WO2023029082A1 - 3d显示装置 - Google Patents

3d显示装置 Download PDF

Info

Publication number
WO2023029082A1
WO2023029082A1 PCT/CN2021/118118 CN2021118118W WO2023029082A1 WO 2023029082 A1 WO2023029082 A1 WO 2023029082A1 CN 2021118118 W CN2021118118 W CN 2021118118W WO 2023029082 A1 WO2023029082 A1 WO 2023029082A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
display device
emitting
emitting fibers
Prior art date
Application number
PCT/CN2021/118118
Other languages
English (en)
French (fr)
Inventor
赵金阳
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/607,340 priority Critical patent/US20240045226A1/en
Publication of WO2023029082A1 publication Critical patent/WO2023029082A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels

Definitions

  • the present application relates to the field of display technology, in particular to a 3D display device.
  • Holographic display is a real three-dimensional display realized by using the holographic principle.
  • Holographic display can see all the characteristics of stereoscopic display, and has parallax effect. Objects move significantly when viewed from different positions.
  • Holographic display uses the interference principle to record the specific light waves emitted by the object in the form of interference fringes, so that all the information of the object light wavefront is stored in the recording medium. Therefore, the recorded interference fringe pattern is called a "hologram".
  • the hologram is irradiated with light waves, the light waves of the original object can be reproduced by using the principle of diffraction, thereby forming a three-dimensional image of the original object.
  • the present application provides a 3D display device capable of displaying more comprehensive and real stereoscopic images.
  • the present application provides a 3D display device, which includes:
  • a plurality of light-emitting fibers are arranged at intervals and arranged in different planes;
  • a plurality of electrode wires, the plurality of electrode wires are arranged at intervals, and arranged in cross-contact with the corresponding light-emitting fibers to form a three-dimensional network structure.
  • the 3D display device along the first direction, has multiple display planes parallel to each other;
  • each display plane a plurality of the light-emitting fibers are arranged along the second direction, a plurality of the electrode wires are arranged along the third direction, the second direction and the third direction intersect, so Both the second direction and the third direction are perpendicular to the first direction.
  • the light-emitting fibers are vertically intersected with the electrode traces.
  • adjacent light-emitting fibers emit light of different colors.
  • the light-emitting fibers include red light-emitting fibers, green light-emitting fibers and blue light-emitting fibers;
  • the red light emitting fibers, the green light emitting fibers and the blue light emitting fibers are repeatedly arranged in any permutation and combination; in the adjacent display planes, the light emitting fibers are One to one corresponding setting.
  • the light-emitting fibers include white light-emitting fibers, red light-emitting fibers, green light-emitting fibers and blue light-emitting fibers;
  • the white light-emitting fibers, the red light-emitting fibers, the green light-emitting fibers and the blue light-emitting fibers are repeatedly arranged in any permutation and combination; , the luminescent fibers are set in one-to-one correspondence.
  • the resolution of the 3D display device is adjusted by adjusting the arrangement density of the light emitting fibers and the electrode wires.
  • a plurality of the electrode traces cover the corresponding light-emitting fibers, so as to achieve contact and intersection with the light-emitting fibers.
  • the 3D display device further includes a first substrate and a second substrate oppositely arranged, and a third substrate and a fourth substrate oppositely arranged, the first substrate, the the second substrate, the third substrate and the fourth substrate are connected end to end;
  • each light-emitting fiber is fixed on the first substrate, the other end of each light-emitting fiber is fixed on the second substrate, and one end of each electrode wiring is fixed on the third substrate. On the substrate, the other end of each electrode wire is fixed on the fourth substrate.
  • the display device in the non-display state, is presented as a cube, a cuboid or a sphere.
  • a first via hole is provided on the first substrate and/or the second substrate, and a via hole is provided on the third substrate and/or the fourth substrate.
  • the second via hole, each of the light-emitting fibers extends to the outside of the first substrate or the second substrate through the first via hole, and each of the electrode traces extends to the outside of the second substrate through the second via hole.
  • the aperture of the first via hole is adapted to the radial dimension of the cross-section of the light-emitting fiber; the aperture of the second via hole is compatible with the electrode wiring The radial dimension of the cross-section is adapted.
  • the first substrate and/or the second substrate includes a first conductive lead
  • the third substrate and/or the fourth substrate includes a second conductive lead one end of each light-emitting fiber is electrically connected to the corresponding first conductive pin, and one end of each electrode trace is electrically connected to the corresponding second conductive pin.
  • the 3D display device further includes a driver chip, the driver chip is connected to the light-emitting fiber through the first conductive pin, and the driver chip is connected to the light-emitting fiber through the second conductive pin.
  • the conductive pins are connected to the electrode wiring, and the driving chip is used to provide driving voltage to the light-emitting fiber and the electrode wiring.
  • the 3D display device further includes a fifth substrate and a sixth substrate oppositely arranged, the first substrate, the second substrate, the third substrate, the The fourth substrate, the fifth substrate and the sixth substrate form a closed structure;
  • Both the fifth substrate and the sixth substrate are made of transparent materials.
  • the luminescent fiber includes a conductive layer and an insulating dielectric layer arranged coaxially from inside to outside, and a luminescent material is disposed in the insulating dielectric layer;
  • Both the conductive layer and the electrode wires are made of transparent material and/or stretchable material.
  • the thickness of the dielectric layer is between 5 ⁇ m and 500 ⁇ m.
  • the luminescent material includes a plurality of luminescent particles, and the luminescent particles are doped in the insulating dielectric layer.
  • the particle size of the luminescent material is between 50nm-10 ⁇ m;
  • the doping concentration of the luminescent material is between 1 mg/mL-1000 mg/mL.
  • the luminescent material includes a luminescent layer
  • the insulating dielectric layer includes a first insulating dielectric layer and a second insulating dielectric layer
  • the first insulating dielectric layer includes The light-emitting layer covers the outside of the conductive layer
  • the light-emitting layer covers the outside of the first insulating dielectric layer
  • the second insulating dielectric layer covers the outside of the light-emitting layer.
  • the present application provides a 3D display device.
  • the 3D display device includes a plurality of light-emitting fibers and a plurality of electrode wires.
  • a plurality of said light-emitting fibers are arranged at intervals and arranged in different planes.
  • a plurality of the electrode wires are arranged at intervals and arranged in cross-contact with the corresponding light-emitting fibers to form a three-dimensional network structure.
  • the luminescent fiber and the electrode trace are used to contact and intersect to form a three-dimensional network structure.
  • Each intersection point between the luminescent fiber and the electrode trace is a pixel point.
  • FIG. 1 is a schematic diagram of a first structure of a 3D display device provided by the present application
  • Figure 2 is a schematic structural view of the luminescent fiber provided by the present application.
  • Fig. 3 is a schematic diagram of the first cross-sectional structure of the light-emitting fiber shown in Fig. 2 along AA';
  • Fig. 4 is a schematic diagram of the luminescence of the luminescent fiber and electrode wiring provided by the present application.
  • Fig. 5 is a schematic diagram of the second cross-sectional structure of the light-emitting fiber shown in Fig. 2 along AA';
  • FIG. 6 is a second structural schematic diagram of the 3D display device provided by the present application.
  • FIG. 7 is a schematic structural view of the first substrate in the 3D display device provided by the present application.
  • FIG. 8 is a schematic structural diagram of a third substrate in the 3D display device provided by the present application.
  • the present application provides a 3D display device, which will be described in detail below. It should be noted that the description order of the following embodiments is not intended to limit the preferred order of the embodiments of the present application.
  • FIG. 1 is a schematic diagram of a first structure of a 3D display device provided in this application.
  • a 3D display device 100 includes a plurality of light emitting fibers 10 and a plurality of electrode wires 20 .
  • a plurality of light-emitting fibers 10 are arranged at intervals and arranged in different planes.
  • a plurality of electrode wires 20 are arranged at intervals and arranged in cross-contact with corresponding light-emitting fibers 10 to form a three-dimensional network structure.
  • the light-emitting fiber 10 and the electrode wiring 20 are contacted and intersected to form a three-dimensional network structure.
  • Each intersection point Q between the light emitting fiber 10 and the electrode wire 20 is a pixel point.
  • the light-emitting state of each intersection point Q is controlled by the corresponding light-emitting fiber 10 and electrode wiring 20 . Therefore, by applying different driving voltages to the light-emitting fibers 10 and the electrode wires 20 , the corresponding intersection points Q can be made to emit light, so that the 3D display device 100 can display a more comprehensive and real three-dimensional image.
  • FIG. 2 is a schematic structural diagram of the luminescent fiber provided by the present application.
  • Fig. 3 is a schematic diagram of the first cross-sectional structure of the light-emitting fiber shown in Fig. 2 along AA'.
  • the light-emitting fiber 10 includes a conductive layer 11 and an insulating dielectric layer 12 arranged coaxially from inside to outside.
  • a luminescent material 13 is disposed in the insulating dielectric layer 12 .
  • the material of the conductive layer 11 and the electrode wiring 20 may be metallic conductive materials such as copper, aluminum, molybdenum, and the like.
  • the material of the conductive layer 11 and the electrode wiring 20 can also be organic conductive polymer, indium gallium zinc oxide, graphene, ion conductive hydrogel, indium gallium zinc oxide, indium gallium tin oxide, antimony tin oxide and other transparent conductive materials.
  • the organic conductive polymer may be poly(3,4-ethylenedioxythiophene) or the like.
  • the ion-conductive hydrogel can be aluminum chloride-polyacrylamide conductive hydrogel and the like. Aluminum chloride-polyacrylamide conductive hydrogels exhibit stable stretchability and sufficient ionic conductivity.
  • the dielectric layer 12 has insulating properties.
  • the material of the dielectric layer 12 needs to be able to disperse the luminescent material particles.
  • the material of the dielectric layer 12 can be polydimethylsiloxane (Polydimethylsiloxane, PDMS), polyimide, polyethylene terephthalate (Polyethylene terephthalate, PET) and other transparent polymer materials.
  • the thickness of the dielectric layer 12 is generally between 5 ⁇ m and 500 ⁇ m.
  • the thickness of the dielectric layer 12 may be 5 ⁇ m, 50 ⁇ m, 100 ⁇ m, 250 ⁇ m, 400 ⁇ m, 500 ⁇ m, etc., which will not be repeated here.
  • the size of the dielectric layer 12 can be adjusted based on the particle size of the selected luminescent material 13 and the resolution of the display. It can be understood that the smaller the thickness of the dielectric layer 12 is, the smaller the cross-sectional dimension of the light-emitting fiber 10 is. Then the resolution of the 3D display device 100 can be made higher. In addition, the thickness of the dielectric layer 12 is greater than the particle diameter of the luminescent material 13 doped therein, so as to play the role of insulation protection.
  • the luminescent material 13 mainly includes two parts: a matrix material and a luminescent center.
  • the matrix material is usually II-VI compound, ternary sulfide, oxide, fluoride, etc.
  • the group II-VI compound may be ZnS, ZnSe, CaS, SrS, etc.
  • the ternary sulfide can be CaGaS 4 , SrGa 2 S 4 and the like.
  • the oxide may be Zn 2 Si 1-x Cex O 4 , ZnGa 2 O 4 , Ga 2 O 3 or the like.
  • the elements in the luminescent center are usually transition metals, rare earth metals, etc.
  • the transition metal may be manganese, copper, chromium, and the like.
  • Rare earth metals can be cerium, praseodymium, europium, terbium and the like.
  • the luminescent material 13 may be ZnS:Mn, SrS:Ce, SrS:Cu, SrS:Ag/Cu, ZnS doped with rare earth elements, thioglycolate, other alkaline earth metal sulfides, and the like.
  • the particle size of the luminescent material 13 is generally between 50 nm and 10 ⁇ m.
  • the particle size of the luminescent material 13 may be 50 nm, 100 nm, 50 nm, 500 nm, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, etc., which will not be repeated here.
  • different types of luminescent materials 13 have different luminescent colors.
  • different particle sizes may also have different luminescent colors.
  • the same kind of luminescent material 13 can be arranged in the dielectric layer 12 , and different kinds of luminescent materials 13 can also be arranged.
  • the above-mentioned luminescent material 13 emits light by means of electroluminescence.
  • the insulating medium layer 12 may also be doped with a photoluminescent material, so as to realize the luminescence of the photoluminescent material through an energy transfer process, thereby obtaining richer luminescent colors.
  • the photoluminescence material may be quantum dots, up-conversion nanoparticles, phosphors, etc., which will not be detailed here.
  • the 3D display device 100 may be transparent to achieve a better display effect.
  • the luminescent fiber 10 can be configured as a transparent luminescent fiber. That is, both the conductive layer 11 and the insulating dielectric layer 12 can be made of the above-mentioned transparent materials.
  • the electrode wires 20 can also be made of transparent materials, which can further improve the transparency of the 3D display device 100 .
  • the material of the electrode wire 20 may also be copper, aluminum, molybdenum and other opaque conductive metals.
  • the aperture ratio (transparency) of the 3D display device 100 is determined by the weaving density.
  • the conductive layer 11, the insulating medium layer 12 and the electrode wiring 20 are all made of stretchable materials.
  • the conductive layer 11 and the electrode traces 20 are made of stretchable conductive materials such as ion-conductive hydrogel, and the material of the insulating dielectric layer 12 is stretchable dielectric materials such as PDMS.
  • a stretchable flexible 3D display device 100 is obtained. Then, the size of the 3D display device 100 can be changed by stretching the light-emitting fiber 10 and the electrode wiring 20 .
  • FIG. 4 is a schematic diagram of the light emitting fiber and electrode wiring provided by the present application.
  • the light-emitting fiber 10 only includes a conductive layer 11 and an insulating dielectric layer 12 .
  • the structure of the light-emitting fiber 10 is simple, the production efficiency is higher, and the production cost can be reduced.
  • the conductive layer 11 and the electrode wiring 20 respectively serve as electrodes to supply power to the luminescent material 13 .
  • alternating current can be applied to the first transparent conductive layer 11 and the electrode wires 20 .
  • the voltage is high enough, electrons are injected from the insulating-semiconductor (dielectric layer 12 and luminescent material 13 ) interface layer into the luminescent material 13 .
  • the injected electrons gain energy in a strong electric field, and these high-energy electrons or hot electrons excite ions (such as Cu + ) that act as "luminescent centers" through collisions, and the luminescent centers in the excited state return to the ground state by emitting photons and pass through the luminescent material13
  • ions such as Cu +
  • the luminescent centers in the excited state return to the ground state by emitting photons and pass through the luminescent material13
  • the electrons are trapped at the insulating-semiconductor interface layer on the other side.
  • the same process happens again when the voltage of the alternating current is reversed. Therefore, the intersection point Q of the first transparent conductive layer 11 and the electrode wiring 20 can emit light under the action of an AC electric field.
  • the brightness of the intersection point Q can be increased by increasing the voltage value and frequency of the alternating current.
  • the voltage range of the alternating current is 0.1-200V, and the frequency is 50Hz-50KHz.
  • the voltage value of the alternating current can be 0.1V, 5V, 50V, 100V, 200V and so on.
  • the frequency can be 50Hz, 100Hz, 10KHz, 300KHz, 50KHz, etc.
  • a plurality of electrode traces 20 respectively contact with the light-emitting fiber 10 to form an intersection Q, and light can be realized only at the intersection Q. Therefore, by controlling the voltage applied to the light-emitting fiber 10 and the electrode wire 20, different intersection points Q can be controlled to emit light. That is, by applying power to a specific pixel point, the pixel point is turned on to emit light, and then the required three-dimensional image is composed of three-dimensional pixel points. At the same time, the resolution of the 3D display device 100 can be adjusted by adjusting the arrangement density of the light emitting fibers 10 and the electrode wires 20 .
  • the luminescent material 13 includes a plurality of luminescent particles.
  • the luminescent particles are uniformly doped in the insulating dielectric layer 12 .
  • the doping concentration of the luminescent material 13 is 1 mg/mL-1000 mg/mL.
  • the doping concentration of the luminescent material 13 can be 1 mg/mL, 10 mg/mL, 100 mg/mL, 500 mg/mL, 800 mg/mL, 1000 mg/mL, etc., which will not be repeated here.
  • the luminescent particles are directly doped into the insulating dielectric layer 12 , which can further improve the transparency of the luminescent fiber 10 .
  • FIG. 5 is a schematic diagram of the second cross-sectional structure of the light-emitting fiber shown in FIG. 2 along AA'.
  • the light emitting material 13 is a light emitting layer 131 .
  • the insulating dielectric layer 12 includes a first dielectric layer 121 and a second dielectric layer 122 .
  • the light emitting layer 131 , the first dielectric layer 121 and the second dielectric layer 122 are coaxially arranged.
  • the first dielectric layer 121 covers the outside of the conductive layer 11 .
  • the light emitting layer 131 covers the outside of the first dielectric layer 121 .
  • the second dielectric layer 122 covers the outside of the light emitting layer 131 .
  • the luminescent layer 131 is provided in the luminescent fiber 10, so that the material selection range of the insulating medium layer 12 is wider, and it is not necessary to consider the dispersibility of the luminescent particles.
  • the luminescent layer 131 completely covers the first conductive layer 11 , so that the luminescent fiber 10 can conduct electricity everywhere, which can further increase the pixel density of the 3D display device 100 .
  • the number of light-emitting fibers 10 and electrode wires 20 can be designed according to the size and resolution of the 3D display device 100 , which is not specifically limited in this application.
  • multiple light emitting fibers 10 may extend in the same direction or in different directions, as long as any two light emitting fibers 10 in the 3D display device 100 do not intersect.
  • Each electrode trace 20 can contact and intersect one luminescent fiber 10 , or contact and intersect with multiple luminescent fibers 10 , which can be set according to the arrangement of the luminescent fiber 10 and the electrode trace 20 .
  • the electrode traces 20 may intersect the light-emitting fiber 10 perpendicularly, or only intersect but not perpendicularly.
  • the 3D display device 100 has a plurality of display planes 101 parallel to each other.
  • a plurality of light emitting fibers 10 are arranged along the second direction X.
  • a plurality of electrode wires 20 are arranged along the third direction Y.
  • the second direction X and the third direction Y intersect. Both the second direction X and the third direction Y are perpendicular to the first direction Z.
  • the light emitting fibers 10 and the electrode wires 20 are regularly arranged in space along the first direction Z, the second direction X and the third direction Y, so as to obtain a regularly arranged pixel matrix.
  • Regularly arranged pixels make the display brightness of the 3D display device 100 more uniform, thereby achieving better display effects.
  • each pixel is evenly arranged, it is easier to control the light emission of the pixel by controlling the voltage applied to the corresponding light-emitting fiber 10 and the electrode wiring 20, and avoid interference between various driving voltage signals.
  • the regular arrangement of the luminescent fibers 10 and the electrode wires 20 can further improve the aesthetic appearance of the 3D display device 100 .
  • the second direction X is perpendicular to the third direction Y. That is, the light-emitting fiber 10 perpendicularly intersects the electrode wiring 20 .
  • This embodiment can further improve the regularity of the arrangement of the light emitting fibers 10 and the electrode wires 20 .
  • the light-emitting fibers 10 and the electrode wires 20 can be intersected by weaving. Therefore, the perpendicular intersection of the light-emitting fiber 10 and the electrode wiring 20 can improve the stability between the light-emitting fiber 10 and the electrode wiring 20 , and avoid shaking between the light-emitting fiber 10 and the electrode wiring 20 .
  • a plurality of electrode traces 20 may cover the corresponding light-emitting fiber 10 to achieve contact and intersection with the light-emitting fiber 10 .
  • This embodiment can simplify the structure of the light-emitting fiber 10 and the electrode wiring 20, thereby simplifying the manufacturing process.
  • a plurality of electrode traces 20 and a plurality of corresponding light-emitting fibers 10 may be braided together, so as to realize the connection between the electrode traces 20 and the light-emitting fibers 10 contact intersections.
  • This embodiment can improve the structural stability of the light-emitting fiber 10 and the electrode wiring 20 , avoiding the problem of poor contact caused by the shaking of the light-emitting fiber 10 and the electrode wiring 20 during the movement of the 3D display device 100 .
  • the 3D display device 100 provided in the present application is used to display stereoscopic images.
  • the three-dimensional image may be composed of the same color or may be composed of different colors.
  • a plurality of light-emitting fibers 10 may display the same color. Only by controlling the magnitude of the voltage applied to the light-emitting fiber 10 and the electrode wire 20 , the brightness of different crossing points Q can be controlled, thereby realizing three-dimensional image display.
  • adjacent light-emitting fibers 10 can emit light of different colors. This setting can make the image displayed by the 3D display device 100 more three-dimensional through the dual display effect of display color and display brightness.
  • the light emitting fiber 10 includes red light emitting fiber, green light emitting fiber and blue light emitting fiber.
  • red light emitting fibers, green light emitting fibers and blue light emitting fibers are repeatedly arranged in any permutation and combination.
  • the light-emitting fibers are arranged in one-to-one correspondence. In this way, a regularly arranged color pixel matrix is obtained, and a colorful stereoscopic image display is realized.
  • the red light-emitting fibers, green light-emitting fibers and blue light-emitting fibers can be repeatedly arranged in any arrangement and combination of RGB, RBG, BGR, BRG, GRB, GBR, etc.
  • the application does not specifically limit this.
  • the 3D display device 100 can also add white pixels on the basis of RGB pixel arrangement to form an RGBW pixel arrangement structure. That is, white light-emitting fibers are added. The addition of the white light-emitting fiber significantly improves the light transmittance of the 3D display device 100, and the brightness of the 3D display device 100 is also improved on the basis of the traditional RGB pixel arrangement structure.
  • the 3D display device 100 further includes a first substrate 31 and a second substrate 32 oppositely disposed, and a third substrate 33 and a fourth substrate 34 oppositely disposed.
  • the first substrate 31 , the second substrate 32 , the third substrate 33 and the fourth substrate 34 are connected end to end.
  • each light-emitting fiber 10 is fixed on the first substrate 31 .
  • the other end of each light-emitting fiber 10 is fixed on the second substrate 32 .
  • One end of each electrode wire 20 is fixed on the third substrate 33 .
  • the other end of each electrode wire 20 is fixed on the fourth substrate 34 .
  • the first substrate 31 , the second substrate 32 , the third substrate 33 and the fourth substrate 34 may be made of transparent materials, so as to view stereoscopic images from different angles outside the 3D display device 100 .
  • the first substrate 31 , the second substrate 32 , the third substrate 33 and the fourth substrate 34 may be transparent glass substrates.
  • the planar structures of the first substrate 31 , the second substrate 32 , the third substrate 33 and the fourth substrate 34 may be rectangle, square, arc and so on.
  • the three-dimensional structure formed by connecting the first substrate 31 , the second substrate 32 , the third substrate 33 and the fourth substrate 34 end to end may be a cube, a cuboid or a sphere. Therefore, when the 3D display device 100 is not emitting light, it appears as a cube, a cuboid or a sphere, and the appearance of the 3D display device 100 is improved.
  • the light-emitting fiber 10 can be fixed between the first substrate 31 and the second substrate 32 by means of pasting, carding and the like.
  • the electrode traces 20 can also be fixed between the third substrate 33 and the fourth substrate 34 by means of pasting, carding and the like.
  • the luminescent fiber 10 and the electrode wiring 20 can be stably fixed in the 3D display device 100, avoiding the luminescent fiber 10 and the electrode wiring.
  • the wiring 20 shakes during the movement of the 3D display device 100 , resulting in poor contact.
  • the display stability of the 3D display device 100 is improved.
  • the 3D display device 100 further includes a fifth substrate 35 and a sixth substrate 36 that are oppositely arranged.
  • the first substrate 31 , the second substrate 32 , the third substrate 33 , the fourth substrate 34 , the fifth substrate 35 and the sixth substrate 36 form a closed structure.
  • Both the fifth substrate 35 and the sixth substrate 36 are made of transparent materials.
  • the present application sets the fifth substrate 35 and the sixth substrate 36, thereby utilizing the first substrate 31, the second substrate 32, the third substrate 33, the fourth substrate 34, the fifth substrate 35 and the sixth substrate 36 to form a closed structure as
  • the casing of the 3D display device 100 can protect the display structure in the 3D display device 100 .
  • the stability of the 3D display device 100 is further improved.
  • FIG. 6 is a second structural schematic diagram of the 3D display device provided by the present application.
  • the difference from the 3D display device 100 shown in FIG. 1 is that, in this embodiment, a first via hole 310 is disposed on the first substrate 31 and/or the second substrate 32 .
  • a second via hole 330 is disposed on the third substrate 33 and/or the fourth substrate 34 .
  • Each light-emitting fiber 10 extends to the outside of the first substrate 31 or the second substrate 32 through the first via hole 310 .
  • Each electrode trace 20 extends to the outside of the third substrate 33 or the fourth substrate 34 through the second via hole 330 .
  • the first via hole 310 may be provided only on the first substrate 31 or the second substrate 32 to lead the end of the light-emitting fiber 10 to the outside of the first substrate 31 or the second substrate 32 .
  • the distribution density of the electrode wires 20 is relatively small. Therefore, the second via hole 330 may be provided only on the third substrate 33 or the fourth substrate 34 to lead the end of the light emitting fiber 10 to the outside of the third substrate 33 or the fourth substrate 34 . Therefore, the extended light-emitting fibers 10 or electrode wires 20 are only located on one side of the 3D display device 100 , improving the concentration of the circuit.
  • the present application arranges a plurality of first via holes 310 on the first substrate 31 and the second substrate 32 respectively.
  • a sufficient number of first via holes 310 may be provided.
  • the second aspect is to avoid cross-circuiting of adjacent light-emitting fibers 10 when passing through the first via hole 310 .
  • the setting of the second via hole 330 is also the same, which will not be repeated here.
  • the diameter of the first via hole 310 is adapted to the radial dimension of the cross section of the light emitting fiber 10 . While ensuring that the light emitting fiber 10 passes through the first via hole 310 smoothly, the light emitting fiber 10 can be stuck in the first via hole 310 stably.
  • the diameter of the second via hole 330 is adapted to the radial dimension of the cross-section of the electrode trace 20 , which will not be repeated here.
  • the driving chip 40 may be provided on the outside of the first substrate 31 , the second substrate 32 , the third substrate 33 and the fourth substrate 34 .
  • the driving chip 40 is connected to the corresponding light emitting fiber 10 or the electrode wiring 20 to provide a driving voltage to the light emitting fiber 10 or the electrode wiring 20 .
  • Fig. 6 is only an example, not all the first via holes 310, the second via holes 330, the light-emitting fibers 10 extending to the outside, and the electrode traces 20 are not drawn, but it should not be construed as a limitation of the present application.
  • FIG. 7 is a schematic structural diagram of the first substrate in the 3D display device provided by the present application.
  • the first substrate 31 includes a substrate substrate 311 , first conductive pins 312 and first connecting wires 313 .
  • One end of each light-emitting fiber 10 is electrically connected to the corresponding first conductive pin 312 .
  • the light-emitting fiber 10 is connected to the first connecting wire 313 through the first conductive pin 312 .
  • the 3D display device 100 further includes a driving chip 40 .
  • the driving chip 40 is respectively connected to the light-emitting fiber 10 and the electrode wiring 20 for providing a driving voltage to the light-emitting fiber 10 and the electrode wiring 20 .
  • the light-emitting fiber 10 and the electrode wiring 20 can be connected to the same driving chip 40 .
  • the light-emitting fiber 10 and the electrode wiring 20 can also be connected to different driving chips 40 respectively.
  • the number of driving chips 40 can be set according to the number of light emitting fibers 10 and electrode wires 20 .
  • the driving chip 40 may be disposed on the first substrate 31 , the second substrate 32 , the third substrate 33 or the fourth substrate 34 , or may be disposed at other positions of the 3D display device 100 , which is not specifically limited in the present application.
  • each light-emitting fiber 10 can be electrically connected to the first conductive pin 312 through conductive glue.
  • the first conductive pins 312 , the first connecting wires 313 and the driving chip 40 may be disposed on the inner sidewall or the outer sidewall of the first substrate 31 .
  • the first conductive pin 312 penetrates the first substrate 31 to realize the connection between the light-emitting fiber 10 and the first substrate 31. connection between traces 313 .
  • first conductive pin 312 and the first connection trace 313 may also be arranged on the second substrate 32 .
  • first substrate 31 please refer to the structure of the first substrate 31 , which will not be repeated here.
  • FIG. 8 is a schematic structural diagram of the third substrate in the 3D display device provided by the present application.
  • the third substrate 33 includes a base substrate 331 , a second conductive pin 332 and a second connection wire 333 .
  • One end of each electrode wire 20 is electrically connected to the corresponding second conductive pin 332 .
  • the electrode wires 20 are connected to the second connection wires 333 through the second conductive pins 332 .
  • each electrode wire 20 can be electrically connected to the second conductive pin 332 through conductive glue.
  • the second conductive pins 332 , the second connecting wires 333 and the driving chip 40 may be disposed on the inner sidewall or the outer sidewall of the third substrate 33 .
  • the second conductive pins 332, the second connecting wires 333 and the driver chip 40 are arranged on the outer sidewall of the third substrate 33, the second conductive pins 332 penetrate the third substrate 33 to realize the connection between the electrode wires 20 and the second Connect the connections between traces 333 .
  • the second conductive pin 332 and the second connection trace 333 may also be provided on the fourth substrate 34 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种3D显示装置(100),包括多条发光纤维(10)和多条电极走线(20),多条发光纤维(10)间隔排布,且设置在不同平面内,多条电极走线(20)间隔排布,且与相应的发光纤维(10)交叉接触设置,以形成立体网络结构。

Description

3D显示装置 技术领域
本申请涉及显示技术领域,具体涉及一种3D显示装置。
背景技术
全息显示即利用全息原理实现的真实的立体显示。全息显示可看到立体显示的全部特征,并有视差效应。在不同位置上进行观察时,物体有显著的位移。全息显示是利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都存储在记录介质中。故所记录的干涉条纹图样被称为“全息图”。当用光波照射全息图时,利用衍射原理能重现出原始物光波,从而形成原物体的三维图像。
技术问题
但是,全息显示立体图像的原理较为复杂,很难集成到显示装置中。因此,目前亟需提供一种能够实现立体图像的显示装置。
技术解决方案
本申请提供一种3D显示装置,能够显示出更全面真实的立体图像。
本申请提供一种3D显示装置,其包括:
多条发光纤维,多条所述发光纤维间隔排布,且设置在不同平面内;
多条电极走线,多条所述电极走线间隔排布,且与相应的所述发光纤维交叉接触设置,以形成立体网络结构。
可选的,在本申请一些实施例中,沿第一方向,3D显示装置具有多个相互平行的显示平面;
在每一所述显示平面内,多条所述发光纤维沿第二方向排布,多条所述电极走线沿第三方向排布,所述第二方向和所述第三方向交叉,所述第二方向和所述第三方向均垂直于所述第一方向。
可选的,在本申请一些实施例中,所述发光纤维与所述电极走线垂直相交排布。
可选的,在本申请一些实施例中,相邻所述发光纤维发射不同颜色的光。
可选的,在本申请一些实施例中,所述发光纤维包括红色发光纤维、绿色发光纤维以及蓝色发光纤维;
在同一所述显示平面内,所述红色发光纤维、所述绿色发光纤维以及所述蓝色发光纤维以任一排列组合为单位重复排列;在相邻所述显示平面内,所述发光纤维一一对应设置。
可选的,在本申请一些实施例中,所述发光纤维包括白色发光纤维、红色发光纤维、绿色发光纤维以及蓝色发光纤维;
在同一所述显示平面内,所述白色发光纤维、所述红色发光纤维、所述绿色发光纤维以及所述蓝色发光纤维以任一排列组合为单位重复排列;在相邻所述显示平面内,所述发光纤维一一对应设置。
可选的,在本申请一些实施例中,通过调整所述发光纤维与所述电极走线的排布密度,调整所述3D显示装置的分辨率。
可选的,在本申请一些实施例中,多条所述电极走线覆盖在相应的所述发光纤维上,以实现与所述发光纤维的接触相交。
可选的,在本申请一些实施例中,所述3D显示装置还包括相对设置的第一基板和第二基板,以及相对设置的第三基板和第四基板,所述第一基板、所述第二基板、所述第三基板以及所述第四基板首尾相接;
每一所述发光纤维的一端固定在所述第一基板上,每一所述发光纤维的另一端固定在所述第二基板上,每一所述电极走线的一端固定在所述第三基板上,每一所述电极走线的另一端固定在所述第四基板上。
可选的,在本申请一些实施例中,在非显示状态,所述显示装置呈现为正方体、长方体或球体。
可选的,在本申请一些实施例中,所述第一基板、和/或所述第二基板上设置有第一过孔,所述第三基板和/或所述第四基板上设置有第二过孔,每一所述发光纤维通过所述第一过孔延伸至所述第一基板或所述第二基板的外侧,每一所述电极走线通过所述第二过孔延伸至所述第三基板或所述第四基板的外侧。
可选的,在本申请一些实施例中,所述第一过孔的孔径与所述发光纤维的横截面的径向尺寸相适配;所述第二过孔的孔径与所述电极走线的横截面的径向尺寸相适配。
可选的,在本申请一些实施例中,所述第一基板和/或所述第二基板包括第一导电引脚,所述第三基板和/或所述第四基板包括第二导电引脚,每一所述发光纤维的一端与相应的所述第一导电引脚电性连接,每一所述电极走线的一端与相应的所述第二导电引脚电性连接。
可选的,在本申请一些实施例中,所述3D显示装置还包括驱动芯片,所述驱动芯片通过所述第一导电引脚与所述发光纤维连接,所述驱动芯片通过所述第二导电引脚与所述电极走线连接,所述驱动芯片用于提供驱动电压至所述发光纤维以及所述电极走线。
可选的,在本申请一些实施例中,所述3D显示装置还包括相对设置的第五基板和第六基板,所述第一基板、所述第二基板、所述第三基板、所述第四基板、所述第五基板以及所述第六基板形成一封闭结构;
所述第五基板和所述第六基板均由透明材料制成。
可选的,在本申请一些实施例中,所述发光纤维包括由内向外同轴设置的导电层和绝缘介电层,所述绝缘介电层中设有发光材料;
所述导电层与所述电极走线均由透明材料和/或可拉伸材料制成。
可选的,在本申请一些实施例中,所述介电层的厚度介于5μm-500μm之间。
可选的,在本申请一些实施例中,所述发光材料包括多个发光颗粒,所述发光颗粒掺杂在所述绝缘介电层中。
可选的,在本申请一些实施例中,所述发光材料的颗粒尺寸介于50nm-10μm之间;
所述发光材料的掺杂浓度介于1mg/mL-1000mg/mL之间。
可选的,在本申请一些实施例中,所述发光材料包括发光层,所述绝缘介电层包括第一绝缘介电层和第二绝缘介电层,所述第一绝缘介电层包覆在所述导电层的外侧,所述发光层包覆在所述第一绝缘介电层的外侧,所述第二绝缘介电层包覆在所述发光层的外侧。
有益效果
本申请提供一种3D显示装置。所述3D显示装置包括多条发光纤维和多条电极走线。多条所述发光纤维间隔排布,且设置在不同平面内。多条所述电极走线间隔排布,且与相应的所述发光纤维交叉接触设置,以形成立体网络结构。本申请利用发光纤维和电极走线接触交叉以形成立体网络结构,发光纤维与电极走线之间的每一交叉点即为一像素点,通过向发光纤维和电极走线施加不同的驱动电压,可以使相应的像素点发光,从而使3D显示装置显示出更全面真实的立体图像。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的3D显示装置的第一结构示意图;
图2是本申请提供的发光纤维的一种结构示意图;
图3是图2所示的发光纤维沿AA'处的第一剖面结构示意图;
图4是本申请提供的发光纤维和电极走线的发光原理图;
图5是图2所示的发光纤维沿AA'处的第二剖面结构示意图;
图6是本申请提供的3D显示装置的第二结构示意图;
图7是本申请提供的3D显示装置中第一基板的一种结构示意图;
图8是本申请提供的3D显示装置中第三基板的一种结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明与解释本申请,并不用于限制本申请。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。
本申请提供一种3D显示装置,以下进行详细说明。需要说明的是,以下实施例的描述顺序不作为对本申请实施例优选顺序的限定。
请参阅图1,图1是本申请提供的3D显示装置的第一结构示意图。在本申请中,3D显示装置100包括多条发光纤维10和多条电极走线20。多条发光纤维10间隔排布,且设置在不同平面内。多条电极走线20间隔排布,且与相应的发光纤维10交叉接触设置,以形成立体网络结构。
由此,本申请利用发光纤维10和电极走线20接触交叉,形成立体网络结构。发光纤维10与电极走线20之间的每一交叉点Q即为一像素点。每一交叉点Q的发光状态由相应的发光纤维10以及电极走线20控制。因此,通过向发光纤维10和电极走线20施加不同的驱动电压,可以使相应的交叉点Q发光,从而使3D显示装置100显示出更全面真实的立体图像。
请同时参阅图2和图3,图2是本申请提供的发光纤维的一种结构示意图。图3是图2所示的发光纤维沿AA’处的第一剖面结构示意图。在本申请中,发光纤维10包括由内向外同轴设置的导电层11和绝缘介电层12。绝缘介电层12中设有发光材料13。
在本申请中,导电层11和电极走线20的材料可以是铜、铝、钼等金属导电材料。导电层11和电极走线20的材料也可以是有机导电聚合物、氧化铟镓锌、石墨烯、离子导电水凝胶、氧化铟镓锌、氧化铟镓锡、氧化锑锡等透明导电材料。其中,有机导电聚合物可以是聚(3,4-亚乙基二氧噻吩)等。离子导电水凝胶可以是氯化铝-聚丙烯酰胺导电水凝胶等。氯化铝-聚丙烯酰胺导电水凝胶表现出稳定的可拉伸性和足够的离子电导率。
在本申请中,介电层12具有绝缘特性。当发光材料13为分散的发光颗粒时,介电层12的材料需要能够分散发光材料颗粒。介电层12的材料可以是聚二甲基硅氧烷(Polydimethylsiloxane, PDMS)、聚酰亚胺、聚对苯二甲酸乙二酯(Polyethylene terephthalate, PET)等透明聚合物材料。介电层12的厚度一般在5μm到500μm之间。比如,介电层12的厚度可以是5μm、50μm、100μm、250μm、400μm、500μm等,在此不一一赘述。
具体的,介电层12的尺寸可以基于所选的发光材料13的颗粒粒径、以及显示的分别率进行调节。可以理解的是,介电层12的厚度越小,发光纤维10的横截面尺寸越小。则3D显示装置100的分辨率可以做得更高。此外,介电层12的厚度要大于掺杂其中的发光材料13的颗粒粒径,以便起到绝缘保护的作用。
在本申请中,发光材料13主要包括基体材料和发光中心两部分。基体材料通常是II-VI族化合物、三元硫化物、氧化物、氟化物等。II-VI族化合物可以是ZnS、ZnSe、CaS、SrS等。三元硫化物可以是CaGaS 4、SrGa 2S 4等。氧化物可以是Zn 2Si 1-xCe xO 4、ZnGa 2O 4、Ga 2O 3等。发光中心的元素通常为过渡金属、稀土金属等。过渡金属可以是锰、铜、铬等。稀土金属可以是铈、镨、铕、铽等。比如,发光材料13可以是ZnS:Mn、SrS:Ce、SrS:Cu、SrS:Ag/Cu、掺杂稀土元素的ZnS、硫代乙醇酸盐、其它碱土金属硫化物等。
其中,发光材料13的颗粒尺寸通常在50nm到10μm之间。比如,发光材料13的颗粒尺寸可以是50nm、100nm、50nm、500nm、1μm、5μm、10μm等,在此不一一赘述。
其中,不同种类的发光材料13具有不同的发光颜色。对于同一种发光材料13,不同的颗粒尺寸也可能具有不同的发光颜色。本申请可以在介电层12中设置同一种发光材料13,也可以设置不同种类的发光材料13。
可以理解的是,上述发光材料13采用电致发光的方式进行发光。在申请一些实施例中,还可以在绝缘介质层12中掺杂光致发光材料,以利用能量转移过程实现光致发光材料的发光,从而获得更丰富的发光颜色。其中,光致发光材料可以是量子点、上转换纳米颗粒、荧光粉等,在此不一一赘述。
在本申请一些实施例中,3D显示装置100可以是透明的,以达到更好的显示效果。对此,可将发光纤维10设置为透明发光纤维。也即,导电层11和绝缘介电层12均可由上述的透明材料制成。此外,电极走线20也可由透明材料制成,可以进一步提高3D显示装置100的透明度。当然,电极走线20的材料也可以是铜、铝、钼等不透明导电金属。当电极走线20由不透明材料制成时,3D显示装置100的开口率(透明度)由编织的密度决定。
进一步的,导电层11、绝缘介质层12以及电极走线20均由可拉伸材料制成。比如,导电层11和电极走线20的材料均为离子导电水凝胶等可拉伸导电材料,以及绝缘介电层12的材料为PDMS等可拉伸介电材料。从而获得可拉伸的柔性3D显示装置100。则通过拉伸发光纤维10和电极走线20可以改变3D显示装置100的大小。
请同时参阅图3和图4,图4是本申请提供的发光纤维和电极走线的发光原理图。在本申请实施例中,发光纤维10仅包括导电层11和绝缘介电层12。发光纤维10的结构简单,生产效率更高,且可以降低生产成本。但是基于电致发光的原理,当使用图3所示的发光纤维10时,还需要额外设置电极走线20与发光纤维10共同作用发光。
其中,导电层11和电极走线20分别作为电极,以向发光材料13供电。具体的,可向第一透明导电层11和电极走线20施加交流电。当电压足够高时,电子从绝缘-半导体(介电层12和发光材料13)界面层注射到发光材料13中。注入电子在强电场中获得能量,这些高能电子或热电子通过碰撞而激发充当“发光中心”的离子(比如Cu +),处于激发态的发光中心通过发射光子回到基态,穿过发光材料13的电子被陷在另一侧的绝缘-半导体界面层。当交流电的电压反向时,同样的过程再重复发生一次。于是,第一透明导电层11和电极走线20的交叉点Q便能够在交流电场作用下发光。交叉点Q的亮度可以通过提高交流电的电压值和频率来提高。
具体的,交流电的电压值范围为0.1-200V,频率为50Hz-50KHz。比如,交流电的电压值可以是0.1V、5V、50V、100V、200V等。频率可以为50Hz、100Hz、10KHz、300KHz、50KHz等。
其中,由于多条电极走线20分别与发光纤维10接触形成交叉点Q,且仅在交叉点Q处可实现发光。因此,通过控制施加至发光纤维10和电极走线20的电压,可以控制不同的交叉点Q发光。也即,通过给特定的像素点加电实现该像素点的点亮发光,进而由立体的像素点组成所需的立体图像。同时,通过调整发光纤维10与电极走线20的排布密度,可以调整3D显示装置100的分辨率。
请继续参阅图3,在本实施例中,发光材料13包括多个发光颗粒。发光颗粒均匀掺杂在绝缘介电层12中。其中,发光材料13的掺杂浓度为1mg/mL-1000mg/mL。比如,发光材料13的掺杂浓度可以是1mg/mL、10mg/mL、100mg/mL、500mg/mL、800mg/mL、1000mg/mL等,在此不一一赘述。
由于发光颗粒的粒径一般较小,本实施例直接将发光颗粒掺杂在绝缘介电层12中,可以进一步提高发光纤维10的透明度。
请同时参阅图2和图5,图5是图2所示的发光纤维沿AA’处的第二剖面结构示意图。与图3所示的发光纤维10的不同之处在于,在本实施例中,发光材料13为一发光层131。绝缘介电层12包括第一介电层121和第二介电层122。发光层131、第一介电层121以及第二介电层122均同轴设置。第一介电层121包覆在导电层11的外侧。发光层131包覆在第一介电层121的外侧。第二介电层122包覆在发光层131的外侧。
本实施例在发光纤维10中设置发光层131,使得绝缘介质层12的材料选择范围更大,不需要考虑对发光颗粒的分散性。此外,发光层131完全覆盖第一导电层11,使得发光纤维10处处均可导电,可进一步提高3D显示装置100的像素密度。
在本申请中,发光纤维10和电极走线20的数量可根据3D显示装置100的尺寸以及分辨率进行设计,本申请对此不作具体限定。
在本申请中,多条发光纤维10可以沿同一方向延伸,也可以沿不同方向延伸,只要保证3D显示装置100中的任意两条发光纤维10不相交即可。每条电极走线20可以与一条发光纤维10接触相交,也可以与多条发光纤维10接触相交,具体可根据发光纤维10和电极走线20的排布方式进行设定。此外,电极走线20可以与发光纤维10垂直相交,也可以只相交不垂直。
具体的,请继续参阅图1,在本申请一些实施例中,沿第一方向Z,3D显示装置100具有多个相互平行的显示平面101。在每一显示平面101内,多条发光纤维10沿第二方向X排布。多条电极走线20沿第三方向Y排布。第二方向X和第三方向Y交叉。第二方向X和第三方向Y均垂直于第一方向Z。
本实施例将发光纤维10和电极走线20沿着第一方向Z、第二方向X以及第三方向Y,在空间内规则排布,从而获得规则排布的像素矩阵。规则排布的像素点使得3D显示装置100显示亮度更均匀,从而达到更好的显示效果。此外,由于各像素点均匀排布,更易于通过控制施加至相应的发光纤维10和电极走线20的电压,控制像素点的发光,避免各驱动电压信号之间发生干扰。此外,当3D显示装置100为透明显示装置时,规则排布的发光纤维10和电极走线20可以进一步提高3D显示装置100的外观美观性。
可选的,第二方向X垂直于第三方向Y。也即,发光纤维10与电极走线20垂直相交。本实施例可以进一步提高发光纤维10与电极走线20的排布规整性。此外,由于发光纤维10与电极走线20可以通过编织的方式交叉设置。因此,发光纤维10与电极走线20垂直相交,可以提高发光纤维10与电极走线20之间的稳定性,避免发光纤维10与电极走线20之间发生晃动。
在本申请一些实施例中,在每一显示平面101内,多条电极走线20可以覆盖在相应的发光纤维10上,以实现与发光纤维10的接触相交。本实施例可以简化发光纤维10与电极走线20的结构,进而简化工艺制程。
在本申请另一些实施例中,在每一显示平面101内,可以利用编织的方式将多条电极走线20与多条相应的发光纤维10编织在一起,以实现电极走线20与发光纤维10的接触相交。本实施例可以提高发光纤维10与电极走线20的结构稳定性,避免发光纤维10与电极走线20在3D显示装置100的移动过程中晃动,发生接触不良的问题。
可以理解的是,本申请提供的3D显示装置100用于显示立体的图像。该立体的图像可以由同一颜色构成,也可以由不同的颜色构成。
对此,在本申请中,多条发光纤维10可以显示同一颜色。仅需要通过控制施加至发光纤维10和电极走线20的电压值大小,即可控制不同交叉点Q的亮度,从而实现立体的图像显示。
当然,在本申请中,相邻的发光纤维10可以发射不同颜色的光。该设置通过显示颜色以及显示亮度的双重显示效果,可使得3D显示装置100显示的图像更加立体。
进一步的,在本申请实施例中,发光纤维10包括红色发光纤维、绿色发光纤维以及蓝色发光纤维。在同一显示平面101内,红色发光纤维、绿色发光纤维以及蓝色发光纤维以任一排列组合重复排列。在相邻显示平面101内,发光纤维一一对应设置。从而获得规则排布的彩色像素矩阵,实现彩色的立体图像显示。
具体的,在同一显示平面101内,红色发光纤维、绿色发光纤维以及蓝色发光纤维可以以RGB、RBG、BGR、BRG、GRB、GBR等排列组合中的任一排列组合为单位重复排列,本申请对此不作具体限定。
当然,本申请并不限于此。3D显示装置100还可以在RGB像素排列的基础上增加白色像素点,形成RGBW像素排列架构。也即,增加白色发光纤维。白色发光纤维的加入,使得3D显示装置100的透光率得到明显提升,3D显示装置100的亮度也在传统RGB像素排列架构的基础上得到提升。
请继续参阅图1,在本申请中,3D显示装置100还包括相对设置的第一基板31和第二基板32,以及相对设置的第三基板33和第四基板34。第一基板31、第二基板32、第三基板33以及第四基板34首尾相接。
其中,每一发光纤维10的一端固定在第一基板31上。每一发光纤维10的另一端固定在第二基板32上。每一电极走线20的一端固定在第三基板33上。每一电极走线20的另一端固定在第四基板34上。
其中,第一基板31、第二基板32、第三基板33以及第四基板34可以由透明材料制成,以便从3D显示装置100外部的不同角度观看立体图像。比如,第一基板31、第二基板32、第三基板33以及第四基板34可以是透明玻璃基板。
其中,第一基板31、第二基板32、第三基板33以及第四基板34的平面结构可以是长方形、正方形、弧形等。则第一基板31、第二基板32、第三基板33以及第四基板34首尾相接形成的立体结构可以是正方体、长方体或球体。从而使得3D显示装置100在不发光时呈现为正方体或长方体或球体等状态,提高3D显示装置100的外观美观性。
其中,发光纤维10可以通过粘贴、卡和等方式固定在第一基板31和第二基板32之间。电极走线20也可以通过粘贴、卡和等方式固定在第三基板33和第四基板34之间。
本申请通过设置第一基板31、第二基板32、第三基板33以及第四基板34,可以将发光纤维10和电极走线20稳定地固定在3D显示装置100中,避免发光纤维10和电极走线20在3D显示装置100的移动过程中发生晃动而产生接触不良的问题。从而提高3D显示装置100的显示稳定性。
进一步的,在本申请中,3D显示装置100还包括相对设置的第五基板35和第六基板36。第一基板31、第二基板32、第三基板33、第四基板34、第五基板35以及第六基板36形成一封闭结构。第五基板35和第六基板36均由透明材料制成。
本申请设置第五基板35和第六基板36,从而利用第一基板31、第二基板32、第三基板33、第四基板34、第五基板35以及第六基板36形成一封闭结构,作为3D显示装置100的外壳,可以保护3D显示装置100中的显示结构。进一步提高3D显示装置100的稳定性。
请参阅图6,图6是本申请提供的3D显示装置的第二结构示意图。与图1所示的3D显示装置100的不同之处在于,在本实施例中,第一基板31、和/或第二基板32上设置有第一过孔310。第三基板33和/或第四基板34上设置有第二过孔330。每一发光纤维10通过第一过孔310延伸至第一基板31或第二基板32的外侧。每一电极走线20通过第二过孔330延伸至第三基板33或第四基板34的外侧。
可以理解的是,本申请需要通过向发光纤维10和电极走线20施加电压,使得相应的交叉点Q发光,从而达到立体显示的效果。因此,需要将发光纤维10和电极走线20的端部引出,以便于施加电压。
具体的,当3D显示装置100的分辨率较低时,发光纤维10的分布密度较小。因此,可以仅在第一基板31或第二基板32上设置第一过孔310,以将发光纤维10的端部引出至第一基板31或第二基板32的外侧。同理,电极走线20的分布密度较小。因此,可以仅在第三基板33或第四基板34上设置第二过孔330,以将发光纤维10的端部引出至第三基板33或第四基板34的外侧。从而使得延伸出的发光纤维10或电极走线20仅位于3D显示装置100的一个侧面,提高电路的集中性。
当3D显示装置100的分辨率较高时,发光纤维10的分布密度较大。由于第一基板31或第二基板32的尺寸有限,本申请将多个第一过孔310分别设置在第一基板31和第二基板32上。一方面,可以提供足够数量的第一过孔310。第二方面,避免相邻发光纤维10在穿过第一过孔310时,发生交叉短路。同理,第二过孔330的设置亦然,在此不再赘述。
其中,第一过孔310的孔径与发光纤维10的横截面的径向尺寸相适配。在保证发光纤维10顺利穿过第一过孔310的同时,使得发光纤维10可稳定地卡和在第一过孔310中。同理,第二过孔330的孔径与电极走线20的横截面的径向尺寸相适配,在此不再赘述。
进一步的,第一基板31、第二基板32、第三基板33以及第四基板34的外侧可设置驱动芯片40。驱动芯片40与相应的发光纤维10或电极走线20连接,以提供驱动电压至发光纤维10或电极走线20。需要说明的,图6仅为示例,未将所有第一过孔310、第二过孔330、延伸至外侧的发光纤维10以及电极走线20画出,但不能理解为对本申请的限定。
可选的,请参阅图7,图7是本申请提供的3D显示装置中第一基板的一种结构示意图。与图6所示的3D显示装置100的不同之处在于,在本实施例中,第一基板31包括衬底基板311、第一导电引脚312以及第一连接走线313。每一发光纤维10的一端与相应的第一导电引脚312电性连接。发光纤维10通过第一导电引脚312与第一连接走线313。
进一步的,3D显示装置100还包括驱动芯片40。驱动芯片40分别与发光纤维10以及电极走线20连接,用于提供驱动电压至发光纤维10以及电极走线20。
其中,发光纤维10可以与电极走线20连接至同一驱动芯片40。发光纤维10也可以与电极走线20分别连接至不同的驱动芯片40。驱动芯片40的数量可根据发光纤维10以及电极走线20的数量设置。其中,驱动芯片40可以设置在第一基板31、第二基板32、第三基板33或第四基板34上,也可以设置在3D显示装置100的其它位置处,本申请对此不作具体限定。
其中,每一发光纤维10的一端可以通过导电胶与第一导电引脚312电性连接。第一导电引脚312和第一连接走线313以及驱动芯片40可以设置在第一基板31的内侧壁或外侧壁。当第一导电引脚312、第一连接走线313以及驱动芯片40设置在第一基板31的外侧壁时,第一导电引脚312贯穿第一基板31,以实现发光纤维10与第一连接走线313之间的连接。
本实施例通过在第一基板31上设置第一导电引脚312,可以避免将发光纤维10引出第一基板31的外侧,从而更好的保护发光纤维10,提高3D显示装置100的寿命。
当然,第二基板32上也可设置第一导电引脚312和第一连接走线313。具体可参阅第一基板31的结构,在此不再赘述。
同理,请参阅图8,图8是本申请提供的3D显示装置中第三基板的一种结构示意图。在本实施例中,第三基板33包括衬底基板331、第二导电引脚332以及第二连接走线333。每一电极走线20的一端与相应的第二导电引脚332电性连接。电极走线20通过第二导电引脚332与第二连接走线333连接。
其中,每一电极走线20的一端可以通过导电胶与第二导电引脚332电性连接。第二导电引脚332和第二连接走线333以及驱动芯片40可以设置在第三基板33的内侧壁或外侧壁。当第二导电引脚332、第二连接走线333以及驱动芯片40设置在第三基板33的外侧壁时,第二导电引脚332贯穿第三基板33,以实现电极走线20与第二连接走线333之间的连接。
本实施例通过在第三基板33上设置第二导电引脚332,可以避免将电极走线20引出第三基板33的外侧,从而更好的保护电极走线20,提高3D显示装置100的寿命。
当然,第四基板34上也可设置第二导电引脚332和第二连接走线333。具体可参阅第三基板33的结构,在此不再赘述。
以上对本申请提供的3D显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种3D显示装置,其包括:
    多条发光纤维,多条所述发光纤维间隔排布,且设置在不同平面内;
    多条电极走线,多条所述电极走线间隔排布,且与相应的所述发光纤维交叉接触设置,以形成立体网络结构。
  2. 根据权利要求1所述的3D显示装置,其中,沿第一方向,3D显示装置具有多个相互平行的显示平面;
    在每一所述显示平面内,多条所述发光纤维沿第二方向排布,多条所述电极走线沿第三方向排布,所述第二方向和所述第三方向交叉,所述第二方向和所述第三方向均垂直于所述第一方向。
  3. 根据权利要求2所述的3D显示装置,其中,所述发光纤维与所述电极走线垂直相交排布。
  4. 根据权利要求2所述的3D显示装置,其中,相邻所述发光纤维发射不同颜色的光。
  5. 根据权利要求2所述的3D显示装置,其中,所述发光纤维包括红色发光纤维、绿色发光纤维以及蓝色发光纤维;
    在同一所述显示平面内,所述红色发光纤维、所述绿色发光纤维以及所述蓝色发光纤维以任一排列组合为单位重复排列;在相邻所述显示平面内,所述发光纤维一一对应设置。
  6. 根据权利要求2所述的3D显示装置,其中,所述发光纤维包括白色发光纤维、红色发光纤维、绿色发光纤维以及蓝色发光纤维;
    在同一所述显示平面内,所述白色发光纤维、所述红色发光纤维、所述绿色发光纤维以及所述蓝色发光纤维以任一排列组合为单位重复排列;在相邻所述显示平面内,所述发光纤维一一对应设置。
  7. 根据权利要求2所述的3D显示装置,其中,通过调整所述发光纤维与所述电极走线的排布密度,调整所述3D显示装置的分辨率。
  8. 根据权利要求2所述的3D显示装置,其中,多条所述电极走线覆盖在相应的所述发光纤维上,以实现与所述发光纤维的接触相交。
  9. 根据权利要求1所述的3D显示装置,其中,所述3D显示装置还包括相对设置的第一基板和第二基板,以及相对设置的第三基板和第四基板,所述第一基板、所述第二基板、所述第三基板以及所述第四基板首尾相接;
    每一所述发光纤维的一端固定在所述第一基板上,每一所述发光纤维的另一端固定在所述第二基板上,每一所述电极走线的一端固定在所述第三基板上,每一所述电极走线的另一端固定在所述第四基板上。
  10. 根据权利要求9所述的3D显示装置,其中,在非显示状态,所述显示装置呈现为正方体、长方体或球体。
  11. 根据权利要求9所述的3D显示装置,其中,所述第一基板、和/或所述第二基板上设置有第一过孔,所述第三基板和/或所述第四基板上设置有第二过孔,每一所述发光纤维通过所述第一过孔延伸至所述第一基板或所述第二基板的外侧,每一所述电极走线通过所述第二过孔延伸至所述第三基板或所述第四基板的外侧。
  12. 根据权利要求11所述的3D显示装置,其中,所述第一过孔的孔径与所述发光纤维的横截面的径向尺寸相适配;所述第二过孔的孔径与所述电极走线的横截面的径向尺寸相适配。
  13. 根据权利要求9所述的3D显示装置,其中,所述第一基板和/或所述第二基板包括第一导电引脚,所述第三基板和/或所述第四基板包括第二导电引脚,每一所述发光纤维的一端与相应的所述第一导电引脚电性连接,每一所述电极走线的一端与相应的所述第二导电引脚电性连接。
  14. 根据权利要求13所述的3D显示装置,其中,所述3D显示装置还包括驱动芯片,所述驱动芯片通过所述第一导电引脚与所述发光纤维连接,所述驱动芯片通过所述第二导电引脚与所述电极走线连接,所述驱动芯片用于提供驱动电压至所述发光纤维以及所述电极走线。
  15. 根据权利要求9所述的3D显示装置,其中,所述3D显示装置还包括相对设置的第五基板和第六基板,所述第一基板、所述第二基板、所述第三基板、所述第四基板、所述第五基板以及所述第六基板形成一封闭结构;
    所述第五基板和所述第六基板均由透明材料制成。
  16. 根据权利要求1所述的3D显示装置,其中,所述发光纤维包括由内向外同轴设置的导电层和绝缘介电层,所述绝缘介电层中设有发光材料;
    所述导电层与所述电极走线均由透明材料和/或可拉伸材料制成。
  17. 根据权利要求16所述的3D显示装置,其中,所述介电层的厚度介于5μm-500μm之间。
  18. 根据权利要求16所述的3D显示装置,其中,所述发光材料包括多个发光颗粒,所述发光颗粒掺杂在所述绝缘介电层中。
  19. 根据权利要求18所述的3D显示装置,其中,所述发光材料的颗粒尺寸介于50nm-10μm之间;
    所述发光材料的掺杂浓度介于1mg/mL-1000mg/mL之间。
  20. 根据权利要求16所述的3D显示装置,其中,所述发光材料包括发光层,所述绝缘介电层包括第一绝缘介电层和第二绝缘介电层,所述第一绝缘介电层包覆在所述导电层的外侧,所述发光层包覆在所述第一绝缘介电层的外侧,所述第二绝缘介电层包覆在所述发光层的外侧。
PCT/CN2021/118118 2021-09-06 2021-09-14 3d显示装置 WO2023029082A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/607,340 US20240045226A1 (en) 2021-09-06 2021-09-14 3d display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111037312.6 2021-09-06
CN202111037312.6A CN113759569A (zh) 2021-09-06 2021-09-06 3d显示装置

Publications (1)

Publication Number Publication Date
WO2023029082A1 true WO2023029082A1 (zh) 2023-03-09

Family

ID=78793141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118118 WO2023029082A1 (zh) 2021-09-06 2021-09-14 3d显示装置

Country Status (3)

Country Link
US (1) US20240045226A1 (zh)
CN (1) CN113759569A (zh)
WO (1) WO2023029082A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280812A (zh) * 2021-12-21 2022-04-05 徐州革锐能源科技有限公司 一种基于无机钙钛矿量子点led的三维立体光电显示器
CN115933214B (zh) * 2023-03-09 2023-05-30 成都理工大学工程技术学院 一种光致激发立体成像装置及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020046020A1 (en) * 2000-03-31 2002-04-18 Akira Ishibashi Information receiving/display apparatus and information receiving/display method
JP2005005120A (ja) * 2003-06-11 2005-01-06 Hitachi Displays Ltd 表示装置及びその製造方法
CN101064081A (zh) * 2005-06-01 2007-10-31 三星电子株式会社 体积三维显示面板和使用多层有机发光器件的系统
CN207115895U (zh) * 2016-05-24 2018-03-16 上海本星电子科技有限公司 Led灯条立体显示器
CN109559648A (zh) * 2018-12-29 2019-04-02 杭州优航信息技术有限公司 一种柔性显示器
CN110568658A (zh) * 2018-06-06 2019-12-13 深圳Tcl新技术有限公司 一种量子点像素光致发光液晶显示模组及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525711A (en) * 1982-09-03 1985-06-25 Gery Alan R Three-dimensional fiber optic display
US6608438B2 (en) * 2001-11-09 2003-08-19 Visson Ip Llc 3-D flexible display structure
CN101241657B (zh) * 2008-03-03 2012-08-29 陈漱文 一种三维显示系统及其显示控制方法
CN207503547U (zh) * 2017-10-26 2018-06-15 但以诚科技股份有限公司 光纤块显示屏的改良结构
CN111866494A (zh) * 2020-07-30 2020-10-30 淮北幻境智能科技有限公司 一种三维图像的显示方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020046020A1 (en) * 2000-03-31 2002-04-18 Akira Ishibashi Information receiving/display apparatus and information receiving/display method
JP2005005120A (ja) * 2003-06-11 2005-01-06 Hitachi Displays Ltd 表示装置及びその製造方法
CN101064081A (zh) * 2005-06-01 2007-10-31 三星电子株式会社 体积三维显示面板和使用多层有机发光器件的系统
CN207115895U (zh) * 2016-05-24 2018-03-16 上海本星电子科技有限公司 Led灯条立体显示器
CN110568658A (zh) * 2018-06-06 2019-12-13 深圳Tcl新技术有限公司 一种量子点像素光致发光液晶显示模组及其制造方法
CN109559648A (zh) * 2018-12-29 2019-04-02 杭州优航信息技术有限公司 一种柔性显示器

Also Published As

Publication number Publication date
US20240045226A1 (en) 2024-02-08
CN113759569A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
JP6553259B2 (ja) 量子ドットを用いた電飾看板
WO2023029082A1 (zh) 3d显示装置
JP2010526420A (ja) 電力の分配が改善されたエレクトロルミネッセンス・デバイス
CN102280546A (zh) 量子点发光二极管器件及具有其的显示设备
TW202021165A (zh) 發光裝置
CN106062858A (zh) 使用半导体发光器件的显示设备
CN107359175A (zh) 微发光二极管显示面板和显示装置
KR20060114387A (ko) 전계 발광 형광체와 그의 제조 방법 및 전계 발광 소자
US9634198B2 (en) Quantum dot chip on board
US20080136314A1 (en) Highly transmissive electroluminescent lamp
CN109087910A (zh) 一种led发光组件、led发光面板以及led显示屏
CN112802947A (zh) 一种量子点显示器件及其制备方法
CN109244265A (zh) 有机发光二极管和制造其的方法
KR20130044032A (ko) 광학 부재 및 이를 포함하는 표시장치
TWI744583B (zh) 量子點及其製造方法與應用
CN113745426A (zh) 发光纤维及其制备方法
KR20120126395A (ko) 표시장치
JP2007134121A (ja) 発光素子
WO2023103054A1 (zh) 纳米粒子膜、纳米粒子膜的制造方法以及显示面板
KR101877463B1 (ko) 표시장치
KR20110090119A (ko) 전자 종이용 컬러 표시 소자, 이를 이용한 전자 종이, 디스플레이 장치 및 전자 장치
US20050052121A1 (en) Electroluminescent material
WO2023245342A1 (zh) 发光器件、发光基板及发光装置
WO2024000304A1 (zh) 发光器件、发光基板及发光装置
WO2022261882A1 (zh) 实现三维显示的显示器、制备方法及三维显示方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17607340

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE