WO2023029888A1 - 制冷用分液器及空调 - Google Patents

制冷用分液器及空调 Download PDF

Info

Publication number
WO2023029888A1
WO2023029888A1 PCT/CN2022/110734 CN2022110734W WO2023029888A1 WO 2023029888 A1 WO2023029888 A1 WO 2023029888A1 CN 2022110734 W CN2022110734 W CN 2022110734W WO 2023029888 A1 WO2023029888 A1 WO 2023029888A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
liquid
inlet pipe
liquid separator
copper
Prior art date
Application number
PCT/CN2022/110734
Other languages
English (en)
French (fr)
Inventor
斯壮伟
章杜波
Original Assignee
含山瑞可金属有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 含山瑞可金属有限公司 filed Critical 含山瑞可金属有限公司
Priority to JP2023558932A priority Critical patent/JP2023553760A/ja
Priority to KR1020237019250A priority patent/KR20230118566A/ko
Publication of WO2023029888A1 publication Critical patent/WO2023029888A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to a liquid separator for refrigeration and an air conditioner.
  • the liquid separator is an important part in the refrigeration cycle system, which is installed between the throttling device and the evaporator, and is used to evenly distribute the refrigerant flowing out of the throttling device to each branch of the evaporator middle.
  • the present invention provides a liquid separator for refrigeration.
  • the present invention provides a liquid separator for refrigeration, which includes a liquid separator body and a mixing deflector.
  • the dispenser body has a dispenser inner chamber.
  • the mixing deflector is arranged in the inner cavity of the liquid separator.
  • the mixing deflector has a concave cavity and the first mixing chamber is formed in the concave cavity, and the second mixing cavity is formed between the mixing deflector and the liquid outlet of the liquid separator body.
  • the mixing deflector is evenly distributed along the circumferential direction with a plurality of throttling guide holes connecting the first mixing chamber and the second mixing chamber; the concave cavity makes the two-phase refrigerant entering the first mixing chamber The first mixing chamber returns the flow, and then reaches the second mixing chamber through the throttling orifice.
  • the plurality of throttling guide holes evenly distributed along the circumference of the mixing guide plate are groove holes, through holes or a combination of through holes and groove holes; It is surrounded by openings of two curved surface stretching parts on both sides of the flow plate that are symmetrical to the center.
  • the mixing deflector includes a plate body and a concave cavity formed in the center of the plate body and extending toward the liquid outlet end of the liquid distributor body, and a transmission line is formed between the plate body and the liquid inlet end of the liquid distributor body. aisle.
  • the liquid dispenser for cold use further includes a liquid inlet pipe, and the liquid inlet pipe is sealingly welded to the liquid inlet pipe hole of the liquid dispenser body.
  • the output end of the liquid inlet pipe extends into the first mixing chamber, and the distance between the end face of the output end of the liquid inlet pipe and the opening end face of the first mixing chamber is less than or equal to 1 times that of the liquid inlet pipe outside diameter.
  • the outlet end face of the liquid inlet pipe is located outside the first mixing chamber, and the distance between the outlet end face of the liquid inlet pipe and the opening end face of the first mixing chamber is less than or equal to 0.8 times the liquid inlet pipe outside diameter.
  • the hole of the liquid inlet tube is provided with a flange portion facing the inside or outside of the liquid distributor body in the circumferential direction, and the liquid inlet pipe is inner or outer sleeved on the flange portion and sealed and welded to the flange portion.
  • the liquid separator for refrigeration when the liquid inlet pipe is a stainless steel pipe or a carbon steel pipe, the liquid separator for refrigeration further includes a copper sleeve connecting pipe sleeved on the end of the liquid inlet pipe, and the copper sleeve connecting pipe is sleeved on the liquid inlet pipe.
  • the copper pipe of the pipeline At the end of the pipe, the copper pipe of the pipeline is sleeved on the copper sleeve connecting pipe.
  • the length of the overlapping area of the three sockets formed by the copper pipe of the pipeline, the copper sleeve connecting pipe and the liquid inlet pipe is L11.
  • the copper pipe of the pipeline and the copper sleeve The socket length of the connecting pipe is L01, the socket length of the copper sleeve connecting pipe and the liquid inlet pipe is L21, 0.2L01 ⁇ L11 ⁇ 0.8L01 and 0.2L21 ⁇ L11 ⁇ 0.8L21.
  • the liquid inlet pipe is a copper pipe and the liquid distributor body is stainless steel
  • the liquid inlet pipe is sleeved in the flange portion of the hole of the liquid inlet pipe
  • the pipeline copper pipe is sleeved in the liquid inlet pipe
  • the length of the overlapping area formed by the pipe copper pipe, the liquid inlet pipe and the flange part is L11'
  • the socket length of the pipeline copper pipe and the liquid inlet pipe is L01'
  • the liquid inlet pipe and the flange part The socket length is L21', 0.2L01' ⁇ L11' ⁇ 0.8L01' and 0.2L21' ⁇ L11' ⁇ 0.8L21'.
  • the liquid distributor body includes a cylinder, at least one liner, a plurality of branch pipes and an end cap.
  • the cylinder body is integrally formed and has a single-end open shape, and the bottom of the cylinder body has a plurality of branch pipe holes.
  • At least one liner is arranged on the inner bottom surface of the barrel, and each liner has a plurality of liner holes corresponding to the plurality of branch pipe holes.
  • a plurality of branch pipes respectively extend into the holes of the branch pipes and the extending ends extend into the corresponding hole of the liner, and each branch pipe is sealed and welded in the hole of the corresponding branch pipe and the hole of the liner.
  • the end cap is closed on the open end of the barrel and sealed and welded with the barrel to form the inner cavity of the liquid dispenser.
  • a liquid inlet pipe hole is opened on the end cap and the liquid inlet pipe hole faces the first mixing chamber.
  • each lining plate also has a through hole and the through hole is located in the center line of the circle formed by the holes of the lining plates; when there are multiple lining plates, the through holes on the multiple lining plates The holes correspond to overlap to form a cavity.
  • the liquid distributor body includes a cylinder body, at least two liners and a plurality of branch pipes.
  • the cylinder body is integrally formed and has two open ends.
  • the liquid inlet end of the cylinder body has a liquid inlet pipe hole, and the liquid inlet pipe hole is facing the first mixing chamber.
  • At least two liners are superimposed and sealed and welded to the liquid outlet of the cylinder.
  • the inner chamber of the liquid separator is formed between the cylinder and the liners.
  • Each liner has multiple liner holes, and at least two liners are stacked. After that, the corresponding liner holes overlap to form overlapping holes.
  • a plurality of shunt branch pipes respectively extend into and seal-weld to each overlapping hole.
  • a through hole on the inner liner and the through hole is located in the center line of the circle formed by the holes of the multiple liners;
  • the through-holes overlap to form a cavity.
  • the inner side wall of the cylinder has a position-limiting and fixing part that protrudes toward the inside of the cylinder.
  • the position-limiting and fixing part fixes the liner in the cylinder.
  • the limit fixing part, the multi-segment arc limit fixing part or the circular ring limit fixing part; or at least one lining board is interference-fitted in the barrel.
  • the cross-sectional shape of the cylinder is any one of circular, square or oval, and the cross-sectional shape of the liner and the mixing deflector matches the cross-sectional shape of the cylinder.
  • the liquid separator for refrigeration when the plurality of branch pipes and lining plates are all stainless steel or carbon steel, the liquid separator for refrigeration further includes a plurality of copper-sleeved connecting pipes, and the plurality of copper-sheathed connecting pipes are respectively sleeved in each branch pipe.
  • a plurality of pipeline copper pipes are sleeved in each copper sleeve connecting pipe, and the length of the overlapping area formed by the corresponding pipeline copper pipe, copper sleeve connecting pipe and shunt branch pipe is L12.
  • the socket length L02 of the copper pipe and the copper sleeve connecting pipe, the socket length of the copper sleeve connecting pipe and the shunt branch pipe is L22, 0.2L02 ⁇ L12 ⁇ 0.8L02 and 0.2L22 ⁇ L12 ⁇ 0.8L22.
  • each branch pipe is respectively sleeved in the overlapping hole formed by overlapping the corresponding branch pipe hole and at least one liner hole; or each branch pipe is respectively sleeved in the At least two stainless steel liners are superimposed and the corresponding liner holes are overlapped to form overlapping holes; multiple pipeline copper pipes are sleeved in each branch pipe, and the copper pipe of each pipeline, the corresponding branch pipe and the overlapping holes are formed.
  • the length of the overlapping area of the three sockets formed is L12'
  • the socket length of the pipe copper pipe and the branch pipe is L02'
  • the socket length of the branch pipe and the overlapping hole is L22', 0.2L02' ⁇ L12' ⁇ 0.8L02 ' and 0.2L22' ⁇ L12' ⁇ 0.8L22'.
  • the present invention also provides an air conditioner, which includes a throttling device, an evaporator, and the above liquid separator for refrigeration, the liquid separator for refrigeration is connected between the throttling device and the evaporator, and the throttling device transfers the refrigerant The refrigerant is output to the first mixing chamber of the liquid separator for refrigeration, and the refrigerant is mixed through the first mixing chamber and the second mixing chamber and then output to the evaporator.
  • an air conditioner which includes a throttling device, an evaporator, and the above liquid separator for refrigeration, the liquid separator for refrigeration is connected between the throttling device and the evaporator, and the throttling device transfers the refrigerant The refrigerant is output to the first mixing chamber of the liquid separator for refrigeration, and the refrigerant is mixed through the first mixing chamber and the second mixing chamber and then output to the evaporator.
  • a mixing deflector is arranged in the inner cavity of the liquid separator, and a first mixing cavity is formed in the concave cavity of the mixing deflector, and the mixing deflector and the distribution plate
  • a second mixing chamber is formed between the liquid outlet ends of the liquid device body.
  • multiple throttling orifices communicate with the first mixing chamber and the second mixing chamber while throttling the refrigerant with its reduced cross-section, changing the speed of the refrigerant, thereby further improving the second mixing chamber.
  • the mixing effect in the cavity thus, the problem of poor energy efficiency ratio of the refrigeration system caused by the uneven mixing of the refrigerant in the existing liquid separator is well solved.
  • FIG. 1A is a schematic structural diagram of a liquid separator for refrigeration provided in Embodiment 1 of the present invention.
  • FIG. 1B is an enlarged schematic view of point A in FIG. 1A .
  • FIG. 1C is a schematic diagram showing the trend of local refrigerant in FIG. 1A .
  • FIG. 2A is a schematic structural diagram of a mixing deflector in the liquid separator for refrigeration shown in FIG. 1A .
  • FIG. 2B is a schematic cross-sectional view of FIG. 2A .
  • FIG. 3A is a schematic structural diagram of a mixing deflector in a liquid separator for refrigeration provided by another embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view of FIG. 3A .
  • FIG. 3C is a schematic structural diagram of a liquid separator for refrigeration with the mixing deflector shown in FIG. 3A .
  • FIG. 4A is a schematic structural diagram of a mixing deflector in a liquid separator for refrigeration provided by another embodiment of the present invention.
  • FIG. 4B is a schematic cross-sectional view along line B-B of FIG. 4A .
  • FIG. 4C is a schematic structural diagram of a mixing deflector in a liquid separator for refrigeration provided by another embodiment of the present invention.
  • FIG. 5A is a schematic structural view of the barrel in FIG. 1A.
  • Fig. 5B is a schematic diagram of the bottom of the barrel shown in Fig. 5A.
  • FIG. 6 is a schematic diagram of the structure of the liner in FIG. 1A.
  • FIG. 7 is a schematic structural view of the end cap in FIG. 1A .
  • Fig. 8A and Fig. 8B are schematic structural diagrams of mixing deflectors matching cylinders with different cross-sectional shapes provided by another embodiment of the present invention
  • FIG. 9A , FIG. 9B and FIG. 9C are schematic structural diagrams of a liquid separator for refrigeration provided by another embodiment of the present invention.
  • Fig. 10 is a schematic diagram of the air conditioner provided by Embodiment 1 of the present invention.
  • FIG. 11 is a schematic structural diagram of a liquid separator for refrigeration provided in Embodiment 2 of the present invention.
  • Fig. 12 is a schematic structural diagram of a liquid separator for refrigeration provided by another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a liquid separator for refrigeration provided by Embodiment 3 of the present invention.
  • FIG. 14 is a schematic structural diagram of a liquid separator for refrigeration provided in Embodiment 4 of the present invention.
  • FIG. 15 is a schematic diagram of the assembly of the barrel, liner and mixing deflector in FIG. 14 .
  • Fig. 16 is a schematic structural diagram of a liquid separator for refrigeration provided by another embodiment of the present invention.
  • Fig. 17 is a schematic structural diagram of a liquid separator for refrigeration provided in Embodiment 5 of the present invention.
  • 17A and 17B are enlarged schematic diagrams of points C and D in FIG. 17 .
  • Fig. 18 is a schematic structural view of a liquid separator for refrigeration provided by another embodiment of the present invention.
  • Fig. 19 is a schematic structural diagram of a liquid separator for refrigeration provided in Embodiment 6 of the present invention.
  • FIG. 19A is an enlarged schematic view of point E in FIG. 19 .
  • FIG. 19B is an enlarged schematic view of point F in FIG. 19 .
  • the liquid separator for refrigeration provided in this embodiment includes a liquid separator body 10 and a mixing deflector 5 .
  • the dispenser body 10 has a dispenser cavity.
  • the mixing deflector 5 is arranged in the inner cavity of the liquid separator.
  • the mixing deflector 5 has a concave cavity portion 52 and a first mixing chamber 501 is formed in the concave cavity portion 52.
  • a second mixing chamber 502 is formed between the liquid outlets, and a plurality of throttling guide holes 503 communicating with the first mixing chamber 501 and the second mixing chamber 502 are uniformly distributed along the circumference of the mixing deflector 5 .
  • the concave cavity portion 52 allows the two-phase refrigerant entering the first mixing chamber 501 to flow back along the first mixing chamber 501 after being mixed, and then reach the second mixing chamber 502 through the throttling guide hole 503 .
  • the liquid distributor body 10 includes a cylinder body 1 , at least one lining plate 2 , a plurality of branch pipes 3 and an end cap 4 .
  • the cylinder body 1 is integrally formed and has a single-end open shape, and the bottom of the cylinder body 1 has a plurality of branch pipe holes 11 .
  • At least one liner 2 is arranged on the inner bottom surface of the cylinder body 1 , and a second mixing chamber 502 is formed between the mixing deflector 5 and the liner 2 .
  • Each liner 2 has a plurality of liner holes 21 corresponding to the plurality of branch pipe holes 11 .
  • a plurality of distribution branch pipes 3 extend into a plurality of distribution branch pipe holes 11 and extend into the corresponding liner hole 21, and each distribution branch pipe 3 is sealed and welded in the corresponding distribution branch pipe hole 11 and liner hole 21 .
  • the end cap 4 covers the open end of the cylinder body 1, and the end cap 4 and the cylinder body 1 are sealed and welded to form the inner chamber of the liquid separator.
  • the end cap 4 has a liquid inlet pipe hole 41 and the liquid inlet pipe hole 41 is facing the A mixing chamber 501 .
  • the inner cavity of the liquid separator refers to the cavity formed between the end cap 4, the side wall of the cylinder 1 and the liner 2 after the end cap 4 is sealed and welded to the open end of the cylinder 1. lumen.
  • the mixing deflector 5 includes a plate body 51 and a concave cavity portion 52 formed in the center of the plate body 51 and extending toward the bottom of the cylinder body 1.
  • a first mixing chamber 501 is formed in the concave cavity portion 52.
  • the throttling guide holes 503 are evenly distributed along the circumference of the plate body 51 .
  • the component of the mixing deflector 5 provides two mixing chambers distributed radially for the refrigerant in the inner cavity of the liquid separator.
  • the gas-liquid mixed two-phase refrigerant input from the liquid inlet pipe hole 41 enters the first mixing chamber 501, flows back along the first mixing chamber 501 after being fully mixed; then enters the second mixing chamber 502 from the throttling guide hole 503, Perform secondary mixing.
  • the two-time mixing of the first mixing chamber 501 and the second mixing chamber 502 allows the two-phase refrigerant to be fully mixed.
  • the arrangement of the throttling orifice 503 realizes the diversion communication between the first mixing chamber 501 and the second mixing chamber 502, and at the same time utilizes its reduced cross-section to realize the throttling of the two-phase refrigerant.
  • the gas phase has a higher velocity than the liquid phase, so it tends to break through the front liquid phase, further improving the mixing uniformity of the refrigerant in the second mixing chamber 502 .
  • the two mixing chambers distributed in the radial direction make the once-mixed refrigerant need to flow back along the first mixing chamber 501 before reaching the second mixing chamber 502 through the throttling guide hole 503, and the two-phase refrigerant
  • the schematic diagram of the trend is shown by the arrow in Figure 1C.
  • This setting also greatly prolongs the transmission path of the refrigerant in the inner cavity of the liquid separator, providing more space for the mixing of two-phase refrigerants.
  • the returning refrigerant reaches the throttling guide hole 503 through the transmission channel 505 formed between the end cover 4 and the plate body 51 .
  • a plurality of throttling guide holes 503 uniformly distributed along the circumference of the mixing guide plate 5 are groove holes, and the groove holes are located on the mixing guide plate 5 It is surrounded by the openings of the two curved surface stretching parts 53 that are symmetrical on both sides and the center.
  • the forming method of the groove hole is: first punch out a narrow and long through hole on the mixing deflector 5, and the narrow and long through hole can be an elliptical hole with a smaller short radius or a rectangular hole with a smaller width;
  • the deflector 5 stretches the edge of the long and narrow through hole to both sides as a reference, thereby forming two curved surface stretching parts 53 that are centrally symmetrical.
  • the groove hole formed by the two curved surface stretching parts 53 guides the mixed two-phase refrigerant radially, so that the two-phase refrigerant after passing through the throttling guide hole 503 diverges to the peripheral wall of the cylinder 1 and passes through The surrounding wall of the cylinder body 1 is reflected back to the second mixing chamber 502, thereby greatly improving the mixing effect of the two-phase refrigerant in the second mixing chamber 502.
  • the radial flow guide of the groove hole also greatly prolongs the mixing path of the two-phase refrigerant in the second mixing chamber 502 , ensuring uniform mixing of the two-phase refrigerant.
  • the throttling guide holes 503 of the recessed hole structure throttling the two-phase refrigerant while conducting radial flow, increasing the flow velocity of the two-phase refrigerant.
  • the combination of throttling and radial flow guide makes the two-phase refrigerant form a high-speed and uniform swirl flow in the area of the second mixing chamber 502 close to the throttling orifice 503 , and the gas-liquid two-phase in the refrigerant is fully mixed.
  • the throttling guide hole 503 can also be a through hole, which can simplify the processing procedure of the mixing deflector 5 and reduce the processing cost.
  • the throttling orifice may also be composed of a plurality of through holes 5031 and a plurality of groove holes 5032 .
  • the bottom of the cavity portion 52 is a plane.
  • the bottom of the concave cavity can also be a hemispherical surface.
  • the liquid distributor for refrigeration also includes a liquid inlet pipe 6 , and the liquid inlet pipe 6 is sealed and welded in the liquid inlet pipe hole 41 on the end cover 4 .
  • the present invention does not make any limitation thereto.
  • the liquid separator for refrigeration may not include a liquid inlet pipe, and the liquid inlet pipe hole is directly connected to an external air-conditioning pipeline.
  • the output end of the liquid inlet pipe 6 extends into the first mixing chamber 501, and the distance D1 from the end face of the outlet end of the liquid inlet pipe 6 to the opening end face of the first mixing chamber 501 is less than or equal to 1 times the liquid inlet The outer diameter d of the tube 6.
  • the output end of the liquid inlet pipe 6 extends into the first mixing chamber 501 to ensure that the output two-phase refrigerant can all enter the first mixing chamber 501 .
  • the setting of the distance D1 ensures that there is enough space in the first mixing chamber 501 to realize the mixing of refrigerants and improve the uniformity of mixing.
  • a throttling gap 504 is formed between the protruding part of the liquid inlet pipe 6 and the first mixing chamber 501.
  • the throttle gap 504 with a small area reaches the throttle guide hole 503 after throttling.
  • the distance D1 from the output end surface of the liquid inlet pipe 6 to the opening end surface of the first mixing chamber is set equal to 0.5 times the outer diameter d of the liquid inlet pipe 6 .
  • the present invention does not make any limitation thereto.
  • the distance D1 from the output end surface of the liquid inlet pipe to the opening end surface of the first mixing chamber may also be other values that are less than 1 times the outer diameter d of the liquid inlet pipe.
  • the plate body 51 of the mixing deflector is fixedly connected to the end cover 4 .
  • it is welded and connected to the end cap 4 by means of resistance welding.
  • the present invention does not make any limitation thereto.
  • other ways of fixing the mixing deflector to the end cover are within the protection scope of the present invention, such as laser welding, argon arc welding and other self-fluxing welding or self-fluxing wire welding; Fixed connection by means of mechanical fixation such as fasteners or riveting.
  • the mixing deflector can also be fixed to the cylinder or the liner, such as welding the bottom of the mixing deflector to the bottom of the cylinder or the liner;
  • the manner in which the plate is fixed to the cylinder or the liner is within the protection scope of the present invention.
  • the mixing deflector 5 forms two mixing chambers in the inner cavity of the liquid separator to achieve sufficient mixing of the two-phase refrigerant, which solves the problem of the existing structure of the liquid separator.
  • the combined liquid separator body of the cylinder body 1 , the liner plate 2 and the end cap 4 also greatly reduces the manufacturing process and manufacturing cost of the liquid separator for refrigeration.
  • the present invention does not impose any limitation on the structure of the dispenser body.
  • the mixing deflector provided by the present invention is also applicable to liquid distributor bodies of other structures.
  • the liquid distributor body can be integrated, and the diversion branch pipe holes are made by drilling.
  • the body of the liquid distributor is a split type, but the branch pipe hole is made by drilling; the difference between Figure 9C and Figure 9B is that the length of the inlet pipe is different.
  • both the cylinder body 1 and the mixing deflector 5 are thin-walled plates that are stretched and integrally formed, and the bottom of the cylinder body 1 and the plate body 51 are relatively thin, which can well meet the requirements of the punching process.
  • the punching process can be used to divide the branch pipe holes 11 and the throttling diversion holes 503.
  • the stretching process and the stamping process not only have simpler manufacturing procedures, lower processing costs, but also higher processing efficiency.
  • the present invention does not impose any limitation on the molding method of the barrel.
  • other integral molding processes can also be used to form the cylinder body and the mixing deflector, such as casting process and the like.
  • each liner 2 is provided on the inner bottom surface of the cylinder body 1, and each liner 2 has a plurality of liner holes 21 coaxially corresponding to the plurality of branch pipe holes 11. And the superimposed thickness of the hole depth H1 of the branch pipe hole and the hole depth H2 of the liner hole is greater than or equal to 2.5 mm. The superposition of the hole depth H1 of the branch pipe hole and the hole depth H2 of the liner hole provides a sufficient depth for the insertion of the branch pipe 3, ensuring the insertion depth requirement of the branch pipe 3 during welding.
  • the welding strength of the branch pipe 3 is determined by the branch pipe
  • the hole depth H1 of the hole and the hole depth H2 of the liner hole are shared, thereby greatly improving the connection strength of the welding.
  • the superimposed thickness of the hole depth H1 of the branch pipe hole and the hole depth H2 of the liner hole is set to be greater than or equal to 2.5 mm.
  • the sum of the superposition of the two hole depths is 5 mm.
  • the present invention does not make any limitation thereto. In other embodiments, the sum of the superposition of the two hole depths may be other values greater than 2.5 mm.
  • the cylinder body 1 is a single-ended open structure integrally formed by stretching process.
  • the inner bottom surface and peripheral wall of the cylinder body 1 completely cover the contact end surface and peripheral wall of the lining plate 2, and the gap between the lining plate 2 and the cylinder body 1 Form an integral structure with strong tensile strength; the liner 2 will not be separated from the inner bottom surface of the cylinder 1 during welding or use.
  • the coating of the peripheral wall of the cylinder 1 on the peripheral wall of the liner 2 not only prolongs the transmission path of the refrigerant in the cylinder 1 to the junction of the branch pipe hole 11 and the branch pipe 3, but also has a bend in the transmission path; moreover Further, the transmission gap of the transmission path is very small, so the refrigerant entering the transmission path is very small; these factors greatly reduce the impact pressure of the refrigerant in the cylinder 1 on the junction of the branch pipe hole 11 and the branch pipe 3 , thereby greatly reducing the risk of leakage at the connection and greatly improving the performance of the product.
  • the cylinder body 1 is integrally formed by stretching thin-walled plates, and the bottom of the cylinder body 1 after stretching meets the requirements of the stamping process, so the branch pipe hole 11 can be made by stamping process; similarly, on the bottom surface of the cylinder body
  • the provided liner 2 also supports the punching process to form the liner hole 21 .
  • the stamping process is simple, efficient and low in cost, which well solves the problem of difficult processing of the existing liquid distributor.
  • the arrangement of the liner 2 also achieves the effect of prolonging the insertion depth of the branch pipe 3, ensuring the strength and stability of the welding.
  • the bottom and the side wall of the cylinder 1 are integrally formed by stretching, and the circumferential direction of the two does not need to be welded; although the end cap 4 and the cylinder 1 need to be connected by welding,
  • the distance between the end cover 4 and the cylinder body 1 is relatively long, which can avoid the influence of welding fusion during secondary welding; it not only greatly facilitates the simultaneous welding of multiple branch pipe holes 11, but also ensures that the welding of multiple branch pipes 3 stability.
  • the inner wall of the cylinder 1 has a position-limiting and fixing portion 12 that protrudes toward the interior of the cylinder, and the position-limiting and fixing portion 12 limits and fixes the liner 2 to the side of the cylinder 1. inner bottom surface.
  • a continuous annular position-limiting and fixing part is formed on the side wall of the cylinder body 1 by the process of notching, so that the lining board 2 is fixed on the cylinder body.
  • body 1 the present invention does not make any limitation thereto.
  • a dotting process may also be used to form a plurality of dot-shaped limiting and fixing parts distributed along the circumferential direction on the side wall of the cylinder 1 ; or to form a plurality of circular arc limiting and fixing parts.
  • the liner can also be interference-fitted in the cylinder or fixed in the cylinder with fasteners such as screws.
  • the number of the lining board 2 is one; and preferably, the lining board 2 is a copper lining board or a copper alloy lining board.
  • the number and material of the liner of the present invention are not limited in any way. In other embodiments, there may be multiple lining plates, and the lining plates may also be made of carbon steel or stainless steel.
  • the liner 2 also has a through hole 22 and the through hole 22 is located within the centerline S of the circumference formed by the plurality of liner holes 21 .
  • the setting of the through hole 22 further reduces the material cost of the lining plate 2 while ensuring the strength of the lining plate 2 .
  • the through hole 22 not only increases the space of the second mixing chamber 502 but also the surrounding wall of the through hole 22 reflects the refrigerant, thereby improving the mixing effect.
  • the through holes on the multiple lining plates are correspondingly overlapped to form a concave cavity with a larger mixing space and reflection area.
  • the diameters of the through holes on the multiple lining plates can be equal; or from the bottom of the cylinder to the open end, the diameter of the through holes on each lining plate increases gradually.
  • the six distribution branch pipe holes 11 are evenly distributed along the circumferential direction of the cylinder body 1, the six liner holes 21 are arranged correspondingly to the six distribution branch pipe holes 11, and the through holes 22 are located at the positions formed by the six liner holes 21. within the centerline S of the circle.
  • the present invention does not impose any limitation on the number of branch pipe holes. In other embodiments, the number of branch branch pipe holes can be adjusted according to the requirements of the pipelines of the air-conditioning system.
  • the end cap 4 is covered and closed on the open end of the cylinder 1 and the cylinder 1, the end cap 4 and the mixing deflector 5 are all made of stainless steel.
  • the end cap 4 Between the cylinder body 1 and between the plate body 51 and the end cover 4, self-fluxing sealing welding is adopted; such as argon arc welding, laser welding or resistance welding.
  • the present invention does not impose any limitation on the assembly method, welding method and material between the end cap and the barrel.
  • the end cap in assembly, can also be fitted inside the open end of the barrel, as shown in FIG. 3C .
  • welding wire can also be added on the basis of self-fusion welding between the stainless steel cylinder and the end cover and between the plate body and the end cover of the mixing deflector to achieve sealed welding; in terms of materials, the cylinder, The end caps and mixing baffles can also be made of other materials, such as any one of carbon steel, copper or copper alloy.
  • the end cover 4 is provided with a flange portion 42 facing the outside of the cylinder in the circumferential direction of the liquid inlet pipe hole 41, and the liquid inlet pipe 6 is inner or outer sleeved on the flange.
  • the portion 42 is sealed and welded with the flange portion 42 .
  • the flanged portion can also face the inside of the barrel; at this time, the liquid inlet pipe is inserted inside the flanged portion.
  • the end cap 4 is punched with a thin-walled stainless steel plate with a thickness of less than 1mm to form the liquid inlet pipe hole 41, and then the flanged part 42 and the flanged portion 42 sleeved on the cylinder body 1 are formed after being stretched and flanged.
  • the height of the end cover edge 43 and the flange part 42 ensures the welding depth between the liquid inlet pipe 6 and the liquid inlet pipe hole 41; the height of the end cover edge 43 ensures the welding depth between the end cover 4 and the cylinder body 1 .
  • the cross-sectional shape of the cylinder body 1 is circular; correspondingly, the cross-sectional shapes of the end cap 4 , the lining plate 2 and the mixing deflector 5 are also circular.
  • the shape of the cylinder that can satisfy the shunt structure is within the protection scope of the present invention; for example, the cross-sectional shape of the cylinder can also be square or oval, and the user can choose according to the application scenario or material cost considerations. to select the cross-sectional shape of the cylinder.
  • FIG. 8A is a schematic structural diagram of a square mixing deflector matched with a cylinder with a square cross-sectional shape.
  • Fig. 8B is a schematic structural view of an elliptical mixing deflector matched with an elliptical cross-sectional shape.
  • liquid inlet pipe 6 and the six branch pipes 3 are all copper pipes.
  • the present invention does not make any limitation thereto.
  • the liquid inlet pipe and branch branch pipe can also be any one of brass pipes, carbon steel pipes or stainless steel pipes.
  • this embodiment also provides an air conditioner, which includes a throttling device 100, an evaporator 300, and the liquid separator 200 for refrigeration, the liquid inlet pipe 6 of the liquid separator for refrigeration and the throttle body.
  • the flow device 100 is communicated, and the six branch pipes 3 of the liquid separator for refrigeration are communicated with the evaporator 200 .
  • the refrigerant output by the throttling device 100 is output to a mixing chamber 501 through the liquid inlet pipe 6, and the refrigerant is mixed in the first mixing chamber 501 and then flows back, and is transmitted to the second mixing chamber 502 through the throttling guide hole 503, fully After mixing, the mixture is output to the evaporator 300 through six branch pipes 3 .
  • the air conditioner further includes a compressor 400 and a condenser 500 connected between the evaporator 300 and the throttling device 100 .
  • the circulation of the refrigerant is shown by the arrows in Fig. 10 .
  • Embodiment 1 is basically the same as Embodiment 1 and its variations, the difference is that, as shown in Figure 11, the end face of the output end of the liquid inlet pipe 6 is located outside the first mixing chamber 501, and the end face of the output end of the liquid inlet pipe 6 reaches the first mixing chamber 501.
  • the distance D2 between the open end surfaces of the cavity 501 is less than or equal to 0.8 times the outer diameter d of the liquid inlet pipe.
  • the distance D2 between the output end surface of the liquid inlet pipe 6 and the opening end surface of the first mixing chamber 501 is equal to 0.5 times the outer diameter of the liquid inlet pipe.
  • Fig. 12 is a structural schematic diagram of another embodiment in which the end cap 4 covers the open end of the barrel.
  • Embodiment 2 is basically the same as Embodiment 2 and its variations, except that, as shown in FIG. 13 , the number of lining plates 2 is two. Specifically, the two lining plates 2 are connected by resistance welding.
  • the present invention does not make any limitation thereto.
  • the flanged portion on the end cap can also face the inside of the cylinder, and the liquid inlet pipe is placed inside the flanged portion; the throttle and flow guide on the mixing deflector
  • the holes may also be through holes or a combination of through holes and recessed holes.
  • the liquid distributor body 10' includes a cylinder body 1', at least two lining plates 2' and a plurality of branch pipes 3'.
  • the cylinder body 1' is integrally formed and has two open ends, and the liquid inlet end of the cylinder body 1' has a liquid inlet pipe hole 11'.
  • At least two lining plates 2' are superimposed and sealed and welded to the liquid outlet end of the cylinder 1' to form a liquid dispenser cavity inside the cylinder 1', and each lining 2' has a plurality of lining holes 21' After at least two lining boards 2' are superimposed, the corresponding lining board holes 21' are overlapped to form overlapping holes.
  • a plurality of shunt branch pipes 3' extend into and seal-weld to each overlapping hole respectively.
  • the number of lining boards 2' is two, and the depth H1' of the overlapping holes formed by overlapping the corresponding lining board holes 21' after the two lining boards 2' are welded and superimposed is 5 mm.
  • the present invention does not make any limitation thereto.
  • the number of lining plates can also be more than three, and the hole depth H1' of the overlapping holes can also be For other values greater than 2.5 mm.
  • the liner 2 includes the outer liner 2A' and the inner liner 2B', and the inner cavity of the liquid distributor refers to the inner space of the cylinder 1' after the two liners 2' are sealed and welded to the cylinder 1'.
  • a second mixing chamber 502' is formed therebetween, and the first mixing chamber 501' and the second mixing chamber 502' are communicated through a throttling guide hole 503' on the plate body 51'.
