WO2023245342A1 - 发光器件、发光基板及发光装置 - Google Patents

发光器件、发光基板及发光装置 Download PDF

Info

Publication number
WO2023245342A1
WO2023245342A1 PCT/CN2022/099859 CN2022099859W WO2023245342A1 WO 2023245342 A1 WO2023245342 A1 WO 2023245342A1 CN 2022099859 W CN2022099859 W CN 2022099859W WO 2023245342 A1 WO2023245342 A1 WO 2023245342A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
layer
electrode
emitting device
Prior art date
Application number
PCT/CN2022/099859
Other languages
English (en)
French (fr)
Inventor
王蓓
文官印
杜小波
刘华猛
郝艳军
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/099859 priority Critical patent/WO2023245342A1/zh
Priority to CN202280001802.7A priority patent/CN117616899A/zh
Publication of WO2023245342A1 publication Critical patent/WO2023245342A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light-emitting device, a light-emitting substrate and a light-emitting device.
  • OLED Organic Light Emitting Diode
  • the present disclosure provides a light-emitting device, including:
  • the first luminescent layer includes a first luminescent material configured to emit first light when driven by current or voltage;
  • the second luminescent layer includes a second luminescent material configured to emit second light when driven by current or voltage;
  • the luminous efficiency of the first luminescent material is greater than the luminescent efficiency of the second luminescent material
  • the brightness conversion rate of the first light ray that photoexcites the color conversion material is less than the brightness conversion rate of the second light ray that photoexcites the color conversion material.
  • the triplet energy level of the first luminescent material is lower than the triplet energy level of the second luminescent material.
  • the difference between the triplet energy level of the second luminescent material and the triplet energy level of the first luminescent material is greater than or equal to 0.1 eV and less than or equal to 0.3 eV.
  • the molecular mass of the first luminescent material is greater than the molecular mass of the second luminescent material.
  • the peak wavelength of the first light is greater than the peak wavelength of the second light.
  • the peak wavelength of the first light is greater than or equal to 460 nanometers and less than or equal to 470 nanometers; the peak wavelength of the second light is greater than or equal to 450 nanometers and less than or equal to 460 nanometers. nanometer.
  • the full width at half maximum of the first light and the second light is less than or equal to 20 nanometers.
  • the first electrode is a reflective electrode
  • the second electrode is a transmissive electrode or a semi-transmissive electrode
  • the second luminescent layer is located near the first luminescent layer. one side of the first electrode.
  • the plurality of light-emitting layers include at least two first light-emitting layers, and the at least one second light-emitting layer is located between the at least two first light-emitting layers and close to the first electrode. one side.
  • the light-emitting device further includes at least one of the following: a hole injection layer, a hole transport layer, and an electron blocking layer stacked between the first electrode and the second electrode. layer, hole blocking layer, charge generation layer, electron transport layer and electron injection layer.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the light-emitting device further includes:
  • a hole injection layer, a first hole transport layer and a first electron blocking layer are stacked between the first electrode and the plurality of light-emitting layers, and the hole injection layer is arranged close to the first electrode;
  • a first hole blocking layer, a first charge generation layer, a second hole transport layer and a second electron blocking layer are stacked between two adjacent light-emitting layers, and the first hole blocking layer is close to The first electrode is configured;
  • a light extraction layer is provided on a side of the second electrode facing away from the first electrode.
  • both the first luminescent material and the second luminescent material include at least one of the following: organic electroluminescent material and quantum dots.
  • the present disclosure provides a light-emitting substrate, including:
  • a plurality of light-emitting devices are connected to the switching element.
  • the light-emitting substrate further includes:
  • a thin film encapsulation layer is provided on a side of the light-emitting device facing away from the first base substrate, and an orthographic projection of the thin film encapsulation layer on the first base substrate covers the first base substrate.
  • the light-emitting substrate further includes:
  • a color conversion layer is provided on the light exit side of the light-emitting device for receiving incident light and emitting light of a different color from the incident light.
  • the incident light is the light emitted by the light-emitting device.
  • the incident light is blue light
  • the light-emitting substrate includes a plurality of pixels, each of the pixels includes a red sub-pixel, a blue sub-pixel and a green sub-pixel
  • the color conversion Layers include at least one of the following:
  • a first color conversion pattern located at the red sub-pixel, used to emit red light under the excitation of the incident light
  • a second color conversion pattern located at the green sub-pixel for emitting green light under excitation by the incident light
  • the transmission pattern located in the blue sub-pixel, is used to transmit the incident light.
  • the color conversion layer includes a color conversion material, and the color conversion material includes at least one of the following: quantum dots, rare earth materials, fluorescent materials, and organic dyes.
  • the light-emitting substrate further includes:
  • a color filter layer arranged on the light exit side of the color conversion layer, including:
  • a first color filter pattern located at the red sub-pixel, used to transmit red light incident on the first color filter pattern
  • a second color filter pattern located on the green sub-pixel, is used to transmit green light incident on the second color filter pattern
  • a third color filter pattern is located on the blue sub-pixel and is used to transmit blue light incident on the third color filter pattern.
  • the light-emitting substrate further includes:
  • a second base substrate is provided on the side of the color filter layer facing away from the color conversion layer;
  • a filling layer disposed between the film encapsulation layer and the color conversion layer, for bonding the film encapsulation layer and the color conversion layer; wherein the film encapsulation layer is located between the light-emitting device and the color conversion layer between layers.
  • the present disclosure provides a light-emitting device, including:
  • a driving integrated circuit configured to provide a driving signal to the light emitting substrate
  • a power supply circuit configured to provide power to the light-emitting substrate.
  • Figure 1 schematically shows a schematic cross-sectional structural diagram of the first light-emitting device provided by the present disclosure
  • Figure 2 schematically shows a schematic cross-sectional structural diagram of the second light-emitting device provided by the present disclosure
  • Figure 3 schematically shows a schematic cross-sectional structural view of a third light-emitting device provided by the present disclosure
  • Figure 4 schematically shows a schematic cross-sectional structural diagram of a fourth light-emitting device provided by the present disclosure
  • Figure 5 schematically shows a schematic cross-sectional structural view of the fifth light-emitting device provided by the present disclosure
  • Figure 6 schematically shows a schematic cross-sectional structural diagram of a sixth light-emitting device provided by the present disclosure
  • Figure 7 schematically shows the spectral test results of the first luminescent material and the second luminescent material
  • Figure 8 schematically shows the performance test results of several light-emitting devices
  • Figure 9 schematically shows a schematic cross-sectional structural view of the first light-emitting substrate provided by the present disclosure
  • Figure 10 schematically shows a schematic cross-sectional structural view of the second light-emitting substrate provided by the present disclosure
  • Figure 11 schematically shows a schematic plan view of a light-emitting substrate provided by the present disclosure
  • Figure 12 schematically shows a cross-sectional structural diagram of an example of a first color conversion pattern
  • Figure 13 schematically shows a cross-sectional structural diagram of an example of a second color conversion pattern
  • FIG. 14 schematically shows a cross-sectional structural diagram of an example of a transmission pattern.
  • the present disclosure provides a light-emitting device.
  • a schematic cross-sectional structural diagram of the light-emitting device provided by the present disclosure is schematically shown.
  • the light-emitting device includes: a first electrode 11; a second electrode 12, which is opposite to the first electrode 11; and a plurality of light-emitting layers 13, which are stacked on the first electrode 11 and the second electrode 12.
  • the plurality of luminescent layers 13 include at least one first luminescent layer 131 and at least one second luminescent layer 132 .
  • the first light-emitting layer 131 includes a first light-emitting material and is configured to emit the first light when driven by current or voltage;
  • the second light-emitting layer 132 includes a second light-emitting material and is configured to emit light when driven by current or voltage. Second ray.
  • the luminous efficiency of the first luminescent material is greater than the luminous efficiency of the second luminescent material, and the brightness conversion rate of the first light that excites the color conversion material is less than the brightness conversion rate of the second light that excites the color conversion material.
  • the first electrode 11 and the second electrode 12 are configured to provide current or voltage to the plurality of light emitting layers 13 .
  • the luminous efficiency of the first luminescent material refers to the ratio between the luminous flux of the light emitted by the first luminescent material (ie, the first light) and the consumed electrical power.
  • the luminous efficiency of the second luminescent material refers to the ratio between the luminous flux of the light emitted by the second luminescent material (ie, the second light) and the electrical power consumed.
  • the brightness conversion rate of the first light that excites the color conversion material refers to the ratio of the brightness of the light emitted from the color conversion material when the first light irradiates the color conversion material and the brightness of the first light, that is, the first brightness conversion rate.
  • the brightness conversion rate of the second light that excites the color conversion material refers to the ratio of the brightness of the light emitted from the color conversion material when the second light irradiates the color conversion material and the brightness of the second light, that is, the second brightness conversion rate.
  • the first brightness conversion rate is smaller than the second brightness conversion rate.
  • the first light-emitting layer 131 uses a first light-emitting material
  • the second light-emitting layer 132 uses a second light-emitting material. Since the first luminescent material has a high luminous efficiency and the second luminescent material has a high luminance conversion rate, when the light-emitting device provided by the present disclosure is used to irradiate the color conversion material, it can ensure that the light-emitting device itself has a high luminance conversion rate.
  • the luminous efficiency can effectively improve the luminance conversion rate of light-emitting devices for light excitation of color conversion materials, solving the contradiction between the high luminous efficiency of light-emitting devices in related technologies and the high luminance conversion rate of light excitation of color conversion materials. .
  • the multiple light-emitting layers 13 in the light-emitting device all use the same light-emitting material (such as the first light-emitting material or the second light-emitting material)
  • using the light-emitting device provided in the embodiment of the present disclosure can improve the performance of the color conversion material. White light efficiency.
  • the light-emitting device is electrically driven to emit light
  • the color conversion material is light-driven to emit light.
  • the color conversion material emits light when excited by light emitted by the light-emitting device.
  • the white light efficiency of the color conversion material refers to the ratio between the brightness of the white light (for example, including red light, blue light, and green light) emitted by the color conversion material and the current density that drives the light-emitting device to emit light.
  • the plurality of light-emitting layers may include a first light-emitting layer 131 and a second light-emitting layer 132 arranged in a stack, as shown in FIG.
  • the second light-emitting layer 132 as shown in FIG. 2; or includes three first light-emitting layers 131 and one second light-emitting layer 132 arranged in a stack, as shown in FIG. 3; or includes two first light-emitting layers 131 arranged in a stack.
  • One light-emitting layer 131 and two second light-emitting layers 132 as shown in Figure 4; or including four first light-emitting layers 131 and one second light-emitting layer 132 arranged in a stack, as shown in Figure 5; or It includes three first light-emitting layers 131 and two second light-emitting layers 132 arranged in a stack, as shown in Figure 6; and so on.
  • the number of the first light-emitting layers 131 and the number of the second light-emitting layers 132 included in the multiple light-emitting layers, as well as the stacking sequence between the multiple light-emitting layers, can be designed according to actual needs, and this disclosure does not limit this.
  • the triplet energy level of the first luminescent material is lower than the triplet energy level of the second luminescent material.
  • the mutual transfer of triplet energy between different light-emitting layers 13 resulting in quenching of excitons can be avoided, and the utilization rate of triplet excitons of the first light-emitting material and the second light-emitting material can be improved.
  • the difference between the triplet energy level of the second luminescent material and the triplet energy level of the first luminescent material is greater than or equal to 0.1 eV and less than or equal to 0.3 eV. Further, the difference between the triplet energy level of the second luminescent material and the triplet energy level of the first luminescent material may be 0.2 eV.
  • the first luminescent material has greater molecular conjugation
  • the second luminescent material has smaller molecular conjugation.
  • molecular conjugation can be characterized by molecular mass. Materials with large molecular conjugation usually have larger molecular mass, and materials with small molecular conjugation usually have smaller molecular mass.
  • the molecular mass of the first luminescent material is greater than the molecular mass of the second luminescent material.
  • the peak wavelength of the first light emitted by the first luminescent material is greater than the peak wavelength of the second light emitted by the second luminescent material.
  • the peak wavelength of the first light is greater than or equal to 460 nanometers and less than or equal to 470 nanometers; the peak wavelength of the second light is greater than or equal to 450 nanometers and less than or equal to 460 nanometers.
  • the full width at half maximum (FWHM) of the first light and the second light is both less than or equal to 20 nanometers to improve the color purity of the first light and the second light.
  • the first electrode 11 is a reflective electrode
  • the second electrode 12 is a transmissive electrode or a semi-transmissive electrode.
  • the second light-emitting layer 132 is located on the side of the first light-emitting layer 131 close to the first electrode 11 .
  • first electrode 11 is a reflective electrode and the second electrode 12 is a transmissive electrode or a semi-transmissive electrode
  • multiple light-emitting layers 13 are located on a reflective film (ie, reflective electrode: first electrode 11) and a transmissive film. (ie, the transmissive electrode or the semi-transmissive electrode: the second electrode 12), a microcavity structure is formed between the reflective film and the transmissive film.
  • the luminous efficiency of the second luminescent layer 132 is lower than that of the first luminescent layer 131, by arranging the second luminescent layer 132 at a position close to the first electrode 11 in the plurality of luminescent layers 13, in the microcavity structure, The second light-emitting layer 132 with lower luminous efficiency is closer to the reflective film, which can improve the brightness conversion rate of the light-emitting device for light excitation of the color conversion material and further optimize the white light without having a small impact on the overall luminous efficiency of the light-emitting device. efficiency.
  • the first light-emitting layer 131 Since the first light-emitting layer 131 has a high luminous efficiency, by arranging the first light-emitting layer 131 at a position far away from the first electrode 11 in the plurality of light-emitting layers 13, in the microcavity structure, the first light-emitting layer with a high luminous efficiency can The layer 131 is far away from the reflective film, thus helping to improve the overall luminous efficiency of the light-emitting device.
  • the plurality of light-emitting layers 13 may include at least two first light-emitting layers 131 and at least one second light-emitting layer 132.
  • the at least one second light-emitting layer 132 is located on at least two second light-emitting layers 131.
  • a light-emitting layer 131 is close to one side of the first electrode 11 .
  • the plurality of light-emitting layers 13 includes a first light-emitting layer 131 and a second light-emitting layer 132 .
  • the second light-emitting layer 132 is located on a side of the first light-emitting layer 131 close to the first electrode 11 . That is, the first electrode 11, the second luminescent layer 132, the first luminescent layer 131 and the second electrode 12 are stacked in sequence.
  • the plurality of light-emitting layers 13 includes a plurality of first light-emitting layers 131 and one or more second light-emitting layers 132
  • the one or more second light-emitting layers 132 are located on a plurality of third light-emitting layers 131 .
  • a light-emitting layer 131 is close to one side of the first electrode 11 .
  • the plurality of light-emitting layers 13 includes two first light-emitting layers 131 and a second light-emitting layer 132 .
  • the second light-emitting layer 132 is located between the two first light-emitting layers 131 and is close to the first electrode 11 . one side. That is, the first electrode 11, the second luminescent layer 132, the two first luminescent layers 131 and the second electrode 12 are stacked in sequence.
  • the plurality of light-emitting layers 13 includes three first light-emitting layers 131 and one second light-emitting layer 132 .
  • the second light-emitting layer 132 is located between the three first light-emitting layers 131 and close to the first electrode 11 . one side. That is, the first electrode 11, the second luminescent layer 132, the three first luminescent layers 131 and the second electrode 12 are stacked in sequence.
  • the plurality of light-emitting layers 13 includes two first light-emitting layers 131 and two second light-emitting layers 132 .
  • the two second light-emitting layers 132 are located close to the two first light-emitting layers 131 .
  • the plurality of light-emitting layers 13 includes four first light-emitting layers 131 and one second light-emitting layer 132 .
  • the second light-emitting layer 132 is located between the four first light-emitting layers 131 and close to the first electrode 11 . one side. That is, the first electrode 11, the second luminescent layer 132, the four first luminescent layers 131 and the second electrode 12 are stacked in sequence.
  • the plurality of light-emitting layers 13 includes three first light-emitting layers 131 and two second light-emitting layers 132 .
  • the two second light-emitting layers 132 are located close to the three first light-emitting layers 131 .
  • the stacking structure of the second light-emitting layer 132 and the first light-emitting layer 131 is not limited to the above-mentioned ones.
  • the second light-emitting layer 132 and the first light-emitting layer 131 can also be alternately arranged between the first electrode 11 and the first light-emitting layer 131 .
  • the second luminescent layer 132 is located on the side of the first luminescent layer 131 close to the first electrode 11; the second luminescent layer 132 can also be located on the side of the first luminescent layer 131 close to the second electrode 11, etc. etc., this disclosure does not limit this.
  • the light-emitting device further includes: a hole injection layer 14, a hole transport layer 15, and an electron blocking layer 16 stacked between the first electrode 11 and the second electrode 12.
  • a hole injection layer 14 a hole transport layer 15
  • an electron blocking layer 16 stacked between the first electrode 11 and the second electrode 12.
  • One or more of the functional film layers such as the hole blocking layer 17, the charge generation layer 18, the electron transport layer 19, and the electron injection layer 110.
  • One or more of the above functional film layers may be stacked between the first electrode 11 and the plurality of light-emitting layers 13 , may also be stacked between two adjacent light-emitting layers 13 , or may be stacked between multiple light-emitting layers 13 .
  • the distance between the light-emitting layer 13 and the second electrode 12 can be specifically set according to actual requirements.
  • a charge generation layer 18 can be disposed between any two adjacent light-emitting layers 13, and multiple light-emitting layers 13 can be connected in series through the charge generation layer 18 to form a tandem light-emitting device.
  • the charge generation layer 18 can inject carriers (such as holes or electrons) into the adjacent light-emitting layer 13 .
  • carriers such as holes or electrons
  • part of the carriers are provided by the first electrode 11 and the second electrode 12 , and the other part of the carriers are generated in the charge generation layer 18 . Therefore, by providing the charge generation layer 18, the life of the light-emitting device can be improved while reducing the power consumption.
  • the first electrode 11 is an anode
  • the second electrode 12 is a cathode
  • the light-emitting device further includes: a hole injection layer 14 , a first hole transport layer 151 and a first hole transport layer 151 stacked between the first electrode 11 and the plurality of light-emitting layers 13 .
  • the electron blocking layer 161 and the hole injection layer 14 are arranged close to the first electrode.
  • the light-emitting device further includes: a first hole blocking layer 171, a first charge generation layer 181, a second hole blocking layer 171 stacked between two adjacent light-emitting layers.
  • the transport layer 152 and the second electron blocking layer 162 and the first hole blocking layer 171 are arranged close to the first electrode 11 .
  • the first charge generation layer 181 includes an N-type charge generation layer and a P-type charge generation layer, and the N-type charge generation layer is disposed close to the first electrode 11 .
  • the light-emitting device further includes: a second hole blocking layer 173, an electron transport layer 19 and an electron injection layer 110 stacked between a plurality of light-emitting layers and the second electrode,
  • the electron injection layer 110 is disposed close to the second electrode.
  • the light-emitting device further includes: a light extraction layer disposed on the side of the second electrode 12 facing away from the first electrode 11 .
  • the light-emitting device shown in FIG. 1 includes two light-emitting layers 13 and is a double-layered light-emitting device.
  • the light-emitting device shown in FIG. 2 includes three light-emitting layers 13 and is a three-layer light-emitting device.
  • the light-emitting device shown in FIGS. 3 and 4 includes four light-emitting layers 13 and is a four-layer light-emitting device.
  • the light-emitting device shown in FIGS. 5 and 6 includes five light-emitting layers 13 and is a five-layer light-emitting device. Compared with single-layer light-emitting devices, multi-layer light-emitting devices can effectively improve the luminous efficiency of the device.
  • the spectral test results of the first luminescent material and the second luminescent material are schematically shown with reference to FIG. 7 .
  • the peak wavelength of the first light emitted by the first luminescent material is 460 nanometers, and the full width at half maximum of the first light ray is 14.5 nanometers; the peak wavelength of the second light emitted by the second luminescent material is 456 nanometers.
  • the full width at half maximum of the two rays is 13.3 nanometers.
  • FIG. 7 shows the spectral test data of the first luminescent layer 131 using the first luminescent material and the second luminescent layer 132 using the second luminescent material when interference enhancement occurs at the highest level in the respective microcavities.
  • the inventor tested the performance of three light-emitting devices (including light-emitting device A, light-emitting device B and light-emitting device C) respectively.
  • the test results are shown in Figure 8.
  • the light-emitting device A, the light-emitting device B and the light-emitting device C are all three-layer light-emitting devices.
  • Light-emitting devices A and B are comparative examples, and light-emitting device C is an experimental example.
  • the three light-emitting layers 13 in the light-emitting device A are all first light-emitting layers 131, and the three light-emitting layers 13 in the light-emitting device B are all the second light-emitting layers 132.
  • the structure of the light-emitting device C is as shown in Figure 2.
  • the peak wavelength column in Figure 8 It can be seen from the peak wavelength column in Figure 8 that the peak wavelength of light emitted by light-emitting device A is 460 nanometers; the peak wavelength of light emitted by light-emitting device B is 456 nanometers; and the peak wavelength of light emitted by light-emitting device C is 459 nanometers.
  • the luminous efficiency column in Figure 8 that under the same current density, normalized with the luminous efficiency of light-emitting device A as the base, the luminous efficiency of light-emitting device A is 100%, and the luminous efficiency of light-emitting device B is 87%. , the luminous efficiency of the light-emitting device C is 97%.
  • Light-emitting device A, light-emitting device B, and light-emitting device C are used to photoexcite the color conversion material, such as the quantum dot film layer, respectively.
  • the measured results are shown in the brightness conversion rate column in Figure 8.
  • the quantum dot film layer includes green quantum dots GQD and red quantum dots RQD.
  • the brightness conversion rate of the light emitted by the light-emitting device A for photoexcitation of the green quantum dots GQD is normalized by the base number.
  • the brightness conversion rate of point RQD for photoexcitation is 100%.
  • the brightness conversion rate of the light emitted by the light-emitting device B for photo-excitation of the green quantum dot GQD is 129%, and the brightness conversion rate of the light emitted by the light-emitting device B for the photo-excitation of the red quantum dot RQD is 126%.
  • the brightness conversion rate of the light emitted by the light-emitting device C for photoexcitation of the green quantum dot GQD is 120%, and the brightness conversion rate of the light emitted by the light-emitting device C for the photoexcitation of the red quantum dot RQD is 115%.
  • the white light efficiency of light-emitting device A is 100%
  • the white light efficiency of light-emitting device B is 110%
  • the white light efficiency of light-emitting device C is 110%.
  • White light efficiency is 114%.
  • the light-emitting layer in the light-emitting device C is composed of the first light-emitting layer 131 and the second light-emitting layer 132, the luminous efficiency and brightness conversion rate of the light-emitting device can be improved simultaneously. Therefore, the white light efficiency of the light-emitting device C is optimal.
  • the second light-emitting layer 132 is disposed close to the first electrode 11 (as shown in FIG. 2 ), the ability of the light-emitting device to light-excite the color conversion material can be improved with little impact on the overall luminous efficiency of the light-emitting device. Brightness conversion rate to achieve optimal white light efficiency.
  • both the first luminescent material and the second luminescent material include at least one of the following: organic electroluminescent material and quantum dots.
  • both the first luminescent material and the second luminescent material are organic electroluminescent materials.
  • the light-emitting device is an organic light-emitting diode (OLED).
  • both the first luminescent material and the second luminescent material are quantum dots.
  • the light-emitting device is a quantum dot light-emitting diode (Quantum Dot Light-Emitting Diode, QLED).
  • the present disclosure also provides a light-emitting substrate, as shown in Figure 9 or Figure 10.
  • the light-emitting substrate includes: a first substrate substrate 50, a plurality of switch elements T provided on the first substrate substrate 50, and a plurality of The light-emitting device 51 provided in any of the above embodiments is connected to the switching element T.
  • the light-emitting substrate has the advantages of the front light-emitting device.
  • the above-mentioned light-emitting substrate may further include: a thin film encapsulation layer 52 disposed on the side of the plurality of light-emitting devices 51 facing away from the first base substrate 50 .
  • the orthographic projection of the thin film encapsulation layer 52 on the first base substrate 50 covers the first base substrate 50 .
  • the thin film encapsulation layer 52 may include a stacked first inorganic layer ENL1 , an organic layer ENL2 and a second inorganic layer ENL3 .
  • the above-mentioned light-emitting substrate may also include: a color conversion layer 53, which is provided on the light exit side of the light-emitting device 51 and is used to receive incident light and emit light of a different color from the incident light.
  • the incident light is the light emitted by the light emitting device 51 .
  • the color conversion layer 53 is located on the side of the thin film encapsulation layer 52 away from the first base substrate 50.
  • the light-emitting substrate includes an effective light-emitting area DA and a frame area NDA located on at least one side of the effective light-emitting area.
  • the effective light-emitting area DA may include a plurality of pixels, each pixel including a red sub-pixel R, a blue sub-pixel R, and a border area NDA.
  • the cross-sectional view shown in FIG. 9 is a schematic cross-sectional structural view of a pixel located in the effective light-emitting area DA.
  • the plurality of light-emitting devices 51 may include a first light-emitting device LD1 located in the red sub-pixel R, a second light-emitting device LD2 located in the green sub-pixel G, and a third light-emitting device located in the blue sub-pixel B.
  • the sub-pixels and the light-emitting devices 51 can be arranged in one-to-one correspondence.
  • the incident light is blue light, that is, the light emitted by the light-emitting device 51 is blue light.
  • the color conversion layer 53 may include: a first color conversion pattern CCP1 located in the red sub-pixel R for emitting red light under excitation by incident light.
  • the orthographic projection of the first color conversion pattern CCP1 on the first base substrate 50 covers the light-emitting area of the corresponding position of the light-emitting device 51 (the opening area as shown in FIG. 9 or FIG. 10) on the first base substrate. Orthographic projection on 50.
  • the color conversion layer 53 may also include: a second color conversion pattern CCP2 located in the green sub-pixel G for emitting green light under excitation by incident light.
  • the orthographic projection of the second color conversion pattern CCP2 on the first base substrate 50 covers the light-emitting area of the light-emitting device 51 at the corresponding position (the opening area as shown in FIG. 9 or FIG. 10) on the first base substrate. Orthographic projection on 50.
  • the color conversion layer 53 may also include: a transmission pattern TP located at the blue sub-pixel B for transmitting incident light.
  • the orthographic projection of the transmission pattern TP on the first base substrate 50 covers the orthogonal projection of the light-emitting area of the light-emitting device at the corresponding position (the opening area as shown in FIG. 9 or FIG. 10 ) on the first base substrate 50 . projection.
  • the color conversion layer 53 includes a partition wall PW, and a plurality of color conversion patterns located in a plurality of openings defined by the partition wall PW.
  • the plurality of color conversion patterns include at least a first color conversion pattern CCP1, a second color conversion pattern CCP2, and a transmission pattern TP.
  • the first color conversion pattern CCP1 may emit light by converting or moving the peak wavelength of incident light to another specific peak wavelength.
  • the first color conversion pattern CCP1 may convert the emission light L provided from the first light emitting device LD1 into red light having a peak wavelength in a range of about 610 nm to about 650 nm.
  • the first color conversion pattern CCP1 may include a first base resin R1 and a first color conversion material QD1 dispersed in the first base resin R1 , and may include first scattering particles dispersed in the first base resin R1 SP1.
  • the second color conversion pattern CCP2 may emit light by converting or moving the peak wavelength of incident light to another specific peak wavelength.
  • the second color conversion pattern CCP2 may convert the emission light L provided from the second light emitting element LD2 into green light having a peak wavelength in the range of about 510 nm to about 550 nm.
  • the second color conversion pattern CCP2 may include a second base resin R2 and a second color conversion material QD2 dispersed in the second base resin R2, and may include second scattering particles dispersed in the second base resin R2 SP2.
  • the transmission pattern TP can transmit incident light, for example, has a transmittance of more than 90% for the peak wavelength of incident light.
  • the transmission pattern TP can transmit the emission light L supplied from the third light emitting element LD3.
  • the transmission pattern TP may include a third base resin R3 and third scattering particles SP3 dispersed in the third base resin R3.
  • the setting of the third scattering particle SP3 can expand the viewing angle range of the incident light and improve the viewing angle uniformity among the red sub-pixel R, the blue sub-pixel B and the green sub-pixel G.
  • the first color conversion material QD1 and the second color conversion material QD2 may include semiconductor nanocrystal materials, which may emit light of a specific color when electrons transition from the conduction band to the valence band.
  • the quantum dots may have any shape as long as the shape is commonly used in the art, and may specifically be spherical, conical, multi-armed or cubic nanoparticles, or may be nanotubes, nanowires, nanofibers or nanoparticles. Particles etc.
  • the quantum dots may have a core-shell structure, which includes a core material and a shell material; the core-shell structure includes a nanocrystal core and a shell surrounding the core.
  • the shell of the quantum dots may serve as a protective layer for preventing chemical modification of the core and maintaining semiconductor properties and/or as a charging layer for imparting electrophoretic properties to the quantum dots.
  • the shell may have a single-layer structure or a multi-layer structure.
  • the interface between core and shell may have a concentration gradient in which the concentration of elements in the shell decreases toward the center of the core.
  • the core of the quantum dot may be selected from the group consisting of Group II-VI compounds, Group III-V compounds, Group IV-VI compounds, Group IV elements, Group IV compounds, and combinations thereof.
  • the shells of quantum dots may include oxides of metallic or non-metallic materials, semiconductor compounds, or combinations thereof. Transition materials can be added between the core material and the shell material to achieve a gradual transition of the crystal lattice, effectively reducing the internal pressure caused by the quantum dot lattice defects, thereby further improving the luminous efficiency and stability of the quantum dots.
  • the Group II-VI compound may be selected from the group consisting of CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, and mixtures thereof Binary compounds of the group; AgInS, CuInS, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZ n and ternary compounds selected from the group consisting of mixtures thereof; and HgZnTeS, CdZnSeS, CdZnSeT
  • the III-V compound may be selected from the group consisting of GaN, GaP, GaAs, GaSb, AIN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and selected from the group consisting of Binary compounds of the group formed by mixtures; GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNAs, InNP, InNAs, InNSb, InPAs, InPSb and selected from mixtures thereof and ternary compounds of the group of GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and quaternary compounds selected from the group consisting of mixture
  • the III-V compound may be selected from the group consisting of: GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and mixtures thereof Binary compounds of the group; GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNAs, InNP, InNAs, InNSb, InPAs, InPSb, and selected from the group consisting of mixtures thereof Ternary compounds; and GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb and quaternary compounds selected from the group consisting of mixtures thereof.
  • the transition material may be a ternary alloy material.
  • the transition material may be a ternary alloy material.
  • the core material of the quantum dot includes CdSe and/or InP
  • the shell material includes ZnS.
  • core materials including InP as an example: surface defects of InP quantum dots form surface trap states.
  • ZnS By coating ZnS on the surface of InP quantum dots, forming a core-shell structure with InP as the core material and ZnS as the shell material can reduce the damage of the quantum dots. surface defects to optimize the luminous efficiency and stability of quantum dots.
  • the above is just an example of the nuclear material including InP. When the nuclear material includes CdSe, or the nuclear material includes CdSe and InP, the above rules are also complied with.
  • the quantum dot QD does not include cadmium (Cd).
  • the core material of the QD is InP and the shell material is a stack of ZnSe/ZnS; or for example, the core material of the QD is ZnTeSe and the shell material is ZnSe/ZnS.
  • Quantum dots may have dimensions less than 45 nanometers (nm), for example, 40 nm, 30 nm, 20 nm or less.
  • the size of the quantum dots is 4 nm to 20 nm, and may be, for example, 4 nm, 5 nm, 7 nm, 10 nm, 13 nm, 17 nm or 20 nm.
  • Quantum dots can adjust the color of emitted light according to their size, and therefore quantum dots can emit light of various colors, such as blue light, red light, green light, etc. Among them, the size of the red quantum dots and the size of the green quantum dots can be different.
  • the first color conversion material QD1 and the second color conversion material QD2 are not limited to the above-mentioned quantum dot materials.
  • the first color conversion material QD1 and the second color conversion material QD2 can also choose quantum dots, rare earth materials, fluorescent materials and organic dyes. One or more of the color conversion materials.
  • the pixel-level control of the OLED and the color enhancement characteristics of the quantum dots can be combined to achieve better display characteristics, while reducing power consumption and extending the life of the light-emitting substrate. service life.
  • the light-emitting layers located in different sub-pixels can be formed on the entire surface. For example, an open mask can be used to simultaneously form the light-emitting layers located in different sub-pixels, thereby simplifying the preparation process.
  • a blue OLED is used as the backlight source to excite the quantum dot materials in the red sub-pixel R and the green sub-pixel G to emit red and green light.
  • the transmission pattern TP located in the blue sub-pixel B scatters and transmits the incident light. , emits blue light with an expanded viewing angle, and mixes with red light and green light to form white light, thereby enabling screen display.
  • the above-mentioned light-emitting device further includes: a color filter layer 54 disposed on the light exit side of the color conversion layer 53 .
  • the color filter layer 54 includes: a first color filter pattern CF1, located in the red sub-pixel R, used to transmit red light incident on the first color filter pattern CF1.
  • the color filter layer 54 includes: a second color filter pattern CF2 located in the green sub-pixel G for transmitting green light incident on the second color filter pattern CF2.
  • the color filter layer 54 includes: a third color filter pattern CF3 located in the blue sub-pixel B for transmitting blue light incident on the third color filter pattern CF3 .
  • a plurality of switching elements T, a planar layer PLN, a first electrode 11 , a pixel definition layer PDL, a plurality of light-emitting layers 13 , and a second electrode 12 can be sequentially formed on the first base substrate 50 , thin film encapsulation layer 52, color conversion layer 53 and color filter layer 54 to obtain the light-emitting substrate shown in Figure 10.
  • the above-mentioned light-emitting device further includes: a second substrate substrate 55 disposed on the side of the color filter layer 54 away from the color conversion layer 53 ; and a filling layer FL disposed between the thin film encapsulation layer 52 and the color conversion layer 53 . Between the color conversion layers 53, the film encapsulation layer 52 and the color conversion layer 53 are bonded.
  • the thin film encapsulation layer 52 is located between the plurality of light emitting devices 51 and the color conversion layer 53 .
  • a plurality of switching elements T, a flat layer PLN, a first electrode 11, a pixel definition layer PDL, a plurality of light-emitting layers 13, a second electrode 12 and a thin film encapsulation layer may be formed sequentially on the first base substrate 50 52.
  • the present disclosure also provides a light-emitting device, which includes a light-emitting substrate as described in any embodiment; a driving integrated circuit configured to provide a driving signal to the light-emitting substrate; and a power supply circuit configured to provide a driving signal to the light-emitting substrate. power supply.
  • the light-emitting device has the advantages of the previous light-emitting device.
  • the light-emitting device may be a lighting device.
  • the light-emitting device serves as a light source to implement the lighting function.
  • the light-emitting device may be a backlight module in a liquid crystal light-emitting device, a lamp for internal or external lighting, or various signal lights.
  • the light-emitting device may be a display device.
  • the light-emitting device has the function of displaying an image (ie, a picture).
  • the light emitting device may include a display or a product containing a display.
  • the display can be a flat panel display (Flat Panel Display, FPD), a microdisplay, etc. If divided according to whether the user can see the scene on the back of the display, the display can be a transparent display or an opaque display. Depending on whether the display can be bent or rolled, the display can be a flexible display or a normal display (which can be called a rigid display).
  • products containing displays may include: computers, televisions, billboards, laser printers with display functions, telephones, mobile phones, electronic paper, personal digital assistants (Personal Digital Assistant, PDA), laptop computers, digital cameras , tablets, laptops, navigators, camcorders, viewfinders, vehicles, large-area walls, theater screens or stadium signage, etc.
  • PDA Personal Digital Assistant
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the present disclosure may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the element claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, third, etc. does not indicate any order. These words can be interpreted as names.

Abstract

发光器件、发光基板及发光装置,涉及显示技术领域。发光器件,包括:第一电极;第二电极,和第一电极相对设置;以及多个发光层,层叠设置在第一电极与第二电极之间,多个发光层包括至少一个第一发光层和至少一个第二发光层;其中,第一发光层包括第一发光材料,被配置为在电流或电压的驱动下发射第一光线;第二发光层包括第二发光材料,被配置为在电流或电压的驱动下发射第二光线;第一发光材料的发光效率大于第二发光材料的发光效率;以及第一光线对颜色转换材料进行光激发的亮度转化率小于第二光线对颜色转换材料进行光激发的亮度转化率。

Description

发光器件、发光基板及发光装置 技术领域
本公开涉及显示技术领域,特别是涉及一种发光器件、发光基板及发光装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)为主动发光器件,具有自发光、广视角、反应时间快、发光效率高、工作电压低及制程简单等优点,被誉为下一代“明星”发光器件。
概述
本公开提供了一种发光器件,包括:
第一电极;
第二电极,和所述第一电极相对设置;以及
多个发光层,层叠设置在所述第一电极与所述第二电极之间,所述多个发光层包括至少一个第一发光层和至少一个第二发光层;
其中,
所述第一发光层包括第一发光材料,被配置为在电流或电压的驱动下发射第一光线;
所述第二发光层包括第二发光材料,被配置为在电流或电压的驱动下发射第二光线;
所述第一发光材料的发光效率大于所述第二发光材料的发光效率;以及
所述第一光线对颜色转换材料进行光激发的亮度转化率小于所述第二光线对所述颜色转换材料进行光激发的亮度转化率。
在一种可选的实现方式中,所述第一发光材料的三线态能级低于所述第二发光材料的三线态能级。
在一种可选的实现方式中,所述第二发光材料的三线态能级与所述第一发光材料的三线态能级之差大于或等于0.1eV,且小于或等于0.3eV。
在一种可选的实现方式中,所述第一发光材料的分子质量大于所述第二发光材料的分子质量。
在一种可选的实现方式中,所述第一光线的峰值波长大于所述第二光线的峰值波长。
在一种可选的实现方式中,所述第一光线的峰值波长大于或等于460纳米,且小于或等于470纳米;所述第二光线的峰值波长大于或等于450纳米,且小于或等于460纳米。
在一种可选的实现方式中,所述第一光线和所述第二光线的半峰全宽均小于或等于20纳米。
在一种可选的实现方式中,所述第一电极为反射型电极,所述第二电极为透射型电极或半透射型电极;所述第二发光层位于所述第一发光层靠近所述第一电极的一侧。
在一种可选的实现方式中,所述多个发光层包括至少两个第一发光层,所述至少一个第二发光层位于所述至少两个第一发光层靠近所述第一电极的一侧。
在一种可选的实现方式中,所述发光器件还包括以下至少之一:层叠设置在所述第一电极与所述第二电极之间的空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电荷产生层、电子传输层和电子注入层。
在一种可选的实现方式中,所述第一电极为阳极,所述第二电极为阴极,所述发光器件还包括:
层叠设置在所述第一电极与所述多个发光层之间的空穴注入层、第一空穴传输层和第一电子阻挡层,所述空穴注入层靠近所述第一电极设置;
层叠设置在相邻的两个所述发光层之间的第一空穴阻挡层、第一电荷产生层、第二空穴传输层和第二电子阻挡层,所述第一空穴阻挡层靠近所述第一电极设置;
层叠设置在所述多个发光层与所述第二电极之间的第二空穴阻挡层、电子传输层和电子注入层,所述电子注入层靠近所述第二电极设置;以及
设置所述第二电极背离所述第一电极一侧的光取出层。
在一种可选的实现方式中,所述第一发光材料和所述第二发光材料均包括以下至少之一:有机电致发光材料和量子点。
本公开提供了一种发光基板,包括:
第一衬底基板;
设置在所述第一衬底基板上的多个开关元件;以及
多个和所述开关元件连接的如任一项所述的发光器件。
在一种可选的实现方式中,所述发光基板还包括:
薄膜封装层,设置在所述发光器件背离所述第一衬底基板的一侧,所述薄膜封装层在所述第一衬底基板上的正投影覆盖所述第一衬底基板。
在一种可选的实现方式中,所述发光基板还包括:
颜色转换层,设置在所述发光器件的出光侧,用于接收入射光线,并发射与所述入射光线颜色不同的光线,所述入射光线为所述发光器件发射的光线。
在一种可选的实现方式中,所述入射光线为蓝色光线,所述发光基板包括多个像素,各所述像素包括红色子像素、蓝色子像素和绿色子像素;所述颜色转换层包括以下至少之一:
第一颜色转换图案,位于所述红色子像素,用于在所述入射光线的激发下发射红色光线;
第二颜色转换图案,位于所述绿色子像素,用于在所述入射光线的激发下发射绿色光线;以及
透射图案,位于蓝色子像素,用于对所述入射光线进行透射。
在一种可选的实现方式中,所述颜色转换层包括颜色转换材料,所述颜色转换材料包括以下至少之一:量子点、稀土材料、荧光材料和有机染料。
在一种可选的实现方式中,所述发光基板还包括:
滤色层,设置在所述颜色转换层的出光侧,包括:
第一滤色图案,位于所述红色子像素,用于对入射至所述第一滤色图案的红色光线进行透射;
第二滤色图案,位于所述绿色子像素,用于对入射至所述第二滤色图案的绿色光线进行透射;以及
第三滤色图案,位于所述蓝色子像素,用于对入射至所述第三滤色图案的蓝色光线进行透射。
在一种可选的实现方式中,所述发光基板还包括:
第二衬底基板,设置在所述滤色层背离所述颜色转换层的一侧;以及
填充层,设置在薄膜封装层与所述颜色转换层之间,用于粘合所述薄膜封装层与所述颜色转换层;其中,所述薄膜封装层位于所述发光器件与所述颜色转换层之间。
本公开提供了一种发光装置,包括:
如任一项所述的发光基板;
驱动集成电路,被配置为向所述发光基板提供驱动信号;以及
供电电路,被配置为向所述发光基板提供电源。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。需要说明的是,附图中的比例仅作为示意并不代表实际比例。
图1示意性地示出了本公开提供的第一种发光器件的剖面结构示意图;
图2示意性地示出了本公开提供的第二种发光器件的剖面结构示意图;
图3示意性地示出了本公开提供的第三种发光器件的剖面结构示意图;
图4示意性地示出了本公开提供的第四种发光器件的剖面结构示意图;
图5示意性地示出了本公开提供的第五种发光器件的剖面结构示意图;
图6示意性地示出了本公开提供的第六种发光器件的剖面结构示意图;
图7示意性地示出了第一发光材料和第二发光材料的光谱测试结果;
图8示意性地示出了几种发光器件的性能测试结果;
图9示意性地示出了本公开提供的第一种发光基板的剖面结构示意图;
图10示意性地示出了本公开提供的第二种发光基板的剖面结构示意图;
图11示意性地示出了本公开提供的一种发光基板的平面结构示意图;
图12示意性地示出了一种第一颜色转换图案示例的剖面结构示意图;
图13示意性地示出了一种第二颜色转换图案示例的剖面结构示意图;
图14示意性地示出了一种透射图案示例的剖面结构示意图。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开提供了一种发光器件,参照图1至图6示意性地示出了本公开提供的发光器件的剖面结构示意图。如图1至图6所示,发光器件包括:第一电极11;第二电极12,和第一电极11相对设置;以及多个发光层13,层叠设置在第一电极11与第二电极12之间,多个发光层13包括至少一个第一发光层131和至少一个第二发光层132。
其中,第一发光层131包括第一发光材料,被配置为在电流或电压的驱动下发射第一光线;第二发光层132包括第二发光材料,被配置为在电流或电压的驱动下发射第二光线。
其中,第一发光材料的发光效率大于第二发光材料的发光效率,第一光线对颜色转换材料进行光激发的亮度转化率小于第二光线对颜色转换材料进行光激发的亮度转化率。
第一电极11和第二电极12被配置向多个发光层13提供电流或电压。
第一发光材料的发光效率,是指第一发光材料所发射光线(即第一光线)的光通量与所消耗的电功率之间的比值。第二发光材料的发光效率,是指第二发光材料所发射光线(即第二光线)的光通量与所消耗的电功率之间的比值。
第一光线对颜色转换材料进行光激发的亮度转化率,是指第一光线照射颜色转换材料,颜色转换材料出射的光线亮度与第一光线亮度的比值,即第一亮度转化率。
第二光线对颜色转换材料进行光激发的亮度转化率,是指第二光线照射颜色转换材料,颜色转换材料出射的光线亮度与第二光线亮度的比值,即第二亮度转化率。
当第一光线与第二光线对同一种颜色转换材料分别进行照射时,第一亮度转化率小于第二亮度转化率。
在本公开提供的发光器件中,多个发光层13中的至少两个发光层13采用不同的发光材料,如第一发光层131采用第一发光材料,第二发光层132采用第二发光材料。由于第一发光材料具有较高的发光效率,第二发光材料具有较高的亮度转化率,因此,当采用本公开提供的发光器件照射颜色转换材料时,既能确保发光器件本身具有较高的发光效率,又能够有效地提高发光器件对颜色转换材料进行光激发的亮度转化率,解决了相关技术中的发光器件高发光效率与对颜色转换材料进行光激发的高亮度转化率之间的矛盾。
与发光器件中的多个发光层13均采用同一种发光材料(如第一发光材料或第二发光材料)的方案相比,采用本公开实施例中提供的发光器件,可以提高颜色转换材料的白光效率。
其中,发光器件为电驱动发光,颜色转换材料为光驱动发光。在发光器件与颜色转换材料的组合器件中,颜色转换材料在发光器件发射光线的激发下发光。这种情况下,颜色转换材料的白光效率,是指颜色转换材料发射的白色光线(例如包括红色光线、蓝色光线和绿色光线)的亮度与驱动发光器件发光的电流密度之间的比值。
在具体实现中,多个发光层可以包括层叠设置的一个第一发光层131和一个第二发光层132,如图1所示出的;或者包括层叠设置的两个第一发光层131和一个第二发光层132,如图2所示出的;或者包括层叠设置的三个第一发光层131和一个第二发光层132,如图3所示出的;或者包括层叠设置的两个第一发光层131和两个第二发光层132,如图4所示出的;或者包括层叠设置的四个第一发光层131和一个第二发光层132,如图5所示出的;或者包括层叠设置的三个第一发光层131和两个第二发光层132,如图6所示出的;等等。
多个发光层所包含的第一发光层131的数量、第二发光层132的数量,以及多个发光层之间的堆叠顺序可以根据实际需求设计,本公开对此不作限定。
可选地,第一发光材料的三线态能级低于第二发光材料的三线态能级。这样,可以避免三线态能量在不同的发光层13之间相互传递导致激子发生淬灭,可以提高第一发光材料和第二发光材料的三线态激子利用率。
示例性地,第二发光材料的三线态能级与第一发光材料的三线态能级之差大于或等于0.1eV,且小于或等于0.3eV。进一步地,第二发光材料的三线态能级与第一发光材料的三线态能级之差可以为0.2eV。
可选地,第一发光材料的分子共轭性更大,第二发光材料的分子共轭性较小。在具体实现中,分子共轭性可以通过分子质量来表征,分子共轭性大的材料通常具有更大的分子质量,分子共轭性小的材料通常具有较小的分子质量。
可选地,第一发光材料的分子质量大于第二发光材料的分子质量。
可选地,第一发光材料发射的第一光线的峰值波长大于第二发光材料发射的第二光线的峰值波长。
可选地,第一光线的峰值波长大于或等于460纳米,且小于或等于470纳米;第二光线的峰值波长大于或等于450纳米,且小于或等于460纳米。
可选地,第一光线和第二光线的半峰全宽(full width at half maxima,FWHM)均小于或等于20纳米,以提高第一光线和第二光线的色纯度。
可选地,第一电极11为反射型电极,第二电极12为透射型电极或半透射型电极。相应地,如图1至图6所示,第二发光层132位于第一发光层131靠近第一电极11的一侧。
由于第一电极11为反射型电极,第二电极12为透射型电极或半透射型电极,这样,多个发光层13位于一个反射膜(即反射型电极:第一电极11)和一个透射膜(即透射型电极或半透射型电极:第二电极12)构成的谐振腔内,在反射膜与透射膜之间形成了微腔结构。
由于第二发光层132的发光效率低于第一发光层131的发光效率,通过将第二发光层132设置在多个发光层13中靠近第一电极11的位置,使得在微腔结构中,发光效率较低的第二发光层132距离反射膜较近,可以在对发 光器件整体的发光效率影响较小的情况下,提高发光器件对颜色转换材料进行光激发的亮度转化率,进一步优化白光效率。
由于第一发光层131的发光效率较高,通过将第一发光层131设置在多个发光层13中远离第一电极11的位置,使得在微腔结构中,发光效率较高的第一发光层131距离反射膜较远,因此有助于提高发光器件整体的发光效率。
在一些示意性的实施方式中,多个发光层13可以包括至少两个第一发光层131和至少一个第二发光层132,这种情况下,至少一个第二发光层132位于至少两个第一发光层131靠近第一电极11的一侧。
示例性地,如图1所示,多个发光层13包括一个第一发光层131和一个第二发光层132,第二发光层132位于第一发光层131靠近第一电极11的一侧。即第一电极11、第二发光层132、第一发光层131和第二电极12依次层叠设置。
如图2至图6所示,当多个发光层13包括多个第一发光层131,以及一个或多个第二发光层132时,该一个或多个第二发光层132位于多个第一发光层131靠近第一电极11的一侧。
示例性地,如图2所示,多个发光层13包括两个第一发光层131和一个第二发光层132,第二发光层132位于两个第一发光层131靠近第一电极11的一侧。即第一电极11、第二发光层132、两个第一发光层131和第二电极12依次层叠设置。
示例性地,如图3所示,多个发光层13包括三个第一发光层131和一个第二发光层132,第二发光层132位于三个第一发光层131靠近第一电极11的一侧。即第一电极11、第二发光层132、三个第一发光层131和第二电极12依次层叠设置。
示例性地,如图4所示,多个发光层13包括两个第一发光层131和两个第二发光层132,两个第二发光层132位于两个第一发光层131靠近第一电极11的一侧。即第一电极11、两个第二发光层132、两个第一发光层131和第二电极12依次层叠设置。
示例性地,如图5所示,多个发光层13包括四个第一发光层131和一个第二发光层132,第二发光层132位于四个第一发光层131靠近第一电极11 的一侧。即第一电极11、第二发光层132、四个第一发光层131和第二电极12依次层叠设置。
示例性地,如图6所示,多个发光层13包括三个第一发光层131和两个第二发光层132,两个第二发光层132位于三个第一发光层131靠近第一电极11的一侧。即第一电极11、两个第二发光层132、三个第一发光层131和第二电极12依次层叠设置。
在具体实现中,第二发光层132与第一发光层131的堆叠结构并不仅限于上述的几种,例如:第二发光层132与第一发光层131还可以交替设置在第一电极11与第二电极12之间,第二发光层132位于第一发光层131靠近第一电极11的一侧;第二发光层132还可以位于第一发光层131靠近第二电极11的一侧,等等,本公开对此不作限定。
可选地,如图1或图2所示,发光器件还包括:层叠设置在第一电极11与第二电极12之间的空穴注入层14、空穴传输层15、电子阻挡层16、空穴阻挡层17、电荷产生层18、电子传输层19和电子注入层110等功能膜层中的一个或多个。
上述功能膜层中的一个或多个可以层叠设置在第一电极11与多个发光层13之间,还可以层叠设置在相邻的两个发光层13之间,还可以层叠设置在多个发光层13与第二电极12之间,具体可以根据实际需求设置。
示例性地,任意相邻的两个发光层13之间可以设置有电荷产生层18,通过电荷产生层18可以将多个发光层13串联起来,形成串联式发光器件。
在串联式发光器件中,电荷产生层18可以将载流子(如空穴或电子)注入邻接的发光层13中。对于某一发光层13而言,其一部分载流子由第一电极11与第二电极12提供,另一部分载流子在电荷产生层18中生成。因此,通过设置电荷产生层18,可以提高发光器件的寿命,同时降低功耗。
可选地,第一电极11为阳极,第二电极12为阴极。
可选地,如图1或图2所示,发光器件还包括:层叠设置在第一电极11与多个发光层13之间的空穴注入层14、第一空穴传输层151和第一电子阻挡层161,空穴注入层14靠近第一电极设置。
可选地,如图1或图2所示,发光器件还包括:层叠设置在相邻的两个发光层之间的第一空穴阻挡层171、第一电荷产生层181、第二空穴传输层 152和第二电子阻挡层162,第一空穴阻挡层171靠近第一电极11设置。其中,第一电荷产生层181包括N型电荷产生层和P型电荷产生层,N型电荷产生层靠近第一电极11设置。
可选地,如图1或图2所示,发光器件还包括:层叠设置在多个发光层与第二电极之间的第二空穴阻挡层173、电子传输层19和电子注入层110,电子注入层110靠近第二电极设置。
可选地,如图1或图2所示,发光器件还包括:设置第二电极12背离第一电极11一侧的光取出层。
图1所示的发光器件包括两个发光层13,为双叠层发光器件。图2所示的发光器件包括三个发光层13,为三叠层发光器件。图3和图4所示的发光器件包括四个发光层13,为四叠层发光器件。图5和图6所示的发光器件包括五个发光层13,为五叠层发光器件。与单层发光器件相比,多叠层发光器件可以有效地提升器件发光效率。
参照图7示意性地示出了第一发光材料和第二发光材料的光谱测试结果。如图7所示,第一发光材料发射的第一光线的峰值波长为460纳米,第一光线半峰全宽为14.5纳米;第二发光材料发射的第二光线的峰值波长为456纳米,第二光线的半峰全宽为13.3纳米。
需要说明的是,图7为采用第一发光材料的第一发光层131和采用第二发光材料的第二发光层132在各自微腔中发生干涉加强最高时的光谱测试数据。
为了对比发光器件的性能,发明人对三种发光器件(包括发光器件A、发光器件B和发光器件C)的性能分别进行了测试,测试结果如图8所示。其中,发光器件A、发光器件B和发光器件C均为三叠层发光器件。发光器件A和B为对比例,发光器件C为实验例。发光器件A中的三个发光层13均为第一发光层131,发光器件B中的三个发光层13均为第二发光层132,发光器件C的结构如图2所示。
由图8中的峰值波长列可以看出,发光器件A发射光线的峰值波长为460纳米;发光器件B发射光线的峰值波长为456纳米;发光器件C发射光线的峰值波长为459纳米。
由图8的发光效率列可以看出,在相同电流密度下,以发光器件A的发光效率为基数进行归一化,发光器件A的发光效率为100%,发光器件B的发光效率为87%,发光器件C的发光效率为97%。
采用发光器件A、发光器件B和发光器件C分别对颜色转换材料如量子点膜层进行光激发,测得的结果如图8的亮度转化率列所示。其中,量子点膜层包括绿色量子点GQD和红色量子点RQD。
在图8中的亮度转化率列,以发光器件A发射的光线对绿色量子点GQD进行光激发的亮度转化率为基数进行归一化,发光器件A发射的光线对绿色量子点GQD和红色量子点RQD进行光激发的亮度转化率均为100%。
发光器件B发射的光线对绿色量子点GQD进行光激发的亮度转化率为129%,发光器件B发射的光线对红色量子点RQD进行光激发的亮度转化率为126%。
发光器件C发射的光线对绿色量子点GQD进行光激发的亮度转化率为120%,发光器件C发射的光线对红色量子点RQD进行光激发的亮度转化率为115%。
由图8中的白光效率列可以看出,以发光器件A的白光效率为基数进行归一化,发光器件A的白光效率为100%,发光器件B的白光效率为110%,发光器件C的白光效率为114%。
由于发光器件C中的发光层由第一发光层131和第二发光层132构成,可以同时提升发光器件的发光效率和亮度转化率,因此,发光器件C的白光效率最优。
另外,由于第二发光层132靠近第一电极11设置(如图2所示),因此可以在对发光器件的整体发光效率影响较小的情况下,提高发光器件对颜色转换材料进行光激发的亮度转化率,实现白光效率最优。
可选地,第一发光材料和第二发光材料均包括以下至少之一:有机电致发光材料和量子点。
示例性地,第一发光材料和第二发光材料均为有机电致发光材料。相应地,发光器件为有机发光二极管(Organic Light-Emitting Diode,OLED)。
示例性地,第一发光材料和第二发光材料均为量子点。相应地,发光器件为量子点发光二极管(Quantum Dot Light-Emitting Diode,QLED)。
需要说明的是,在实际工艺中,由于工艺条件的限制或其他因素,上述各特征中的相同并不能完全相同,可能会有一些偏差,因此上述各特征之间的相同关系只要大致满足上述条件即可,均属于本公开的保护范围。例如,上述相同可以是在误差允许范围之内所允许的相同。
本公开还提供了一种发光基板,如图9或图10所示,该发光基板包括:第一衬底基板50,设置在第一衬底基板50上的多个开关元件T,以及多个和开关元件T连接的如上述任一实施例提供的发光器件51。
本领域技术人员可以理解,该发光基板具有前面发光器件的优点。
可选地,如图9或图10所示,上述发光基板还可以包括:薄膜封装层52,设置在多个发光器件51背离第一衬底基板50的一侧。
可选地,薄膜封装层52在第一衬底基板50上的正投影覆盖第一衬底基板50。
可选地,如图9或图10所示,薄膜封装层52可以包括层叠设置的第一无机层ENL1、有机层ENL2和第二无机层ENL3。
可选地,如图9或图10所示,上述发光基板还可以包括:颜色转换层53,设置在发光器件51的出光侧,用于接收入射光线,并发射与入射光线颜色不同的光线,入射光线为发光器件51发射的光线。
当发光基板包括上述薄膜封装层52和颜色转换层53时,如图9或图10所示,颜色转换层53位于薄膜封装层52背离第一衬底基板50的一侧。
可选地,如图11所示,发光基板包括有效发光区DA以及位于有效发光区至少一侧的边框区NDA,有效发光区DA可以包括多个像素,各像素包括红色子像素R、蓝色子像素B和绿色子像素G。图9所示剖面图为位于有效发光区DA内的一个像素的剖面结构示意图。
如图9或图10所示,多个发光器件51可以包括位于红色子像素R的第一发光器件LD1,位于绿色子像素G的第二发光器件LD2以及位于蓝色子像素B的第三发光器件LD3。子像素与发光器件51可以一一对应设置。
可选地,入射光线为蓝色光线,即发光器件51发射的光线为蓝色光线。
如图9或图10所示,颜色转换层53可以包括:第一颜色转换图案CCP1,位于红色子像素R,用于在入射光线的激发下发射红色光线。
可选地,第一颜色转换图案CCP1在第一衬底基板50上的正投影覆盖对应位置的发光器件51的发光区域(如图9或图10所示的开口区域)在第一衬底基板50上的正投影。
如图9或图10所示,颜色转换层53还可以包括:第二颜色转换图案CCP2,位于绿色子像素G,用于在入射光线的激发下发射绿色光线。
可选地,第二颜色转换图案CCP2在第一衬底基板50上的正投影覆盖对应位置的发光器件51的发光区域(如图9或图10所示的开口区域)在第一衬底基板50上的正投影。
如图9或图10所示,颜色转换层53还可以包括:透射图案TP,位于蓝色子像素B,用于对入射光线进行透射。
可选地,透射图案TP在第一衬底基板50上的正投影覆盖对应位置的发光器件的发光区域(如图9或图10所示的开口区域)在第一衬底基板50上的正投影。
示例性地,如图9或图10所示,颜色转换层53包括分隔壁PW,以及位于分隔壁PW限定的多个开口内的多个颜色转换图案。多个颜色转换图案至少包括第一颜色转换图案CCP1、第二颜色转换图案CCP2和透射图案TP。
第一颜色转换图案CCP1可以通过将入射光的峰值波长转换或移动到另一特定峰值波长来发光。第一颜色转换图案CCP1可以将从第一发光器件LD1提供的发射光L转换为具有在大约610nm至大约650nm的范围内的峰值波长的红光。参照图12,第一颜色转换图案CCP1可以包括第一基础树脂R1和分散在第一基础树脂R1中的第一颜色转换材料QD1,并且可以包括分散在第一基础树脂R1中的第一散射粒子SP1。
第二颜色转换图案CCP2可以通过将入射光的峰值波长转换或移动到另一特定峰值波长来发光。第二颜色转换图案CCP2可以将从第二发光元件LD2提供的发射光L转换为具有在大约510nm至大约550nm的范围内的峰值波长的绿光。参照图13,第二颜色转换图案CCP2可以包括第二基础树脂R2和分散在第二基础树脂R2中的第二颜色转换材料QD2,并且可以包括分散在第二基础树脂R2中的第二散射粒子SP2。
透射图案TP可以对入射光进行透射,例如对入射光峰值波长具有超过90%的透射率。透射图案TP可以将从第三发光元件LD3提供的发射光L进 行透射。参照图14,透射图案TP可以包括第三基础树脂R3和分散在第三基础树脂R3中的第三散射粒子SP3。第三散射粒子SP3的设置可以扩大入射光线的视角范围,提高红色子像素R、蓝色子像素B和绿色子像素G之间的视角均一性。
其中,第一颜色转换材料QD1和第二颜色转换材料QD2可以包括半导体纳米晶体材料,可以在电子从导带跃迁到价带的情况下发射特定颜色的光。量子点可以具有任何形状,只要该形状在本领域中是通常使用的,并且具体地可以是球形、锥形、多臂或立方体的纳米颗粒,或者可以是纳米管、纳米线、纳米纤维或纳米颗粒等。
在一些实施例中,量子点可以具有核壳结构,核壳结构包括核材料和壳材料;该核壳结构包括纳米晶体的核和围绕核的壳。量子点的壳可以作为用于防止核的化学修饰和保持半导体特性的保护层和/或用于向量子点施加电泳特性的充电层。壳可以具有单层结构或多层结构。核与壳之间的界面可以具有壳中元素的浓度朝向核的中心减小的浓度梯度。量子点的核可以选自由下述组成的组:II-VI族化合物、III-V族化合物、IV-VI族化合物、IV族元素、IV族化合物及其组合。量子点的壳可以包括金属或非金属材料的氧化物、半导体化合物、或其组合。在核材料与壳材料之间可以加入过渡材料,实现晶格的逐步过渡,有效降低量子点晶格缺陷造成的内部压力,从而进一步提升量子点的发光效率和稳定性。
在一些实施例中,所述II-VI族化合物可以选自由下述组成的组:CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS以及选自由它们的混合物形成的组的二元化合物;AgInS、CuInS、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS以及选自由它们的混合物形成的组的三元化合物;以及HgZnTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe以及选自由它们的混合物形成的组的四元化合物。
在一些实施例中,所述III-V族化合物可以选自由下述组成的组:GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb以及 选自由它们的混合物形成的组的二元化合物;GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InGaP、InNAs、InNP、InNAs、InNSb、InPAs、InPSb以及选自由它们的混合物形成的组的三元化合物;以及GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb以及选自由它们的混合物形成的组的四元化合物。
在一些实施例中,III-V族化合物可以选自由下述组成的组:GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb以及选自由它们的混合物形成的组的二元化合物;GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InGaP、InNAs、InNP、InNAs、InNSb、InPAs、InPSb以及选自由它们的混合物形成的组的三元化合物;以及GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb以及选自由它们的混合物形成的组的四元化合物。
在一些实施例中,过渡材料可以为三元合金材料。通过三元合金材料控制量子点的光学性能,能够形成体积一致但发光频率不同的量子点,提升显示装置的色域覆盖度。
在一些实施例中,量子点的核材料包括为CdSe和/或InP,壳材料为包括ZnS。以核材料包括InP为例:InP量子点的表面缺陷形成表面陷阱态,通过在InP量子点表面包附ZnS,形成以InP为核材料且以ZnS为壳材料的核壳结构可以降低量子点的表面缺陷,优化量子点的发光效率和稳定性。以上只是以核材料包括InP进行举例说明,核材料包括CdSe,或者核材料包括CdSe和InP的情况下,同样符合上述规则。
在一些实施例中,量子点QD不包括镉(Cd),例如QD的核材料为InP,壳材料为ZnSe/ZnS的叠层;或例如QD的核材料为ZnTeSe,壳材料为ZnSe/ZnS。
量子点可以具有小于45纳米(nm)的尺寸,例如,40nm、30nm、20nm或更小。在一些实施例中,量子点的尺寸为4nm~20nm,示例性地,可以是4nm、5nm、7nm、10nm、13nm、17nm或20nm。量子点可以根据其尺寸调 节发射光的颜色,并且因此量子点可以发射各种颜色的光,例如蓝光、红光、绿光等。其中,红色量子点的尺寸和绿色量子点的尺寸可以不同。
其中,第一颜色转换材料QD1和第二颜色转换材料QD2不仅限于上述的量子点材料,第一颜色转换材料QD1和第二颜色转换材料QD2还可以选用量子点、稀土材料、荧光材料和有机染料等颜色转换材料中的一种或多种。
当发光器件为OLED,颜色转换层53选用量子点材料时,可以实现OLED的像素级控制以及量子点的颜色增强特性的结合,获得更好的显示特性,同时可以降低功耗,延长发光基板的使用寿命。另外,在制备多个发光器件51的过程中,位于不同子像素的发光层可以整面形成,例如可以采用开放式掩膜版,同步形成位于不同子像素的发光层,从而可以简化制备流程。
采用蓝色OLED作为背光源,激发红色子像素R和绿色子像素G中的量子点材料,发出红光和绿光,同时位于蓝色子像素B中的透射图案TP对入射光线进行散射和透射,发出视角扩大的蓝光,与红光和绿光混色形成白光,从而可以实现画面显示。
可选地,如图9或图10所示,上述发光器件还包括:滤色层54,设置在颜色转换层53的出光侧。
可选地,如图9或图10所示,滤色层54包括:第一滤色图案CF1,位于红色子像素R,用于对入射至第一滤色图案CF1的红色光线进行透射。
可选地,如图9或图10所示,滤色层54包括:第二滤色图案CF2,位于绿色子像素G,用于对入射至第二滤色图案CF2的绿色光线进行透射。
可选地,如图9或图10所示,滤色层54包括:第三滤色图案CF3,位于蓝色子像素B,用于对入射至第三滤色图案CF3的蓝色光线进行透射。
在具体实现中,参照图10,可以在第一衬底基板50上依次形成多个开关元件T、平坦层PLN、第一电极11、像素定义层PDL、多个发光层13、第二电极12、薄膜封装层52、颜色转换层53和滤色层54,得到图10所示的发光基板。
可选地,如图9所示,上述发光器件还包括:第二衬底基板55,设置在滤色层54背离颜色转换层53的一侧;以及填充层FL,设置在薄膜封装层52与颜色转换层53之间,用于粘合薄膜封装层52与颜色转换层53。
其中,薄膜封装层52位于多个发光器件51与颜色转换层53之间。
在具体实现中,可以在第一衬底基板50上依次形成多个开关元件T、平坦层PLN、第一电极11、像素定义层PDL、多个发光层13、第二电极12以及薄膜封装层52,得到图9所示发光基板中的基板LS;在第二衬底基板55上依次形成滤色层54和颜色转换层53,得到图9所示所示发光基板中的基板CS;之后可以采用填充层FL将基板LS和基板CS粘合起来,填充层FL位于薄膜封装层52与颜色转换层53之间,得到图9所示的发光基板。
本公开还提供了一种发光装置,该发光装置包括如任一实施例所述的发光基板;驱动集成电路,被配置为向发光基板提供驱动信号;以及供电电路,被配置为向发光基板提供电源。
本领域技术人员可以理解,该发光装置具有前面发光器件的优点。
在一些实施例中,该发光装置可以为照明装置,此时,发光装置作为光源,实现照明功能。例如,发光装置可以是液晶发光装置中的背光模组,用于内部或外部照明的灯,或各种信号灯等。
在另一些实施例中,该发光装置可以为显示装置,此时,发光装置具有显示图像(即画面)的功能。发光装置可以包括显示器或包含显示器的产品。其中,显示器可以是平板显示器(Flat Panel Display,FPD),微型显示器等。若按照用户能否看到显示器背面的场景划分,显示器可以是透明显示器或不透明显示器。若按照显示器能否弯折或卷曲,显示器可以是柔性显示器或普通显示器(可以称为刚性显示器)。示例性地,包含显示器的产品可以包括:计算机、电视、广告牌、具有显示功能的激光打印机、电话、手机、电子纸、个人数字助理(Personal Digital Assistant,PDA)、膝上型计算机、数码相机、平板电脑、笔记本电脑、导航仪、便携式摄录机、取景器、车辆、大面积墙壁、剧院的屏幕或体育场标牌等。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术 语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本公开所提供的一种发光器件、发光基板及发光装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若 干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (20)

  1. 一种发光器件,包括:
    第一电极;
    第二电极,和所述第一电极相对设置;以及
    多个发光层,层叠设置在所述第一电极与所述第二电极之间,所述多个发光层包括至少一个第一发光层和至少一个第二发光层;
    其中,
    所述第一发光层包括第一发光材料,被配置为在电流或电压的驱动下发射第一光线;
    所述第二发光层包括第二发光材料,被配置为在电流或电压的驱动下发射第二光线;
    所述第一发光材料的发光效率大于所述第二发光材料的发光效率;以及
    所述第一光线对颜色转换材料进行光激发的亮度转化率小于所述第二光线对所述颜色转换材料进行光激发的亮度转化率。
  2. 根据权利要求1所述的发光器件,其中,所述第一发光材料的三线态能级低于所述第二发光材料的三线态能级。
  3. 根据权利要求2所述的发光器件,其中,所述第二发光材料的三线态能级与所述第一发光材料的三线态能级之差大于或等于0.1eV,且小于或等于0.3eV。
  4. 根据权利要求1所述的发光器件,其中,所述第一发光材料的分子质量大于所述第二发光材料的分子质量。
  5. 根据权利要求1所述的发光器件,其中,所述第一光线的峰值波长大于所述第二光线的峰值波长。
  6. 根据权利要求5所述的发光器件,其中,所述第一光线的峰值波长大于或等于460纳米,且小于或等于470纳米;所述第二光线的峰值波长大于或等于450纳米,且小于或等于460纳米。
  7. 根据权利要求1所述的发光器件,其中,所述第一光线和所述第二光线的半峰全宽均小于或等于20纳米。
  8. 根据权利要求1至7任一项所述的发光器件,其中,所述第一电极为反射型电极,所述第二电极为透射型电极或半透射型电极;所述第二发光层位于所述第一发光层靠近所述第一电极的一侧。
  9. 根据权利要求8所述的发光器件,其中,所述多个发光层包括至少两个第一发光层,所述至少一个第二发光层位于所述至少两个第一发光层靠近所述第一电极的一侧。
  10. 根据权利要求1至9任一项所述的发光器件,其中,所述发光器件还包括以下至少之一:层叠设置在所述第一电极与所述第二电极之间的空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电荷产生层、电子传输层和电子注入层。
  11. 根据权利要求1至10任一项所述的发光器件,其中,所述第一电极为阳极,所述第二电极为阴极,所述发光器件还包括:
    层叠设置在所述第一电极与所述多个发光层之间的空穴注入层、第一空穴传输层和第一电子阻挡层,所述空穴注入层靠近所述第一电极设置;
    层叠设置在相邻的两个所述发光层之间的第一空穴阻挡层、第一电荷产生层、第二空穴传输层和第二电子阻挡层,所述第一空穴阻挡层靠近所述第一电极设置;
    层叠设置在所述多个发光层与所述第二电极之间的第二空穴阻挡层、电子传输层和电子注入层,所述电子注入层靠近所述第二电极设置;以及
    设置所述第二电极背离所述第一电极一侧的光取出层。
  12. 根据权利要求1至11任一项所述的发光器件,其中,所述第一发光材料和所述第二发光材料均包括以下至少之一:有机电致发光材料和量子点。
  13. 一种发光基板,包括:
    第一衬底基板;
    设置在所述第一衬底基板上的多个开关元件;以及
    多个和所述开关元件连接的如权利要求1至12任一项所述的发光器件。
  14. 根据权利要求13所述的发光基板,还包括:
    薄膜封装层,设置在所述发光器件背离所述第一衬底基板的一侧,所述薄膜封装层在所述第一衬底基板上的正投影覆盖所述第一衬底基板。
  15. 根据权利要求13或14所述的发光基板,还包括:
    颜色转换层,设置在所述发光器件的出光侧,用于接收入射光线,并发射与所述入射光线颜色不同的光线,所述入射光线为所述发光器件发射的光线。
  16. 根据权利要求15所述的发光基板,其中,所述入射光线为蓝色光线,所述发光基板包括多个像素,各所述像素包括红色子像素、蓝色子像素和绿色子像素;所述颜色转换层包括以下至少之一:
    第一颜色转换图案,位于所述红色子像素,用于在所述入射光线的激发下发射红色光线;
    第二颜色转换图案,位于所述绿色子像素,用于在所述入射光线的激发下发射绿色光线;以及
    透射图案,位于蓝色子像素,用于对所述入射光线进行透射。
  17. 根据权利要求15或16所述的发光基板,其中,所述颜色转换层包括颜色转换材料,所述颜色转换材料包括以下至少之一:量子点、稀土材料、荧光材料和有机染料。
  18. 根据权利要求16或17所述的发光基板,还包括:
    滤色层,设置在所述颜色转换层的出光侧,包括:
    第一滤色图案,位于所述红色子像素,用于对入射至所述第一滤色图案的红色光线进行透射;
    第二滤色图案,位于所述绿色子像素,用于对入射至所述第二滤色图案的绿色光线进行透射;以及
    第三滤色图案,位于所述蓝色子像素,用于对入射至所述第三滤色图案的蓝色光线进行透射。
  19. 根据权利要求18所述的发光基板,还包括:
    第二衬底基板,设置在所述滤色层背离所述颜色转换层的一侧;以及
    填充层,设置在薄膜封装层与所述颜色转换层之间,用于粘合所述薄膜封装层与所述颜色转换层;其中,所述薄膜封装层位于所述发光器件与所述颜色转换层之间。
  20. 一种发光装置,包括:
    如权利要求13至19任一项所述的发光基板;
    驱动集成电路,被配置为向所述发光基板提供驱动信号;以及
    供电电路,被配置为向所述发光基板提供电源。
PCT/CN2022/099859 2022-06-20 2022-06-20 发光器件、发光基板及发光装置 WO2023245342A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/099859 WO2023245342A1 (zh) 2022-06-20 2022-06-20 发光器件、发光基板及发光装置
CN202280001802.7A CN117616899A (zh) 2022-06-20 2022-06-20 发光器件、发光基板及发光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099859 WO2023245342A1 (zh) 2022-06-20 2022-06-20 发光器件、发光基板及发光装置

Publications (1)

Publication Number Publication Date
WO2023245342A1 true WO2023245342A1 (zh) 2023-12-28

Family

ID=89378985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099859 WO2023245342A1 (zh) 2022-06-20 2022-06-20 发光器件、发光基板及发光装置

Country Status (2)

Country Link
CN (1) CN117616899A (zh)
WO (1) WO2023245342A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284394B1 (en) * 1999-01-27 2001-09-04 Tdk Corporation Organic electroluminescent device
CN104282839A (zh) * 2014-10-27 2015-01-14 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
US9368696B1 (en) * 2015-05-18 2016-06-14 Sanken Electric Co., Ltd. Light emitting device
CN110911447A (zh) * 2018-09-17 2020-03-24 三星显示有限公司 显示装置
CN111540766A (zh) * 2019-02-07 2020-08-14 三星显示有限公司 有机发光显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284394B1 (en) * 1999-01-27 2001-09-04 Tdk Corporation Organic electroluminescent device
CN104282839A (zh) * 2014-10-27 2015-01-14 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
US9368696B1 (en) * 2015-05-18 2016-06-14 Sanken Electric Co., Ltd. Light emitting device
CN110911447A (zh) * 2018-09-17 2020-03-24 三星显示有限公司 显示装置
CN111540766A (zh) * 2019-02-07 2020-08-14 三星显示有限公司 有机发光显示器

Also Published As

Publication number Publication date
CN117616899A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
US10359663B2 (en) High-luminance display apparatus
US11194083B2 (en) Color filter including quantum dots and metal nanoparticles and display apparatus including the same
US11355558B2 (en) Display device with light control layer and manufacturing method thereof
EP3716336A1 (en) Display device and manufacturing method thereof
US11943987B2 (en) Color conversion substrate
US11968874B2 (en) Organic light-emitting display device including quantum dots
US10600940B2 (en) Display device
US20220238606A1 (en) Display apparatus and method of manufacturing the same
US11871598B2 (en) Display device and method of manufacturing thereof
CN117135947A (zh) 用于制造发光器件的方法
WO2023245342A1 (zh) 发光器件、发光基板及发光装置
WO2024000304A1 (zh) 发光器件、发光基板及发光装置
US11610869B2 (en) Display device and tiled display device having the same
US20210328172A1 (en) Display apparatus and method of manufacturing the same
WO2024000305A1 (zh) 发光面板及其制备方法、发光装置
US20230215991A1 (en) Display Device
CN215496785U (zh) 显示面板及显示装置
US20240065095A1 (en) Composition for electron transporting layer and method for manufacturing display device including the same
WO2023123251A1 (zh) 显示面板和彩膜基板
US11825721B2 (en) Display panel having an emitter disposed on a light conversion pattern
US20230138267A1 (en) Display device and method for manufacturing same
US20230329064A1 (en) Display device
US20210399177A1 (en) Display device
US20210143223A1 (en) Display panel
KR20230111636A (ko) 표시장치