311之间。
在本申请中,锚区可以属于定子。锚区例如可以固定于图2所示的衬底层上。在本申请中,与支撑梁相比,弹性连接件的刚度可以相对较小。
弹性连接件3301可以用于支撑质量块311,以使得质量块311悬浮于图2所示的衬底层和覆盖层之间。弹性连接件3301可以用于为质量块311提供沿Z轴的悬浮支撑,以 使得质量块311悬浮于图2所示的衬底层和覆盖层之间。也就是说,弹性连接件3301可以在Z轴方向上的刚度可以相对较大。弹性连接件3301还可以用于在质量块311和锚区34之间提供在Y轴方向上的缓冲空间。也就是说,弹性连接件3301可以在Y轴方向上的刚度可以相对较小,或者,弹性连接件3301可以在Y轴方向上具有弹性。
图3B示出了质量块311在支撑梁3201的作用下沿Y轴移动的示意性结构图。图3B中虚线示出了质量块311移动前的位置,图3B中实线示出了质量块311移动后的位置。
为便于质量块311的移动,机械结构层300还可以包括弹性连接件3302。弹性连接件3302在X轴方向和Y轴方向上的刚度可以相对较小或具有弹性,以有利于支撑梁3201和质量块311按照预设方向相对移动。例如,弹性连接件3302可以用于吸收X轴的位移,减少质量块311在X轴方向的位移分量,以有利于质量块311沿Y轴移动。弹性连接件3302可以用于吸收Y轴的位移,减少支撑梁3201在Y轴方向的位移分量,以有利于支撑梁3201沿X轴移动。
机械结构层300还可以包括支撑梁3202。支撑梁3202被驱动以在X轴方向具有位移分量。在惯性传感器未受到外力作用时,支撑梁3202可以沿X轴往复移动。驱动支撑梁3202往复移动的实施例可以参照上述驱动支撑梁3201往复移动的实施例。在图3A所示的实施例中,支撑梁3202可以与支撑梁3201相连。由于驱动支撑梁3201、支撑梁3202往复移动的力的方向可以沿X轴且方向相同,因此支撑梁3201、支撑梁3202可以可以被相同的驱动块驱动。
支撑梁3202还可以与质量块312相连。支撑梁3202的往复移动可以用于驱动质量块312沿X轴移动。图3B示出了质量块312在支撑梁3202的作用下沿X轴移动的示意性结构图。图3B中虚线示出了质量块312移动前的位置,图3B中实线示出了质量块312移动后的位置。
机械结构层300还包括支撑梁3203和锚区342。支撑梁3203连接在锚区342和质量块313之间。支撑梁3203用于支撑质量块313,以使得质量块313悬浮于图2所示的衬底层和覆盖层之间。支撑梁3203可以用于为质量块313提供悬浮支撑。
机械结构层300还可以包括弹性连接件3303。弹性连接件3303可以连接在质量块312和质量块313之间。如图3A、3B所示,质量块312和质量块313可以通过弹性连接件3303和支撑梁3203相连。
弹性连接件3303可以用于为质量块312提供沿X轴的缓冲空间。也就是说,弹性连接件3303可以在X轴刚度较小或具有弹性。如上所述,质量块312可以在支撑梁3202的作用下具有沿X轴方向的位移分量。当惯性传感器未受到外力作用时,质量块312可以沿X轴往复移动。弹性连接件3303可以用于吸收X轴的位移,减少质量块313在质量块312的牵引下沿X轴方向的位移分量,如图3B所示。
为了抑制材料应变、加工偏差等因素带来的影响,机械结构层300具有对称性。机械结构层300具有对称性,有利于应用差分原理,去除材料应变、加工偏差等引起的共模噪声,有利于提高惯性传感器的例如温漂性能、零漂性能等。
机械结构层300可以相对于对称轴x对称,且相对于对称轴x对称,对称轴x可以平行于X轴,对称轴x可以平行于Y轴。在本申请中,相对于对称轴x或对称轴y相互对称的两个结构的移动方向可以对称或相反。
在图3A和图3B所示的实施例中,支撑梁3202和支撑梁3203可以对应机械结构层300的对称轴x。机械结构层还可以包括对称梁371、对称梁372。对称梁371和对称梁372位于锚区342的两侧,对称梁371和对称梁372均与锚区342连接。对称梁371和对称梁372可以对应机械结构层300的对称轴y。锚区342可以设置于对称轴x和对称轴x的交叉位置。
质量块1自身相对于对称轴y对称。质量块2自身可以相对于对称轴x对称。质量块3自身可以相对于对称轴x对称。机械结构层300还可以包括质量块314、质量块315、质量块316。质量块314用于检测X轴的角速度。质量块315用于检测Y轴的角速度。质量块316用于检测Z轴的角速度。质量块4身相对于对称轴y对称。质量块5身可以相对于对称轴x对称。质量块6身可以相对于对称轴x对称。质量块314与质量块311可以相对于对称轴x对称设置。质量块315与质量块312相对于对称轴y对称设置。质量块316与质量块313相对于对称轴y对称设置。
机械结构层300还可以包括支撑梁3204、支撑梁3205、支撑梁3206。支撑梁3204、支撑梁3205、支撑梁3206被驱动以具有沿X轴方向的位移分量。当惯性传感器未受到外力作用时,支撑梁3204、支撑梁3205、支撑梁3206可以沿X轴往复移动。在一个实施例中,支撑梁3204与支撑梁3201可以相对于对称轴y对称设置;支撑梁3205与支撑梁3201相对于对称轴x对称设置;支撑梁3206与支撑梁3205相对于对称轴y对称设置。
在图3A所示的实施例中,支撑梁3201与支撑梁3205可以通过传动梁361相连。传动梁361自身可以相对于对称轴x对称。支撑梁3204与支撑梁3206可以通过传动梁362相连。传动梁362自身可以相对于对称轴x对称。传动梁361和传动梁2可以相对于对称轴y对称。
支撑梁3204和支撑梁3201可以分别连接质量块311的两端。支撑梁3201的往复移动可以用于驱动质量块311的一端沿Y轴移动,支撑梁3204的往复移动可以用于驱动质量块311的另一端沿Y轴移动,从而质量块311可以在支撑梁3201和支撑梁3204的作用下具有沿Y轴方向的位移分量。支撑梁3201和支撑梁3204在X轴方向上的移动方向可以相反。支撑梁3201和支撑梁3204可以被不同的驱动块驱动。因此,质量块311可以被两个不同的驱动块驱动。在一个实施例中,用于驱动支撑梁3201的驱动块和用于驱动支撑梁3204的驱动块可以相对于对称轴y对称。
机械结构层300还可以包括转向梁352。在一个实施例中,转向梁352和转向梁351可以相对于对称轴y对称。转向梁351可以在支撑梁3201和质量块311的一端之间传递平移驱动力,转向梁352可以在支撑梁3204和质量块311的另一端之间传递平移驱动力,以使得质量块311在支撑梁3201、支撑梁3204的驱动下往复移动。并且,转向梁352还用于将来自支撑梁3204的沿X轴的平移驱动力转换为Y轴的平移驱动力,以使得质量块311在转向梁351、转向梁352的作用下具有沿Y轴方向的位移分量。有关转向梁352的相关实施例可以参照转向梁351的相关实施例。
支撑梁3205和支撑梁3206可以分别连接质量块314的两端。支撑梁3205的往复移动可以用于驱动质量块314的一端沿Y轴移动,支撑梁3206的往复移动可以用于驱动质量块314的另一端沿Y轴移动,从而质量块314可以在支撑梁3205和支撑梁3206的作用下具有沿Y轴方向的位移分量。
支撑梁3205和支撑梁3206在X轴方向上的移动方向可以相反。支撑梁3205和支撑梁3206可以被不同的驱动块驱动。质量块314可以被两个不同的驱动块驱动。用于驱动质量块314的两个驱动块还可以用于驱动质量块311。
根据对称性,支撑梁3205和支撑梁3201的移动方向可以相同;支撑梁3205和支撑梁3201可以被相同的驱动块驱动。支撑梁3206和支撑梁3204的移动方向可以相同;支撑梁3206和支撑梁3204可以被相同的驱动块驱动。
质量块314和质量块311在Y轴方向上的移动方向相反。质量块314和质量块311可以在Y轴方向上相互靠近或相互远离。
图3B示出了质量块314沿Y轴移动的示意性结构图。图3B中虚线示出了质量块314移动前的位置,图3B中实线示出了质量块314移动后的位置。
机械结构层300还可以包括转向梁353、转向梁354。在一个实施例中,转向梁353和转向梁354可以相对于对称轴y对称。转向梁353可以在支撑梁3205和质量块314的一端之间传递平移驱动力,转向梁354可以在支撑梁3206和质量块314的另一端之间传递平移驱动力,以使得质量块314在支撑梁3205、支撑梁3206的驱动下具有沿Y轴方向的位移分量。并且,转向梁353还用于将来自支撑梁3205的沿X轴的平移驱动力转换为Y轴的平移驱动力,转向梁354还用于将来自支撑梁3206的沿X轴的平移驱动力转换为Y轴的平移驱动力,以使得质量块314在转向梁353、转向梁354的作用下具有沿Y轴方向的位移分量。有关转向梁353、转向梁354的相关实施例可以参照转向梁351、转向梁352的相关实施例。
机械结构层300还包括锚区343和弹性连接件3304。锚区343和锚区341可以相对于对称轴x对称。弹性连接件3304和弹性连接件3301可以相对于对称轴x对称。弹性连接件3304可以连接在锚区343和质量块314之间。弹性连接件3304可以用于为质量块314提供沿Z轴的悬浮支撑。弹性连接件3304还可以用于在质量块314和锚区34之间提供Y轴上的缓冲空间。
机械结构层300还可以包括弹性连接件3305、弹性连接件3306、弹性连接件3307。在一个实施例中,弹性连接件3305和弹性连接件3302可以相对于对称轴y对称。弹性连接件3306和弹性连接件3302可以相对于对称轴x对称。弹性连接件3307和弹性连接件3305可以相对于对称轴x对称。
弹性连接件3305可以在X轴方向和Y轴方向上的刚度可以相对较小或具有弹性,以有利于支撑梁3204沿X轴移动,且有利于使质量块311沿Y轴移动。弹性连接件3306可以在X轴方向和Y轴方向上的刚度可以相对较小或具有弹性,以有利于支撑梁3205沿X轴移动,且有利于使质量块314沿Y轴移动。弹性连接件3307在X轴方向和Y轴方向上的刚度可以相对较小或具有弹性,以有利于支撑梁3206沿X轴移动,且有利于使质量块314沿Y轴移动。
机械结构层300还可以包括支撑梁3207。支撑梁3207被驱动以在X轴方向具有位移分量。在惯性传感器未受到外力作用时,支撑梁3207可以沿X轴往复移动。支撑梁3207和支撑梁3202在X轴方向上的移动方向可以相反。在一个实施例中,支撑梁3207可以与支撑梁3202相对于对称轴y对称。在图3A所示的实施例中,支撑梁3207可以与传动梁362相连。支撑梁3207的往复移动可以用于驱动质量块315,以使驱动质量块315具 有沿X轴方向的位移分量。
质量块315和质量块312在X轴方向上的移动方向可以相反。质量块315和质量块312可以沿X轴相互靠近或相互远离。质量块315和质量块312可以被不同的驱动块驱动。在一个实施例中,用于驱动质量块315和用于驱动质量块312的两个驱动块还可以用于驱动质量块311。
图3B示出了质量块315沿X轴移动的示意性结构图。图3B中虚线示出了质量块315移动前的位置,图3B中实线示出了质量块315移动后的位置。
机械结构层300还可以包括支撑梁3208、支撑梁3209、支撑梁3210。在一个实施例中,支撑梁3208和支撑梁3203可以相对于对称轴x对称。支撑梁3209和支撑梁3203可以相对于对称轴y对称。支撑梁3210和支撑梁3208可以相对于对称轴y对称。
支撑梁3203可以与质量块313的第一端相连。支撑梁3208可以连接在锚区342和质量块313的第二端之间。支撑梁3208和支撑梁3203用于支撑质量块313,以使得质量块313悬浮于图2所示的衬底层和覆盖层之间。支撑梁3208和支撑梁3203可以协同为质量块313提供沿Z轴的悬浮支撑。
支撑梁3209可以连接在锚区342和质量块316的第一端之间。支撑梁3210可以连接在锚区342和质量块316的第二端之间。支撑梁3209和支撑梁3210可以协同为质量块316提供沿Z轴的悬浮支撑。
机械结构层300还可以包括传动梁363、传动梁364。传动梁363自身可以相对于对称轴y对称。传动梁364自身可以相对于对称轴y对称。传动梁363和传动梁364可以相对于对称轴x对称。传动梁363可以连接在支撑梁3203和支撑梁3208之间。传动梁363可以连接在支撑梁3208和支撑梁3210之间。传动梁363可以为支撑梁3203和支撑梁3209的提供沿Z轴的悬浮支撑。传动梁364可以为支撑梁3208和支撑梁3210的提供沿Z轴的悬浮支撑。
机械结构层300还可以包括对称梁371和对称梁372。对称梁371和对称梁372可以分别与锚区342的两端固定连接。对称梁371可以连接在传动梁363和锚区342之间。对称梁372可以连接在传动梁364和锚区342之间。对称梁371自身可以相对于对称轴y对称。对称梁372自身可以相对于对称轴y对称。对称梁371和对称梁372可以相对于对称轴x对称。
机械结构层300还包括弹性连接件3308、弹性连接件3309、弹性连接件3310。在一个实施例中,弹性连接件3308和弹性连接件3303可以相对于对称轴x对称。弹性连接件3309和弹性连接件3303可以相对于对称轴y对称。弹性连接件3310和弹性连接件3308可以相对于对称轴y对称。
质量块312可以从质量块313的第一端延伸至质量块313的第二端。弹性连接件3303可以连接在质量块312第一端和质量块313的第一端之间。弹性连接件3308可以连接在质量块312的第二端和质量块313的第二端之间。如图3A、3B所示,质量块312的第一端和质量块313的第一端可以通过弹性连接件3303和支撑梁3203相连。质量块312的第二端和质量块313的第二端可以通过弹性连接件3308和支撑梁3208相连。
弹性连接件3303在X轴方向上的刚度可以相对较小或具有弹性,以在质量块312的第一端和质量块313的第一端之间提供沿X轴的缓冲空间。弹性连接件3308在X轴方向 上的刚度可以相对较小或具有弹性,以在质量块312的第二端和质量块313的第二端之间提供沿X轴的缓冲空间。从而,有利于减小质量块313在X轴方向上的位移。
质量块315可以从质量块316的第一端延伸至质量块316的第二端。弹性连接件3309可以连接在质量块315第一端和质量块316的第一端之间。弹性连接件3310可以连接在质量块315的第二端和质量块316的第二端之间。如图3A、3B所示,质量块315的第一端和质量块316的第一端可以通过弹性连接件3309和支撑梁3209相连。质量块315的第二端和质量块316的第二端可以通过弹性连接件3310和支撑梁3210相连。
弹性连接件3309的具体实施例可以参照弹性连接件3303的具体实施例。弹性连接件3310的具体实施例可以参照弹性连接件3308的具体实施例。
质量块312可以通过弹性连接件3303、支撑梁3203牵引质量块313,以使质量块313具有沿Y轴方向的位移分量。与仅通过弹性连接件3303将质量块312和质量块313相连的实施例相比,通过弹性连接件3303和支撑梁3203连接质量块312和质量块313,有利于减小因弹性连接件3303变形量不稳定等对机械结构层300的非对称性的影响,进而有利于降低机械结构层300的加工要求。与弹性连接件3303相比,支撑梁3203沿Y轴的宽度可以相对较大。
沿X+方向观察图3B所示的机械结构层300,可以得到图4所示的示意性结构图。下面结合图3B、图4,阐述通过质量块311和质量块314检测绕X轴的角速度的原理。
惯性传感器可以包括检测电极231和检测电极234。检测电极231和检测电极234例如可以设置在图2所示的衬底层上。
检测电极231可以与质量块311相对设置,检测电极234可以与质量块314相对设置。检测电极231与质量块311可以沿Z轴排列。检测电极231和质量块311可以平行于XY面设置,从而检测电极231和质量块311可以形成电容1。检测电极234与质量块314可以沿Z轴排列。检测电极234和质量块314可以平行于XY面设置,从而检测电极234和质量块314可以形成电容4。
质量块311、质量块314可以具有沿Y轴方向的位移分量。当惯性传感器整体在外力作用下具有绕X轴旋转的角速度分量,质量块311和质量块314可以受到沿Z轴的科氏力。质量块311和质量块314可以具有沿Z轴方向的位移分量。因此质量块311和检测电极231的间距可以变化,质量块311和检测电极231形成的电容1的容值可以变化;质量块314和检测电极234的间距可以变化,质量块314和检测电极234形成的电容4的容值可以变化。质量块311和检测电极231形成的电容1的容值变化量可以与质量块311在Z轴方向上的位移分量对应。质量块314和检测电极234形成的电容4的容值变化量可以与质量块314在Z轴方向上的位移分量对应。
在本申请中,惯性传感器受到外力作用旋转,惯性传感器可以具有绕X轴方向、Y轴方向、Z轴方向的角速度分量。惯性传感器的角速度方向在X轴方向的投影可以是惯性传感器的绕X轴方向角速度分量。惯性传感器的角速度方向在Y轴方向的投影可以是惯性传感器的绕Y轴方向角速度分量。惯性传感器的角速度方向在Z轴方向的投影可以是惯性传感器的绕Z轴方向角速度分量。惯性传感器的绕X轴方向、Y轴方向、Z轴方向的角速度分量的矢量和可以为惯性传感器的角速度方向。
结合图3B和图4,假设质量块311的驱动方向为Y+,质量块314的驱动方向为Y-。 在外力作用下,质量块311可以围绕锚区341,具有绕X轴旋转的角速度分量,质量块314可以围绕锚区343,具有绕X轴旋转的角速度分量。从而,质量块311可以具有沿Z+方向的位移分量,质量块314可以具有沿Z-方向的位移分量。质量块311有远离检测电极231的趋势,质量块314有靠近检测电极234的趋势。
由于检测电极231和检测电极234的检测结果均包括共模噪声,综合检测电极231和检测电极234输出的检测结果,可以相对有效地去除共模噪声,有利于提高惯性传感器的例如温漂性能、零漂性能等。
如图4所示,在弹性连接件3302和弹性连接件3306之间连接有传动梁361。结合图3B,传动梁361可以连接在支撑梁3201和支撑梁3205之间。由于质量块311和质量块312在Z轴方向的位移分量的方向相反,传动梁361用于相对于锚区342,围绕对称轴x旋转。由于弹性连接件3302和弹性连接件3306具有缓冲作用,因此传动梁361的倾斜程度可以相对较小,例如,传动梁361相对于Y轴的倾斜角可以小于弹性连接件3302相对于Y轴的倾斜角。
结合图3B,驱动块还可以包括传动梁362。传动梁362和传动梁361相对于对称轴y对称。传动梁362可以连接在弹性连接件3305和弹性连接件3307之间。传动梁362可以用于相对于锚区342,围绕对称轴x旋转。传动梁361和传动梁362绕X轴方向的旋转方向可以相反。传动梁362的具体实施例可以参照传动梁361的具体实施例。
沿Y+方向观察图3B所示的机械结构层300,可以得到图5所示的示意性结构图。下面结合图3B、图5,阐述通过质量块312和质量块315检测绕Y轴的角速度的原理。
惯性传感器可以包括检测电极232和检测电极235。检测电极232和检测电极235例如可以设置在图2所示的衬底层上。
检测电极232可以与质量块312相对设置,检测电极235可以与质量块315相对设置。检测电极232与质量块312可以沿Z轴排列。检测电极232和质量块312可以平行于XY面设置,从而检测电极232和质量块312可以形成电容2。检测电极235与质量块315可以沿Z轴排列。检测电极235和质量块315可以平行于XY面设置,从而检测电极235和质量块315可以形成电容5。
质量块312、质量块315可以具有沿X轴方向的位移分量。当惯性传感器整体在外力作用下具有绕Y轴旋转的角速度分量,质量块312和质量块315可以受到沿Z轴的科氏力。质量块312和质量块315具有沿Z轴方向的位移分量。因此质量块312和检测电极232的间距可以变化,质量块312和检测电极232形成的电容2的容值可以变化;质量块315和检测电极235的间距可以变化,质量块315和检测电极235形成的电容5的容值可以变化。质量块312和检测电极232形成的电容2的容值变化量可以与质量块312在Z轴方向上的位移分量对应。质量块315和检测电极235形成的电容5的容值变化量可以与质量块315在Z轴方向上的位移分量对应。
结合图3B和图5,假设质量块312的驱动方向为X-,质量块315的驱动方向为X+。在外力作用下,质量块312可以围绕锚区342,具有绕Y轴旋转的角速度分量,质量块315可以围绕锚区342,具有绕Y轴旋转的角速度分量。从而,质量块312可以具有沿Z-方向的位移分量,质量块315可以具有沿Z+方向的位移分量。质量块312有靠近检测电极232的趋势,质量块315有远离检测电极235的趋势。
由于检测电极232和检测电极235的检测结果均包括共模噪声,综合检测电极232和检测电极235输出的检测结果,可以相对有效地去除共模噪声,有利于提高惯性传感器的例如温漂性能、零漂性能等。
如图5所示,在弹性连接件3308和弹性连接件3310之间连接有传动梁364。结合图3B,传动梁364可以与锚区342相连。由于质量块312和质量块315在沿Z轴方向的位移分量的方向相反,传动梁364有相对于锚区342,围绕对称轴y旋转的趋势。由于弹性连接件3308和弹性连接件3310具有缓冲作用,且传动梁364与锚区342固定连接,因此传动梁364的倾斜程度可以相对较小。也就是说,弹性连接件3308和弹性连接件3310可以有利于减少传动梁364相对于X轴的倾斜程度,传动梁364自身的刚度可以进一步有利于减少传动梁364相对于X轴的倾斜程度,从而有利于减少质量块313绕Y轴的旋转量。
当弹性连接件3308和弹性连接件3310在X轴方向的位移分量的方向相反时,传动梁364还可以沿X轴提供弹性连接件3308和弹性连接件3310的变形反力,以有利于减少质量块313、质量块316沿X轴方向的位移分量。
结合图3B,驱动块还可以包括传动梁364。传动梁364和传动梁363相对于对称轴x对称。传动梁364可以连接在弹性连接件3303和弹性连接件3309之间。传动梁364的具体实施例可以参照传动梁363的具体实施例。
沿Z-方向观察图3B所示的机械结构层300的局部,可以得到图6所示的示意性结构图。下面结合图3B、图6,阐述通过质量块312、质量块313、质量块315和质量块316检测绕Z轴的角速度的原理。
惯性传感器可以包括检测电极233和检测电极236。检测电极233和检测电极236可以设置在图3所示的衬底层上,也可以设置在机械结构层300上。当检测电极233和检测电极236设置在机械结构层300上时,检测电极233和检测电极236可以属于机械结构层300的定子。
检测电极233可以与质量块313相对设置,检测电极236可以与质量块316相对设置。检测电极233与质量块313可以沿Y轴排列。检测电极233和质量块313可以平行于XZ面设置,从而检测电极233和质量块313可以形成电容3。检测电极236与质量块316可以沿Y轴排列。检测电极236和质量块316可以平行于XZ面设置,从而检测电极236和质量块316可以形成电容6。
质量块312、质量块315可以被驱动以具有沿X轴方向的位移分量。当惯性传感器整体在外力作用下具有绕Z轴旋转的角速度分量,质量块312和质量块315可以受到沿Y轴的科氏力。质量块312和质量块315有沿Y轴的运动趋势。由于质量块312和质量块313通过支撑梁3203、支撑梁3208相连,质量块313可以在质量块312的牵引下具有沿Y轴方向的位移分量,因此质量块313和检测电极233的间距可以变化,质量块313和检测电极233形成的电容3的容值可以变化。质量块313和检测电极233形成的电容3的容值变化量可以与质量块313在Y轴方向上的位移分量对应。由于质量块315和质量块316通过支撑梁3209、支撑梁3210相连,质量块316可以在质量块315的牵引下具有沿Y轴方向的位移分量,因此质量块316和检测电极236的间距可以变化,质量块316和检测电极236形成的电容6的容值可以变化。质量块316和检测电极236形成的电容6的容值变 化量可以与质量块316在Y轴方向上的位移分量对应。
结合图3B和图6,假设质量块312的驱动方向为X-,质量块315的驱动方向为X+。在外力作用下,质量块312和质量块313可以围绕锚区342,具有绕Z轴旋转的角速度分量,质量块315和质量块316可以围绕锚区342,具有绕Z轴旋转的角速度分量。从而,质量块312和质量块313可以具有沿Z-方向的位移分量,质量块315和质量块316可以具有沿Z+方向的位移分量。质量块313例如可以有靠近检测电极233的趋势,质量块316例如可以有远离检测电极236的趋势。
质量块313的一端和质量块316的一端可以通过传动梁363相连。传动梁363可以提供X方向上的平衡力,以有利于减少质量块313和质量块316在X方向上的位移。传动梁363还可以为质量块312和质量块313提供绕Z轴旋转的扭转支撑。类似地,质量块313的另一端和质量块316的另一端可以通过传动梁364相连。传动梁364可以为质量块313和质量块316提供X方向的平衡力,以及绕Z轴旋转的扭转支撑。
由于检测电极233和检测电极236的检测结果均包括共模噪声,综合检测电极233和检测电极236输出的检测结果,可以相对有效地去除共模噪声,有利于提高惯性传感器的例如温漂性能、零漂性能等。
为便于阐述本申请实施例提供的方案的有益效果,首先阐述3种解耦类型,分别为机械解耦、原理性解耦和差分解耦。
机械解耦可以指,部件A和部件B独立布局,部件A的运动(运动可以包括在芯片驱动下的移动,和在外力作用下的旋转)不会影响部件A的运动。
原理性解耦可以指,部件A和部件B不属于独立布局,部件A在轴a方向上检测电容变化,部件B不在轴a上运动,或部件B在轴a上的运动量可以忽略不计。也就是说,部件B的谐振不会影响部件A的检测。原理性结构是从检测原理的角度规避或减少两个部件之间。
差分解耦可以指,部件A和部件B对称,且部件A和部件B的运动模式属于差分运动。通过对称结构的差分运动,可以有利于消除共模影响,以降低部件A和部件B之间的影响。差分解耦强烈依赖于对称性,对惯性传感器的加工要求相对较高。
下面结合上述名词解释,阐述本申请实施例提供的机械结构层300的各个部件之间的解耦模式。
质量块311可以在驱动块的作用下具有沿Y轴方向的位移分量,而检测方向为Z轴方向,因此质量块311和驱动块的解耦模式可以为原理性解耦。质量块312可以在驱动块的作用下具有沿X轴方向的位移分量,而检测方向为Z轴方向,因此质量块312和驱动块的解耦模式可以为原理性解耦。质量块313与驱动块可以被视为独立设置,即质量块313可以被近似认为不在驱动块的作用下移动,因此质量块313和驱动块的解耦模式可以为机械解耦。
质量块311的运动和质量块312的运动互不干涉,因此质量块311和质量块312的解耦模式可以为机械解耦。质量块311的运动和质量块313的运动互不干涉,因此质量块311和质量块313的解耦模式可以为机械解耦。
在通过质量块312检测Y轴角速度时,质量块312的检测方向为Z轴方向,质量块313在Z轴方向可以不发生运动,因此从这一角度出发,质量块312和质量块313的解耦 模式可以为机械解耦。在通过质量块313检测Z轴角速度时,质量块313的检测方向为Y轴,质量块312可以具有沿Y轴方向的位移分量,而质量块312的检测方向为Z轴方向,因此从这一角度出发,质量块313和质量块312的解耦模式可以为原理性解耦。
表1示出了图3A所示的机械结构层300的解耦模式。
表1
解耦模式 驱动块 质量块311 质量块312 质量块313
质量块311 原理性解耦 / 机械解耦 机械解耦
质量块312 原理性解耦 机械解耦 / 原理性解耦
质量块313 机械解耦 机械解耦 机械解耦 /
本申请实施例提供的机械结构层可以减少差分解耦模式的应用,有利于降低惯性传感器的加工精度要求,还有利于提高惯性传感器的检测精度。由于惯性传感器可以同轴驱动,有利于减少惯性传感器内的驱动块数量,提高惯性传感器的集成度,进而有利于减小惯性传感器的尺寸。
图7A是本申请实施例提供的另一种机械结构层300的立体图。沿图7A所示的Z-方向观察机械结构层300,可以得到图7B所示的平面图。图7C是图7B所示的机械结构层300在未发生旋转时机械结构层300的动子的运动示意图。为便于描述,如图7A、图7B、图7C所示,假设存在XYZ坐标系,X轴、Y轴、Z轴相互正交。机械结构层300可以相对于XY面平行设置。
与图3A至图6所示的实施例类似,在图7A至图7C所示的实施例中,机械结构层300可以包括:锚区341、锚区342、锚区343、质量块311、质量块312、质量块313、质量块314、质量块315、质量块316、支撑梁3201、支撑梁3202、支撑梁3203、支撑梁3204、支撑梁3205、支撑梁3206、支撑梁3207、支撑梁3208、支撑梁3209、支撑梁3210、弹性连接件3301、弹性连接件3302、弹性连接件3303、弹性连接件3304、弹性连接件3305、弹性连接件3306、弹性连接件3307、弹性连接件3308、弹性连接件3309、弹性连接件3310、传动梁361、传动梁362、传动梁363、传动梁364。机械结构层300的质量块311、质量块312、质量块313、质量块314、质量块315、质量块316可以分别与惯性传感器的检测电极231、检测电极232、检测电极233、检测电极234、检测电极235、检测电极236形成电容1、电容2、电容3、电容4、电容5、电容6,以通过电容1、电容4检测绕X轴的角速度,通过电容2、电容5检测绕Y轴的角速度,通过电容3、电容6检测绕Z轴的角速度。
机械结构层300还可以包括锚区344和驱动块381。锚区344可以属于机械结构层300的定子。驱动块381可以属于机械结构层300的动子。驱动块381能够相对于锚区344沿X轴移动。
在一个实施例中,机械结构层300还可以包括固定梳齿39291和活动梳齿396。固定梳齿39291可以固定在锚区344上。活动梳齿可以固定在驱动块381上。固定梳齿39291和活动梳齿396可以交叉间隔设置。
在本申请中,固定梳齿可以属于机械结构层300的定子,活动梳齿可以属于机械结构 层300的动子。固定梳齿可以包括多个固定齿,活动梳齿可以包括多个活动齿。固定梳齿和活动梳齿交叉间隔设置可以指,相邻两个固定齿之间具有1个活动齿,相邻两个活动齿之间具有1个固定齿,相邻的固定齿和活动齿之间间隔设置。
通过对驱动块381和锚区344通交流电,活动梳齿396和固定梳齿39291之间的相互作用力可以驱动活动梳齿396相对于固定梳齿39291沿X轴移动,进而使驱动块381相对于锚区344沿X轴移动。驱动块381在Y轴方向、Z轴方向上的位移可以相对较小甚至忽略不计。例如,驱动块381可以附着于衬底层或锚区34上,被限位于沿X轴移动。
机械结构层300还可以包括锚区345和驱动块382。锚区345和锚区344可以相对于对称梁371或对称梁372对称。驱动块381和驱动块382可以相对于对称梁371或对称梁372对称。驱动块382可以相对于锚区345沿X轴移动。驱动块382的移动方向和驱动块381的移动方向可以反。驱动块382的具体实施例可以参照驱动块381,锚区345的具体实施例可以参照锚区344。
机械结构层300还可以包括对称梁373。对称梁373自身可以相对于图3A所示的对称轴x对称。对称梁373可以与驱动块381的远离驱动块382一侧相连。对称梁373可以沿X轴方向延伸。驱动块381自身可以相对于对称梁373对称。锚区344自身可以相对于对称梁373对称。
对称梁373的远离驱动块381的一端可以与传动梁361相连。传动梁361可以沿Y轴方向延伸。从而驱动块381可以通过对称梁373驱动传动梁361,以使传动梁361具有沿X轴方向的位移分量。传动梁361的两端分别连接有支撑梁3201和支撑梁3205。支撑梁3201和支撑梁3205在传动梁361的作用下具有沿X轴方向的位移分量。
支撑梁3201的远离传动梁361的一端通过转向梁和弹性连接件3302与质量块311的第一端相连,质量块311的第一端可以被驱动以具有沿Y轴方向的位移分量。
在质量块311的远离质量块314的一侧,且靠近质量块311的第一端设置有锚区341和弹性连接件3301。弹性连接件3301连接在质量块311的第一端和锚区341之间。弹性连接件3301可以为质量块311提供Y轴方向上的缓冲空间。另外,弹性连接件3301还可以为质量块311提供Z方向上的支撑。也就是说,弹性连接件3301沿Z轴的刚度可以相对较大,沿Y轴的刚度可以相对较小。
在一个实施例中,如图7B的局部示意图所示,弹性连接件3301还可以为质量块311提供X轴方向上的缓冲空间,质量块311在X轴方向上的位移分量对锚区341的牵引力可以相对较小,有利于降低质量块311在X轴方向上的位移分量对衬底层的应力作用。
根据仿真结果显示,锚区341设置在质量块311的一端,并在至少一个方向上与质量块311软连接(即弹性连接件3301在至少一个方向上具有弹性),可以有利于调整机械结构层300的干扰模态,以有利于促使机械结构层300的有效模态可以远离机械结构层300的干扰模态。
机械结构层300还可以包括锚区346和弹性连接件3311。锚区346与锚区341可以相对于对称梁371对称。弹性连接件3311和弹性连接件3301可以相对于对称梁371对称。锚区346和弹性连接件3301设置在质量块311的远离质量块314的一侧且靠近质量块311的第二端。弹性连接件3311连接在质量块314的第二端和锚区346之间。弹性连接件3311的具体实施例可以参照弹性连接件3301。锚区346的具体实施例可以参照锚区 341。
支撑梁3205的远离传动梁361的一端通过转向梁和弹性连接件3306与质量块314的第一端相连,质量块314的第一端可以被驱动,以使质量块314具有沿Y轴方向的位移分量。其中,质量块311的第一端的位移分量可以与质量块314的的第一端的位移分量方向相反。
在质量块314的远离质量块311的一侧,且靠近质量块314的第一端设置有锚区343和弹性连接件3304。弹性连接件3304连接在质量块314的第一端和锚区343之间。弹性连接件3304的具体实施例可以参照弹性连接件3301的具体实施例。
机械结构层300还可以包括对称梁374。对称梁374自身可以相对于图3A所示的对称轴x对称。对称梁374和对称梁373可以相对于对称梁371或对称梁372对称。对称梁374可以与驱动块382的远离驱动块381一侧相连。对称梁374的具体实施例可以参照对称梁371。
锚区345自身可以相对于对称梁374对称。驱动块382自身可以相对于对称梁374对称。对称梁374的远离驱动块382的一端可以与传动梁362相连。从而驱动块382可以通过对称梁374驱动传动梁362,以使驱动梁362具有沿X轴方向的位移分量。传动梁362的位移分量可以与传动梁361的位移分量方向相反。传动梁362的两端分别连接有支撑梁3204和支撑梁3206。支撑梁3204和支撑梁3206在传动梁362的作用下可以具有沿X轴方向的位移分量。传动梁362的具体实施例可以参照传动梁361。
支撑梁3204的远离传动梁362的一端通过转向梁和弹性连接件3305与质量块311的第二端相连,质量块311的第二端可以被驱动以具有沿Y轴方向的位移分量。
支撑梁3206的远离传动梁362的一端通过转向梁和弹性连接件3307与质量块314的第二端相连,质量块314的第二端可以被驱动以具有沿Y轴方向的位移分量。质量块311的第二端的位移分量方向可以与质量块314的的第二端的位移分量方向相反。
机械结构层300还可以包括锚区347和弹性连接件3312。锚区347与锚区343可以相对于对称梁372对称。弹性连接件3312和弹性连接件3304可以相对于对称梁372对称。锚区347与锚区346可以相对于对称梁374对称。弹性连接件3312和弹性连接件3311可以相对于对称梁374对称。锚区347和弹性连接件3312设置在质量块314的远离质量块311的一侧且靠近质量块314的第二端。弹性连接件3312连接在质量块314的第二端和锚区347之间。弹性连接件3312的具体实施例可以参照弹性连接件3311或弹性连接件3304。锚区347的具体实施例可以参照锚区346或锚区343。
图7C示出了质量块311和质量块314沿Y轴并朝着相反方向移动的示意性结构图。图7C中虚线示出了质量块311和质量块314移动前的位置,图7C中实线示出了质量块311和质量块314移动后的位置。
机械结构层300可以包括多个支撑梁3202。多个支撑梁3202可以相对于对称梁373对称。
驱动块381的靠近驱动块382的一侧可以与支撑梁3202相连。一个支撑梁3202可以与驱动块381的靠近质量块311的一端相连,另一个支撑梁3202可以与驱动块381的靠近质量块314的一端相连。一个支撑梁3202的远离驱动块381的一端可以与质量块312的靠近质量块311的一端相连。另一个支撑梁3202的远离驱动块381的一端可以与质量 块312的靠近质量块314的一端相连。驱动块381可以用于通过支撑梁3202驱动质量块312,以使质量块312具有沿X轴方向的位移分量。
机械结构层300可以包括多个支撑梁3207。多个支撑梁3207可以相对于对称梁374对称。多个支撑梁3202和多个支撑梁3207可以相对于对称梁372对称。
驱动块382的靠近驱动块381的一侧可以与支撑梁3207相连。支撑梁3207的远离驱动块382的一侧可以与质量块315相连。驱动块382可以用于通过支撑梁3207动质量块315,以使质量块315具有沿X轴方向的位移分量。质量块315的沿X轴方向的位移分量可以与质量块312的沿X轴方向的位移分量方向相反。支撑梁3207的沿X轴方向的位移分量可以与支撑梁3202的沿X轴方向的位移分量方向相反。支撑梁3207的具体实施例可以参照支撑梁3202的具体实施例。
图7C示出了质量块312和质量块315沿X轴并朝着相反方向移动的示意性结构图。图7C中虚线示出了质量块312和质量块315移动前的位置,图7C中实线示出了质量块312和质量块315移动后的位置。
机械结构层300还可以包括锚区348。锚区348自身可以相对于对称梁373对称。锚区348上固定有固定梳齿392。质量块313上固定有活动梳齿397。固定梳齿392自身可以相对于对称梁373对称。活动梳齿397自身可以相对于对称梁373对称。固定梳齿392和活动梳齿397交叉间隔设置。固定梳齿392上设置有检测电极。活动梳齿397和检测电极可以形成电容。通过检测活动梳齿397和检测电极形成的电容的容值变化量,可以确定质量块313绕Z轴的角速度分量。
机械结构层300还可以包括锚区349。锚区349自身可以相对于对称梁374对称。锚区348和锚区349可以相对于对称梁371或对称梁372对称。质量块316和锚区349上的检测电极可以形成电容,通过检测该电容的容值变化量,可以确定质量块316绕Z轴的角速度分量。锚区349的具体实施例可以参照锚区348,质量块316的具体实施例可以参照质量块313。
图8A示出了机械结构层300检测绕X轴的角速度的示意性结构图。沿X+方向观察图8A所示的机械结构层300,可以得到图8B所示的示意性结构图。下面结合图8A、图8B,阐述通过质量块311和质量块314检测绕X轴的角速度的原理。
如前所述,当惯性传感器具有绕X轴旋转的角速度分量时,质量块311和质量块314具有沿Z轴方向的位移分量,质量块311和质量块314沿Z轴方向的位移分量方向相反。假设质量块311可以具有沿Z+方向的位移分量,质量块314可以具有沿Z-方向的位移分量。质量块311有远离检测电极231的趋势,质量块314有靠近检测电极234的趋势。
由于质量块311可以通过弹性连接件3301与锚区341相连,质量块311的另一端可以通过弹性连接件3311与锚区346相连,质量块311的靠近锚区341和锚区346的一侧在Z轴方向上的位移相对较小,质量块311的远离锚区341和锚区346的一侧在Z轴方向上的位移相对较大。质量块311可以相对于Y轴,朝向第一方向倾斜。类似地,质量块314可以相对于Y轴,朝向第二方向倾斜,第一方向和第二方向相反。也就是说,质量块311、质量块314可以具有绕X轴旋转的角速度分量,质量块311、质量块314的绕X轴旋转的角速度分量的方向可以相反。弹性连接件3301和弹性连接件3311可以为质量块311绕Y轴旋转提供扭转支撑。弹性连接件3304和弹性连接件3312可以为质量块314绕 Y轴旋转提供扭转支撑。
在质量块311和质量块314的牵引下,传动梁361具有围绕对称梁371旋转的趋势。弹性连接件3302可以连接在传动梁361和质量块311之间。由于传动梁361的刚度可以大于弹性连接件3302,弹性连接件3302可以在Z轴方向上的弹性相对较大,以为质量块311提供Z轴方向上的缓冲空间。弹性连接件3302相对于Y轴的倾斜角可以大于传动梁361相对于Y轴的倾斜角。在一个实施例中,质量块311相对于Y轴的倾斜角可以大于传动梁361相对于Y轴的倾斜角。也就是说,传动梁361的绕X轴的旋转角小于质量块311绕X轴的旋转角。
弹性连接件3302在Y轴方向上的宽度可以小于质量块311在Y轴方向上的宽度。弹性连接件3302、弹性连接件3306相对于Y轴的倾斜角可以大于质量块311相对于Y轴的倾斜角。
类似地,弹性连接件3306相对于Y轴的倾斜角可以大于传动梁361相对于Y轴的倾斜角。弹性连接件3306的具体实施例可以参照弹性连接件3302。传动梁362以及与传动梁362相连的弹性连接件的具体实施例可以参照传动梁361以及与传动梁361相连的弹性连接件。
图9A示出了机械结构层300检测绕Y轴的角速度的示意性结构图。沿Y+方向观察图9A所示的机械结构层300,可以得到图9B所示的示意性结构图。下面结合图9A、图9B,阐述通过质量块312和质量块315检测绕Y轴的角速度的原理。
如前所述,当惯性传感器具有绕Y轴旋转的角速度分量时,质量块312和质量块315具有沿Z轴方向的位移分量,质量块312和质量块315沿Z轴方向的位移分量方向相反。假设质量块312可以具有沿Z+方向的位移分量,质量块315可以具有沿Z-方向的位移分量。质量块312有远离检测电极232的趋势,质量块315有靠近检测电极235的趋势。
由于质量块312可以通过支撑梁3202驱动块381相连,驱动块381在Z轴方向上可以不发生移动,质量块312的靠近驱动块381的一侧在Z轴方向上的位移相对较小,质量块312的远离驱动块381的一侧在Z轴方向上的位移相对较大。质量块312可以相对于X轴,朝向第一方向倾斜。类似地,质量块315可以相对于X轴,朝向第二方向倾斜,第一方向和第二方向相反。也就是说,质量块312、质量块315可以具有绕Y轴旋转的角速度分量。质量块312和质量块315绕Y轴旋转的角速度分量的方向可以相反。
弹性连接件3303可以连接在传动梁363和质量块312之间。弹性连接件3303可以在Z轴方向上伸缩,以减少传动梁363沿Z轴方向的位移分量,为质量块312提供Z轴方向上的缓冲空间和绕Y轴旋转的扭转刚度,减少质量块312和质量块315对传动梁363的影响。传动梁363可以进一步吸收部分绕Y轴旋转的扭矩,减少质量块313和质量块316沿Z轴的位移。传动梁363的刚度可以大于弹性连接件3303,弹性连接件3303相对于X轴的倾斜角可以大于传动梁363相对于X轴的倾斜角。在一个实施例中,质量块312相对于X轴的倾斜角可以大于传动梁363相对于X轴的倾斜角。也就是说,传动梁363的绕Y轴的旋转角小于质量块312绕Y轴的旋转角。
弹性连接件3303在X轴方向上的宽度可以小于质量块312在X轴方向上的宽度。弹性连接件3303相对于X轴的倾斜角可以大于质量块312相对于X轴的倾斜角。
类似地,弹性连接件3309相对于X轴的倾斜角可以大于传动梁363相对于X轴的倾 斜角。弹性连接件3309的具体实施例可以参照弹性连接件3303。传动梁364以及与传动梁364相连的弹性连接件的具体实施例可以参照传动梁363以及与传动梁363相连的弹性连接件。
图10A示出了机械结构层300检测绕Y轴的角速度的示意性结构图。沿Y+方向观察图10A所示的机械结构层300,可以得到图10B所示的示意性结构图。下面图10A、图10B,阐述通过质量块313和质量块316检测绕Z轴的角速度的原理。
如前所述,当惯性传感器具有绕Z轴旋转的角速度分量时,质量块312和质量块315具有沿Y轴方向的位移分量,质量块312和质量块315沿Y轴方向的位移分量方向相反,以带动质量块313和质量块316具有沿Y轴方向的位移分量,且质量块313和质量块316沿Y轴方向的位移分量方向相反。假设质量块313可以具有沿Y+方向的位移分量,质量块316可以具有沿Y-方向的位移分量。质量块313有远离检测电极的趋势,质量块316有靠近检测电极的趋势。
由于质量块312可以通过支撑梁3202与驱动块381相连,驱动块381在Y轴方向上可以不发生移动,质量块312的靠近驱动块381的一侧在Y轴方向上的位移相对较小,质量块312的远离驱动块381的一侧在Y轴方向上的位移相对较大。质量块312可以相对于X轴,朝向第一方向倾斜。类似地,质量块315可以相对于X轴,朝向第二方向倾斜,第一方向和第二方向相反。也就是说,质量块312、质量块315可以具有绕Z轴旋转的角速度分量,质量块312、质量块315绕Z轴旋转的角速度分量的方向可以相反。传动梁363可以为质量块313和质量块316提供绕Z轴旋转的扭转支撑。
质量块312从质量块313的一端延伸至质量块313的另一端。弹性连接件3303可以连接在质量块312的一端和质量块313的一端之间。弹性连接件3308可以连接在质量块312的另一端和质量块313的另一端之间。
弹性连接件3303和弹性连接件3308可以在Y轴方向上伸缩,弹性连接件3303和弹性连接件3308的弹性力可以相互抵消,以使得质量块313可以跟随质量块312具有沿Y轴且朝向第一方向的位移分量。弹性连接件3303和弹性连接件3308可以在Y轴方向上具有弹性,以减少质量块313沿Y轴方向的位移分量,为质量块312提供Y轴方向上的缓冲空间。质量块312沿Y轴的位移分量可以大于质量块313沿Y轴的位移分量。类似地,质量块315沿Y轴的位移分量可以大于质量块316沿Y轴的位移分量。
在一个实施例中,支撑梁3203在X轴方向上的宽度可以小于质量块312在X轴方向上的宽度。支撑梁3202相对于X轴的倾斜角可以大于质量块312相对于X轴的倾斜角。
在另一个实施例中,支撑梁3202在X轴方向上的宽度可以小于传动梁363的一半在X轴方向上的宽度。支撑梁3202相对于X轴的倾斜角可以大于传动梁363相对于X轴的倾斜角。
与支撑梁3202对称设置的其他支撑梁的具体实施例可以参照支撑梁3202的具体实施例。
本申请实施例通过例如刚度设计、解耦模式设计等,调整惯性传感器的固有频率模态,以促使惯性传感器的有效模态可以尽可能远离惯性传感器的干扰模态,提高惯性传感器的滤波效果,降低惯性传感器的噪声水平。进一步地,通过调整惯性传感器的检测频率和驱动频率,有利于提高惯性传感器的灵敏度。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种惯性传感器,其特征在于,包括:
    第一质量块和第一检测电极,所述第一质量块能够相对于所述第一检测电极移动,所述第一质量块和所述第一检测电极沿第一方向排列以形成第一电容,所述第一电容用于检测绕第二方向的角速度;
    第二质量块和第二检测电极,所述第二质量块能够相对于所述第二检测电极移动,所述第二质量块和所述第二检测电极沿所述第二方向排列以形成第二电容,所述第二电容用于检测绕所述第一方向的角速度;
    第一连接件,所述第一连接件连接在所述第一质量块的第一端与所述第二质量块的第一端之间;
    所述第一质量块被驱动以在第三方向具有位移分量,所述第一方向、所述第二方向、所述第三方向相互正交;
    当所述第一质量块具有绕所述第一方向的角速度分量时,所述第一质量块具有沿所述第二方向的位移分量,所述第一质量块用于通过所述第一连接件牵引所述第二质量块沿所述第二方向移动,所述第二质量块的沿所述第二方向的位移分量与所述第二电容的容值变化量对应;
    当所述第一质量块具有绕所述第二方向的角速度分量时,所述第一质量块具有沿所述第一方向的位移分量,所述第一质量块的沿所述第一方向的位移分量与所述第一电容的容值变化量对应。
  2. 根据权利要求1所述的惯性传感器,其特征在于,所述第一连接件包括第一弹性连接件,所述第一弹性连接件用于为所述第一质量块提供所述第一方向和所述第三方向的缓冲空间,以使得所述第二质量块的第一端在所述第一方向上的位移分量小于所述第一质量块的第一端在所述第一方向上的位移分量,且所述第二质量块的第一端在所述第三方向上的位移分量小于所述第一质量块的第一端在所述第三方向上的位移分量。
  3. 根据权利要求2所述的惯性传感器,其特征在于,所述第一连接件还包括:
    第一支撑梁,所述第一支撑梁连接在所述第一弹性连接件和所述第二质量块之间。
  4. 根据权利要求2或3所述的惯性传感器,其特征在于,所述第一连接件还包括:
    第一传动梁,所述第一传动梁沿所述第三方向延伸,所述第一传动梁的一端连接在所述第一弹性连接件和所述第二质量块之间,当所述第一质量块具有绕所述第一方向的角速度分量时,所述第一传动梁绕所述第一方向旋转。
  5. 根据权利要求4所述的惯性传感器,其特征在于,当所述第一质量块具有绕所述第二方向的角速度分量时,所述第一传动梁绕所述第二方向的旋转角小于所述第一质量块绕所述第二方向的旋转角。
  6. 根据权利要求1至5中任一项所述的惯性传感器,其特征在于,所述第一质量块从所述第二质量块的第一端延伸至所述第二质量块的第二端,,所述惯性传感器还包括:
    第二连接件,所述第二连接件连接在所述第一质量块的第二端和所述第二质量块的第二端之间,所述第二连接件与所述第一连接件相对于所述第二质量块对称。
  7. 根据权利要求1至6中任一项所述的惯性传感器,其特征在于,所述惯性传感器还包括:
    驱动电极和驱动块,所述驱动电极和所述驱动块形成的电容用于驱动所述驱动块相对于所述驱动电极沿所述第三方向往复移动;
    第二支撑梁,所述第二支撑梁连接在所述驱动块与所述第一质量块之间,所述驱动块用于通过所述第二支撑梁驱动所述第一质量块,以使所述第一质量块在所述第三方向具有位移分量。
  8. 根据权利要求1至7中任一项所述的惯性传感器,其特征在于,所述惯性传感器还包括:
    第三质量块和第三检测电极,所述第三质量块能够相对于所述第三检测电极移动,所述第三质量块和所述第三检测电极沿所述第一方向排列以形成第三电容,所述第三电容用于检测绕所述第三方向的角速度,所述第三质量块被驱动以在所述第二方向具有位移分量,当所述第三质量块具有绕所述第三方向的角速度分量时,所述第三质量块具有沿所述第一方向的位移分量,所述第三质量块的沿所述第一方向的位移分量与所述第三电容的容值变化量对应。
  9. 根据权利要求8所述的惯性传感器,其特征在于,所述第一质量块被驱动块驱动,所述驱动块被配置沿所述第三方向往复移动,所述第三质量块和所述驱动块之间连接有转向梁,所述转向梁的靠近所述驱动块的一端用于沿所述第三方向往复移动,所述转向梁的靠近所述第三质量块的一端用于沿所述第二方向往复移动,以使所述第三质量块具有沿所述第二方向的位移分量。
  10. 根据权利要求8或9所述的惯性传感器,其特征在于,所述惯性传感器还包括:
    第二弹性连接件,所述第二弹性连接件连接在所述驱动块和所述第一质量块之间,用于为所述第三质量块提供所述第一方向的缓冲空间。
  11. 根据权利要求10所述的惯性传感器,其特征在于,所述惯性传感器还包括:
    第二传动梁,所述第二传动梁连接在所述第二弹性连接件和所述驱动块之间,所述第二传动梁能够绕所述第三方向旋转,在所述第三质量块绕所述第三方向旋转时,所述第二传动梁绕所述第三方向的旋转角小于所述第三质量块绕所述第三方向的旋转角。
  12. 根据权利要求8至11中任一项所述的惯性传感器,其特征在于,所述惯性传感器还包括:
    第三弹性连接件,所述第三弹性连接件与所述第三质量块相连,所述第三弹性连接件用于为所述第三质量块提供所述第一方向的支撑力,还用于为所述第三质量块提供所述第二方向的缓冲空间。
  13. 根据权利要求12所述的惯性传感器,其特征在于,所述第三弹性连接件位于所述第三质量块的远离所述第二质量块的一侧。
  14. 根据权利要求8至13中任一项所述的惯性传感器,其特征在于,所述惯性传感器包括机械结构层、覆盖层和衬底层,所述机械结构层位于所述覆盖层和所述衬底层之间,所述第一质量块、所述第二质量块设置在所述机械结构层,所述第一检测电极设置在所述衬底层,所述第二检测电极设置在所述衬底层或所述机械结构层。
  15. 根据权利要求1至14中任一项所述的惯性传感器,其特征在于,所述惯性传感 器相对于所述第二方向对称,且所述惯性传感器相对于所述第三方向对称。
  16. 一种电子设备,其特征在于,包括如权利要求1至15中任一项所述的惯性传感器。
PCT/CN2022/111629 2021-08-31 2022-08-11 惯性传感器和电子设备 WO2023029927A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22863068.7A EP4379319A1 (en) 2021-08-31 2022-08-11 Inertial sensor and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111016671.3A CN115727840A (zh) 2021-08-31 2021-08-31 惯性传感器和电子设备
CN202111016671.3 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023029927A1 true WO2023029927A1 (zh) 2023-03-09

Family

ID=85291720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111629 WO2023029927A1 (zh) 2021-08-31 2022-08-11 惯性传感器和电子设备

Country Status (3)

Country Link
EP (1) EP4379319A1 (zh)
CN (1) CN115727840A (zh)
WO (1) WO2023029927A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078746A1 (en) * 2000-07-07 2002-06-27 Murata Manufacturing Co., Ltd. External force measuring device
CN103175982A (zh) * 2011-12-23 2013-06-26 马克西姆综合产品公司 微机械科氏转速传感器
CN106871887A (zh) * 2015-12-10 2017-06-20 上海矽睿科技有限公司 振动模组以及陀螺仪
US20180135985A1 (en) * 2015-05-12 2018-05-17 Shin Sung C&T Co., Ltd. Mems gyroscope having 2-degree-of-freedom sensing mode
TW201836967A (zh) * 2017-04-04 2018-10-16 日商村田製作所股份有限公司 用於角速度的微機械感測器元件
CN109798886A (zh) * 2017-11-16 2019-05-24 上海矽睿科技有限公司 一种陀螺仪结构
WO2021074346A1 (fr) * 2019-10-18 2021-04-22 Safran Electronics & Defense Capteur à compensation mécanique de l'anisotropie de fréquence

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078746A1 (en) * 2000-07-07 2002-06-27 Murata Manufacturing Co., Ltd. External force measuring device
CN103175982A (zh) * 2011-12-23 2013-06-26 马克西姆综合产品公司 微机械科氏转速传感器
US20180135985A1 (en) * 2015-05-12 2018-05-17 Shin Sung C&T Co., Ltd. Mems gyroscope having 2-degree-of-freedom sensing mode
CN106871887A (zh) * 2015-12-10 2017-06-20 上海矽睿科技有限公司 振动模组以及陀螺仪
TW201836967A (zh) * 2017-04-04 2018-10-16 日商村田製作所股份有限公司 用於角速度的微機械感測器元件
CN109798886A (zh) * 2017-11-16 2019-05-24 上海矽睿科技有限公司 一种陀螺仪结构
WO2021074346A1 (fr) * 2019-10-18 2021-04-22 Safran Electronics & Defense Capteur à compensation mécanique de l'anisotropie de fréquence

Also Published As

Publication number Publication date
CN115727840A (zh) 2023-03-03
EP4379319A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
US11808574B2 (en) Micromechanical detection structure of a MEMS multi-axis gyroscope, with reduced drifts of corresponding electrical parameters
US20200225038A1 (en) Configuration to reduce non-linear motion
JP6020793B2 (ja) 物理量センサーおよび電子機器
CN103376101B (zh) 陀螺传感器以及电子设备
US20200363448A1 (en) Mems tri-axial accelerometer with one or more decoupling elements
JP6195051B2 (ja) ジャイロセンサー、電子機器、及び移動体
US20130283909A1 (en) Gyro sensor, electronic apparatus, and mobile unit
JP6061064B2 (ja) ジャイロセンサー、および電子機器
WO2016182303A1 (ko) 2자유도 감지 모드를 갖는 멤스 자이로스코프
TW201546452A (zh) 電子裝置、電子機器及移動體
US9389078B2 (en) Gyro sensor and electronic apparatus
JP2023029339A (ja) ジャイロセンサー、電子機器、及び移動体
JP2017083286A (ja) 物理量検出振動片、物理量検出装置、電子機器および移動体
CN106017448A (zh) 角速度检测元件、角速度检测装置、电子设备以及移动体
JP6245459B2 (ja) ジャイロセンサーおよび電子機器
JP6070920B2 (ja) ジャイロセンサーおよび電子機器
WO2023029927A1 (zh) 惯性传感器和电子设备
JP2013234904A (ja) ジャイロセンサーおよびその製造方法、並びに電子機器
WO2023155637A1 (zh) 角速度传感器、惯性传感器和电子设备
JP5652117B2 (ja) 物理量センサーおよび電子機器
JP6319610B2 (ja) ジャイロセンサーおよびその製造方法、並びに電子機器
CN113899353B (zh) 陀螺仪和电子设备
JP5807381B2 (ja) 物理量センサー、および電子機器
JP2013234913A (ja) ジャイロセンサー、電子機器
JP2013213785A (ja) ジャイロセンサー及びそれを用いた電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022863068

Country of ref document: EP

Effective date: 20240301

NENP Non-entry into the national phase

Ref country code: DE