  • a flange portion 12 ′ facing the outside of the cylinder is provided on the periphery of the liquid inlet pipe hole 11 ′, and the liquid inlet pipe 6 ′ is inner or outer on the flange portion 12 ′ and is connected with the flange portion 12 ′.
  • Hermetically welded
  • lining holes 21 are opened on the two lining plates, but no through holes are opened.
  • the present invention does not make any limitation thereto.
  • no through hole is opened on the outer liner 2A'; and a through hole 22' is provided on the inner liner 2B', and the through hole 22' is located in a plurality of liner holes 21 'Inside the centerline of the circle formed.
  • the arrangement of the through hole 22' further reduces the material cost of the inner lining 2B' while ensuring the strength of the inner lining 2B'.
  • the arrangement of the through hole 22' not only increases the space of the second mixing chamber 502', but also the surrounding wall of the through hole 22' reflects the refrigerant, thereby improving the mixing effect.
  • the through holes on the multiple inner lining boards overlap to form a concave cavity.
  • the liquid distributor body includes three liners, the outer one is the outer liner, and the inner two are the inner liner, and the corresponding through holes on the two inner liners overlap to form a concave cavity.
  • the through holes on the inner lining boards may have the same diameter; or the diameter of the through holes on the inner lining boards gradually increases from the outer lining board to the direction where the liquid inlet pipe hole is located.
  • the liquid inlet pipe or branch pipe will use a composite of stainless steel pipes and copper pipes (or carbon steel pipes and copper pipes). structure.
  • first, the stainless steel tube and the copper tube are brazed in a furnace to form a composite part; in the second step, the copper tube end of the composite part is connected with the copper pipe of the pipeline by flame brazing.
  • first, the stainless steel tube and the copper tube are brazed in the furnace, because after a long time of welding in the furnace, the grain size of the metallographic structure of the copper tube becomes larger and the tensile strength is reduced.
  • this embodiment provides another liquid separator for refrigeration.
  • This embodiment is basically the same as Embodiment 1 and its changes, the difference is: as shown in Figure 17, Figure 17A and Figure 17B, in this embodiment, the liquid inlet pipe 6, six branch pipes 3 and two lining plates 2 All are stainless steel.
  • the liquid separator for refrigeration also includes a first copper sheath connecting pipe 71 and six second copper sheath connecting pipes 72, the inner sleeve of the first copper sheath connecting pipe 71 is connected to the liquid inlet pipe 6, and the six second copper sheath connecting pipes 72 They are respectively sleeved in the six branch branch pipes 3 .
  • the first copper pipe 101 in the external system pipeline is sleeved in the first copper sleeve connecting pipe 71
  • the six second pipeline copper pipes 102 are respectively sleeved in the second copper sleeve connecting pipe 72 .
  • the length of the overlapping area of the three sockets formed by the first pipeline copper pipe 101, the first copper sleeve connecting pipe 71 and the liquid inlet pipe 6 is L11
  • the socket length of the first copper sleeve connection pipe 71 and the liquid inlet pipe 6 is L21, 0.2L01 ⁇ L11 ⁇ 0.8L01 and 0.2 L21 ⁇ L11 ⁇ 0.8L21.
  • the length of the overlapping area of the three sockets formed by the second pipeline copper pipe 102, the second copper sleeve connecting pipe 72 and the shunt branch pipe 3 is L12
  • the socket length of the second copper sleeve connection pipe 72 and the shunt branch pipe 3 is L22, 0.2L02 ⁇ L12 ⁇ 0.8L02 and 0.2 L22 ⁇ L12 ⁇ 0.8L22.
  • the following will take the first copper sleeve connecting pipe 71 as an example to describe the structure of adding copper sleeve connecting pipes in this embodiment, and the principle of multiple second copper sleeve connecting pipes 72 is the same.
  • the liquid pipe 6, the first copper sleeve connecting pipe 71 and the first copper pipe 101 are sequentially connected to form a three-way overlapping area of length L11, and the length L11 of the three-way overlapping area meets the following conditions: 0.2L01 ⁇ L11 ⁇ 0.8L01 and 0.2L21 ⁇ L11 ⁇ 0.8L21.
  • the above-mentioned dimensional conditions also ensure that the copper pipe 101 of the first pipeline only partially extends into the socket area of the first copper sleeve connecting pipe 71 and the liquid inlet pipe 6, so when the copper pipe 101 of the first pipeline and the first copper pipe 101
  • the copper sleeve connecting pipe 71 is flame brazed, it will only partially affect the brazing layer formed between the first copper sleeve connecting pipe 71 and the liquid inlet pipe 6, effectively avoiding the secondary welding of the brazing layer. leakage problem.
  • the setting of the first copper sheath connecting pipe 71 and the second copper sheath connecting pipe 72 solves the problem of the connection between the stainless steel liquid inlet pipe 6 and the stainless steel branch pipe 3 and the external pipe.
  • the problem of low compressive strength and leakage caused by secondary welding during welding of road copper pipes greatly improves the welding strength and safety of branch pipes for refrigeration and external copper pipes.
  • an inwardly protruding surface can be provided on the inner wall of the first copper sleeve connecting pipe 71.
  • the socket limit part is raised, and the socket limit part limits the insertion depth of the first pipeline copper pipe 101, so as to realize the precise control of the socket length L01.
  • an inwardly protruding socket stopper can also be provided on the inner wall of the second copper sleeve connecting pipe 72, and the socket stopper limits the insertion depth of the second pipeline copper pipe 102, thereby realizing the socket length Precise control of L02.
  • the socket limiter can be any one of multiple point-shaped socket limiters, multi-segment circular arc socket limiters or circular ring socket limiters.
  • the first pipeline copper pipe 101 and the second pipeline copper pipe 102 it can be a part of the combined liquid distributor, that is, the combined liquid distributor comprises the first pipeline copper pipe 101 and the second pipeline copper pipe 101. Tube 102.
  • the Combo Dispenser does not contain the two plumbing copper tubes, which are fittings on the external air conditioning unit.
  • the first copper pipe 101 is the output pipe of the throttling device 100 ; the second copper pipe 102 is the input pipe of the evaporator 300 .
  • the ends of the liquid inlet pipe 6 and the plurality of branch pipes 3 are all welded to the pipeline copper pipes by adding copper sleeve connecting pipes.
  • the present invention does not make any limitation thereto.
  • the liquid inlet pipe 6 is welded to the first pipeline copper pipe 101 by adding a first copper sleeve connection pipe 71; and multiple branch pipes 3 can be welded and connected by flame welding , Such as phosphor copper flame welding, etc., at this time, the two lining plates 2 are made of copper-based lining plates to improve the welding strength.
  • Embodiment 5 when the cylinder body 1, the end cap 4 and the multiple lining plates 2 are all made of stainless steel, and the multiple branch pipes 3 and the liquid inlet pipe 6 are made of copper, as shown in Fig. 19, Fig. 19A and Fig. 19B, after the liquid inlet pipe 6, the plurality of branch pipes 3, the cylinder body 1, the end cover 4 and the plurality of lining plates 2 are brazed in the furnace, the first pipeline copper pipe 101 Sleeved on the liquid inlet pipe 6 , a plurality of second pipeline copper pipes 102 are respectively sleeved in each branch pipe 3 .
  • the liquid inlet pipe 6 As shown in FIG. 19A, it is sleeved inside the flanged part 42 on the end cover 4, so the copper pipe 101 of the first pipeline, the liquid inlet pipe 6 and the flanged part 42 form a three-fold
  • the length of the overlapping area of the three sockets is L11'
  • the socket length of the first pipeline copper pipe 101 and the liquid inlet pipe 6 is L01'
  • the depth of the liquid inlet pipe 6 inserted into the flange part 42 is L21' , 0.2L01' ⁇ L11' ⁇ 0.8L01' and 0.2L21' ⁇ L11' ⁇ 0.8L21'.
  • the overlapping area formed by the copper tube 101 of the first pipeline, the liquid inlet pipe 6 and the flange part 42 makes the outer wall of the copper pipe 101 of the first pipeline 101 have two layers of outer walls overlapped and welded by the liquid inlet pipe 6 and the flange part 42 Reinforced to ensure sufficient compressive strength here.
  • L11' satisfying the above-mentioned dimensional conditions also makes the first pipeline copper pipe 101 only partly protrude into the socket area of the liquid inlet pipe 6 and the flange part 42, so when the first pipeline copper pipe 101 and the liquid inlet When the tube 6 is flame-brazed, it will only partially affect the brazing layer formed between the liquid inlet pipe 6 and the flange portion 42, effectively avoiding the leakage problem caused by the secondary welding of the brazing layer.
  • the branch branch pipe hole 11 and the overlapping holes formed by overlapping the two liner holes 21 are covered inside.
  • the overlapping hole, the branch pipe 3 and the copper pipe 102 of the second pipeline form the overlapping area of the three sockets.
  • the length of the overlapping area of the three sockets is L12'
  • the length of the socketing of the copper pipe 102 of the second pipeline and the branch pipe 3 is L02'
  • the depth at which the shunt branch pipe 3 is inserted into the overlapping hole is L22', 0.2L02' ⁇ L12' ⁇ 0.8L02' and 0.2L22' ⁇ L12' ⁇ 0.8L22'.
  • the three overlapping areas formed by the copper pipe 102 of the second pipeline, the branch pipe 3 and the overlapping hole make the copper pipe 102 of the second pipeline have the side wall of the copper pipe 102 of the second pipeline 3 and the side wall of the overlapping hole.
  • the L12' satisfying the above-mentioned dimensional conditions also makes the copper pipe 102 of the second pipeline only partly protrude into the sleeve area of the branch pipe 3 and the overlapping hole, so when the copper pipe 102 of the second pipeline and the branch pipe 3 are flamed During brazing, it will only locally affect the brazing layer formed between the branch pipe 3 and the overlapping hole, effectively avoiding the leakage problem caused by the secondary welding of the brazing layer.
  • an inwardly protruding socket can be provided on the inner wall of the liquid inlet pipe 6
  • the limit part, the socket limit part limits the insertion depth of the copper pipe 101 of the first pipeline, so as to realize the precise control of the socket length L01'.
  • an inwardly protruding sleeve limiter can also be provided on the inner wall of the branch pipe 3, and the sleeve limiter limits the insertion depth of the second pipeline copper pipe 102, so as to realize the precise adjustment of the sleeve length L02'. control.
  • the socket limiter can be any one of multiple point-shaped socket limiters, multi-segment circular arc socket limiters or circular ring socket limiters.
  • the combined liquid distributor includes the first pipeline copper pipe 101 and the second pipeline copper pipe 102.
  • Pipeline copper pipe 102 does not contain the two plumbing copper tubes, which are fittings on the external air conditioning unit.
  • the first copper pipe 101 is the output pipe of the throttling device 100 ; the second copper pipe 102 is the input pipe of the evaporator 300 .
  • Embodiment 1 This embodiment is described by taking the structure of the liquid dispenser body in Embodiment 1 as an example.
  • the present invention is not limited thereto.
  • the liquid inlet pipe 6 made of copper and the plurality of branch pipes 3 made of copper can also be welded in the manner of this embodiment.
  • the diverging branch pipe is sleeved in the overlapping holes formed by overlapping corresponding multiple lining plate holes, and the multiple lining plates are made of stainless steel.
  • a mixing deflector is arranged in the inner cavity of the liquid separator, and a first mixing cavity is formed in the concave cavity of the mixing deflector, and the mixing deflector and the distribution plate
  • a second mixing chamber is formed between the liquid outlet ends of the liquid device body.
  • multiple throttling orifices communicate with the first mixing chamber and the second mixing chamber while throttling the refrigerant with its reduced cross-section, changing the speed of the refrigerant, thereby further improving the second mixing chamber.
  • the mixing effect in the cavity thus, the problem of poor energy efficiency ratio of the refrigeration system caused by the uneven mixing of the refrigerant in the existing liquid separator is well solved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

本发明提供一种制冷用分液器及空调,制冷用分液器包括分液器本体和混合导流板。分液器本体具有分液器内腔。混合导流板设置于分液器内腔内,混合导流板上具有凹腔部且凹腔部内形成第一混合腔,混合导流板和分液器本体出液端之间形成第二混合腔,混合导流板上沿周向均匀分布有连通第一混合腔和第二混合腔的多个节流导流孔;凹腔部使得进入第一混合腔的两相制冷剂经混合后沿第一混合腔回流,之后经节流导流孔到达第二混合腔。

Description

制冷用分液器及空调 技术领域
本发明涉及空调技术领域,且特别涉及一种制冷用分液器及空调。
背景技术
分液器是制冷循环系统中一个重要的零部件,其设置在节流装置与蒸发器之间,用于将从节流装置流出的制冷剂均匀等量地分配到蒸发器的各个分流支路中。
但在实际运行中经常出现气液两相混合不均匀和进入各分流支管的制冷剂流量不均等,从而影响了蒸发器的换热性能,进而影响到整个制冷系统的工作性能。目前制冷系统上使用的分液器有两种结构,一种是节流喷咀式;另一种是文丘里结构。这两类常见的分液器均存在以下问题,由于没有对气液两相制冷剂混合流体充分混合,导致进入各分流支管的制冷剂流量不均,进而影响换热效果。另外,针对节流喷咀式的分液器还存在进口端制冷剂进入小孔时由于截面积突然收缩导致制冷剂流速增大而直接撞击分液器内壁而引起噪声。
此外,现有空调用分液器大多采用黄铜材质或者紫铜材质加工,其进液孔和各出液孔采用车削加工,所以不但材料成本高而且加工工艺复杂。
发明内容
本发明为了克服现有技术的至少一个不足,提供一种制冷用分液器。
为了实现上述目的,本发明提供一种制冷用分液器,其包括分液器本体和混合导流板。分液器本体具有分液器内腔。混合导流板设置于分液器内腔内,混合导流板上具有凹腔部且凹腔部内形成第一混合腔,混合导流板和分液器本体出液端之间形成第二混合腔,混合导流板上沿周向均匀分布有连通第一混合腔和第二混合腔的多个节流导流孔;凹腔部使得进入第一混合腔的两相制冷剂经混合后沿第一混合腔回流,之后经节流导流孔到达第二混合腔。
根据本发明的一实施例,沿混合导流板的周向均匀分布的多个节流导流孔为凹槽孔、通孔或者通孔和凹槽孔的组合;凹槽孔由位于混合导流板两侧且中心对称的两个曲面拉伸部的开口所围成。
根据本发明的一实施例,混合导流板包括板体和形成于板体中心且向分液器本体出液端延伸的凹腔部,板体和分液器本体进液端之间形成传输通道。
根据本发明的一实施例,冷用分液器还包括进液管,进液管密封焊接于分液器本体的进液管孔。
根据本发明的一实施例,进液管的输出端伸入第一混合腔内,进液管的输出端端面至第一混合腔的开口端面之间的距离小于或等于1倍的进液管外径。
根据本发明的一实施例,进液管的输出端端面位于第一混合腔外,进液管的输出端端面至第一混合腔的开口端面之间的距离小于或等于0.8倍的进液管外径。
根据本发明的一实施例,进液管孔的周向上设置有朝向分液器本体内部或外部的翻边部,进液管内套或外套于翻边部且与翻边部密封焊接。
根据本发明的一实施例,当进液管为不锈钢管或碳钢管时,制冷用分液器还包括套接于进液管端部的铜套连接管,铜套连接管内套于进液管的端部,管路铜管内套于铜套连接管,管路铜管、铜套连接管以及进液管所形成的三者套接重叠区域的长度为L11,管路铜管和铜套连接管的套接长度L01,铜套连接管和进液管的套接长度为L21,0.2L01≤L11≤0.8L01且0.2L21≤L11≤0.8L21。
根据本发明的一实施例,当进液管为铜管且分液器本体为不锈钢时,进液管内套于进液管孔周向的翻边部,管路铜管内套于进液管,管路铜管、进液管以及翻边部所形成的三者套接重叠区域的长度为L11’,管路铜管和进液管的套接长度L01’,进液管和翻边部的套接长度为L21’,0.2L01’≤L11’≤0.8L01’且0.2L21’≤L11’≤0.8L21’。
根据本发明的一实施例,分液器本体包括筒体、至少一块衬板、多个分流支管以及端盖。筒体一体成型且呈单端敞口状,筒体的底部具有多个分流支管孔。至少一块衬板设置于筒体的内底面,每一衬板上均具有与多个分流支管孔对应的多个衬板孔。多个分流支管分别伸入各个分流支管孔内且伸入端延伸至对应的衬板孔内,每一分流支管均密封焊接于对应的分流支管孔和衬板孔内。端盖盖合于筒体的敞口端且与筒体密封焊接以形成分液器内腔,端盖上开设有进液管孔且进液管孔正对第一混合腔。
根据本发明的一实施例,每一衬板上还具有一个通孔且通孔位于多个衬板孔所形成的圆周中心线内;当衬板有多个时,多块衬板上的通孔对应重叠形成凹腔。
根据本发明的一实施例,分液器本体包括筒体、至少两块衬板以及多个分流支管。筒体一体成型且呈双端敞口状,筒体的进液端具有进液管孔,且进液管孔正对第一混合腔。至少两块衬板叠加后密封焊接于筒体的出液端,筒体和衬板之间形成分液器内腔,每一衬板上均具有多个衬板孔,至少两块衬板叠加后对应的衬板孔重叠,形成重叠孔。多个分流支管分别伸入并密封焊接于各个重叠孔。
根据本发明的一实施例,内侧衬板上还具有一个通孔且通孔位于多个衬板孔所形成的圆周中心线内;当内侧衬板具有多个时,多个内侧衬板上的通孔重叠形成凹腔。
根据本发明的一实施例,筒体的内侧壁上具有向筒体内部凸起的限位固定部,限位固定部将衬板限位固定于筒体内,限位固定部包括多个点状限位固定部、多段圆弧限位固定部或圆环限位固定部;或者至少一块衬板过盈装配于筒体内。
根据本发明的一实施例,筒体的横截面形状为圆形、方形或椭圆形中的任一种,衬板和混合导流板的横截面形状与筒体的横截面形状相匹配。
根据本发明的一实施例,当多个分流支管和衬板均为不锈钢或碳钢时,制冷用分液器还包括多个铜套连接管,多个铜套连接管分别内套于各分流支管的端部,多个管路铜管内套于各铜套连接管,对应的管路铜管、铜套连接管以及分流支管所形成的三者套接重叠区域的长度为L12,管路铜管和铜套连接管的套接长度L02,铜套连接管和分流支管的套接长度为L22,0.2L02≤L12≤0.8L02且0.2L22≤L12≤0.8L22。
当多个分流支管为铜管且筒体为不锈钢时,每一分流支管分别内套于对应的分流支管孔和至少一个衬板孔叠加所形成的重叠孔;或者每一分流支管分别内套于至少两块不锈钢材质的衬板叠加后对应的衬板孔重叠所形成的重叠孔;多个管路铜管内套于各分流支管,每一管路铜管、对应的分流支管以及重叠孔所形成的三者套接重叠区域的长度为L12’,管路铜管和分流支管的套接长度L02’,分流支管和重叠孔的套接长度为L22’,0.2L02’≤L12’≤0.8L02’且0.2L22’≤L12’≤0.8L22’。
另一方面,本发明还提供一种空调,其包括节流装置、蒸发器及上述制冷用分液器,制冷用分液器连接于节流装置和蒸发器之间,节流装置将制冷剂输出至制冷用分液器的第一混合腔,制冷剂经第一混合腔和第二混合腔混合后输出至蒸发器。
综上,本发明提供的制冷用分液器及空调中,分液器内腔内设置有混合导流板,混合导流板的凹腔部内形成第一混合腔,而混合导流板和分液器本体的出液端之间又形成第二混合腔。进入分液器内腔内的气液混合的制冷剂在第一混合腔进行一次混合后经多个节流导流孔进入第二混合腔进行二次混合;制冷剂的二次混合够使气液状态下的制冷剂充分混合,从而大大提高混合后制冷剂的均匀性。此外,多个节流导流孔在连通第一混合腔和第二混合腔的同时还利用其变小的横截面来对制冷剂进行节流,改变制冷剂的速度,从而进一步提高第二混合腔内的混合效果;从而很好地解决了现有分液器因制冷剂混合不均匀所引起的制冷系统能效比差的问题。
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。
附图说明
图1A所示为本发明实施例一提供的制冷用分液器的结构示意图。
图1B所示为图1A中A处的放大示意图。
图1C所示为图1A中局部制冷剂的走势示意图。
图2A所示为图1A所示的制冷用分液器内混合导流板的结构示意图。
图2B所示为图2A的剖视示意图。
图3A所示为本发明另一实施例提供的制冷用分液器内混合导流板的结构示意图。
图3B为图3A的剖视示意图。
图3C所示为具有图3A所示的混合导流板的制冷用分液器的结构示意图。
图4A所示为本发明另一实施例提供的制冷用分液器内混合导流板的结构示意图。
图4B所示为图4A沿B-B线的剖视示意图。
图4C所示为本发明另一实施例提供的制冷用分液器内混合导流板的结构示意图。
图5A所示为图1A中筒体的结构示意图。
图5B为图5A所示的筒体的底部示意图。
图6所示为图1A中衬板的结构示意图。
图7所示为图1A中端盖的结构示意图。
图8A和图8B所示为本发明另一实施例提供的匹配不同横截面形状的筒体的混合导流板的结构示意图
图9A、图9B以及图9C所示为本发明另一实施例提供的制冷用分液器的结构示意图。
图10所示为本发明实施例一提供的空调的原理图。
图11所示为本发明实施例二提供的制冷用分液器的结构示意图。
图12所示为本发明另一实施例提供的制冷用分液器的结构示意图。
图13所示为本发明实施例三提供的制冷用分液器的结构示意图。
图14所示为本发明实施例四提供的制冷用分液器的结构示意图。
图15所示为图14中筒体、衬板以及混合导流板三者的装配示意图。
图16所示为本发明另一实施例提供的制冷用分液器的结构示意图。
图17所示为本发明实施例五提供的制冷用分液器的结构示意图。
图17A和图17B所示为图17中C处和D处的放大示意图。
图18所示为本发明另一实施例提供的制冷用分液器的结构示意图。
图19所示为为本发明实施例六提供的制冷用分液器的结构示意图。
图19A所示为为图19中E处的放大示意图。
图19B所示为为图19中F处的放大示意图。
具体实施方式
如图1A至图2B以及图5A至图7所示,本实施例提供的制冷用分液器包括分液器本体10和混合导流板5。分液器本体10具有分液器内腔。混合导流板5设置于分液器内腔内,混合导流板5上具有凹腔部52且凹腔部52内形成第一混合腔501,混合导流板5和分液器本体10的出液端之间形成第二混合腔502,混合导流板5上沿周向均匀分布有连通第一混合腔501和第二混合腔502的多个节流导流孔503。凹腔部52使得进入第一混合腔501的两相制冷剂经混合后沿第一混合腔501回流,之后经节流导流孔503到达第二混合腔502。
具体而言,于本实施例中,分液器本体10包括筒体1、至少一块衬板2、多个分流支管3以及端盖4。筒体1一体成型且呈单端敞口状,筒体1的底部具有多个分流支管孔11。至少一块衬板2设置于筒体1的内底面,混合导流板5和衬板2之间形成第二混合腔502。每一衬板2上均具有与多个分流支管孔11对应的多个衬板孔21。多个分流支管3分别伸入多个分流支管孔11内且伸入端延伸至对应的衬板孔21内,每一分流支管3均密封焊接于对应的分流支管孔11和衬板孔21内。端盖4盖合于筒体1的敞口端,端盖4与筒体1密封焊接以形成分液器内腔,端盖4上具有进液管孔41且进液管孔41正对第一混合腔501。
于本实施例中,分液器内腔指的是端盖4密封焊接于筒体1的敞口端后,端盖4、筒体1的侧壁以及衬板2三者之间所形成的内腔。
如图2A和2B所示,混合导流板5包括板体51和形成于板体51中心且向筒体1底部延伸的凹腔部52,凹腔部52内形成第一混合腔501,多个节流导流孔503沿板体51的周向均匀分布。
本实施例提供的制冷用分液器中,混合导流板5这一部件在分液器内腔内为制冷剂提供沿径向分布的两个混合腔。从进液管孔41输入的气液混合的两相制冷剂进入第一混合腔501,经充分混合后沿第一混合腔501回流;之后从节流导流孔503进入第二混合腔502,进行二次混合。第一混合腔501和第二混合腔502的两次混合使得两相制冷剂得到充分混合。进一步的,节流导流孔503的设置在实现第一混合腔501和第二混合腔502导流连通的同时还利用其变小的横截面来实现两相制冷剂的节流,节流后气液混合的两相制冷剂中气相较液相具有更高的速度,从而呈现击穿前方液相的趋势,进一步提高制冷剂混在第二混合腔502内混合均匀性。
于本实施例中,沿径向分布的两个混合腔使得一次混合后的制冷剂需要沿第一混合腔501回流后才能经节流导流孔503达到第二混合腔502,两相制冷剂的走势示意图如图1C中箭头所示。该设置还大大延长了制冷剂在分液器内腔内的传输路径,为两相制冷剂的混合提供的更多的空间。具体而言,回流的制冷剂经端盖4和板体51之间形成了传输通道505到达节流导流孔503。
于本实施例中,如图2A和图2B所示,沿混合导流板5的周向均匀分布的多个节流导流孔503为凹槽孔,凹槽孔由位于混合导流板5两侧且中心对称的两个曲面拉伸部53的开口所围成。具体而言,凹槽孔的成型方式为:首先在混合导流板5上冲压出狭长通孔,狭长通孔可为短半径较小的椭圆孔或宽度较小的矩形孔;之后,以混合导流板5为基准向两侧拉伸狭长通孔的边缘,从而形成中心对称的两个曲面拉伸部53。
两个曲面拉伸部53所形成的凹槽孔对一次混合后的两相制冷剂进行径向导流,使得通过节流导流孔503后的两相制冷剂向筒体1的周壁发散并经筒体1的周壁反射回到第二混合腔502,从而大大提高了第二混合腔502内两相制冷剂的混合效果。同时,凹槽孔的径向导流也大大延长了两相制冷剂在第二混合腔502内的混合路径,确保两相制冷剂的均匀混合。进一步的,凹槽孔结构的节流导流孔503在径向导流的同时对两相制冷剂进行节流,增大两相制冷剂的流速。节流和径向导流的共同作用使得两相制冷剂在第二混合腔502靠近节流导流孔503的区域内形成高速且均匀的旋流,制冷剂中气液两相得以充分混合。
于本实施例中,曲面拉伸部53除开口处外其另外三侧均一体成型连接于混合导流板5,连接强度高且刚性足。故两相制冷剂通过节流导流孔503时曲面拉伸部53不会因振动而产生噪声。然而,本发明节流导流孔的具体结构不作任何限定。于其它实施例中,如图3A至图3C所示,节流导流孔503也可为通孔,该设置可简化混合导流板5的加工工序,降低加工成本。或者,于其它实施例中,如图4A和图4B所示,节流导流孔也可由多个通孔5031和多个凹槽孔5032共同组成。
于本实施例中,凹腔部52的底部为平面。然而,如图4C所示,凹腔部的底部也可为半球面。
于本实施例中,如图1所示,制冷用分液器还包括进液管6,进液管6密封焊接于端盖4上的进液管孔41内。然而,本发明对此不作任何限定。于其它实施例中,制冷用分液器也可不包含进液管,进液管孔直接与外部空调管路连接。
如图1A所示,进液管6的输出端伸入第一混合腔501内,进液管6的输出端端面至第一混合腔501的开口端面的距离D1小于或等于1倍的进液管6的外径d。进液管6的输出端伸入第一混合腔501内确保了输出的两相制冷剂能全部进入第一混合腔501内。而距离D1的设置则确保了第一混合腔501内具有足够的空间来实现制冷剂的混合,提高混合的均匀性。进一步的,在该结构中,进液管6的伸入部分和第一混合腔501之间还形成了节流间隙504,制冷剂在大横截面积的第一混合腔501混合后经横截面积小的节流间隙504进行节流后到达节流导流孔503。优选的,设置进液管6的输出端端面至第一混合腔开口端面的距离D1等于0.5倍的进液管6的外径d。然而,本发明对此不作任何限定。于其它实施例中,进液管的输出端端面至第一混合腔的开口端面的距离D1也可为小于1倍的进液管的外径d的其它数值。
于本实施例中,混合导流板的板体51固定连接于端盖4。优选的,通过电阻焊的方式焊接连接于端盖4。然而,本发明对此不作任何限定。于其它实施例中,其它能将混合导流板固定于端盖的方式均在本发明的保护范围内,如激光焊、氩弧焊等自熔焊或自熔添丝焊;也可通过紧固件或铆接等机械固定的方式进行固定连接。或者于其它实施例中,也可将混合导流板固定于筒体或衬板,如将混合导流板的底部焊接固定于筒体的底部或衬板;同样的,其它能将混合导流板固定于筒体或衬板的方式均在本发明的保护范围内。
本实施例提供的制冷用分液器中,混合导流板5在分液器内腔内形成两个混合腔以实现两相制冷剂的充分混合,很好地解决了现有分液器结构所存在的因制冷剂混合不均匀而引起的制冷系统能效比差的问题。
于本实施例中,筒体1、衬板2以及端盖4这样的组合式的分液器本体也大大降低了制冷用分液器的制造工序和制造成本。然而,本发明对分液器本体的结构不作任何限定。本发明提供的混合导流板同样适用于其它结构的分液器本体,如图9A所示,分液器本体可以为一体式,分流支管孔采用钻孔的方式制成。或者如图9B和9C,分液器本体为分体式,但分流支管孔采用钻孔的方式制成;图9C和图9B之间的区别在于进液管伸入的长度不同。
于本实施例中,筒体1和混合导流板5均是薄壁板经拉伸后一体成型,筒体1的底部和板体51的厚度较薄,能很好地满足冲孔工艺的要求,故可采用冲孔工艺来多个分流支管孔11和节流导流孔503。相比现有采用车削工艺所制成的分液器本体,拉伸工艺和冲压工艺不仅制造工序更加简单、加工成本更低,且加工效率更高。然而,本发明对筒体的成型方式不作任何限定。于其它实施例中,也可采用其它的一体成型工艺来形成筒体和混合导流板,如铸造工艺等。
筒体1的底部厚度在满足拉伸和冲压工艺的同时势必无法同时满足分流支管插入深度的要求。为了解决这一问题,本实施例通过在筒体1的内底面上设置至少一块衬板2,每一衬板2上均具有与多个分流支管孔11同轴对应的多个衬板孔21且分流支管孔的孔深H1和衬板孔的孔深H2的叠加厚度大于或等于2.5毫米。分流支管孔的孔深H1和衬板孔的孔深H2的叠加为分流支管3的插入提供了足够的深度,保证了焊接时分流支管3的插入深度要求,分流支管3的焊接强度由分流支管孔的孔深H1和衬板孔的孔深H2共同承担,从而大大提高了焊接的连接强度。具体的,在空调领域内,为确保焊接的强度,设置分流支管孔的孔深H1和衬板孔的孔深H2的叠加厚度大于或等于2.5毫米。优选的,两者的孔深叠加之和为5毫米。然而,本发明对此不作任何限定。于其它实施例中,两者的孔深叠加之和可为大于2.5毫米的其它数值。
于本实施例中,筒体1为拉伸工艺一体成型的单端敞口结构,筒体1的内底面和周壁完全包覆衬板2的接触端面和周壁,衬板2和筒体1之间形成一个整体结构,具有很强的抗拉强度;在焊接或使用过程中衬板2均不会与筒体1的内底面分离。此外,筒体1的周壁对衬板2周壁的包覆不仅延长了筒体1内制冷剂传输至分流支管孔11和分流支管3连接处的传输路径,同时传输路径还具有折弯处;更进一步的,该传输路径的传输间隙非常小,故进入该传输路径内的制冷剂非常少;这些因素都大大降低了筒体1内制冷剂对分流支管孔11和分流支管3连接处的冲击压力,从而大大降低该连接处的泄漏风险,大幅度提高产品的性能。
本实施例中,筒体1由薄壁板拉伸后一体成型,拉伸后筒体1的底部满足冲压工艺要求,故可以采用冲压工艺制成分流支管孔11;同样的,在筒体内底面设置的衬板2也支持采用冲孔工艺制成衬板孔21。 一方面,相比车削工艺,冲压工艺简单高效且成本低,很好地解决了现有分液器所存在的加工困难的问题。另一方面,衬板2的设置还实现了延长分流支管3插入深度的效果,确保焊接的强度和稳定性。
更进一步的,于本实施例中,筒体1的底部和侧壁是经拉伸一体成型的,两者的周向无需焊接连接;尽管端盖4和筒体1之间需要通过焊接连接,但端盖4到筒体1的距离较远,可以避免二次焊接时的焊熔影响;不仅极大方便了多个分流支管孔11的同步焊接,同时也确保了多个分流支管3焊接后的稳定性。
于本实施例中,如图1B所示,筒体1的内侧壁上具有向筒体内部凸起的限位固定部12,限位固定部12将衬板2限位固定于筒体1的内底面。具体而言,在装配时,将衬板2放入筒体1内后采用刻槽的工艺在筒体1的侧壁上形成连续的圆环限位固定部,从而将衬板2固定于筒体1内。然而,本发明对此不作任何限定。于其它实施例中,可也采用打点工艺在筒体1的侧壁上形成多个沿周向分布的点状限位固定部;或者形成多段圆弧限位固定部。或者于其它实施例中,衬板也可过盈装配于筒体内或采用螺钉等紧固件固定于筒体内。
于本实施例中,衬板2的数量为一块;且优选的,衬板2为紫铜衬板或铜合金衬板。然而,本发明衬板的数量和材料不作任何限定。于其它实施例中,衬板的数量可为多个,衬板也可采用碳钢或不锈钢制成。
于本实施例中,如图6所示,衬板2上还具一通孔22且该通孔22位于多个衬板孔21所形成的圆周中心线S内。通孔22的设置在确保衬板2强度的同时进一步降低了衬板2的材料成本。此外,通孔22不仅还增大了第二混合腔502的空间且通孔22的周壁也会对制冷剂进行反射,从而提高混合效果。于其它实施例中,当衬板有多个时,多块衬板上的通孔对应重叠形成具有更大混合空间和反射面积的凹腔。当具有多块衬板时,多块衬板上的通孔可等径;或者自筒体底部向敞口端方向,各块衬板上通孔的孔径逐渐增大。
于本实施例中,六个分流支管孔11沿筒体1的周向均匀分布,六个衬板孔21与六个分流支管孔11对应设置,通孔22位于六个衬板孔21所形成的圆周中心线S内。然而,本发明对分流支管孔的数量不作任何限定。于其它实施例中,可根据空调系统管路的需求来调整分流支管孔的数量。
于本实施例中,如图1A所示,端盖4外套盖合于筒体1的敞口端且筒体1、端盖4以及混合导流板5均为不锈钢材料制成,端盖4和筒体1之间以及板体51和端盖4之间均采用自熔焊密封焊接;如氩弧焊、激光焊或电阻焊。然而,本发明对端盖和筒体之间的装配方式、焊接方式以及材料均不作任何限定。于其它实施例中,在装配上,端盖也可内套盖合于筒体的敞口端,如图3C。在焊接方式上,不锈钢的筒体和端盖之间以及混合导流板的板体和端盖之间也可在自熔焊的基础上添加焊丝以实现密封焊接;在材料上,筒体、端盖以及混合导流板也可采用其它材料制成,如碳钢、铜或铜合金中的任一种。
于本实施例中,如图1A和图7所示,端盖4在进液管孔41的周向上设置有朝向筒体外部的翻边部42,进液管6内套或外套于翻边部42且与翻边部42密封焊接。然而,本发明对此不作任何限定。于其它实施例中,翻边部也可朝向筒体的内部;此时,进液管则内套于翻边部内。具体而言,于本实施中,端盖4采用厚度小于1mm的薄壁不锈钢板进行冲压形成进液管孔41,之后经拉伸翻边后形成翻边部42和套接于筒体1的端盖边沿43,翻边部42的高度保证了进液管6和进液管孔41之间的焊接深度;端盖边沿43的高度则保证了端盖4和筒体1之间的焊接深度。
于本实施例中,筒体1的横截面形状为圆形;对应的,端盖4、衬板2以及混合导流板5的横截面形状也为圆形。然而,本发明对此不作任何限定。于其它实施例中,能满足分流结构的筒体的形状均在本发明的保护范围内;如筒体的横截面形状也可为方形或椭圆形,用户可根据应用场景或材料成本上的考虑来选择筒体的横截面形状。其中,图8A为与横截面形状为方形的筒体相匹配的方形混合导流板的结构示意图。图8B为与横截面形状为椭圆形的筒体相匹配的椭圆形混合导流板的结构示意图。
于本实施例中,进液管6和六根分流支管3均为紫铜管。然而,本发明对此不作任何限定。于其它实施例中,进液管和分流支管也可为黄铜管、碳钢管或者不锈钢管中的任一种。
另一方面,如图10所示,本实施例还提供一种空调,其包括节流装置100、蒸发器300及上述制冷用分液器200,制冷用分液器的进液管6与节流装置100连通,制冷用分液器的六个分流支管3与蒸发器200连通。节流装置100输出的制冷剂经进液管6输出至一混合腔501,制冷剂经第一混合腔501混合后回流,并经节流导流孔503传输至第二混合腔混502,充分混合后经六个分流支管3输出至蒸发器300。如图10所示,空调还包括连接在蒸发器300和节流装置100之间的压缩机400和冷凝器500。在制冷状态下,制冷剂的循环如图10中箭头所示。
实施例二
本实施例与实施例一及其变化基本相同,区别在于,如图11所示,进液管6的输出端端面位于第一混合腔501外,进液管6的输出端端面至第一混合腔501的开口端面之间的距离D2小于或等于0.8倍的进液管外径d。优选的,进液管6的输出端端面至第一混合腔501的开口端面之间的距离D2等于0.5倍的 进液管外径。然而,本发明对此不作任何限定。图12为另一实施例中端盖4内套盖合于筒体的敞口端的结构示意图。
实施例三
本实施例与实施例二及其变化基本相同,区别在于:如图13所示,衬板2的数量为两块。具体而言,两块衬板2通过电阻焊焊接连接。然而,本发明对此不作任何限定。于其它实施例中,在具有多块衬板的结构中,端盖上的翻边部也可朝向筒体的内部,进液管内套于翻边部;混合导流板上的节流导流孔也可为通孔或通孔和凹槽孔的结合。
实施例四
本实施例与实施例一及其变化基本相同,区别在于,如图14和图15所示,分液器本体10的结构不同。于本实施例中,分液器本体10’包括筒体1’、至少两块衬板2’以及多个分流支管3’。筒体1’一体成型且呈双端敞口状,筒体1’的进液端具有进液管孔11’。至少两块衬板2’叠加后密封焊接于筒体1’的出液端并在筒体1’内部形成分液器内腔,每一衬板2’上均具有多个衬板孔21’,至少两块衬板2’叠加后对应的衬板孔21’重叠形成重叠孔。多个分流支管3’分别伸入并密封焊接于各个重叠孔。
于本实施例中,衬板2’的数量为两块,两块衬板2’焊接叠加后对应的衬板孔21’重叠所形成的重叠孔的深度H1’为5毫米。然而,本发明对此不作任何限定。于其它实施例中,也可通过调整衬板的数量和厚度来使重叠孔的孔深满足分流支管的插入要求,衬板的数量也可为三块以上,重叠孔的孔深H1’也可为大于2.5毫米的其它数值。
根据装配的位置区分,衬板2包括外侧衬板2A’和内侧衬板2B’,分液器内腔指的是两块衬板2’密封焊接于筒体1’后,筒体1’的内壁和内侧衬板2B’之间所形成的内腔;混合导流板5’的凹腔部52’内形成第一混合腔501’,混合导流板的本体51’和内侧衬板2B’之间形成第二混合腔502’,第一混合腔501’和第二混合腔502’通过板体51’上的节流导流孔503’相连通。
于本实施例中,进液管孔11’的周向上设置有朝向筒体外部的翻边部12’,进液管6’内套或外套于翻边部12’且与翻边部12’密封焊接。
于本实施例中,两块衬板上均只开设有衬板孔21,而未开设通孔。然而,本发明对此不作任何限定。于其它实施例中,如图16所示,外侧衬板2A’上未开设有通孔;而内侧衬板2B’上还具有一个通孔22’且通孔22’位于多个衬板孔21’所形成的圆周中心线内。通孔22’的设置在确保内侧衬板2B’强度的同时进一步降低了内侧衬板2B’的材料成本。此外,通孔22’的设置不仅增大了第二混合腔502’的空间且通孔22’的周壁也会对制冷剂进行反射,从而提高混合效果。
于其它实施例中,当内侧衬板具有多个时,多个内侧衬板上的通孔重叠,形成凹腔。譬如,当分液器本体包括三块衬板时,位于外侧的一块为外侧衬板,而位于内侧的两块则为内侧衬板,两块内侧衬板上对应的通孔重叠形成凹腔。当具有多个内侧衬板时,多个内侧衬板上的通孔可等径;或者自外侧衬板向进液管孔所在的方向,内侧衬板上通孔的孔径逐渐增大。
实施例五
由于现有的空调管路中多为铜管,为便于制冷用分液器与外部铜管的连接,进液管或分流支管会采用不锈钢管和铜管(或碳钢管和铜管)的复合结构。在装配焊接时:第一,将不锈钢管与铜管采用炉中钎焊组合成一个复合件;第二步,此复合件的铜管端与管路铜管进行火焰钎焊连接。此种焊接连接情况下会遇到两个问题:①不锈钢管与铜管采用炉中钎焊,因为经过长时间的炉中焊接导致铜管金相组织晶粒变大而降低了抗拉强度,这在后续铜管与管路铜管再次焊接连接时会直接降低整体管路耐压强度。②在此复合件与管路铜管采用火焰钎焊加热焊接时,焊接的热量会二次加热不锈钢管与铜管之间已经形成的钎焊层,极易导致产品发生泄漏。
有鉴于此,本实施例提供另一种制冷用分液器。本实施例与实施例一及其变化基本相同,区别在于:如图17、图17A以及图17B所示,于本实施例中,进液管6、六个分流支管3以及两块衬板2均为不锈钢。制冷用分液器还包括第一铜套连接管71和六个第二铜套连接管72,第一铜套连接管71内套连接于进液管6,六个第二铜套连接管72分别内套于六个分流支管3内。外部系统管路中的第一管路铜管101内套于第一铜套连接管71,六个第二管路铜管102分别内套于第二铜套连接管72。
对于第一铜套连接管71而言,如图17A所示,第一管路铜管101、第一铜套连接管71以及进液管6所形成的三者套接重叠区域的长度为L11,第一管路铜管101和第一铜套连接管71的套接长度L01,第一铜套连接管71和进液管6的套接长度为L21,0.2L01≤L11≤0.8L01且0.2L21≤L11≤0.8L21。
对于每一第二铜套连接管72而言,如图17B所示,第二管路铜管102、第二铜套连接管72以及分流支管3所形成的三者套接重叠区域的长度为L12,第二管路铜管102和第二铜套连接管72的套接长度L02,第二铜套连接管72和分流支管3的套接长度为L22,0.2L02≤L12≤0.8L02且0.2L22≤L12≤0.8L22。
以下将以第一铜套连接管71为例,对本实施例增加铜套连接管的结构进行说明,多个第二铜套连接管72为同样的原理。
尽管第一铜套连接管71与进液管6进行炉中钎焊后仍然会存在第一铜套连接管71金相组织晶粒粗大而造成管件连接时耐压强度的降低的问题,但进液管6、第一铜套连接管71以及第一管路铜管101三者依次套接后形成长度为L11的三者套接重叠区域,三者套接重叠区域的长度L11满足以下条件:0.2L01≤L11≤0.8L01且0.2L21≤L11≤0.8L21。经过试验后证明:在长度L11满足上述尺寸条件的三者套接重叠区域内第一管路铜管101的外部有第一铜套连接管71和进液管6两层外壁重叠焊接加固,不会因此造成此处耐压强度的降低。进一步的,上述尺寸条件还确保了第一管路铜管101只是局部伸入第一铜套连接管71和进液管6的套接区域内,故当第一管路铜管101和第一铜套连接管71进行火焰钎焊时,其只会局部影响第一铜套连接管71和进液管6之间已经形成的钎焊层,有效避免了对钎焊层的二次熔焊造成的泄漏问题。
本实施例提供的制冷用分液器中,第一铜套连接管71和第二铜套连接管72的设置很好地解决了不锈钢的进液管6和不锈钢的分流支管3与外部的管路铜管焊接时所存在的耐压强度低和二次熔焊造成的泄漏的问题,大大提高了制冷用分歧管与外部铜管的焊接强度和安全性。虽然本实施例以不锈钢的进液管和分流支管为例进行说明,但本发明对此不作任何限定。于其它实施例中,当进液管和分流支管为碳钢管时,同样适用本实施例提供的焊接结构。
在装配时,为方便控制第一管路铜管101和第一铜套连接管71的套接长度L01,于其它实施例中,可在第一铜套连接管71的内壁上设置向内凸起的套接限位部,套接限位部限定第一管路铜管101的插入深度,从而实现套接长度L01的精确控制。同样的,也可在第二铜套连接管72的内壁上设置向内凸起的套接限位部,套接限位部限定第二管路铜管102的插入深度,从而实现套接长度L02的精确控制。套接限位部可为多个点状套接限位部、多段圆弧套接限位部或圆环套接限位部中的任一种。
对于第一管路铜管101和第二管路铜管102而言,其可以为组合式分液器的一部分,即组合式分液器包含第一管路铜管101和第二管路铜管102。或者,组合式分液器不包含两个管路铜管,两个管路铜管为外部空调部件上的管件。如在制冷状态下的空调中,第一管路铜管101为节流装置100的输出管;第二管路铜管102则为蒸发器300的输入管。
尽管本实施例中进液管6和多个分流支管3的端部均都通过增加铜套连接管来与管路铜管进行焊接。然而,本发明对此不作任何限定。于其它实施例中,如图18所示,进液管6通过增加第一铜套连接管71与第一管路铜管101进行焊接;而多根分流支管3则可采用火焰焊进行焊接连接,如磷铜火焰焊等,此时两个衬板2则选用铜基衬板,以提高焊接强度。
实施例六
与实施例五相同的思路,于本实施例中,当筒体1、端盖4以及多块衬板2均为不锈钢材质,而多根分流支管3和进液管6为铜材质时,如图19、图19A以及图19B所示,进液管6、多根分流支管3、筒体1、端盖4以及多块衬板2进行炉中钎焊后,第一管路铜管101内套于进液管6,多个第二管路铜管102分别内套于各分流支管3内。
对于进液管6而言,如图19A所示,其内套于端盖4上的翻边部42,故第一管路铜管101、进液管6以及翻边部42形成三者套接重叠区域,三者套接重叠区域的长度为L11’,第一管路铜管101和进液管6的套接长度为L01’,进液管6插入翻边部42的深度为L21’,0.2L01’≤L11’≤0.8L01’且0.2L21’≤L11’≤0.8L21’。第一管路铜管101、进液管6以及翻边部42形成的三者套接重叠区域使得第一管路铜管101的外部有进液管6和翻边部42两层外壁重叠焊接加固,确保此处具有足够的耐压强度。进一步的,满足上述尺寸条件的L11’还使得第一管路铜管101只是局部伸入进液管6和翻边部42的套接区域内,故当第一管路铜管101和进液管6进行火焰钎焊时,其只会局部影响进液管6和翻边部42之间已经形成的钎焊层,有效避免了对钎焊层的二次熔焊造成的泄漏问题。
同样的,对于每一分流支管3而言,如图19B,其内套于分流支管孔11和两个衬板孔21叠加所形成的重叠孔。重叠孔、分流支管3以及第二管路铜管102形成三者套接重叠区域,三者套接重叠区域的长度为L12’,第二管路铜管102和分流支管3的套接长度为L02’,分流支管3插入重叠孔的深度为L22’,0.2L02’≤L12’≤0.8L02’且0.2L22’≤L12’≤0.8L22’。第二管路铜管102、分流支管3以及重叠孔形成的三者套接重叠区域使得第二管路铜管102的外部有分流支管3和重叠孔的侧壁两层外壁重叠焊接加固,确保此处具有足够的耐压强度。进一步的,满足上述尺寸条件的L12’还使得第二管路铜管102只是局部伸入分流支管3和重叠孔的套接区域内,故当第二管路铜管102和分流支管3进行火焰钎焊时,其只会局部影响分流支管3和重叠孔之间已经形成的钎焊层,有效避免了对钎焊层的二次熔焊造成的泄漏问题。
在装配时,为方便控制第一管路铜管101和进液管6的套接长度为L01’,于其它实施例中,可在进液管6的内壁上设置向内凸起的套接限位部,套接限位部限定第一管路铜管101的插入深度,从而实现套接 长度L01’的精确控制。同样的,也可在分流支管3的内壁上设置向内凸起的套接限位部,套接限位部限定第二管路铜管102的插入深度,从而实现套接长度L02’的精确控制。套接限位部可为多个点状套接限位部、多段圆弧套接限位部或圆环套接限位部中的任一种。
同样的,对于第一管路铜管101和第二管路铜管102而言,其可以为组合式分液器的一部分,即组合式分液器包含第一管路铜管101和第二管路铜管102。或者,组合式分液器不包含两个管路铜管,两个管路铜管为外部空调部件上的管件。如在制冷状态下的空调中,第一管路铜管101为节流装置100的输出管;第二管路铜管102则为蒸发器300的输入管。
本实施例是以实施例一中的分液器本体的结构为例进行说明。然而,本发明都此不作任何限定。对于实施例四中的分液器本体结构,铜材质的进液管6和铜材质的多个分流支管3同样可以采用本实施例的方式进行焊接。对于实施例四中的分液器本体,分流支管内套于对应的多个衬板孔叠加所形成的重叠孔内且多个衬板为不锈钢材质的衬板。
综上,本发明提供的制冷用分液器及空调中,分液器内腔内设置有混合导流板,混合导流板的凹腔部内形成第一混合腔,而混合导流板和分液器本体的出液端之间又形成第二混合腔。进入分液器内腔内的气液混合的制冷剂在第一混合腔进行一次混合后经多个节流导流孔进入第二混合腔进行二次混合;制冷剂的二次混合够使气液状态下的制冷剂充分混合,从而大大提高混合后制冷剂的均匀性。此外,多个节流导流孔在连通第一混合腔和第二混合腔的同时还利用其变小的横截面来对制冷剂进行节流,改变制冷剂的速度,从而进一步提高第二混合腔内的混合效果;从而很好地解决了现有分液器因制冷剂混合不均匀所引起的制冷系统能效比差的问题。
虽然本发明已由较佳实施例揭露如上,然而并非用以限定本发明,任何熟知此技艺者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所要求保护的范围为准。

Claims (18)

  1. 一种制冷用分液器,其特征在于,包括:
    分液器本体,具有分液器内腔;
    混合导流板,设置于分液器内腔内,所述混合导流板上具有凹腔部且所述凹腔部内形成第一混合腔,混合导流板和分液器本体出液端之间形成第二混合腔,混合导流板上沿周向均匀分布有连通第一混合腔和第二混合腔的多个节流导流孔;所述凹腔部使得进入第一混合腔的两相制冷剂经混合后沿第一混合腔回流,之后经节流导流孔到达第二混合腔。
  2. 根据权利要求1所述的制冷用分液器,其特征在于,沿混合导流板的周向均匀分布的多个节流导流孔为凹槽孔、通孔或者通孔和凹槽孔的组合;所述凹槽孔由位于混合导流板两侧且中心对称的两个曲面拉伸部的开口所围成。
  3. 根据权利要求1所述的制冷用分液器,其特征在于,所述混合导流板包括板体和形成于板体中心且向分液器本体出液端延伸的凹腔部,板体和分液器本体进液端之间形成传输通道。
  4. 根据权利要求1所述的制冷用分液器,其特征在于,所述制冷用分液器还包括进液管,所述进液管密封焊接于分液器本体的进液管孔。
  5. 根据权利要求4所述的制冷用分液器,其特征在于,进液管的输出端伸入第一混合腔内,进液管的输出端端面至第一混合腔的开口端面之间的距离小于或等于1倍的进液管外径。
  6. 根据权利要求4所述的制冷用分液器,其特征在于,进液管的输出端端面位于第一混合腔外,进液管的输出端端面至第一混合腔的开口端面之间的距离小于或等于0.8倍的进液管外径。
  7. 根据权利要求4所述的制冷用分液器,其特征在于,进液管孔的周向上设置有朝向分液器本体内部或外部的翻边部,进液管内套或外套于翻边部且与翻边部密封焊接。
  8. 根据权利要求4所述的制冷用分液器,其特征在于,当进液管为不锈钢管或碳钢管时,制冷用分液器还包括套接于进液管端部的铜套连接管,铜套连接管内套于进液管的端部,管路铜管内套于铜套连接管,管路铜管、铜套连接管以及进液管所形成的三者套接重叠区域的长度为L11,管路铜管和铜套连接管的套接长度L01,铜套连接管和进液管的套接长度为L21,0.2L01≤L11≤0.8L01且0.2L21≤L11≤0.8L21。
  9. 根据权利要求4所述的制冷用分液器,其特征在于,当进液管为铜管且分液器本体为不锈钢时,进液管内套于进液管孔周向的翻边部,管路铜管内套于进液管,管路铜管、进液管以及翻边部所形成的三者套接重叠区域的长度为L11’,管路铜管和进液管的套接长度L01’,进液管和翻边部的套接长度为L21’,0.2L01’≤L11’≤0.8L01’且0.2L21’≤L11’≤0.8L21’。
  10. 根据权利要求1所述的制冷用分液器,其特征在于,所述分液器本体包括:
    筒体,一体成型且呈单端敞口状,筒体的底部具有多个分流支管孔;
    至少一块衬板,设置于筒体的内底面,每一衬板上均具有与多个分流支管孔对应的多个衬板孔;
    多个分流支管,分别伸入各个分流支管孔内且伸入端延伸至对应的衬板孔内,每一分流支管均密封焊接于对应的分流支管孔和衬板孔内;
    端盖,盖合于筒体的敞口端且与筒体密封焊接以形成分液器内腔,端盖上开设有进液管孔且进液管孔正对第一混合腔。
  11. 根据权利要求10所述的制冷用分液器,其特征在于,每一衬板上还具有一个通孔且所述通孔位于多个衬板孔所形成的圆周中心线内;当所述衬板有多个时,多个衬板上的通孔对应重叠形成凹腔。
  12. 根据权利要求1所述的制冷用分液器,其特征在于,所述分液器本体包括:
    筒体,一体成型且呈双端敞口状,筒体的进液端具有进液管孔且进液管孔正对第一混合腔;
    至少两块衬板,叠加后密封焊接于筒体的出液端,筒体和衬板之间形成分液器内腔,每一衬板上均具有多个衬板孔,至少两块衬板叠加后对应的衬板孔重叠,形成重叠孔;
    多个分流支管,分别伸入并密封焊接于各个重叠孔。
  13. 根据权利要求12所述的制冷用分液器,其特征在于,内侧衬板上还具有一个通孔且所述通孔位于多个衬板孔所形成的圆周中心线内;当内侧衬板具有多个时,多个内侧衬板上的通孔重叠形成凹腔。
  14. 根据权利要求10或12所述的制冷用分液器,其特征在于,筒体的内侧壁上具有向筒体内部凸起的限位固定部,限位固定部将衬板限位固定于筒体内,所述限位固定部包括多个点状限位固定部、多段圆弧限位固定部或圆环限位固定部;或者至少一块衬板过盈装配于筒体内。
  15. 根据权利要求10或12所述的制冷用分液器,其特征在于,筒体的横截面形状为圆形、方形或椭圆形中的任一种,衬板和混合导流板的横截面形状与筒体的横截面形状相匹配。
  16. 根据权利要求10或12所述的制冷用分液器,其特征在于,当多个分流支管和衬板均为不锈钢或碳钢时,制冷用分液器还包括多个铜套连接管,多个铜套连接管分别内套于各分流支管的端部,多个管路铜管内套于各铜套连接管,对应的管路铜管、铜套连接管以及分流支管所形成的三者套接重叠区域的长度为L12,管路铜管和铜套连接管的套接长度L02,铜套连接管和分流支管的套接长度为L22,0.2L02≤L12≤0.8L02且0.2L22≤L12≤0.8L22。
  17. 根据权利要求10或12所述的制冷用分液器,其特征在于,当多个分流支管为铜管且筒体为不锈钢时,每一分流支管分别内套于对应的分流支管孔和至少一个衬板孔叠加所形成的重叠孔;或者每一分流支管分别内套于至少两块不锈钢材质的衬板叠加后对应的衬板孔重叠所形成的重叠孔;多个管路铜管内套于各分流支管,每一管路铜管、对应的分流支管以及重叠孔所形成的三者套接重叠区域的长度为L12’,管路铜管和分流支管的套接长度L02’,分流支管和重叠孔的套接长度为L22’,0.2L02’≤L12’≤0.8L02’且0.2L22’≤L12’≤0.8L22’。
  18. 一种空调,其特征在于,包括节流装置、蒸发器及上述权利要求1所述的制冷用分液器,制冷用分液器连接于节流装置和蒸发器之间,节流装置将制冷剂输出至制冷用分液器的第一混合腔,制冷剂经第一混合腔和第二混合腔混合后输出至蒸发器。
PCT/CN2022/110734 2021-09-02 2022-08-07 制冷用分液器及空调 WO2023029888A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023558932A JP2023553760A (ja) 2021-09-02 2022-08-07 冷凍用の分液器及びエアコン
KR1020237019250A KR20230118566A (ko) 2021-09-02 2022-08-07 냉각용 분액장치 및 에어컨

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122117162.1U CN216204506U (zh) 2021-09-02 2021-09-02 制冷用分液器及空调
CN202122117162.1 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023029888A1 true WO2023029888A1 (zh) 2023-03-09

Family

ID=80917743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110734 WO2023029888A1 (zh) 2021-09-02 2022-08-07 制冷用分液器及空调

Country Status (4)

Country Link
JP (1) JP2023553760A (zh)
KR (1) KR20230118566A (zh)
CN (1) CN216204506U (zh)
WO (1) WO2023029888A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216204506U (zh) * 2021-09-02 2022-04-05 含山瑞可金属有限公司 制冷用分液器及空调
CN218523787U (zh) * 2022-10-13 2023-02-24 浙江盾安禾田金属有限公司 管路连接结构及空调系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202501678U (zh) * 2012-04-17 2012-10-24 珠海格力电器股份有限公司 分液器及具有其的风冷热泵机组
CN106705513A (zh) * 2017-01-12 2017-05-24 青岛海尔空调器有限总公司 空调及其分液器
CN206709452U (zh) * 2017-05-13 2017-12-05 黄菊梅 一种空调制冷用分液头
CN209910224U (zh) * 2019-05-30 2020-01-07 台州市奥通制冷设备股份有限公司 一种树杈型减压空调器分支管
JP2021025647A (ja) * 2019-07-31 2021-02-22 ダイキン工業株式会社 冷媒配管、及び、冷凍装置
CN113865163A (zh) * 2021-09-02 2021-12-31 含山瑞可金属有限公司 不锈钢分液器、空调及不锈钢分液器的制造方法
CN216204506U (zh) * 2021-09-02 2022-04-05 含山瑞可金属有限公司 制冷用分液器及空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202501678U (zh) * 2012-04-17 2012-10-24 珠海格力电器股份有限公司 分液器及具有其的风冷热泵机组
CN106705513A (zh) * 2017-01-12 2017-05-24 青岛海尔空调器有限总公司 空调及其分液器
CN206709452U (zh) * 2017-05-13 2017-12-05 黄菊梅 一种空调制冷用分液头
CN209910224U (zh) * 2019-05-30 2020-01-07 台州市奥通制冷设备股份有限公司 一种树杈型减压空调器分支管
JP2021025647A (ja) * 2019-07-31 2021-02-22 ダイキン工業株式会社 冷媒配管、及び、冷凍装置
CN113865163A (zh) * 2021-09-02 2021-12-31 含山瑞可金属有限公司 不锈钢分液器、空调及不锈钢分液器的制造方法
CN216204506U (zh) * 2021-09-02 2022-04-05 含山瑞可金属有限公司 制冷用分液器及空调

Also Published As

Publication number Publication date
KR20230118566A (ko) 2023-08-11
JP2023553760A (ja) 2023-12-25
CN216204506U (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2023029888A1 (zh) 制冷用分液器及空调
US7597137B2 (en) Heat exchanger system
WO2023029887A1 (zh) 制冷用三通管件及空调
RU2353875C2 (ru) Холодильная плита
CN216204507U (zh) 组合式分液器及空调
CN210978893U (zh) 制冷设备用管件
CN215891529U (zh) 组合式三通管件及空调
CN212362909U (zh) 一种新型壳管式换热器
JP3405879B2 (ja) プレート型冷媒分流器
JPH11257801A (ja) 冷媒分流器
WO2022227742A1 (zh) 分流器及具有其的制冷系统
CN219494466U (zh) 不锈钢分液头组件及换热器
CN113865163A (zh) 不锈钢分液器、空调及不锈钢分液器的制造方法
CN110431364B (zh) 流体分配器
CN215891530U (zh) 新型三通管件及空调
CN112129134A (zh) 一种新型壳管式换热器
KR20160117376A (ko) 입출구파이프를 포함한 열교환기 제조방법
CN218494411U (zh) 集水头及空调系统
WO2024041594A1 (zh) 换热器及空调设备
CN216745027U (zh) 分流器组件
LU102301B1 (en) Heat exchanger for a vehicle
CN213955697U (zh) 分流器和空调器
CN215260657U (zh) 分流器组件及具有其的制冷系统
CN215176221U (zh) 分配器及制冷系统
CN219640424U (zh) 新型集水器及空调设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558932

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2301006152

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE