WO2023026771A1 - ガラス組成物及び封着材料 - Google Patents

ガラス組成物及び封着材料 Download PDF

Info

Publication number
WO2023026771A1
WO2023026771A1 PCT/JP2022/029329 JP2022029329W WO2023026771A1 WO 2023026771 A1 WO2023026771 A1 WO 2023026771A1 JP 2022029329 W JP2022029329 W JP 2022029329W WO 2023026771 A1 WO2023026771 A1 WO 2023026771A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
sealing material
glass composition
tends
Prior art date
Application number
PCT/JP2022/029329
Other languages
English (en)
French (fr)
Inventor
翔一 佐野
将行 廣瀬
嘉朗 北村
徹 白神
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022049241A external-priority patent/JP2023033083A/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN202280057630.5A priority Critical patent/CN117881638A/zh
Publication of WO2023026771A1 publication Critical patent/WO2023026771A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/145Silica-free oxide glass compositions containing boron containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details

Definitions

  • the present invention relates to a glass composition and a sealing material that are weather resistant and hermetically sealed at low temperatures.
  • Sealing materials are used for semiconductor integrated circuits, crystal oscillators, metal members, vacuum insulated glass, flat display devices, and glass terminals for LEDs. Since the sealing material is required to have chemical durability and heat resistance, a glass-based sealing material is used instead of a resin-based adhesive. Sealing materials are further required to have properties such as mechanical strength, fluidity, and weather resistance. In particular, it is required to reduce the sealing temperature as much as possible for the sealing of electronic components on which heat-sensitive elements are mounted. Specifically, it is required that sealing can be performed at a temperature of 400° C. or lower. As a glass that satisfies this property, lead-borate glass containing a large amount of PbO, which has a great effect of lowering the softening point, has been widely used (see, for example, Patent Document 1).
  • an object of the present invention is to provide a glass composition and a sealing material that have good weather resistance and can be sealed at low temperatures.
  • the glass composition of the present invention contains 0.3 to 25% CuO, 1 to 30% Li 2 O + Na 2 O + K 2 O, 1 to 30% MgO + CaO + SrO + BaO + ZnO, and substantially contains SeO 2 in terms of mol%. preferably not. "Substantially free of SeO2 " means that the content of SeO2 is less than 0.1 mol%.
  • the glass composition of the present invention preferably has a ZnO content of 0 to 25 mol%.
  • the glass composition of the present invention preferably has a Nb 2 O 5 content of 0 to 10 mol %.
  • the glass composition of the present invention has a glass composition of 0 to 10% Fe 2 O 3 , 0 to 10% Al 2 O 3 , 0 to 20% B 2 O 3 , and 0 to 20% WO 3 in terms of mol %. It is preferable to contain
  • the sealing material of the present invention preferably contains 40 to 100% by volume of glass powder composed of the above glass composition and 0 to 60% by volume of refractory filler powder.
  • the refractory filler powder is preferably substantially spherical.
  • the term “substantially spherical” is not limited to a true sphere.
  • the value obtained by dividing the shortest diameter passing through the center of gravity of the refractory filler powder by the longest diameter is 0.5. 0.7 or more, preferably 0.7 or more.
  • all or part of the refractory filler powder is preferably Zr 2 WO 4 (PO 4 ) 2 .
  • the sealing material of the present invention is preferably used for crystal oscillator packages.
  • the sealing material of the present invention is preferably used for vacuum insulating glass.
  • the sealing material paste of the present invention preferably contains the above sealing material and vehicle.
  • the present invention can provide a glass composition and a sealing material that can be sealed at a low temperature while having good weather resistance.
  • the glass composition of the present invention has a glass composition of 15 to 80% TeO 2 , 0.1 to 30% MoO 3 +Ag 2 O, 5 to 40% V 2 O 5 and 0.1 to 35 CuO as a glass composition. %, PbO 0-10%.
  • the reasons for limiting the glass composition range as described above are as follows. In the description of the content of each component, "%” means “mol %” unless otherwise specified.
  • TeO 2 is a component that forms a glass network and enhances weather resistance.
  • the content of TeO 2 is 15-80%, preferably 20-70%, especially 25-65%. If the TeO 2 content is too low, the glass becomes thermally unstable and tends to devitrify during melting or firing. On the other hand, if the content of TeO 2 is too high, the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult and the coefficient of thermal expansion tends to increase too much.
  • MoO 3 and Ag 2 O are components that form a glass network and lower the viscosity (softening point, etc.) of the glass while maintaining the weather resistance of the glass.
  • the content of MoO 3 +Ag 2 O is 0.1-30%, 1-29%, 3-28%, 5-28%, 7-27%, 10-25%, 12-22%, especially 15 ⁇ 20% is preferred. If the content of MoO 3 +Ag 2 O is too small, vitrification becomes difficult and the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult. On the other hand, if the content of MoO 3 +Ag 2 O is too high, the glass becomes thermally unstable, the glass tends to devitrify during melting or firing, and the coefficient of thermal expansion tends to become too high.
  • the content of MoO3 is 0-30%, 0.1-29%, 1-29%, 5-28%, 7-27%, 10-25%, 12-22%, especially 15-20%. Preferably.
  • the content of Ag 2 O is 0-30%, 0.1-29%, 1-29%, 5-28%, 7-27%, 10-25%, 12-22%, especially 15-20% is preferably
  • V 2 O 5 is a component that forms a glass network and lowers the viscosity (softening point, etc.) of glass. It is also a component that lowers the coefficient of thermal expansion.
  • the content of V 2 O 5 is 5-40%, preferably 7-35%, 8-30%, 10-25%, especially 12-20%. If the V 2 O 5 content is too small, vitrification becomes difficult and the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult. Also, the coefficient of thermal expansion tends to be too high. On the other hand, if the content of V 2 O 5 is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing.
  • CuO is a component that lowers the viscosity (softening point, etc.) of glass and lowers the coefficient of thermal expansion. It is also a component that enhances the adhesive strength between glass and metal when sealing metal. Although the mechanism for increasing the adhesive strength is currently unknown in detail, since Cu atoms are highly diffusible, it is believed that the diffusion of Cu atoms from the surface layer of the metal toward the inside facilitates the integration of the glass and the metal. Conceivable. There are no particular restrictions on the type of metal to be sealed, but examples include iron, iron alloys, nickel, nickel alloys, copper, copper alloys, aluminum, and aluminum alloys.
  • the content of CuO is 0.1-35%, 0.2-30%, 0.3-25%, 0.4-20%, 0.5-15%, 1-12%, especially 3 ⁇ 11% is preferred. If the CuO content is too low, vitrification becomes difficult and the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult. Also, the coefficient of thermal expansion tends to be too high. If the CuO content is too high, the glass becomes thermally unstable, and metal Cu may precipitate from the glass surface in the sealing process, which may adversely affect the sealing strength and electrical properties. Also, the glass tends to devitrify during melting or firing.
  • PbO is a component that lowers the viscosity (softening point, etc.) of glass. 1%, preferably substantially no (less than 0.1%).
  • Li 2 O, Na 2 O and K 2 O are components that lower the viscosity (softening point, etc.) of glass.
  • the content of Li 2 O+Na 2 O+K 2 O is preferably 0-30%, 1-30%, 5-25%, especially 10-20%. If the content of Li 2 O+Na 2 O+K 2 O is too small, the viscosity (softening point, etc.) of the glass increases, which may make sealing at low temperatures difficult. Moreover, vitrification may become difficult. On the other hand, if the content of Li 2 O+Na 2 O+K 2 O is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing. Moreover, the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • Li 2 O is a component that significantly lowers the viscosity (softening point, etc.) of glass compared to Na 2 O and K 2 O.
  • the content of Li 2 O is preferably 0-30%, 1-20%, 3-15%, especially 5-13%. If the content of Li 2 O is too small, the viscosity (softening point, etc.) of the glass increases, which may make sealing at low temperatures difficult. Moreover, vitrification may become difficult. On the other hand, if the content of Li 2 O is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing. Moreover, the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • K 2 O is a component that is more effective than Na 2 O in lowering the viscosity (softening point, etc.) of glass.
  • the content of K 2 O is preferably 0-30%, 1-20%, 3-15%, especially 5-13%. If the content of K 2 O is too small, the viscosity (softening point, etc.) of the glass increases, and sealing at low temperatures may become difficult. Moreover, vitrification may become difficult. On the other hand, if the K 2 O content is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing. Moreover, the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • Na 2 O is a component that lowers the viscosity (softening point, etc.) of glass.
  • the content of Na 2 O is preferably 0-30%, 0.1-20%, 1-15%, especially 3-13%. If the content of Na 2 O is too small, the viscosity (softening point, etc.) of the glass increases, which may make sealing at low temperatures difficult. Moreover, vitrification may become difficult. On the other hand, if the content of Na 2 O is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing. Moreover, the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • the molar ratio Li 2 O/K 2 O is 0.3 to 5, 0.4 to 4, 0.5 to 3, 0.6 to 2, especially 0.3 to 5, 0.4 to 4, 0.5 to 3, 0.6 to 2, in order to lower the softening point due to the alkali mixing effect. It is preferably between 7 and 1.5.
  • Li2O / K2O refers to the value obtained by dividing the content of Li2O by the content of K2O .
  • the molar ratio Na 2 O/K 2 O is 0.3 to 5, 0.4 to 4, 0.5 to 3, 0.6 to 2, especially 0.3 to 5, 0.4 to 4, 0.5 to 3, 0.6 to 2, in order to lower the softening point due to the alkali mixing effect. It is preferably between 7 and 1.5. If the molar ratio Na 2 O/K 2 O is outside the above range, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.
  • Na2O / K2O refers to the value obtained by dividing the content of Na2O by the content of K2O .
  • MgO, CaO, SrO, BaO and ZnO are components that widen the vitrification range and improve weather resistance.
  • MgO+CaO+SrO+BaO+ZnO is preferably 0-30%, 1-30%, 3-20%, especially 5-15%. If the content of MgO+CaO+SrO+BaO+ZnO is too small, the viscosity (softening point, etc.) of the glass increases, which may make sealing at low temperatures difficult. Moreover, vitrification may become difficult. On the other hand, if the content of MgO+CaO+SrO+BaO+ZnO is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing. Moreover, the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • MgO is a component that expands the vitrification range and improves weather resistance.
  • the content of MgO is preferably 0-25%, 0-20%, 0-10%, especially 1-7%. If the content of MgO is small, vitrification may become difficult. In addition, the viscosity (softening point, etc.) of the glass increases, which may make sealing at low temperatures difficult. On the other hand, if the content of MgO is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing. Moreover, the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • CaO is a component that expands the vitrification range and improves weather resistance.
  • the content of CaO is preferably 0-25%, 0-20%, 0-10%, especially 1-7%.
  • vitrification may become difficult.
  • viscosity (softening point, etc.) of the glass increases, which may make sealing at low temperatures difficult.
  • the content of CaO is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing.
  • the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • SrO is a component that expands the vitrification range and improves weather resistance.
  • the content of SrO is preferably 0-25%, 0-20%, 0-10%, particularly 1-7%.
  • vitrification may become difficult.
  • viscosity (softening point, etc.) of the glass increases, which may make sealing at low temperatures difficult.
  • the content of SrO is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing.
  • the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • BaO is a component that expands the vitrification range and improves weather resistance.
  • the content of BaO is preferably 0-25%, 0.1-20%, 0.5-10%, especially 1-7%.
  • vitrification may become difficult.
  • viscosity (softening point, etc.) of the glass increases, which may make sealing at low temperatures difficult.
  • the content of BaO is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing.
  • the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • ZnO is a component that expands the vitrification range and improves weather resistance.
  • the content of ZnO is preferably 0-25%, 0.1-22%, 1-20%, especially 2-15%. If the ZnO content is too low, vitrification becomes difficult. In addition, the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult. On the other hand, if the ZnO content is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing. Moreover, the weather resistance tends to deteriorate, and the coefficient of thermal expansion tends to become too high.
  • AgI is a component that lowers the viscosity (softening point, etc.) of glass.
  • the AgI content is preferably 0 to 3%, 0 to 2%, particularly 0 to 1%. If the AgI content is too high, the coefficient of thermal expansion tends to be too high.
  • SeO 2 is a component that lowers the viscosity (softening point, etc.) of glass. 1%, preferably substantially no (less than 0.1%).
  • Fe 2 O 3 is a component that enhances reactivity with the object to be sealed.
  • the content of Fe 2 O 3 is preferably 0-10%, 0-8%, 0.1-10%, especially 1-7%. If the content of Fe 2 O 3 is too high, vitrification becomes difficult and the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult.
  • Al 2 O 3 is a component that improves weather resistance.
  • the content of Al 2 O 3 is preferably 0-10%, 0-8%, 0-6%, especially 0.1-5%. If the content of Al 2 O 3 is too high, the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult.
  • B 2 O 3 is a component that forms a glass network.
  • the content of B 2 O 3 is 0-20%, preferably 0-10%, especially 0.1-5%. If the content of B 2 O 3 is too high, the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult and the glass more likely to undergo phase separation. Moreover, it becomes difficult to vitrify.
  • WO3 is a component that lowers the coefficient of thermal expansion.
  • the content of WO 3 is preferably 0-20%, 0-10%, 0-5%, especially 0.1-3%. If the content of WO3 is too high, the glass becomes thermally unstable, the glass tends to devitrify during melting or firing, and the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult. become difficult.
  • P 2 O 5 is a component that forms a glass network and thermally stabilizes the glass.
  • the content of P 2 O 5 is preferably 0-10%, 0-5%, 0-2%, especially 0-1%. If the content of P 2 O 5 is too high, the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult and weather resistance more likely to decrease.
  • Nb 2 O 5 is a component that thermally stabilizes glass and enhances weather resistance.
  • the content of Nb 2 O 5 should be 0-10%, 0-5%, 0.1-4%, 0.5-3.5%, 1-3%, especially 1-2.5% is preferred. If the content of Nb 2 O 5 is too small, the glass becomes thermally unstable and tends to devitrify during melting or firing. On the other hand, if the content of Nb 2 O 5 is too high, the viscosity (softening point, etc.) of the glass increases, and low-temperature sealing tends to become difficult.
  • La 2 O 3 is a component that thermally stabilizes glass and suppresses devitrification.
  • the content of La 2 O 3 is preferably 0-10%, 0-5%, 0-2%, especially 0.1-1%. If the content of La 2 O 3 is too high, the viscosity (softening point, etc.) of the glass increases, and low-temperature sealing tends to become difficult.
  • Ga 2 O 3 is a component that thermally stabilizes glass and enhances weather resistance, but is very expensive, so its content is preferably less than 0.01%.
  • TiO 2 , GeO 2 , CeO 2 and Sb 2 O 3 are components for thermally stabilizing the glass and suppressing devitrification, and each can be added up to less than 5%. If the content of these elements is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing.
  • the sealing material of the present invention contains glass powder made from the above glass composition.
  • the sealing material of the present invention may contain refractory filler powder in order to improve the mechanical strength or adjust the coefficient of thermal expansion.
  • the mixing ratio is 40 to 100% by volume of glass powder, 0 to 60% by volume of refractory filler powder, 50 to 99% by volume of glass powder, 1 to 50% by volume of refractory filler powder, 60 to 95% by volume of glass powder, and refractory. 5 to 40% by volume of the refractory filler powder, particularly 70 to 90% by volume of the glass powder, and 10 to 30% by volume of the refractory filler powder. If the content of the refractory filler powder is too high, the proportion of the glass powder is relatively low, making it difficult to ensure desired fluidity.
  • the refractory filler powder preferably contains Zr2WO4 ( PO4 ) 2 .
  • Zr 2 WO 4 (PO 4 ) 2 hardly reacts with the glass powder according to the present invention, and further has the property of significantly lowering the thermal expansion coefficient of the sealing material.
  • a refractory filler powder other than Zr 2 WO 4 (PO 4 ) 2 can be used as the refractory filler powder.
  • Other refractory filler powders include NbZr( PO4 ) 3 , Zr2MoO4 ( PO4) 2 , Hf2WO4 ( PO4 ) 2 , Hf2MoO4 ( PO4 ) 2 , zirconium phosphate, Zircon, zirconia, tin oxide, aluminum titanate, quartz, ⁇ -spodumene, mullite, titania, quartz glass, ⁇ -eucryptite, ⁇ -quartz, willemite, cordierite, Sr 0.5 Zr 2 (PO 4 ) 3 and the like can be used alone or in combination of two or more.
  • the refractory filler powder is preferably approximately spherical.
  • the refractory filler powder is preferably approximately spherical.
  • the fluidity of the glass powder is less likely to be hindered by the refractory filler powder, and as a result, the fluidity of the sealing material is improved.
  • the stress in this part is dispersed because the refractory filler powder is substantially spherical. As a result, even if the object to be sealed comes into contact with the glaze layer during sealing, undue stress is less likely to be applied to the object to be sealed, making it easier to ensure airtightness.
  • the average particle size D 50 of the refractory filler powder is preferably 0.2-20 ⁇ m, especially 2-15 ⁇ m. If the average particle diameter D50 is too large, the sealing layer tends to be thick. On the other hand, if the average particle diameter D50 is too small, the refractory filler powder is eluted into the glass during sealing, and the glass tends to devitrify.
  • the sealing material of the present invention has a softening point of 360° C. or lower, 350° C. or lower, 340° C. or lower, 330° C. or lower, 320° C. or lower, 310° C. or lower, 300° C. or lower, 295° C. or lower, particularly 290° C. or lower. is preferred. If the softening point is too high, the viscosity of the glass increases, so that the sealing temperature rises and the element may be deteriorated by heat during sealing. Although the lower limit of the softening point is not particularly limited, it is practically 180° C. or higher.
  • the “softening point” refers to a value measured with a macro-type differential thermal analysis device using a sealing material having an average particle diameter D50 of 0.5 to 20 ⁇ m as a measurement sample. As for the measurement conditions, the measurement is started at room temperature, and the temperature rise rate is 10° C./min.
  • the softening point measured by the macro-type differential thermal analyzer refers to the temperature (Ts) at the fourth inflection point in the measurement curve shown in FIG.
  • the thermal expansion coefficient in the temperature range of 30 to 150°C is preferably 20 ⁇ 10 -7 /°C to 200 ⁇ 10 -7 /°C, more preferably 30 ⁇ 10 -7 /°C. 160 ⁇ 10 -7 /°C, more preferably 40 ⁇ 10 -7 /°C to 140 ⁇ 10 -7 /°C, particularly preferably 50 ⁇ 10 -7 /°C to 120 ⁇ 10 -7 /°C. If the coefficient of thermal expansion is out of the above range, the sealing portion is likely to be damaged during or after sealing due to the difference in thermal expansion with the material to be sealed.
  • a raw material powder prepared to give a desired glass composition is melted at 700 to 1000° C. for 1 to 2 hours until a homogeneous glass is obtained.
  • the obtained molten glass is shaped into a film or the like, and then pulverized and classified to prepare glass powder.
  • the average particle diameter D50 of the glass powder is preferably about 1 to 20 ⁇ m. If necessary, various refractory filler powders are added to the glass powder and mixed to obtain a sealing material.
  • a sealing material paste is prepared by adding a vehicle to the sealing material and kneading the mixture.
  • the vehicle mainly consists of an organic solvent and a resin, and the resin is added for the purpose of adjusting the viscosity of the paste.
  • a surfactant, a thickening agent, etc. can also be added as needed.
  • the organic solvent preferably has a low boiling point (for example, a boiling point of 300° C. or lower), leaves little residue after firing, and does not degrade the glass, and its content is preferably 10 to 40% by mass. preferable.
  • Organic solvents include propylene carbonate, toluene, N,N'-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl carbonate, butyl carbitol acetate (BCA), isoamyl acetate, It is preferred to use dimethyl sulfoxide, acetone, methyl ethyl ketone and the like. Further, it is more preferable to use a higher alcohol as the organic solvent.
  • Pentanediol and its derivatives specifically diethylpentanediol (C 9 H 20 O 2 ), can also be used as the solvent because of their excellent viscosity.
  • the resin preferably has a low decomposition temperature, leaves little residue after firing, and does not easily degrade the glass, and its content is preferably 0.1 to 20% by mass.
  • the resin it is preferable to use nitrocellulose, polyethylene glycol derivatives, polyethylene carbonate, acrylic acid ester (acrylic resin), and the like.
  • the sealing material paste is applied to the sealing portion of the object to be sealed made of metal, ceramic, or glass using an applicator such as a dispenser or a screen printer, dried, and glazed at 280 to 320 ° C. do.
  • an applicator such as a dispenser or a screen printer
  • another object to be sealed is brought into contact with the object and heat-treated at 300 to 400° C., so that the glass powder softens and flows to seal the two.
  • the glass powder according to the present invention can be used for purposes other than sealing, such as coating and filling. It can also be used in forms other than paste, specifically in the form of powder, green sheet, tablet (a powder material sintered into a predetermined shape), and the like.
  • Tables 1 to 3 show examples of the present invention (Sample Nos. 1 to 9, 13 to 27) and Comparative Examples (Sample Nos. 10 to 12).
  • raw material powders prepared to give the glass composition shown in the table were placed in a platinum crucible and melted in air at 700 to 1000° C. for 1 to 2 hours. After that, the molten glass was formed into a film with a water-cooled roller, and the film-shaped glass was pulverized with a ball mill and passed through a sieve with an opening of 75 ⁇ m to obtain a glass powder having an average particle diameter D50 of about 10 ⁇ m.
  • the obtained glass powder and refractory filler powder were mixed to obtain a mixed powder.
  • the average particle size D50 of the refractory filler powder was about 10 ⁇ m.
  • Sample No. 1 to 27 were evaluated for glass transition point, thermal expansion coefficient, softening point, fluidity and weather resistance.
  • the glass transition point and thermal expansion coefficient in the temperature range of 30 to 150°C were evaluated as follows. First, the mixed powder was placed in a rod-shaped mold, press-molded, and then fired at 280 to 350° C. for 10 minutes on an alumina substrate coated with a release agent. After that, the sintered body was processed into a predetermined shape and measured with a TMA apparatus.
  • the softening point was measured with a macro-type differential thermal analyzer, and the softening point was defined as the fourth inflection point.
  • the measurement atmosphere was the air, the rate of temperature increase was 10° C./min, and the measurement was started from room temperature.
  • Liquidity is evaluated as follows. A mass corresponding to the composite density of the mixed powder was placed in a mold with a diameter of 20 mm and press-molded. After that, sample no. 1 to 12 and 17 to 27 were baked on a glass substrate at 350° C. for 10 minutes. Sample no. 13 to 16 were baked on a glass substrate at 300° C. for 10 minutes. When the flow diameter of the sintered body was 19 mm or more, it was evaluated as " ⁇ ", and when it was less than 19 mm, it was evaluated as "x".
  • the weather resistance was evaluated by an accelerated deterioration test by PCT (Pressure Cooker Test). Specifically, after holding the fired body prepared above for 24 hours in an environment of 121 ° C., 2 atm, and 100% relative humidity, visually observed, if there is no precipitate from the fired body surface, "O". , and others were marked with "x".
  • PCT Pressure Cooker Test
  • sample no. Samples 1 to 9 and 13 to 27 were evaluated as good in fluidity and weather resistance.
  • sample no. No. 10 had a low V 2 O 5 content in the glass composition and did not contain CuO, so it had a high softening point and poor fluidity.
  • Sample no. No. 11 had a high softening point and poor fluidity due to the low content of V 2 O 5 in the glass composition.
  • the glass composition of the present invention is suitable for sealing crystal resonator packages, and is also suitable for sealing airtight packages such as semiconductor integrated circuits, flat display devices, glass terminals for LEDs, and aluminum nitride substrates. is. It can also be used as a sealing material for metals and vacuum insulating glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Glass Compositions (AREA)

Abstract

良好な耐候性を有しつつ、低温で封着可能なガラス組成物及び封着材料を提供する。 本発明のガラス組成物は、モル%で、TeO2 15~80%、MoO3+Ag2O 0.1~30%、V2O5 5~40%、CuO 0.1~35%、PbO 0~10%を含有することを特徴とする。

Description

ガラス組成物及び封着材料
 本発明は、耐候性を有しつつ、低温で気密封着が可能なガラス組成物及び封着材料に関する。
 半導体集積回路、水晶振動子、金属部材、真空断熱ガラス、平面表示装置やLED用ガラス端子等には、封着材料が使用される。封着材料には、化学的耐久性や耐熱性が要求されるため、樹脂系の接着剤ではなくガラス系の封着材料が用いられている。封着材料には、更に機械的強度、流動性、耐候性等の特性が要求される。特に、熱に弱い素子を搭載する電子部品の封着には、封着温度をできる限り低くすることが要求される。具体的には、400℃以下の温度で封着可能であることが要求される。この特性を満足するガラスとして、軟化点を下げる効果が大きいPbOを多量に含む鉛硼酸系ガラスが広く用いられてきた(例えば、特許文献1参照)。
特開昭63-315536号公報 特開2019-202921号公報
 環境負荷を低減するために、鉛硼酸系ガラスからPbOを含まない無鉛ガラスに置き換えることが望まれており、様々な低軟化点の無鉛ガラスが開発されるに到っている。
 しかし、ガラスは、一般的に、軟化点が低くなると、耐候性が低下する傾向がある。よって、低軟化点と高耐候性の両立は容易ではない。特許文献2に記載のCuO-TeO-MoO系ガラスは、鉛硼酸系ガラスの代替候補として有望であり、良好な耐候性を有するものの、軟化点が十分に低いとは言えない。
 以上に鑑み、本発明は、良好な耐候性を有しつつ、低温で封着可能なガラス組成物及び封着材料を提供することを目的とする。
 本発明者は鋭意検討の結果、所定のTeO-V系ガラスを用いることにより、上記課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のガラス組成物は、ガラス組成として、モル%で、TeO 15~80%、MoO+AgO 0.1~30%、V 5~40%、CuO 0.1~35%、PbO 0~10%を含有することを特徴とする。「A+B」とは、成分A及び成分Bの合量を指す。例えば、「MoO+AgO」は、MoO及びAgOの合量を指す。
 また、本発明のガラス組成物は、モル%で、CuO 0.3~25%、LiO+NaO+KO 1~30%、MgO+CaO+SrO+BaO+ZnO 1~30%を含有し、実質的にSeOを含有しないことが好ましい。「実質的にSeOを含有しない」とは、SeOの含有量が0.1モル%未満であることを意味する。
 また、本発明のガラス組成物は、ZnOの含有量が0~25モル%であることが好ましい。
 また、本発明のガラス組成物は、Nbの含有量が0~10モル%であることが好ましい。
 また、本発明のガラス組成物は、ガラス組成として、モル%でFe 0~10%、Al 0~10%、B 0~20%、WO 0~20%を含有することが好ましい。
 本発明の封着材料は、上記のガラス組成物からなるガラス粉末 40~100体積%と、耐火性フィラー粉末 0~60体積%とを含有することが好ましい。
 また、本発明の封着材料は、耐火性フィラー粉末が略球状であることが好ましい。ここで、「略球状」とは、真球のみに限定されるものではなく、耐火性フィラー粉末において、耐火性フィラー粉末の重心を通る最も短い径を最も長い径で割った値が0.5以上、好ましくは0.7以上のものを指す。
 また、本発明の封着材料は、耐火性フィラー粉末の全部又は一部がZrWO(POであることが好ましい。
 また、本発明の封着材料は、水晶振動子パッケージに用いることが好ましい。
 また、本発明の封着材料は、真空断熱ガラスに用いることが好ましい。
 本発明の封着材料ペーストは、上記の封着材料とビークルとを含有することが好ましい。
 本発明は、良好な耐候性を有しつつ、低温で封着可能なガラス組成物及び封着材料を提供することができる。
マクロ型示差熱分析装置により得られる測定曲線を示す模式図である。
 本発明のガラス組成物は、ガラス組成として、モル%で、TeO 15~80%、MoO+AgO 0.1~30%、V 5~40%、CuO 0.1~35%、PbO 0~10%を含有する。上記のようにガラス組成範囲を限定した理由を以下に示す。なお、各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。
 TeOは、ガラスネットワークを形成すると共に、耐候性を高める成分である。TeOの含有量は15~80%であり、20~70%、特に25~65%であることが好ましい。TeOの含有量が少な過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。一方、TeOの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に、熱膨張係数が高くなり過ぎる傾向にある。
 MoO、AgOは、ガラスネットワークを形成すると共に、ガラスの耐候性を維持しながらガラスの粘性(軟化点等)を低下させる成分である。MoO+AgOの含有量は0.1~30%であり、1~29%、3~28%、5~28%、7~27%、10~25%、12~22%、特に15~20%であることが好ましい。MoO+AgOの含有量が少な過ぎると、ガラス化が困難になると共に、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。一方、MoO+AgOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 MoOの含有量は、0~30%、0.1~29%、1~29%、5~28%、7~27%、10~25%、12~22%、特に15~20%であることが好ましい。
 AgOの含有量は、0~30%、0.1~29%、1~29%、5~28%、7~27%、10~25%、12~22%、特に15~20%であることが好ましい。
 Vは、ガラスネットワークを形成すると共にガラスの粘性(軟化点等)を低下させ成分である。また、熱膨張係数を低下させる成分である。Vの含有量は5~40%であり、7~35%、8~30%、10~25%、特に12~20%であることが好ましい。Vの含有量が少な過ぎると、ガラス化が困難になると共に、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。また、熱膨張係数が高くなり過ぎる傾向にある。一方、Vの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。
 CuOは、ガラスの粘性(軟化点等)を低下させると共に、熱膨張係数を低下させる成分である。また金属を封着する場合、ガラスと金属の接着強度を高める成分である。接着強度を高めるメカニズムは、現時点で詳細不明であるが、Cu原子は拡散性が高いため、金属の表層から内部に向かってCu原子が拡散することで、ガラスと金属が一体化し易くなるものと考えられる。なお、被封着物である金属の種類に特に制限はないが、例として、鉄、鉄合金、ニッケル、ニッケル合金、銅、銅合金、アルミニウム、アルミニウム合金等が挙げられる。CuOの含有量は、0.1~35%であり、0.2~30%、0.3~25%、0.4~20%、0.5~15%、1~12%、特に3~11%であることが好ましい。CuOの含有量が少な過ぎると、ガラス化が困難になると共に、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。また、熱膨張係数が高くなり過ぎる傾向にある。CuOの含有量が多過ぎると、ガラスが熱的に不安定になり、封着工程において、ガラス表面から金属Cuが析出し、封着強度や電気特性に悪影響を与える虞がある。また溶融時又は焼成時にガラスが失透し易くなる。
 PbOは、ガラスの粘性(軟化点等)を低下させる成分であるが、環境面を考慮すると、PbOの含有量は、0~10%であり、0~5%、0~3%、0~1%、特に実質的に含有しない(0.1%未満)ことが好ましい。
 上記成分以外にも、以下の成分を導入してもよい。
 LiO、NaO及びKOは、ガラスの粘性(軟化点等)を低下させる成分である。LiO+NaO+KOの含有量は、0~30%、1~30%、5~25%、特に10~20%であることが好ましい。LiO+NaO+KOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなって、低温での封着が困難になることがある。またガラス化し難くなる場合がある。一方、LiO+NaO+KOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 LiOは、NaO及びKOに比べ、ガラスの粘性(軟化点等)を顕著に低下させる成分である。LiOの含有量は、0~30%、1~20%、3~15%、特に5~13%であることが好ましい。LiOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなって、低温での封着が困難になることがある。またガラス化し難くなる場合がある。一方、LiOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 KOは、NaOに比べ、ガラスの粘性(軟化点等)を低下させる効果が大きい成分である。KOの含有量は、0~30%、1~20%、3~15%、特に5~13%であることが好ましい。KOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなって、低温での封着が困難になることがある。またガラス化し難くなる場合がある。一方、KOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 NaOは、ガラスの粘性(軟化点等)を低下させる成分である。NaOの含有量は、0~30%、0.1~20%、1~15%、特に3~13%であることが好ましい。NaOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなって、低温での封着が困難になることがある。またガラス化し難くなる場合がある。一方、NaOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 モル比LiO/KOは、アルカリ混合効果により軟化点を低下させるために、0.3~5、0.4~4、0.5~3、0.6~2、特に0.7~1.5であることが好ましい。モル比LiO/KOが上記範囲外になると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなることがある。なお、「LiO/KO」は、LiOの含有量をKOの含有量で除した値を指す。
 モル比NaO/KOは、アルカリ混合効果により軟化点を低下させるために、0.3~5、0.4~4、0.5~3、0.6~2、特に0.7~1.5であることが好ましい。モル比NaO/KOが上記範囲外になると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなることがある。なお、「NaO/KO」は、NaOの含有量をKOの含有量で除した値を指す。
 MgO、CaO、SrO、BaO及びZnOは、ガラス化範囲を広げると共に、耐候性を改善する成分である。MgO+CaO+SrO+BaO+ZnOは、0~30%、1~30%、3~20%、特に5~15%であることが好ましい。MgO+CaO+SrO+BaO+ZnOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなって、低温での封着が困難になることがある。またガラス化し難くなる場合がある。一方、MgO+CaO+SrO+BaO+ZnOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 MgOは、ガラス化範囲を広げると共に、耐候性を改善する成分である。MgOの含有量は、0~25%、0~20%、0~10%、特に1~7%であることが好ましい。MgOの含有量が少ないと、ガラス化が困難になることがある。またガラスの粘性(軟化点等)が高くなって、低温での封着が困難になる場合がある。一方、MgOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 CaOは、ガラス化範囲を広げると共に、耐候性を改善する成分である。CaOの含有量は、0~25%、0~20%、0~10%、特に1~7%であることが好ましい。CaOの含有量が少ないと、ガラス化が困難になることがある。またガラスの粘性(軟化点等)が高くなって、低温での封着が困難になる場合がある。一方、CaOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 SrOは、ガラス化範囲を広げると共に、耐候性を改善する成分である。SrOの含有量は、0~25%、0~20%、0~10%、特に1~7%であることが好ましい。SrOの含有量が少ないと、ガラス化が困難になることがある。またガラスの粘性(軟化点等)が高くなって、低温での封着が困難になる場合がある。一方、SrOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 BaOは、ガラス化範囲を広げると共に、耐候性を改善する成分である。BaOの含有量は、0~25%、0.1~20%、0.5~10%、特に1~7%であることが好ましい。BaOの含有量が少ないと、ガラス化が困難になることがある。またガラスの粘性(軟化点等)が高くなって、低温での封着が困難になる場合がある。一方、BaOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 ZnOは、ガラス化範囲を広げると共に、耐候性を改善する成分である。ZnOの含有量は、0~25%、0.1~22%、1~20%、特に2~15%であることが好ましい。ZnOの含有量が少な過ぎると、ガラス化が困難になる。またガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。一方、ZnOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また耐候性が低下し易くなると共に、熱膨張係数が高くなり過ぎる傾向にある。
 AgIは、ガラスの粘性(軟化点等)を低下させる成分である。AgIの含有量は、0~3%、0~2%、特に0~1%であることが好ましい。AgIの含有量が多過ぎると、熱膨張係数が高くなり過ぎる傾向にある。
 SeOは、ガラスの粘性(軟化点等)を低下させる成分であるが、環境面を考慮すると、SeOの含有量は、0~10%、0~5%、0~3%、0~1%、特に実質的に含有しない(0.1%未満)ことが好ましい。
 Feは、被封着物との反応性を高める成分である。Feの含有量は、0~10%、0~8%、0.1~10%、特に1~7%であることが好ましい。Feの含有量が多過ぎると、ガラス化が困難になると共に、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。
 Alは、耐候性を向上させる成分である。Alの含有量は、0~10%、0~8%、0~6%、特に0.1~5%であることが好ましい。Alの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。
 Bは、ガラスネットワークを形成する成分である。Bの含有量は0~20%で、0~10%、特に0.1~5%であることが好ましい。Bの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に、ガラスが分相し易くなる。またガラス化し難くなる。
 WOは、熱膨張係数を低下させる成分である。WOの含有量は0~20%、0~10%、0~5%、特に0.1~3%であることが好ましい。WOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。
 Pは、ガラスネットワークを形成すると共に、ガラスを熱的に安定化させる成分である。Pの含有量は、0~10%、0~5%、0~2%、特に0~1%であることが好ましい。Pの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に、耐候性が低下し易くなる。
 Nbは、ガラスを熱的に安定化させると共に、耐候性を高める成分である。Nbの含有量は、0~10%、0~5%、0.1~4%、0.5~3.5%、1~3%、特に1~2.5%であることが好ましい。Nbの含有量が少な過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。一方、Nbの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。
 Laはガラスを熱的に安定化させて、失透を抑制する成分である。Laの含有量は、0~10%、0~5%、0~2%、特に0.1~1%であることが好ましい。Laの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。
 Gaは、ガラスを熱的に安定化させると共に、耐候性を高める成分であるが、非常に高価であるため、その含有量は0.01%未満であることが好ましい。
 TiO、GeO、CeO、Sbはガラスを熱的に安定化させて、失透を抑制する成分であり、各々5%未満まで添加可能である。これらの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。
 本発明の封着材料は、上記のガラス組成物からなるガラス粉末を含有する。本発明の封着材料は、機械的強度を向上、或いは熱膨張係数を調整するために、耐火性フィラー粉末を含有してもよい。その混合割合は、ガラス粉末40~100体積%、耐火性フィラー粉末0~60体積%、ガラス粉末50~99体積%、耐火性フィラー粉末1~50体積%、ガラス粉末60~95体積%、耐火性フィラー粉末5~40体積%、特にガラス粉末70~90体積%、耐火性フィラー粉末10~30体積%であることが好ましい。耐火性フィラー粉末の含有量が多過ぎると、ガラス粉末の割合が相対的に少なくなるため、所望の流動性を確保し難くなる。
 耐火性フィラー粉末は、ZrWO(POを含有することが好ましい。ZrWO(POは、本発明に係るガラス粉末と反応し難く、更に封着材料の熱膨張係数を大幅に低下させる性質を有している。
 また本発明の封着材料は、耐火性フィラー粉末として、ZrWO(PO以外の耐火性フィラー粉末を使用することもできる。その他の耐火性フィラー粉末としては、NbZr(PO、ZrMoO(PO、HfWO(PO、HfMoO(PO、リン酸ジルコニウム、ジルコン、ジルコニア、酸化錫、チタン酸アルミニウム、石英、β-スポジュメン、ムライト、チタニア、石英ガラス、β-ユークリプタイト、β-石英、ウィレマイト、コーディエライト、Sr0.5Zr(PO等からなる粉末を、単独で又は2種以上を混合して使用することができる。
 耐火性フィラー粉末は、略球状であることが好ましい。このようにすれば、ガラス粉末が軟化する際に、ガラス粉末の流動性が耐火性フィラー粉末によって阻害され難くなり、結果として、封着材料の流動性が向上する。また平滑なグレーズ層を得易くなる。更に、仮にグレーズ層の表面に耐火性フィラー粉末の一部が露出しても、耐火性フィラー粉末が略球状であるため、この部分の応力が分散される。これにより、封着に際し、被封着物をグレーズ層に当接しても、被封着物に不当な応力がかかり難く、気密性を確保し易くなる。
 耐火性フィラー粉末の平均粒子径D50は0.2~20μm、特に2~15μmであることが好ましい。平均粒子径D50が大き過ぎると、封着層が厚くなり易い。一方、平均粒子径D50が小さすぎると、封着時に耐火性フィラー粉末がガラス中に溶出して、ガラスが失透し易くなる。
 本発明の封着材料において、軟化点は、360℃以下、350℃以下、340℃以下、330℃以下、320℃以下、310℃以下、300℃以下、295℃以下、特に290℃以下であることが好ましい。軟化点が高過ぎると、ガラスの粘性が高くなるため、封着温度が上昇して、封着時の熱により素子を劣化させる虞がある。なお、軟化点の下限は特に限定されないが、現実的には180℃以上である。ここで、「軟化点」とは、平均粒子径D50が0.5~20μmの封着材料を測定試料として、マクロ型示差熱分析装置で測定した値を指す。測定条件としては、室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型示差熱分析装置で測定した軟化点は、図1に示す測定曲線における第四屈曲点の温度(Ts)を指す。
 本発明の封着材料において、30~150℃の温度範囲での熱膨張係数は、好ましくは20×10-7/℃~200×10-7/℃、より好ましくは30×10-7/℃~160×10-7/℃、更に好ましくは40×10-7/℃~140×10-7/℃、特に好ましくは50×10-7/℃~120×10-7/℃である。熱膨張係数が上記範囲外になると、被封着材料との熱膨張差により、封着時や封着後に封着部が破損し易くなる。
 次に、本発明に係るガラス粉末、封着材料の製造方法、使用方法の一例を説明する。
 まず、所望のガラス組成となるように調合した原料粉末を700~1000℃で1~2時間、均質なガラスが得られるまで溶融する。次いで、得られた溶融ガラスをフィルム状等に成形した後、粉砕し、分級することにより、ガラス粉末を作製する。なお、ガラス粉末の平均粒子径D50は1~20μm程度であることが好ましい。必要に応じて、ガラス粉末に各種耐火性フィラー粉末を添加、混合して、封着材料とする。
 次いで、封着材料にビークルを添加して混練することにより封着材料ペーストを調製する。ビークルは、主に有機溶剤と樹脂とからなり、樹脂はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。
 有機溶剤は、沸点が低く(例えば、沸点が300℃以下)、且つ焼成後の残渣が少ないことに加えて、ガラスを変質させないものが好ましく、その含有量は10~40質量%であることが好ましい。有機溶剤としては、プロピレンカーボネート、トルエン、N,N’-ジメチルホルムアミド(DMF)、1,3-ジメチル-2-イミダゾリジノン(DMI)、炭酸ジメチル、ブチルカルビトールアセテート(BCA)、酢酸イソアミル、ジメチルスルホキシド、アセトン、メチルエチルケトン等を使用することが好ましい。また、有機溶剤として、高級アルコールを使用することが更に好ましい。高級アルコールは、それ自身が粘性を有しているために、ビークルに樹脂を添加しなくても、ペースト化することができる。また、ペンタンジオールとその誘導体、具体的にはジエチルペンタンジオール(C20)も粘性に優れるため、溶剤に使用することができる。
 樹脂は、分解温度が低く、焼成後の残渣が少ないことに加えて、ガラスを変質させ難いものが好ましく、その含有量は0.1~20質量%であることが好ましい。樹脂として、ニトロセルロース、ポリエチレングリコール誘導体、ポリエチレンカーボネート、アクリル酸エステル(アクリル樹脂)等を使用することが好ましい。
 続いて、封着材料ペーストを金属、セラミック、または、ガラスからなる被封着物の封着箇所にディスペンサーやスクリーン印刷機等の塗布機を用いて塗布し、乾燥させ、280~320℃でグレーズ処理する。その後、別の被封着物を接触させて、300~400℃で熱処理することにより、ガラス粉末が軟化流動して両者が封着される。
 本発明に係るガラス粉末は、封着用途以外にも被覆、充填等の目的で使用できる。また、ペースト以外の形態、具体的には粉末、グリーンシート、タブレット(粉末材料を所定形状の焼結させたもの)等の状態で使用することもできる。
 実施例に基づいて、本発明を詳細に説明する。表1~3は、本発明の実施例(試料No.1~9、13~27)及び比較例(試料No.10~12)を示している。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 まず、表中に示したガラス組成となるように調合した原料粉末を白金坩堝に入れ、大気中にて700~1000℃で1~2時間溶融した。その後、溶融ガラスを水冷ローラーでフィルム状に成形し、フィルム状のガラスをボールミルで粉砕した後、目開き75μmの篩を通過させて、平均粒子径D50が約10μmのガラス粉末を得た。
 その後、表中に示した通りに、得られたガラス粉末と耐火性フィラー粉末を混合し、混合粉末を得た。
 耐火性フィラー粉末には、略球状のZrWO(PO(表中ではZWPと表記)を用いた。なお、耐火性フィラー粉末の平均粒子径D50は約10μmであった。
 試料No.1~27について、ガラス転移点、熱膨張係数、軟化点、流動性、耐候性を評価した。
 ガラス転移点及び温度範囲30~150℃での熱膨張係数は、次のようにして評価したものである。まず混合粉末を棒状の金型に入れて、プレス成型した後に、離型剤を塗ったアルミナ基板上で280~350℃にて10分間焼成した。その後、焼成体を所定の形状に加工し、TMA装置により測定した。
 軟化点は、マクロ型示差熱分析装置により測定し、第四屈曲点を以て軟化点とした。なお、測定雰囲気は大気中、昇温速度は10℃/分とし、室温から測定を開始した。
 流動性は次のようにして評価したものである。混合粉末の合成密度分の質量を、直径20mmの金型に入れプレス成型した。その後、試料No.1~12、17~27については、ガラス基板上で350℃にて10分間焼成した。試料No.13~16については、ガラス基板上で300℃にて10分間焼成した。焼成体の流動径が19mm以上であるものを「○」、19mm未満のものを「×」とした。
 耐候性は、PCT(Pressure Cooker Test)による加速劣化試験で評価したものである。具体的には、上記で作製した焼成体を、121℃、2気圧、相対湿度100%の環境下で24時間保持した後、目視観察で、焼成体表面から析出物がないものを「〇」、それ以外を「×」とした。
 表から明らかなように、試料No.1~9、13~27の試料は、流動性と耐候性の評価が良好であった。一方、試料No.10は、ガラス組成中のVの含有量が少なく、CuOを含んでいないため、軟化点が高く流動性に劣っていた。試料No.11は、ガラス組成中のVの含有量が少ないため、軟化点が高く流動性に劣っていた。試料No.12は、ガラス組成中のVの含有量が多いため、焼成時にガラスが失透した。
 本発明のガラス組成物は、水晶振動子パッケージの封着に好適であり、それ以外にも、半導体集積回路、平面表示装置、LED用ガラス端子、窒化アルミニウム基板等の気密パッケージの封着に好適である。また金属、真空断熱ガラスの封着材料としても使用可能である。
 

Claims (11)

  1.  ガラス組成として、モル%で、TeO 15~80%、MoO+AgO 0.1~30%、V 5~40%、CuO 0.1~35%、PbO 0~10%を含有することを特徴とするガラス組成物。
  2.  ガラス組成として、モル%で、CuO 0.3~25%、LiO+NaO+KO 1~30%、MgO+CaO+SrO+BaO+ZnO 1~30%を含有し、実質的にSeOを含有しないことを特徴とする請求項1に記載のガラス組成物。
  3.  ZnOの含有量が0~25モル%であることを特徴とする請求項1又は2に記載のガラス組成物。
  4.  Nbの含有量が0~10モル%であることを特徴とする請求項1~3の何れかに記載のガラス組成物。
  5.  ガラス組成として、モル%で、Fe 0~10%、Al 0~10%、B 0~20%、WO 0~20%を含有することを特徴とする請求項1~4の何れかに記載のガラス組成物。
  6.  請求項1~5の何れかに記載のガラス組成物からなるガラス粉末 40~100体積%と、耐火性フィラー粉末 0~60体積%とを含有することを特徴とする封着材料。
  7.  耐火性フィラー粉末が略球状であることを特徴とする請求項6に記載の封着材料。
  8.  耐火性フィラー粉末の全部又は一部がZrWO(POであることを特徴とする請求項6又は7に記載の封着材料。
  9.  水晶振動子パッケージに用いることを特徴とする請求項6~8の何れかに記載の封着材料。
  10.  真空断熱ガラスに用いることを特徴とする請求項6~8の何れかに記載の封着材料。
  11.  請求項6~10の何れかに記載の封着材料とビークルとを含有することを特徴とする封着材料ペースト。
     
PCT/JP2022/029329 2021-08-26 2022-07-29 ガラス組成物及び封着材料 WO2023026771A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280057630.5A CN117881638A (zh) 2021-08-26 2022-07-29 玻璃组合物及密封材料

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-138019 2021-08-26
JP2021138019 2021-08-26
JP2022011449 2022-01-28
JP2022-011449 2022-01-28
JP2022-049241 2022-03-25
JP2022049241A JP2023033083A (ja) 2021-08-26 2022-03-25 ガラス組成物及び封着材料

Publications (1)

Publication Number Publication Date
WO2023026771A1 true WO2023026771A1 (ja) 2023-03-02

Family

ID=85323061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029329 WO2023026771A1 (ja) 2021-08-26 2022-07-29 ガラス組成物及び封着材料

Country Status (1)

Country Link
WO (1) WO2023026771A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293344A (ja) * 1989-04-19 1990-12-04 Natl Starch & Chem Corp 電子的用途に使用するのに好適な低軟化点金属酸化物ガラス
JP2018203549A (ja) * 2017-05-31 2018-12-27 日立化成株式会社 真空断熱部材及びその製造方法
JP2019142725A (ja) * 2018-02-16 2019-08-29 日本電気硝子株式会社 ガラス組成物及び封着材料
JP2019202921A (ja) 2018-05-25 2019-11-28 日本電気硝子株式会社 ガラス組成物及び封着材料
JP2020059615A (ja) * 2018-10-05 2020-04-16 日本電気硝子株式会社 ガラス組成物及び封着材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293344A (ja) * 1989-04-19 1990-12-04 Natl Starch & Chem Corp 電子的用途に使用するのに好適な低軟化点金属酸化物ガラス
JP2018203549A (ja) * 2017-05-31 2018-12-27 日立化成株式会社 真空断熱部材及びその製造方法
JP2019142725A (ja) * 2018-02-16 2019-08-29 日本電気硝子株式会社 ガラス組成物及び封着材料
JP2019202921A (ja) 2018-05-25 2019-11-28 日本電気硝子株式会社 ガラス組成物及び封着材料
JP2020059615A (ja) * 2018-10-05 2020-04-16 日本電気硝子株式会社 ガラス組成物及び封着材料

Similar Documents

Publication Publication Date Title
JP2006342044A (ja) バナジウムリン酸系ガラス
JP7222182B2 (ja) ガラス組成物及び封着材料
TWI784127B (zh) 玻璃組合物及密封材料
CN112789248B (zh) 玻璃组合物以及密封材料
JP5419249B2 (ja) ビスマス系ガラス組成物およびビスマス系封着材料
WO2023026771A1 (ja) ガラス組成物及び封着材料
JP7385169B2 (ja) ガラス組成物及び封着材料
CN113614042B (zh) 玻璃组合物以及密封材料
JP2023033083A (ja) ガラス組成物及び封着材料
JP2019089689A (ja) ガラス組成物及び封着材料
WO2022054526A1 (ja) ガラス組成物及び封着材料
CN113165957B (zh) 玻璃粉末以及使用了该玻璃粉末的封装材料
US20230059274A1 (en) Glass composition and sealing material
JP2018123015A (ja) 銀リン酸系ガラス組成物及び封着材料
JP7172209B2 (ja) 封着材料
WO2020262109A1 (ja) ガラス組成物及び封着材料
JP2024039789A (ja) 封着材料
JP2021130602A (ja) ガラス組成物及び封着材料
CN117881638A (zh) 玻璃组合物及密封材料
JP2018123016A (ja) 銀リン酸系ガラス組成物及び封着材料
JP2020040848A (ja) ガラス組成物及び封着材料
JP2019089685A (ja) バナジウムリン酸系ガラス組成物及び封着材料
JP2019073403A (ja) バナジウムリン酸系ガラス組成物及び封着材料
JP2018184314A (ja) 銀リン酸系ガラス組成物及び封着材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280057630.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022861062

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022861062

Country of ref document: EP

Effective date: 20240326