WO2023029793A1 - 一种冻融循环作用下岩石蠕变损伤本构模型的构建方法 - Google Patents

一种冻融循环作用下岩石蠕变损伤本构模型的构建方法 Download PDF

Info

Publication number
WO2023029793A1
WO2023029793A1 PCT/CN2022/106647 CN2022106647W WO2023029793A1 WO 2023029793 A1 WO2023029793 A1 WO 2023029793A1 CN 2022106647 W CN2022106647 W CN 2022106647W WO 2023029793 A1 WO2023029793 A1 WO 2023029793A1
Authority
WO
WIPO (PCT)
Prior art keywords
freeze
thaw
rock
creep
damage
Prior art date
Application number
PCT/CN2022/106647
Other languages
English (en)
French (fr)
Inventor
崔磊
张霄汉
周立飞
姜谙男
张志成
王子利
逄明卿
侯拉平
马超
毕建成
刘林涛
马新彪
魏晓磊
唐卫平
张峰瑞
Original Assignee
中铁一局集团第二工程有限公司
中铁北方投资有限公司
中铁一局集团有限公司
大连海事大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁一局集团第二工程有限公司, 中铁北方投资有限公司, 中铁一局集团有限公司, 大连海事大学 filed Critical 中铁一局集团第二工程有限公司
Publication of WO2023029793A1 publication Critical patent/WO2023029793A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the technical field of rock creep damage model calculation methods, in particular to a method for constructing a rock creep damage constitutive model under freeze-thaw cycles.
  • the invention provides a construction method of a rock creep damage constitutive model under the action of freeze-thaw cycles to overcome the above problems.
  • the present invention includes:
  • freeze-thaw damage viscous elements into the freeze-thaw cycle rock creep model, including:
  • ⁇ d is the shear stress of the viscous element damaged by freeze-thaw
  • ⁇ 2 (n,D) is the viscosity coefficient of the freeze-thaw damaged viscous element
  • ⁇ 2 (n) is the viscosity coefficient under n freeze-thaw cycles
  • n is the number of freeze-thaw cycles
  • D is the damage variable, 0 ⁇ D ⁇ 1
  • e is a constant
  • ⁇ d is the shear strain of the viscous element damaged by freeze-thaw rock
  • n is the number of freeze-thaw cycles
  • G is the shear modulus of freeze-thaw rock
  • is the viscosity coefficient of freeze-thaw rock.
  • S3 builds a constitutive model of rock creep damage in freeze-thaw cycles, including:
  • ⁇ 0 is the shear strain of the freeze-thaw elastic element
  • G 0 (n) is the shear modulus of the freeze-thaw elastic element when the freeze-thaw cycle is n times
  • is the total shear stress
  • ⁇ H is the shear stress of the freeze-thaw viscous element, is the shear strain rate of the freeze-thaw viscous element;
  • ⁇ 1 (n) is the viscosity coefficient of the freeze-thaw viscous element when the freeze-thaw cycle is n times;
  • ⁇ 1 represents the shear strain of the freeze-thaw viscoelastic element
  • G 1 (n) is the shear modulus of the freeze-thaw elastic element
  • ⁇ v is the shear stress of the plastic element of the freeze-thaw damaged viscoplastic body
  • ⁇ s is the yield stress of the freeze-thaw rock
  • ⁇ 2 represents the shear strain of the freeze-thaw damaged viscoplastic body
  • is the coefficient related to the number of freeze-thaw cycles
  • t is the time
  • ⁇ 2 (n) is the viscosity coefficient under n times of freeze-thaw cycles
  • is the total strain of the freeze-thaw cycle rock creep damage model.
  • the creep characteristic of rock mass is one of the important mechanical characteristics of rock mass engineering, which is closely related to the long-term stability of rock mass engineering. With the development of rock mass engineering construction in cold regions, the damage and deterioration of rocks are serious under the action of freeze-thaw cycles, and the creep characteristics are more significant, which will have an adverse effect on the long-term stability of projects in cold regions.
  • the present invention considers the influence of freeze-thaw cycles on rock creep mechanical properties and constitutive model, and the present invention establishes the solution process of freeze-thaw damage creep model; considers the influence of freeze-thaw cycles on creep parameters, and the rock creep
  • the variable mechanical parameters are regarded as unsteady, and the present invention realizes the expression of unsteady creep parameters of freeze-thaw rock; the present invention introduces damage variables to describe the damage and degradation of rock viscosity coefficient, and considers the influence of freeze-thaw cycles, constructs a freeze-thaw Conditions of damage to viscous components.
  • the theoretical value calculated by the freeze-thaw cycle rock creep damage constitutive model constructed by the present invention is not much different from the test value, which fully reflects the trend of the influence of freeze-thaw cycles and can better reflect the deceleration of rocks under different freeze-thaw cycles Creep, steady creep, and accelerated creep features.
  • Fig. 1 is a flowchart of the present invention
  • Fig. 2 is rock shear creep test curve after freeze-thaw cycle among the present invention
  • Fig. 3 is the viscous element of freeze-thaw rock damage in the present invention.
  • Fig. 4 is the constitutive model of freeze-thaw rock creep damage in the present invention.
  • Fig. 5 is the comparative figure of 30 times test curves and model theoretical curves of freeze-thaw cycles in the present invention
  • Fig. 6 is the comparison chart of 70 test curves of freeze-thaw cycles and model theoretical curves in the present invention
  • Fig. 7 is the influence law diagram of creep damage model parameter on creep deformation among the present invention.
  • Fig. 8 is a figure showing the influence of creep damage model parameters on creep deformation in the present invention.
  • Fig. 9 is a creep damage model parameter G of the present invention with the change pattern of freeze-thaw cycle times
  • Fig. 10 is the change law figure of creep damage model parameter G 1 with the number of freeze-thaw cycles in the present invention
  • Fig. 11 is the change law diagram of creep damage model parameter ⁇ 1 with the number of freeze-thaw cycles in the present invention
  • Fig. 12 is the change law diagram of creep damage model parameter ⁇ 2 with the number of freeze-thaw cycles in the present invention
  • Fig. 13 is a graph showing the variation law of the creep damage model parameter ⁇ with the number of freeze-thaw cycles in the present invention.
  • This embodiment provides a method for constructing a rock damage creep constitutive model after freeze-thaw cycles, as shown in Figure 1, including the following:
  • nonlinear damage viscous elements are introduced into the rock creep model.
  • the applied load reaches or exceeds a certain shear stress level, damage will occur inside the rock.
  • the damage variable D is introduced to describe the damage deterioration of the rock viscosity coefficient.
  • ⁇ d is the shear stress of the viscous element damaged by freeze-thaw
  • ⁇ 2 (n,D) is the viscosity coefficient of the freeze-thaw damaged viscous element
  • ⁇ 2 (n) is the viscosity coefficient under n freeze-thaw cycles
  • D is the damage variable, 0 ⁇ D ⁇ 1.
  • ⁇ d is the shear strain of the viscous element damaged by freeze-thaw rock.
  • the model is composed of freeze-thaw elastic element, freeze-thaw viscoelastic body and freeze-thaw damage viscoplastic body, and the shear strains are ⁇ 0 , ⁇ 1 and ⁇ 2 respectively.
  • the total shear stress is ⁇
  • the total shear strain ⁇ can be expressed as:
  • G 0 (n) is the shear modulus of the freeze-thaw elastic element when freeze-thaw cycles are n times.
  • the freeze-thaw viscoelastic body is formed by parallel connection of freeze-thaw elastic elements and freeze-thaw viscous elements.
  • the constitutive relation is:
  • ⁇ H are the shear stress and shear strain rate of the freeze-thaw viscous element, respectively; ⁇ 1 (n) is the viscosity coefficient of the freeze-thaw viscous element when the freeze-thaw cycle is n times.
  • ⁇ K , G 1 (n) are the shear strain and shear modulus of the freeze-thaw elastic element, respectively.
  • the freeze-thaw damaged viscoplastic body is composed of freeze-thaw damaged viscous elements and plastic elements connected in parallel.
  • the shear stress ⁇ v of the plastic element can be expressed as:
  • ⁇ s is the yield stress of the frozen-thawed rock.
  • Equation 15 The constitutive model equation for rock creep damage after freeze-thaw cycles is given by Equation (15). Based on the test results, the Boltzmann superposition principle is used to convert the creep curves under staged loading conditions into creep curves under separate loading conditions. Identify the model parameters.
  • the sensitivity analysis of the creep parameters ⁇ 2 and ⁇ of the viscous component of the freeze-thaw rock damage is carried out to study its influence on the creep deformation of the rock; and the change rule of the creep model parameters with the number of freeze-thaw cycles is analyzed.
  • the construction method of the rock creep damage constitutive model after freeze-thaw cycles includes:
  • ⁇ d is the shear stress of the viscous element damaged by freeze-thaw
  • ⁇ 2 (n,D) is the viscosity coefficient of the freeze-thaw damaged viscous element
  • ⁇ 2 (n) is the viscosity coefficient under n freeze-thaw cycles
  • D is the damage variable, 0 ⁇ D ⁇ 1.
  • ⁇ d is the shear strain of the viscous element damaged by freeze-thaw rock.
  • the creep model is composed of freeze-thaw elastic element, freeze-thaw viscoelastic body and freeze-thaw damaged viscoplastic body.
  • the shear strains are ⁇ 0 , ⁇ 1 and ⁇ 2 respectively.
  • the total shear strain ⁇ can be expressed as:
  • G 0 (n) is the shear modulus of the freeze-thaw elastic element when freeze-thaw cycles are n times.
  • the freeze-thaw viscoelastic body is formed by parallel connection of freeze-thaw elastic elements and freeze-thaw viscous elements.
  • the constitutive relation is:
  • ⁇ H are the shear stress and shear strain rate of the freeze-thaw viscous element, respectively; ⁇ 1 (n) is the viscosity coefficient of the freeze-thaw viscous element when the freeze-thaw cycle is n times.
  • ⁇ K , G 1 (n) are the shear strain and shear modulus of the freeze-thaw elastic element, respectively.
  • the freeze-thaw damaged viscoplastic body is composed of freeze-thaw damaged viscous elements and plastic elements connected in parallel. Among them, the shear stress ⁇ v of the plastic element can be expressed as
  • ⁇ s is the yield stress of the frozen-thawed rock.
  • Equation 15 The constitutive model equation of rock creep damage after freeze-thaw cycles is given by Equation (15).
  • the Boltzmann superposition principle is used to transform the creep curves under staged loading conditions into creep curves under separate loading conditions.
  • the variable curve is used to identify the model parameters, as shown in Table 1.
  • Figure 5 and Figure 6 compare the creep test curve with the curve fitted by the theoretical model, which verifies the correctness and applicability of the model.
  • the present invention establishes the solution process of freeze-thaw damage creep model
  • the mechanical parameters of rock creep are regarded as unsteady, and the present invention realizes the expression of freeze-thaw rock unsteady creep parameters; the present invention introduces the damage variable D to describe rock viscosity Based on the damage degradation of the resistance coefficient, and considering the influence of the freeze-thaw cycle, the damage viscosity element under the freeze-thaw condition was constructed.
  • the present invention further clarifies the law of influence of model creep parameters on creep, and provides the change law of creep parameters with the number of freeze-thaw cycles, which has guiding significance for long-term stability evaluation of rock mass engineering in cold regions.
  • the calculation process of the present invention is comparatively complicated, has stronger comprehensiveness, is applied to the creep test of granite after freezing-thawing cycle action, and the new model that proposes is stronger than existing model comprehensiveness and applicability, and to test gained The creep curve fits better. It embodies the creep deformation and failure characteristics of granite, and fully reflects the characteristics of decelerated creep, stable creep and accelerated creep of rock under different freeze-thaw cycles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种冻融循环作用后岩石蠕变损伤本构模型的构建与计算方法,包括:S1、设置冻融岩石非定常蠕变参数;S2、在冻融循环岩石蠕变模型引入冻融损伤黏性元件;S3、根据冻融损伤黏性元件、冻融岩石非定常蠕变参数,构建冻融循环岩石蠕变损伤本构模型。

Description

一种冻融循环作用下岩石蠕变损伤本构模型的构建方法 技术领域
本发明涉及岩石蠕变损伤模型计算方法技术领域,尤其涉及一种冻融循环作用下岩石蠕变损伤本构模型的构建方法。
背景技术
随着经济建设和西部大开发的推进,我国的矿山、水力水电、能源存储等领域涉及到寒区地下工程的建设越来越多。寒区隧道、低温液化天然气\石油气(LNG\LPG)的地质储存和冻结法施工等都涉及低温或冻融的岩石力学特性。此外岩体的蠕变特性是岩体工程的重要力学特征之一,与岩体工程的长期稳定性密切相关,岩体因受长期荷载作用发生破坏是其主要破坏形式之一。尤其是随着寒区岩体工程建设的开展,在冻融循环作用下岩石损伤劣化严重,剪切蠕变特性更为显著,这将对寒区工程的长期稳定性产生不利影响。基于此,研究岩石在冻融循环条件下的力学性能和构建合理的蠕变损伤本构模型具有重要意义。
目前冻融对岩石性质的研究大多限于岩石瞬时力学特性,关于冻融循环岩石蠕变损伤本构模型的研究较少,其可以合理描述冻融循环对岩石蠕变特性的影响,能够很好的反映花岗岩在不同冻融循环次数下的减速蠕变、稳定蠕变和加速蠕变特征。在冻融岩石力学特性研究中,杨更社、赖远明、刘泉声等均对冻融岩石瞬时力学特性进行了分析。同时,有部分专利涉及到了冻融岩石瞬时力学特性和本构模型的研究,例如张慧梅等研究的《一种等围压作用下岩石冻融损伤本构模型的构建方法》发明专利,王环玲等研究的《一种确定高海拔寒区岩石冻融损伤程度的方法》发明专利和谭贤君等研究的《一种评价冻融循环下岩石单轴抗压强度的无损预测组合方法》发明专利。但对于冻融循环作用后岩石蠕变损伤本构模型的研究鲜有涉及。
发明内容
本发明提供一种冻融循环作用下岩石蠕变损伤本构模型的构建方法,以克服以上问题。
为了实现上述目的,本发明的技术方案是:
本发明包括:
S1、设置冻融岩石非定常蠕变参数;
S2、在冻融循环岩石蠕变模型引入冻融损伤黏性元件,包括:
S21、根据牛顿黏性定律,建立冻融损伤黏性元件的剪切应力和剪切应变间的关系:
Figure PCTCN2022106647-appb-000001
其中,τ d为冻融损伤黏性元件的剪切应力,
Figure PCTCN2022106647-appb-000002
为冻融损伤黏性元件的剪切应变率,η 2(n,D)为冻融损伤黏性元件的黏性系数;
S22、在冻融条件下的损伤黏性元件本构关系中,加入冻融循环及应力作用时间对黏性系数的影响因子:
η 2(n,D)=η 2(n)(1-D)            (2)
其中,η 2(n)为冻融循环n次下的黏性系数;n为冻融循环次数,D为损伤变量,0≤D<1,e为常数;
S23、岩石蠕变过程中损伤变量和时间的关系为:
D=1-e -αt          (3)
其中,α为与冻融循环次数相关的系数;t为时间。
S24、根据S22、S23构建冻融损伤黏性元件的黏性系数为:
η 2(n,D)=η 2(n)e -αt         (4)
S25、根据S21和S24构建冻融条件下损伤黏性元件的剪切应力和剪切应变的关系:
Figure PCTCN2022106647-appb-000003
其中,γ d为冻融岩石损伤黏性元件的剪切应变;
S3、根据冻融损伤黏性元件、冻融岩石非定常蠕变参数,构建冻融循环岩石蠕变损伤本构模型。
进一步地,S1中冻融岩石非定常蠕变参数为:
G=G(n)
η=η(n)              (6)
其中,n为冻融循环次数;G为冻融岩石的剪切模量;η为冻融岩石的黏性系数。
进一步地,S3构建冻融循环岩石蠕变损伤本构模型,包括:
S32、计算冻融弹性元件的应力-应变关系为
Figure PCTCN2022106647-appb-000004
其中,γ 0为冻融弹性元件的剪切应变,G 0(n)为冻融循环n次时冻融弹性元件的剪切模量,τ为总剪切应力;
S33、建立冻融黏性元件的本构关系:
Figure PCTCN2022106647-appb-000005
其中,τH为冻融黏性元件的剪切应力、
Figure PCTCN2022106647-appb-000006
为冻融黏性元件的剪切应变率;η 1(n)为冻融循环n次时冻融黏性元件的黏性系数;
S34、建立冻融黏弹性元件的应力-应变关系:
Figure PCTCN2022106647-appb-000007
其中,γ 1表示冻融黏弹性元件的剪切应变,G 1(n)为冻融弹性元件的剪切模量;
S35、计算冻融损伤黏塑性体的塑性元件剪切应力:
Figure PCTCN2022106647-appb-000008
其中,τ v为冻融损伤黏塑性体的塑性元件剪切应力;τ s为冻融岩石的屈服应力;
S36、冻融损伤黏塑性体的应力-应变关系为:
Figure PCTCN2022106647-appb-000009
其中,γ 2表示冻融损伤黏塑性体的剪切应变;α为与冻融循环次数相关的系数;t为时间;η 2(n)为冻融循环n次下的黏性系数;
S37、根据冻融弹性元件、冻融黏弹性体和冻融损伤黏塑性体的应变,建立冻融循环作用后岩石蠕变损伤本构模型:
Figure PCTCN2022106647-appb-000010
其中,γ冻融循环岩石蠕变损伤模型总应变。
关于冻融循环岩石蠕变试验国内外已经开展了相关研究,但由于冻融岩石蠕变机理比较复杂,现有的蠕变模型无法体现冻融岩石的蠕变特征,因此关于冻融岩石蠕变本构模型的研究还较少。岩体的蠕变特性是岩体工程的重要力学特征之一,与岩体工程的长期稳定性密切相关。随着寒区岩体工程建设的开展,在冻融循环作用下岩石损伤劣化严重,蠕变特性更为显著,这将对寒区工程的长期稳定性产生不利影响。基于此,研究岩石在冻融循环条件下的力学性能和构建合理的蠕变损伤本构模型具有重要意义;本发明也对寒区工程长期稳定性评价也具有指导意义。本发明考虑了冻融循环次数对岩石蠕变力学特性和本构模型的影响,本发明确立了冻融损伤蠕变模型的求解过程;考虑冻融循环次数对蠕变参数的影响,将岩石蠕变力学参数看成是非定常的,本发明实现了冻融岩石非定常蠕变参数表达;本发明引入损伤变量来描述岩石黏性系数的损伤劣化,并考虑冻融循环的影响,构建了冻融条件下的损伤黏性元件。本发明构建的冻融循环岩石蠕变损伤本构模型计算的理论值与试验值相差不大,充分反映冻融循环次数影响的趋势,能够较好反映出岩石在不同冻融循环次数下的减速蠕变、稳定蠕变和加速蠕变特征。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明流程图;
图2为本发明中冻融循环后岩石剪切蠕变试验曲线;
图3为本发明中冻融岩石损伤黏性元件;
图4为本发明中冻融岩石蠕变损伤本构模型;
图5为本发明中冻融循环30次试验曲线与模型理论曲线对比图;
图6为本发明中冻融循环70次试验曲线与模型理论曲线对比图;
图7为本发明中蠕变损伤模型参数对蠕变变形的影响规律图;
图8为本发明中蠕变损伤模型参数对蠕变变形的影响规律图;
图9为本发明中蠕变损伤模型参数G 0随冻融循环次数的变化规律图;
图10为本发明中蠕变损伤模型参数G 1随冻融循环次数的变化规律图;
图11为本发明中蠕变损伤模型参数η 1随冻融循环次数的变化规律图;
图12为本发明中蠕变损伤模型参数η 2随冻融循环次数的变化规律图;
图13为本发明中蠕变损伤模型参数α随冻融循环次数的变化规律图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供了一种冻融循环作用后岩石损伤蠕变本构模型的构建方法,如图1所示,包括以下内容:
首先将岩石蠕变力学参数看成是非定常的,考虑了冻融循环次数n对岩石剪切模量G、黏性系数η等参数的影响,实现了冻融岩石非定常蠕变参数表达:
G=G(n)
η=η(n)           (1)
式中:n为冻融循环次数;G为剪切模量;η为黏性系数。
进一步的,在岩石蠕变模型引入非线性损伤黏性元件。当施加荷载达到或超过一定剪切应力水平时,岩石内部会有损伤的产生。考虑加速蠕变阶段 剪切应力产生的损伤,引入损伤变量D来描述岩石黏性系数的损伤劣化。
并在此基础上考虑冻融循环的影响,构建了冻融条件下的损伤黏性元件。根据牛顿黏性定律,冻融条件下的损伤黏性元件本构关系为:
Figure PCTCN2022106647-appb-000011
其中,τ d为冻融损伤黏性元件的剪切应力,
Figure PCTCN2022106647-appb-000012
为冻融损伤黏性元件的剪切应变率,η 2(n,D)为冻融损伤黏性元件的黏性系数;
考虑冻融循环及应力作用时间对黏性系数的影响,即:
η 2(n,D)=η 2(n)(1-D)            (3)
式中:η 2(n)为冻融循环n次下的黏性系数;D为损伤变量,0≤D<1。
试验得知,岩石蠕变过程中损伤变量和时间呈负指数函数关系,损伤变量为:
D=1-e -αt             (4)
式中:α为与冻融循环次数相关的系数;t为时间。因此,冻融损伤黏性元件的黏性系数为:
η 2(n,D)=η 2(n)e -αt           (5)
保持应力不变,结合式(2)及式(5),求解得冻融条件下损伤黏性元件的本构关系为:
Figure PCTCN2022106647-appb-000013
其中,γ d为冻融岩石损伤黏性元件的剪切应变。
进一步的,构建冻融循环作用后岩石蠕变损伤本构模型。以西原模型为基础,将黏塑性体中黏性元件替换为冻融损伤黏性元件,并考虑冻融循环对模型参数的影响,建立了岩石冻融剪切蠕变本构模型,如图4所示。
模型由冻融弹性元件、冻融黏弹性体和冻融损伤黏塑性体组合而成,其剪切应变分别为γ 0、γ 1和γ 2。当总剪切应力为τ,总剪切应变γ可表述为:
γ=γ 012            (7)
对于冻融弹性元件,其应力-应变关系为:
Figure PCTCN2022106647-appb-000014
式中:G 0(n)为冻融循环n次时冻融弹性元件的剪切模量。
冻融黏弹性体由冻融弹性元件与冻融黏性元件并联而成。对于冻融黏性元件,其本构关系为:
Figure PCTCN2022106647-appb-000015
式中:τ H
Figure PCTCN2022106647-appb-000016
分别为冻融黏性元件的剪切应力及剪切应变率;η 1(n)为冻融循环n次时冻融黏性元件的黏性系数。
因此,根据组合模型理论,冻融黏弹性体的应力-应变关系为:
Figure PCTCN2022106647-appb-000017
式中:γ K、G 1(n)分别为冻融弹性元件的剪切应变及剪切模量。结合初始条件t=0时,对式(10)进行求解,解得:
Figure PCTCN2022106647-appb-000018
冻融损伤黏塑性体由冻融损伤黏性元件与塑性元件并联而成。其中,塑性元件剪切应力τ v的大小可表示为:
Figure PCTCN2022106647-appb-000019
其中τ s为冻融岩石的屈服应力。
当τ<τ s,γ 2=0。
当τ≥τ s,结合冻融损伤黏性元件的本构关系得:
Figure PCTCN2022106647-appb-000020
因此
Figure PCTCN2022106647-appb-000021
综合考虑冻融弹性元件、冻融黏弹性体和冻融损伤黏塑性体三部分应变, 冻融循环作用后岩石蠕变损伤本构模型可表示为:
Figure PCTCN2022106647-appb-000022
进一步地,进行蠕变损伤本构模型验证及参数分析。冻融循环作用后岩石蠕变损伤本构模型方程由式(15)给出,基于试验结果,采用Boltzmann叠加原理,将分级加载条件下的蠕变曲线转化为分别加载条件下的蠕变曲线,对模型参数进行辨识。
将蠕变试验曲线和理论模型拟合的曲线进行对比,验证了模型的正确性和适用性。
在此基础上对冻融岩石损伤黏性元件蠕变参数η2和α进行敏感性分析,研究其对岩石蠕变变形的影响规律;并且分析蠕变模型参数随冻融循环次数变化规律。
实施例2
在本实施例中,开展了冻融循环作用后岩石剪切蠕变特性试验研究,其试验结果如图2所示。
在该实施例中,所述冻融循环作用后岩石蠕变损伤本构模型的构建方法,所述分析模型的创建及求解计算过程包括:
(S1)首先将岩石蠕变力学参数看成是非定常的,考虑了冻融循环次数n对岩石剪切模量G、黏性系数η等参数的影响,实现了冻融岩石非定常蠕变参数表达:
G=G(n)
η=η(n)              (1)
(S2)当施加荷载达到或超过一定剪切应力水平时,岩石内部会有损伤的产生。考虑加速蠕变阶段剪切应力产生的损伤,引入损伤变量D来描述岩石黏性系数的损伤劣化
并在此基础上考虑冻融循环的影响,构建了冻融条件下的损伤黏性元件。根据牛顿黏性定律,冻融条件下的损伤黏性元件本构关系为:
Figure PCTCN2022106647-appb-000023
其中,τ d为冻融损伤黏性元件的剪切应力,
Figure PCTCN2022106647-appb-000024
为冻融损伤黏性元件的剪切应变率,η 2(n,D)为冻融损伤黏性元件的黏性系数;
考虑冻融循环及应力作用时间对黏性系数的影响,即:
η 2(n,D)=η 2(n)(1-D)             (3)
式中:η 2(n)为冻融循环n次下的黏性系数;D为损伤变量,0≤D<1。
试验得知,岩石蠕变过程中损伤变量和时间呈负指数函数关系,损伤变量为:
D=1-e -αt           (4)
式中:α为与冻融循环次数相关的系数;t为时间。因此,冻融损伤黏性元件的黏性系数为:
η 2(n,D)=η 2(n)e -αt            (5)
保持应力不变,结合式(2)及式(5),求解得冻融条件下损伤黏性元件的本构关系为:
Figure PCTCN2022106647-appb-000025
其中,γ d为冻融岩石损伤黏性元件的剪切应变。
(S3)西原模型为基础,将黏塑性体中黏性元件替换为冻融损伤黏性元件,并考虑冻融循环对模型参数的影响,建立了冻融岩石蠕变损伤本构模型,如图3所示。
蠕变模型由冻融弹性元件、冻融黏弹性体和冻融损伤黏塑性体组合而成,其剪切应变分别为γ 0、γ 1和γ 2
当总剪切应力为τ,总剪切应变γ可表述为:
γ=γ 012          (7)
对于冻融弹性元件,其应力-应变关系为:
Figure PCTCN2022106647-appb-000026
式中:G 0(n)为冻融循环n次时冻融弹性元件的剪切模量。
冻融黏弹性体由冻融弹性元件与冻融黏性元件并联而成。对于冻融黏性元件,其本构关系为:
Figure PCTCN2022106647-appb-000027
式中:τ H
Figure PCTCN2022106647-appb-000028
分别为冻融黏性元件的剪切应力及剪切应变率;η 1(n)为冻融循环n次时冻融黏性元件的黏性系数。
因此,根据组合模型理论,冻融黏弹性体的应力-应变关系为:
Figure PCTCN2022106647-appb-000029
式中:γ K、G 1(n)分别为冻融弹性元件的剪切应变及剪切模量。结合初始条件t=0时,对式(10)进行求解,解得:
Figure PCTCN2022106647-appb-000030
冻融损伤黏塑性体由冻融损伤黏性元件与塑性元件并联而成。其中,塑性元件剪切应力τ v的大小可表示为
Figure PCTCN2022106647-appb-000031
其中τ s为冻融岩石的屈服应力。
当τ<τ s,γ 2=0。
当τ≥τ s,结合冻融损伤黏性元件的本构关系得:
Figure PCTCN2022106647-appb-000032
因此
Figure PCTCN2022106647-appb-000033
综合考虑冻融弹性元件、冻融黏弹性体和冻融损伤黏塑性体三部分应变,冻融循环作用后岩石蠕变损伤本构模型可表示为:
Figure PCTCN2022106647-appb-000034
(S4)冻融循环作用后岩石蠕变损伤本构模型方程由式(15)给出,基于试验结果,采用Boltzmann叠加原理,将分级加载条件下的蠕变曲线转化为分别加载条件下的蠕变曲线,对模型参数进行辨识,如表1所示。图5、图6将蠕变试验曲线和理论模型拟合的曲线进行对比,验证了模型的正确性和适用性。
在此基础上对冻融岩石损伤黏性元件蠕变参数η 2和α进行敏感性分析,研究其对岩石蠕变变形的影响规律,见图7、图8;并且分析蠕变模型参数随冻融循环次数变化规律,如图9-图13所示。
为了验证本文模型的合理性,开展不同冻融循环次数下花岗岩剪切蠕变试验。试验选取法向应力为5MPa,不同冻融循环次数0、10、30、50和70次数,试验初始剪切应力为2MPa,加载速率为0.5MPa/min,当剪切变形速率小5×10-4mm/d,施加下一级剪切荷载,Δτ=2MPa,直到试样发生剪切破坏为止,试验结果如图2所示。根据图4所构建的冻融循环岩石损伤本构模型得到蠕变变形计算曲线,辨识得到模型参数结果(见表1),并与试验曲线进行比较,如图5、图6所示。证实了本发明所构建的冻融循环作用花岗岩损伤蠕变本构模型所计算的理论值与试验值相差不大,充分反映了花岗岩在不同冻融循环次数下的减速蠕变、稳定蠕变和加速蠕变特征。
表1蠕变损伤本构模型辨识的参数
Figure PCTCN2022106647-appb-000035
同时为了更加深入了解模型中蠕变参数η 2和α对蠕变变形的影响规律,分析了不同参数下蠕变变形曲线的影响规律,如图7、图8所示。当其他参数保持不变时,随着黏性系数η 2的增加,岩石的稳态蠕变速率和蠕变变形逐渐减小,稳态蠕变时间增长;保持其他参数不变,随着蠕变参数α的增加,岩石加速段蠕变速率和蠕变变形逐渐增大,破坏时间减小,岩石越容易由黏弹性向黏弹塑性过渡。
根据花岗岩冻融剪切蠕变模型中剪切模量G 0和G 1、黏性系数η 1和η 2以及α的拟合结果,分别取平均值,得到各个参数与冻融循环次数的关系,如图9-图13所示。剪切模量G 0、G 1和黏性系数η 2均随着冻融循环次数的增加逐渐降低,符合指数函数关系。黏性系数η 1和α随冻融循环次数变化符合一次函数关系,冻融循环次数增加,η 1降低,α增大。另一方面,模型参数的变化将导致模型的蠕变变形和蠕变速率随着冻融循环次数的增加而逐渐增大,这也与试验结果相一致。
有益效果:
1、考虑了冻融循环次数对岩石蠕变力学特性和本构模型的影响,本发明确立了冻融损伤蠕变模型的求解过程;
1、考虑冻融循环次数对蠕变参数的影响,将岩石蠕变力学参数看成是非定常的,本发明实现了冻融岩石非定常蠕变参数表达;本发明引入损伤变量D来描述岩石黏性系数的损伤劣化,并考虑冻融循环的影响,构建了冻融条件下的损伤黏性元件。
3、本发明构建的冻融循环岩石蠕变损伤本构模型计算的理论值与试验值相差不大,充分反映冻融循环次数影响的趋势,能够较好反映出岩石在不同冻融循环次数下的减速蠕变、稳定蠕变和加速蠕变特征。
4、本发明进一步阐明了模型蠕变参数对蠕变的影响规律,并给出了蠕变参数随冻融循环次数的变化规律,对于寒区岩体工程长期稳定性评价具有指导意义。
5、本发明的计算过程较为复杂,有较强的综合性,应用于冻融循环作用后花岗岩的蠕变试验,提出的新模型较现有的模型综合性及适用性较强,对试验所得的蠕变曲线拟合程度较高。体现了花岗岩的蠕变变形破坏特征,充分反映了岩石在不同冻融循环次数下的减速蠕变、稳定蠕变和加速蠕变特征。
6、关于冻融循环岩石蠕变试验国内外已经开展了相关研究,但由于冻融岩石蠕变机理比较复杂,现有的蠕变模型无法体现冻融岩石的蠕变特征,因此关于冻融岩石蠕变本构模型的研究还较少。岩体的蠕变特性是岩体工程的重要力学特征之一,与岩体工程的长期稳定性密切相关。随着寒区岩体工程建设的开展,在冻融循环作用下岩石损伤劣化严重,蠕变特性更为显著,这将对寒区工程的长期稳定性产生不利影响。基于此,研究岩石在冻融循环条件下的力学性能和构建合理的蠕变损伤本构模型具有重要意义;本发明也对寒区工程长期稳定性评价也具有指导意义。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (3)

  1. 一种冻融循环作用下岩石蠕变损伤本构模型的构建方法,其特征在于,包括:
    S1、设置冻融岩石非定常蠕变参数;
    S2、在冻融循环岩石蠕变模型引入冻融损伤黏性元件,包括:
    S21、根据牛顿黏性定律,建立冻融损伤黏性元件的剪切应力和剪切应变间的关系:
    Figure PCTCN2022106647-appb-100001
    其中,τ d为冻融损伤黏性元件的剪切应力,
    Figure PCTCN2022106647-appb-100002
    为冻融损伤黏性元件的剪切应变率,η 2(n,D)为冻融损伤黏性元件的黏性系数;
    S22、在冻融条件下的损伤黏性元件本构关系中,加入冻融循环及应力作用时间对黏性系数的影响因子:
    η 2(n,D)=η 2(n)(1-D)    (2)
    其中,η 2(n)为冻融循环n次下的黏性系数;n为冻融循环次数,D为损伤变量,0≤D<1,e为常数;
    S23、岩石蠕变过程中损伤变量和时间的关系为:
    D=1-e -αt    (3)
    其中,α为与冻融循环次数相关的系数;t为时间。
    S24、根据S22、S23构建冻融损伤黏性元件的黏性系数为:
    η 2(n,D)=η 2(n)e -αt    (4)
    S25、根据S21和S24构建冻融条件下损伤黏性元件的剪切应力和剪切应变的关系:
    Figure PCTCN2022106647-appb-100003
    其中,γ d为冻融岩石损伤黏性元件的剪切应变;
    S3、根据冻融损伤黏性元件、冻融岩石非定常蠕变参数,构建冻融循环岩石蠕变损伤本构模型。
  2. 如权利要求1所述的一种冻融循环作用下岩石蠕变损伤本构模型的构建方法,其特征在于,所述S1中冻融岩石非定常蠕变参数 为:
    G=G(n)
    η=η(n)    (6)
    其中,n为冻融循环次数;G为冻融岩石的剪切模量;η为冻融岩石的黏性系数。
  3. 如权利要求1所述的一种冻融循环作用下岩石蠕变损伤本构模型的构建方法,其特征在于,所述S3构建冻融循环岩石蠕变损伤本构模型,包括:
    S32、计算冻融弹性元件的应力-应变关系为
    Figure PCTCN2022106647-appb-100004
    其中,γ 0为冻融弹性元件的剪切应变,G 0(n)为冻融循环n次时冻融弹性元件的剪切模量,τ为总剪切应力;
    S33、建立冻融黏性元件的本构关系:
    Figure PCTCN2022106647-appb-100005
    其中,τ H为冻融黏性元件的剪切应力、
    Figure PCTCN2022106647-appb-100006
    为冻融黏性元件的剪切应变率;η 1(n)为冻融循环n次时冻融黏性元件的黏性系数;
    S34、建立冻融黏弹性元件的应力-应变关系:
    Figure PCTCN2022106647-appb-100007
    其中,γ 1表示冻融黏弹性元件的剪切应变,G 1(n)为冻融弹性元件的剪切模量;
    S35、计算冻融损伤黏塑性体的塑性元件剪切应力:
    Figure PCTCN2022106647-appb-100008
    其中,τ v为冻融损伤黏塑性体的塑性元件剪切应力;τ s为冻融岩石的屈服应力;
    S36、冻融损伤黏塑性体的应力-应变关系为:
    Figure PCTCN2022106647-appb-100009
    其中,γ 2表示冻融损伤黏塑性体的剪切应变;α为与冻融循环次数相关的系数;t为时间;η 2(n)为冻融循环n次下的黏性系数;
    S37、根据冻融弹性元件、冻融黏弹性体和冻融损伤黏塑性体的应变,建立冻融循环作用后岩石蠕变损伤本构模型:
    Figure PCTCN2022106647-appb-100010
    其中,γ冻融循环岩石蠕变损伤模型总应变。
PCT/CN2022/106647 2021-09-03 2022-07-20 一种冻融循环作用下岩石蠕变损伤本构模型的构建方法 WO2023029793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111032711.3 2021-09-03
CN202111032711.3A CN113742915A (zh) 2021-09-03 2021-09-03 一种冻融循环作用下岩石蠕变损伤本构模型的构建方法

Publications (1)

Publication Number Publication Date
WO2023029793A1 true WO2023029793A1 (zh) 2023-03-09

Family

ID=78735408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106647 WO2023029793A1 (zh) 2021-09-03 2022-07-20 一种冻融循环作用下岩石蠕变损伤本构模型的构建方法

Country Status (2)

Country Link
CN (1) CN113742915A (zh)
WO (1) WO2023029793A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117805351A (zh) * 2024-03-01 2024-04-02 吉林建筑大学 一种沥青混合料抗疲劳性能综合评价方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113742915A (zh) * 2021-09-03 2021-12-03 中铁一局集团第二工程有限公司 一种冻融循环作用下岩石蠕变损伤本构模型的构建方法
CN114462147B (zh) * 2022-01-28 2023-02-03 中国人民解放军陆军工程大学 含损伤的推进剂蠕变型本构模型的构建与有限元应用方法
CN116011191B (zh) * 2022-12-13 2024-05-10 广西大学 一种表征真三轴下岩石蠕变启动和加速的模型构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829916A (zh) * 2018-04-25 2018-11-16 中铁二院工程集团有限责任公司 硬岩冻融损伤长期变形模型的构建方法
CN111476404A (zh) * 2020-03-18 2020-07-31 中铁二院工程集团有限责任公司 一种冻融损伤软岩长期变形的预测方法
CN112945750A (zh) * 2020-12-15 2021-06-11 大连海事大学 一种低温岩石蠕变试验装置及系统
CN113742915A (zh) * 2021-09-03 2021-12-03 中铁一局集团第二工程有限公司 一种冻融循环作用下岩石蠕变损伤本构模型的构建方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110232243B (zh) * 2019-06-12 2020-03-10 四川大学 基于晶体塑性焊接工艺模型的损伤与疲劳寿命评估方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829916A (zh) * 2018-04-25 2018-11-16 中铁二院工程集团有限责任公司 硬岩冻融损伤长期变形模型的构建方法
CN111476404A (zh) * 2020-03-18 2020-07-31 中铁二院工程集团有限责任公司 一种冻融损伤软岩长期变形的预测方法
CN112945750A (zh) * 2020-12-15 2021-06-11 大连海事大学 一种低温岩石蠕变试验装置及系统
CN113742915A (zh) * 2021-09-03 2021-12-03 中铁一局集团第二工程有限公司 一种冻融循环作用下岩石蠕变损伤本构模型的构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, FENGRUI; JIANG, AN-NAN; YANG, XIU-RONG; SHEN, FA-YI: "Experimental and Model Research on Shear Creep of Granite under Freeze-thaw Cycles", YANTU LIXUE - ROCK AND SOIL MECHANICS, ZHONGGUO KEXUEYUAN, WUHAN YANTU LIXUE YANJIUSUO, vol. 41, no. 2, 21 May 2019 (2019-05-21), pages 509 - 519, XP009544231, ISSN: 1000-7598, DOI: 10.16285/j.rsm.2019.0487 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117805351A (zh) * 2024-03-01 2024-04-02 吉林建筑大学 一种沥青混合料抗疲劳性能综合评价方法
CN117805351B (zh) * 2024-03-01 2024-05-03 吉林建筑大学 一种沥青混合料抗疲劳性能综合评价方法

Also Published As

Publication number Publication date
CN113742915A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2023029793A1 (zh) 一种冻融循环作用下岩石蠕变损伤本构模型的构建方法
US20230103274A9 (en) A Multiaxial Creep-Fatigue Prediction Method Based On ABAQUS
Yang et al. State-dependent strength of sands from the perspective of unified modeling
CN110274835B (zh) 一种改进Burgers岩石剪切蠕变模型的方法
CN105022898B (zh) 一种复合材料胶接结构的裂纹性能测定和优化求解方法
CN107843510B (zh) 基于室温布氏硬度预测超临界机组t/p91耐热钢剩余持久寿命评估方法
CN110031307A (zh) 一种确定损伤岩石起裂应力指标的方法
CN115795916B (zh) 一种岩石脆性评价方法及装置
CN111090957B (zh) 一种高温结构危险点应力-应变计算方法
CN113053473B (zh) 聚合物粘结复合材料全阶段蠕变模型构建方法
CN112730061B (zh) 一种多级变温变载蠕变寿命评价方法
US20230038640A1 (en) Method for calculating service life of material under action of thermal shock load
Shlyannikov et al. Creep‐fracture resistance parameters determination based on stress and ductility damage models
Zhao et al. Modelling creep-fatigue behaviours using a modified combined kinematic and isotropic hardening model considering the damage accumulation
Chang et al. Uniaxial ratcheting behavior and fatigue life models of commercial pure titanium
CN104568602A (zh) 聚合物持久与瞬时极限力学性能预示方法
He et al. Nonlinear creep-damage constitutive model of surrounding rock in salt cavern reservoir
WO2023108810A1 (zh) 一种蠕变损伤及变形随时间演化行为的预测方法
Dong et al. Fatigue life modeling of a single crystal superalloy and its thin plate with a hole at elevated temperature
Ahmad et al. Characterisation of creep behaviour using the power law model in copper alloy
Ahmadzadeh et al. Ratcheting assessment of steel alloys under uniaxial loading: a parametric model versus hardening rule of Bower
CN109117593B (zh) 锚索预应力损失与岩体蠕变耦合分析方法
CN115640683B (zh) 一种岩土体蠕变预测方法及系统
CN111414708A (zh) 推进剂的高应变率压缩力学本构模型的构建方法
Ye et al. An improved damage model using the construction technology of virtual load spectrum and its statistical analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE