WO2022261882A1 - 实现三维显示的显示器、制备方法及三维显示方法 - Google Patents

实现三维显示的显示器、制备方法及三维显示方法 Download PDF

Info

Publication number
WO2022261882A1
WO2022261882A1 PCT/CN2021/100504 CN2021100504W WO2022261882A1 WO 2022261882 A1 WO2022261882 A1 WO 2022261882A1 CN 2021100504 W CN2021100504 W CN 2021100504W WO 2022261882 A1 WO2022261882 A1 WO 2022261882A1
Authority
WO
WIPO (PCT)
Prior art keywords
layered light
electrode
display
layer
emitting structure
Prior art date
Application number
PCT/CN2021/100504
Other languages
English (en)
French (fr)
Inventor
樊逢佳
王邢峙
申怀彬
杜江峰
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Priority to PCT/CN2021/100504 priority Critical patent/WO2022261882A1/zh
Publication of WO2022261882A1 publication Critical patent/WO2022261882A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present disclosure relates to the field of optical display, in particular to a display for realizing three-dimensional display, a preparation method and a three-dimensional display method.
  • Three-dimensional display is a major research core in the field of display. How to present a three-dimensional image that is closest to the actual scene and obtain the most complete visual information of things is a major concern of future display technology. Obtaining real 3D images is of great significance to entertainment, education, aviation, military and other fields. Correspondingly, as a carrier for realizing 3D display, 3D display screen has broad application prospects and market demand, and plays a key role in the development of display technology.
  • the research on 3D display technology has a history of more than one hundred years.
  • the initial three-dimensional display technology relies on the corresponding head-mounted equipment, which has many inconveniences in practical application. Head-mounted devices are gradually being abandoned with the widespread use of mobile devices.
  • the principle is to use chromatic aberration, polarization and aperture.
  • the mainstream naked-eye 3D display mainly uses binocular parallax to enable the left eye and right eye to obtain different information at the same point, causing brain illusions, thereby simulating a three-dimensional image.
  • a display for three-dimensional display including: a laser backplane, and two or more layered light-emitting structures stacked on the laser backplane along a layer normal direction.
  • the two or more layered light emitting structures are transparent structures.
  • Each layered light emitting structure of the two or more layered light emitting structures is insulated and connected.
  • each layered light-emitting structure sequentially includes a first electrode, a first transition layer, a photoluminescence material layer, a second transition layer and a second electrode.
  • Each layered light-emitting structure is connected to a voltage through the first electrode and the second electrode.
  • a method for manufacturing a display as described above including: making a layered light-emitting structure, including sequentially forming a first electrode, a first transition layer, a photoluminescent material layer, a second transition layer and second electrode.
  • the layered light-emitting structure is a transparent structure.
  • Two or more layered light emitting structures are stacked on the laser backplane along the layer normal direction, and two adjacent layered light emitting structures of the two or more layered light emitting structures are insulated and connected.
  • a method for performing three-dimensional display using the above-mentioned display the first electrode and the second electrode of each layered light emitting structure of two or more layered light emitting structures
  • the electrodes are drawn out separately and connected to the voltage respectively.
  • the laser backplane is controlled to emit laser light to the target position, so that each layered light-emitting structure emits fluorescence at the target position to obtain a two-dimensional image.
  • voltage regulation is independently performed on each layered light-emitting structure to obtain a three-dimensional image.
  • FIG. 1 is a schematic diagram of a layered light emitting structure of the present disclosure
  • Fig. 2a is the response of the layered light-emitting structure to the voltage intensity in the embodiment of the present disclosure
  • Fig. 2b is the time switch response of the layered light-emitting structure to the voltage in the embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a display for realizing three-dimensional display in an embodiment of the present disclosure.
  • the three-dimensional display using chromatic aberration, polarization or aperture has encountered many bottlenecks at present, such as high requirements for hardware and relatively high limitation of field of view in practical applications. At the same time, it is easier to cause visual fatigue due to the brain acquiring unreal information, or image distortion due to the impact of resolution and crosstalk.
  • the process of related research although there is an idea of using multi-layer panels to control the image depth of field, the essence is still the layer-by-layer attenuation or scattering projection of the backplane signal, the light field utilization rate is low, and the depth direction cannot be achieved. independent control.
  • the relevant research progress lacks a complete modulation method for the outgoing light in the display.
  • the present disclosure provides a display for realizing three-dimensional display.
  • the display for realizing three-dimensional display of the present disclosure utilizes the laser scanning technology and the switching characteristic that the photoluminescence of each layered light-emitting structure is quenched by voltage regulation.
  • the display for realizing three-dimensional display of the present disclosure can independently control each layered light-emitting structure, realize the independent light emission of pixels in three-dimensional space, and thus realize the simulation of real three-dimensional images to a large extent recurrent.
  • a display for realizing three-dimensional display including: a laser backplane, and two or more layered light emitting structures stacked on the laser backplane along the layer normal direction.
  • the two or more layered light emitting structures are transparent structures.
  • Two adjacent layered light emitting structures of the two or more layered light emitting structures are insulated and connected.
  • each layered light-emitting structure sequentially includes a first electrode, a first transition layer, a photoluminescent material layer, a second transition layer, and a second electrode, and each layered light-emitting structure is connected through the first electrode and the second electrode. Voltage.
  • the present disclosure involves a multi-layer transparent layered light-emitting structure, which generates photoluminescence under the light excitation conditions provided by the laser backplane, and after applying an external voltage, the photoluminescence of the layered light-emitting structure appears a rapid quenching phenomenon, And it keeps quenching under the action of voltage. After the external voltage is turned off, the optical signal recovers rapidly and reaches the strength close to the initial signal, and can still be switched on and off repeatedly.
  • each layered light-emitting structure can be independently regulated by connecting a voltage through the first electrode and the second electrode, so that three-dimensional images can be truly presented, and the problem of three-dimensional display under the principle of parallax can be solved.
  • the photoluminescent material layer is a quantum dot material layer.
  • the quantum dot material layer is II-VI semiconductor quantum dot film material.
  • the type II-VI semiconductor quantum dot thin film material is a cadmium selenide quantum dot thin film material.
  • the thickness range of the cadmium selenide quantum dot film material is 20nm-50nm.
  • the direct use of photoluminescence signal of the quantum dot material layer has relatively good monochromaticity and fluorescence efficiency.
  • This first electrode-first transition layer-quantum dot material layer-second transition layer-second electrode structure has better voltage switch response effect. The voltage switching response effects include shorter fall/rise times, more efficient on/off ratios, and better recovery and stability.
  • the applied voltage can cause rapid and obvious quenching of the photoluminescence intensity, and the luminescence intensity can recover quickly after the voltage is removed.
  • This switching response has a response speed of hundreds of nanoseconds, and the switching ratio can reach less than 5% according to the difference of the applied voltage intensity, which is more suitable for display regulation.
  • the first transition layer and the second transition layer are respectively carrier transport layers, and the first electrode and the second electrode communicate with the photoluminescent material layer through the carrier transport layer, and are configured for realize carrier transport.
  • one of the first transition layer and the second transition layer is an electron transport layer, and the other is a hole transport layer.
  • the electron transport layer is zinc oxide
  • the hole transport layer is poly[(N,N'-(4-n-butylphenyl)-N,N'-diphenyl-1,4-phenylenediamine )-ALT-(9,9-Di-n-octylfluorenyl-2,7-diyl)](TFB) and [poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) ] (PEDOT:PSS).
  • the electron transport layer has a thickness ranging from 30 nm to 50 nm, and the hole transport layer has a thickness ranging from 20 nm to 50 nm.
  • the first electrode and the second electrode are respectively transparent conductive electrodes, and their materials are not particularly limited.
  • the first electrode and the second electrode may be respectively selected from indium tin oxide or aluminum-doped zinc oxide.
  • the display further includes two or more signal generators, which are provided in a one-to-one correspondence with the same number as the two or more layered light emitting structures.
  • Each of the two or more signal generators is respectively connected to the first electrode and the second electrode of each layered light emitting structure.
  • the forward and reverse voltages of different intensities are applied through the signal generator, and an electric field is established between the first electrode and the second electrode to promote the dissociation of the excitons generated by laser excitation to form discretized carriers. Quenching of luminescence.
  • a method for manufacturing the above-mentioned display including: making a layered light emitting structure, including sequentially forming a first electrode, a first transition layer, a photoluminescent material layer, a second transition layer layer and the second electrode.
  • the layered light-emitting structure is a transparent structure. Two or more layered light-emitting structures are stacked on the laser backplane along the layer normal direction, and two adjacent layered light-emitting structures of the two or more layered light-emitting structures are insulated and connected.
  • the methods for forming the first electrode, the first transition layer, the photoluminescent material layer, the second transition layer, and the second electrode are not particularly limited, and can be selected according to materials to choose from. For example, methods such as coating, vapor deposition, and sputtering can be used.
  • the insulating connection between two adjacent layered light emitting structures of the two or more layered light emitting structures may, for example, be bonded by insulating glue, but is not limited thereto.
  • a method for performing three-dimensional display using the above-mentioned display separately extracting the first electrode and the second electrode of each layered light emitting structure of two or more layered light emitting structures, Connect to the voltage separately.
  • the laser backplane is controlled to emit laser light at the target position, so that each layered light-emitting structure emits fluorescence at the target position to obtain a two-dimensional image.
  • voltage regulation is independently performed on each layered light-emitting structure to obtain a three-dimensional image.
  • a voltage is applied to the layered light emitting structure along the normal direction of the layered light emitting structure, the voltage is a reverse voltage, and the photoluminescent material in the layered light emitting structure has a response characteristic to the applied voltage in the normal direction .
  • the voltage signal can be any voltage signal, and the time for applying the voltage can be adjusted according to actual needs.
  • controlling the laser backplane to emit laser light at a target position utilizes laser scanning technology.
  • Laser scanning technology uses the principle of laser scanning display to collect and convert each pixel point (x, y) in a two-dimensional image into a time-varying electrical signal E(x, y, t), and output it to the laser scanning backplane It is converted into a laser signal, and the layered light-emitting structure is selectively excited and lit in the xy plane.
  • the laser light may be in the blue light or ultraviolet light band.
  • the form of laser can be pulsed or continuous wave excitation to meet the different requirements of different voltage switch regulation effects.
  • the steps of preparing a display that realizes three-dimensional display are as follows:
  • ITO Indium tin oxide
  • metal aluminum used here for testing purposes
  • the first electrode and the second electrode are positive and negative electrodes respectively
  • zinc oxide As the electron transport layer, [poly[(N,N'-(4-n-butylphenyl)-N,N'-diphenyl-1,4-phenylenediamine)-ALT-(9,9-di n-Octylfluorenyl-2,7-diyl)](TFB) and [poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)](PEDOT:PSS) as hole transport Layer
  • cadmium selenide quantum dots are used as the quantum dot material layer, thereby constructing a layered light-emitting structure with positive electrode-hole transport layer-quantum dot material layer-electron transport layer-negative electrode voltage shutdown effect.
  • the prepared structure is shown in Figure 1.
  • the positive and negative electrodes communicate with the quantum dot material layer through the carrier transport layer, and an external signal generator is connected to apply positive and negative voltages of different strengths to build an electric field.
  • an external signal generator is connected to apply positive and negative voltages of different strengths to build an electric field.
  • electrons in the quantum dot material layer absorb energy transitions to form electron-hole pairs (excitons).
  • Exciton recombination emits a light signal.
  • the originally luminescent electron-hole pairs in the quantum dot material layer are separated under the action of the electric field to form discrete carriers. Part of the subsequently injected excitons continues to be dissociated, and the other part forms dark-state charged excitons with discretized carriers, thereby realizing the quenching of photoluminescence.
  • the intensity of photoluminescence decreases more obviously.
  • the initial luminous intensity, the voltage required to achieve quenching, and the recovery intensity after turning off the voltage will all be different.
  • Fig. 2(a) is a schematic diagram of the response of the layered light-emitting structure to voltage intensity in an embodiment of the present disclosure.
  • the photoluminescence intensity of the layered light-emitting structure decreases with the increase of the applied voltage.
  • the photoluminescence intensity of the layered light-emitting structure decreased to 4.5% of the original luminescence peak, showing a quenching phenomenon that can be clearly distinguished by naked eyes.
  • the photoluminescence intensity can be completely restored to the original intensity.
  • Fig. 2(b) is a schematic diagram of the time-switching response of the layered light-emitting structure to voltage in an embodiment of the present disclosure.
  • the change of the overall luminous intensity over time in the luminescence peak wavelength range (610nm-670nm) is shown.
  • the external reverse voltage (2V DC) is manually controlled to realize repeated switching modulation.
  • the initial light signal (0-23s) drops to quenching intensity much faster than the time resolution after turning on the DC voltage.
  • the signal of the layered light-emitting structure can always be maintained at the quenching level (23-48s).
  • the photoexcitation quickly returned to the initial intensity.
  • a small number of discretized carriers generated under the action of the electric field escape to the outer surface of the quantum dot material layer. These carriers will tunnel back into the quantum dot material layer after the voltage is turned off, so that there is a slow and small relaxation recovery process in the time image, which can be solved by further modulation.
  • FIG. 3 is a schematic diagram of a layered light emitting structure of the present disclosure.
  • a three-dimensional display display structure designed based on the switching effect of the layered light-emitting structure is shown.
  • a layered light-emitting structure with better transparency can be obtained.
  • These layered light-emitting structures are stacked along the normal direction (z direction) of the layered light-emitting structure, and the purpose of individual voltage regulation of each layer is achieved by adding electrode pins and interlayer insulation of each layer.
  • the (x, y) plane is the plane of the layered light emitting structure.
  • the three-dimensional display design in this example can be realized by adding the stacked layered light-emitting structure on the laser backplane.
  • the photoluminescence intensity I(x, y, z, t) at any point is determined simultaneously by the laser backplane scanning signal and the voltage signals of each layer.
  • the laser backplane uses the laser scanning display principle to collect and convert each point (x, y) in the required image into an electrical signal E(x, y, t) that changes with time, and outputs it to the laser backplane, which is converted into laser signal.
  • the photoluminescent material in the layered light-emitting structure of the display is selectively excited in the x and y planes by laser signals.
  • each layered light-emitting structure serves as the minimum adjustment unit of the depth of field, and its thickness and spacing determine the resolution in this direction.
  • the above design structure can fundamentally simulate the distribution of light intensity in three-dimensional space, so as to obtain a three-dimensional display image close to reality.
  • the display, preparation method and three-dimensional display method of the present disclosure have one or part of the following beneficial effects:
  • each layered light-emitting structure in two or more layered light-emitting structures are excited and lit through a laser backplane to obtain a two-dimensional image.
  • each layered light-emitting structure can be independently regulated, and the pixels in the three-dimensional space can be independently illuminated, so that the three-dimensional image can be presented more realistically. Solve the problem of 3D display under the principle of parallax.
  • the present disclosure provides a display, a manufacturing method and a three-dimensional display method for realizing three-dimensional display.
  • a display By designing a layered light-emitting structure, stacking it on the laser scanning backplane along the normal direction, and leading out each layer
  • the electrodes are respectively connected to the voltage, and the light intensity at any point in the display structure is adjusted by using the voltage switch characteristics of each layer and laser scanning technology to obtain a three-dimensional display image close to the real.

Abstract

本公开提供了一种实现三维显示的显示器、制备方法及三维显示方法,该实现三维显示的显示器包括:激光背板;以及两个或多个层状发光结构,沿层法线方向堆叠于所述激光背板上,所述两个或多个层状发光结构为透明结构,所述两个或多个层状发光结构的每个层状发光结构之间绝缘连接,其中,所述每个层状发光结构依次包括第一电极、第一过渡层、光致发光材料层、第二过渡层和第二电极,所述每个层状发光结构通过第一电极和第二电极接入电压。

Description

实现三维显示的显示器、制备方法及三维显示方法 技术领域
本公开涉及光学显示领域,特别涉及实现三维显示的显示器、制备方法及三维显示方法。
背景技术
三维显示是显示领域的一大研究核心,如何呈现出与实际景象最为接近的三维图像,获取事物最完整的视觉信息,是未来的显示技术所重点关心的一大课题。获得真实的三维图像,对于娱乐、教育、航空、军事等领域均有着较为重要的意义。与之相对应的,三维显示屏作为实现三维显示的载体,具有较为广阔的应用前景与市场需求,对显示技术的发展的具有较为关键的作用。
对三维显示技术的研究已有百余年的历史。最初的三维显示技术依托于相应头戴式设备,在实际应用中有诸多不便。头戴式设备随着移动设备的普遍使用而被逐渐抛弃。对于主流的裸眼3D显示,其原理是利用色差、偏振和光阑。主流的裸眼3D显示主要是利用双眼视差,使左眼与右眼获得同一个点的不同信息,造成大脑错觉,从而模拟出三维图像。
发明内容
作为本公开的第一个方面,提供了一种实现三维显示的显示器,包括:激光背板,以及两个或多个层状发光结构,沿层法线方向堆叠于所述激光背板上。所述两个或多个层状发光结构为透明结构。所述两个或多个层状发光结构的每个层状发光结构之间绝缘连接。其中,所述每个层状发光结构依次包括第一电极、第一过渡层、光致发光材料层、第二过渡层和第二电极。所述每个层状发光结构通过第一电极和第二电极接入电压。
作为本公开的第二个方面,提供了一种如上所述的显示器的制备方法,包括:制作层状发光结构,包括依次形成第一电极、第一过渡层、光致发光材料层、第二过渡层和第二电极。所述层状发光结构为透明结构。将两个或多个所述层状发光结构沿层法线方向堆叠在激光背板上,所述两个或多个层状发光结构的相邻两个层状发光结构之间绝缘连接。
作为本公开的第三个方面,还提供了一种利用如上所述的显示器进行三维显示的方法:将两个或多个层状发光结构的每个层状发光结构的第一电极和第二电极各自引出,分别接入电压。控制激光背板向目标位置发射激光,使所述每个层状发光结构在所述目标位置发出荧光,获得二维图像。以及对所述每个层状发光结构分别独立地进行电压调控,获得三维图像。
附图说明
图1是本公开的层状发光结构的示意图;
图2a是本公开的实施例中层状发光结构对电压强度的响应;
图2b是本公开的实施例中层状发光结构对电压的时间开关响应;
图3是本公开的实施例中实现三维显示的显示器的结构示意图。
具体实施方式
在实现本公开的过程中发现,利用色差、偏振或是光阑的三维显示在当下遇到了众多瓶颈,例如对于硬件有着较高要求,实际应用中视场角局限性较高。同时,由于大脑获取非真实信息而较容易产生视疲劳,或者由于分辨率与串扰的影响产生图像失真。在相关研究过程中,尽管存在有利用多层面板控制图像景深的思路,但其本质还是对于背板信号的逐层衰减或散射投影,其光场利用率较低,且未能实现深度方向的独立控制。总体来讲,相关的研究进程缺乏对于显示器中出射光的完全调制思路方法。基于此种现状,传统的三维显示技术需要迎来新的突破。针对如何摆脱视觉误差效应,制作出足够接近真实的图像,是解决当下三维显示技术瓶颈的一个崭新思路。因此,基于以上问题,本公开提供了一种实现三维显示的显示器。本公开的实现三维显示的显示器利用激光扫描技术及各层状发光结构光致发光受电压调控淬灭这一开关特性。本公开的实现三维显示的显示器通过透明层状发光结构的堆叠设计,可以对各层状发光结构独立调控,实现三维空间中的像素点独立发光,从而较大程度上实现对真实三维图像的模拟复现。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开作进一步的详细说明。
根据本公开的实施例,提供了一种实现三维显示的显示器,包括:激光背板,以及两个或多个层状发光结构,沿层法线方向堆叠于激光背板上。两个或多个层状发光结构为透明结构。两个或多个层状发光结构的相邻两个层状发光结构之间绝缘连接。其中,每个层状发光结构依次包括第一电极、第一过渡层、光致发光材料层、第二过渡层和第二电极,每个层状发光结构通过第一电极和第二电极接入电压。
本公开通过涉及多层透明的层状发光结构,在激光背板所提供的光激发条件下产生光致发光,而在施加外电压后,层状发光结构的光致发光出现急促淬灭现象,并且在电压作用下持续保持淬灭。关闭外电压后,光信号急速恢复,达到接近最初信号的强度,之后仍可重复开关。本公开通过将每个层状发光结构通过第一电极和第二电极接入电压,可以对各层状发光结构独立调控,从而可以真实呈现三维图像,解决视差原理下三维显示存在的问题。
根据本公开的实施例,光致发光材料层为量子点材料层。量子点材料层为II-VI型半导体 量子点薄膜材料。可选的,II-VI型半导体量子点薄膜材料为硒化镉量子点薄膜材料。可选的,硒化镉量子点薄膜材料的厚度范围是20nm-50nm。直接利用量子点材料层的光致发光信号,具有较为良好的单色性和荧光效率。这种第一电极-第一过渡层-量子点材料层-第二过渡层-第二电极结构,具有较好的电压开关响应效应。该电压开关响应效应包括较短的下降/上升时间,较为高效的开关比以及较好的恢复能力与稳定性。上述特征具体表现为:外加电压可以导致其光致发光的强度出现快速而明显的淬灭,并且在撤去电压之后发光强度能够快速恢复。这种开关响应具有百纳秒级的响应速度,开关比根据外加电压强度的不同可达5%以下,较为适合用作显示调控。
根据本公开的实施例,第一过渡层和第二过渡层分别为载流子传输层,第一电极和第二电极之间经过载流子传输层和光致发光材料层相通,被配置用于实现载流子传输。可选的,第一过渡层和第二过渡层的其中一个为电子传输层,另一个为空穴传输层。可选的,电子传输层为氧化锌,空穴传输层为聚[(N,N′-(4-正丁基苯基)-N,N′-二苯基-1,4-苯二胺)-ALT-(9,9-二正辛基芴基-2,7-二基)](TFB)与[聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)](PEDOT:PSS)。
根据本公开的实施例,电子传输层的厚度范围是30nm-50nm,空穴传输层的厚度范围是20nm-50nm。
根据本公开的实施例,第一电极和第二电极分别为透明导电电极,对其材料并无特殊限制,例如,第一电极和第二电极可分别选自氧化铟锡或掺铝氧化锌。
根据本公开的实施例,显示器还包括两个或多个信号发生器,与所述两个或多个层状发光结构的数量相同且一一对应地设置。两个或多个信号发生器中的每个信号发生器分别和每个层状发光结构的第一电极和第二电极连接。通过信号发生器施加不同强度的正反向电压,在第一电极和第二电极之间构建起电场,以促使经激光激发产生的激子被解离形成离散化的载流子,实现对光致发光的淬灭。
根据本公开的实施例,还提供了一种如上所述的显示器的制备方法,包括:制作层状发光结构,包括依次形成第一电极、第一过渡层、光致发光材料层、第二过渡层和第二电极。层状发光结构为透明结构。将两个或多个层状发光结构沿层法线方向堆叠在激光背板上,两个或多个层状发光结构的相邻两个层状发光结构之间绝缘连接。
根据本公开的实施例,在制作层状发光结构时,形成第一电极、第一过渡层、光致发光材料层、第二过渡层和第二电极的方法并无特殊限制,可依据所选用的材料进行选择。例如可采用涂覆、气相沉积、溅射等方式。
根据本公开的实施例,两个或多个层状发光结构的相邻两个层状发光结构之间的绝缘连接例如可以采用绝缘胶粘接,但并不以此为限。
根据本公开的实施例,还提供了利用如上所述的显示器进行三维显示的方法:将两个或多个层状发光结构的每个层状发光结构的第一电极和第二电极各自引出,分别接入电压。控制激光背板在目标位置发射激光,使每个层状发光结构在目标位置发出荧光,获得二维图像。以及对每个层状发光结构分别独立地进行电压调控,获得三维图像。
根据本公开的实施例,电压沿层状发光结构的法线方向施加于层状发光结构,电压为反向电压,层状发光结构中的光致发光材料对法线方向的外加电压具有响应特性。电压信号可以是任意电压信号,施加电压的时间可根据实际需求进行调整。
根据本公开的实施例,控制激光背板在目标位置发射激光是利用激光扫描技术。激光扫描技术是借助激光扫描显示原理,将二维图像中的各像素点(x,y)采集转化为随时间变化的电信号E(x,y,t),并输出至激光扫描背板上转化为激光信号,对层状发光结构进行xy平面内的选择激发点亮。
根据本公开的实施例,激光可以为蓝光或紫外光波段。激光的形式可以为脉冲或连续波激发,以适应不同电压开关调控效应的不同需求。
以下列举具体实施例来对本公开的技术方案作详细说明。需要说明的是,下文中的具体实施例仅用于示例,并不用于限制本公开。
实施例1
在本实施例中,制备实现三维显示的显示器的步骤如下:
制备层状发光结构:采用了氧化铟锡(ITO)与金属铝(此处为测试目的使用)分别作为第一电极和第二电极,第一电极和第二电极分别为正负电极,氧化锌作为电子传输层,[聚[(N,N′-(4-正丁基苯基)-N,N′-二苯基-1,4-苯二胺)-ALT-(9,9-二正辛基芴基-2,7-二基)](TFB)与[聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)](PEDOT:PSS)作为空穴传输层,硒化镉量子点作为量子点材料层,从而构建了以正极-空穴传输层-量子点材料层-电子传输层-负极电压关闭效应的层状发光结构。其中,空穴传输层、量子点材料层、电子传输层分别采用旋涂的方法制备,正负电极采用溅射的方法制备。
制备的结构如图1所示,正负电极之间经过载流子传输层与量子点材料层相通,并外接信号发生器以施加不同强度的正反向电压,从而构建起电场。激发光入射至量子点材料层之后,量子点材料层中的电子吸收能量跃迁,形成电子-空穴对(激子)。激子复合发射出光信号。在保持光激发的前提下,施加外电压而建立电场之后,量子点材料层中原本发光的电子-空穴对在电场作用下发生分离,形成离散化的载流子。后续注入的激子一部分继续被解离,另一部分与离散化的载流子构成暗态带电激子,从而实现对光致发光的淬灭。
在完整的发光结构中,随着外加电压强度的上升,光致发光的强度出现较为明显的下降。根据各层厚度、材料以及激发光功率大小的不同,初始发光强度、实现淬灭所需的电压大小和关闭电压后的恢复强度均会有所不同。
图2(a)是本公开的实施例中层状发光结构对电压强度的响应的示意图。
如图2(a)所示,在蓝光(405nm)的连续波激发下,层状发光结构光致发光强度随着外加电压的增强而减弱。在施加2V直流电压之后,层状发光结构光致发光强度下降至原发光峰的4.5%,表现出了肉眼可清晰分辨的淬灭现象。而在关闭电压之后,光致发光强度可以完全恢复至原强度。
图2(b)是本公开的实施例中层状发光结构对电压的时间开关响应的示意图。
如图2(b)所示,展示了发光峰波长范围(610nm-670nm)中整体发光强度随时间的变化。在这一过程中通过手动控制外加反向电压(2V直流),实现了多次重复开关调制。初始光信号(0~23s)在开启直流电压之后,以远快于时间分辨率的速度下降至淬灭强度。在持续施加激发光与电压的前提下,层状发光结构信号可始终维持在淬灭水平(23~48s)。关闭电压信号后,光致激发迅速恢复至初始强度。在电场作用下产生的少部分离散化载流子逸出至量子点材料层外表面。这些载流子会在电压关闭后隧穿回量子点材料层内部,从而使得时间图像中存在较为缓慢而小幅度的弛豫恢复过程,可通过进一步调制解决这一问题。
图3是本公开的层状发光结构的示意图。
如图3所示,展示了以层状发光结构的开关效应为基础所设计的三维显示的显示器结构。通过设计选取各层材料,可以获得透明度较好的层状发光结构。将这些层状发光结构沿层状发光结构的法线方向(z方向)进行堆叠,通过添加各层电极引脚与层间绝缘,达成各层单独电压调控的目的。(x、y)平面为层状发光结构的平面。将堆叠后的层状发光结构添加在激光背板上,即可实现本实例中的三维显示器设计。在这一三维显示结构当中,任意一点的光致发光强度I(x,y,z,t)由激光背板扫描信号和各层电压信号同时决定。其中激光背板借助激光扫描显示原理,将所需图像中的各点(x,y)采集转化为随时间变化的电信号E(x,y,t),输出至激光背板上,转化为激光信号。通过激光信号对显示器的层状发光结构中的光致发光材料进行x、y平面中的选择激发。而在控制景深的方向,亦即z方向上,则根据前述的开关效应,通过信号发生器设计满足调制需求的电压信号V(z,t)。对各层图像进行分别调制,辅以考虑各层之间的吸收衰减,最终获得该点的输出光信号I(x,y,z,t)。在这一实施例中,每个层状发光结构作为景深的最小调控单元,其厚度和间距决定了该方向上的分辨率。以上设计结构能够从根本上模拟出三维空间中的光强分布,从而获得接近真实的三维显示图像。
从上述技术方案可以看出,本公开的实现三维显示的显示器、制备方法及三维显示方法 具有以下有益效果之一或其中一部分:
本公开通过激光背板对两个或多个层状发光结构中每个层状发光结构的不同位置进行激发点亮,获得二维图像。同时,通过将每个层状发光结构通过第一电极和第二电极接入电压,可以对各层状发光结构独立调控,实现三维空间中的像素点独立发光,从而可以较为真实呈现三维图像,解决视差原理下三维显示存在的问题。
至此,已经结合附图对本公开实施例进行了详细描述,根据以上描述,本领域技术人员应当对本公开的实现三维显示的显示器、制备方法及三维显示方法具有清楚认识。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各结构和方法的定义并不仅限于实施例中提到的各种具体结构、形状、材料或方式,本领域普通技术人员可对其进行简单地更改或替换。
综上所述,本公开提供了一种实现三维显示的显示器、制备方法及三维显示方法,通过设计层状发光结构,并将其沿法线方向进行堆叠至激光扫描背板,并引出各层电极分别接入电压,利用各层的电压开关特性和激光扫描技术,对显示结构中的任一点光强进行调控,获得接近真实的三维显示图像。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”、“x”、“y”、“z”、“法线”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
再者,单词“包括”不排除存在未列在权利要求中的作用相同或相似的材料或步骤。位于结构单元之前的单词“一”或“一个”不排除同时存在多层作用相同或相近的结构单元。
还需要说明的是,除非特别描述或必须依序发生的步骤,上述步骤的顺序并无限制于以上所列,且可根据所需设计而变化或重新安排。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
以上所述本公开的具体实施方式,并不构成对本公开保护范围的限定。任何根据本公开的技术构思所作出的各种其他相应的改变与变形,均应包含在本公开权利要求的保护范围内。

Claims (10)

  1. 一种实现三维显示的显示器,包括:
    激光背板;以及
    两个或多个层状发光结构,沿层法线方向堆叠于所述激光背板上,所述两个或多个层状发光结构为透明结构,所述两个或多个层状发光结构的每个层状发光结构之间绝缘连接,其中,所述每个层状发光结构依次包括第一电极、第一过渡层、光致发光材料层、第二过渡层和第二电极,所述每个层状发光结构通过第一电极和第二电极接入电压。
  2. 如权利要求1所述的显示器,其中,所述光致发光材料层为量子点材料层;
    所述量子点材料层为II-VI型半导体量子点薄膜材料;
    所述II-VI型半导体量子点薄膜材料为硒化镉量子点薄膜材料;
    所述硒化镉量子点薄膜材料的厚度范围是20nm-50nm。
  3. 如权利要求1所述的显示器,其中,所述第一过渡层和第二过渡层分别为载流子传输层。
    所述第一过渡层和第二过渡层的其中一个为电子传输层,另一个为空穴传输层;
    所述电子传输层为氧化锌,所述空穴传输层为聚[(N,N′-(4-正丁基苯基)-N,N′-二苯基-1,4-苯二胺)-ALT-(9,9-二正辛基芴基-2,7-二基)]与[聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)];
    所述电子传输层的厚度范围是30nm-50nm,所述空穴传输层的厚度范围是20nm-50nm。
  4. 如权利要求1所述的显示器,其中,所述第一电极和所述第二电极分别为透明导电电极,第一电极和第二电极为氧化铟锡或掺铝氧化锌;所述透明导电电极厚度范围为15nm-30nm。
  5. 如权利要求1所述的显示器,其中,所述显示器还包括两个或多个信号发生器,与所述两个或多个层状发光结构的数量相同且一一对应地设置,所述两个或多个信号发生器中的每个信号发生器分别和所述每个层状发光结构的第一电极和第二电极连接。
  6. 一种如权利要求1-5任一项所述的显示器的制备方法,包括:
    制作层状发光结构,包括依次形成第一电极、第一过渡层、光致发光材料层、第二过渡层和第二电极,所述层状发光结构为透明结构;
    将两个或多个所述层状发光结构沿层法线方向堆叠在激光背板上,所述两个或多个层状发光结构的相邻两个层状发光结构之间绝缘连接。
  7. 一种利用如权利要求1-5任一项所述的显示器进行三维显示的方法:
    将两个或多个层状发光结构的每个层状发光结构的第一电极和第二电极各自引出,分别接入电压;
    控制激光背板在目标位置发射激光,使所述每个层状发光结构在所述目标位置发出荧光,获得二维图像;以及
    对所述每个层状发光结构分别独立地进行电压调控,获得三维图像。
  8. 如权利要求7所述的方法,其中,所述电压沿所述层状发光结构的法线方向施加于所述层状发光结构,所述电压为反向电压。
  9. 如权利要求7所述的方法,其中,所述控制激光背板在目标位置发射激光是利用激光扫描技术。
  10. 如权利要求7所述的方法,其中,所述激光为蓝光或紫外光波段,所述激光的形式为脉冲或连续波。
PCT/CN2021/100504 2021-06-17 2021-06-17 实现三维显示的显示器、制备方法及三维显示方法 WO2022261882A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100504 WO2022261882A1 (zh) 2021-06-17 2021-06-17 实现三维显示的显示器、制备方法及三维显示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100504 WO2022261882A1 (zh) 2021-06-17 2021-06-17 实现三维显示的显示器、制备方法及三维显示方法

Publications (1)

Publication Number Publication Date
WO2022261882A1 true WO2022261882A1 (zh) 2022-12-22

Family

ID=84525893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100504 WO2022261882A1 (zh) 2021-06-17 2021-06-17 实现三维显示的显示器、制备方法及三维显示方法

Country Status (1)

Country Link
WO (1) WO2022261882A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165611A (ja) * 2014-02-28 2015-09-17 国立大学法人 千葉大学 量子ドットディスプレイおよびそれを用いたディスプレイ表示方法
CN107153273A (zh) * 2017-03-23 2017-09-12 上海九山电子科技有限公司 三维量子点显示系统和方法
CN109683352A (zh) * 2019-01-22 2019-04-26 合肥京东方光电科技有限公司 光激发显示设备及光激发显示系统
CN110430422A (zh) * 2019-06-26 2019-11-08 边策 立体影像显示器和立体影像显示方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165611A (ja) * 2014-02-28 2015-09-17 国立大学法人 千葉大学 量子ドットディスプレイおよびそれを用いたディスプレイ表示方法
CN107153273A (zh) * 2017-03-23 2017-09-12 上海九山电子科技有限公司 三维量子点显示系统和方法
CN109683352A (zh) * 2019-01-22 2019-04-26 合肥京东方光电科技有限公司 光激发显示设备及光激发显示系统
CN110430422A (zh) * 2019-06-26 2019-11-08 边策 立体影像显示器和立体影像显示方法

Similar Documents

Publication Publication Date Title
CN111091766B (zh) 包括超小型发光二极管模块的显示装置
CN108933153A (zh) 显示面板及其制作方法、显示装置
CN104009062B (zh) 彩膜基板及制备方法、有机电致发光显示面板、显示装置
US10714030B2 (en) Display device and apparatus, display control method and storage medium
CN103872253A (zh) 白色有机发光装置
CN107359175A (zh) 微发光二极管显示面板和显示装置
CN106684109A (zh) 发光二极管显示面板及其制作方法、显示器
CN105096749A (zh) 一种显示装置及其制备方法
CN106062858A (zh) 使用半导体发光器件的显示设备
WO2021073285A1 (zh) 一种无电学接触无巨量转移的全彩化μ LED 显示器件
CN106449720B (zh) 一种有机发光显示面板和有机发光显示装置
KR101489217B1 (ko) 유무기 복합 발광소자와 그 제조방법 및 유무기 복합 태양전지
CN109065599A (zh) 一种显示面板及其制备方法、以及显示装置
CN109994535A (zh) 一种显示面板及显示装置
CN103323975A (zh) 一种阵列基板、液晶显示面板及显示装置
CN207517695U (zh) 一种显示装置
CN106784209A (zh) 一种全彩qled显示器件及其制作方法
CN106842704A (zh) 一种超清有机激光显示器
CN110690328B (zh) 一种基于波长下转换的无电学接触μLED发光器件
CN100593835C (zh) 显示像素结构与显示装置
WO2021203460A1 (zh) 显示模组及显示装置
WO2022261882A1 (zh) 实现三维显示的显示器、制备方法及三维显示方法
CN105206652B (zh) 封框胶、显示面板和显示装置
CN105185814B (zh) 一种有机电致发光显示装置
CN107153273A (zh) 三维量子点显示系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE