WO2023026605A1 - 空間浄化システム - Google Patents

空間浄化システム Download PDF

Info

Publication number
WO2023026605A1
WO2023026605A1 PCT/JP2022/020377 JP2022020377W WO2023026605A1 WO 2023026605 A1 WO2023026605 A1 WO 2023026605A1 JP 2022020377 W JP2022020377 W JP 2022020377W WO 2023026605 A1 WO2023026605 A1 WO 2023026605A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hypochlorous acid
control
mixing tank
unit
Prior art date
Application number
PCT/JP2022/020377
Other languages
English (en)
French (fr)
Inventor
智裕 林
裕貴 水野
真司 吉田
将秀 福本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021136973A external-priority patent/JP2023031471A/ja
Priority claimed from JP2021145172A external-priority patent/JP2023038448A/ja
Priority claimed from JP2021149062A external-priority patent/JP2023042012A/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP22860902.0A priority Critical patent/EP4394270A1/en
Priority to CN202280057166.XA priority patent/CN117836566A/zh
Priority to US18/681,990 priority patent/US20240350697A1/en
Publication of WO2023026605A1 publication Critical patent/WO2023026605A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • A61L9/145Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes air-liquid contact processes, e.g. scrubbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/16Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/117Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering
    • F24F8/133Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering by direct contact with liquid, e.g. with sprayed liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/02Inorganic materials
    • A61L2101/20Acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • A61L2209/111Sensor means, e.g. motion, brightness, scent, contaminant sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/13Dispensing or storing means for active compounds
    • A61L2209/135Vaporisers for active components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/16Connections to a HVAC unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F2006/008Air-humidifier with water reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states

Definitions

  • the present disclosure relates to a space purification device that atomizes water, blows out the inhaled air containing the atomized water, and emits the atomized water containing a purifying component.
  • an air conditioning system that sterilizes a space by discharging the air supplied indoors by bringing it into contact with a gas-liquid contact member portion containing a purifying component (for example, , see Patent Document 1).
  • the water (water containing the purifying component) stored in the device is generally dispersed along with the atomization operation.
  • the water containing the purifying component in the part and the purifying component are vaporized and released into the space.
  • the conventional space purifying device has a problem that it is not easy to adjust the amount of the purifying component released into the indoor space (into the air).
  • An object of the present disclosure is to provide a technology that facilitates adjustment of the amount of purification components released into the air.
  • a space purification system includes a hypochlorous acid water generation unit that generates hypochlorous acid water, and hypochlorous acid water that supplies hypochlorous acid water from the hypochlorous acid water generation unit to a mixing tank.
  • a supply unit, a water supply unit that supplies water to the mixing tank, a water level sensor for detecting the water level of the mixing tank, and a mixed water of hypochlorous acid water and water stored in the mixing tank is finely divided. It comprises a humidifying and purifying section that discharges into the air, a control section that controls supply processing in the hypochlorous acid water supply section and the water supply section, and drainage processing of the mixed water stored in the mixing tank.
  • the control unit performs first control for supplying hypochlorous acid water by the hypochlorous acid water supply unit at predetermined time intervals, and based on information on the water level of the mixing tank from the water level sensor, the water supply unit and a second control for supplying water by means of the second control, respectively, and a third control for draining the mixed water stored in the mixing tank based on the integrated humidification amount in the humidifying and purifying section as a drainage process.
  • FIG. 1 is a diagram showing the configuration of a space purification system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a block diagram showing the configuration of the controller of the space purification system according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a schematic diagram showing temporal changes (winter: first example) in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system according to Embodiment 1 of the present disclosure.
  • FIG. 4 is a schematic diagram showing temporal changes (summer: second example) in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system according to Embodiment 1 of the present disclosure.
  • FIG. 1 is a diagram showing the configuration of a space purification system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a block diagram showing the configuration of the controller of the space purification system according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a schematic diagram
  • FIG. 5 is a schematic diagram showing temporal changes (summer: third example) in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system according to Embodiment 1 of the present disclosure.
  • FIG. 6 is a diagram showing the configuration of a space purification system according to Embodiment 2 of the present disclosure.
  • FIG. 7 is a block diagram showing a configuration of a controller of a space purification system according to Embodiment 2 of the present disclosure.
  • FIG. 8 is a schematic diagram showing temporal changes (winter: first example) in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system according to Embodiment 2 of the present disclosure.
  • FIG. 9 is a schematic diagram showing temporal changes (summer: second example) in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a diagram showing the configuration of a space purification system according to Embodiment 3 of the present disclosure.
  • FIG. 11 is a block diagram showing a configuration of a controller of a space purification system according to Embodiment 3 of the present disclosure.
  • FIG. 12 is a schematic diagram showing temporal changes (winter: first example) in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system according to Embodiment 3 of the present disclosure.
  • FIG. 10 is a diagram showing the configuration of a space purification system according to Embodiment 3 of the present disclosure.
  • FIG. 11 is a block diagram showing a configuration of a controller of a space purification system according to Embodiment 3 of the present disclosure.
  • FIG. 13 is a schematic diagram showing changes over time (summer: second example) in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system according to Embodiment 3 of the present disclosure.
  • FIG. 14 is a schematic diagram showing temporal changes (summer: third example) in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system according to Embodiment 3 of the present disclosure.
  • a space purification system includes a hypochlorous acid water generation unit that generates hypochlorous acid water, and hypochlorous acid water that supplies hypochlorous acid water from the hypochlorous acid water generation unit to a mixing tank.
  • a supply unit, a water supply unit that supplies water to the mixing tank, a water level sensor for detecting the water level of the mixing tank, and a mixed water of hypochlorous acid water and water stored in the mixing tank is finely divided. It comprises a humidifying and purifying section that discharges into the air, a control section that controls supply processing in the hypochlorous acid water supply section and the water supply section, and drainage processing of the mixed water stored in the mixing tank.
  • the control unit performs first control for supplying hypochlorous acid water by the hypochlorous acid water supply unit at predetermined time intervals, and based on information on the water level of the mixing tank from the water level sensor, the water supply unit and a second control for supplying water by means of the second control, respectively, and a third control for draining the mixed water stored in the mixing tank based on the integrated humidification amount in the humidifying and purifying section as a drainage process.
  • the hypochlorous acid raised to a predetermined concentration can be contained in the air and released into the indoor space.
  • the amount of mixed water stored in the mixing tank is large, so the frequency of water supply to the mixing tank (second control The number of repetitions) increases, and in a state where the hypochlorous acid concentration of the mixed water in the mixing tank is low, the mixed water is finely divided and released into the air.
  • the frequency of draining the mixed water in the mixing tank increases, and the concentration of hypochlorous acid in the mixed water increases too much. can be suppressed.
  • the hypochlorous acid diluted to a predetermined concentration can be contained in the air and released into the indoor space. That is, in the space purification system, the amount of hypochlorous acid released into the air can be easily adjusted.
  • control unit causes the third control to be executed when the cumulative humidification amount becomes equal to or greater than the reference amount.
  • the space purification system can easily adjust the concentration of the hypochlorous acid water stored in the mixing tank based on the amount of humidification in the humidification purification section.
  • the cumulative humidification amount is preferably calculated based on the number of times the first control and the second control are executed. Therefore, the space purification system can easily calculate the integrated humidification amount, and can improve the controllability of the third control.
  • the control unit causes the third control to be executed when the number of times the first control is performed reaches the reference number of times.
  • the third control to drain the mixed water stored in the mixing tank before the concentration of hypochlorous acid water in the mixing tank becomes too high. is executed, the state in the mixing tank can be returned to the initial state of the operation. That is, the space purification system can help regulate the amount of hypochlorous acid released into the air.
  • the control unit preferably executes the third control immediately before executing the first control or the second control.
  • the control unit immediately after hypochlorous acid is supplied to the mixing tank by the first control, or immediately after water is supplied by the second control, drainage by the third control is not performed.
  • the hypochlorous acid water supplied by the first control or the water supplied by the second control can be used as long as possible, and the waste due to the drainage in the third control can be reduced.
  • the number of times the first control is performed is the second control.
  • the number of times the first control is performed is controlled to be greater than the number of times the second control is performed.
  • the required amount of humidification is less than the first standard value in the supply process, the mixed water is finely divided and released into the air while the hypochlorous acid concentration in the mixing tank is high.
  • the mixed water can be finely divided and released into the air while the hypochlorous acid concentration in the mixing tank is low. That is, in the space purifying device, hypochlorous acid can be applied to the air discharged from the humidifying and purifying section under conditions suitable for the environment of the indoor space based on the required amount of humidification.
  • FIG. 1 is a diagram showing the configuration of a space purification system 100 according to Embodiment 1 of the present disclosure.
  • the space purification system 100 When circulating the air in the indoor space 18, the space purification system 100 performs cooling processing (dehumidification processing) or heating processing on the air 8 (RA) from the indoor space 18 as necessary, and circulates the air inside.
  • It is a device that includes an air purifying component (hereinafter simply referred to as an "air purifying component”) together with atomized water.
  • the space purification system 100 sterilizes and deodorizes the indoor space 18 by supplying the air 9 (SA) that has circulated inside to the indoor space 18 .
  • SA air 9
  • hypochlorous acid is used as the air purification component
  • the water containing the air purification component is hypochlorous acid water.
  • the space purification system 100 mainly includes a space purification device 10, an air conditioner 15, and a hypochlorous acid water generator 30, as shown in FIG.
  • the space purification device 10 includes an air outlet 3, an air purification section 11, and an air purification control section 41.
  • the air conditioner 15 includes a suction port 2 , a blower 13 , a refrigerant coil 14 , and an air conditioning controller 42 .
  • Each of the space purification device 10 and the air conditioner 15 has a housing that constitutes the outer frame of the device, and the space purification device 10 and the air conditioner 15 are connected by a duct 24 .
  • the suction port 2 is formed on the side of the air conditioner 15 and the outlet 3 is formed on the side of the space cleaning device 10 .
  • the intake port 2 is an intake port that takes in the air 8 from the indoor space 18 into the air conditioner 15 .
  • the suction port 2 communicates through a duct 16 with an indoor suction port 16 a provided on the ceiling of an indoor space 18 or the like. As a result, the air inlet 2 can draw air in the indoor space 18 into the air conditioner 15 from the indoor air inlet 16a.
  • the air outlet 3 is an outlet for discharging the air 9 (SA) that has flowed through the space purification device 10 into the indoor space 18 .
  • the air outlet 3 communicates through a duct 17 with an indoor air outlet 17 a provided on the ceiling of an indoor space 18 or the like. As a result, the air outlet 3 can blow out the air 9 that has circulated inside the space cleaning device 10 toward the indoor space 18 from the indoor air outlet 17a.
  • air passages front air passage 4, middle air passage 5, rear air passage 6) communicating the suction port 2 and the air outlet 3 through the duct 24.
  • the front air passage 4 is an air passage adjacent to the suction port 2 .
  • a blower 13 and a refrigerant coil 14 are provided in the front air passage 4 .
  • the middle air passage 5 is an air passage through which the air 8 that has flowed through the front air passage 4 flows, at a position adjacent to the front air passage 4 (duct 24).
  • the middle air passage 5 is provided with an air purifier 11 in the air passage.
  • the rear air passage 6 is an air passage adjacent to the outlet 3, and in the rear air passage 6, the air 8 that has flowed through the middle air passage 5 flows through the air purification unit 11 and is purified with hypochlorous acid along with water that has been made finer. becomes air 9 containing
  • the air 8 sucked from the suction port 2 flows through the front air passage 4, the middle air passage 5 and the rear air passage 6, and is released as air 9 from the air outlet 3. blown out.
  • the blower 13 of the air conditioner 15 is a device for conveying the air 8 (RA) in the indoor space 18 from the suction port 2 into the air conditioner 15 .
  • the blower 13 is installed upstream of the refrigerant coil 14 in the front air passage 4 .
  • on/off of operation is controlled according to the blowing output information from the air conditioning control section 42 .
  • the air 8 in the indoor space 18 is taken into the air conditioner 15 and directed toward the refrigerant coil 14 .
  • the refrigerant coil 14 is a member arranged downstream of the blower 13 in the front air passage 4 to cool or heat the introduced air 8 .
  • the refrigerant coil 14 changes its output state (cooling, heating, or off) in accordance with the output signal from the air conditioning control unit 42 to change the cooling capacity (cooling amount) or heating capacity (heating amount) for the introduced air 8. adjust.
  • the introduced air 8 is cooled, the introduced air 8 is dehumidified. I can say.
  • the refrigerant coil 14 functions as a heat absorber or a heat radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber. is configured to absorb (cool) or dissipate (heat) heat to More specifically, the refrigerant coil 14 is connected to the outdoor unit 20 via a refrigerant circuit 21 through which refrigerant flows.
  • the outdoor unit 20 is an outdoor unit installed in the outdoor space 19, and has a compressor 20a, an expander 20b, an outdoor heat exchanger 20c, a blower fan 20d, and a four-way valve 20e. Since the outdoor unit 20 has a general configuration, detailed description of each device (compressor 20a, expander 20b, outdoor heat exchanger 20c, blower fan 20d, and four-way valve 20e) is omitted.
  • the four-way valve 20e Since the four-way valve 20e is connected to the refrigeration cycle including the refrigerant coil 14, in the air conditioner 15, the four-way valve 20e allows the refrigerant to flow in the first direction to cool and dehumidify the air (air 8). It is possible to switch between a cooling mode (dehumidifying mode) and a heating mode in which the four-way valve 20e circulates the refrigerant in the second direction to heat the air (air 8).
  • the first direction is the direction in which the refrigerant flows through the compressor 20a, the outdoor heat exchanger 20c, the expander 20b, and the refrigerant coil 14 in this order.
  • the second direction is the direction in which the refrigerant flows through the compressor 20a, the refrigerant coil 14, the expander 20b, and the outdoor heat exchanger 20c in this order.
  • the refrigerant coil 14 can cool or heat the introduced air (air 8).
  • the air purifier 11 of the space purifier 10 is a unit for humidifying the air 8 that is taken inside. During humidification, the air is made to contain hypochlorous acid together with finely divided water. More specifically, the air purification unit 11 has a mixing tank 92, a water level sensor 90, a humidification motor 11a, and a humidification nozzle 11b. The air purification unit 11 rotates the humidification nozzle 11b using the humidification motor 11a, sucks up the hypochlorous acid water stored in the mixing tank 92 of the air purification unit 11 by centrifugal force, and scatters it around (in the centrifugal direction).
  • ⁇ Centrifugal crushing type configuration is adopted in which water is added to the passing air by colliding and crushing.
  • the air purification unit 11 changes the number of rotations (hereinafter referred to as rotation output value) of the humidification motor 11a according to the output signal from the air purification control unit 41 to adjust the humidification capacity (humidification amount).
  • the amount of humidification can also be said to be the amount of addition of hypochlorous acid to the air.
  • the air purifier 11 corresponds to the "humidification purifier" in the claims.
  • the water level sensor 90 measures the water level of hypochlorous acid water stored in the mixing tank 92 and outputs the measured value to the air purification control section 41 . More specifically, the water level sensor 90 detects, as the water level of the hypochlorous acid water stored in the mixing tank 92, the water level at which the mixing tank 92 is dry, the water level at which the mixing tank 92 is full, and is measured, and the measured values are output to the air purification control unit 41 as water level information.
  • the reference water amount is the amount of water when the capacity of the mixing tank 92 is about 5/6.
  • the mixing tank 92 is a tank for storing the hypochlorous acid water in the air purifying section 11, and can also be said to be a water storage section.
  • the hypochlorous acid water having a predetermined concentration supplied from the hypochlorous acid water supply unit 36 described later and the water supplied from the water supply unit 50 described later are mixed in the tank and diluted. It is stored as mixed water consisting of hypochlorous acid water.
  • the hypochlorous acid water (mixed water) stored in the mixing tank 92 can be discharged from the mixing tank 92 to the outside by a drainage unit 60 that operates according to an output signal from the air purification control unit 41. ing.
  • the hypochlorous acid water generator 30 includes an electrolytic cell 31 , an electrode 32 , an electromagnetic valve 33 , a salt water tank 34 , a salt water transfer pump 35 , a water level sensor 39 , and a hypochlorous acid water supply unit 36 .
  • the salt water tank 34 stores salt water, and supplies salt water to the electrolytic cell 31 via the salt water conveying pump 35 according to the output signal from the air purification control unit 41 .
  • the electrolytic cell 31 stores salt water to be electrolyzed supplied from the salt water tank 34 .
  • Tap water is also supplied to the electrolytic cell 31 from a water supply pipe such as tap water through an electromagnetic valve 33 in response to an output signal from the air purification control unit 41, and the supplied tap water and salt water are mixed and mixed in advance. Salt water with a defined concentration is stored.
  • the electrode 32 is arranged in the electrolytic bath 31 and electrolyzes salt water for a predetermined time by energization in response to an output signal from the air purification control unit 41 to generate hypochlorous acid water having a predetermined concentration.
  • the electrolytic cell 31 generates hypochlorous acid water by electrolyzing a chloride aqueous solution (for example, a sodium chloride aqueous solution) as an electrolyte between a pair of electrodes. Since a common device is used for the electrolytic cell 31, detailed description is omitted.
  • the electrolyte is an electrolyte that can generate hypochlorous acid water, and is not particularly limited as long as it contains chloride ions even in a small amount.
  • sodium chloride, calcium chloride, or magnesium chloride is dissolved as a solute. and an aqueous solution.
  • an aqueous sodium chloride solution salt water in which sodium chloride is added to water is used as the electrolyte.
  • the water level sensor 39 measures the water level in the electrolytic cell 31 and outputs the measured value to the air purification control section 41 .
  • the hypochlorous acid water supply unit 36 supplies hypochlorous acid water from the electrolytic cell 31 to the mixing tank 92 of the air purification unit 11 according to the output signal from the air purification control unit 41 .
  • the hypochlorous acid water supply unit 36 has a hypochlorous acid water transport pump 37 and a water pipe 38 .
  • the hypochlorous acid water transfer pump 37 sends out the hypochlorous acid water in the electrolytic cell 31 to the water pipe 38 according to the output signal from the air purification control unit 41 .
  • the water pipe 38 is connected between the hypochlorous acid water conveying pump 37 and the mixing tank 92 and feeds the hypochlorous acid water toward the mixing tank 92 .
  • the water supply unit 50 supplies water to the mixing tank 92 according to the output signal from the air purification control unit 41 .
  • the water supply unit 50 has an electromagnetic valve 51 and a water pipe 52 .
  • the electromagnetic valve 51 controls whether or not water supplied from a water pipe outside the space purification device 10 is allowed to flow through the water pipe 52 according to an output signal from the air purification control section 41 .
  • the water pipe 52 is connected between the electromagnetic valve 51 and the mixing tank 92 and feeds water toward the mixing tank 92 .
  • the drain section 60 is connected to the bottom of the mixing tank 92 and discharges the mixed water stored in the mixing tank 92 to the outside according to the output signal from the air purification control section 41 .
  • the drain section 60 has an electromagnetic valve 61 and a water pipe 62 .
  • the solenoid valve 61 controls whether or not to flow the mixed water stored in the mixing tank 92 to an external drain pipe according to the output signal from the air purification control section 41 .
  • the water pipe 62 is connected between the mixing tank 92 and the solenoid valve 61, and feeds the mixed water to an external drain pipe.
  • hypochlorous acid water from the hypochlorous acid water supply unit 36 and water from the water supply unit 50 are supplied to the mixing tank 92 . Then, the hypochlorous acid water and water are mixed in the mixing tank 92 of the air purifier 11 .
  • Mixed water of hypochlorous acid water and water can also be called hypochlorous acid water. More specifically, in the mixing tank 92 of the air purification unit 11, hypochlorous acid water from the hypochlorous acid water supply unit 36 or the water supply unit is added to the hypochlorous acid water remaining in the mixing tank 92 50 are each fed and mixed.
  • the air purifier 11 discharges the hypochlorous acid water into the indoor space 18 by centrifugally crushing the mixed water of hypochlorous acid water and water stored in the mixing tank 92 .
  • the micronized hypochlorous acid water is discharged into the indoor space 18 with the liquid component evaporated.
  • An operation device 43 is installed on the wall surface of the indoor space 18 .
  • the operating device 43 has a user interface that can be operated by the user, and receives temperature setting values and humidity setting values from the user.
  • the operating device 43 includes a temperature/humidity sensor 44 that measures the temperature and humidity of the air in the indoor space 18 .
  • a well-known technique may be used to measure the temperature and humidity in the temperature/humidity sensor 44, so the explanation is omitted here.
  • the operation device 43 is connected to the air purification control unit 41 and the air conditioning control unit 42 by wire or wirelessly, and transmits the temperature setting value, the humidity setting value, the temperature measurement value, and the humidity measurement value to the air purification control unit 41. and to the air conditioning control unit 42 . All of these pieces of information may be transmitted together, arbitrary two or more may be transmitted together, and each of them may be transmitted. Alternatively, the operation device 43 may transmit information to the air purification control section 41 , and the air purification control section 41 may transfer the information to the air conditioning control section 42 .
  • the air conditioning control unit 42 of the air conditioner 15 receives the temperature setting value and the temperature measurement value, and controls the refrigerant coil 14 and the outdoor unit 20 so that the temperature measurement value approaches the temperature setting value. In the heating mode, when the measured temperature value is lower than the set temperature value, the air conditioning control unit 42 increases the degree of heating as the difference between the measured temperature value and the set temperature value increases.
  • the air purification control unit 41 as the processing operations of the hypochlorous acid water generating unit 30 and the space purification device 10, relates to operations related to electrolysis processing in the electrolytic cell 31 and processing related to supply of hypochlorous acid water to the air purification unit 11. It controls operations, operations related to water supply processing to the air purification unit 11, operations related to humidification purification processing in the air purification unit 11, and operations related to mixed water drainage processing in the air purification unit 11, respectively.
  • the air purification control unit 41 has a computer system having a processor and memory. The computer system functions as a controller by the processor executing the program stored in the memory.
  • the program executed by the processor is recorded in advance in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. may be provided through Also, the air purification control unit 41 corresponds to the "control unit" in the claims.
  • FIG. 2 is a block diagram showing the configuration of the air purification control section 41 of the space purification system 100 according to Embodiment 1.
  • the air purification control section 41 includes an input section 41a, a storage section 41b, a clock section 41c, a processing section 41d, and an output section 41e.
  • the air purification control unit 41 causes the following processes to be executed as operations related to the electrolysis process in the electrolytic cell 31 .
  • the air purification control unit 41 receives water level information (dry water signal) from the water level sensor 39 and information on time (time information) from the timing unit 41c as a trigger for electrolysis processing of the electrolytic cell 31, and outputs the information to the processing unit 41d. do.
  • the processing unit 41d identifies control information based on the water level information from the water level sensor 39, the time information from the clock unit 41c, and the setting information from the storage unit 41b, and outputs it to the output unit 41e.
  • the setting information includes information on the start time or end time of hypochlorous acid water generation, information on the supply amount of tap water to be introduced into the electrolytic cell 31, and input of the liquid containing chloride ions in the salt water transfer pump 35.
  • Information on the amount, information on the electrolysis conditions (time, current value, voltage, etc.) in the electrode 32, information on the opening/closing timing of the solenoid valve 33, and information on the on/off operation of the hypochlorous acid water transfer pump 37 are included. .
  • the electrolysis conditions in the electrode 32 can be determined from the amount of tap water in the electrolytic cell 31, the chloride ion concentration, the electrolysis time, and the degree of deterioration of the electrode 32, and are set by creating an algorithm. 41b.
  • the output unit 41e outputs a signal (control signal) to each device (salt water transport pump 35, solenoid valve 33, and hypochlorous acid water transport pump 37) based on the received control information.
  • the salt water conveying pump 35 is kept stopped based on the signal from the output section 41e, and the hypochlorous acid water conveying pump 37 is stopped based on the signal from the output section 41e. maintain state.
  • the solenoid valve 33 is opened based on the signal from the output section 41e.
  • supply of tap water from the water pipe is started to the electrolytic cell 31 .
  • the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the water level information (full water) from the water level sensor 39.
  • FIG. As a result, the electrolytic cell 31 is supplied with tap water at the set supply rate.
  • the salt water conveying pump 35 starts operating based on a signal from the output section 41e, conveys the liquid containing a predetermined amount of chloride ions to the electrolytic cell 31, and then stops.
  • the chloride ions are dissolved in the tap water, and the electrolytic cell 31 is in a state where an aqueous solution (chloride aqueous solution) containing a predetermined amount of chloride ions is generated.
  • the electrode 32 starts electrolysis of the chloride aqueous solution based on the signal from the output section 41e, generates hypochlorous acid water under the set conditions, and stops the electrolysis.
  • the hypochlorous acid water generated by the electrode 32 has, for example, a hypochlorous acid concentration of 100 ppm to 150 ppm (eg, 120 ppm) and a pH of 7 to 8.5 (eg, 8.0). .
  • the air purification control unit 41 performs electrolysis processing in the electrolytic cell 31 to generate hypochlorous acid water with a predetermined concentration and amount.
  • the air purification control unit 41 causes the following processing to be executed as operations related to the hypochlorous acid water supply processing to the air purification unit 11 .
  • the timer unit 41c measures the operation time of the humidification motor 11a as a trigger for supplying hypochlorous acid water to the air purification unit 11, and the operation time elapses for a predetermined time (for example, 60 minutes).
  • a hypochlorous acid water supply request is output to the hypochlorous acid water generating unit 30 (hypochlorous acid water supply unit 36).
  • the predetermined time is a time estimated in advance by experimental evaluation, based on the fact that hypochlorous acid in the hypochlorous acid water evaporates and decreases over time.
  • the processing unit 41d identifies the control information based on the information about time (time information) from the clock unit 41c and the setting information from the storage unit 41b, and outputs the control information to the output unit 41e.
  • the setting information includes information about the hypochlorous acid water supply interval (for example, 60 minutes) and information about the ON/OFF operation of the hypochlorous acid water transfer pump 37 .
  • the output unit 41e outputs a signal (control signal) to the hypochlorous acid water transport pump 37 of the hypochlorous acid water supply unit 36 based on the received control information.
  • the hypochlorous acid water transport pump 37 operates based on the signal from the output section 41e. At this time, if the amount of water in the mixing tank 92 is equal to or greater than the standard amount of water, the hypochlorous acid water transport pump 37 waits until the amount of water in the mixing tank 92 becomes less than the standard amount of water. The operation is started when the chloric acid water is consumed and the amount of water in the mixing tank 92 becomes less than the standard amount of water. In this embodiment, the reference water volume is about 5/6 of the capacity of the mixing tank 92 . As a result, in the hypochlorous acid water generating unit 30, supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (mixing tank 92) is started.
  • the hypochlorous acid water generated unit 30 in order to ensure the concentration of the hypochlorous acid water stored in the electrolytic cell 31, when the hypochlorous acid water is supplied from the hypochlorous acid water generation unit 30 to the mixing tank 92, The hypochlorous acid water produced is supplied in full. Therefore, after the hypochlorous acid water is supplied, the electrolytic cell 31 is in an empty state, and the hypochlorous acid water is not started from the state where the hypochlorous acid water remains in the electrolytic cell 31. .
  • the water level sensor 39 outputs a water shortage signal as water level information when the hypochlorous acid water in the electrolytic cell 31 is completely supplied.
  • the hypochlorous acid water conveying pump 37 stops based on the signal from the output section 41e that receives the time information (required time for supplying the specified amount) from the clock section 41c.
  • the hypochlorous acid water generator 30 supplies the hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (mixing tank 92) at the set supply amount.
  • the air purification control unit 41 causes the hypochlorous acid water supply process from the hypochlorous acid water generation unit 30 (the electrolytic cell 31) to the air purification unit 11 to be executed.
  • the control in which the air purification control unit 41 causes the hypochlorous acid water supply unit 36 to supply the hypochlorous acid water at predetermined time intervals is referred to as "first control".
  • the air purification control unit 41 causes the following processes to be executed as operations related to water supply processing to the air purification unit 11 .
  • the air purification control unit 41 receives water level information (dry water signal) from the water level sensor 90 of the space purification device 10 as a trigger for water supply processing to the air purification unit 11, and outputs a water supply request to the water supply unit 50. do.
  • the input unit 41a receives water level information (a water shortage signal) from the water level sensor 90 of the space purification device 10 and outputs it to the processing unit 41d.
  • water level information a water shortage signal
  • the processing unit 41d specifies control information based on the water level information (water shortage signal) from the input unit 41a, the time information (time information) from the clock unit 41c, and the setting information from the storage unit 41b, and outputs the output unit 41e.
  • the setting information includes information regarding the ON/OFF operation of the solenoid valve 51 of the water supply section 50 .
  • the output unit 41e outputs a signal (control signal) to the electromagnetic valve 51 based on the received control information.
  • the solenoid valve 51 operates based on the signal from the output section 41e. As a result, in the water supply unit 50 , supply of water from the external water supply pipe to the air cleaning unit 11 (mixing tank 92 ) is started via the water pipe 52 .
  • the solenoid valve 51 stops based on the signal from the output section 41e that receives the water level information (full water signal) from the water level sensor 90 of the space purification device 10. Thereby, the water supply unit 50 supplies water from the external water supply pipe to the air purification unit 11 (mixing tank 92) until the set amount of water is reached.
  • the air purification control unit 41 causes the water supply unit 50 to supply water to the air purification unit 11 .
  • the control in which the air purification control unit 41 supplies water by the water supply unit 50 based on the information (water shortage information) about the water level of the mixing tank 92 from the water level sensor 90 is referred to as "second control".
  • the input unit 41a receives user input information from the operation device 43, temperature and humidity information of the air in the indoor space 18 from the temperature and humidity sensor 44, and hypochlorous acid water (mixed water) in the mixing tank 92 from the water level sensor 90. ) and receive the water level information.
  • the input unit 41a outputs each received information to the processing unit 41d.
  • the operation device 43 inputs user input information (for example, air volume, target temperature, target humidity, presence or absence of addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.) regarding the space purification device 10. It is a terminal that communicates with the air purification control unit 41 wirelessly or by wire.
  • user input information for example, air volume, target temperature, target humidity, presence or absence of addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.
  • the temperature/humidity sensor 44 is a sensor that is provided in the indoor space 18 and senses the temperature/humidity of the air in the indoor space 18 .
  • the storage unit 41b stores user input information received by the input unit 41a and supply setting information in the operation of supplying hypochlorous acid to the air circulating in the device.
  • the storage unit 41b outputs the stored supply setting information to the processing unit 41d.
  • the supply setting information in the hypochlorous acid supply operation can also be said to be the humidification setting information in the humidification purification operation of the air purifier 11 .
  • the clocking unit 41c outputs time information regarding the current time to the processing unit 41d.
  • the processing unit 41d receives various information (user input information, temperature/humidity information, water level information) from the input unit 41a, time information from the clock unit 41c, and supply setting information from the storage unit 41b.
  • the processing unit 41d uses the received user input information, time information, and supply setting information to identify control information related to the humidification/purification operation.
  • the processing unit 41d detects the target humidity stored in the storage unit 41b and the temperature/humidity information of the air in the indoor space 18 from the temperature/humidity sensor 44 at regular time intervals based on the time information from the clock unit 41c. Identifies the required humidification demand for the indoor space 18 based on the humidity difference between. Then, the processing unit 41d identifies control information related to the humidifying and purifying operation based on the identified humidification request amount and the supply setting information stored in the storage unit 41b. Then, the processing unit 41d outputs the specified control information to the output unit 41e.
  • the processing unit 41d If the water level information from the water level sensor 90 includes water level information (water shortage signal) indicating a water shortage of the hypochlorous acid water (mixed water) in the mixing tank 92, the processing unit 41d outputs the output unit 41e outputs the signal of the water supply request
  • a predetermined time for example, 60 minutes
  • the water level at which the hypochlorous acid water (mixed water) in the mixing tank 92 indicates a water shortage is about 1% from the state where the hypochlorous acid water (mixed water) in the mixing tank 92 is full.
  • the water level is set when the amount of hypochlorous acid water is reduced to /3.
  • the output unit 41e outputs the received signals to the air purification unit 11, the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36), and the water supply unit 50, respectively.
  • the air purifying unit 11 receives a signal from the output unit 41e, and controls the driving operation based on the received signal.
  • the hypochlorous acid water generating unit 30 receives a signal (hypochlorous acid water supply request signal) from the output unit 41e, and based on the received signal, An operation (first control) relating to the process of supplying hypochlorous acid water to the air purifier 11 described above is executed.
  • the water supply unit 50 receives a signal (a water supply request signal) from the output unit 41e, and based on the received signal, performs an operation (second control) related to water supply processing to the air purification unit 11 described above. to run.
  • the air purification control unit 41 supplies hypochlorous acid water by the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36) as supply processing at predetermined time intervals.
  • a first control and a second control for supplying water by the water supply unit 50 based on information (water shortage information) about the water level of the mixing tank 92 from the water level sensor 90 are respectively executed, and mixed water is stored in the mixing tank 92. do.
  • the air purification control unit 41 controls the hypochlorous acid water supply cycle (every predetermined time) and the water The supply cycle (every water shortage detection) is made different, and the air circulating through the space purification device 10 (air purification unit 11) is subjected to humidification purification processing.
  • the air purification control unit 41 causes the following processes to be executed as operations related to the drainage of the mixed water stored in the mixing tank 92 of the air purification unit 11 .
  • the air purification control unit 41 uses, as a trigger for the drainage processing of the mixed water stored in the mixing tank 92, information on the integrated value (integrated humidification amount) of the amount of humidification in the air purification unit 11, or the hypochlorous acid water supply unit Based on the information on the number of executions of the first control in 36, it is determined whether or not the wastewater treatment is to be performed.
  • the storage unit 41b stores the number of times the hypochlorous acid water supply unit 36 executes the first control and the water supply unit 50 executes the second control.
  • the number of times of execution is based on the initial state of the mixing tank 92 (for example, the state where the mixing tank 92 is filled with water and hypochlorous acid water supplied after wastewater treatment). It is the number of times of each control executed after the start of the processing operation (hereinafter also referred to as “after the start of operation”).
  • the processing unit 41d Based on the information on the number of times the hypochlorous acid water supply unit 36 executes the first control and the information on the number of times the water supply unit 50 executes the second control from the storage unit 41b, the processing unit 41d performs Specify the integrated value of the amount of humidification (integrated amount of humidification).
  • the integrated humidification amount is the total amount of water supply to the mixing tank 92 after the start of operation (the total amount of hypochlorous acid water supplied by the first control and the amount of water supplied by the second control), It corresponds to the amount of mixed water consumed/decreased by the air purifier 11 after the start of operation.
  • the cumulative humidification amount is also referred to as a cumulative humidification amount.
  • the processing unit 41d determines whether or not the identified cumulative humidification amount is equal to or greater than the reference amount, and whether or not the number of executions of the first control is the reference number.
  • the amount of hypochlorous acid water supplied by the first control is about 1/6 of the capacity of the mixing tank 92
  • the amount of water supplied by the second control is about 2/3 of the capacity of the mixing tank 92
  • the reference amount is is set to about twice the capacity of the mixing tank 92 .
  • the reference number of times is set to 11 times, which is just before the reference amount is reached only by the supply of hypochlorous acid water by the first control.
  • the processing unit 41d obtains information about time (time information) from the timer 41c. and the setting information from the storage unit 41b, and outputs the control information to the output unit 41e.
  • the setting information includes information regarding the ON/OFF operation of the solenoid valve 61 of the drainage section 60 .
  • the output unit 41e outputs a signal (control signal) to the solenoid valve 61 based on the received control information.
  • the solenoid valve 61 operates based on the signal from the output section 41e. As a result, in the drainage section 60 , the mixed water starts to be discharged from the mixing tank 92 to the external drainage pipe via the water pipe 62 .
  • the electromagnetic valve 61 stops after a predetermined time (for example, 1 minute) has elapsed based on the signal from the output section 41e that has received the time information from the clock section 41c. As a result, the mixed water stored in the mixing tank 92 is all discharged, and the mixing tank 92 becomes empty.
  • a predetermined time for example, 1 minute
  • the air purification control unit 41 causes the mixed water to be discharged from the mixing tank 92 to the outside.
  • the air purification control unit 41 causes the drainage unit 60 to drain the mixed water based on the information regarding the cumulative humidification amount in the air purification unit 11 or the information regarding the number of executions of the first control in the hypochlorous acid water supply unit 36.
  • the control to be performed is called "third control".
  • the third control is preferably performed immediately before the hypochlorous acid water supply unit 36 executes the first control or immediately before the water supply unit 50 executes the second control.
  • the third control is performed immediately after new hypochlorous acid water is supplied to the mixing tank 92 by the first control, or immediately after new water is supplied by the second control. Therefore, the mixed water stored in the mixing tank 92 can be used as long as possible, and waste due to drainage in the third control can be reduced.
  • FIG. 3 is a schematic diagram showing temporal changes in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system 100 (winter: first example). More specifically, (a) of FIG. 3 shows temporal changes in the amount of hypochlorous acid water (mixed water) in the mixing tank 92 . (b) of FIG. 3 shows changes in concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 over time. (c) of FIG.
  • FIG. 4 is a schematic diagram showing changes over time in the amount of water, the concentration of hypochlorous acid water, and the concentration of hypochlorous acid in the space purification system 100 (summer: second example). More specifically, (a) of FIG. 4 shows changes over time in the amount of hypochlorous acid water (mixed water) in the mixing tank 92 . (b) of FIG. 4 shows changes in concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 over time. (c) of FIG. 4 shows changes over time in the concentration of hypochlorous acid contained in the air at the outlet 3 .
  • FIG. 4 is a schematic diagram showing changes over time in the amount of water, the concentration of hypochlorous acid water, and the concentration of hypochlorous acid in the space purification system 100 (summer: second example). More specifically, (a) of FIG. 4 shows changes over time in the amount of hypochlorous acid water (mixed water) in the mixing tank 92 . (b) of FIG. 4 shows changes in
  • FIG. 5 is a schematic diagram showing temporal changes in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system 100 (summer: third example). More specifically, (a) of FIG. 5 shows temporal changes in the amount of hypochlorous acid water (mixed water) in the mixing tank 92 . (b) of FIG. 5 shows changes in concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 over time. (c) of FIG. 5 shows changes over time in the concentration of hypochlorous acid contained in the air at the outlet 3 .
  • the supply of hypochlorous acid water to the mixing tank 92 is performed at predetermined time intervals (one hour), and the supply of water to the mixing tank 92 is determined by the water level sensor 90 at the water level at which the mixing tank 92 is dry. is executed each time it detects Further, the drainage process is performed based on the result of determination based on the cumulative humidification amount or the number of times the first control is performed, which is performed immediately before the first control is performed. More specifically, the wastewater treatment is performed when the cumulative humidification amount reaches a reference amount (approximately twice the capacity of the mixing tank 92) or more, or when the number of times the first control is executed reaches the reference number of times (11 times). is executed if Note that the drainage process may be performed not only immediately before the first control is executed but also immediately before the second control is executed.
  • hypochlorous acid water (mixed water) in the mixing tank 92 reaches a water level at which the water level is low, the hypochlorous acid water (mixed water) in the mixing tank 92 is About 1/3 remains.
  • the air purifier 11 operates with a constant required amount of humidification during the humidifying and purifying operation time.
  • the predetermined amount of hypochlorous acid water supplied to the mixing tank 92 is hereinafter also referred to as "hypochlorous acid water undiluted solution”.
  • the supply of water (second control) is performed three times during the period up to 2 hours of operation after the start of operation of the air purification unit 11, and the supply of the hypochlorous acid water undiluted solution
  • the wastewater treatment (third control) under the humidification/purification condition in which the (first control) is executed once will be described.
  • the above-described humidification/purification conditions are such that the number of times the first control is performed is less than the number of times the second control is performed when the required amount of humidification for the air purification section 11 is equal to or greater than the first reference value.
  • 11 is a condition set based on the control.
  • the first reference value is a value set to distinguish between a situation in which the air is dry with low humidity in the winter in Japan and a situation in which the air is humid and humid in the summer in Japan. .
  • the hypochlorous acid water undiluted solution is supplied (first control) to the mixing tank 92 at 0 hours, 1 hour, 2 hours, It is executed at the timing of 3 hours.
  • the supply of water to the mixing tank 92 (second control) is executed at times a, b, c, and so on.
  • hypochlorous acid water and water are supplied to the mixing tank 92, respectively.
  • the determination of the drainage of the mixed water stored in the mixing tank 92 is performed immediately before the execution of the first control at the timing of 1 hour, 2 hours, 3 hours, and so on.
  • the integrated humidification amount is Therefore, it is determined that the cumulative humidification amount is less than the reference amount (twice the capacity of the mixing tank 92). Also, the number of executions of the first control is 0, and it is determined that it has not reached the reference number of times (11 times). After receiving the determination result, the first control is executed, and the hypochlorous acid water undiluted solution is supplied to the mixing tank 92 .
  • the integrated humidification amount is the first control once and the second The supply amount (approximately 2.1 times the capacity of the mixing tank 92) based on the control three times is reached, and it is determined that the integrated humidification amount is equal to or greater than the reference amount (twice the capacity of the mixing tank 92). Also, the number of executions of the first control is 1, and it is determined that the reference number of times (11 times) has not been reached. After receiving the determination result, the third control is executed, and the mixed water in the mixing tank 92 is drained.
  • the hypochlorous acid water undiluted solution and water are newly supplied to the mixing tank 92, and the mixing tank 92 has the same hypochlorous acid concentration as in the initial state.
  • the tank is filled with acid water (mixed water).
  • the timing of 2 hours is regarded as the initial state (0 hours), and the same supply operation and drainage operation are repeated every 2 hours.
  • the mixing tank 92 is filled with a mixture of hypochlorous acid undiluted solution and water (also hypochlorous acid water) until it is full. Then, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and the water shortage is detected at the timing of a time from the start of the operation, and water is supplied from the water supply unit 50 until the mixing tank 92 is full. be. After that, while the water level of the mixed water decreases at a constant speed due to the humidifying and purifying operation, one hour, which is the supply timing of the undiluted solution for hypochlorous acid spraying, is approached, and the mixed water drainage determination is performed at this timing of one hour.
  • the number of times water is supplied by the second control is 1 time
  • the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 0, and the number of times the first control is executed has not reached the reference number of times (11 times).
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 92, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 30 (hypochlorous acid water It is supplied to the mixing tank 92 from the acid water supply unit 36).
  • the water level in the mixing tank 92 rises slightly.
  • the water level of the mixed water continues to decrease due to the humidifying and purifying operation, and the water becomes scarce again at times b and c from the start of operation, and water is supplied from the water supply unit 50 until the mixing tank 92 is full. .
  • the water discharge judgment is made.
  • the hypochlorous acid water stock solution and water are newly supplied to the mixing tank 92, and the mixing tank 92 is in the initial state (0 hour). Same as , it is filled with hypochlorous acid water (mixed water) of a predetermined concentration.
  • the integrated humidification amount (the number of executions of the first control and the second control) is reset, and storage of the integrated humidification amount is started again.
  • the timing of 2 hours is regarded as the initial state (0 hours), and the same supply operation and drainage operation are repeated every 2 hours. More specifically, as before, water is supplied by the second control at the timing of water shortage, and hypochlorous acid water undiluted solution is supplied by the first control at the timing of hypochlorous acid water supply. repeat. Then, immediately before the execution of the first control, it is determined whether the mixed water is drained by the third control, and when the conditions are satisfied, the third control is executed.
  • the hypochlorous acid water undiluted solution and mixed water of water are mixed in the mixing tank 92 so as to have a predetermined concentration (initial concentration). Then, when the humidifying and purifying operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 decreases with the passage of time from the start of the operation to the time a. This is because hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid is vaporized and given to the air at a certain rate with respect to the concentration of hypochlorous acid water. be.
  • the hypochlorous acid water is Although the concentration of the hypochlorous acid water in the mixing tank 92 decreases at a constant speed, the concentration of the hypochlorous acid water in the mixing tank 92 does not change. Also, the concentration of hypochlorous acid water is not zero even at time a when the water level sensor 90 detects a water shortage because, as described above, even if a water shortage is detected, the hypochlorous acid solution in the mixing tank 92 is not zero. This is because chloric acid water (mixed water) remains.
  • hypochlorous acid water in the mixing tank 92 is diluted with water as the water is supplied from the water supply unit 50.
  • the concentration of chlorous acid water decreases.
  • the concentration of hypochlorous acid water (mixed water) slightly decreases due to vaporization of hypochlorous acid until one hour, which is the supply timing of hypochlorous water, is reached.
  • hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36).
  • concentration of the hypochlorous acid water in the mixing tank 92 rises above the initial concentration. This is a predetermined amount of hypochlorous acid supplied at the beginning of operation for mixed water (water containing hypochlorous acid), which is less than the water supplied at the beginning of operation (0 hour). This is because water (hypochlorous acid water undiluted solution) is supplied.
  • the concentration of the hypochlorous acid water decreases due to the vaporization of hypochlorous acid from the start of operation until b time (water shortage detection).
  • the decrease rate of hypochlorous acid is faster than at the initial stage of operation because the content of hypochlorous acid contained in the mixed water is large, and the amount of hypochlorous acid vaporized is also large.
  • the hypochlorous acid water in the mixing tank 92 is diluted with water as the water is supplied from the water supply unit 50.
  • the concentration of chlorous acid water decreases.
  • the concentration similarly decreases due to volatilization during b time (drought detection) to c time (drought detection), and at c time (drought detection), water is supplied from the water supply unit 50 to the mixing tank. Since the hypochlorous acid water in 92 is diluted with water, the concentration of the hypochlorous acid water in mixing tank 92 decreases.
  • hypochlorous acid water mixed water
  • concentration of hypochlorous acid water decreases slightly due to the vaporization of hypochlorous acid until 2 hours, which is the supply timing of hypochlorous water.
  • the concentration of hypochlorous acid contained in the air 9 discharged from the blowout port 3 is determined by the amount of humidification in the air purification unit 11 and the concentration of hypochlorous acid water in the mixing tank 92, but in the first example , the humidification amount is constant, so the concentration of the hypochlorous acid water in the mixing tank 92 is reflected. Therefore, as shown in (c) of FIG. 3, the concentration of hypochlorous acid contained in the air 9 of the outlet 3 is the concentration of hypochlorous acid water in the mixing tank 92 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .
  • the state from the start of operation (time 0) to time a It will be repeated until the timing of 2 hours.
  • the average concentration of hypochlorous acid contained in the air 9 from the outlet 3 is, for example, the conventional average concentration.
  • the state is the same as the conventional state from the start of operation (0 hour) to the time a, but the state is different from the conventional state from the time a to 2 hours.
  • the concentration of hypochlorous acid water is higher than the initial concentration (period from 1 to b) is shorter than the period smaller than the initial concentration (period from time a to 1 hour, period from time b to 2 hours). Therefore, the average concentration of hypochlorous acid contained in the air 9 from the outlet 3 is lower than the conventional average concentration during the period from the start of operation (0 hour) to 2 hours.
  • the density change from 0 hours to 2 hours is repeated, so that the density does not continue to rise and it is possible to keep maintaining a lower average density than before.
  • hypochlorous acid water undiluted solution and water are supplied to the mixing tank 92 and the mixed water is stored, the hypochlorous acid water undiluted water supply cycle (every predetermined time), By differentiating the water supply cycle (every water shortage detection) and performing drainage treatment of the mixed water according to the cumulative humidification amount, hypochlorite water and water are supplied to the mixing tank 92 by the conventional method.
  • concentration of hypochlorous acid contained in the air 9 at the outlet 3, that is, the air blown into the indoor space 18 can be reduced.
  • water supply (second control) is performed once during a period of up to 9 hours after the start of operation of the air purification unit 11, and the hypochlorous acid water undiluted solution is produced.
  • the wastewater treatment (third control) under the humidification/purification condition in which the supply (first control) is executed eight times will be described.
  • the humidification/purification conditions described above are such that when the required amount of humidification for the air purification unit 11 is less than the first reference value, the number of times the first control is performed is greater than the number of times the second control is performed.
  • 11 is a condition set based on the control.
  • the supply of the hypochlorous acid water undiluted solution to the mixing tank 92 is 1 hour, 2 hours, It is executed at the timing of 3 hours.
  • the supply of water to the mixing tank 92 (second control) is executed at the timing of the time a.
  • hypochlorous acid water and water are supplied to the mixing tank 92, respectively. ) is filled with water (initial state).
  • the determination of the drainage of the mixed water stored in the mixing tank 92 is performed immediately before the execution of the first control at the timing of 1 hour, 2 hours, 3 hours, and so on.
  • the mixing tank 92 is filled with water or hypochlorous acid water. Since none of the stock solutions is supplied, it is determined that the cumulative humidification amount is less than the reference amount (twice the capacity of the mixing tank 92). Furthermore, it is determined that the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 0, and the number of times the first control is executed has not reached the reference number of times (11 times). After receiving the determination result, the first control is executed, and the hypochlorous acid water undiluted solution is supplied to the mixing tank 92 .
  • the mixed water drainage determination is executed at the timing of 2 hours when the operating time after the start of operation is up to 2 hours (the operating time is 0 hours or more and less than 2 hours).
  • the cumulative humidification amount is the supply amount based on one first control (approximately 0.16 times the capacity of the mixing tank 92), and the cumulative humidification amount is the reference amount (the capacity of the mixing tank 92). 2 times). Furthermore, it is determined that the number of times the hypochlorous acid water undiluted solution is supplied by the first control is one time, and the number of executions of the first control has not reached the reference number of times (11 times). After receiving the determination result, the first control is executed, and the hypochlorous acid water undiluted solution is supplied to the mixing tank 92 .
  • the same control is executed until the timing of 8 hours when the operation time after the start of operation is up to 8 hours (period of operation time from 0 hours to less than 8 hours).
  • the mixed water drainage judgment is executed at the timing of 9 hours, which is the period of operation time up to 9 hours after the start of operation (period of operation time from 0 hours to less than 9 hours).
  • the cumulative humidification amount is the supply amount (approximately twice the capacity of the mixing tank 92) based on the first control eight times and the second control once, and the cumulative humidification amount is the reference amount (mixing tank 92 capacity) or more.
  • the third control is executed, and the mixed water in the mixing tank 92 is drained.
  • the hypochlorous acid water undiluted solution and water are newly supplied to the mixing tank 92, and the mixing tank 92 has the same hypochlorous acid concentration as in the initial state.
  • the tank is filled with acid water (mixed water).
  • the timing of 9 hours is regarded as the initial state (0 hours), and the same supply operation and drainage operation are repeated every 9 hours.
  • the mixing tank 92 is filled with a mixture of hypochlorous acid undiluted solution and water (also hypochlorous acid water) until it is full. Then, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and one hour, which is the supply timing of the hypochlorite water, is approached. Then, at the timing of this one hour, the mixed water drainage determination is executed.
  • the integrated humidification amount is the reference amount (capacity of the mixing tank 92 2 times). Furthermore, it is determined that the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 0, and the number of times the first control is executed has not reached the reference number of times (11 times).
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 92, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 30 (hypochlorous acid water It is supplied to the mixing tank 92 from the acid water supply unit 36).
  • the water level in the mixing tank 92 rises slightly.
  • the water level of the mixed water continues to decrease due to the humidifying and purifying operation, and 2 hours, which is the supply timing of the hypochlorite water, is approaching. Then, at this timing of 2 hours, the mixed water drainage judgment is executed.
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 92, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 30 (hypochlorous acid water It is supplied to the mixing tank 92 from the acid water supply unit 36).
  • the water level in the mixing tank 92 rises slightly.
  • the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation. After 2 hours, if this is repeated, the amount of the mixed water will gradually decrease as a whole.
  • the water level of the mixed water decreases at a constant speed due to the humidification and purification operation, and the 9 hours, which is the supply timing of the undiluted hypochlorite solution, is reached. Then, at this timing of 9 hours, the mixed water drainage judgment is executed.
  • the number of times of supplying water by the second control is 1 time
  • the cumulative humidification amount is equal to or greater than the reference amount (twice the capacity of the mixing tank 92).
  • the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 8 times, and the number of times the first control is executed has not reached the reference number of times (11 times).
  • the third control is executed, and the mixed water in the mixing tank 92 is drained.
  • the hypochlorous acid water stock solution and water are newly supplied to the mixing tank 92, and the mixing tank 92 is in the initial state (0 hour). Same as , it is filled with hypochlorous acid water (mixed water) of a predetermined concentration.
  • the integrated humidification amount (the number of executions of the first control and the second control) is reset, and storage of the integrated humidification amount is started again.
  • the timing of 9 hours is regarded as the initial state (0 hours), and the same supply operation and drainage operation are repeated every 9 hours. More specifically, as before, water is supplied by the second control at the timing of water shortage, and hypochlorous acid water undiluted solution is supplied by the first control at the timing of hypochlorous acid water supply. repeat. Then, immediately before the execution of the first control, it is determined whether the mixed water is drained by the third control, and when the conditions are satisfied, the third control is executed.
  • the hypochlorous acid water undiluted solution and mixed water of water are mixed in the mixing tank 92 so as to have a predetermined concentration (initial concentration). Then, when the humidifying and purifying operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 decreases with the lapse of time from the start of the operation to one hour. As described above, hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid vaporizes at a certain rate with respect to the concentration of hypochlorous acid water and is given to the air. This is because
  • hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36).
  • the concentration of the hypochlorous acid water in the mixing tank 92 rises above the initial concentration. As described above, this is supplied at the beginning of operation to the mixed water (water containing hypochlorous acid), which is less than the amount of mixed water stored at the beginning of operation (0 hours). This is because a predetermined amount of hypochlorous acid water (hypochlorous acid water undiluted solution) is supplied. Thereafter, the concentration of hypochlorous acid water (mixed water) decreases due to vaporization of hypochlorous acid for 2 hours from the start of operation.
  • hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36).
  • concentration of the hypochlorous acid water in the mixing tank 92 further increases to the initial concentration or higher.
  • concentration of hypochlorous acid water (mixed water) decreases due to evaporation of hypochlorous acid until 3 hours after the start of operation.
  • concentration change of the hypochlorous acid water (mixed water) is repeated until the timing of 8 hours thereafter, and the concentration of the hypochlorous acid water (mixed water) gradually increases.
  • the hypochlorous acid water in the mixing tank 92 is diluted with water as the water is supplied from the water supply unit 50.
  • the concentration of chlorous acid water decreases.
  • the concentration of the hypochlorous acid water in the mixing tank 92 remains above the initial concentration. After that, the concentration of hypochlorous acid water (mixed water) slightly decreases due to vaporization of hypochlorous acid until 9 hours, which is the supply timing of hypochlorous water, is reached.
  • the drainage timing is reached based on the drainage determination, so all the hypochlorous acid water (mixed water) in the mixing tank 92 is drained. After that, water and hypochlorous acid water undiluted solution are respectively supplied into the mixing tank 92, and the concentration of the hypochlorous acid water in the mixing tank 92 becomes the same state as at the beginning of the operation (time 0). After that, the concentration change of the hypochlorous acid water (mixed water) is repeated in the same manner as before.
  • the concentration of hypochlorous acid contained in the air 9 discharged from the air outlet 3 is determined by the amount of humidification in the air purifier 11 and the concentration of hypochlorous acid water in the mixing tank 92, as in winter in Japan. Therefore, as shown in (c) of FIG. 4, the concentration of hypochlorous acid contained in the air 9 of the outlet 3 is the concentration of hypochlorous acid water in the mixing tank 92 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .
  • hypochlorous acid water undiluted solution and water are supplied to fill the water every time the water level sensor 90 detects a water shortage, hypochlorous acid water is supplied from the start of operation (0 hours) to 9 hours.
  • the acid water concentration will continue to decrease.
  • the average concentration of hypochlorous acid contained in the air 9 from the outlet 3 is, for example, the conventional average concentration.
  • the state is the same as before from the start of operation (0 hours) to 1 hour, but the state is different from the conventional state during the period from 1 hour to 9 hours. More specifically, in the period from 1 hour to 9 hours, as shown in FIG. much longer. Therefore, the average concentration of hypochlorous acid contained in the air 9 of the outlet 3 is higher than the conventional average concentration during the period from the start of operation (0 hour) to 9 hours.
  • the wastewater treatment is performed under humidification and purification conditions in which water supply (second control) is not executed even once during a period of up to 12 hours after the start of operation of the air purification unit 11. (third control) will be described. That is, in the third example, only the hypochlorous acid water undiluted solution is supplied (first control) at predetermined time intervals.
  • the hypochlorous acid water undiluted solution is supplied (first control) to the mixing tank 92 at 0 hours, 1 hour, 2 hours, It is executed at the timings of A time, B time, C time, .
  • the supply of water to the mixing tank 92 (second control) is not performed for at least 12 hours.
  • hypochlorous acid water and water are supplied to the mixing tank 92, respectively.
  • the reason why the supply of the hypochlorous acid water undiluted solution to the mixing tank 92 (first control) is delayed is that the amount of humidification by the air purification unit 11 is small and the mixed water stored in the mixing tank 92 is consumed. is longer than 1 hour, the mixed water is consumed by the humidification purification process, and the supply is on standby until the amount of water in the mixing tank 92 becomes less than the reference water amount (approximately 5/6 of the capacity of the mixing tank 92). It is for The standard amount of water is set based on the supply amount of hypochlorous acid water undiluted solution (approximately 1/6 of the capacity of the mixing tank 92).
  • the hypochlorous acid water undiluted solution in the third example is supplied at timings A, B, C, . is included in the "first control for supplying hypochlorous acid water at predetermined time intervals" in the claims.
  • the determination of the drainage of the mixed water stored in the mixing tank 92 is performed immediately before the execution of the first control at the timings of A time, B time, C time, and so on.
  • the mixing tank 92 is filled with water or Since none of the hypochlorous acid water undiluted solution is supplied, it is determined that the cumulative humidification amount is less than the reference amount (twice the capacity of the mixing tank 92). Furthermore, it is determined that the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 0, and the number of times the first control is executed has not reached the reference number of times (11 times). After receiving the determination result, the first control is executed, and the hypochlorous acid water undiluted solution is supplied to the mixing tank 92 . Since the undiluted hypochlorous acid solution is supplied with the amount of hypochlorous acid water substantially equal to the reference water amount, the mixing tank 92 is filled with the undiluted hypochlorous acid solution by the first control.
  • the mixed water discharge determination is performed at the timing of B, which is the period up to B hours corresponding to the operation time of 2 hours after the start of operation (period of operation time of 0 hours or more and less than B hours).
  • the cumulative humidification amount is the supply amount based on one first control (approximately 0.16 times the capacity of the mixing tank 92), and the cumulative humidification amount is the reference amount (the capacity of the mixing tank 92). 2 times). Furthermore, it is determined that the number of times the hypochlorous acid water undiluted solution is supplied by the first control is one time, and the number of executions of the first control has not reached the reference number of times (11 times). After receiving the determination result, the first control is executed, and the hypochlorous acid water undiluted solution is supplied to the mixing tank 92 .
  • the same control is performed until the timing of K hours, which is the period up to K hours corresponding to 11 hours of operation after the start of operation (the period of operation time from 0 hours to less than K hours).
  • the mixed water discharge determination is performed at the timing of L hours, which is the period up to L hours corresponding to the operating time of 12 hours after the start of operation (the operating time is 0 hours or more and less than L hours). .
  • the cumulative humidification amount is the supply amount (approximately 1.8 times the capacity of the mixing tank 92) based on the 11th first control, and the cumulative humidification amount is the reference amount (the capacity of the mixing tank 92). 2 times). Furthermore, it is determined that the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 11 times, and the number of times the first control is executed is the reference number of times (11 times).
  • the third control is executed, and the mixed water in the mixing tank 92 is drained. Furthermore, after the execution of the third control, the hypochlorous acid water undiluted solution and water are newly supplied to the mixing tank 92, and the mixing tank 92 has the same hypochlorous acid concentration as in the initial state.
  • the tank is filled with acid water (mixed water).
  • the timing of L hours is regarded as the initial state (0 hours), and the same supply operation and drain operation are repeated every L hours.
  • the mixing tank 92 is filled with a mixture of hypochlorous acid undiluted solution and water (also hypochlorous acid water) until it is full. Then, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and time A, which is the supply timing of the hypochlorite water, is reached. Then, at the timing of this A time, the mixed water drainage determination is executed.
  • the integrated humidification amount is the reference amount (capacity of the mixing tank 92 2 times). Furthermore, it is determined that the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 0, and the number of times the first control is executed has not reached the reference number of times (11 times).
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 92, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 30 (hypochlorous acid water It is supplied to the mixing tank 92 from the acid water supply unit 36).
  • the water level in the mixing tank 92 rises to the full state.
  • time B which is the supply timing of the hypochlorous water, is reached. Then, at the timing of this B time, the mixed water drainage judgment is executed.
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 92, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 30 (hypochlorous acid water It is supplied to the mixing tank 92 from the acid water supply unit 36).
  • the water level in the mixing tank 92 rises to the full state.
  • the amount of mixed water decreases at a constant speed due to the humidification and purification operation, the amount of mixed water only increases or decreases between the full water state and the reference water amount.
  • the time L which is the supply timing of the undiluted hypochlorite sprinkling solution, is reached, and the mixed water drainage determination is performed at the timing of this L time.
  • the hypochlorous acid water undiluted solution has been supplied 11 times by the first control, so the cumulative humidification amount is about 1.8 times ( ⁇ about 1/6) the capacity of the mixing tank 92. ⁇ 11 times), and it is determined that the cumulative humidification amount is less than the reference amount (twice the capacity of the mixing tank 92). Furthermore, the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 11 times, and it is determined that the number of times the first control is executed has reached the reference number of times (11 times). After receiving the determination result, the third control is executed, and the mixed water in the mixing tank 92 is drained.
  • the hypochlorous acid water stock solution and water are newly supplied to the mixing tank 92, and the mixing tank 92 is in the initial state (0 hour). Same as , it is filled with hypochlorous acid water (mixed water) of a predetermined concentration.
  • the integrated humidification amount (the number of executions of the first control) is reset, and storage of the integrated humidification amount is started again.
  • the timing of L hours is regarded as the initial state (0 hours), and the same supply operation and drain operation are repeated every L hours. More specifically, as before, the hypochlorous acid water undiluted solution is repeatedly supplied by the first control at the hypochlorous acid water supply timing. Then, immediately before the execution of the first control, it is determined whether the mixed water is drained by the third control, and when the conditions are satisfied, the third control is executed. Then, the water level of the hypochlorous acid water (mixed water) in the mixing tank 92 increases or decreases corresponding to each operation.
  • the hypochlorous acid water undiluted solution and mixed water of water are mixed in the mixing tank 92 so as to have a predetermined concentration (initial concentration). Then, when the humidifying and purifying operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 decreases with the lapse of time from the start of the operation to the time A. As described above, hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid vaporizes at a certain rate with respect to the concentration of hypochlorous acid water and is given to the air. This is because
  • the hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36).
  • the concentration of the hypochlorous acid water in the mixing tank 92 rises above the initial concentration. As described above, this is supplied at the beginning of operation to the mixed water (water containing hypochlorous acid), which is less than the amount of mixed water stored at the beginning of operation (0 hours). This is because a predetermined amount of hypochlorous acid water (hypochlorous acid water undiluted solution) is supplied.
  • the concentration of hypochlorous acid water (mixed water) decreases due to evaporation of hypochlorous acid from the start of operation to time B.
  • the hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36).
  • the concentration of the hypochlorous acid water in the mixing tank 92 further increases to the initial concentration or higher.
  • the concentration of hypochlorous acid water (mixed water) decreases due to vaporization of hypochlorous acid from the start of operation until time C.
  • the concentration change of the hypochlorous acid water (mixed water) is repeated, and the concentration of the hypochlorous acid water (mixed water) gradually increases.
  • the drainage timing is reached based on the drainage determination, so all the hypochlorous acid water (mixed water) in the mixing tank 92 is drained. After that, water and hypochlorous acid water undiluted solution are respectively supplied into the mixing tank 92, and the concentration of the hypochlorous acid water in the mixing tank 92 becomes the same state as at the beginning of the operation (time 0). After that, the concentration change of the hypochlorous acid water (mixed water) is repeated in the same manner as before.
  • the concentration of hypochlorous acid contained in the air 9 discharged from the air outlet 3 is determined by the amount of humidification in the air purifier 11 and the concentration of hypochlorous acid water in the mixing tank 92, as in winter in Japan. Therefore, as shown in (c) of FIG. 5, the concentration of hypochlorous acid contained in the air 9 of the outlet 3 is the concentration of hypochlorous acid water in the mixing tank 92 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .
  • hypochlorous acid water undiluted solution and water are supplied to fill the water every time the water level sensor 90 detects a water shortage, hypochlorous acid from the start of operation (0 hours) to L hours The acid water concentration will continue to decrease.
  • the average concentration of hypochlorous acid contained in the air 9 from the outlet 3 is, for example, the conventional average concentration.
  • the state from the start of operation (time 0) to time A is the same as before, but the state from time A to time L is different from the conventional state. More specifically, in the period from time A to time L, as shown in FIG. much longer. Therefore, the average concentration of hypochlorous acid contained in the air 9 of the outlet 3 is higher than the conventional average concentration in the period from the start of operation (0 hour) to 12 hours.
  • the concentration of the mixed water is repeated every L hours with L hours as one cycle. It is possible to keep adjusting the concentration of hypochlorous acid water within the range. In other words, if the humidifying and purifying operation is continued, the concentration of the hypochlorous acid water in the mixing tank 92 may increase too much, but the waste water determination control is performed according to the number of times the hypochlorous acid water undiluted solution is supplied by the first control.
  • the concentration of hypochlorous acid water in the mixing tank 92 and thus the amount of hypochlorous acid contained in the air 9 of the outlet 3 can be reset at regular intervals, and the hypochlorous acid to the indoor space 18 can be reset.
  • the supply amount of chloric acid gas can be controlled.
  • hypochlorous acid water is supplied into the mixing tank 92 every preset time (for example, 1 hour) as the first control, and the water from the water level sensor 90 is supplied as the second control.
  • the process of supplying water based on the water level information (water shortage signal) is executed, and as the third control, the mixed water in the mixing tank 92 is drained based on the integrated humidification amount or the number of times the first control is executed.
  • the air purification control unit 41 of the space purification system 100 is based on the required amount of humidification required for the air purification unit 11 (the required amount of humidification corresponding to winter in Japan or the required amount of humidification corresponding to summer in Japan).
  • the number of times the first control is performed within the predetermined period and the number of times the second control is performed within the predetermined period are made different.
  • air 9 with a lower hypochlorous acid content can be released into the indoor space 18 compared to the conventional method.
  • the air 9 with a high hypochlorous acid content can be discharged into the indoor space 18 as compared with the conventional method.
  • the humidifying and purifying operation is continued for a long time, it is possible to suppress an excessive increase in the concentration of hypochlorous acid released into the indoor space 18.
  • the mixing tank 92 can be easily controlled (first control, second control, third control).
  • the concentration of hypochlorous acid water inside (the concentration of hypochlorous acid contained in the air 9 blown into the indoor space 18) can be adjusted.
  • the space purification system 100 includes a hypochlorous acid water generating unit 30 that generates hypochlorous acid water, and a hypochlorous acid water generating unit 30 that supplies the hypochlorous acid water to the mixing tank 92.
  • the air purifying unit 11 that refines the mixed water with water and releases it into the air, the supply processing in the hypochlorous acid water supply unit 36 and the water supply unit 50, and the mixed water stored in the mixing tank 92. and an air purification control unit 41 for controlling the processing.
  • the air purification control unit 41 performs first control to supply the hypochlorous acid water by the hypochlorous acid water supply unit 36 every predetermined time (for example, 60 minutes), and A second control for supplying water by the water supply unit 50 based on information on the water level of the mixing tank 92 (water shortage information) is executed, and as wastewater treatment, mixing is performed based on the integrated humidification amount in the air purification unit 11
  • the third control for draining the mixed water stored in the tank 92 is executed.
  • the air purification control unit 41 causes the third control to be executed when the cumulative amount of humidification is greater than or equal to the reference amount. Thereby, the space purification system 100 can easily adjust the concentration of the hypochlorous acid water stored in the mixing tank 92 based on the amount of humidification in the air purification section 11 .
  • the cumulative humidification amount is calculated based on the number of times the first control and the second control are executed.
  • the space purification system 100 can easily and accurately calculate the integrated humidification amount, and can improve the controllability of the third control.
  • the air purification control unit 41 executes the third control when the number of times the first control is performed reaches the reference number of times. As a result, even when the space purification system 100 is operated for a long time (for example, 24 hours), the mixed water stored in the mixing tank 92 is drained before the hypochlorous acid water concentration in the mixing tank 92 becomes too high. By executing the third control, the state inside the mixing tank 92 can be returned to the initial state of operation. That is, the space purification system 100 can facilitate adjustment of the amount of hypochlorous acid released into the air.
  • the air purification control unit 41 executes the third control immediately before executing the first control.
  • the drainage by the third control is not performed immediately after the hypochlorous acid is supplied to the mixing tank 92 by the first control.
  • the acid water can be used for as long as possible, and waste due to drainage in the third control can be reduced.
  • the air purification control unit 41 may execute the third control immediately before executing the second control in addition to the first control, or execute it only immediately before executing the second control. may Even in this way, in the space purification system 100, the water is drained by the third control immediately after the hypochlorous acid is supplied to the mixing tank 92 by the first control, or immediately after the water is supplied by the second control. Therefore, the hypochlorous acid water supplied by the first control or the water supplied by the second control can be used for a maximum period of time, and waste due to drainage in the third control can be reduced.
  • the air purification control unit 41 performs the first control the second number of times when the required amount of humidification required of the air purification unit 11 is equal to or greater than the first reference value in the supply process.
  • control is performed so that the number of times the first control is performed is greater than the number of times the second control is performed.
  • the space purification system 100 can add hypochlorous acid to the air 9 emitted from the air purification unit 11 under conditions suitable for the environment of the indoor space 18 based on the required amount of humidification.
  • the air purification section 11 is described as operating with a constant required amount of humidification during the humidification purification operation time. However, in practice, it operates at a required humidification amount specified based on the humidity difference between the target humidity and the humidity of the air in the indoor space 18 at regular intervals.
  • the integrated humidification amount is calculated based on the number of times the first control is executed and the number of times the second control is executed, but this is not the only option.
  • the integrated amount of humidification may be calculated from the amount of change in temperature and humidity obtained from the temperature and humidity sensors.
  • the reference number of times is set to 11 times, which is just before the reference amount is reached only by the supply of hypochlorous acid water by the first control, but it is not limited to this.
  • the reference number of times may be set based on the concentration of the hypochlorous acid water supplied by the first control, that is, the concentration of the hypochlorous acid water generated in the hypochlorous acid water generation unit 30. good.
  • the mixed water stored in the mixing tank 92 can be drained before the hypochlorous acid water concentration in the mixing tank 92 becomes too high.
  • Embodiment 2 As a conventional space purifier, there is known an air conditioning system that sterilizes a space by contacting and releasing the air supplied indoors to a gas-liquid contact member portion containing a purifying component (for example, Patent Document 1).
  • the water (water containing the purifying component) stored in the device is generally dispersed along with the atomization operation.
  • the water containing the purifying component in the part and the purifying component are vaporized and released into the space.
  • the purification component (hypochlorous acid) is not vaporized because the water (hypochlorous acid water) containing the finely divided purification component is difficult to evaporate, and the purification component enters the indoor space. is less likely to be released.
  • a large amount of humidification for example, when warmed air with a low relative humidity (for example, 20 ° C.
  • the conventional space purifying device has a problem that it is not easy to adjust the amount of the purifying component released into the indoor space (into the air).
  • the present disclosure aims to solve the conventional problems described above, and aims to provide a technique that facilitates adjustment of the amount of purification components released into the air.
  • the space purification system includes a hypochlorous acid water generation unit that generates hypochlorous acid water, and hypochlorous acid water from the hypochlorous acid water generation unit to the mixing tank.
  • a hypochlorous acid water supply unit that supplies acid water
  • a water supply unit that supplies water to the mixing tank
  • a water level sensor for detecting the water level of the mixing tank
  • hypochlorous acid water stored in the mixing tank Controls the humidifying and purifying unit that atomizes the mixed water of water and water and releases it into the air, the supply processing in the hypochlorous acid water supply unit and the water supply unit, and the drainage processing of the mixed water stored in the mixing tank and a control unit.
  • the control unit performs first control for supplying hypochlorous acid water by the hypochlorous acid water supply unit at predetermined time intervals, and based on information on the water level of the mixing tank from the water level sensor, the water supply unit and a second control for supplying water by each, and as wastewater treatment, when the first control is continuously performed a predetermined number of times, a third control for draining the mixed water stored in the mixing tank is performed. , which achieves the intended purpose.
  • the space purification system includes a hypochlorous acid water generation unit that generates hypochlorous acid water, and a hypochlorous acid water generation unit that supplies hypochlorous acid water to the mixing tank.
  • a chlorous acid water supply unit a water supply unit that supplies water to the mixing tank, a water level sensor for detecting the water level of the mixing tank, and mixed water of hypochlorous acid water and water stored in the mixing tank
  • a humidifying and purifying unit that refines and releases it into the air
  • a control unit that controls supply processing in the hypochlorous acid water supply unit and the water supply unit, and drainage processing of the mixed water stored in the mixing tank .
  • the control unit performs first control for supplying hypochlorous acid water by the hypochlorous acid water supply unit at predetermined time intervals, and based on information on the water level of the mixing tank from the water level sensor, the water supply unit and a second control for supplying water by means of water, and a third control for draining the mixed water stored in the mixing tank when the first control is continuously performed a predetermined number of times as drainage treatment.
  • the hypochlorous acid raised to a predetermined concentration can be contained in the air and released into the indoor space.
  • air with low relative humidity such as in winter in Japan
  • the amount of mixed water stored in the mixing tank is large, so the frequency of water supply to the mixing tank (second control The number of repetitions) increases, and in a state where the hypochlorous acid concentration of the mixed water in the mixing tank is low, the mixed water is finely divided and released into the air.
  • hypochlorous acid diluted to a predetermined concentration can be contained in the air and released into the indoor space. That is, in the space purification system, the amount of hypochlorous acid released into the air can be easily adjusted.
  • the control unit preferably causes the third control to be executed immediately before executing the first control after the first control is continuously executed a predetermined number of times.
  • the drainage by the third control is not performed immediately after the hypochlorous acid is supplied to the mixing tank by the first control, so the hypochlorous acid water supplied by the first control can be used for as long as possible and waste due to drainage in the tertiary control can be reduced.
  • the controller preferably sets the predetermined number of times in the third control based on the concentration of the hypochlorous acid water supplied by the first control.
  • the controller preferably sets the predetermined number of times in the third control based on the concentration of the hypochlorous acid water supplied by the first control.
  • FIG. 6 is a diagram showing the configuration of a space purification system 1100 according to Embodiment 2 of the present disclosure.
  • the space purification system 1100 performs cooling processing (dehumidification processing) or heating processing on the air 1008 (RA1) from the indoor space 1018 as necessary, and circulates the air inside.
  • It is a device that makes the air 1008 containing fine water and a component for purifying the air (hereinafter simply referred to as "air purifying component").
  • the space purification system 1100 sterilizes and deodorizes the indoor space 1018 by supplying the air 1009 (SA1) that has circulated inside to the indoor space 1018 .
  • SA1 air 1009
  • hypochlorous acid is used as the air purification component
  • the water containing the air purification component is hypochlorous acid water.
  • the space purification system 1100 mainly includes a space purification device 1010, an air conditioner 1015, and a hypochlorous acid water generator 1030, as shown in FIG.
  • the space purification device 1010 includes an air outlet 1003 , an air purification section 1011 and an air purification control section 1041 .
  • Air conditioner 1015 includes inlet 1002 , blower 1013 , refrigerant coil 1014 , and air conditioner controller 1042 .
  • Each of the space purification device 1010 and the air conditioner 1015 has a housing that constitutes the outer frame of the device, and the space purification device 1010 and the air conditioner 1015 are connected by a duct 1024 .
  • an air intake port 1002 is formed on the side surface of the air conditioner 1015 and an air outlet port 1003 is formed on the side surface of the space cleaning device 1010 .
  • the intake port 1002 is an intake port that takes in the air 1008 from the indoor space 1018 into the air conditioner 1015 .
  • the suction port 1002 communicates through a duct 1016 with an indoor suction port 1016a provided on the ceiling of an indoor space 1018 or the like. As a result, the air inlet 1002 can draw air in the indoor space 1018 into the air conditioner 1015 from the indoor air inlet 1016a.
  • the air outlet 1003 is an outlet for discharging the air 1009 (SA1) that has flowed through the space purification device 1010 into the indoor space 1018.
  • the air outlet 1003 communicates with an indoor air outlet 1017 a provided on the ceiling of an indoor space 1018 through a duct 1017 .
  • the air outlet 1003 can blow out the air 1009 that has flowed through the space cleaning device 1010 toward the indoor space 1018 from the indoor air outlet 1017a.
  • front air passage 1004 is an air passage adjacent to the suction port 1002 .
  • a blower 1013 and a refrigerant coil 1014 are provided in the front air passage 1004 .
  • the middle air passage 1005 is an air passage through which the air 1008 that has flowed through the front air passage 1004 circulates at a position adjacent to the front air passage 1004 (duct 1024).
  • the middle air passage 1005 is provided with an air purifier 1011 in the air passage.
  • the rear air passage 1006 is an air passage adjacent to the outlet 1003.
  • the air 1008 that has flowed through the middle air passage 1005 flows through the air purifier 1011 and is mixed with hypochlorous acid with water that has been atomized. becomes air 1009 containing
  • the air 1008 sucked from the suction port 1002 flows through the front air passage 1004, flows through the middle air passage 1005 and the rear air passage 1006, and exits the air outlet 1003 as air 1009. blown out.
  • the blower 1013 of the air conditioner 1015 is a device for conveying the air 1008 (RA1) in the indoor space 1018 from the suction port 1002 into the air conditioner 1015.
  • the blower 1013 is installed upstream of the refrigerant coil 1014 in the front air passage 1004 .
  • on/off of the operation is controlled according to the fan output information from the air conditioning control section 1042 .
  • the air 1008 in the indoor space 1018 is taken into the air conditioner 1015 and directed toward the refrigerant coil 1014 .
  • the refrigerant coil 1014 is a member arranged downstream of the blower 1013 in the front air passage 1004 and cooling or heating the introduced air 1008 .
  • Refrigerant coil 1014 changes its output state (cooling, heating, or off) in accordance with an output signal from air conditioning control unit 1042 to adjust cooling capacity (cooling amount) or heating capacity (heating amount) for introduced air 1008. adjust.
  • the introduced air 1008 is cooled, the introduced air 1008 is dehumidified. I can say.
  • Refrigerant coil 1014 functions as a heat absorber or a heat radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber. is configured to absorb (cool) or dissipate (heat) heat to More specifically, the refrigerant coil 1014 is connected to the outdoor unit 1020 via a refrigerant circuit 1021 through which refrigerant flows.
  • the outdoor unit 1020 is an outdoor unit installed in the outdoor space 1019, and has a compressor 1020a, an expander 1020b, an outdoor heat exchanger 1020c, a blower fan 1020d, and a four-way valve 1020e. Since the outdoor unit 1020 has a general configuration, detailed description of each device (compressor 1020a, expander 1020b, outdoor heat exchanger 1020c, blower fan 1020d, and four-way valve 1020e) is omitted.
  • the four-way valve 1020e Since the four-way valve 1020e is connected to the refrigeration cycle including the refrigerant coil 1014, in the air conditioner 1015, the four-way valve 1020e allows the refrigerant to flow in the first direction to cool and dehumidify the air (air 1008). It is possible to switch between a cooling mode (dehumidifying mode) state and a heating mode state in which the four-way valve 1020e circulates the refrigerant in the second direction to heat the air (air 1008).
  • a cooling mode dehumidifying mode
  • a heating mode state in which the four-way valve 1020e circulates the refrigerant in the second direction to heat the air (air 1008).
  • the first direction is the direction in which the refrigerant flows through the compressor 1020a, the outdoor heat exchanger 1020c, the expander 1020b, and the refrigerant coil 1014 in this order.
  • the second direction is the direction in which the refrigerant flows through the compressor 1020a, the refrigerant coil 1014, the expander 1020b, and the outdoor heat exchanger 1020c in this order.
  • Refrigerant coil 1014 can cool or heat the incoming air (air 1008).
  • the air purifier 1011 of the space purifier 1010 is a unit for humidifying the air 1008 taken into the interior. During humidification, the air is made to contain hypochlorous acid together with atomized water. More specifically, the air purification section 1011 has a mixing tank 1092, a water level sensor 1090, a humidification motor 1011a, and a humidification nozzle 1011b.
  • the air purifying unit 1011 rotates the humidifying nozzle 1011b using the humidifying motor 1011a, sucks up the hypochlorous acid water stored in the mixing tank 1092 of the air purifying unit 1011 by centrifugal force, and scatters it around (in the centrifugal direction).
  • ⁇ Centrifugal crushing type configuration is adopted in which water is added to the passing air by colliding and crushing.
  • the air purification unit 1011 changes the number of rotations (hereinafter referred to as rotation output value) of the humidification motor 1011a according to the output signal from the air purification control unit 1041 to adjust the humidification capacity (humidification amount).
  • the amount of humidification can also be said to be the amount of addition of hypochlorous acid to the air.
  • the air purifier 1011 corresponds to the "humidification purifier" in the claims.
  • the water level sensor 1090 measures the water level of hypochlorous acid water stored in the mixing tank 1092 and outputs the measured value to the air purification control section 1041 . More specifically, the water level sensor 1090 measures the water level at which the mixing tank 1092 is in a dry state and the water level at which the mixing tank 1092 is full as the water level of the hypochlorous acid water stored in the mixing tank 1092, The measured value is output to the air purification control section 1041 as water level information.
  • the water level at which the mixing tank 1092 is in a dry state is the water level when the amount of hypochlorous acid water in the mixing tank 1092 has decreased from the full state to about 1/3. is set to
  • the mixing tank 1092 is a tank for storing hypochlorous acid water in the air purifier 1011, and can also be said to be a water storage part.
  • hypochlorous acid water having a predetermined concentration supplied from a hypochlorous acid water supply unit 1036 described later and water supplied from a water supply unit 1050 described later are mixed in the tank and diluted. It is stored as mixed water consisting of hypochlorous acid water.
  • the hypochlorous acid water (mixed water) stored in the mixing tank 1092 can be discharged from the mixing tank 1092 to the outside by a drainage unit 1060 that operates according to an output signal from the air purification control unit 1041. ing.
  • the hypochlorous acid water generating unit 1030 includes an electrolytic cell 1031, an electrode 1032, an electromagnetic valve 1033, a salt water tank 1034, a salt water conveying pump 1035, a water level sensor 1039, and a hypochlorous acid water supply unit 1036.
  • the salt water tank 1034 stores salt water, and supplies salt water to the electrolytic cell 1031 via the salt water conveying pump 1035 according to the output signal from the air purification control unit 1041 .
  • the electrolytic cell 1031 stores salt water to be electrolyzed supplied from the salt water tank 1034 .
  • Tap water is also supplied to the electrolytic cell 1031 from a water supply pipe such as tap water through an electromagnetic valve 1033 in response to an output signal from the air purification control unit 1041, and the supplied tap water and salt water are mixed and mixed in advance. Salt water with a defined concentration is stored.
  • the electrode 1032 is arranged in the electrolytic cell 1031 and electrolyzes salt water for a predetermined period of time by energization according to an output signal from the air purification control unit 1041 to generate hypochlorous acid water having a predetermined concentration. That is, the electrolytic cell 1031 generates hypochlorous acid water by electrolyzing a chloride aqueous solution (for example, a sodium chloride aqueous solution) as an electrolyte between a pair of electrodes. Since a common device is used for the electrolytic cell 1031, detailed description is omitted.
  • the electrolyte is an electrolyte that can generate hypochlorous acid water, and is not particularly limited as long as it contains chloride ions even in a small amount. Dissolved aqueous solutions are included. There is no problem with hydrochloric acid.
  • an aqueous sodium chloride solution (salt water) in which sodium chloride is added to water is used as the electrolyte.
  • the water level sensor 1039 measures the water level in the electrolytic cell 1031 and outputs the measured value to the air purification control section 1041.
  • the hypochlorous acid water supply unit 1036 supplies hypochlorous acid water from the electrolytic cell 1031 to the mixing tank 1092 of the air purification unit 1011 according to the output signal from the air purification control unit 1041 .
  • the hypochlorous acid water supply unit 1036 has a hypochlorous acid water transfer pump 1037 and a water pipe 1038 .
  • Hypochlorous acid water transfer pump 1037 sends hypochlorous acid water from electrolytic cell 1031 to water pipe 1038 in response to an output signal from air purification control unit 1041 .
  • the water pipe 1038 is connected between the hypochlorous acid water transfer pump 1037 and the mixing tank 1092 and feeds the hypochlorous acid water toward the mixing tank 1092 .
  • the water supply unit 1050 supplies water to the mixing tank 1092 according to the output signal from the air purification control unit 1041.
  • Water supply unit 1050 has electromagnetic valve 1051 and water pipe 1052 .
  • Electromagnetic valve 1051 controls whether water supplied from a water pipe outside space purification device 1010 is allowed to flow through water pipe 1052 according to an output signal from air purification control unit 1041 .
  • the water pipe 1052 is connected between the electromagnetic valve 1051 and the mixing tank 1092 and feeds water toward the mixing tank 1092 .
  • the drain section 1060 is connected to the bottom of the mixing tank 1092 and discharges the mixed water stored in the mixing tank 1092 to the outside according to the output signal from the air purification control section 1041 .
  • the drain section 1060 has an electromagnetic valve 1061 and a water pipe 1062 .
  • the electromagnetic valve 1061 controls whether or not to flow the mixed water stored in the mixing tank 1092 to the external drain pipe according to the output signal from the air purification control section 1041 .
  • the water pipe 1062 is connected between the mixing tank 1092 and the electromagnetic valve 1061, and feeds mixed water to an external drain pipe.
  • the hypochlorous acid water from the hypochlorous acid water supply unit 1036 and the water from the water supply unit 1050 are supplied to the mixing tank 1092, respectively. Then, the hypochlorous acid water and water are mixed in the mixing tank 1092 of the air purifier 1011 .
  • Mixed water of hypochlorous acid water and water can also be called hypochlorous acid water.
  • the hypochlorous acid water remaining in the mixing tank 1092 is supplied with the hypochlorous acid water from the hypochlorous acid water supply unit 1036 or the water supply unit Water from 1050 is fed respectively and mixed.
  • Air purifier 1011 discharges hypochlorous acid water to indoor space 1018 by centrifugally crushing the mixed water of hypochlorous acid water and water stored in mixing tank 1092 .
  • the micronized hypochlorous acid water is discharged into the indoor space 1018 with the liquid component evaporated.
  • An operation device 1043 is installed on the wall surface of the indoor space 1018 .
  • the operation device 1043 has a user interface that can be operated by the user, and receives temperature setting values and humidity setting values from the user.
  • the operating device 1043 includes a temperature/humidity sensor 1044 that measures the temperature and humidity of the air in the indoor space 1018 .
  • a well-known technique may be used to measure the temperature and humidity in the temperature/humidity sensor 1044, so the description is omitted here.
  • the operation device 1043 is connected to the air purification control unit 1041 and the air conditioning control unit 1042 by wire or wirelessly, and transmits the temperature setting value, the humidity setting value, the temperature measurement value, and the humidity measurement value to the air purification control unit 1041. and to the air conditioning control unit 1042 . All of these pieces of information may be transmitted together, arbitrary two or more may be transmitted together, and each of them may be transmitted. Further, the operating device 1043 may transmit information to the air purification control section 1041 , and the air purification control section 1041 may transfer the information to the air conditioning control section 1042 .
  • the air conditioning control unit 1042 of the air conditioner 1015 receives the temperature setting value and the temperature measurement value, and controls the refrigerant coil 1014 and the outdoor unit 1020 so that the temperature measurement value approaches the temperature setting value. In the heating mode, when the measured temperature value is lower than the set temperature value, the air conditioning control unit 1042 increases the degree of heating as the difference between the measured temperature value and the set temperature value increases.
  • the air purification control unit 1041 as processing operations of the hypochlorous acid water generation unit 1030 and the space purification device 1010, relates to operations related to electrolysis processing in the electrolytic cell 1031 and processing to supply hypochlorous acid water to the air purification unit 1011. It controls operations, operations related to water supply processing to the air purification unit 1011, operations related to humidification purification processing in the air purification unit 1011, and operations related to mixed water drainage processing in the air purification unit 1011, respectively.
  • the air purification control unit 1041 has a computer system having a processor and memory. The computer system functions as a controller by the processor executing the program stored in the memory.
  • the program executed by the processor is recorded in advance in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. may be provided through Also, the air purification control unit 1041 corresponds to the "control unit" in the claims.
  • FIG. 7 is a block diagram showing the configuration of the air purification control section 1041 of the space purification system 1100 according to the second embodiment.
  • the air purification control section 1041 includes an input section 1041a, a storage section 1041b, a clock section 1041c, a processing section 1041d, and an output section 1041e.
  • the air purification control unit 1041 causes the following processes to be executed as operations related to the electrolysis process in the electrolytic cell 1031 .
  • the air purification control unit 1041 receives water level information (dry water signal) from the water level sensor 1039 and time information (time information) from the clock unit 1041c as a trigger for electrolysis processing of the electrolytic cell 1031, and outputs the information to the processing unit 1041d. do.
  • the processing unit 1041d identifies control information based on the water level information from the water level sensor 1039, the time information from the clock unit 1041c, and the setting information from the storage unit 1041b, and outputs it to the output unit 1041e.
  • the setting information includes information on the start time or end time of hypochlorous acid water generation, information on the supply amount of tap water to be introduced into the electrolytic cell 1031, and input of the liquid containing chloride ions in the salt water transfer pump 1035.
  • Information on the amount, information on the electrolysis conditions (time, current value, voltage, etc.) in the electrode 1032, information on the opening/closing timing of the solenoid valve 1033, and information on the on/off operation of the hypochlorous acid water transfer pump 1037 are included. .
  • the electrolysis conditions for the electrode 1032 can be determined from the amount of tap water in the electrolytic cell 1031, the chloride ion concentration, the electrolysis time, and the degree of deterioration of the electrode 1032, and are set by creating an algorithm. 1041b.
  • the output unit 1041e outputs a signal (control signal) to each device (salt water carrier pump 1035, solenoid valve 1033, and hypochlorous acid water carrier pump 1037) based on the received control information.
  • the salt water transfer pump 1035 is kept stopped based on the signal from the output section 1041e, and the hypochlorous acid water transfer pump 1037 is stopped based on the signal from the output section 1041e. maintain state.
  • the electromagnetic valve 1033 is opened based on the signal from the output section 1041e.
  • supply of tap water from the water pipe is started to the electrolytic cell 1031 .
  • the electromagnetic valve 1033 is closed based on the signal from the output section 1041e that receives the water level information (full water) from the water level sensor 1039 .
  • the electrolytic cell 1031 is supplied with tap water at the set supply rate.
  • the salt water conveying pump 1035 starts operating based on a signal from the output section 1041e, conveys the liquid containing a predetermined amount of chloride ions to the electrolytic cell 1031, and then stops.
  • chloride ions are dissolved in the tap water, and electrolytic cell 1031 is in a state where an aqueous solution (chloride aqueous solution) containing a predetermined amount of chloride ions is generated.
  • the electrode 1032 starts electrolysis of the chloride aqueous solution based on the signal from the output section 1041e, generates hypochlorous acid water under the set conditions, and stops the electrolysis.
  • the hypochlorous acid water generated by the electrode 1032 has, for example, a hypochlorous acid concentration of 100 ppm to 150 ppm (eg, 120 ppm) and a pH of 7.0 to 8.5 (eg, 8.0). becomes.
  • the air purification control unit 1041 performs electrolysis processing in the electrolytic cell 1031 to generate hypochlorous acid water with a predetermined concentration and amount.
  • the air purification control unit 1041 causes the following processing to be executed as operations related to the supply processing of hypochlorous acid water to the air purification unit 1011 .
  • the timer unit 1041c measures the operation time of the humidification motor 1011a as a trigger for supplying hypochlorous acid water to the air purification unit 1011, and the operation time elapses for a predetermined time (for example, 60 minutes).
  • a hypochlorous acid water supply request is output to the hypochlorous acid water generation unit 1030 (hypochlorous acid water supply unit 1036).
  • the predetermined time is a time estimated in advance by experimental evaluation, based on the fact that hypochlorous acid in the hypochlorous acid water evaporates and decreases over time.
  • the processing unit 1041d identifies the control information based on the information about time (time information) from the clock unit 1041c and the setting information from the storage unit 1041b, and outputs the control information to the output unit 1041e.
  • the setting information includes information about the hypochlorous acid water supply interval (for example, 60 minutes) and information about the ON/OFF operation of the hypochlorous acid water transfer pump 1037 .
  • the output unit 1041e outputs a signal (control signal) to the hypochlorous acid water transfer pump 1037 of the hypochlorous acid water supply unit 1036 based on the received control information.
  • the hypochlorous acid water transport pump 1037 operates based on the signal from the output section 1041e. As a result, in the hypochlorous acid water generating unit 1030, supply of hypochlorous acid water from the electrolytic cell 1031 to the air purification unit 1011 (mixing tank 1092) is started. In addition, in order to ensure the concentration of the hypochlorous acid water stored in the electrolytic cell 1031, when the hypochlorous acid water is supplied from the hypochlorous acid water generation unit 1030 to the mixing tank 1092, the electrolytic cell 1031 generates The hypochlorous acid water produced is supplied in full.
  • the water level sensor 1039 outputs a water shortage signal as water level information when the hypochlorous acid water in the electrolytic cell 1031 is completely supplied.
  • the hypochlorous acid water conveying pump 1037 stops based on the signal from the output section 1041e that receives the time information (required time for supplying the specified amount) from the clock section 1041c.
  • the hypochlorous acid water generating unit 1030 supplies the hypochlorous acid water from the electrolytic cell 1031 to the air purification unit 1011 (mixing tank 1092) at the set supply amount.
  • the air purification control unit 1041 causes the hypochlorous acid water supply process from the hypochlorous acid water generation unit 1030 (the electrolytic cell 1031) to the air purification unit 1011 to be executed.
  • the control in which the air purification control unit 1041 causes the hypochlorous acid water supply unit 1036 to supply hypochlorous acid water at predetermined time intervals is referred to as "first control".
  • the air purification control unit 1041 causes the following processing to be executed as operations related to water supply processing to the air purification unit 1011 .
  • the air purification control unit 1041 receives water level information (dry water signal) from the water level sensor 1090 of the space purification device 1010 as a trigger for water supply processing to the air purification unit 1011, and outputs a water supply request to the water supply unit 1050. do.
  • the input unit 1041a receives water level information (dry water signal) from the water level sensor 1090 of the space purification device 1010 and outputs it to the processing unit 1041d.
  • water level information dry water signal
  • the processing unit 1041d specifies control information based on the water level information (water shortage signal) from the input unit 1041a, the time information (time information) from the clock unit 1041c, and the setting information from the storage unit 1041b, and outputs the output unit 1041e.
  • the setting information includes information regarding the on/off operation of the solenoid valve 1051 of the water supply unit 1050 .
  • the output unit 1041e outputs a signal (control signal) to the electromagnetic valve 1051 based on the received control information.
  • the solenoid valve 1051 operates based on the signal from the output section 1041e. As a result, water supply unit 1050 starts supplying water from an external water supply pipe to air purification unit 1011 (mixing tank 1092 ) via water pipe 1052 .
  • the solenoid valve 1051 stops based on the signal from the output section 1041e that receives the water level information (full water signal) from the water level sensor 1090 of the space purification device 1010.
  • the water supply unit 1050 supplies water from the external water supply pipe to the air purification unit 1011 (mixing tank 1092) until the set amount of water is reached.
  • the air purification control unit 1041 causes the water supply unit 1050 to supply water to the air purification unit 1011.
  • the control in which the air purification control unit 1041 supplies water by the water supply unit 1050 based on the information (water shortage information) on the water level of the mixing tank 1092 from the water level sensor 1090 is referred to as "second control".
  • the input unit 1041a receives user input information from the operation device 1043, temperature and humidity information of the air in the indoor space 1018 from the temperature and humidity sensor 1044, and hypochlorous acid water (mixed water) in the mixing tank 1092 from the water level sensor 1090. ) and receive the water level information.
  • the input unit 1041a outputs each received information to the processing unit 1041d.
  • the operation device 1043 inputs user input information (for example, air volume, target temperature, target humidity, addition/non-addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.) regarding the space purification device 1010. It is a terminal that communicates with the air purification control unit 1041 wirelessly or by wire.
  • user input information for example, air volume, target temperature, target humidity, addition/non-addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.
  • the temperature/humidity sensor 1044 is a sensor that is provided in the indoor space 1018 and senses the temperature/humidity of the air in the indoor space 1018 .
  • the storage unit 1041b stores user input information received by the input unit 1041a and supply setting information in the operation of supplying hypochlorous acid to the air circulating in the apparatus.
  • the storage unit 1041b outputs the stored supply setting information to the processing unit 1041d.
  • the supply setting information in the hypochlorous acid supply operation can also be said to be the humidification setting information in the humidification purification operation of the air purification unit 1011 .
  • the clocking unit 1041c outputs time information regarding the current time to the processing unit 1041d.
  • the processing unit 1041d receives various information (user input information, temperature/humidity information, water level information) from the input unit 1041a, time information from the clock unit 1041c, and supply setting information from the storage unit 1041b.
  • the processing unit 1041d uses the received user input information, time information, and supply setting information to identify control information related to the humidification/purification operation.
  • the processing unit 1041d changes the target humidity stored in the storage unit 1041b and the temperature/humidity information of the air in the indoor space 1018 from the temperature/humidity sensor 1044 at regular time intervals according to the time information from the clock unit 1041c. Identifies the required humidification demand for the indoor space 1018 based on the humidity difference between.
  • the processing unit 1041d identifies control information related to the humidifying and purifying operation based on the identified humidification request amount and the supply setting information stored in the storage unit 1041b. Then, the processing unit 1041d outputs the specified control information to the output unit 1041e.
  • the processing unit 1041d If the water level information from the water level sensor 1090 includes water level information (water shortage signal) indicating a shortage of hypochlorous acid water (mixed water) in the mixing tank 1092, the processing unit 1041d outputs an output unit 1041e outputs a water supply request signal to the water supply unit 1050 to the output unit 1041e. Furthermore, based on the time information from the clock unit 1041c, the processing unit 1041d, when the operation time of the air purification unit 1011 (humidification motor 1011a) reaches a predetermined time (for example, 60 minutes), the output unit 1041e A hypochlorous acid water supply request signal to the hypochlorous acid water generation unit 1030 is output to the output unit 1041e.
  • water shortage signal water shortage signal
  • the processing unit 1041d outputs an output unit 1041e outputs a water supply request signal to the water supply unit 1050 to the output unit 1041e.
  • the water level at which the hypochlorous acid water (mixed water) in the mixing tank 1092 indicates a shortage is about 10% from the state where the hypochlorous acid water (mixed water) in the mixing tank 1092 is full.
  • the water level is set when the amount of hypochlorous acid water is reduced to /3.
  • the output unit 1041e then outputs the received signals to the air purification unit 1011, the hypochlorous acid water generation unit 1030 (hypochlorous acid water supply unit 1036), and the water supply unit 1050, respectively.
  • the air purifying unit 1011 receives a signal from the output unit 1041e, and controls the driving operation based on the received signal.
  • the hypochlorous acid water generating unit 1030 receives a signal (hypochlorous acid water supply request signal) from the output unit 1041e, and based on the received signal, An operation (first control) relating to the process of supplying hypochlorous acid water to the air cleaning unit 1011 described above is executed.
  • the water supply unit 1050 receives a signal (a water supply request signal) from the output unit 1041e, and based on the received signal, performs an operation (second control) related to water supply processing to the air purification unit 1011 described above. to run.
  • the air purification control unit 1041 supplies hypochlorous acid water by the hypochlorous acid water generation unit 1030 (hypochlorous acid water supply unit 1036) as supply processing at predetermined time intervals.
  • a first control and a second control for supplying water by the water supply unit 1050 based on information (water shortage information) on the water level of the mixing tank 1092 from the water level sensor 1090 are executed respectively, and mixed water is stored in the mixing tank 1092. do.
  • the air purification control unit 1041 controls the hypochlorous acid water supply cycle (every predetermined time) and the water The supply cycle (each time water shortage is detected) is made different, and the humidification and purification process for the air flowing through the space purification device 1010 (air purification unit 1011) is executed.
  • the air purification control unit 1041 causes the following processes to be executed as operations related to the drainage of the mixed water stored in the mixing tank 1092 of the air purification unit 1011 .
  • the air purification control unit 1041 uses information on the number of times the hypochlorous acid water supply unit 1036 performs the first control and information on the number of times the water supply unit 1050 performs the second control as a trigger for the drainage treatment of the mixed water stored in the mixing tank 1092. Whether or not to perform wastewater treatment is determined based on the information on the number of executions. The information on the number of executions of each control also includes information on the time when each control was executed.
  • the storage unit 1041b stores the number of times the hypochlorous acid water supply unit 1036 performs the first control and the water supply unit 1050 performs the second control.
  • the number of executions starts from the initial state of the mixing tank 1092 (for example, the state in which the mixing tank 1092 is filled with water and hypochlorous acid water supplied after wastewater treatment). It is the number of times of each control executed after the start of the processing operation (hereinafter also referred to as “after the start of operation”).
  • the processing unit 1041d identifies the number of consecutive executions of the first control (the number of consecutive executions of the first control) based on the information on the number of executions of the first control and the information on the number of executions of the second control, It is determined whether or not the number of consecutive executions of the first control is the reference number of times.
  • the reference number of times is set so that the hypochlorous acid water concentration in the mixing tank 1092 does not exceed the reference concentration only by the continuous supply of hypochlorous acid water by the first control. Based on the hypochlorous acid concentration of the hypochlorous acid water supplied from 1036, it is set to "5 times".
  • the reference concentration is set to a hypochlorous acid concentration that does not make the user in the indoor space 1018 uncomfortable due to the smell of the air 1009 (air 1009 containing hypochlorous acid) blown into the indoor space 1018. .
  • the processing unit 1041d outputs the control information based on the information about the time (time information) from the clock unit 1041c and the setting information from the storage unit 1041b. is specified and output to the output unit 1041e.
  • the setting information includes information regarding the ON/OFF operation of the solenoid valve 1061 of the drainage section 1060 .
  • the output unit 1041e outputs a signal (control signal) to the electromagnetic valve 1061 based on the received control information.
  • the solenoid valve 1061 operates based on the signal from the output section 1041e. As a result, the drainage unit 1060 starts discharging the mixed water from the mixing tank 1092 to the external drainage pipe via the water pipe 1062 .
  • the solenoid valve 1061 stops after a predetermined time (for example, 1 minute) has elapsed based on the signal from the output section 1041e that has received the time information from the clock section 1041c. As a result, the mixing tank 1092 is emptied of all the stored mixed water.
  • a predetermined time for example, 1 minute
  • the air purification control unit 1041 causes the mixed water to be discharged from the mixing tank 1092 to the outside.
  • the control in which the air purification control unit 1041 causes the drainage unit 1060 to drain the mixed water based on the information about the number of consecutive executions of the first control in the hypochlorous acid water supply unit 1036 is referred to as "third control".
  • the third control be performed immediately before the hypochlorous acid water supply unit 1036 performs the first control.
  • the mixed water stored in the mixing tank 1092 is It can be used for as long as possible and reduces waste due to drainage in the third control.
  • FIG. 8 is a schematic diagram showing temporal changes (winter: first example) of water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system 1100 . More specifically, (a) of FIG. 8 shows changes over time in the amount of hypochlorous acid water (mixed water) in the mixing tank 1092 . (b) of FIG. 8 shows changes in concentration of the hypochlorous acid water (mixed water) in the mixing tank 1092 over time. (c) of FIG.
  • FIG. 9 is a schematic diagram showing changes over time in the amount of water, the concentration of hypochlorous acid water, and the concentration of hypochlorous acid in the space purification system 1100 (summer: second example). More specifically, (a) of FIG. 9 shows temporal changes in the amount of hypochlorous acid water (mixed water) in the mixing tank 1092 . (b) of FIG. 9 shows changes in the concentration of the hypochlorous acid water (mixed water) in the mixing tank 1092 over time. (c) of FIG. 9 shows changes over time in the concentration of hypochlorous acid contained in the air at the outlet 1003 .
  • the supply of hypochlorous acid water to the mixing tank 1092 is performed at predetermined time intervals (one hour), and the supply of water to the mixing tank 1092 is detected by the water level sensor 1090 at the water level at which the mixing tank 1092 is dry. is executed each time it detects Moreover, the drainage process is performed based on the determination result of the number of consecutive executions of the first control, which is performed immediately before the first control is performed. More specifically, the wastewater treatment is performed based on whether or not the number of consecutive executions of the first control is the reference number of times (5 times) in the wastewater determination made immediately before the hypochlorous acid water supply timing. be done.
  • hypochlorous acid water (mixed water) in the mixing tank 1092 is at a water level that causes a shortage, the hypochlorous acid water (mixed water) in the mixing tank 1092 is About 1/3 remains. Also, to simplify the explanation, it is assumed that the air purifier 1011 operates with a constant required amount of humidification during the humidifying and purifying operation time. In addition, hereinafter, the predetermined amount of hypochlorous acid water supplied to the mixing tank 1092 is also referred to as "hypochlorous acid water undiluted solution".
  • the supply of water (second control) is performed four times during the period up to 3 hours of operation after the start of operation of the air purification unit 1011, and the supply of hypochlorous acid water ( A description will be given of processing under the humidification/purification condition in which the first control) is executed three times.
  • the above-described humidification/purification conditions are such that the number of times the first control is performed is less than the number of times the second control is performed when the required amount of humidification for the air purification unit 1011 is equal to or greater than the first reference value.
  • the first reference value is a value set to distinguish between a situation in which the air is dry with low humidity in the winter in Japan and a situation in which the air is humid and humid in the summer in Japan. .
  • the supply of hypochlorous acid water to the mixing tank 1092 is 1 hour, 2 hours, 3 It is executed at the timing of time.
  • the supply of water to the mixing tank 1092 (second control) is executed at times a1, b1, c1, d1, and so on.
  • hypochlorous acid water and water are supplied to the mixing tank 1092, respectively. ) is filled with water (initial state).
  • the supply of hypochlorous acid water (first control) and the supply of water (second control) overlap, so the first example is hypochlorous acid water in a 3-hour cycle. It can be viewed as a supply (first control) and a water supply (second control).
  • first control a supply
  • second control a water supply
  • the amount of hypochlorous acid water supplied is Since the supply amount of water is reduced by , the concentration of hypochlorous acid water in the mixing tank 1092 is slightly higher than the initial state at the time of 0 hours.
  • the number of times the first control is performed is less than the number of times the second control is performed when the required amount of humidification for the air purification unit 1011 is equal to or greater than the first reference value.
  • the determination of the drainage of the mixed water stored in the mixing tank 1092 is performed immediately before the execution of the first control at the timings of 1 hour, 2 hours, 3 hours, and so on.
  • first control hypochlorous acid water supply
  • the mixing tank 1092 is filled with a mixed water of hypochlorous acid undiluted solution and water (also hypochlorous acid water) until it is full. Then, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and the water shortage is detected at the timing of a1 hours from the start of the operation, and water is supplied from the water supply unit 1050 until the mixing tank 1092 is full. be. After that, while the water level of the mixed water decreases at a constant speed due to the humidifying and purifying operation, one hour, which is the supply timing of the hypochlorous acid water, is approached, and the mixed water drainage judgment is executed at the timing of this one hour.
  • the number of times of continuous supply of the hypochlorous acid water undiluted solution by the first control after the supply of water by the second control is 0 times, and the number of times of continuous execution of the first control is the reference number of times (5 times ) is determined to have not been reached. Note that when the water supply including the second control or the drainage treatment including the third control is executed, the number of consecutive executions of the first control is reset.
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 1092, and the hypochlorous acid water undiluted solution is produced by the hypochlorous acid water generation unit 1030 (hypochlorous acid water It is supplied to the mixing tank 1092 from the acid water supply unit 1036). This causes the water level in the mixing tank 1092 to rise slightly. Then, the number of consecutive executions of the first control becomes one. After that, the water level of the mixed water continues to decrease due to the humidifying and purifying operation, and water shortage occurs again at the timing b1 from the start of operation, and water is supplied from the water supply unit 1050 until the mixing tank 1092 is full. Then, the number of consecutive executions of the first control is reset to zero.
  • the water discharge judgment is made.
  • the number of times of continuous supply of the hypochlorous acid water undiluted solution by the first control after the supply of water by the second control is 0 times
  • the number of times of continuous execution of the first control is the reference number of times (5 times ) is determined to have not been reached.
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 1092, and the hypochlorous acid water undiluted solution is produced by the hypochlorous acid water generation unit 1030 (hypochlorous acid water It is supplied to the mixing tank 1092 from the acid water supply unit 1036). This causes the water level in the mixing tank 1092 to rise slightly. Then, the number of consecutive executions of the first control becomes one. After that, the water level of the mixed water continues to decrease due to the humidifying and purifying operation, and water shortage occurs again at the timing c1 from the start of operation, and water is supplied from the water supply unit 1050 until the mixing tank 1092 is full. Then, the number of consecutive executions of the first control is reset to zero.
  • the water discharge judgment is made.
  • the number of times of continuous supply of the hypochlorous acid water undiluted solution by the first control after the supply of water by the second control is 0 times
  • the number of times of continuous execution of the first control is the reference number of times (5 times ) is determined to have not been reached.
  • the supply timing of the hypochlorous acid water undiluted solution overlaps with the timing of the supply of the hypochlorous acid water undiluted solution.
  • Two controls are executed in this order. More specifically, as the first control, the hypochlorous acid water undiluted solution is first supplied to the mixing tank 1092 from the hypochlorous acid water generation unit 1030 (hypochlorous acid water supply unit 1036). After that, as the second control, water is supplied from the water supply unit 1050 until the mixing tank 1092 is filled with water. As a result, the hypochlorous acid water undiluted solution and water are supplied into the mixing tank 1092, and the water level in the mixing tank 1092 is brought to a state close to the initial operation (0 hour). Since water is being supplied, the number of consecutive executions of the first control is reset to zero.
  • hypochlorous acid water undiluted solution is supplied at the timing of hypochlorous acid water supply, in the same way as the period of operation up to 3 hours after the start of operation. repeat.
  • the hypochlorous acid water undiluted solution and mixed water of water are mixed in the mixing tank 1092 so as to have a predetermined concentration (initial concentration). Then, when the humidifying and purifying operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 1092 decreases with the passage of time from the start of operation to a1 hours. This is because hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid is vaporized and given to the air at a certain rate with respect to the concentration of hypochlorous acid water. be.
  • hypochlorous acid does not vaporize, the hypochlorous acid contained in the water is simply consumed along with the water that has been pulverized by the air purifier 1011.
  • concentration of hypochlorous acid water in the mixing tank 1092 does not change.
  • the concentration of hypochlorous acid water is not zero even at the timing a1 when the water level sensor 1090 detects a water shortage. This is because chloric acid water (mixed water) remains.
  • the hypochlorous acid water in the mixing tank 1092 is diluted with water as the water is supplied from the water supply unit 1050.
  • the concentration of chlorous acid water decreases.
  • the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of the hypochlorous acid until one hour is reached, which is the supply timing of the hypochlorous acid water.
  • hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 1030 (hypochlorous acid water supply unit 1036).
  • concentration of the hypochlorous acid water in the mixing tank 1092 rises above the initial concentration. This is a predetermined amount of hypochlorous acid supplied at the beginning of operation for mixed water (water containing hypochlorous acid), which is less than the water supplied at the beginning of operation (0 hour). This is because water (hypochlorous acid water undiluted solution) is supplied.
  • the concentration of hypochlorous acid water decreases due to evaporation of hypochlorous acid from the start of operation until b1 time (water shortage detection).
  • the decrease rate of hypochlorous acid is faster than at the initial stage of operation because the content of hypochlorous acid contained in the mixed water is large, and the amount of hypochlorous acid vaporized is also large.
  • the hypochlorous acid water in the mixing tank 1092 is diluted with water as the water is supplied from the water supply unit 1050.
  • the concentration of chlorous acid water decreases.
  • the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of the hypochlorous acid until 2 hours, which is the supply timing of the hypochlorous acid water.
  • hypochlorous acid water supply timing reaches 2 hours from the start of operation
  • the supply of the hypochlorous acid water undiluted solution from the hypochlorous acid water generation unit 1030 starts.
  • concentration of the hypochlorous acid water in the mixing tank 1092 rises above the initial concentration.
  • concentration of hypochlorous acid water (mixed water) decreases due to vaporization of hypochlorous acid from the start of operation until c1 time (water shortage detection).
  • the hypochlorous acid water in the mixing tank 1092 is diluted with water as the water is supplied from the water supply unit 1050.
  • the concentration of chlorous acid water decreases.
  • the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of the hypochlorous acid until 3 hours, which is the supply timing of the hypochlorous acid water.
  • the concentration of hypochlorous acid contained in the air 1009 discharged from the air outlet 1003 is determined by the amount of humidification in the air purification unit 1011 and the concentration of hypochlorous acid water in the mixing tank 1092.
  • the humidification amount is constant, so the concentration of the hypochlorous acid water in the mixing tank 1092 is reflected. Therefore, as shown in (c) of FIG. 8, the concentration of hypochlorous acid contained in the air 1009 of the outlet 1003 is equal to the concentration of hypochlorous acid water in the mixing tank 1092 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .
  • the state from the start of operation (0 hours) to a1 hours is This will be repeated until the timing of 3 hours (d1 hour).
  • the average concentration of hypochlorous acid contained in the air 1009 of the outlet 1003 is, for example, the conventional average concentration shown in FIG. 8(c).
  • the state is the same as the conventional state from the start of operation (0 hour) to the a1 hour, but the state is different from the conventional state during the period from the a1 hour to 3 hours. More specifically, in the period from a1 hour to 3 hours, as shown in FIG.
  • the concentration of hypochlorous acid water is higher than the initial concentration part, period 2 hours to c1 hour) is less than the initial concentration (period a1 hour to 1 hour, period b1 hour to 2 hours, period c1 hour to 3 hours) It's getting shorter. Therefore, the average concentration of hypochlorous acid contained in the air 1009 from the outlet 1003 is lower than the conventional average concentration during the period from the start of operation (0 hour) to 3 hours.
  • the hypochlorous acid water supply cycle (every predetermined time) and the water supply
  • the air 1009 of the outlet 1003, that is, the indoor space 1018 is blown out compared to the case of supplying the hypochlorite water and water to the mixing tank 1092 by the conventional method. It can reduce the concentration of hypochlorous acid contained in the air.
  • mixed water equivalent to the supply amount of hypochlorous acid water undiluted solution is consumed during a period of one hour of operation time, and each time hypochlorous acid water is supplied (first control ) will be described below. That is, in the second example, the supply of hypochlorous acid water (first control) is continuously executed, and the supply of water (second control) associated with water shortage detection is not executed.
  • the supply of the hypochlorous acid water undiluted solution to the mixing tank 1092 is the supply of the hypochlorous acid water undiluted solution to the mixing tank 1092 ( The first control) is executed at timings of 1 hour, 2 hours, 3 hours, .
  • the supply of water to the mixing tank 1092 (second control) is equivalent to the amount of hypochlorous acid water supplied by the first control and the consumption associated with humidification purification, so the water level sensor 1090 detects a water shortage. not executed.
  • hypochlorous acid water and water are supplied to the mixing tank 1092, respectively. ) is filled with water (initial state).
  • the determination of the drainage of the mixed water stored in the mixing tank 1092 is performed immediately before the execution of the first control at the timings of 1 hour, 2 hours, 3 hours, and so on.
  • the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 0 times, and the number of times of continuous execution of the first control is the reference number of times (5 times ) is determined to have not been reached.
  • the first control is executed, and the hypochlorous acid water undiluted solution is supplied to the mixing tank 1092 .
  • the mixed water drainage judgment is executed.
  • the number of times the hypochlorous acid water undiluted solution is supplied by the first control is one time, and it is determined that the number of times the first control is executed has not reached the reference number of times (5 times).
  • the first control is executed, and the hypochlorous acid water undiluted solution is supplied to the mixing tank 1092 .
  • the mixed water drainage judgment is executed.
  • the number of times of continuous supply of hypochlorous acid water undiluted solution by the first control is five times, and the number of times of execution of the first control is the reference number of times (5 times).
  • the third control is executed, and all the mixed water in the mixing tank 1092 is drained.
  • the hypochlorous acid water undiluted solution and water are newly supplied to the mixing tank 1092, and the mixing tank 1092 has the same hypochlorous acid concentration as in the initial state.
  • the tank is filled with acid water (mixed water).
  • the timing of 6 hours is regarded as the initial state (0 hours), and the same supply operation and drainage operation are repeated every 6 hours.
  • the mixing tank 1092 is filled with a mixed water of hypochlorous acid undiluted solution and water (also hypochlorous acid water) until it is full. Then, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and one hour, which is the supply timing of the hypochlorous acid water, is approached. Then, at the timing of this one hour, the mixed water drainage determination is executed.
  • the water level in the mixing tank 1092 rises to the full state. After that, the water level of the mixed water continues to decrease due to the humidifying and purifying operation, and two hours, which is the supply timing of the hypochlorous acid water, is reached. Then, at this timing of 2 hours, the mixed water drainage judgment is executed.
  • the number of times of continuous supply of hypochlorous acid water undiluted solution by the first control is one time, so it is determined that the number of times of execution of the first control has not reached the reference number of times (5 times). .
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 1092, and the hypochlorous acid water undiluted solution is produced by the hypochlorous acid water generation unit 1030 (hypochlorous acid water It is supplied to the mixing tank 1092 from the acid water supply unit 1036). As a result, the water level in the mixing tank 1092 rises to the full state.
  • the amount of mixed water decreases at a constant rate due to the humidifying and purifying operation, since the hypochlorous acid water undiluted solution of the consumed amount is supplied, the amount decreased by the consumed amount.
  • the amount of mixed water only increases or decreases between the full water state and the full water state.
  • hypochlorous acid water undiluted solution will be supplied at 6 hours, and the mixed water drainage determination will be performed at this 6 hour timing.
  • the hypochlorous acid water undiluted solution has been supplied 5 times by the first control, so it is determined that the number of executions of the first control has reached the reference number of times (5 times).
  • the third control is executed, and the mixed water in the mixing tank 1092 is drained. Furthermore, after the mixed water is drained by the third control, the hypochlorous acid water stock solution and water are newly supplied to the mixing tank 1092, and the mixing tank 1092 is in the initial state (0 hour). Same as , it is filled with hypochlorous acid water (mixed water) of a predetermined concentration.
  • the number of consecutive executions of the first control is reset, and the storage of the number of executions of the first control is started again.
  • the timing of 6 hours is regarded as the initial state (0 hours), and the same supply operation and drainage operation are repeated every 6 hours. More specifically, as before, the hypochlorous acid water undiluted solution is repeatedly supplied by the first control at the hypochlorous acid water supply timing. Then, immediately before the execution of the first control, it is determined whether the mixed water is drained by the third control, and when the conditions are satisfied, the third control is executed. Then, the water level of the hypochlorous acid water (mixed water) in the mixing tank 1092 increases or decreases corresponding to each operation.
  • the hypochlorous acid water undiluted solution and mixed water of water are mixed in the mixing tank 1092 so as to have a predetermined concentration (initial concentration). Then, when the humidification/purification operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 1092 decreases with the lapse of time from the start of the operation to one hour. As described above, hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid vaporizes at a certain rate with respect to the concentration of hypochlorous acid water and is given to the air. This is because
  • hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 1030 (hypochlorous acid water supply unit 1036).
  • concentration of the hypochlorous acid water in the mixing tank 1092 rises above the initial concentration. As described above, this is supplied at the beginning of operation to the mixed water (water containing hypochlorous acid), which is less than the amount of mixed water stored at the beginning of operation (0 hours). This is because a predetermined amount of hypochlorous acid water (hypochlorous acid water undiluted solution) is supplied.
  • the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of hypochlorous acid until 2 hours after the start of operation.
  • hypochlorous acid water supply timing reaches 2 hours from the start of operation
  • the supply of the hypochlorous acid water undiluted solution from the hypochlorous acid water generation unit 1030 starts.
  • concentration of the hypochlorous acid water in the mixing tank 1092 further increases to the initial concentration or higher.
  • the concentration of hypochlorous acid water (mixed water) decreases due to evaporation of hypochlorous acid until 3 hours after the start of operation.
  • concentration change of the hypochlorous acid water (mixed water) is repeated until the next 5 hours, and the concentration of the hypochlorous acid water (mixed water) gradually increases.
  • hypochlorous acid water undiluted solution supply timing reaches 6 hours from the start of operation, it is time to drain based on the drainage determination, so the hypochlorous acid water (mixed water) in the mixing tank 1092 is all drained. After that, water and the hypochlorous acid water undiluted solution are supplied into the mixing tank 1092, and the concentration of the hypochlorous acid water in the mixing tank 1092 is in the same state as at the beginning of the operation (0 hour). After that, the concentration change of the hypochlorous acid water (mixed water) is repeated in the same manner as before.
  • the concentration of hypochlorous acid contained in the air 1009 discharged from the air outlet 1003 is determined by the amount of humidification in the air purification unit 1011 and the concentration of hypochlorous acid water in the mixing tank 1092, as in winter in Japan. Therefore, as shown in (c) of FIG. 9, the concentration of hypochlorous acid contained in the air 1009 of the outlet 1003 is the concentration of hypochlorous acid water in the mixing tank 1092 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .
  • hypochlorous acid water undiluted solution and water are supplied to fill the water every time the water level sensor 1090 detects a water shortage
  • hypochlorous acid water is supplied from the start of operation (0 hours) to 6 hours.
  • the acid water concentration will continue to decrease. Strictly speaking, the concentration of hypochlorous acid water continues to decrease during the period from full water to detection of water shortage within 6 hours.
  • the average concentration of hypochlorous acid contained in the air 1009 from the outlet 1003 is, for example, the conventional average concentration shown in FIG. 9(c).
  • the state is the same as before from the start of operation (0 hours) to 1 hour, but the state is different from before during the period from 1 hour to 6 hours. More specifically, in the period from 1 hour to 6 hours, as shown in FIG. much longer. Therefore, the average concentration of hypochlorous acid contained in the air 1009 from the outlet 1003 is higher than the conventional average concentration during the period from the start of operation (0 hour) to 6 hours.
  • the concentration of the mixed water is repeated every 6 hours with 6 hours as one cycle. It is possible to keep adjusting the concentration of hypochlorous acid water within the range. In other words, if the humidifying and purifying operation is continued, the concentration of the hypochlorous acid water in the mixing tank 1092 may increase too much, but the wastewater determination is performed according to the number of times of continuous supply of the hypochlorous acid water undiluted solution by the first control. By providing control, it is possible to reset the concentration of hypochlorous acid water in the mixing tank 1092 at regular intervals, and thus the addition amount of hypochlorous acid contained in the air 1009 of the blower outlet 1003. It is possible to control the supply amount of hypochlorous acid gas.
  • hypochlorous acid water is supplied into the mixing tank 1092 every preset time (for example, 1 hour) as the first control, and the water level sensor 1090 supplies the water as the second control.
  • the process of supplying water is executed based on the water level information (water shortage signal), and as the third control, the mixed water in the mixing tank 1092 is drained based on the number of consecutive executions of the first control.
  • the air purification control unit 1041 of the space purification system 1100 based on the required amount of humidification required for the air purification unit 1011 (required amount of humidification corresponding to winter in Japan or required amount of humidification corresponding to summer in Japan), The number of times the first control is performed within the predetermined period and the number of times the second control is performed within the predetermined period are made different. As a result, in a state where the demand for humidification is high, such as in winter in Japan, the air 1009 with a lower hypochlorous acid content can be released into the indoor space 1018 compared to the conventional method.
  • the air 1009 with a high hypochlorous acid content can be discharged into the indoor space 1018 as compared with the conventional method. Furthermore, when the humidifying and purifying operation is continued for a long period of time, it is possible to suppress an excessive increase in the concentration of hypochlorous acid released into the indoor space 1018 .
  • the mixing tank 1092 can be easily controlled (first control, second control, third control).
  • the concentration of hypochlorous acid water inside (the concentration of hypochlorous acid contained in the air 1009 blown into the indoor space 1018) can be adjusted.
  • the space purification system 1100 includes a hypochlorous acid water generating unit 1030 that generates hypochlorous acid water, and a hypochlorous acid water generating unit 1030 that supplies the hypochlorous acid water to the mixing tank 1092.
  • Air purifying unit 1011 that atomizes mixed water with water and releases it into the air, supply processing in hypochlorous acid water supply unit 1036 and water supply unit 1050, and drainage of mixed water stored in mixing tank 1092 and an air purification control unit 1041 that controls processing.
  • the air purification control unit 1041 performs first control to supply the hypochlorous acid water by the hypochlorous acid water supply unit 1036 every predetermined time (for example, 60 minutes), and
  • the second control for supplying water by the water supply unit 1050 is executed based on the information on the water level of the mixing tank 1092 (water shortage information), and the first control is continuously executed a predetermined number of times as wastewater treatment.
  • the third control for draining the mixed water stored in the mixing tank 1092 is executed.
  • the hypochlorous acid water to the mixing tank 1092 When the supply frequency (the number of times the first control is performed) increases and the hypochlorous acid concentration of the mixed water in the mixing tank 1092 is high, the mixed water is finely divided and released into the air.
  • the first control is continuously executed a predetermined number of times (for example, 5 times)
  • the third control is executed, the mixed water stored in the mixing tank 1092 is discharged, and the mixed water in the mixing tank 1092 is reset.
  • the hypochlorous acid concentration in the mixing tank 1092 can be prevented from increasing too much.
  • the hypochlorous acid raised to a predetermined concentration can be contained in the air and released into the indoor space 1018 .
  • the air purification control unit 1041 causes the third control to be executed immediately before the first control is executed after the first control is continuously executed a predetermined number of times.
  • the drainage by the third control is not performed immediately after the hypochlorous acid is supplied to the mixing tank 1092 by the first control.
  • the acid water can be used for as long as possible, and waste due to drainage in the third control can be reduced.
  • the space purification system 1100 even when operating for a long time (for example, 24 hours), before the hypochlorous acid water concentration in the mixing tank 1092 becomes too high, the state in the mixing tank 1092 is returned to the initial operation state. can be returned. That is, the space purification system 1100 can facilitate adjusting the amount of hypochlorous acid released into the air.
  • the air purification control unit 1041 performs the first control the second number of times when the required amount of humidification required of the air purification unit 1011 is equal to or greater than the first reference value in the supply process.
  • control is performed so that the number of times the first control is performed is greater than the number of times the second control is performed.
  • the space purification system 1100 can add hypochlorous acid to the air 1009 emitted from the air purification unit 1011 under conditions suitable for the environment of the indoor space 1018 based on the required amount of humidification.
  • the air purification unit 1011 is described as operating with a constant humidification demand amount during the humidification purification operation time. operates at a required humidification amount specified based on the humidity difference between the target humidity and the humidity of the air in the indoor space 1018 at regular intervals.
  • the predetermined number of times in the third control is preferably set based on the concentration of the hypochlorous acid water supplied by the first control.
  • the concentration of the hypochlorous acid water supplied by the first control is high, when the first control is continuously executed a predetermined number of times, the hypochlorous acid in the mixing tank 1092 Since the concentration of chloric acid water rises quickly, by setting the predetermined number of times to be small, it is possible to more reliably prevent the concentration of hypochlorous acid water in the mixing tank 1092 from increasing too much.
  • the water (water containing the purifying component) stored in the device is generally dispersed along with the atomization operation.
  • the water containing the purifying component in the part and the purifying component are vaporized and released into the space.
  • the purification component (hypochlorous acid) is not vaporized because the water (hypochlorous acid water) containing the finely divided purification component is difficult to evaporate, and the purification component enters the indoor space. is less likely to be released.
  • a large amount of humidification for example, when warmed air with a low relative humidity (for example, 20 ° C.
  • the conventional space purifying device has a problem that it is not easy to adjust the amount of the purifying component released into the indoor space (into the air).
  • the present disclosure aims to solve the conventional problems described above, and aims to provide a technique that facilitates adjustment of the amount of purification components released into the air.
  • the space purification system includes a hypochlorous acid water generation unit that generates hypochlorous acid water, and hypochlorous acid water from the hypochlorous acid water generation unit to the mixing tank.
  • a hypochlorous acid water supply unit that supplies acid water
  • a water supply unit that supplies water to the mixing tank
  • a water level sensor for detecting the water level of the mixing tank
  • hypochlorous acid water stored in the mixing tank Controls the humidifying and purifying unit that atomizes the mixed water of water and water and releases it into the air, the supply processing in the hypochlorous acid water supply unit and the water supply unit, and the drainage processing of the mixed water stored in the mixing tank and a control unit.
  • the control unit performs first control for supplying hypochlorous acid water by the hypochlorous acid water supply unit at predetermined time intervals, and based on information on the water level of the mixing tank from the water level sensor, the water supply unit and the second control for supplying water by each is executed, and when the second control is not executed for a predetermined period after supplying water by the water supply unit as wastewater treatment, the mixed water stored in the mixing tank is to execute the third control for draining the water, thereby achieving the intended purpose.
  • the space purification system includes a hypochlorous acid water generation unit that generates hypochlorous acid water, and a hypochlorous acid water generation unit that supplies hypochlorous acid water to the mixing tank.
  • a chlorous acid water supply unit a water supply unit that supplies water to the mixing tank, a water level sensor for detecting the water level of the mixing tank, and mixed water of hypochlorous acid water and water stored in the mixing tank
  • a humidifying and purifying unit that refines and releases it into the air
  • a control unit that controls supply processing in the hypochlorous acid water supply unit and the water supply unit, and drainage processing of the mixed water stored in the mixing tank .
  • the control unit performs first control for supplying hypochlorous acid water by the hypochlorous acid water supply unit at predetermined time intervals, and based on information on the water level of the mixing tank from the water level sensor, the water supply unit and the second control for supplying water by each is executed, and when the second control is not executed for a predetermined period after supplying water by the water supply unit as wastewater treatment, the mixed water stored in the mixing tank to run a third control that drains the
  • the hypochlorous acid raised to a predetermined concentration can be contained in the air and released into the indoor space.
  • air with low relative humidity such as in winter in Japan
  • the amount of mixed water stored in the mixing tank is large, so the frequency of water supply to the mixing tank (second control The number of repetitions) increases, and in a state where the hypochlorous acid concentration of the mixed water in the mixing tank is low, the mixed water is finely divided and released into the air.
  • hypochlorous acid diluted to a predetermined concentration can be contained in the air and released into the indoor space. That is, in the space purification system, the amount of hypochlorous acid released into the air can be easily adjusted.
  • the control unit preferably causes the third control to be executed immediately before executing the first control.
  • the drainage by the third control is not performed immediately after the hypochlorous acid is supplied to the mixing tank by the first control, so the hypochlorous acid water supplied by the first control can be used for as long as possible and waste due to drainage in the tertiary control can be reduced.
  • the predetermined period is preferably set based on the concentration of the hypochlorous acid water supplied by the first control. For example, in the space purification system, if the concentration of hypochlorous acid water supplied by the first control is high, if the supply of water by the second control is not executed, the hypochlorous acid water in the mixing tank concentration rises faster. Therefore, by setting the predetermined period to be short, it is possible to more reliably suppress an excessive increase in the concentration of the hypochlorous acid water in the mixing tank.
  • FIG. 10 is a diagram showing the configuration of a space purification system 2100 according to Embodiment 3 of the present disclosure.
  • the space purification system 2100 performs cooling processing (dehumidification processing) or heating processing on the air 2008 (RA2) from the indoor space 2018 as necessary, and circulates the air inside the indoor space 2018.
  • It is a device that makes the air 2008 containing fine water and a component for purifying the air (hereinafter simply referred to as "air purifying component").
  • the space purification system 2100 sterilizes and deodorizes the indoor space 2018 by supplying the air 2009 (SA2) that has circulated inside to the indoor space 2018 .
  • SA2 air 2009
  • hypochlorous acid is used as the air purification component
  • the water containing the air purification component is hypochlorous acid water.
  • the space purification system 2100 mainly includes a space purification device 2010, an air conditioner 2015, and a hypochlorous acid water generator 2030, as shown in FIG.
  • the space purification device 2010 includes an air outlet 2003 , an air purification section 2011 and an air purification control section 2041 .
  • the air conditioner 2015 includes a suction port 2002 , a blower 2013 , a refrigerant coil 2014 and an air conditioning controller 2042 .
  • Each of the space purification device 2010 and the air conditioner 2015 has a housing that constitutes the outer frame of the device, and the space purification device 2010 and the air conditioner 2015 are connected by a duct 2024 .
  • a suction port 2002 is formed on the side surface of the air conditioner 2015 and an air outlet 2003 is formed on the side surface of the space cleaning device 2010 .
  • the intake port 2002 is an intake port that takes in the air 2008 from the indoor space 2018 into the air conditioner 2015 .
  • the suction port 2002 communicates through a duct 2016 with an indoor suction port 2016a provided on the ceiling of an indoor space 2018 or the like.
  • the air inlet 2002 can draw air in the indoor space 2018 into the air conditioner 2015 from the indoor air inlet 2016a.
  • the air outlet 2003 is an outlet for discharging the air 2009 (SA2) that has flowed through the space purification device 2010 into the indoor space 2018.
  • the air outlet 2003 communicates with an indoor air outlet 2017 a provided on the ceiling of an indoor space 2018 or the like via a duct 2017 .
  • the air outlet 2003 can blow out the air 2009 that has flowed through the space cleaning device 2010 toward the indoor space 2018 from the indoor air outlet 2017a.
  • air passages front air passage 2004, middle air passage 2005, rear air passage 2006 communicating the suction port 2002 and the air outlet 2003 via the duct 2024.
  • the front air passage 2004 is an air passage adjacent to the suction port 2002 .
  • a blower 2013 and a refrigerant coil 2014 are provided in the front air passage 2004 .
  • the middle air passage 2005 is an air passage through which the air 2008 that has flowed through the front air passage 2004 circulates at a position adjacent to the front air passage 2004 (duct 2024).
  • the middle air passage 2005 is provided with an air purifier 2011 in the air passage.
  • the rear air passage 2006 is an air passage adjacent to the outlet 2003.
  • the air 2008 that has flowed through the middle air passage 2005 flows through the air purifier 2011, and is mixed with hypochlorous acid with water that has been atomized. becomes air 2009 containing
  • the air 2008 sucked from the suction port 2002 circulates through the front air passage 2004, flows through the middle air passage 2005 and the rear air passage 2006, and exits the air outlet 2003 as air 2009. blown out.
  • the blower 2013 of the air conditioner 2015 is a device for conveying the air 2008 (RA2) in the indoor space 2018 from the suction port 2002 into the air conditioner 2015.
  • the blower 2013 is installed upstream of the refrigerant coil 2014 in the front air passage 2004 .
  • on/off of operation is controlled according to the fan output information from the air conditioning control section 2042 .
  • air 2008 in the indoor space 2018 is taken into the air conditioner 2015 and directed toward the refrigerant coil 2014 .
  • the refrigerant coil 2014 is a member arranged downstream of the blower 2013 in the front air passage 2004 to cool or heat the introduced air 2008 .
  • Refrigerant coil 2014 changes its output state (cooling, heating, or off) in accordance with an output signal from air conditioning control unit 2042 to adjust cooling capacity (cooling amount) or heating capacity (heating amount) for introduced air 2008. adjust.
  • cooling capacity cooling amount
  • heating capacity heating amount
  • Refrigerant coil 2014 functions as a heat absorber or a heat radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber. is configured to absorb (cool) or dissipate (heat) heat to More specifically, the refrigerant coil 2014 is connected to the outdoor unit 2020 via a refrigerant circuit 2021 through which refrigerant flows.
  • the outdoor unit 2020 is an outdoor unit installed in the outdoor space 2019, and has a compressor 2020a, an expander 2020b, an outdoor heat exchanger 2020c, a blower fan 2020d, and a four-way valve 2020e. Since the outdoor unit 2020 has a general configuration, detailed description of each device (compressor 2020a, expander 2020b, outdoor heat exchanger 2020c, blower fan 2020d, and four-way valve 2020e) is omitted.
  • the four-way valve 2020e Since the four-way valve 2020e is connected to the refrigeration cycle including the refrigerant coil 2014, in the air conditioner 2015, the four-way valve 2020e allows the refrigerant to flow in the first direction to cool and dehumidify the air (air 2008). It is possible to switch between a cooling mode (dehumidifying mode) state and a heating mode state in which the four-way valve 2020e circulates the refrigerant in the second direction to heat the air (air 2008).
  • a cooling mode dehumidifying mode
  • a heating mode state in which the four-way valve 2020e circulates the refrigerant in the second direction to heat the air (air 2008).
  • the first direction is the direction in which the refrigerant flows through the compressor 2020a, the outdoor heat exchanger 2020c, the expander 2020b, and the refrigerant coil 2014 in this order.
  • the second direction is the direction in which the refrigerant flows through the compressor 2020a, the refrigerant coil 2014, the expander 2020b, and the outdoor heat exchanger 2020c in this order.
  • Refrigerant coil 2014 can cool or heat the incoming air (air 2008).
  • the air purifier 2011 of the space purifier 2010 is a unit for humidifying the air 2008 taken into the interior. During humidification, the air is made to contain hypochlorous acid together with finely divided water. More specifically, the air purification section 2011 has a mixing tank 2092, a water level sensor 2090, a humidification motor 2011a, and a humidification nozzle 2011b.
  • the air purification unit 2011 rotates the humidification nozzle 2011b using the humidification motor 2011a, sucks up the hypochlorous acid water stored in the mixing tank 2092 of the air purification unit 2011 by centrifugal force, and scatters it around (centrifugally direction).
  • ⁇ Centrifugal crushing type configuration is adopted in which water is added to the passing air by colliding and crushing.
  • the air purification unit 2011 changes the number of rotations (hereinafter referred to as rotation output value) of the humidification motor 2011a according to the output signal from the air purification control unit 2041 to adjust the humidification capacity (humidification amount).
  • the amount of humidification can also be said to be the amount of addition of hypochlorous acid to the air.
  • the air purifier 2011 corresponds to the "humidification purifier" in the claims.
  • the water level sensor 2090 measures the water level of the hypochlorous acid water stored in the mixing tank 2092 and outputs the measured value to the air purification control section 2041. More specifically, the water level sensor 2090 measures the water level at which the mixing tank 2092 is in a dry state and the water level at which the mixing tank 2092 is full, as the water level of the hypochlorous acid water stored in the mixing tank 2092, The measured value is output to the air purification control section 2041 as water level information.
  • the water level at which the mixing tank 2092 is in a dry state is the water level when the amount of hypochlorous acid water in the mixing tank 2092 has decreased from the full state to about 1/3. is set to
  • the mixing tank 2092 is a tank for storing the hypochlorous acid water in the air purifying section 2011, and can also be said to be a water storage section.
  • hypochlorous acid water having a predetermined concentration supplied from a hypochlorous acid water supply unit 2036 described later and water supplied from a water supply unit 2050 described later are mixed in the tank and diluted. It is stored as mixed water consisting of hypochlorous acid water.
  • the hypochlorous acid water (mixed water) stored in the mixing tank 2092 can be discharged from the mixing tank 2092 to the outside by a drainage unit 2060 that operates according to an output signal from the air purification control unit 2041. ing.
  • the hypochlorous acid water generating unit 2030 includes an electrolytic cell 2031, an electrode 2032, an electromagnetic valve 2033, a salt water tank 2034, a salt water conveying pump 2035, a water level sensor 2039, and a hypochlorous acid water supply unit 2036.
  • a salt water tank 2034 stores salt water, and supplies salt water to the electrolytic cell 2031 via a salt water conveying pump 2035 according to an output signal from the air purification control unit 2041 .
  • the electrolytic cell 2031 stores salt water to be electrolyzed supplied from the salt water tank 2034 .
  • Tap water is also supplied to the electrolytic cell 2031 from a water supply pipe such as tap water through an electromagnetic valve 2033 in response to an output signal from the air purification control unit 2041, and the supplied tap water and salt water are mixed and mixed in advance. Salt water with a defined concentration is stored.
  • the electrode 2032 is arranged in the electrolytic cell 2031 and electrolyzes salt water for a predetermined period of time by energization according to an output signal from the air purification control unit 2041 to generate hypochlorous acid water having a predetermined concentration. That is, the electrolytic cell 2031 generates hypochlorous acid water by electrolyzing a chloride aqueous solution (for example, a sodium chloride aqueous solution) as an electrolyte between a pair of electrodes. Since a common device is used for the electrolytic cell 2031, detailed description is omitted.
  • the electrolyte is an electrolyte that can generate hypochlorous acid water, and is not particularly limited as long as it contains chloride ions even in a small amount. Dissolved aqueous solutions are included. There is no problem with hydrochloric acid.
  • an aqueous sodium chloride solution (salt water) in which sodium chloride is added to water is used as the electrolyte.
  • the water level sensor 2039 measures the water level in the electrolytic cell 2031 and outputs the measured value to the air purification control section 2041.
  • the hypochlorous acid water supply unit 2036 supplies hypochlorous acid water from the electrolytic cell 2031 to the mixing tank 2092 of the air purification unit 2011 according to the output signal from the air purification control unit 2041 .
  • the hypochlorous acid water supply unit 2036 has a hypochlorous acid water transfer pump 2037 and a water pipe 2038 .
  • Hypochlorous acid water transport pump 2037 sends hypochlorous acid water from electrolytic cell 2031 to water pipe 2038 in response to an output signal from air purification control unit 2041 .
  • the water pipe 2038 is connected between the hypochlorous acid water conveying pump 2037 and the mixing tank 2092 and feeds the hypochlorous acid water toward the mixing tank 2092 .
  • the water supply unit 2050 supplies water to the mixing tank 2092 according to the output signal from the air purification control unit 2041.
  • the water supply section 2050 has an electromagnetic valve 2051 and a water pipe 2052 .
  • Electromagnetic valve 2051 controls whether water supplied from a water pipe outside space purification device 2010 is allowed to flow through water pipe 2052 according to an output signal from air purification control unit 2041 .
  • the water pipe 2052 is connected between the electromagnetic valve 2051 and the mixing tank 2092 and feeds water toward the mixing tank 2092 .
  • the drain section 2060 is connected to the bottom of the mixing tank 2092 and discharges the mixed water stored in the mixing tank 2092 to the outside according to the output signal from the air purification control section 2041 .
  • the drain section 2060 has an electromagnetic valve 2061 and a water pipe 2062 .
  • the electromagnetic valve 2061 controls whether or not to flow the mixed water stored in the mixing tank 2092 to the external drain pipe according to the output signal from the air purification control section 2041 .
  • the water pipe 2062 is connected between the mixing tank 2092 and the electromagnetic valve 2061, and feeds mixed water to an external drain pipe.
  • hypochlorous acid water from the hypochlorous acid water supply unit 2036 and the water from the water supply unit 2050 are supplied to the mixing tank 2092, respectively. Then, the hypochlorous acid water and water are mixed in the mixing tank 2092 of the air purifier 2011 . Mixed water of hypochlorous acid water and water can also be called hypochlorous acid water. More specifically, in the mixing tank 2092 of the air purification unit 2011, hypochlorous acid water from the hypochlorous acid water supply unit 2036 or the water supply unit is added to the hypochlorous acid water remaining in the mixing tank 2092. Water from 2050 is fed respectively and mixed.
  • the air purifier 2011 discharges the hypochlorous acid water to the indoor space 2018 by centrifugally crushing the mixed water of hypochlorous acid water and water stored in the mixing tank 2092 .
  • the micronized hypochlorous acid water is discharged into the indoor space 2018 with the liquid component evaporated.
  • An operation device 2043 is installed on the wall surface of the indoor space 2018 .
  • the operation device 2043 has a user interface that can be operated by the user, and receives temperature setting values and humidity setting values from the user.
  • the operating device 2043 includes a temperature/humidity sensor 2044 that measures the temperature and humidity of the air in the indoor space 2018 .
  • a well-known technique may be used to measure the temperature and humidity in the temperature/humidity sensor 2044, so the description is omitted here.
  • the operating device 2043 is wired or wirelessly connected to the air purification control unit 2041 and the air conditioning control unit 2042, and transmits the temperature setting value, humidity setting value, temperature measurement value, and humidity measurement value to the air purification control unit 2041. and transmitted to the air conditioning control unit 2042 . All of these pieces of information may be transmitted together, arbitrary two or more may be transmitted together, and each of them may be transmitted. Alternatively, the operation device 2043 may transmit information to the air purification control section 2041 , and the air purification control section 2041 may transfer the information to the air conditioning control section 2042 .
  • the air conditioning control unit 2042 of the air conditioner 2015 receives the temperature setting value and the temperature measurement value, and controls the refrigerant coil 2014 and the outdoor unit 2020 so that the temperature measurement value approaches the temperature setting value. In the heating mode, when the measured temperature value is lower than the set temperature value, the air conditioning control unit 2042 increases the degree of heating as the difference between the measured temperature value and the set temperature value increases.
  • the air purification control unit 2041 as processing operations of the hypochlorous acid water generation unit 2030 and the space purification device 2010, relates to operations related to electrolysis processing in the electrolytic cell 2031 and processing to supply hypochlorous acid water to the air purification unit 2011. It controls operations, operations related to water supply processing to the air purification unit 2011, operations related to humidification purification processing in the air purification unit 2011, and operations related to mixed water drainage processing in the air purification unit 2011, respectively.
  • the air purification control unit 2041 has a computer system having a processor and memory. The computer system functions as a controller by the processor executing the program stored in the memory.
  • the program executed by the processor is recorded in advance in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. may be provided through Also, the air purification control unit 2041 corresponds to the "control unit" in the claims.
  • FIG. 11 is a block diagram showing the configuration of the air purification control section 2041 of the space purification system 2100 according to the third embodiment.
  • the air purification control section 2041 includes an input section 2041a, a storage section 2041b, a clock section 2041c, a processing section 2041d, and an output section 2041e.
  • the air purification control unit 2041 causes the following processes to be executed as operations related to the electrolysis process in the electrolytic cell 2031 .
  • the air purification control unit 2041 receives water level information (dry water signal) from the water level sensor 2039 and information on time (time information) from the clock unit 2041c as a trigger for electrolysis processing of the electrolytic cell 2031, and outputs the information to the processing unit 2041d. do.
  • the processing unit 2041d identifies control information based on the water level information from the water level sensor 2039, the time information from the clock unit 2041c, and the setting information from the storage unit 2041b, and outputs it to the output unit 2041e.
  • the setting information includes information on the start time or end time of hypochlorous acid water generation, information on the supply amount of tap water to be introduced into the electrolytic cell 2031, and input of the liquid containing chloride ions in the salt water transfer pump 2035.
  • Information on the amount, information on the electrolysis conditions (time, current value, voltage, etc.) in the electrode 2032, information on the opening/closing timing of the electromagnetic valve 2033, and information on the on/off operation of the hypochlorous acid water transfer pump 2037 are included. .
  • the electrolysis conditions in the electrode 2032 can be determined from the amount of tap water in the electrolytic cell 2031, the chloride ion concentration, the electrolysis time, and the degree of deterioration of the electrode 2032, and are set by creating an algorithm, and the storage unit 2041b.
  • the output unit 2041e outputs a signal (control signal) to each device (salt water carrier pump 2035, solenoid valve 2033, and hypochlorous acid water carrier pump 2037) based on the received control information.
  • the salt water transfer pump 2035 maintains a stopped state based on the signal from the output section 2041e, and the hypochlorous acid water transfer pump 2037 stops based on the signal from the output section 2041e. maintain state.
  • the electromagnetic valve 2033 is opened based on the signal from the output section 2041e.
  • supply of tap water from the water pipe is started to the electrolytic cell 2031 .
  • the electromagnetic valve 2033 is closed based on the signal from the output section 2041e that receives the water level information (full water) from the water level sensor 2039 .
  • the electrolytic cell 2031 is supplied with tap water at the set supply rate.
  • the salt water conveying pump 2035 starts operating based on a signal from the output section 2041e, conveys the liquid containing a predetermined amount of chloride ions to the electrolytic cell 2031, and stops.
  • chloride ions are dissolved in the tap water, and electrolytic cell 2031 is in a state where an aqueous solution (chloride aqueous solution) containing a predetermined amount of chloride ions is generated.
  • the electrode 2032 starts electrolysis of the chloride aqueous solution, generates hypochlorous acid water under the set conditions, and stops the electrolysis.
  • the hypochlorous acid water generated by the electrode 2032 has, for example, a hypochlorous acid concentration of 100 ppm to 150 ppm (eg, 120 ppm) and a pH of 7.0 to 8.5 (eg, 8.0). becomes.
  • the air purification control unit 2041 performs electrolysis processing in the electrolytic cell 2031 to generate hypochlorous acid water with a predetermined concentration and amount.
  • the air purification control unit 2041 causes the following processing to be executed as operations related to the hypochlorous acid water supply processing to the air purification unit 2011 .
  • the timer unit 2041c measures the operation time of the humidification motor 2011a as a trigger for supplying hypochlorous acid water to the air purification unit 2011, and the operation time elapses for a predetermined time (for example, 60 minutes).
  • a hypochlorous acid water supply request is output to the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036).
  • the predetermined time is a time estimated in advance by experimental evaluation, based on the fact that hypochlorous acid in the hypochlorous acid water evaporates and decreases over time.
  • the processing unit 2041d identifies the control information based on the information about time (time information) from the clock unit 2041c and the setting information from the storage unit 2041b, and outputs the control information to the output unit 2041e.
  • the setting information includes information about the hypochlorous acid water supply interval (for example, 60 minutes) and information about the ON/OFF operation of the hypochlorous acid water transfer pump 2037 .
  • the output unit 2041e outputs a signal (control signal) to the hypochlorous acid water transfer pump 2037 of the hypochlorous acid water supply unit 2036 based on the received control information.
  • the hypochlorous acid water transport pump 2037 operates based on the signal from the output section 2041e.
  • the hypochlorous acid water generating unit 2030 supply of hypochlorous acid water from the electrolytic cell 2031 to the air purification unit 2011 (mixing tank 2092) is started.
  • the hypochlorous acid water is supplied from the hypochlorous acid water generation unit 2030 to the mixing tank 2092, The hypochlorous acid water produced is supplied in full.
  • the water level sensor 2039 outputs a water shortage signal as water level information when the hypochlorous acid water in the electrolytic cell 2031 is completely supplied.
  • the hypochlorous acid water conveying pump 2037 stops based on the signal from the output section 2041e that receives the time information (required time for supplying the specified amount) from the clock section 2041c.
  • the hypochlorous acid water generating unit 2030 supplies the hypochlorous acid water from the electrolytic cell 2031 to the air purification unit 2011 (mixing tank 2092) at the set supply amount.
  • the air purification control unit 2041 causes the hypochlorous acid water supply process from the hypochlorous acid water generation unit 2030 (the electrolytic cell 2031) to the air purification unit 2011 to be executed.
  • the control in which the air purification control unit 2041 causes the hypochlorous acid water supply unit 2036 to supply hypochlorous acid water at predetermined time intervals is referred to as "first control".
  • the air purification control unit 2041 causes the following processing to be executed as operations related to water supply processing to the air purification unit 2011 .
  • the air purification control unit 2041 receives water level information (dry water signal) from the water level sensor 2090 of the space purification device 2010 as a trigger for water supply processing to the air purification unit 2011, and outputs a water supply request to the water supply unit 2050. do.
  • the input unit 2041a receives water level information (dry water signal) from the water level sensor 2090 of the space purification device 2010 and outputs it to the processing unit 2041d.
  • water level information dry water signal
  • the processing unit 2041d specifies control information based on the water level information (water shortage signal) from the input unit 2041a, the time information (time information) from the timer unit 2041c, and the setting information from the storage unit 2041b, and outputs the output unit 2041e.
  • the setting information includes information regarding the ON/OFF operation of the solenoid valve 2051 of the water supply unit 2050 .
  • the output unit 2041e outputs a signal (control signal) to the electromagnetic valve 2051 based on the received control information.
  • the solenoid valve 2051 operates based on the signal from the output section 2041e. As a result, in the water supply unit 2050 , the supply of water from the external water supply pipe to the air cleaning unit 2011 (mixing tank 2092 ) is started via the water supply pipe 2052 .
  • the solenoid valve 2051 stops based on the signal from the output section 2041e that receives the water level information (full water signal) from the water level sensor 2090 of the space purification device 2010. As a result, the water supply unit 2050 supplies water from the external water supply pipe to the air cleaning unit 2011 (mixing tank 2092) until the set amount of water is reached.
  • the air purification control unit 2041 causes the water supply unit 2050 to supply water to the air purification unit 2011.
  • the control in which the air purification control unit 2041 supplies water by the water supply unit 2050 based on the information (water shortage information) on the water level of the mixing tank 2092 from the water level sensor 2090 is referred to as "second control".
  • the input unit 2041a receives user input information from the operation device 2043, temperature and humidity information of the air in the indoor space 2018 from the temperature and humidity sensor 2044, and hypochlorous acid water (mixed water) in the mixing tank 2092 from the water level sensor 2090. ) and receive the water level information.
  • the input unit 2041a outputs each received information to the processing unit 2041d.
  • the operation device 2043 inputs user input information (for example, air volume, target temperature, target humidity, presence/absence of addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.) regarding the space purification device 2010. It is a terminal that communicates with the air purification control unit 2041 wirelessly or by wire.
  • user input information for example, air volume, target temperature, target humidity, presence/absence of addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.
  • the temperature/humidity sensor 2044 is a sensor that is provided in the indoor space 2018 and senses the temperature/humidity of the air in the indoor space 2018 .
  • the storage unit 2041b stores user input information received by the input unit 2041a and supply setting information in the operation of supplying hypochlorous acid to the air circulating in the apparatus.
  • the storage unit 2041b outputs the stored supply setting information to the processing unit 2041d.
  • the supply setting information in the hypochlorous acid supply operation can also be said to be the humidification setting information in the humidification purification operation of the air purification unit 2011 .
  • the clocking unit 2041c outputs time information regarding the current time to the processing unit 2041d.
  • the processing unit 2041d receives various information (user input information, temperature/humidity information, water level information) from the input unit 2041a, time information from the clock unit 2041c, and supply setting information from the storage unit 2041b.
  • the processing unit 2041d uses the received user input information, time information, and supply setting information to identify control information related to the humidification/purification operation.
  • the processing unit 2041d detects the target humidity stored in the storage unit 2041b and the temperature/humidity information of the air in the indoor space 2018 from the temperature/humidity sensor 2044 at regular time intervals based on the time information from the clock unit 2041c. Identifies the required humidification demand for the indoor space 2018 based on the humidity difference between. Then, the processing unit 2041d identifies control information related to the humidification purification operation based on the identified humidification request amount and the supply setting information stored in the storage unit 2041b. Then, the processing unit 2041d outputs the specified control information to the output unit 2041e.
  • the processing unit 2041d when the water level information from the water level sensor 2090 includes water level information (water shortage signal) indicating a water shortage of the hypochlorous acid water (mixed water) in the mixing tank 2092, the processing unit 2041d outputs the output unit 2041e outputs a water supply request signal to the water supply unit 2050 to the output unit 2041e. Furthermore, the processing unit 2041d, based on the time information from the clock unit 2041c, when the operation time of the air purification unit 2011 (humidification motor 2011a) reaches a predetermined time (for example, 60 minutes), the output unit 2041e A hypochlorous acid water supply request signal to the hypochlorous acid water generation unit 2030 is output to the output unit 2041e.
  • a predetermined time for example, 60 minutes
  • the water level at which the hypochlorous acid water (mixed water) in the mixing tank 2092 indicates a water shortage is about 1% from the state where the hypochlorous acid water (mixed water) in the mixing tank 2092 is full.
  • the water level is set when the amount of hypochlorous acid water is reduced to /3.
  • the output unit 2041e outputs the received signals to the air purification unit 2011, the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036), and the water supply unit 2050, respectively.
  • the air purification unit 2011 receives a signal from the output unit 2041e, and controls the driving operation based on the received signal.
  • the hypochlorous acid water generating unit 2030 receives a signal (hypochlorous acid water supply request signal) from the output unit 2041e, and based on the received signal, An operation (first control) relating to the process of supplying hypochlorous acid water to the air purifier 2011 described above is executed.
  • the water supply unit 2050 receives a signal (a water supply request signal) from the output unit 2041e, and based on the received signal, performs an operation (second control) related to water supply processing to the air purification unit 2011 described above. to run.
  • the air purification control unit 2041 supplies hypochlorous acid water by the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036) as supply processing at predetermined time intervals. 1 control and a second control for supplying water by the water supply unit 2050 based on the information (water shortage information) about the water level of the mixing tank 2092 from the water level sensor 2090, and storing the mixed water in the mixing tank 2092 do.
  • the air purification control unit 2041 controls the hypochlorous acid water supply cycle (every predetermined time) and the water The supply cycle (each time water shortage is detected) is made different, and the humidification and purification processing for the air flowing through the space purification device 2010 (air purification unit 2011) is executed.
  • the air purification control unit 2041 causes the following processes to be executed as operations related to drainage of mixed water stored in the mixing tank 2092 of the air purification unit 2011 .
  • the air purification control unit 2041 determines whether or not to perform drainage treatment based on information (execution time information) regarding the execution time of the second control in the water supply unit 2050. judge.
  • the storage unit 2041b stores execution time information of the second control.
  • the execution time is the initial state of the mixing tank 2092 (for example, the state where the mixing tank 2092 is filled with water and hypochlorous acid water supplied after wastewater treatment) as a starting point. It is the execution time of the second control executed after the start of the processing operation (hereinafter also referred to as "after the start of operation").
  • the execution time of the second control is stored in the storage unit 2041b each time the second control is executed.
  • the storage unit 2041b also stores the time at which the humidifying and purifying process operation is started, including it in the execution time information of the second control.
  • the processing unit 2041d determines a period during which the second control is not executed (second control non-execution period). Then, the processing unit 2041d determines whether or not the specified non-execution period of the second control is equal to or longer than the reference time.
  • the reference time is set so that the hypochlorous acid water concentration in the mixing tank 2092 does not exceed the reference concentration only by the continuous supply of hypochlorous acid water by the first control. Based on the hypochlorous acid concentration of the hypochlorous acid water supplied from 2036, it is set to "6 hours".
  • the reference concentration is set to a hypochlorous acid concentration that does not make the user in the indoor space 2018 uncomfortable due to the smell of the air 2009 (air 2009 containing hypochlorous acid) blown into the indoor space 2018. .
  • the reference time corresponds to the "predetermined period" in the claims.
  • the processing unit 2041d specifies the control information based on the time information from the clock unit 2041c and the setting information from the storage unit 2041b. and output to the output unit 2041e.
  • the setting information includes information regarding the ON/OFF operation of the solenoid valve 2061 of the drainage section 2060 .
  • the output unit 2041e outputs a signal (control signal) to the electromagnetic valve 2061 based on the received control information.
  • the solenoid valve 2061 operates based on the signal from the output section 2041e. As a result, the drainage unit 2060 starts discharging the mixed water from the mixing tank 2092 to the external drainage pipe via the water pipe 2062 .
  • the electromagnetic valve 2061 stops after a predetermined time (for example, 1 minute) has elapsed based on the signal from the output section 2041e that has received the time information from the clock section 2041c. As a result, the mixed water stored in the mixing tank 2092 is all discharged and the mixing tank 2092 becomes empty.
  • a predetermined time for example, 1 minute
  • the air purification control unit 2041 causes the mixed water to be discharged from the mixing tank 2092 to the outside.
  • the air purification control unit 2041 performs the control of draining the mixed water by the drain unit 2060 based on the information about the execution time of the second control in the water supply unit 2050 (non-execution period of the second control) as “third control”.
  • FIG. 12 is a schematic diagram showing temporal changes in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system 2100 (winter: first example). More specifically, (a) of FIG. 12 shows temporal changes in the amount of hypochlorous acid water (mixed water) in the mixing tank 2092 . (b) of FIG. 12 shows changes in the concentration of the hypochlorous acid water (mixed water) in the mixing tank 2092 over time. (c) of FIG.
  • FIG. 12 shows changes over time in the concentration of hypochlorous acid contained in the air at the outlet 2003 .
  • FIG. 13 is a schematic diagram showing temporal changes in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system 2100 (summer: second example). More specifically, (a) of FIG. 13 shows temporal changes in the amount of hypochlorous acid water (mixed water) in the mixing tank 2092 . (b) of FIG. 13 shows changes over time in the concentration of the hypochlorous acid water (mixed water) in the mixing tank 2092 . (c) of FIG. 13 shows changes over time in the concentration of hypochlorous acid contained in the air at the outlet 2003 .
  • FIG. 13 is a schematic diagram showing temporal changes in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system 2100 (summer: second example). More specifically, (a) of FIG. 13 shows temporal changes in the amount of hypochlorous acid water (mixed
  • FIG. 14 is a schematic diagram showing temporal changes in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system 2100 (summer: third example). More specifically, (a) of FIG. 14 shows temporal changes in the amount of hypochlorous acid water (mixed water) in the mixing tank 2092 . (b) of FIG. 14 shows changes in the concentration of the hypochlorous acid water (mixed water) in the mixing tank 2092 over time. (c) of FIG. 14 shows changes over time in the concentration of hypochlorous acid contained in the air at the outlet 2003 .
  • the supply of hypochlorous acid water to the mixing tank 2092 is performed at predetermined time intervals (one hour), and the supply of water to the mixing tank 2092 is detected by the water level sensor 2090 at the water level at which the mixing tank 2092 is dry. is executed each time it detects
  • hypochlorous acid water (mixed water) in the mixing tank 2092 reaches a water level at which the water level is low, the hypochlorous acid water (mixed water) in the mixing tank 2092 is About 1/3 remains. Also, to simplify the explanation, it is assumed that the air purifier 2011 operates with a constant required amount of humidification during the humidifying and purifying operation time. In addition, hereinafter, the predetermined amount of hypochlorous acid water supplied to the mixing tank 2092 is also referred to as "hypochlorous acid water undiluted solution".
  • the supply of water (second control) is performed four times during the operation time of up to 3 hours after the start of operation of the air purification unit 2011, and the supply of hypochlorous acid water Processing under the humidification/purification condition in which (first control) is executed three times will be described.
  • the humidification/purification conditions described above are such that the number of times the first control is performed is less than the number of times the second control is performed when the required amount of humidification for the air purification section 2011 is equal to or greater than the first reference value.
  • 2011 is set based on the control.
  • the first reference value is a value set to distinguish between a situation in which the air is dry with low humidity in the winter in Japan and a situation in which the air is humid and humid in the summer in Japan. .
  • the supply of hypochlorous acid water to the mixing tank 2092 is 1 hour, 2 hours, 3 It is executed at the timing of time.
  • the supply of water to the mixing tank 2092 (second control) is executed at times a2, b2, c2, d2, and so on.
  • hypochlorous acid water and water are supplied to the mixing tank 2092, respectively. ) is filled with water (initial state).
  • the supply of hypochlorous acid water (first control) and the supply of water (second control) overlap, so the first example is hypochlorous acid water in a 3-hour cycle. It can be viewed as a supply (first control) and a water supply (second control). However, in the supply of water at this timing (second control), the mixed water remains in the mixing tank 2092 about 1/3 of that when it is full, and the amount of hypochlorous acid water supplied Since the supply amount of water is reduced by , the hypochlorous acid water concentration in the mixing tank 2092 is slightly higher than the initial state at the time of 0 hours.
  • the number of times the first control is performed is less than the number of times the second control is performed when the required amount of humidification for the air purification unit 2011 is equal to or greater than the first reference value.
  • the mixing tank 2092 is filled with a mixture of hypochlorous acid stock solution and water (also hypochlorous acid water) until it is full. Then, the amount of mixed water decreases at a constant rate due to the humidifying and purifying operation, a water shortage is detected at the timing a2 hours after the start of operation, and water is supplied from the water supply unit 2050 until the mixing tank 2092 is full. be. After that, while the water level of the mixed water decreases at a constant speed due to the humidifying and purifying operation, the first control is executed at one hour, which is the supply timing of the hypochlorous acid water.
  • hypochlorous acid water undiluted solution is supplied to the mixing tank 2092 from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036).
  • hypochlorous acid water supply unit 2036 hypochlorous acid water supply unit 2036
  • the first control is executed at the timing when the operation time after the start of operation reaches 2 hours, and the hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036) to the mixing tank. 2092.
  • the hypochlorous acid water generation unit 2030 hypochlorous acid water supply unit 2036
  • This causes the water level in the mixing tank 2092 to rise slightly.
  • the water level of the mixed water continues to decrease due to the humidifying and purifying operation, and water shortage occurs again at the timing of c2 hours from the start of operation, and water is supplied from the water supply unit 2050 until the mixing tank 2092 is full.
  • the operating time after the start of operation reaches the timing of 3 hours (d2 hours).
  • the detection of water shortage and the timing of supplying the undiluted hypochlorous acid solution overlap, so the first control and the second control are executed in this order.
  • the first control the hypochlorous acid water undiluted solution is first supplied to the mixing tank 2092 from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036).
  • the second control water is supplied from the water supply unit 2050 until the mixing tank 2092 is filled with water.
  • the hypochlorous acid water undiluted solution and water are supplied into the mixing tank 2092, respectively, and the water level in the mixing tank 2092 becomes the same state as at the beginning of the operation (time 0).
  • hypochlorous acid water undiluted solution is supplied at the timing of hypochlorous acid water supply, in the same way as the period of operation up to 3 hours after the start of operation. repeat.
  • the hypochlorous acid water undiluted solution and mixed water of water are mixed in the mixing tank 2092 so as to have a predetermined concentration (initial concentration). Then, when the humidification/purification operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 2092 decreases with time from the start of the operation to a2 hours. This is because hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid is vaporized and given to the air at a certain rate with respect to the concentration of hypochlorous acid water. be.
  • hypochlorous acid does not evaporate, the hypochlorous acid contained in the water is simply consumed along with the water that has been pulverized by the air purifier 2011.
  • concentration of the hypochlorous acid water in the mixing tank 2092 decreases at a constant speed, the concentration of the hypochlorous acid water in the mixing tank 2092 does not change.
  • concentration of hypochlorous acid water is not zero even at the time a2, which is the timing when the water level sensor 2090 detects a water shortage, because, as described above, even if a water shortage is detected, hypochlorous acid is not present in the mixing tank 2092. This is because chloric acid water (mixed water) remains.
  • the hypochlorous acid water in the mixing tank 2092 is diluted with water as the water is supplied from the water supply unit 2050.
  • the concentration of chlorous acid water decreases.
  • the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of the hypochlorous acid until one hour is reached, which is the supply timing of the hypochlorous acid water.
  • hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036).
  • concentration of hypochlorous acid water in the mixing tank 2092 rises above the initial concentration. This is a predetermined amount of hypochlorous acid supplied at the beginning of operation for mixed water (water containing hypochlorous acid), which is less than the water supplied at the beginning of operation (0 hour). This is because water (hypochlorous acid water undiluted solution) is supplied.
  • the concentration of hypochlorous acid water decreases due to vaporization of hypochlorous acid from the start of operation until b2 time (water shortage detection).
  • the decrease rate of hypochlorous acid is faster than at the initial stage of operation because the content of hypochlorous acid contained in the mixed water is large, and the amount of hypochlorous acid vaporized is also large.
  • the hypochlorous acid water in the mixing tank 2092 is diluted with water as the water is supplied from the water supply unit 2050.
  • the concentration of chlorous acid water decreases.
  • the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of the hypochlorous acid until 2 hours, which is the supply timing of the hypochlorous acid water.
  • hypochlorous acid water supply timing reaches 2 hours from the start of operation
  • the supply of the hypochlorous acid water undiluted solution from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036)
  • the concentration of hypochlorous acid water in the mixing tank 2092 rises above the initial concentration.
  • the concentration of hypochlorous acid water (mixed water) decreases due to vaporization of hypochlorous acid from the start of operation until c2 hours (water shortage detection).
  • the hypochlorous acid water in the mixing tank 2092 is diluted with water as the water is supplied from the water supply unit 2050.
  • the concentration of chlorous acid water decreases.
  • the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of the hypochlorous acid until 3 hours, which is the supply timing of the hypochlorous acid water.
  • the concentration of hypochlorous acid contained in the air 2009 discharged from the blower outlet 2003 is determined by the amount of humidification in the air purification unit 2011 and the concentration of hypochlorous acid water in the mixing tank 2092.
  • the humidification amount is constant, so the concentration of the hypochlorous acid water in the mixing tank 2092 is reflected. Therefore, as shown in (c) of FIG. 12, the concentration of hypochlorous acid contained in the air 2009 of the outlet 2003 is equal to the concentration of hypochlorous acid water in the mixing tank 2092 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .
  • the state from the start of operation (0 hours) to a2 hours is This will be repeated until the timing of 3 hours (d2 hours).
  • the average concentration of hypochlorous acid contained in the air 2009 from the outlet 2003 is, for example, the conventional average concentration shown in FIG. 12(c).
  • the state is the same as the conventional state from the start of operation (0 hour) to the a2 hour, but the state is different from the conventional state during the period from the a2 hour to 3 hours. More specifically, in the period from a2 hours to 3 hours, as shown in FIG.
  • period 2 hours to c2 hours is less than the initial concentration (period a2 hours to 1 hour, b period 2 hours to 2 hours, period c2 hours to 3 hours) It's getting shorter. Therefore, the average concentration of hypochlorous acid contained in the air 2009 from the outlet 2003 is lower than the conventional average concentration during the period from the start of operation (0 hour) to 3 hours.
  • the hypochlorous acid water supply cycle (every predetermined time) and the water supply
  • the air 2009 of the outlet 2003 that is, the indoor space 2018, is blown out compared to the case of supplying the hypochlorite sprinkling and water to the mixing tank 2092 by the conventional method. It can reduce the concentration of hypochlorous acid contained in the air.
  • the supply of the hypochlorous acid water undiluted solution to the mixing tank 2092 is the supply of the hypochlorous acid water undiluted solution to the mixing tank 2092 ( The first control) is executed at timings of 1 hour, 2 hours, 3 hours, 4 hours, and 5 hours, assuming that the start of operation is 0 hours.
  • the supply of water to the mixing tank 2092 (second control) is executed when the water level sensor 2090 detects a water shortage at 5 hours. At time 0, when the operation starts, hypochlorous acid water and water are supplied to the mixing tank 2092, respectively. ) is filled with water (initial state).
  • the first control is executed and the hypochlorous acid water undiluted solution is supplied to the mixing tank 2092 . After that, the same control is executed until the operating time is up to 4 hours after the start of operation.
  • the operating time after the start of operation reaches the timing of 5 hours.
  • the detection of water shortage and the timing of supplying the undiluted hypochlorous acid solution overlap, so the first control and the second control are executed in this order.
  • the first control the hypochlorous acid water undiluted solution is supplied to the mixing tank 2092 from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036).
  • the second control water is supplied from the water supply unit 2050 until the mixing tank 2092 is filled with water.
  • the undiluted hypochlorous acid solution and water are supplied into the mixing tank 2092, and the water level in the mixing tank 2092 is brought to a state close to the initial operation (0 hour).
  • the timing at which the operating time is 5 hours is regarded as the initial state (0 hour), and the same supply operation is repeated every 5 hours.
  • the mixing tank 2092 is filled with a mixture of hypochlorous acid stock solution and water (also hypochlorous acid water) until it is full. Then, when the humidifying and purifying operation is started, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and one hour, which is the supply timing of the hypochlorous acid water, is reached.
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 2092, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036 ) to the mixing tank 2092 .
  • the hypochlorous acid water generation unit 2030 hyperochlorous acid water supply unit 2036
  • the non-execution period of the second control (approximately 2 hours) has not reached the reference time (6 hours).
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 2092, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036 ) to the mixing tank 2092 .
  • This causes the water level in the mixing tank 2092 to rise slightly.
  • the same control is executed until the operating time is up to 4 hours after the start of operation.
  • the hypochlorous acid water undiluted solution is supplied while the amount of mixed water decreases at a constant rate due to the humidification and purification operation, so humidification is performed while the amount of mixed water increases. It decreases according to the difference between quantity and supply.
  • the operating time after the start of operation reaches the timing of 5 hours.
  • the second control non-execution period (approximately 5 hours) has not reached the reference time (6 hours).
  • the detection of water shortage and the timing of supplying the undiluted hypochlorous acid solution overlap, so the first control and the second control are performed in this order without executing the draining of the mixed water stored in the mixing tank 2092. executed.
  • the hypochlorous acid water undiluted solution is first supplied to the mixing tank 2092 from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036).
  • the second control water is supplied from the water supply unit 2050 until the mixing tank 2092 is filled with water.
  • the undiluted hypochlorous acid solution and water are supplied into the mixing tank 2092, and the water level in the mixing tank 2092 is brought to a state close to the initial operation (0 hour).
  • the non-execution period of the second control is specified again with this timing as a starting point.
  • the timing when the operating time is 5 hours is regarded as the initial state (0 hour), and the same supply operation and drain operation are repeated every 5 hours. More specifically, as before, the hypochlorous acid water undiluted solution is supplied by the first control at the hypochlorous acid water supply timing, and the water is supplied by the second control at the water supply timing. repeat. Then, the water level of the hypochlorous acid water (mixed water) in the mixing tank 2092 increases or decreases corresponding to each operation.
  • the hypochlorous acid water undiluted solution and mixed water of water are mixed in the mixing tank 2092 so as to have a predetermined concentration (initial concentration). Then, when the humidification/purification operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 2092 decreases with the lapse of time from the start of the operation to 1 hour. As described above, hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid vaporizes at a certain rate with respect to the concentration of hypochlorous acid water and is given to the air. This is because
  • hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036).
  • concentration of hypochlorous acid water in the mixing tank 2092 rises above the initial concentration. As described above, this is supplied at the beginning of operation to the mixed water (water containing hypochlorous acid), which is less than the amount of mixed water stored at the beginning of operation (0 hours). This is because a predetermined amount of hypochlorous acid water (hypochlorous acid water undiluted solution) is supplied.
  • the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of hypochlorous acid until 2 hours after the start of operation.
  • hypochlorous acid water supply timing reaches 2 hours from the start of operation
  • the supply of the hypochlorous acid water undiluted solution from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036)
  • the concentration of hypochlorous acid water in the mixing tank 2092 further increases.
  • the concentration change of the hypochlorous acid water (mixed water) is repeated until the timing of 4 hours thereafter, and the concentration of the hypochlorous acid water (mixed water) gradually increases.
  • hypochlorous acid water undiluted solution water and hypochlorous acid water undiluted solution are supplied into the mixing tank 2092, and hypochlorous acid in the mixing tank 2092 Since the hypochlorous acid water in the mixing tank 2092 is diluted with water as the water is supplied from the water supply unit 2050, the concentration of the hypochlorous acid water in the mixing tank 2092 decreases. do. However, since the hypochlorous acid water and water are supplied in a state in which approximately 1/3 of the hypochlorous acid water remains, the concentration of the hypochlorous acid water in the mixing tank 2092 is the initial concentration in the initial state. not diluted to After that, the concentration of the hypochlorous acid water tends to rise as a whole with the passage of time, but basically the concentration change of the hypochlorous acid water (mixed water) is repeated in the same way as before.
  • the concentration of hypochlorous acid contained in the air 2009 discharged from the air outlet 2003 is determined by the amount of humidification in the air purification unit 2011 and the concentration of hypochlorous acid water in the mixing tank 2092, as in winter in Japan. Therefore, as shown in (c) of FIG. 13, the concentration of hypochlorous acid contained in the air 2009 of the outlet 2003 is the concentration of hypochlorous acid water in the mixing tank 2092 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .
  • hypochlorous acid water undiluted solution and water are supplied to fill the water every time the water level sensor 2090 detects a water shortage
  • hypochlorous acid water is supplied from the start of operation (0 hours) to 5 hours.
  • the acid water concentration will continue to decrease. Strictly speaking, the concentration of hypochlorous acid water continues to decrease during the five-hour period from full water to detection of water shortage.
  • the average concentration of hypochlorous acid contained in the air 2009 from the outlet 2003 is, for example, the conventional average concentration shown in FIG. 13(c).
  • the state is the same as before from the start of operation (0 hours) to 1 hour, but the state is different from the conventional state during the period from 1 hour to 5 hours of operation. More specifically, in the period from 1 hour to 5 hours of operation, as shown in FIG. much longer than the period. Therefore, the average concentration of hypochlorous acid contained in the air 2009 from the outlet 2003 is higher than the conventional average concentration during the period from the start of operation (0 hour) to 5 hours.
  • the concentration of the mixed water will be repeated every 5 hours with 5 hours as one cycle, so the concentration of hypochlorous acid water will not continue to rise, and a certain It is possible to continue adjusting the concentration of the hypochlorous acid water within the range below the concentration.
  • the supply of the hypochlorous acid water undiluted solution to the mixing tank 2092 is the supply of the hypochlorous acid water undiluted solution to the mixing tank 2092 ( The first control) is executed at timings of 1 hour, 2 hours, 3 hours, .
  • the supply of water to the mixing tank 2092 (second control) is not executed because the water level sensor 2090 does not detect the water shortage because the consumption associated with the humidification and purification is less than in the second example.
  • hypochlorous acid water and water are supplied to the mixing tank 2092, respectively. ) is filled with water (initial state).
  • the first control is executed and the hypochlorous acid water undiluted solution is supplied to the mixing tank 2092 . After that, the same control is executed until the operating time is up to 5 hours after the start of operation.
  • the operating time after the start of operation reaches the timing of 6 hours.
  • the non-execution period of the second control is 6 hours, so it is determined that the non-execution period of the second control is longer than or equal to the reference time (6 hours).
  • the third control is executed, and all the mixed water in the mixing tank 2092 is drained. Furthermore, after the execution of the third control, the hypochlorous acid water undiluted solution and water are newly supplied to the mixing tank 2092, and the mixing tank 2092 has the same hypochlorous acid concentration as in the initial state.
  • the tank is filled with acid water (mixed water).
  • the timing of 6 hours is regarded as the initial state (0 hours), and the same supply operation and drainage operation are repeated every 6 hours.
  • the mixing tank 2092 is filled with a mixture of hypochlorous acid stock solution and water (also hypochlorous acid water) until it is full. Then, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and one hour, which is the supply timing of the hypochlorous acid water, is approached. Then, at the timing of this one hour, the mixed water drainage determination is executed.
  • the mixing tank 2092 is filled with a mixture of hypochlorous acid stock solution and water (also hypochlorous acid water) until it is full. Then, when the humidifying and purifying operation is started, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and one hour, which is the supply timing of the hypochlorous acid water, is reached.
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 2092, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036 ) to the mixing tank 2092 .
  • the hypochlorous acid water generation unit 2030 hyperochlorous acid water supply unit 2036
  • the non-execution period of the second control (approximately 2 hours) has not reached the reference time (6 hours).
  • the first control is executed without executing the drainage of the mixed water stored in the mixing tank 2092, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036 ) to the mixing tank 2092 .
  • This causes the water level in the mixing tank 2092 to rise slightly.
  • the same control is executed until the operating time is up to 5 hours after the start of operation.
  • the hypochlorous acid water undiluted solution is supplied while the amount of mixed water decreases at a constant rate due to the humidification and purification operation, so humidification is performed while the amount of mixed water increases. It decreases according to the difference between quantity and supply.
  • the operating time after the start of operation reaches the timing of 6 hours.
  • the non-execution period (about 6 hours) of the second control is equal to or longer than the reference time (6 hours), and it is determined that the reference time has been reached.
  • the third control is executed, and the mixed water in the mixing tank 2092 is drained. Furthermore, after the mixed water is drained by the third control, the hypochlorous acid water undiluted solution and water are newly supplied to the mixing tank 2092, and the mixing tank 2092 is in the initial state (0 hour). Same as , it is filled with hypochlorous acid water (mixed water) of a predetermined concentration. In addition, since water is supplied by the water supply unit 2050, the non-execution time of the second control is specified again with this timing as a starting point.
  • the timing when the operation time is 6 hours is regarded as the initial state (0 hour), and the same supply operation and drainage operation are repeated every 6 hours. More specifically, as before, the hypochlorous acid water undiluted solution is supplied by the first control at the hypochlorous acid water supply timing, and the water is supplied by the second control at the water supply timing. repeat. Then, the water level of the hypochlorous acid water (mixed water) in the mixing tank 2092 increases or decreases corresponding to each operation.
  • the hypochlorous acid water undiluted solution and mixed water of water are mixed in the mixing tank 2092 so as to have a predetermined concentration (initial concentration). Then, when the humidification/purification operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 2092 decreases with the lapse of time from the start of the operation to 1 hour. As described above, hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid vaporizes at a certain rate with respect to the concentration of hypochlorous acid water and is given to the air. This is because
  • hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036).
  • concentration of hypochlorous acid water in the mixing tank 2092 rises above the initial concentration. As described above, this is supplied at the beginning of operation to the mixed water (water containing hypochlorous acid), which is less than the amount of mixed water stored at the beginning of operation (0 hours). This is because a predetermined amount of hypochlorous acid water (hypochlorous acid water undiluted solution) is supplied.
  • the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of hypochlorous acid until 2 hours after the start of operation.
  • hypochlorous acid water supply timing reaches 2 hours from the start of operation
  • the supply of the hypochlorous acid water undiluted solution from the hypochlorous acid water generation unit 2030 (hypochlorous acid water supply unit 2036)
  • the concentration of hypochlorous acid water in the mixing tank 2092 further increases.
  • the concentration change of the hypochlorous acid water (mixed water) is repeated until the next 5 hours, and the concentration of the hypochlorous acid water (mixed water) gradually increases.
  • hypochlorous acid water undiluted solution supply timing reaches 6 hours from the start of operation, it is time to drain based on the drainage determination, so all the hypochlorous acid water (mixed water) in the mixing tank 2092 is drained. After that, water and the hypochlorous acid water undiluted solution are supplied into the mixing tank 2092, and the concentration of the hypochlorous acid water in the mixing tank 2092 is the same as at the beginning of the operation (0 hour). After that, the concentration change of the hypochlorous acid water (mixed water) is repeated in the same manner as before.
  • the concentration of hypochlorous acid contained in the air 2009 discharged from the outlet 2003 is determined by the amount of humidification in the air purifier 2011 and the concentration of hypochlorous acid water in the mixing tank 2092, as in the second example. Therefore, as shown in (c) of FIG. 14, the concentration of hypochlorous acid contained in the air 2009 of the outlet 2003 is the concentration of hypochlorous acid water in the mixing tank 2092 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .
  • the hypochlorous acid water when the hypochlorous acid water undiluted solution and water are supplied to fill the water every time the water level sensor 2090 detects a water shortage, the hypochlorous acid water is supplied from the start of operation (0 hours) to 6 hours.
  • the acid water concentration will continue to decrease. Strictly speaking, the concentration of hypochlorous acid water continues to decrease during the period from full water to detection of water shortage within 6 hours.
  • the average concentration of hypochlorous acid contained in the air 2009 from the outlet 2003 is, for example, the conventional average concentration shown in FIG. 14(c).
  • the state is the same as the conventional state from the start of operation (0 hours) to 1 hour, but the state is different from the conventional state during the period from 1 hour to 6 hours. More specifically, in the period from 1 hour to 6 hours, as shown in FIG. much longer. Therefore, the average concentration of hypochlorous acid contained in the air 2009 from the outlet 2003 is higher than the conventional average concentration during the period from the start of operation (0 hour) to 6 hours.
  • the concentration of the mixed water is repeated every 6 hours with 6 hours as one cycle. It is possible to keep adjusting the concentration of hypochlorous acid water within the range. In other words, if the humidifying and purifying operation is continued, the concentration of the hypochlorous acid water in the mixing tank 2092 may increase too much, but by providing control of the drainage determination according to the non-execution period by the second control, a constant At intervals, the concentration of the hypochlorous acid water in the mixing tank 2092 and, in turn, the addition amount of hypochlorous acid contained in the air 2009 of the outlet 2003 can be reset, and the hypochlorous acid gas to the indoor space 2018 can be reset. You can control the supply amount.
  • hypochlorous acid water is supplied into the mixing tank 2092 every preset time (for example, 1 hour) as the first control, and the water from the water level sensor 2090 is supplied as the second control.
  • the water supply process is executed based on the water level information (water shortage signal), and the mixed water in the mixing tank 2092 is drained as the third control based on the non-execution period of the second control.
  • the air purification control unit 2041 of the space purification system 2100 based on the required amount of humidification required for the air purification unit 2011 (required amount of humidification corresponding to winter in Japan or required amount of humidification corresponding to summer in Japan), The number of times the first control is performed within the predetermined period and the number of times the second control is performed within the predetermined period are made different. As a result, in a state where the demand for humidification is high, such as in winter in Japan, it is possible to release the air 2009 containing less hypochlorous acid into the indoor space 2018 than in the conventional method.
  • the air 2009 with a high hypochlorous acid content can be discharged into the indoor space 2018 compared to the conventional method. Furthermore, when the humidifying and purifying operation is continued for a long period of time, it is possible to suppress an excessive increase in the concentration of hypochlorous acid released into the indoor space 2018.
  • the mixing tank 2092 can be easily controlled (first control, second control, third control).
  • concentration of hypochlorous acid water inside (the concentration of hypochlorous acid contained in the air 2009 blown into the indoor space 2018) can be adjusted.
  • the space purification system 2100 includes a hypochlorous acid water generation unit 2030 that generates hypochlorous acid water, and a hypochlorous acid water generation unit 2030 that supplies the hypochlorous acid water to the mixing tank 2092.
  • Air purifying unit 2011 that atomizes mixed water with water and releases it into the air, supply processing in hypochlorous acid water supply unit 2036 and water supply unit 2050, and drainage of mixed water stored in mixing tank 2092 and an air purification control unit 2041 that controls processing.
  • the air purification control unit 2041 performs first control to supply the hypochlorous acid water by the hypochlorous acid water supply unit 2036 every predetermined time (for example, 60 minutes), and A second control for supplying water by the water supply unit 2050 is executed based on information on the water level of the mixing tank 2092 (water shortage information).
  • the second control has not been executed for a predetermined period of time (for example, 6 hours)
  • the third control for draining the mixed water stored in the mixing tank 2092 is executed.
  • the second control is not executed for a predetermined period of time (for example, 6 hours) after water is supplied by the water supply unit 2050, the third control is executed, and the mixed water stored in the mixing tank 2092 is discharged.
  • the hypochlorous acid concentration in the mixing tank 2092 can be suppressed from increasing too much. As a result, even in a situation where it is difficult to evaporate the micronized hypochlorous acid water, the hypochlorous acid raised to a predetermined concentration can be contained in the air and released into the indoor space 2018 .
  • the space purification system 2100 can facilitate adjusting the amount of hypochlorous acid released into the air.
  • the air purification control unit 2041 performs the first control the second number of times when the required amount of humidification required of the air purification unit 2011 is equal to or greater than the first reference value in the supply process.
  • control is performed so that the number of times the first control is performed is greater than the number of times the second control is performed.
  • the space purification system 2100 can add hypochlorous acid to the air 2009 emitted from the air purification unit 2011 under conditions suitable for the environment of the indoor space 2018 based on the required amount of humidification.
  • the air purification unit 2011 operates with a constant required amount of humidification during the humidification purification operation time. However, in practice, it operates with the required humidification amount specified based on the humidity difference between the target humidity and the humidity of the air in the indoor space 2018 at regular intervals.
  • the description was given under the condition that the detection of water shortage and the supply timing of the hypochlorous acid water undiluted solution overlap. Actually, in most cases, the detection of water shortage and the supply timing of hypochlorous acid water undiluted solution are different from each other. In such a situation, the air purification control unit 2041 does not execute the third control immediately after the non-execution period of the second control reaches the reference time (6 hours), but immediately before executing the first control, the third It is preferable to have the control exercised.
  • the drainage by the third control is not performed immediately after the hypochlorous acid is supplied to the mixing tank 2092 by the first control.
  • the acid water can be used for as long as possible, and waste due to drainage in the third control can be reduced.
  • the predetermined period is preferably set based on the concentration of the hypochlorous acid water supplied by the first control. For example, in the space purification system 2100, when the concentration of hypochlorous acid water supplied by the first control is high, if the supply of water by the second control is not executed, the hypochlorous acid in the mixing tank 2092 The concentration of acid water rises faster. Therefore, by setting the predetermined period to be short, it is possible to more reliably prevent the concentration of the hypochlorous acid water in the mixing tank 2092 from increasing too much. On the other hand, in the space purification system 2100, when the concentration of the hypochlorous acid water supplied by the first control is low, the predetermined period is set long to reduce wasteful drainage of the mixed water by the third control. can be done.
  • the mixed water in the mixing tank 2092 is drained by some drainage control (for example, third control), the mixed water is not discharged even once within 24 hours thereafter.
  • the mixed water may be drained when the water is not drained. By doing so, the mixed water in the mixing tank 2092 is reset, and an excessive rise in the hypochlorous acid concentration in the mixing tank 2092 can be suppressed.
  • the space purification system according to the present disclosure can easily adjust the amount of hypochlorous acid released into the air when the hypochlorous acid water is atomized and the hypochlorous acid is released into the air. It is useful as a system for sterilizing or deodorizing the air in the target space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Air Conditioning Control Device (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本開示の空間浄化システム(100)は、混合槽(92)に次亜塩素酸水を供給する次亜塩素酸水供給部(36)と、混合槽(92)に水を供給する水供給部(50)と、混合槽(92)の水位を検知する水位センサ(90)と、混合槽(92)に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する空気浄化部(11)と、供給処理、並びに、混合水の排水処理を制御する空気浄化制御部(41)とを備える。空気浄化制御部(41)は、次亜塩素酸水供給部(36)による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサ(90)からの混合槽(92)の水位に関する情報に基づいて水供給部(50)による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、空気浄化部(11)における積算加湿量に基づいて、混合槽(92)が貯留する混合水を排水する第三制御を実行させる。

Description

空間浄化システム
 本開示は、水を微細化し、吸い込んだ空気にその微細化した水を含ませて吹き出すとともに、微細化した水に浄化成分を含ませて放出する空間浄化装置に関する。
 従来、この種の空間浄化装置として、屋内に供給する空気を浄化成分が含まれた気液接触部材部に接触させて放出することで空間を除菌する空気調和システムが知られている(例えば、特許文献1参照)。
 そして、こうした従来の空間浄化装置では、一般的に、微細化された水の放出に加えて、装置内に貯水された水(浄化成分を含ませた水)は、微細化動作に伴って一部の浄化成分を含ませた水及び浄化成分が気化され、空間に放出される。
特開2009-133521号公報
 しかしながら、従来の空間浄化システムでは、屋内空間に要求される加湿量の少ない状況、例えば日本の夏場(特に梅雨時期)に、空調機等で除湿された相対湿度の高い空気(例えば12℃95%)が通風される場合においては、微細化された浄化成分を含む水(次亜塩素酸水)が気化されにくいために、浄化成分(次亜塩素酸)が気化されず、屋内空間に浄化成分が放出されにくくなる。一方、要求される加湿量の多い状況、例えば日本の冬場に、温められた相対湿度の低い空気(例えば20℃30%)が通風される場合においては、微細化された浄化成分を含む水が気化されやすいために、屋内空間に浄化成分が多量に放出されてしまう。つまり、従来の空間浄化装置では、屋内空間(空気中)に放出される浄化成分の量を調節することが容易ではないという課題があった。
 本開示は、空気中に放出される浄化成分の量を調節しやすくできる技術を提供することを目的とする。
 本開示に係る空間浄化システムは、次亜塩素酸水を生成する次亜塩素酸水生成部と、次亜塩素酸水生成部から混合槽に次亜塩素酸水を供給する次亜塩素酸水供給部と、混合槽に水を供給する水供給部と、混合槽の水位を検知するための水位センサと、混合槽に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する加湿浄化部と、次亜塩素酸水供給部及び水供給部における供給処理、並びに、混合槽に貯留される混合水の排水処理を制御する制御部とを備える。制御部は、供給処理として、次亜塩素酸水供給部による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサからの混合槽の水位に関する情報に基づいて水供給部による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、加湿浄化部における積算加湿量に基づいて、混合槽が貯留する混合水を排水する第三制御を実行させる。
 本開示に係る空間浄化システムによれば、空気中に放出される浄化成分の量を調節しやすくできる。
図1は、本開示の実施の形態1に係る空間浄化システムの構成を示す図である。 図2は、本開示の実施の形態1に係る空間浄化システムの制御部の構成を示すブロック図である。 図3は、本開示の実施の形態1に係る空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(冬場:第一例)を示す概略図である。 図4は、本開示の実施の形態1に係る空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第二例)を示す概略図である。 図5は、本開示の実施の形態1に係る空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第三例)を示す概略図である。 図6は、本開示の実施の形態2に係る空間浄化システムの構成を示す図である。 図7は、本開示の実施の形態2に係る空間浄化システムの制御部の構成を示すブロック図である。 図8は、本開示の実施の形態2に係る空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(冬場:第一例)を示す概略図である。 図9は、本開示の実施の形態2に係る空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第二例)を示す概略図である。 図10は、本開示の実施の形態3に係る空間浄化システムの構成を示す図である。 図11は、本開示の実施の形態3に係る空間浄化システムの制御部の構成を示すブロック図である。 図12は、本開示の実施の形態3に係る空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(冬場:第一例)を示す概略図である。 図13は、本開示の実施の形態3に係る空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第二例)を示す概略図である。 図14は、本開示の実施の形態3に係る空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第三例)を示す概略図である。
 本開示に係る空間浄化システムは、次亜塩素酸水を生成する次亜塩素酸水生成部と、次亜塩素酸水生成部から混合槽に次亜塩素酸水を供給する次亜塩素酸水供給部と、混合槽に水を供給する水供給部と、混合槽の水位を検知するための水位センサと、混合槽に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する加湿浄化部と、次亜塩素酸水供給部及び水供給部における供給処理、並びに、混合槽に貯留される混合水の排水処理を制御する制御部とを備える。制御部は、供給処理として、次亜塩素酸水供給部による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサからの混合槽の水位に関する情報に基づいて水供給部による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、加湿浄化部における積算加湿量に基づいて、混合槽が貯留する混合水を排水する第三制御を実行させる。
 このようにすることで、日本の夏場のように、相対湿度の高い空気が通風される場合においては、混合槽に溜められた混合水の消費量が少ないため、混合槽への次亜塩素酸水の供給頻度(第一制御を行う回数)が多くなり、混合槽内における混合水の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出される。また、混合槽に溜められた混合水の消費量が少ないため、混合水の排水の頻度(第三制御を行う回数)が少なくなり、混合槽内における混合水の次亜塩素酸濃度が高い状態に維持される。この結果、微細化された次亜塩素酸水が気化されにくい状況であっても、所定濃度に高めた次亜塩素酸を空気に含ませて屋内空間に放出させることができる。一方、日本の冬場のように、相対湿度の低い空気が通風される場合においては、混合槽に溜められた混合水の消費量が多いため、混合槽への水の供給頻度(第二制御を行う回数)が多くなり、混合槽内における混合水の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出される。また、混合槽に溜められた混合水の消費量が多いため、混合槽内の混合水の排水の頻度(第三制御を行う回数)が多くなり、混合水の次亜塩素酸濃度が高まりすぎるのを抑制することができる。この結果、微細化された次亜塩素酸水が気化されやすい状況であっても、所定濃度に薄まった次亜塩素酸を空気に含ませて屋内空間に放出させることができる。つまり、空間浄化システムでは、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 また、本開示に係る空間浄化システムでは、制御部は、積算加湿量が基準量以上となった場合に、第三制御を実行させることが好ましい。これにより、空間浄化システムは、加湿浄化部における加湿量に基づいて混合槽に貯留する次亜塩素酸水の濃度を容易に調整することができる。
 また、本開示に係る空間浄化システムでは、積算加湿量は、第一制御及び第二制御の実行回数に基づいて算出されることが好ましい。これにより、空間浄化システムは、積算加湿量を簡易的に算出することができ、第三制御の制御性を向上させることができる。
 また、本開示に係る空間浄化システムでは、制御部は、第一制御を行った回数が基準回数となった場合に、第三制御を実行させることが好ましい。これにより、空間浄化システムでは、長時間運転(例えば24時間)する場合にも、混合槽内の次亜塩素酸水濃度が高まりすぎる前に、混合槽が貯留する混合水を排水する第三制御を実行させることで、混合槽内の状態を運転初期の状態に戻すことができる。つまり、空間浄化システムは、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 また、本開示に係る空間浄化システムでは、制御部は、第三制御を、第一制御または第二制御を実行する直前に実行させることが好ましい。これにより、空間浄化システムでは、第一制御によって混合槽に次亜塩素酸が供給された直後、あるいは、第二制御によって水が供給された直後に第三制御による排水が行われることがなくなるので、第一制御によって供給された次亜塩素酸水あるいは第二制御によって供給された水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。
 また、本開示に係る空間浄化システムでは、制御部は、供給処理において、加湿浄化部に要求される加湿要求量が第一基準値以上である場合、第一制御を行う回数が第二制御を行う回数よりも少なくなるように制御し、加湿要求量が第一基準値未満である場合、第一制御を行う回数が第二制御を行う回数よりも多くなるようになるように制御することが好ましい。これにより、空間浄化システムでは、供給処理において、加湿要求量が第一基準値未満である場合に、混合槽内の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出させることができる。一方、加湿要求量が第一基準値以上である場合に、混合槽内の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出させることができる。つまり、空間浄化装置では、加湿要求量に基づいて、屋内空間の環境に好適な条件で、加湿浄化部から放出される空気に次亜塩素酸を付与することができる。
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、本開示に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。
 (実施の形態1)
 図1は、本開示の実施の形態1に係る空間浄化システム100の構成を示す図である。空間浄化システム100は、屋内空間18の空気を循環させる際に、屋内空間18からの空気8(RA)に対して必要に応じて冷却処理(除湿処理)または加熱処理を行うとともに、内部を流通する空気8に対して微細化された水とともに空気浄化を行う成分(以下、単に「空気浄化成分」という)を含ませる装置である。空間浄化システム100は、内部を流通した空気9(SA)を屋内空間18に供給することで、屋内空間18の殺菌と消臭を行う。ここでは、空気浄化成分として次亜塩素酸が用いられ、空気浄化成分を含む水は次亜塩素酸水である。
 空間浄化システム100は、図1に示すように、主として、空間浄化装置10、空気調和装置15、及び次亜塩素酸水生成部30を有して構成される。
 空間浄化装置10は、吹出口3、空気浄化部11、及び空気浄化制御部41を含む。空気調和装置15は、吸込口2、送風機13、冷媒コイル14、及び空気調和制御部42を含む。空間浄化装置10と空気調和装置15のそれぞれは、装置の外枠を構成する筐体を有し、空間浄化装置10と空気調和装置15とは、ダクト24により接続される。また、空気調和装置15の側面に吸込口2が形成され、空間浄化装置10の側面に吹出口3が形成される。
 吸込口2は、屋内空間18からの空気8を空気調和装置15に取り入れる取入口である。吸込口2は、屋内空間18の天井等に設けられた屋内吸込口16aとの間でダクト16を介して連通されている。これにより、吸込口2は、屋内吸込口16aから空気調和装置15内に屋内空間18の空気を吸い込むことができる。
 吹出口3は、空間浄化装置10内を流通した空気9(SA)を屋内空間18に吐き出す吐出口である。吹出口3は、屋内空間18の天井等に設けられた屋内吹出口17aとの間でダクト17を介して連通されている。これにより、吹出口3は、屋内吹出口17aから屋内空間18に向けて、空間浄化装置10内を流通した空気9を吹き出すことができる。
 また、空気調和装置15と空間浄化装置10の内部には、ダクト24を介して吸込口2と吹出口3とを連通する風路(前段風路4、中段風路5、後段風路6)が構成されている。前段風路4は、吸込口2に隣接する風路である。前段風路4には、送風機13及び冷媒コイル14が設けられている。
 中段風路5は、前段風路4(ダクト24)に隣接した位置において、前段風路4を流通した空気8が流通する風路である。中段風路5には、その風路内に空気浄化部11が設けられている。
 後段風路6は、吹出口3に隣接する風路であり、後段風路6では、中段風路5を流通した空気8が空気浄化部11を流通し微細化された水とともに次亜塩素酸を含んだ空気9となる。
 空気調和装置15と空間浄化装置10では、吸込口2から吸い込まれた空気8は、前段風路4を流通し、中段風路5及び後段風路6を流通し、空気9として吹出口3から吹き出される。
 空気調和装置15の送風機13は、屋内空間18の空気8(RA)を吸込口2から空気調和装置15内に搬送するための装置である。送風機13は、前段風路4内において、冷媒コイル14の上流側に設置されている。送風機13では、空気調和制御部42からの送風出力情報に応じて運転動作のオン/オフが制御される。送風機13が運転動作することにより、屋内空間18の空気8は、空気調和装置15に取り込まれて冷媒コイル14に向かう。
 冷媒コイル14は、前段風路4内において、送風機13の下流側に配置され、導入される空気8を冷却または加熱するための部材である。冷媒コイル14は、空気調和制御部42からの出力信号に応じて出力状態(冷却、加熱またはオフ)を変化させ、導入される空気8に対する冷却能力(冷却量)または加熱能力(加熱量)を調整する。冷媒コイル14では、導入される空気8を冷却すると、導入された空気8の除湿がなされることになるので、空気8に対する冷却能力(冷却量)は、空気8に対する除湿能力(除湿量)ともいえる。
 冷媒コイル14は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルにおいて、吸熱器または放熱器として機能し、室外機20から導入される冷媒が内部を流通する際に吸熱(冷却)または放熱(加熱)するように構成されている。より詳細には、冷媒コイル14は、冷媒が流れる冷媒回路21を介して室外機20と接続されている。室外機20は、屋外空間19に設置される室外ユニットであり、圧縮機20aと、膨張器20bと、屋外熱交換器20cと、送風ファン20dと、四方弁20eとを有する。室外機20には、一般的な構成のものを用いるので、各機器(圧縮機20a、膨張器20b、屋外熱交換器20c、送風ファン20d、及び四方弁20e)の詳細な説明は省略する。
 冷媒コイル14を含む冷凍サイクルには、四方弁20eが接続されているので、空気調和装置15では、四方弁20eによって第一方向に冷媒が流通して空気(空気8)を冷却して除湿する冷却モード(除湿モード)の状態と、四方弁20eによって第二方向に冷媒が流通して空気(空気8)に対して加熱を行う加熱モードの状態とを切り替え可能である。
 ここで、第一方向は、圧縮機20aと屋外熱交換器20cと膨張器20bと冷媒コイル14とをこの順序で冷媒が流通する方向である。また、第二方向は、圧縮機20aと冷媒コイル14と膨張器20bと屋外熱交換器20cとをこの順序で冷媒が流通する方向である。冷媒コイル14では、導入される空気(空気8)に対して冷却または加熱することが可能である。
 空間浄化装置10の空気浄化部11は、内部に取り入れた空気8を加湿するためのユニットであり、加湿の際に、空気に対して微細化された水とともに次亜塩素酸を含ませる。より詳細には、空気浄化部11は、混合槽92、水位センサ90、加湿モータ11a、及び加湿ノズル11bを有している。空気浄化部11は、加湿モータ11aを用いて加湿ノズル11bを回転させ、空気浄化部11の混合槽92に貯留されている次亜塩素酸水を遠心力で吸い上げて周囲(遠心方向)に飛散・衝突・破砕させ、通過する空気に水分を含ませる遠心破砕式の構成をとる。空気浄化部11は、空気浄化制御部41からの出力信号に応じて加湿モータ11aの回転数(以下、回転出力値)を変化させ、加湿能力(加湿量)を調整する。加湿量は、空気に対して次亜塩素酸を付加する付加量ともいえる。なお、空気浄化部11は、請求項の「加湿浄化部」に相当する。
 水位センサ90は、混合槽92に貯留される次亜塩素酸水の水位を計測し、計測値を空気浄化制御部41に出力する。より詳細には、水位センサ90は、混合槽92に貯留される次亜塩素酸水の水位として、混合槽92が渇水状態となる水位、混合槽92が満水状態となる水位、及び混合槽92が基準水量となる水位をそれぞれ計測し、計測値を水位情報として空気浄化制御部41に出力する。なお、基準水量は、混合槽92の容量の約5/6の状態での水量である。混合槽92は、空気浄化部11において次亜塩素酸水を貯留する槽であり、貯水部とも言える。混合槽92では、後述する次亜塩素酸水供給部36から供給される所定濃度の次亜塩素酸水と、後述する水供給部50から供給される水とを槽内で混合し、希釈された次亜塩素酸水からなる混合水として貯留する。なお、混合槽92内に貯留される次亜塩素酸水(混合水)は、空気浄化制御部41からの出力信号に応じて動作する排水部60によって、混合槽92から外部に排出可能になっている。
 次亜塩素酸水生成部30は、電解槽31、電極32、電磁弁33、塩水タンク34、塩水搬送ポンプ35、水位センサ39、及び次亜塩素酸水供給部36を含む。
 塩水タンク34は、塩水を貯めており、空気浄化制御部41からの出力信号に応じて、塩水搬送ポンプ35を介して電解槽31に塩水を供給する。電解槽31は、塩水タンク34から供給された電気分解対象である塩水を貯める。電解槽31には、空気浄化制御部41からの出力信号に応じて、水道等の給水管から電磁弁33を介して水道水も供給され、供給された水道水と塩水とが混合され、予め定められた濃度の塩水が貯められる。電極32は、電解槽31内に配置され、空気浄化制御部41からの出力信号に応じて通電により塩水の電気分解を所定時間行い、予め定められた濃度の次亜塩素酸水を生成する。つまり、電解槽31は、一対の電極間で、電解質として塩化物水溶液(例えば、塩化ナトリウム水溶液)を電気分解することで次亜塩素酸水を生成する。電解槽31には、一般的な装置が使用されるので、詳細な説明は省略する。ここで、電解質は、次亜塩素酸水を生成可能な電解質であり、少量でも塩化物イオンを含んで入れば特に制限はなく、例えば、溶質として塩化ナトリウム、塩化カルシウム、又は塩化マグネシウム等を溶解した水溶液が挙げられる。また、塩酸でも問題ない。本実施の形態では、電解質として、水に対して塩化ナトリウムを加えた塩化ナトリウム水溶液(塩水)を使用している。
 水位センサ39は、電解槽31内の水位を計測し、計測値を空気浄化制御部41に出力する。
 次亜塩素酸水供給部36は、空気浄化制御部41からの出力信号に応じて、電解槽31から空気浄化部11の混合槽92に次亜塩素酸水を供給する。次亜塩素酸水供給部36は、次亜塩素酸水搬送ポンプ37と送水管38とを有する。次亜塩素酸水搬送ポンプ37は、空気浄化制御部41からの出力信号に応じて、電解槽31の次亜塩素酸水を送水管38に送り出す。送水管38は、次亜塩素酸水搬送ポンプ37と混合槽92との間に接続され、次亜塩素酸水を混合槽92に向けて送水する。
 水供給部50は、空気浄化制御部41からの出力信号に応じて、混合槽92に水を供給する。水供給部50は、電磁弁51と送水管52とを有する。電磁弁51は、空気浄化制御部41からの出力信号に応じて、空間浄化装置10の外部の水道管から供給される水を送水管52に流すか否か制御する。送水管52は、電磁弁51と混合槽92との間に接続され、水を混合槽92に向けて送水する。
 排水部60は、混合槽92の底部に接続され、空気浄化制御部41からの出力信号に応じて、混合槽92に貯留される混合水を外部に排出する。排水部60は、電磁弁61と送水管62とを有する。電磁弁61は、空気浄化制御部41からの出力信号に応じて、混合槽92に貯留される混合水を外部の排水管に流すか否か制御する。送水管62は、混合槽92と電磁弁61との間に接続され、混合水を外部の排水管に送水する。
 空気浄化部11では、次亜塩素酸水供給部36からの次亜塩素酸水と、水供給部50からの水とが混合槽92にそれぞれ供給される。そして、空気浄化部11の混合槽92で次亜塩素酸水と水とが混合される。次亜塩素酸水と水との混合水も次亜塩素酸水と呼べる。より詳細には、空気浄化部11の混合槽92では、混合槽92内に残存する次亜塩素酸水に対して、次亜塩素酸水供給部36からの次亜塩素酸水または水供給部50からの水がそれぞれ供給されて混合される。空気浄化部11は、混合槽92に貯められた次亜塩素酸水と水との混合水を遠心破砕することによって、次亜塩素酸水を屋内空間18に対して放出する。微細化された次亜塩素酸水は、液体成分が蒸発した状態で屋内空間18へ放出される。
 屋内空間18の壁面には、操作装置43が設置される。操作装置43は、ユーザが操作可能なユーザインターフェースを備え、ユーザから温度設定値と湿度設定値を受けつける。操作装置43には、温湿度センサ44が含まれており、温湿度センサ44は、屋内空間18の空気の温度及び湿度を計測する。温湿度センサ44における温度及び湿度の計測には公知の技術が使用されればよいので、ここでは説明を省略する。
 操作装置43は、空気浄化制御部41及び空気調和制御部42に対して有線あるいは無線で接続されており、温度設定値、湿度設定値、温度計測値、及び湿度計測値を空気浄化制御部41及び空気調和制御部42に送信する。これらの情報は、すべてまとめて送信されてもよく、任意の2つ以上をまとめて送信されてもよく、それぞれを送信されてもよい。また、操作装置43が空気浄化制御部41に情報を送信し、空気浄化制御部41が空気調和制御部42に情報を転送してもよい。
 空気調和装置15の空気調和制御部42は、温度設定値と温度計測値とを受けつけ、温度計測値が温度設定値に近づくように、冷媒コイル14及び室外機20を制御する。空気調和制御部42は、加熱モードにおいて、温度計測値が温度設定値よりも低い場合に、温度計測値と温度設定値との差異が大きくなるほど、加熱の程度を増加させる。
 次に、空間浄化装置10の空気浄化制御部41について説明する。
 空気浄化制御部41は、次亜塩素酸水生成部30及び空間浄化装置10の処理動作として、電解槽31における電気分解処理に関する動作、空気浄化部11への次亜塩素酸水の供給処理に関する動作、空気浄化部11への水の供給処理に関する動作、空気浄化部11における加湿浄化処理に関する動作、及び空気浄化部11における混合水の排水処理に関する動作をそれぞれ制御する。なお、空気浄化制御部41は、プロセッサ及びメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御部として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。また、空気浄化制御部41は、請求項の「制御部」に相当する。
 図2は、実施の形態1に係る空間浄化システム100の空気浄化制御部41の構成を示すブロック図である。具体的には、空気浄化制御部41は、図2に示すように、入力部41a、記憶部41b、計時部41c、処理部41d、及び出力部41eを備える。
 <電解槽における電気分解処理に関する動作>
 空気浄化制御部41は、電解槽31における電気分解処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部41は、電解槽31の電気分解処理のトリガーとして、水位センサ39からの水位情報(渇水信号)及び計時部41cからの時間に関する情報(時刻情報)を受け付け、処理部41dへ出力する。
 処理部41dは、水位センサ39からの水位情報と、計時部41cからの時刻情報と、記憶部41bからの設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、次亜塩素酸水生成の開始時刻または終了時刻に関する情報、電解槽31に導入する水道水の供給量に関する情報、塩水搬送ポンプ35における塩化物イオンを含む液体の投入量に関する情報、電極32における電気分解条件(時間、電流値、電圧など)に関する情報、電磁弁33の開閉タイミングに関する情報、及び次亜塩素酸水搬送ポンプ37のオン/オフ動作に関する情報が含まれる。
 ここで、電極32における電気分解条件は、電解槽31内の水道水の水量、塩化物イオン濃度、電気分解時間、及び電極32の劣化度合いから決定でき、アルゴリズムを作成して設定され、記憶部41bに記憶される。
 そして、出力部41eは、受け付けた制御情報に基づいて、各機器(塩水搬送ポンプ35、電磁弁33、及び次亜塩素酸水搬送ポンプ37)に信号(制御信号)を出力する。
 より詳細には、まず、塩水搬送ポンプ35は、出力部41eからの信号に基づいて停止した状態を維持し、次亜塩素酸水搬送ポンプ37は、出力部41eからの信号に基づいて停止した状態を維持する。
 そして、電磁弁33は、出力部41eからの信号に基づいて開放される。これにより、電解槽31には、水道管からの水道水の供給が開始される。その後、電磁弁33は、水位センサ39からの水位情報(満水)を受けた出力部41eからの信号に基づいて閉止される。これにより、電解槽31は、水道水が設定された供給量にて給水された状態となる。
 次に、塩水搬送ポンプ35は、出力部41eからの信号に基づいて動作を開始し、所定量の塩化物イオンを含む液体を電解槽31へ搬送して停止する。これにより、水道水に塩化物イオンが溶解し、電解槽31は、所定量の塩化物イオンを含む水溶液(塩化物水溶液)が生成された状態となる。
 そして、電極32は、出力部41eからの信号に基づいて、塩化物水溶液の電解を開始し、設定された条件の次亜塩素酸水を生成して停止する。電極32により生成される次亜塩素酸水は、例えば、次亜塩素酸濃度が100ppm~150ppm(例えば、120ppm)であり、pHが7~8.5(例えば、8.0)の状態となる。
 以上のようにして、空気浄化制御部41は、電解槽31において電気分解処理を実行し、予め定められた濃度と量の次亜塩素酸水が生成される。
 <空気浄化部への次亜塩素酸水の供給処理に関する動作>
 空気浄化制御部41は、空気浄化部11への次亜塩素酸水の供給処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部41は、空気浄化部11への次亜塩素酸水の供給処理のトリガーとして、加湿モータ11aの稼働時間を計時部41cが測定し、稼働時間が所定時間経過(例えば60分)するごとに次亜塩素酸水生成部30(次亜塩素酸水供給部36)に次亜塩素酸水供給要求を出力する。ここで、所定時間は、次亜塩素酸水中の次亜塩素酸が気化して経時的に減少することを踏まえ、予め実験評価によって見積られた時間である。
 具体的には、処理部41dは、計時部41cから時間に関する情報(時刻情報)と、記憶部41bから設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、次亜塩素酸水の供給間隔(例えば60分)に関する情報及び次亜塩素酸水搬送ポンプ37のオン/オフ動作に関する情報が含まれる。
 そして、出力部41eは、受け付けた制御情報に基づいて、次亜塩素酸水供給部36の次亜塩素酸水搬送ポンプ37に信号(制御信号)を出力する。
 次亜塩素酸水搬送ポンプ37は、出力部41eからの信号に基づいて作動する。この際、次亜塩素酸水搬送ポンプ37は、混合槽92の水量が基準水量以上であれば、混合槽92の水量が基準水量未満になるまで待機し、混合槽92に貯留される次亜塩素酸水が消費され、混合槽92の水量が基準水量未満となったタイミングで作動を開始する。本実施の形態では、基準水量を混合槽92の容量の約5/6としている。これにより、次亜塩素酸水生成部30では、電解槽31から空気浄化部11(混合槽92)への次亜塩素酸水の供給が開始される。なお、電解槽31に貯留される次亜塩素酸水の濃度を担保するため、次亜塩素酸水生成部30から混合槽92に次亜塩素酸水が供給される際、電解槽31で生成された次亜塩素酸水は全量供給される。そのため、次亜塩素酸水を供給した後は、電解槽31は空の状態であり、次亜塩素酸水が電解槽31内に残留した状態から次亜塩素酸水を作成し始めることはない。水位センサ39は、電解槽31内の次亜塩素酸水が全量供給された状態になると、水位情報として渇水信号を出力する。
 その後、次亜塩素酸水搬送ポンプ37は、計時部41cからの時間に関する情報(規定量を供給するための所要時間)を受けた出力部41eからの信号に基づいて停止する。これにより、次亜塩素酸水生成部30は、電解槽31から空気浄化部11(混合槽92)に対して次亜塩素酸水が設定された供給量にて供給する。
 以上のようにして、空気浄化制御部41は、次亜塩素酸水生成部30(電解槽31)から空気浄化部11への次亜塩素酸水の供給処理を実行させる。なお、空気浄化制御部41が次亜塩素酸水供給部36による次亜塩素酸水の供給を所定時間ごとに行う制御を「第一制御」とする。
 <空気浄化部への水の供給処理に関する動作>
 空気浄化制御部41は、空気浄化部11への水の供給処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部41は、空気浄化部11への水の供給処理のトリガーとして、空間浄化装置10の水位センサ90からの水位情報(渇水信号)を受け付け、水供給部50に水供給要求を出力する。
 具体的には、入力部41aは、空間浄化装置10の水位センサ90からの水位情報(渇水信号)を受け付け、処理部41dに出力する。
 処理部41dは、入力部41aからの水位情報(渇水信号)と、計時部41cから時間に関する情報(時刻情報)と、記憶部41bから設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、水供給部50の電磁弁51のオン/オフ動作に関する情報が含まれる。
 そして、出力部41eは、受け付けた制御情報に基づいて、電磁弁51に信号(制御信号)を出力する。
 電磁弁51は、出力部41eからの信号に基づいて作動する。これにより、水供給部50では、送水管52を介して、外部の給水管から空気浄化部11(混合槽92)への水の供給が開始される。
 その後、電磁弁51は、空間浄化装置10の水位センサ90からの水位情報(満水信号)を受け付けた出力部41eからの信号に基づいて停止する。これにより、水供給部50は、外部の給水管から空気浄化部11(混合槽92)に対して水が設定された量になるまで供給する。
 以上のようにして、空気浄化制御部41は、水供給部50から空気浄化部11への水の供給処理を実行させる。なお、空気浄化制御部41が水位センサ90からの混合槽92の水位に関する情報(渇水情報)に基づいて水供給部50による水の供給を行う制御を「第二制御」とする。
 <空気浄化部における加湿浄化処理に関する動作>
 次に、空気浄化制御部41の空気浄化部11における加湿浄化処理に関する動作について説明する。
 入力部41aは、操作装置43からのユーザ入力情報と、温湿度センサ44からの屋内空間18の空気の温湿度情報と、水位センサ90からの混合槽92内の次亜塩素酸水(混合水)の水位情報とを受け付ける。入力部41aは、受け付けた各情報を処理部41dに出力する。
 ここで、操作装置43は、空間浄化装置10に関するユーザ入力情報(例えば、風量、目標温度、目標湿度、次亜塩素酸の添加の有無、次亜塩素酸の目標供給量レベル、等)を入力する端末であり、無線または有線により空気浄化制御部41と通信可能に接続されている。
 また、温湿度センサ44は、屋内空間18内に設けられ、屋内空間18の空気の温湿度を感知するセンサである。
 記憶部41bは、入力部41aが受け付けたユーザ入力情報と、装置内を流通する空気に対する次亜塩素酸の供給動作における供給設定情報とを記憶する。記憶部41bは、記憶した供給設定情報を処理部41dに出力する。なお、次亜塩素酸の供給動作における供給設定情報は、空気浄化部11の加湿浄化動作における加湿設定情報とも言える。
 計時部41cは、現在時刻に関する時刻情報を処理部41dに出力する。
 処理部41dは、入力部41aからの各種情報(ユーザ入力情報、温湿度情報、水位情報)と、計時部41cからの時刻情報と、記憶部41bからの供給設定情報とを受け付ける。処理部41dは、受け付けたユーザ入力情報、時刻情報、及び供給設定情報を用いて、加湿浄化運転動作に関する制御情報を特定する。
 具体的には、処理部41dは、計時部41cからの時刻情報によって一定時間ごとに、記憶部41bに記憶された目標湿度と、温湿度センサ44からの屋内空間18の空気の温湿度情報の間の湿度差に基づいて、屋内空間18に必要とされる加湿要求量を特定する。そして、処理部41dは、特定した加湿要求量と、記憶部41bに記憶された供給設定情報とに基づいて加湿浄化運転動作に関する制御情報を特定する。そして、処理部41dは、特定した制御情報を出力部41eに出力する。
 また、処理部41dは、水位センサ90からの水位情報に、混合槽92内の次亜塩素酸水(混合水)の渇水を示す水位に関する情報(渇水信号)が含まれる場合には、出力部41eは、水供給部50に対する水供給要求の信号を出力部41eに出力する。さらに、処理部41dは、計時部41cからの時刻情報に基づいて、空気浄化部11(加湿モータ11a)の稼働時間が所定時間(例えば60分)となった場合には、出力部41eは、次亜塩素酸水生成部30に対する次亜塩素酸水供給要求の信号を出力部41eに出力する。なお、本実施の形態では、混合槽92内の次亜塩素酸水(混合水)が渇水を示す水位は、混合槽92内に次亜塩素酸水(混合水)が満水の状態から約1/3まで次亜塩素酸水量が減少した状態での水位に設定されている。
 そして、出力部41eは、受け付けた各信号を空気浄化部11、次亜塩素酸水生成部30(次亜塩素酸水供給部36)、及び水供給部50にそれぞれ出力する。
 そして、空気浄化部11は、出力部41eからの信号を受け付け、受け付けた信号に基づいて運転動作の制御を実行する。この際、次亜塩素酸水生成部30(次亜塩素酸水供給部36)は、出力部41eからの信号(次亜塩素酸水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部11への次亜塩素酸水の供給処理に関する動作(第一制御)を実行する。また、水供給部50は、出力部41eからの信号(水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部11への水の供給処理に関する動作(第二制御)を実行する。
 以上のようにして、空気浄化制御部41は、供給処理として、次亜塩素酸水生成部30(次亜塩素酸水供給部36)による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサ90からの混合槽92の水位に関する情報(渇水情報)に基づいて水供給部50による水の供給を行う第二制御とをそれぞれ実行させ、混合槽92に混合水を貯留する。そして、空気浄化制御部41は、混合槽92に次亜塩素酸水と水とを供給して混合水を貯留する際に、次亜塩素酸水の供給サイクル(所定時間ごと)と、水の供給サイクル(渇水検知ごと)とを異ならせ、空間浄化装置10(空気浄化部11)を流通する空気への加湿浄化処理を実行させる。
 <空気浄化部の混合水の排水処理に関する動作>
 空気浄化制御部41は、空気浄化部11の混合槽92に貯留される混合水の排水処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部41は、混合槽92に貯留される混合水の排水処理のトリガーとして、空気浄化部11における加湿量の積算値(積算加湿量)に関する情報、または、次亜塩素酸水供給部36における第一制御の実行回数に関する情報に基づいて排水処理の実施の有無を判定する。
 具体的には、記憶部41bは、次亜塩素酸水供給部36における第一制御の実行回数及び水供給部50による第二制御の実行回数を記憶する。ここで、実行回数は、混合槽92の初期状態(例えば、排水処理後に実行される水の供給及び次亜塩素酸水の供給によって混合槽92が満水となった状態)を起点として、加湿浄化処理動作の開始後(以下、「運転開始後」ともいう)に実行された各制御の回数である。
 処理部41dは、記憶部41bからの次亜塩素酸水供給部36における第一制御の実行回数に関する情報及び水供給部50による第二制御の実行回数に関する情報に基づいて、空気浄化部11における加湿量の積算値(積算加湿量)を特定する。
 ここで、積算加湿量は、運転開始後における混合槽92への給水量の合計(第一制御による次亜塩素酸水の供給量と第二制御による水の供給量との合計)であり、運転開始後から空気浄化部11によって消費・減少した混合水の水量に相当する。なお、積算加湿量は、累計加湿量ともいう。
 そして、処理部41dは、特定した積算加湿量が基準量以上であるか否か、及び、第一制御の実行回数が基準回数であるか否かの判定を行う。
 ここで、第一制御による次亜塩素酸水の供給量が混合槽92の容量の約1/6、第二制御による水の供給量が混合槽92の容量の約2/3、基準量は、混合槽92の容量の約2倍の量に設定している。また、基準回数は、第一制御による次亜塩素酸水の供給のみによって基準量に達する直前となる11回に設定している。
 判定の結果、処理部41dは、特定した積算加湿量が基準量以上である場合、あるいは、第一制御の実行回数が基準回数である場合には、計時部41cから時間に関する情報(時刻情報)と、記憶部41bから設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、排水部60の電磁弁61のオン/オフ動作に関する情報が含まれる。
 そして、出力部41eは、受け付けた制御情報に基づいて、電磁弁61に信号(制御信号)を出力する。
 電磁弁61は、出力部41eからの信号に基づいて作動する。これにより、排水部60では、送水管62を介して、混合槽92から外部の排水管への混合水の排出が開始される。
 その後、電磁弁61は、計時部41cからの時刻情報を受け付けた出力部41eからの信号に基づいて所定時間(例えば、1分)の経過後に停止する。これにより、混合槽92は、貯留していた混合水のすべてが排出されて空の状態となる。
 以上のようにして、空気浄化制御部41は、混合槽92から外部への混合水の排水処理を実行させる。なお、空気浄化制御部41が空気浄化部11における積算加湿量に関する情報、または、次亜塩素酸水供給部36における第一制御の実行回数に関する情報に基づいて排水部60による混合水の排水を行う制御を「第三制御」とする。
 ここで、第三制御は、次亜塩素酸水供給部36による第一制御の実行の直前、または、水供給部50による第二制御の実行の直前に行うことが好ましい。これにより、例えば、第一制御によって混合槽92に新たな次亜塩素酸水が供給された直後、あるいは、第二制御によって新たな水が供給された直後において、第三制御による排水が行われることがなくなるので、混合槽92に貯留される混合水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。なお、以下の実施例においては、除菌の有効成分である次亜塩素酸水の無駄を減らすという観点から第一制御実行の直前に行うものとする。
 次に、図3~図5を参照して、空間浄化システム100において、空間浄化装置10(空気浄化部11)の混合槽92内における混合水(第一制御または第二制御がなされて混合される混合水)について説明する。図3は、空間浄化システム100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(冬場:第一例)を示す概略図である。より詳細には、図3の(a)は、混合槽92内の次亜塩素酸水(混合水)の水量の経時変化を示す。図3の(b)は、混合槽92内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図3の(c)は、吹出口3の空気に含まれる次亜塩素酸の濃度の経時変化を示す。また、図4は、空間浄化システム100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第二例)を示す概略図である。より詳細には、図4の(a)は、混合槽92内の次亜塩素酸水(混合水)の水量の経時変化を示す。図4の(b)は、混合槽92内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図4の(c)は、吹出口3の空気に含まれる次亜塩素酸の濃度の経時変化を示す。図5は、空間浄化システム100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第三例)を示す概略図である。より詳細には、図5の(a)は、混合槽92内の次亜塩素酸水(混合水)の水量の経時変化を示す。図5の(b)は、混合槽92内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図5の(c)は、吹出口3の空気に含まれる次亜塩素酸の濃度の経時変化を示す。
 ここで、混合槽92への次亜塩素酸水の供給は、所定時間(1時間)ごとに実行され、混合槽92への水の供給は、水位センサ90によって混合槽92が渇水となる水位を検知するごとに実行される。また、排水処理は、第一制御の実行の直前になされる、積算加湿量あるいは第一制御の実行回数による判定結果に基づいて実行される。より詳細には、排水処理は、積算加湿量が基準量(混合槽92の容量の約2倍)以上となった場合、あるいは、第一制御の実行回数が基準回数(11回)となった場合に実行される。なお、排水処理は、第一制御の実行の直前だけでなく、第二制御の実行の直前にも行なうようにしてもよい。
 なお、上述した通り、混合槽92の次亜塩素酸水(混合水)が渇水となる水位となっても、混合槽92内には、次亜塩素酸水(混合水)が満水時に対して約1/3残存している。また、説明を簡略化するために、空気浄化部11は、加湿浄化運転時間中、一定の加湿要求量で動作しているとする。また、以下では、混合槽92へ供給する所定量の次亜塩素酸水のことを「次亜塩素酸水原液」ともいう。
 まず、日本の冬場での動作状況について説明する。なお、日本の冬場では、外気が乾燥しているため空気浄化部11に対する加湿要求量が多く、水の供給は、次亜塩素酸水の供給よりも短い間隔で行われる。つまり、次亜塩素酸水の供給タイミングよりも先に混合槽92内の水位が渇水となる。
 そこで、以下では、第一例として、空気浄化部11の運転開始後の稼働時間2時間までの期間に、水の供給(第二制御)が3回実行され、次亜塩素酸水原液の供給(第一制御)が1回実行される加湿浄化条件での排水処理(第三制御)について説明する。
 なお、上記した加湿浄化条件は、空気浄化部11に対する加湿要求量が第一基準値以上である場合に、第一制御を行う回数が第二制御を行う回数よりも少なくなるように空気浄化部11を制御することに基づいて設定される条件である。ここで、第一基準値は、日本の冬場において空気の湿度が低く乾燥している状況と、日本の夏場において空気の湿度が高く湿っている状況とを区分するために設定される値である。
 第一例では、図3の(a)に示すように、混合槽92への次亜塩素酸水原液の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間・・・のタイミングで実行される。一方、混合槽92への水の供給(第二制御)は、a時間、b時間、c時間・・・のタイミングで実行される。なお、運転開始となる0時間の時点では、混合槽92に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽92は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。
 そして、混合槽92に貯留する混合水の排水判定は、1時間、2時間、3時間・・・のタイミングにおいて第一制御の実行の直前に行われる。
 具体的には、運転開始後の稼働時間が1時間までの期間(稼働時間が0時間以上1時間未満までの期間)となる1時間のタイミングでは、積算加湿量は、第二制御1回に基づく供給量(混合槽92の容量の約0.67倍)となり、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。また、第一制御の実行回数は、0回であり、基準回数(11回)に達していないと判定される。そして、判定結果を受けて、第一制御が実行され、混合槽92に次亜塩素酸水原液が供給される。
 続いて、運転開始後の稼働時間が2時間までの期間(稼働時間が0時間以上2時間未満までの期間)となる2時間のタイミングでは、積算加湿量は、第一制御1回及び第二制御3回に基づく供給量(混合槽92の容量の約2.1倍)となり、積算加湿量が基準量(混合槽92の容量の2倍)以上であると判定される。また、第一制御の実行回数は、1回であり、基準回数(11回)に達していないと判定される。そして、判定結果を受けて、第三制御が実行され、混合槽92の混合水が排水される。さらに、第三制御の実行後、混合槽92に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽92は、初期状態と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。
 その後は、2時間のタイミングを初期状態(0時間)と見なして、2時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。
 より詳細に説明する。
 まず、図3の(a)を参照して、混合槽92内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽92内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転によって一定の速度で混合水の水量が減少し、運転開始からa時間になったタイミングで渇水を検知し、水供給部50から混合槽92が満水になるまで水が供給される。その後、加湿浄化運転により一定の速度で混合水の水位が減少しながら、次亜塩素散水原液の供給タイミングである1時間を迎え、この1時間のタイミングで混合水の排水判定が実行される。ここまでの加湿浄化運転で、第二制御による水の供給回数が1回、第一制御による次亜塩素酸水原液の供給回数が0回であるので、積算加湿量は、混合槽92の容量の約0.67倍(≒約2/3倍=約2/3×1回)となり、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が0回であり、第一制御の実行回数が基準回数(11回)に達していないと判定される。
 そして、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。これにより、混合槽92内の水位がわずかに上昇する。その後も加湿浄化運転によって混合水の水位が減少していき、運転開始からb時間及びc時間のタイミングで再び渇水となり、水供給部50から混合槽92が満水になるまで水がそれぞれ供給される。
 その後、運転開始後の稼働時間が2時間となるタイミングで、排水判定がなされる。ここまでの加湿浄化運転で、第二制御による水の供給回数が3回、第一制御による次亜塩素酸水原液の供給回数が1回であるので、積算加湿量は、混合槽92の容量の約2.1倍(≒約13/6倍=約2/3×3回+約1/6×1回)となり、基準量(混合槽92の容量の2倍)以上であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が1回であり、第一制御の実行回数が基準回数(11回)に達していないと判定される。そして、判定結果を受けて、第三制御が実行され、混合槽92の混合水が排水される。さらに、第三制御による混合水の排水の実行後、混合槽92に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽92は、初期状態(0時間)と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。ここで、積算加湿量(第一制御及び第二制御の実行回数)はリセットされ、再び積算加湿量の記憶が開始される。
 その後は、2時間のタイミングを初期状態(0時間)と見なして、2時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。より詳細には、これまでと同じように、渇水となるタイミングにおいて第二制御によって水が供給され、次亜塩素酸水の供給タイミングにおいて第一制御によって次亜塩素酸水原液が供給されることを繰り返す。そして、第一制御の実行の直前において第三制御による混合水の排水判定を行い、条件を満たす場合に第三制御を実行する。
 次に、図3の(b)を参照して、混合槽92内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽92内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽92内の次亜塩素酸水(混合水)の濃度は、運転開始からa時間まで時間の経過とともに減少する。これは、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。なお、次亜塩素酸が気化しなければ、空気浄化部11によって微細化された水とともに、水に含まれる次亜塩素酸が消費されるだけなので、次亜塩素酸水は、加湿量に応じて一定の速度で減少するものの、混合槽92内の次亜塩素酸水の濃度としては変化しない。また、水位センサ90が渇水を検知したタイミングであるa時間でも次亜塩素酸水の濃度がゼロでないのは、上述した通り、渇水が検知される状態となっても混合槽92内に次亜塩素酸水(混合水)が残存しているためである。
 そして、運転開始からa時間(渇水検知)になると、水供給部50からの水の供給に伴って混合槽92内の次亜塩素酸水が水で希釈されるため、混合槽92内の次亜塩素酸水の濃度は減少する。その後、次亜塩素散水の供給タイミングである1時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素散水の供給タイミングである1時間を迎えると、次亜塩素酸水生成部30(次亜塩素酸水供給部36)からの次亜塩素酸水原液の供給に伴って混合槽92内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、運転初期(0時間)において供給した水よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始からb時間(渇水検知)になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少する。なお、次亜塩素酸の減少速度が、運転初期よりも速いのは、混合水に含まれる次亜塩素酸の含有量が多い分、次亜塩素酸の気化量も多くなるためである。
 そして、運転開始からb時間(渇水検知)になると、水供給部50からの水の供給に伴って混合槽92内の次亜塩素酸水が水で希釈されるため、混合槽92内の次亜塩素酸水の濃度は減少する。その後、同様にb時間(渇水検知)~c時間(渇水検知)の間も揮発によって濃度が減少し、c時間(渇水検知)になると、水供給部50からの水の供給に伴って混合槽92内の次亜塩素酸水が水で希釈されるため、混合槽92内の次亜塩素酸水の濃度は減少する。
 その後、次亜塩素散水の供給タイミングである2時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素散水の供給タイミングである2時間を迎えると、排水判定に基づいて排水タイミングとなるので、混合槽92内の次亜塩素酸水(混合水)がすべて排水された後、混合槽92内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽92内における次亜塩素酸水の濃度は、運転初期(0時間)と同様の状態となる。その後は、これまでと同様に次亜塩素酸水(混合水)の濃度変化を繰り返す。
 次に、図3の(c)を参照して、吹出口3の空気9に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。
 吹出口3から放出される空気9に含まれる次亜塩素酸の濃度は、空気浄化部11における加湿量及び混合槽92内の次亜塩素酸水の濃度によって決定されるが、第一例では、加湿量を一定としているので、混合槽92内の次亜塩素酸水の濃度が反映される。そのため、図3の(c)に示すように、吹出口3の空気9に含まれる次亜塩素酸の濃度は、図3の(b)に示した混合槽92の次亜塩素酸水の濃度の増減に対応して増減する。
 ここで、従来のように、水位センサ90が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)からa時間までの状態を2時間のタイミングまで繰り返すことになる。この場合には、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は、例えば、従来平均濃度のようになる。これに対して、第一例では、運転開始(0時間)からa時間までは従来と同じ状態であるものの、a時間から2時間までの期間は従来と状態が異なる。
 より詳細には、a時間から2時間までの期間では、図3の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間(1時間からb時間までの期間)が、初期濃度よりも小さい期間(a時間から1時間までの期間、b時間から2時間までの期間)よりも短くなっている。このため、運転開始(0時間)から2時間までの期間では、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は従来平均濃度よりも低い平均濃度となる。また、2時間以降についても、0時間から2時間までの濃度変化を繰り返すことになるので、濃度が上昇し続けることなく、従来よりも低い平均濃度を維持し続けることが可能となる。
 以上、第一例のように、混合槽92に次亜塩素酸水原液と水とを供給して混合水を貯留する際に、次亜塩素酸水原水の供給サイクル(所定時間ごと)と、水の供給サイクル(渇水検知ごと)とを異ならせるとともに、積算加湿量に応じて混合水の排水処理を行うことで、従来の方法で次亜塩散水及び水を混合槽92に供給する場合と比較して、吹出口3の空気9、つまり屋内空間18に吹き出される空気に含まれる次亜塩素酸の濃度を減少させることができる。
 次に、日本の夏場での動作状況について説明する。なお、日本の夏場では、外気が湿潤しているため空気浄化部11に対する加湿要求量が少なく、水の供給は、次亜塩素酸水の供給よりも長い間隔で行われる。つまり、次亜塩素酸水の供給タイミングよりも後に混合槽92内の水位が渇水となる。
 そこで、以下では、第二例として、空気浄化部11の運転開始後の稼働時間が9時間までの期間に、水の供給(第二制御)が1回実行され、次亜塩素酸水原液の供給(第一制御)が8回実行される加湿浄化条件での排水処理(第三制御)について説明する。
 なお、上記した加湿浄化条件は、空気浄化部11に対する加湿要求量が第一基準値未満である場合に、第一制御を行う回数が第二制御を行う回数よりも多くなるように空気浄化部11を制御することに基づいて設定される条件である。
 第二例では、図4の(a)に示すように、混合槽92への次亜塩素酸水原液の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間・・・のタイミングで実行される。一方、混合槽92への水の供給(第二制御)は、a時間・・・のタイミングで実行される。なお、運転開始となる0時間の時点では、混合槽92に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽92は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。
 そして、混合槽92に貯留する混合水の排水判定は、1時間、2時間、3時間・・・のタイミングにおいて第一制御の実行の直前に行われる。
 具体的には、運転開始後の稼働時間が1時間までの期間(稼働時間が0時間以上1時間未満までの期間)となる1時間のタイミングでは、混合槽92に水あるいは次亜塩素酸水原液のいずれも供給されていないので、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が0回であり、第一制御の実行回数が基準回数(11回)に達していないと判定される。そして、判定結果を受けて、第一制御が実行され、混合槽92に次亜塩素酸水原液が供給される。
 次に、運転開始後の稼働時間が2時間までの期間(稼働時間が0時間以上2時間未満までの期間)となる2時間のタイミングで混合水の排水判定が実行される。ここまでの加湿浄化運転で、積算加湿量は、第一制御1回に基づく供給量(混合槽92の容量の約0.16倍)となり、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が1回であり、第一制御の実行回数が基準回数(11回)に達していないと判定される。そして、判定結果を受けて、第一制御が実行され、混合槽92に次亜塩素酸水原液が供給される。
 その後、運転開始後の稼働時間が8時間までの期間(稼働時間が0時間以上8時間未満までの期間)となる8時間のタイミングまで同様の制御が実行される。
 続いて、運転開始後の稼働時間が9時間までの期間(稼働時間が0時間以上9時間未満までの期間)となる9時間のタイミングで混合水の排水判定が実行される。ここまでの加湿浄化運転で、積算加湿量は、第一制御8回及び第二制御1回に基づく供給量(混合槽92の容量の約2倍)となり、積算加湿量が基準量(混合槽92の容量の2倍)以上であると判定される。そして、判定結果を受けて、第三制御が実行され、混合槽92の混合水が排水される。さらに、第三制御の実行後、混合槽92に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽92は、初期状態と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。
 その後は、9時間のタイミングを初期状態(0時間)と見なして、9時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。
 より詳細に説明する。
 まず、図4の(a)を参照して、混合槽92内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽92内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転によって一定の速度で混合水の水量が減少し、次亜塩素散水の供給タイミングである1時間を迎える。そして、この1時間のタイミングで混合水の排水判定が実行される。
 ここまでの加湿浄化運転で、第二制御による水の供給及び第一制御による次亜塩素酸水原液の供給のいずれも実行していないので、積算加湿量は、基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が0回であり、第一制御の実行回数が基準回数(11回)に達していないと判定される。そして、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。これにより、混合槽92内の水位がわずかに上昇する。その後も加湿浄化運転によって混合水の水位が減少していき、次亜塩素散水の供給タイミングである2時間を迎える。そして、この2時間のタイミングで混合水の排水判定が実行される。
 ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の供給回数が1回であるので、積算加湿量は、混合槽92の容量の約0.17倍(≒約1/6倍=約1/6×1回)となり、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が1回であり、第一制御の実行回数が基準回数(11回)に達していないと判定される。そして、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。これにより、混合槽92内の水位がわずかに上昇する。そして、加湿浄化運転によって一定の速度で混合水の水量が減少していく。2時間以降も、これを繰り返していくと、全体として混合水の水量が徐々に減少していく。
 その後、運転開始から8時間が経過し、運転開始からa時間になったタイミングで渇水を検知し、水供給部50から混合槽92が満水になるまで水が供給される。
 そして、加湿浄化運転により一定の速度で混合水の水位が減少しながら、次亜塩素散水原液の供給タイミングである9時間を迎える。そして、この9時間のタイミングで混合水の排水判定が実行される。
 ここまでの加湿浄化運転で、第二制御による水の供給回数が1回、第一制御による次亜塩素酸水原液の供給回数が8回であるので、積算加湿量は、混合槽92の容量の約2倍(=約2/3×1回+約1/6×8回)となり、積算加湿量が基準量(混合槽92の容量の2倍)以上であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が8回であり、第一制御の実行回数が基準回数(11回)に達していないと判定される。そして、判定結果を受けて、第三制御が実行され、混合槽92の混合水が排水される。さらに、第三制御による混合水の排水の実行後、混合槽92に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽92は、初期状態(0時間)と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。ここで、積算加湿量(第一制御及び第二制御の実行回数)はリセットされ、再び積算加湿量の記憶が開始される。
 その後は、9時間のタイミングを初期状態(0時間)と見なして、9時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。より詳細には、これまでと同じように、渇水となるタイミングにおいて第二制御によって水が供給され、次亜塩素酸水の供給タイミングにおいて第一制御によって次亜塩素酸水原液が供給されることを繰り返す。そして、第一制御の実行の直前において第三制御による混合水の排水判定を行い、条件を満たす場合に第三制御を実行する。
 次に、図4の(b)を参照して、混合槽92内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽92内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽92内の次亜塩素酸水(混合水)の濃度は、運転開始から1時間まで時間の経過とともに減少する。これは、上述した通り、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。
 そして、運転開始から次亜塩素散水の供給タイミングである1時間を迎えると、次亜塩素酸水生成部30(次亜塩素酸水供給部36)からの次亜塩素酸水原液の供給に伴って混合槽92内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、上述した通り、運転初期(0時間)において貯留する混合水の水量よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始から2時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少する。
 そして、運転開始から次亜塩素散水の供給タイミングである2時間を迎えると、次亜塩素酸水生成部30(次亜塩素酸水供給部36)からの次亜塩素酸水原液の供給に伴って混合槽92内の次亜塩素酸水の濃度が初期濃度以上にまでさらに上昇する。その後、運転開始から3時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少していく。これ以降の8時間のタイミングまで同様に、次亜塩素酸水(混合水)の濃度変化を繰り返し、徐々に次亜塩素酸水(混合水)の濃度が上昇していく。
 そして、運転開始からa時間(渇水検知)になると、水供給部50からの水の供給に伴って混合槽92内の次亜塩素酸水が水で希釈されるため、混合槽92内の次亜塩素酸水の濃度は減少する。しかしながら、混合槽92内の次亜塩素酸水の濃度は、初期濃度以上のままである。その後、次亜塩素散水の供給タイミングである9時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素散水原液の供給タイミングである9時間を迎えると、排水判定に基づいて排水タイミングとなるので、混合槽92内の次亜塩素酸水(混合水)がすべて排水された後、混合槽92内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽92内における次亜塩素酸水の濃度は、運転初期(0時間)と同様の状態となる。その後は、これまでと同様に次亜塩素酸水(混合水)の濃度変化を繰り返す。
 次に、図4の(c)を参照して、吹出口3の空気9に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。
 吹出口3から放出される空気9に含まれる次亜塩素酸の濃度は、日本の冬場と同じく、空気浄化部11における加湿量及び混合槽92内の次亜塩素酸水の濃度によって決定されるので、図4の(c)に示すように、吹出口3の空気9に含まれる次亜塩素酸の濃度は、図4の(b)に示した混合槽92の次亜塩素酸水の濃度の増減に対応して増減する。
 ここで、従来のように、水位センサ90が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)から9時間まで次亜塩素酸水の濃度は減少し続けることになる。この場合には、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は、例えば、従来平均濃度のようになる。
 これに対して、第二例では、運転開始(0時間)から1時間までは従来と同じ状態であるものの、1時間から9時間までの期間は従来と状態が異なる。より詳細には、1時間から9時間までの期間では、図4の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間が、初期濃度よりも小さい期間よりもはるかに長くなっている。このため、運転開始(0時間)から9時間までの期間では、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は、従来平均濃度よりも高い平均濃度となる。
 次に、日本の夏場での動作状況において、第二例よりも加湿要求量が少ない加湿浄化条件での排水処理(第三制御)について説明する。
 そこで、以下では、第三例として、空気浄化部11の運転開始後の稼働時間が12時間までの期間に、1回も水の供給(第二制御)が実行されない加湿浄化条件での排水処理(第三制御)について説明する。つまり、第三例では、次亜塩素酸水原液の供給(第一制御)のみが所定時間ごとに実行される。
 第三例では、図5の(a)に示すように、混合槽92への次亜塩素酸水原液の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間・・・のタイミングから遅延してA時間、B時間、C時間・・・のタイミングで実行される。一方、混合槽92への水の供給(第二制御)は、少なくとも12時間までの期間では実行されない。なお、運転開始となる0時間の時点では、混合槽92に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽92は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。
 ここで、混合槽92への次亜塩素酸水原液の供給(第一制御)に遅延が発生するのは、空気浄化部11による加湿量が少なく、混合槽92に貯留される混合水が消費される時間が1時間よりも長くなっており、混合水が加湿浄化処理によって消費され、混合槽92の水量が基準水量(混合槽92の容量の約5/6)未満となるまで供給を待機するためである。基準水量は、次亜塩素酸水原液の供給量(混合槽92の容量の約1/6)に基づいて設定されている。なお、第三例での次亜塩素酸水原液の供給は、1時間、2時間、3時間・・・のタイミングから遅延したA時間、B時間、C時間・・・のタイミングで実行されるが、請求項の「次亜塩素酸水の供給を所定時間ごとに行う第一制御」に含まれるものとする。
 そして、混合槽92に貯留する混合水の排水判定は、A時間、B時間、C時間・・・のタイミングにおいて第一制御の実行の直前に行われる。
 具体的には、運転開始後の稼働時間が1時間に対応するA時間までの期間(稼働時間が0時間以上A時間未満までの期間)となるA時間のタイミングでは、混合槽92に水あるいは次亜塩素酸水原液のいずれも供給されていないので、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が0回であり、第一制御の実行回数が基準回数(11回)に達してないと判定される。そして、判定結果を受けて、第一制御が実行され、混合槽92に次亜塩素酸水原液が供給される。なお、実質的に基準水量となった状態で次亜塩素酸水原液が供給されるので、混合槽92は、第一制御による次亜塩素酸水原液の供給によって満水となった状態となる。
 次に、運転開始後の稼働時間が2時間に対応するB時間までの期間(稼働時間が0時間以上B時間未満までの期間)となるB時間のタイミングで混合水の排水判定が実行される。ここまでの加湿浄化運転で、積算加湿量は、第一制御1回に基づく供給量(混合槽92の容量の約0.16倍)となり、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が1回であり、第一制御の実行回数が基準回数(11回)に達していないと判定される。そして、判定結果を受けて、第一制御が実行され、混合槽92に次亜塩素酸水原液が供給される。
 その後、運転開始後の稼働時間が11時間に対応するK時間までの期間(稼働時間が0時間以上K時間未満までの期間)となるK時間のタイミングまで同様の制御が実行される。
 続いて、運転開始後の稼働時間が12時間に対応するL時間までの期間(稼働時間が0時間以上L時間未満までの期間)となるL時間のタイミングで混合水の排水判定が実行される。ここまでの加湿浄化運転で、積算加湿量は、第一制御11回に基づく供給量(混合槽92の容量の約1.8倍)となり、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。さらにまた、第一制御による次亜塩素酸水原液の供給回数が11回であり、第一制御の実行回数が基準回数(11回)であると判定される。そして、判定結果を受けて、第三制御が実行され、混合槽92の混合水が排水される。さらに、第三制御の実行後、混合槽92に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽92は、初期状態と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。
 その後は、L時間のタイミングを初期状態(0時間)と見なして、L時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。
 より詳細に説明する。
 まず、図5の(a)を参照して、混合槽92内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽92内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転によって一定の速度で混合水の水量が減少し、次亜塩素散水の供給タイミングであるA時間を迎える。そして、このA時間のタイミングで混合水の排水判定が実行される。
 ここまでの加湿浄化運転で、第二制御による水の供給及び第一制御による次亜塩素酸水原液の供給のいずれも実行していないので、積算加湿量は、基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が0回であり、第一制御の実行回数が基準回数(11回)に達していないと判定される。そして、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。これにより、混合槽92内の水位は、満水状態にまで上昇する。その後も加湿浄化運転によって混合水の水位が減少していき、次亜塩素散水の供給タイミングであるB時間を迎える。そして、このB時間のタイミングで混合水の排水判定が実行される。
 ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の供給回数が1回であるので、積算加湿量は、混合槽92の容量の約0.17倍(≒約1/6倍=約1/6×1回)となり、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が1回であり、第一制御の実行回数が基準回数(11回)に達してないと判定される。そして、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。これにより、混合槽92内の水位は、満水状態にまで上昇する。このように、第三例では、加湿浄化運転によって一定の速度で混合水の水量が減少していくものの、満水状態と基準水量との間で混合水の水量が増減するだけである。
 その後、次亜塩素散水原液の供給タイミングであるL時間を迎え、このL時間のタイミングで混合水の排水判定が実行される。
 ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の供給回数が11回であるので、積算加湿量は、混合槽92の容量の約1.8倍(≒約1/6×11回)となり、積算加湿量が基準量(混合槽92の容量の2倍)未満であると判定される。さらに、第一制御による次亜塩素酸水原液の供給回数が11回であり、第一制御の実行回数が基準回数(11回)に達していると判定される。そして、判定結果を受けて、第三制御が実行され、混合槽92の混合水が排水される。さらに、第三制御による混合水の排水の実行後、混合槽92に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽92は、初期状態(0時間)と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。ここで、積算加湿量(第一制御の実行回数)はリセットされ、再び積算加湿量の記憶が開始される。
 その後は、L時間のタイミングを初期状態(0時間)と見なして、L時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。より詳細には、これまでと同じように、次亜塩素酸水の供給タイミングにおいて第一制御によって次亜塩素酸水原液が供給されることを繰り返す。そして、第一制御の実行の直前において第三制御による混合水の排水判定を行い、条件を満たす場合に第三制御を実行する。そして、各動作に対応して混合槽92内の次亜塩素酸水(混合水)の水位が増減する。
 次に、図5の(b)を参照して、混合槽92内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽92内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽92内の次亜塩素酸水(混合水)の濃度は、運転開始からA時間まで時間の経過とともに減少する。これは、上述した通り、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。
 そして、運転開始から次亜塩素散水の供給タイミングであるA時間を迎えると、次亜塩素酸水生成部30(次亜塩素酸水供給部36)からの次亜塩素酸水原液の供給に伴って混合槽92内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、上述した通り、運転初期(0時間)において貯留する混合水の水量よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始からB時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少する。
 そして、運転開始から次亜塩素散水の供給タイミングであるB時間を迎えると、次亜塩素酸水生成部30(次亜塩素酸水供給部36)からの次亜塩素酸水原液の供給に伴って混合槽92内の次亜塩素酸水の濃度が初期濃度以上にまでさらに上昇する。その後、運転開始からC時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少していく。これ以降のK時間のタイミングまで同様に、次亜塩素酸水(混合水)の濃度変化を繰り返し、徐々に次亜塩素酸水(混合水)の濃度が上昇していく。
 そして、運転開始から次亜塩素散水原液の供給タイミングであるL時間を迎えると、排水判定に基づいて排水タイミングとなるので、混合槽92内の次亜塩素酸水(混合水)がすべて排水された後、混合槽92内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽92内における次亜塩素酸水の濃度は、運転初期(0時間)と同様の状態となる。その後は、これまでと同様に次亜塩素酸水(混合水)の濃度変化を繰り返す。
 次に、図5の(c)を参照して、吹出口3の空気9に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。
 吹出口3から放出される空気9に含まれる次亜塩素酸の濃度は、日本の冬場と同じく、空気浄化部11における加湿量及び混合槽92内の次亜塩素酸水の濃度によって決定されるので、図5の(c)に示すように、吹出口3の空気9に含まれる次亜塩素酸の濃度は、図5の(b)に示した混合槽92の次亜塩素酸水の濃度の増減に対応して増減する。
 ここで、従来のように、水位センサ90が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)からL時間まで次亜塩素酸水の濃度は減少し続けることになる。この場合には、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は、例えば、従来平均濃度のようになる。
 これに対して、第三例では、運転開始(0時間)からA時間までは従来と同じ状態であるものの、A時間からL時間までの期間は従来と状態が異なる。より詳細には、A時間からL時間までの期間では、図5の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間が、初期濃度よりも小さい期間よりもはるかに長くなっている。このため、運転開始(0時間)から12時間までの期間では、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は、従来平均濃度よりも高い平均濃度となる。
 そして、L時間以降についても、L時間を1サイクルとして、L時間ごとに混合水の濃度変化を繰り返すことになるので、次亜塩素酸水の濃度が上昇し続けることなく、ある一定濃度以下の範囲で次亜塩素酸水の濃度を調整し続けることが可能である。つまり、加湿浄化運転を続けると混合槽92内の次亜塩素酸水の濃度が上昇しすぎる可能性があるが、第一制御による次亜塩素酸水原液の供給回数に合わせた排水判定制御を設けることで、一定間隔で混合槽92内の次亜塩素酸水の濃度、ひいては吹出口3の空気9に含まれる次亜塩素酸の量をリセットすることができ、屋内空間18への次亜塩素酸ガスの供給量をコントロールすることができる。
 以上のように、空間浄化システム100では、第一制御として予め設定した時間(例えば、1時間)ごとに混合槽92内に次亜塩素酸水を供給し、第二制御として水位センサ90からの水位情報(渇水信号)に基づいて水を給水する処理を実行するとともに、第三制御として、積算加湿量または第一制御の実行回数に基づいて、混合槽92の混合水を排水するようにしている。さらに、空間浄化システム100の空気浄化制御部41は、空気浄化部11に要求される加湿要求量(日本の冬場に相当する加湿要求量または日本の夏場に相当する加湿要求量)に基づいて、所定期間内における第一制御を行う回数と、所定期間内における第二制御を行う回数とを異ならせている。これにより、日本の冬場のように加湿要求量が高い状態では、従来の方法と比べて、次亜塩素酸量の含有量が少ない状態の空気9を屋内空間18に放出することができ、日本の夏場のように加湿要求量が低い状態では、従来の方法と比べて、次亜塩素酸量の含有量が多い状態の空気9で屋内空間18に放出することができる。さらに、加湿浄化運転を長時間続けた場合に、屋内空間18に放出する次亜塩素酸濃度の過上昇を抑えることができる。
 つまり、次亜塩素酸水の供給、水の供給、及び混合水の排水をそれぞれ別々のトリガーで作動させることで、簡単な制御(第一制御、第二制御、第三制御)によって混合槽92内の次亜塩素酸水の濃度(屋内空間18に吹き出す空気9に含まれる次亜塩素酸の濃度)を調節することができる。
 以上、本実施の形態1に係る空間浄化システム100によれば、以下の効果を享受することができる。
 (1)空間浄化システム100は、次亜塩素酸水を生成する次亜塩素酸水生成部30と、次亜塩素酸水生成部30から混合槽92に次亜塩素酸水を供給する次亜塩素酸水供給部36と、混合槽92に水を供給する水供給部50と、混合槽92の水位を検知するための水位センサ90と、混合槽92に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する空気浄化部11と、次亜塩素酸水供給部36及び水供給部50における供給処理、並びに、混合槽92に貯留される混合水の排水処理を制御する空気浄化制御部41とを備える。そして、空気浄化制御部41は、供給処理として、次亜塩素酸水供給部36による次亜塩素酸水の供給を所定時間(例えば60分)ごとに行う第一制御と、水位センサ90からの混合槽92の水位に関する情報(渇水情報)に基づいて水供給部50による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、空気浄化部11における積算加湿量に基づいて、混合槽92が貯留する混合水を排水する第三制御を実行させるようにした。
 これにより、日本の夏場のように、相対湿度の高い空気が通風される場合においては、混合槽92に溜められた混合水の消費量が少ないため、混合槽92への次亜塩素酸水の供給頻度(第一制御を行う回数)が多くなり、混合槽92内における混合水の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出される。また、混合槽92に溜められた混合水の消費量が少ないため、混合水の排水の頻度(第三制御を行う回数)が少なくなり、混合槽92内における混合水の次亜塩素酸濃度が高い状態に維持される。この結果、微細化された次亜塩素酸水が気化されにくい状況であっても、所定濃度に高めた次亜塩素酸を空気に含ませて屋内空間18に放出させることができる。
 一方、日本の冬場のように、相対湿度の低い空気が通風される場合においては、混合槽92に溜められた混合水の消費量が多いため、混合槽92への水の供給頻度(第二制御を行う回数)が多くなり、混合槽92内における混合水の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出される。また、混合槽92に溜められた混合水の消費量が多いため、混合槽92内の混合水の排水の頻度(第三制御を行う回数)が多くなり、混合水の次亜塩素酸濃度が高まりすぎるのを抑制することができる。この結果、微細化された次亜塩素酸水が気化されやすい状況であっても、所定濃度に薄まった次亜塩素酸を空気に含ませて屋内空間18に放出させることができる。
 つまり、空間浄化システム100では、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 (2)空間浄化システム100では、空気浄化制御部41は、積算加湿量が基準量以上となった場合に、第三制御を実行させるようにした。これにより、空間浄化システム100は、空気浄化部11における加湿量に基づいて混合槽92に貯留する次亜塩素酸水の濃度を容易に調整することができる。
 (3)空間浄化システム100では、積算加湿量は、第一制御及び第二制御の実行回数に基づいて算出されるようにした。これにより、空間浄化システム100は、積算加湿量を簡易的かつ正確に算出することができ、第三制御の制御性を向上させることができる。
 (4)空間浄化システム100では、空気浄化制御部41は、第一制御を行った回数が基準回数となった場合に、第三制御を実行させるようにした。これにより、空間浄化システム100では、長時間運転(例えば24時間)する場合にも、混合槽92内の次亜塩素酸水濃度が高まりすぎる前に、混合槽92が貯留する混合水を排水する第三制御を実行させることで、混合槽92内の状態を運転初期の状態に戻すことができる。つまり、空間浄化システム100は、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 (5)空間浄化システム100では、空気浄化制御部41は、第三制御を、第一制御を実行する直前に実行させるようにした。これにより、空間浄化システム100では、第一制御によって混合槽92に次亜塩素酸が供給された直後に第三制御による排水が行われることがなくなるので、第一制御によって供給された次亜塩素酸水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。
 ここで、空気浄化制御部41は、第三制御を、第一制御に加え第二制御を実行する直前に実行させるようにしてもよいし、第二制御を実行する直前のみに実行させるようにしてもよい。このようにしても、空間浄化システム100では、第一制御によって混合槽92に次亜塩素酸が供給された直後、あるいは、第二制御によって水が供給された直後に第三制御による排水が行われることがなくなるので、第一制御によって供給された次亜塩素酸水あるいは第二制御によって供給された水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。
 (6)空間浄化システム100では、空気浄化制御部41は、供給処理において、空気浄化部11に要求される加湿要求量が第一基準値以上である場合、第一制御を行う回数が第二制御を行う回数よりも少なくなるように制御し、加湿要求量が第一基準値未満である場合、第一制御を行う回数が第二制御を行う回数よりも多くなるようになるように制御するようにした。これにより、空間浄化システム100では、供給処理において、加湿要求量が第一基準値未満である場合に、混合槽92内の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出させることができる。一方、加湿要求量が第一基準値以上である場合に、混合槽92内の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出させることができる。つまり、空間浄化システム100では、加湿要求量に基づいて、屋内空間18の環境に好適な条件で、空気浄化部11から放出される空気9に次亜塩素酸を付与することができる。
 以上、本開示に関して実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素あるいは各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されているところである。
 本実施の形態1に係る空間浄化システム100における第一例、第二例、及び第三例では、空気浄化部11は、加湿浄化運転時間中、一定の加湿要求量で動作しているとして説明したが、実際には、一定時間ごとに、目標湿度と屋内空間18の空気の湿度との間の湿度差に基づいて特定される加湿要求量で動作するようにしている。
 また、本実施の形態に係る空間浄化システム100では、第一制御の実行回数及び第二制御の実行回数に基づいて積算加湿量を算出したが、これに限られない。例えば、空間浄化装置10の風路前後に温湿度センサを設けることで、温湿度センサから得られる温湿度の変化量から積算加湿量を算出するようにしてもよい。
 また、本実施の形態に係る空間浄化システム100では、基準回数を、第一制御による次亜塩素酸水の供給のみによって基準量に達する直前となる11回に設定したが、これに限られない。例えば、基準回数を、第一制御によって供給される次亜塩素酸水の濃度、つまり次亜塩素酸水生成部30において生成される次亜塩素酸水の濃度に基づいて設定するようにしてもよい。これにより、混合槽92内の次亜塩素酸水濃度が高まりすぎる前に、混合槽92が貯留する混合水を排水することできる。
 (実施の形態2)
 従来の空間浄化装置として、屋内に供給する空気を浄化成分が含まれた気液接触部材部に接触させて放出することで空間を除菌する空気調和システムが知られている(例えば、特許文献1参照)。
 そして、こうした従来の空間浄化装置では、一般的に、微細化された水の放出に加えて、装置内に貯水された水(浄化成分を含ませた水)は、微細化動作に伴って一部の浄化成分を含ませた水及び浄化成分が気化され、空間に放出される。
 しかしながら、従来の空間浄化装置では、屋内空間に要求される加湿量の少ない状況、例えば日本の夏場(特に梅雨時期)に、空調機等で除湿された相対湿度の高い空気(例えば12℃95%)が通風される場合においては、微細化された浄化成分を含む水(次亜塩素酸水)が気化されにくいために、浄化成分(次亜塩素酸)が気化されず、屋内空間に浄化成分が放出されなくにくくなる。一方、要求される加湿量の多い状況、例えば日本の冬場に、温められた相対湿度の低い空気(例えば20℃30%)が通風される場合においては、微細化された浄化成分を含む水が気化されやすいために、屋内空間に浄化成分が多量に放出されてしまう。つまり、従来の空間浄化装置では、屋内空間(空気中)に放出される浄化成分の量を調節することが容易ではないという課題があった。
 そこで本開示は、上記従来の課題を解決するものであり、空気中に放出される浄化成分の量を調節しやすくできる技術を提供することを目的とする。
 そして、この目的を達成するために、本開示に係る空間浄化システムは、次亜塩素酸水を生成する次亜塩素酸水生成部と、次亜塩素酸水生成部から混合槽に次亜塩素酸水を供給する次亜塩素酸水供給部と、混合槽に水を供給する水供給部と、混合槽の水位を検知するための水位センサと、混合槽に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する加湿浄化部と、次亜塩素酸水供給部及び水供給部における供給処理、並びに、混合槽に貯留される混合水の排水処理を制御する制御部とを備える。制御部は、供給処理として、次亜塩素酸水供給部による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサからの混合槽の水位に関する情報に基づいて水供給部による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、第一制御を連続して所定回数実行した場合に、混合槽が貯留する混合水を排水する第三制御を実行させるものであり、これにより所期の目的を達成するものである。
 本開示に係る空間浄化システムによれば、空気中に放出される浄化成分の量を調節しやすくできる。
 改めて説明すると、本開示に係る空間浄化システムは、次亜塩素酸水を生成する次亜塩素酸水生成部と、次亜塩素酸水生成部から混合槽に次亜塩素酸水を供給する次亜塩素酸水供給部と、混合槽に水を供給する水供給部と、混合槽の水位を検知するための水位センサと、混合槽に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する加湿浄化部と、次亜塩素酸水供給部及び水供給部における供給処理、並びに、混合槽に貯留される混合水の排水処理を制御する制御部とを備える。制御部は、供給処理として、次亜塩素酸水供給部による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサからの混合槽の水位に関する情報に基づいて水供給部による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、第一制御を連続して所定回数実行した場合に、混合槽が貯留する混合水を排水する第三制御を実行させる。
 このようにすることで、日本の夏場のように、相対湿度の高い空気が通風される場合においては、混合槽に溜められた混合水の消費量が少ないため、混合槽への次亜塩素酸水の供給頻度(第一制御を行う回数)が多くなり、混合槽内における混合水の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出される。この際、第一制御を連続して所定回数実行した場合に第三制御を実行し、混合槽が貯留する混合水を排出し、混合槽内の混合水をリセットすることで、混合槽内の次亜塩素酸濃度の上がりすぎを抑制することができる。この結果、微細化された次亜塩素酸水が気化されにくい状況であっても、所定濃度に高めた次亜塩素酸を空気に含ませて屋内空間に放出させることができる。一方、日本の冬場のように、相対湿度の低い空気が通風される場合においては、混合槽に溜められた混合水の消費量が多いため、混合槽への水の供給頻度(第二制御を行う回数)が多くなり、混合槽内における混合水の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出される。この結果、微細化された次亜塩素酸水が気化されやすい状況であっても、所定濃度に薄まった次亜塩素酸を空気に含ませて屋内空間に放出させることができる。つまり、空間浄化システムでは、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 また、本開示に係る空間浄化システムでは、制御部は、第一制御を連続して所定回数実行した後における第一制御を実行する直前に、第三制御を実行させることが好ましい。これにより、空間浄化システムでは、第一制御によって混合槽に次亜塩素酸が供給された直後に第三制御による排水が行われることがなくなるので、第一制御によって供給された次亜塩素酸水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。
 また、本開示に係る空間浄化システムでは、制御部は、第三制御における所定回数は、第一制御によって供給される次亜塩素酸水の濃度に基づいて設定されることが好ましい。これにより、例えば、空間浄化システムでは、第一制御によって供給される次亜塩素酸水の濃度が高い時は、第一制御を連続して所定回数実行した場合に混合槽内の次亜塩素酸水の濃度の上昇が早くなるので、所定回数を少なく設定することで混合槽内の次亜塩素酸水の濃度が上がりすぎることをより確実に抑制することができる。
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、本開示に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。
 図6は、本開示の実施の形態2に係る空間浄化システム1100の構成を示す図である。空間浄化システム1100は、屋内空間1018の空気を循環させる際に、屋内空間1018からの空気1008(RA1)に対して必要に応じて冷却処理(除湿処理)または加熱処理を行うとともに、内部を流通する空気1008に対して微細化された水とともに空気浄化を行う成分(以下、単に「空気浄化成分」という)を含ませる装置である。空間浄化システム1100は、内部を流通した空気1009(SA1)を屋内空間1018に供給することで、屋内空間1018の殺菌と消臭を行う。ここでは、空気浄化成分として次亜塩素酸が用いられ、空気浄化成分を含む水は次亜塩素酸水である。
 空間浄化システム1100は、図6に示すように、主として、空間浄化装置1010、空気調和装置1015、及び次亜塩素酸水生成部1030を有して構成される。
 空間浄化装置1010は、吹出口1003、空気浄化部1011、及び空気浄化制御部1041を含む。空気調和装置1015は、吸込口1002、送風機1013、冷媒コイル1014、及び空気調和制御部1042を含む。空間浄化装置1010と空気調和装置1015のそれぞれは、装置の外枠を構成する筐体を有し、空間浄化装置1010と空気調和装置1015とは、ダクト1024により接続される。また、空気調和装置1015の側面に吸込口1002が形成され、空間浄化装置1010の側面に吹出口1003が形成される。
 吸込口1002は、屋内空間1018からの空気1008を空気調和装置1015に取り入れる取入口である。吸込口1002は、屋内空間1018の天井等に設けられた屋内吸込口1016aとの間でダクト1016を介して連通されている。これにより、吸込口1002は、屋内吸込口1016aから空気調和装置1015内に屋内空間1018の空気を吸い込むことができる。
 吹出口1003は、空間浄化装置1010内を流通した空気1009(SA1)を屋内空間1018に吐き出す吐出口である。吹出口1003は、屋内空間1018の天井等に設けられた屋内吹出口1017aとの間でダクト1017を介して連通されている。これにより、吹出口1003は、屋内吹出口1017aから屋内空間1018に向けて、空間浄化装置1010内を流通した空気1009を吹き出すことができる。
 また、空気調和装置1015及び空間浄化装置1010の内部には、ダクト1024を介して吸込口1002と吹出口1003とを連通する風路(前段風路1004、中段風路1005、後段風路1006)が構成されている。前段風路1004は、吸込口1002に隣接する風路である。前段風路1004には、送風機1013及び冷媒コイル1014が設けられている。
 中段風路1005は、前段風路1004(ダクト1024)に隣接した位置において、前段風路1004を流通した空気1008が流通する風路である。中段風路1005には、その風路内に空気浄化部1011が設けられている。
 後段風路1006は、吹出口1003に隣接する風路であり、後段風路1006では、中段風路1005を流通した空気1008が空気浄化部1011を流通し微細化された水とともに次亜塩素酸を含んだ空気1009となる。
 空気調和装置1015及び空間浄化装置1010では、吸込口1002から吸い込まれた空気1008は、前段風路1004を流通し、中段風路1005及び後段風路1006を流通し、空気1009として吹出口1003から吹き出される。
 空気調和装置1015の送風機1013は、屋内空間1018の空気1008(RA1)を吸込口1002から空気調和装置1015内に搬送するための装置である。送風機1013は、前段風路1004内において、冷媒コイル1014の上流側に設置されている。送風機1013では、空気調和制御部1042からの送風出力情報に応じて運転動作のオン/オフが制御される。送風機1013が運転動作することにより、屋内空間1018の空気1008は、空気調和装置1015に取り込まれて冷媒コイル1014に向かう。
 冷媒コイル1014は、前段風路1004内において、送風機1013の下流側に配置され、導入される空気1008を冷却または加熱するための部材である。冷媒コイル1014は、空気調和制御部1042からの出力信号に応じて出力状態(冷却、加熱またはオフ)を変化させ、導入される空気1008に対する冷却能力(冷却量)または加熱能力(加熱量)を調整する。冷媒コイル1014では、導入される空気1008を冷却すると、導入された空気1008の除湿がなされることになるので、空気1008に対する冷却能力(冷却量)は、空気1008に対する除湿能力(除湿量)ともいえる。
 冷媒コイル1014は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルにおいて、吸熱器または放熱器として機能し、室外機1020から導入される冷媒が内部を流通する際に吸熱(冷却)または放熱(加熱)するように構成されている。より詳細には、冷媒コイル1014は、冷媒が流れる冷媒回路1021を介して室外機1020と接続されている。室外機1020は、屋外空間1019に設置される室外ユニットであり、圧縮機1020aと、膨張器1020bと、屋外熱交換器1020cと、送風ファン1020dと、四方弁1020eとを有する。室外機1020には、一般的な構成のものを用いるので、各機器(圧縮機1020a、膨張器1020b、屋外熱交換器1020c、送風ファン1020d、及び四方弁1020e)の詳細な説明は省略する。
 冷媒コイル1014を含む冷凍サイクルには、四方弁1020eが接続されているので、空気調和装置1015では、四方弁1020eによって第一方向に冷媒が流通して空気(空気1008)を冷却して除湿する冷却モード(除湿モード)の状態と、四方弁1020eによって第二方向に冷媒が流通して空気(空気1008)に対して加熱を行う加熱モードの状態とを切り替え可能である。
 ここで、第一方向は、圧縮機1020aと屋外熱交換器1020cと膨張器1020bと冷媒コイル1014とをこの順序で冷媒が流通する方向である。また、第二方向は、圧縮機1020aと冷媒コイル1014と膨張器1020bと屋外熱交換器1020cとをこの順序で冷媒が流通する方向である。冷媒コイル1014では、導入される空気(空気1008)に対して冷却または加熱することが可能である。
 空間浄化装置1010の空気浄化部1011は、内部に取り入れた空気1008を加湿するためのユニットであり、加湿の際に、空気に対して微細化された水とともに次亜塩素酸を含ませる。より詳細には、空気浄化部1011は、混合槽1092、水位センサ1090、加湿モータ1011a、及び加湿ノズル1011bを有している。空気浄化部1011は、加湿モータ1011aを用いて加湿ノズル1011bを回転させ、空気浄化部1011の混合槽1092に貯留されている次亜塩素酸水を遠心力で吸い上げて周囲(遠心方向)に飛散・衝突・破砕させ、通過する空気に水分を含ませる遠心破砕式の構成をとる。空気浄化部1011は、空気浄化制御部1041からの出力信号に応じて加湿モータ1011aの回転数(以下、回転出力値)を変化させ、加湿能力(加湿量)を調整する。加湿量は、空気に対して次亜塩素酸を付加する付加量ともいえる。なお、空気浄化部1011は、請求項の「加湿浄化部」に相当する。
 水位センサ1090は、混合槽1092に貯留される次亜塩素酸水の水位を計測し、計測値を空気浄化制御部1041に出力する。より詳細には、水位センサ1090は、混合槽1092に貯留される次亜塩素酸水の水位として、混合槽1092が渇水状態となる水位及び混合槽1092が満水状態となる水位をそれぞれ計測し、計測値を水位情報として空気浄化制御部1041に出力する。なお、本実施の形態では、混合槽1092が渇水状態となる水位は、混合槽1092内に次亜塩素酸水が満水状態から約1/3まで次亜塩素酸水量が減少した状態での水位に設定されている。
 混合槽1092は、空気浄化部1011において次亜塩素酸水を貯留する槽であり、貯水部とも言える。混合槽1092では、後述する次亜塩素酸水供給部1036から供給される所定濃度の次亜塩素酸水と、後述する水供給部1050から供給される水とを槽内で混合し、希釈された次亜塩素酸水からなる混合水として貯留する。なお、混合槽1092内に貯留される次亜塩素酸水(混合水)は、空気浄化制御部1041からの出力信号に応じて動作する排水部1060によって、混合槽1092から外部に排出可能になっている。
 次亜塩素酸水生成部1030は、電解槽1031、電極1032、電磁弁1033、塩水タンク1034、塩水搬送ポンプ1035、水位センサ1039、及び次亜塩素酸水供給部1036を含む。
 塩水タンク1034は、塩水を貯めており、空気浄化制御部1041からの出力信号に応じて、塩水搬送ポンプ1035を介して電解槽1031に塩水を供給する。電解槽1031は、塩水タンク1034から供給された電気分解対象である塩水を貯める。電解槽1031には、空気浄化制御部1041からの出力信号に応じて、水道等の給水管から電磁弁1033を介して水道水も供給され、供給された水道水と塩水とが混合され、予め定められた濃度の塩水が貯められる。電極1032は、電解槽1031内に配置され、空気浄化制御部1041からの出力信号に応じて通電により塩水の電気分解を所定時間行い、予め定められた濃度の次亜塩素酸水を生成する。つまり、電解槽1031は、一対の電極間で、電解質として塩化物水溶液(例えば、塩化ナトリウム水溶液)を電気分解することで次亜塩素酸水を生成する。電解槽1031には、一般的な装置が使用されるので、詳細な説明は省略する。ここで、電解質は、次亜塩素酸水を生成可能な電解質であり、少量でも塩化物イオンを含んで入れば特に制限はなく、例えば、溶質として、塩化ナトリウム、塩化カルシウム、又は塩化マグネシウム等を溶解した水溶液が挙げられる。また、塩酸でも問題ない。本実施の形態では、電解質として、水に対して塩化ナトリウムを加えた塩化ナトリウム水溶液(塩水)を使用している。
 水位センサ1039は、電解槽1031内の水位を計測し、計測値を空気浄化制御部1041に出力する。
 次亜塩素酸水供給部1036は、空気浄化制御部1041からの出力信号に応じて、電解槽1031から空気浄化部1011の混合槽1092に次亜塩素酸水を供給する。次亜塩素酸水供給部1036は、次亜塩素酸水搬送ポンプ1037と送水管1038とを有する。次亜塩素酸水搬送ポンプ1037は、空気浄化制御部1041からの出力信号に応じて、電解槽1031の次亜塩素酸水を送水管1038に送り出す。送水管1038は、次亜塩素酸水搬送ポンプ1037と混合槽1092との間に接続され、次亜塩素酸水を混合槽1092に向けて送水する。
 水供給部1050は、空気浄化制御部1041からの出力信号に応じて、混合槽1092に水を供給する。水供給部1050は、電磁弁1051と送水管1052とを有する。電磁弁1051は、空気浄化制御部1041からの出力信号に応じて、空間浄化装置1010の外部の水道管から供給される水を送水管1052に流すか否か制御する。送水管1052は、電磁弁1051と混合槽1092との間に接続され、水を混合槽1092に向けて送水する。
 排水部1060は、混合槽1092の底部に接続され、空気浄化制御部1041からの出力信号に応じて、混合槽1092に貯留される混合水を外部に排出する。排水部1060は、電磁弁1061と送水管1062とを有する。電磁弁1061は、空気浄化制御部1041からの出力信号に応じて、混合槽1092に貯留される混合水を外部の排水管に流すか否か制御する。送水管1062は、混合槽1092と電磁弁1061との間に接続され、混合水を外部の排水管に送水する。
 空気浄化部1011では、次亜塩素酸水供給部1036からの次亜塩素酸水と、水供給部1050からの水とが混合槽1092にそれぞれ供給される。そして、空気浄化部1011の混合槽1092で次亜塩素酸水と水とが混合される。次亜塩素酸水と水との混合水も次亜塩素酸水と呼べる。より詳細には、空気浄化部1011の混合槽1092では、混合槽1092内に残存する次亜塩素酸水に対して、次亜塩素酸水供給部1036からの次亜塩素酸水または水供給部1050からの水がそれぞれ供給されて混合される。空気浄化部1011は、混合槽1092に貯められた次亜塩素酸水と水との混合水を遠心破砕することによって、次亜塩素酸水を屋内空間1018に対して放出する。微細化された次亜塩素酸水は、液体成分が蒸発した状態で屋内空間1018へ放出される。
 屋内空間1018の壁面には、操作装置1043が設置される。操作装置1043は、ユーザが操作可能なユーザインターフェースを備え、ユーザから温度設定値と湿度設定値を受けつける。操作装置1043には、温湿度センサ1044が含まれており、温湿度センサ1044は、屋内空間1018の空気の温度及び湿度を計測する。温湿度センサ1044における温度及び湿度の計測には公知の技術が使用されればよいので、ここでは説明を省略する。
 操作装置1043は、空気浄化制御部1041及び空気調和制御部1042に対して有線あるいは無線で接続されており、温度設定値、湿度設定値、温度計測値、及び湿度計測値を空気浄化制御部1041及び空気調和制御部1042に送信する。これらの情報は、すべてまとめて送信されてもよく、任意の2つ以上をまとめて送信されてもよく、それぞれを送信されてもよい。また、操作装置1043が空気浄化制御部1041に情報を送信し、空気浄化制御部1041が空気調和制御部1042に情報を転送してもよい。
 空気調和装置1015の空気調和制御部1042は、温度設定値と温度計測値とを受けつけ、温度計測値が温度設定値に近づくように、冷媒コイル1014及び室外機1020を制御する。空気調和制御部1042は、加熱モードにおいて、温度計測値が温度設定値よりも低い場合に、温度計測値と温度設定値との差異が大きくなるほど、加熱の程度を増加させる。
 次に、空間浄化装置1010の空気浄化制御部1041について説明する。
 空気浄化制御部1041は、次亜塩素酸水生成部1030及び空間浄化装置1010の処理動作として、電解槽1031における電気分解処理に関する動作、空気浄化部1011への次亜塩素酸水の供給処理に関する動作、空気浄化部1011への水の供給処理に関する動作、空気浄化部1011における加湿浄化処理に関する動作、及び空気浄化部1011における混合水の排水処理に関する動作をそれぞれ制御する。なお、空気浄化制御部1041は、プロセッサ及びメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御部として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。また、空気浄化制御部1041は、請求項の「制御部」に相当する。
 図7は、実施の形態2に係る空間浄化システム1100の空気浄化制御部1041の構成を示すブロック図である。具体的には、空気浄化制御部1041は、図7に示すように、入力部1041a、記憶部1041b、計時部1041c、処理部1041d、及び出力部1041eを備える。
 <電解槽における電気分解処理に関する動作>
 空気浄化制御部1041は、電解槽1031における電気分解処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部1041は、電解槽1031の電気分解処理のトリガーとして、水位センサ1039からの水位情報(渇水信号)及び計時部1041cからの時間に関する情報(時刻情報)を受け付け、処理部1041dへ出力する。
 処理部1041dは、水位センサ1039からの水位情報と、計時部1041cからの時刻情報と、記憶部1041bからの設定情報とに基づいて制御情報を特定し、出力部1041eに出力する。ここで、設定情報には、次亜塩素酸水生成の開始時刻または終了時刻に関する情報、電解槽1031に導入する水道水の供給量に関する情報、塩水搬送ポンプ1035における塩化物イオンを含む液体の投入量に関する情報、電極1032における電気分解条件(時間、電流値、電圧など)に関する情報、電磁弁1033の開閉タイミングに関する情報、及び次亜塩素酸水搬送ポンプ1037のオン/オフ動作に関する情報が含まれる。
 ここで、電極1032における電気分解条件は、電解槽1031内の水道水の水量、塩化物イオン濃度、電気分解時間、及び電極1032の劣化度合いから決定でき、アルゴリズムを作成して設定され、記憶部1041bに記憶される。
 そして、出力部1041eは、受け付けた制御情報に基づいて、各機器(塩水搬送ポンプ1035、電磁弁1033、及び次亜塩素酸水搬送ポンプ1037)に信号(制御信号)を出力する。
 より詳細には、まず、塩水搬送ポンプ1035は、出力部1041eからの信号に基づいて停止した状態を維持し、次亜塩素酸水搬送ポンプ1037は、出力部1041eからの信号に基づいて停止した状態を維持する。
 そして、電磁弁1033は、出力部1041eからの信号に基づいて開放される。これにより、電解槽1031には、水道管からの水道水の供給が開始される。その後、電磁弁1033は、水位センサ1039からの水位情報(満水)を受けた出力部1041eからの信号に基づいて閉止される。これにより、電解槽1031は、水道水が設定された供給量にて給水された状態となる。
 次に、塩水搬送ポンプ1035は、出力部1041eからの信号に基づいて動作を開始し、所定量の塩化物イオンを含む液体を電解槽1031へ搬送して停止する。これにより、水道水に塩化物イオンが溶解し、電解槽1031は、所定量の塩化物イオンを含む水溶液(塩化物水溶液)が生成された状態となる。
 そして、電極1032は、出力部1041eからの信号に基づいて、塩化物水溶液の電解を開始し、設定された条件の次亜塩素酸水を生成して停止する。電極1032により生成される次亜塩素酸水は、例えば、次亜塩素酸濃度が100ppm~150ppm(例えば、120ppm)であり、pHが7.0~8.5(例えば、8.0)の状態となる。
 以上のようにして、空気浄化制御部1041は、電解槽1031において電気分解処理を実行し、予め定められた濃度と量の次亜塩素酸水が生成される。
 <空気浄化部への次亜塩素酸水の供給処理に関する動作>
 空気浄化制御部1041は、空気浄化部1011への次亜塩素酸水の供給処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部1041は、空気浄化部1011への次亜塩素酸水の供給処理のトリガーとして、加湿モータ1011aの稼働時間を計時部1041cが測定し、稼働時間が所定時間経過(例えば60分)するごとに次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)に次亜塩素酸水供給要求を出力する。ここで、所定時間は、次亜塩素酸水中の次亜塩素酸が気化して経時的に減少することを踏まえ、予め実験評価によって見積られた時間である。
 具体的には、処理部1041dは、計時部1041cから時間に関する情報(時刻情報)と、記憶部1041bから設定情報とに基づいて制御情報を特定し、出力部1041eに出力する。ここで、設定情報には、次亜塩素酸水の供給間隔(例えば60分)に関する情報及び次亜塩素酸水搬送ポンプ1037のオン/オフ動作に関する情報が含まれる。
 そして、出力部1041eは、受け付けた制御情報に基づいて、次亜塩素酸水供給部1036の次亜塩素酸水搬送ポンプ1037に信号(制御信号)を出力する。
 次亜塩素酸水搬送ポンプ1037は、出力部1041eからの信号に基づいて作動する。これにより、次亜塩素酸水生成部1030では、電解槽1031から空気浄化部1011(混合槽1092)への次亜塩素酸水の供給が開始される。なお、電解槽1031に貯留される次亜塩素酸水の濃度を担保するため、次亜塩素酸水生成部1030から混合槽1092に次亜塩素酸水が供給される際、電解槽1031で生成された次亜塩素酸水は全量供給される。そのため、次亜塩素酸水を供給した後は、電解槽1031は空の状態であり、次亜塩素酸水が電解槽1031内に残留した状態から次亜塩素酸水を作成し始めることはない。水位センサ1039は、電解槽1031内の次亜塩素酸水が全量供給された状態になると、水位情報として渇水信号を出力する。
 その後、次亜塩素酸水搬送ポンプ1037は、計時部1041cからの時間に関する情報(規定量を供給するための所要時間)を受けた出力部1041eからの信号に基づいて停止する。これにより、次亜塩素酸水生成部1030は、電解槽1031から空気浄化部1011(混合槽1092)に対して次亜塩素酸水が設定された供給量にて供給する。
 以上のようにして、空気浄化制御部1041は、次亜塩素酸水生成部1030(電解槽1031)から空気浄化部1011への次亜塩素酸水の供給処理を実行させる。なお、空気浄化制御部1041が次亜塩素酸水供給部1036による次亜塩素酸水の供給を所定時間ごとに行う制御を「第一制御」とする。
 <空気浄化部への水の供給処理に関する動作>
 空気浄化制御部1041は、空気浄化部1011への水の供給処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部1041は、空気浄化部1011への水の供給処理のトリガーとして、空間浄化装置1010の水位センサ1090からの水位情報(渇水信号)を受け付け、水供給部1050に水供給要求を出力する。
 具体的には、入力部1041aは、空間浄化装置1010の水位センサ1090からの水位情報(渇水信号)を受け付け、処理部1041dに出力する。
 処理部1041dは、入力部1041aからの水位情報(渇水信号)と、計時部1041cから時間に関する情報(時刻情報)と、記憶部1041bから設定情報とに基づいて制御情報を特定し、出力部1041eに出力する。ここで、設定情報には、水供給部1050の電磁弁1051のオン/オフ動作に関する情報が含まれる。
 そして、出力部1041eは、受け付けた制御情報に基づいて、電磁弁1051に信号(制御信号)を出力する。
 電磁弁1051は、出力部1041eからの信号に基づいて作動する。これにより、水供給部1050では、送水管1052を介して、外部の給水管から空気浄化部1011(混合槽1092)への水の供給が開始される。
 その後、電磁弁1051は、空間浄化装置1010の水位センサ1090からの水位情報(満水信号)を受け付けた出力部1041eからの信号に基づいて停止する。これにより、水供給部1050は、外部の給水管から空気浄化部1011(混合槽1092)に対して水が設定された量になるまで供給する。
 以上のようにして、空気浄化制御部1041は、水供給部1050から空気浄化部1011への水の供給処理を実行させる。なお、空気浄化制御部1041が水位センサ1090からの混合槽1092の水位に関する情報(渇水情報)に基づいて水供給部1050による水の供給を行う制御を「第二制御」とする。
 <空気浄化部における加湿浄化処理に関する動作>
 次に、空気浄化制御部1041の空気浄化部1011における加湿浄化処理に関する動作について説明する。
 入力部1041aは、操作装置1043からのユーザ入力情報と、温湿度センサ1044からの屋内空間1018の空気の温湿度情報と、水位センサ1090からの混合槽1092内の次亜塩素酸水(混合水)の水位情報とを受け付ける。入力部1041aは、受け付けた各情報を処理部1041dに出力する。
 ここで、操作装置1043は、空間浄化装置1010に関するユーザ入力情報(例えば、風量、目標温度、目標湿度、次亜塩素酸の添加の有無、次亜塩素酸の目標供給量レベル、等)を入力する端末であり、無線または有線により空気浄化制御部1041と通信可能に接続されている。
 また、温湿度センサ1044は、屋内空間1018内に設けられ、屋内空間1018の空気の温湿度を感知するセンサである。
 記憶部1041bは、入力部1041aが受け付けたユーザ入力情報と、装置内を流通する空気に対する次亜塩素酸の供給動作における供給設定情報とを記憶する。記憶部1041bは、記憶した供給設定情報を処理部1041dに出力する。なお、次亜塩素酸の供給動作における供給設定情報は、空気浄化部1011の加湿浄化動作における加湿設定情報とも言える。
 計時部1041cは、現在時刻に関する時刻情報を処理部1041dに出力する。
 処理部1041dは、入力部1041aからの各種情報(ユーザ入力情報、温湿度情報、水位情報)と、計時部1041cからの時刻情報と、記憶部1041bからの供給設定情報とを受け付ける。処理部1041dは、受け付けたユーザ入力情報、時刻情報、及び供給設定情報を用いて、加湿浄化運転動作に関する制御情報を特定する。
 具体的には、処理部1041dは、計時部1041cからの時刻情報によって一定時間ごとに、記憶部1041bに記憶された目標湿度と、温湿度センサ1044からの屋内空間1018の空気の温湿度情報の間の湿度差に基づいて、屋内空間1018に必要とされる加湿要求量を特定する。
 そして、処理部1041dは、特定した加湿要求量と、記憶部1041bに記憶された供給設定情報とに基づいて加湿浄化運転動作に関する制御情報を特定する。そして、処理部1041dは、特定した制御情報を出力部1041eに出力する。
 また、処理部1041dは、水位センサ1090からの水位情報に、混合槽1092内の次亜塩素酸水(混合水)の渇水を示す水位に関する情報(渇水信号)が含まれる場合には、出力部1041eは、水供給部1050に対する水供給要求の信号を出力部1041eに出力する。さらに、処理部1041dは、計時部1041cからの時刻情報に基づいて、空気浄化部1011(加湿モータ1011a)の稼働時間が所定時間(例えば60分)となった場合には、出力部1041eは、次亜塩素酸水生成部1030に対する次亜塩素酸水供給要求の信号を出力部1041eに出力する。なお、本実施の形態では、混合槽1092内の次亜塩素酸水(混合水)が渇水を示す水位は、混合槽1092内に次亜塩素酸水(混合水)が満水の状態から約1/3まで次亜塩素酸水量が減少した状態での水位に設定されている。
 そして、出力部1041eは、受け付けた各信号を空気浄化部1011、次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)、及び水供給部1050にそれぞれ出力する。
 そして、空気浄化部1011は、出力部1041eからの信号を受け付け、受け付けた信号に基づいて運転動作の制御を実行する。この際、次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)は、出力部1041eからの信号(次亜塩素酸水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部1011への次亜塩素酸水の供給処理に関する動作(第一制御)を実行する。また、水供給部1050は、出力部1041eからの信号(水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部1011への水の供給処理に関する動作(第二制御)を実行する。
 以上のようにして、空気浄化制御部1041は、供給処理として、次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサ1090からの混合槽1092の水位に関する情報(渇水情報)に基づいて水供給部1050による水の供給を行う第二制御とをそれぞれ実行させ、混合槽1092に混合水を貯留する。そして、空気浄化制御部1041は、混合槽1092に次亜塩素酸水と水とを供給して混合水を貯留する際に、次亜塩素酸水の供給サイクル(所定時間ごと)と、水の供給サイクル(渇水検知ごと)とを異ならせ、空間浄化装置1010(空気浄化部1011)を流通する空気への加湿浄化処理を実行させる。
 <空気浄化部の混合水の排水処理に関する動作>
 空気浄化制御部1041は、空気浄化部1011の混合槽1092に貯留される混合水の排水処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部1041は、混合槽1092に貯留される混合水の排水処理のトリガーとして、次亜塩素酸水供給部1036における第一制御の実行回数に関する情報及び水供給部1050における第二制御の実行回数に関する情報に基づいて排水処理の実施の有無を判定する。なお、各制御の実行回数に関する情報には、各制御を実行した時刻に関する情報も含まれている。
 具体的には、記憶部1041bは、次亜塩素酸水供給部1036における第一制御の実行回数及び水供給部1050による第二制御の実行回数を記憶する。ここで、実行回数は、混合槽1092の初期状態(例えば、排水処理後に実行される水の供給及び次亜塩素酸水の供給によって混合槽1092が満水となった状態)を起点として、加湿浄化処理動作の開始後(以下、「運転開始後」ともいう)に実行された各制御の回数である。
 そして、処理部1041dは、第一制御の実行回数に関する情報及び第二制御の実行回数に関する情報に基づいて第一制御を連続して実行した回数(第一制御の連続実行回数)を特定し、第一制御の連続実行回数が基準回数であるか否かの判定を行う。
 ここで、基準回数は、第一制御による連続した次亜塩素酸水の供給のみによって、混合槽1092内の次亜塩素酸水濃度が基準濃度を超えないように、次亜塩素酸水供給部1036から供給される次亜塩素酸水の次亜塩素酸濃度に基づいて「5回」に設定している。基準濃度は、屋内空間1018に吹き出される空気1009(次亜塩素酸を含む空気1009)の臭いなどによって、屋内空間1018内のユーザが不快とならない程度の次亜塩素酸濃度に設定されている。
 判定の結果、処理部1041dは、第一制御の連続実行回数が基準回数である場合には、計時部1041cから時間に関する情報(時刻情報)と、記憶部1041bから設定情報とに基づいて制御情報を特定し、出力部1041eに出力する。ここで、設定情報には、排水部1060の電磁弁1061のオン/オフ動作に関する情報が含まれる。
 そして、出力部1041eは、受け付けた制御情報に基づいて、電磁弁1061に信号(制御信号)を出力する。
 電磁弁1061は、出力部1041eからの信号に基づいて作動する。これにより、排水部1060では、送水管1062を介して、混合槽1092から外部の排水管への混合水の排出が開始される。
 その後、電磁弁1061は、計時部1041cからの時刻情報を受け付けた出力部1041eからの信号に基づいて所定時間(例えば、1分)の経過後に停止する。これにより、混合槽1092は、貯留していた混合水のすべてが排出されて空の状態となる。
 以上のようにして、空気浄化制御部1041は、混合槽1092から外部への混合水の排水処理を実行させる。なお、空気浄化制御部1041が次亜塩素酸水供給部1036における第一制御の連続実行回数に関する情報に基づいて排水部1060による混合水の排水を行う制御を「第三制御」とする。
 ここで、第三制御は、次亜塩素酸水供給部1036による第一制御の実行の直前に行うことが好ましい。これにより、例えば、第一制御によって混合槽1092に新たな次亜塩素酸水が供給された直後において、第三制御による排水が行われることがなくなるので、混合槽1092に貯留される混合水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。なお、以下の実施例においては、除菌の有効成分である次亜塩素酸水の無駄を減らすという観点から第一制御実行の直前に行うものとする。
 次に、図8及び図9を参照して、空間浄化システム1100において、空間浄化装置1010(空気浄化部1011)の混合槽1092内における混合水(第一制御または第二制御がなされて混合される混合水)について説明する。図8は、空間浄化システム1100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(冬場:第一例)を示す概略図である。より詳細には、図8の(a)は、混合槽1092内の次亜塩素酸水(混合水)の水量の経時変化を示す。図8の(b)は、混合槽1092内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図8の(c)は、吹出口1003の空気に含まれる次亜塩素酸の濃度の経時変化を示す。また、図9は、空間浄化システム1100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第二例)を示す概略図である。より詳細には、図9の(a)は、混合槽1092内の次亜塩素酸水(混合水)の水量の経時変化を示す。図9の(b)は、混合槽1092内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図9の(c)は、吹出口1003の空気に含まれる次亜塩素酸の濃度の経時変化を示す。
 ここで、混合槽1092への次亜塩素酸水の供給は、所定時間(1時間)ごとに実行され、混合槽1092への水の供給は、水位センサ1090によって混合槽1092が渇水となる水位を検知するごとに実行される。また、排水処理は、第一制御の実行の直前になされる、第一制御の連続実行回数による判定結果に基づいて実行される。より詳細には、排水処理は、次亜塩素酸水の供給タイミングの直前になされる排水判定において、第一制御の連続実行回数が基準回数(5回)となっているか否かに基づいて実行される。
 なお、上述した通り、混合槽1092の次亜塩素酸水(混合水)が渇水となる水位となっても、混合槽1092内には、次亜塩素酸水(混合水)が満水時に対して約1/3残存している。また、説明を簡略化するために、空気浄化部1011は、加湿浄化運転時間中、一定の加湿要求量で動作しているとする。また、以下では、混合槽1092へ供給する所定量の次亜塩素酸水のことを「次亜塩素酸水原液」ともいう。
 まず、日本の冬場での動作状況について説明する。なお、日本の冬場では、外気が乾燥しているため空気浄化部1011に対する加湿要求量が多く、水の供給は、次亜塩素酸水の供給よりも短い間隔で行われる。つまり、次亜塩素酸水の供給タイミングよりも先に混合槽1092内の水位が渇水となる。
 そこで、以下では、第一例として、空気浄化部1011の運転開始後の稼働時間3時間までの期間に、水の供給(第二制御)が4回実行され、次亜塩素酸水の供給(第一制御)が3回実行される加湿浄化条件での処理について説明する。
 なお、上記した加湿浄化条件は、空気浄化部1011に対する加湿要求量が第一基準値以上である場合に、第一制御を行う回数が第二制御を行う回数よりも少なくなるように空気浄化部1011を制御することに基づいて設定される条件である。ここで、第一基準値は、日本の冬場において空気の湿度が低く乾燥している状況と、日本の夏場において空気の湿度が高く湿っている状況とを区分するために設定される値である。
 第一例では、図8の(a)に示すように、混合槽1092への次亜塩素酸水の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間・・・のタイミングで実行される。一方、混合槽1092への水の供給(第二制御)は、a1時間、b1時間、c1時間、d1時間・・・のタイミングで実行される。なお、運転開始となる0時間の時点では、混合槽1092に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽1092は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。
 また、3時間目のタイミングでは、次亜塩素酸水の供給(第一制御)と水の供給(第二制御)とが重なるため、第一例は、3時間サイクルによる次亜塩素酸水の供給(第一制御)と水の供給(第二制御)と見なすことができる。但し、このタイミングでの水の供給(第二制御)では、混合槽1092内に混合水が満水時に対して約1/3残存していることに加え、次亜塩素酸水の供給量の分量だけ水の供給量が少なくなっているため、混合槽1092内の次亜塩素酸水濃度は、0時間の時点での初期状態よりも若干高くなる。
 第一例では、空気浄化部1011の運転開始後の稼働時間が3時間までの期間(稼働時間が0時間超から3時間以下までの期間)において、水の供給が4回に対して次亜塩素酸水の供給が3回となる。その後は、稼働時間3時間目を初期状態(0時間)と見なして、稼働時間3時間ごとに同じ供給動作が繰り返されることになる。
 つまり、第一例は、空気浄化部1011に対する加湿要求量が第一基準値以上である場合において、第一制御を行う回数が第二制御を行う回数よりも少なくなるように制御していると言える。
 そして、混合槽1092に貯留する混合水の排水判定は、1時間、2時間、3時間・・・のタイミングにおいて第一制御の実行の直前に行われる。なお、日本の冬場においては、空気浄化部1011に対する加湿要求量が多く、水の供給(第二制御)が次亜塩素酸水の供給(第一制御)よりも短い間隔で実行される。このため、第一制御を連続して実行することがなく、第三制御による混合水の排水は実行されない。
 より詳細に説明する。
 図8の(a)を参照して、混合槽1092内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽1092内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転によって一定の速度で混合水の水量が減少し、運転開始からa1時間になったタイミングで渇水を検知し、水供給部1050から混合槽1092が満水になるまで水が供給される。その後、加湿浄化運転により一定の速度で混合水の水位が減少しながら、次亜塩素酸水の供給タイミングである1時間を迎え、この1時間のタイミングで混合水の排水判定が実行される。ここまでの加湿浄化運転で、第二制御による水の供給後における第一制御による次亜塩素酸水原液の連続供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達していないと判定される。なお、第二制御を含む水の供給または第三制御を含む排水処理が実行されると、第一制御の連続実行回数はリセットされる。
 そして、判定結果を受けて、混合槽1092に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)から混合槽1092に供給される。これにより、混合槽1092内の水位がわずかに上昇する。そして、第一制御の連続実行回数が1回となる。その後も加湿浄化運転によって混合水の水位が減少していき、運転開始からb1時間のタイミングで再び渇水となり、水供給部1050から混合槽1092が満水になるまで水が供給される。そして、第一制御の連続実行回数は0回にリセットされる。
 その後、運転開始後の稼働時間が2時間となるタイミングで、排水判定がなされる。ここまでの加湿浄化運転で、第二制御による水の供給後における第一制御による次亜塩素酸水原液の連続供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達していないと判定される。
 そして、判定結果を受けて、混合槽1092に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)から混合槽1092に供給される。これにより、混合槽1092内の水位がわずかに上昇する。そして、第一制御の連続実行回数が1回となる。その後も加湿浄化運転によって混合水の水位が減少していき、運転開始からc1時間のタイミングで再び渇水となり、水供給部1050から混合槽1092が満水になるまで水が供給される。そして、第一制御の連続実行回数は0回にリセットされる。
 その後、運転開始後の稼働時間が3時間(d1時間)のタイミングで、排水判定がなされる。ここまでの加湿浄化運転で、第二制御による水の供給後における第一制御による次亜塩素酸水原液の連続供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達していないと判定される。
 そして、このタイミングでは、渇水と次亜塩素酸水原液の供給タイミングが重なっているので、判定結果を受けて、混合槽1092に貯留される混合水の排水を実行することなく第一制御と第二制御とがこの順序で実行される。より詳細には、第一制御として、まず次亜塩素酸水原液が次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)から混合槽1092に供給される。その後、第二制御として、水供給部1050から混合槽1092が満水になるまで水が供給される。これにより、混合槽1092内に次亜塩素酸水原液及び水がそれぞれ供給され、混合槽1092内の水位は運転初期(0時間)に近い状態となる。なお、水の供給がなされているので、第一制御の連続実行回数は0回にリセットされる。
 その後は、運転開始後の稼働時間が3時間までの期間と同じように、渇水となるタイミングにおいて水が供給され、次亜塩素酸水の供給タイミングにおいて次亜塩素酸水原液が供給されることを繰り返す。
 次に、図8の(b)を参照して、混合槽1092内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽1092内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽1092内の次亜塩素酸水(混合水)の濃度は、運転開始からa1時間まで時間の経過とともに減少する。これは、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。なお、次亜塩素酸が気化しなければ、空気浄化部1011によって微細化された水とともに、水に含まれる次亜塩素酸が消費されるだけなので、次亜塩素酸水は、加湿量に応じて一定の速度で減少するものの、混合槽1092内の次亜塩素酸水の濃度としては変化しない。また、水位センサ1090が渇水を検知したタイミングであるa1時間でも次亜塩素酸水の濃度がゼロでないのは、上述した通り、渇水が検知される状態となっても混合槽1092内に次亜塩素酸水(混合水)が残存しているためである。
 そして、運転開始からa1時間(渇水検知)になると、水供給部1050からの水の供給に伴って混合槽1092内の次亜塩素酸水が水で希釈されるため、混合槽1092内の次亜塩素酸水の濃度は減少する。その後、次亜塩素酸水の供給タイミングである1時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素酸水の供給タイミングである1時間を迎えると、次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)からの次亜塩素酸水原液の供給に伴って混合槽1092内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、運転初期(0時間)において供給した水よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始からb1時間(渇水検知)になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少する。なお、次亜塩素酸の減少速度が、運転初期よりも速いのは、混合水に含まれる次亜塩素酸の含有量が多い分、次亜塩素酸の気化量も多くなるためである。
 そして、運転開始からb1時間(渇水検知)になると、水供給部1050からの水の供給に伴って混合槽1092内の次亜塩素酸水が水で希釈されるため、混合槽1092内の次亜塩素酸水の濃度は減少する。その後、次亜塩素酸水の供給タイミングである2時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素酸水の供給タイミングである2時間を迎えると、次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)からの次亜塩素酸水原液の供給に伴って混合槽1092内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。その後、運転開始からc1時間(渇水検知)になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少する。
 そして、運転開始からc1時間(渇水検知)になると、水供給部1050からの水の供給に伴って混合槽1092内の次亜塩素酸水が水で希釈されるため、混合槽1092内の次亜塩素酸水の濃度は減少する。その後、次亜塩素酸水の供給タイミングである3時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から水(及び次亜塩素酸水)の供給タイミングである3時間(d1時間)になると、混合槽1092内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽1092内における次亜塩素酸水の濃度は、運転初期(0時間)と近い状態となる。その後は、これまでと同じように次亜塩素酸水(混合水)の濃度変化を繰り返す。
 次に、図8の(c)を参照して、吹出口1003の空気1009に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。
 吹出口1003から放出される空気1009に含まれる次亜塩素酸の濃度は、空気浄化部1011における加湿量及び混合槽1092内の次亜塩素酸水の濃度によって決定されるが、第一例では、加湿量を一定としているので、混合槽1092内の次亜塩素酸水の濃度が反映される。そのため、図8の(c)に示すように、吹出口1003の空気1009に含まれる次亜塩素酸の濃度は、図8の(b)に示した混合槽1092の次亜塩素酸水の濃度の増減に対応して増減する。
 ここで、従来のように、水位センサ1090が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)からa1時間までの状態を3時間(d1時間)のタイミングまで繰り返すことになる。この場合には、吹出口1003の空気1009に含まれる次亜塩素酸の平均濃度は、例えば、図8の(c)に示す従来平均濃度のようになる。これに対して、第一例では、運転開始(0時間)からa1時間までは従来と同じ状態であるものの、a1時間から3時間までの期間は従来と状態が異なる。より詳細には、a1時間から3時間までの期間では、図8の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間(1時間からb1時間までの期間の一部、2時間からc1時間までの期間)が、初期濃度よりも小さい期間(a1時間から1時間までの期間、b1時間から2時間までの期間、c1時間から3時間までの期間)よりも短くなっている。このため、運転開始(0時間)から3時間までの期間では、吹出口1003の空気1009に含まれる次亜塩素酸の平均濃度は従来平均濃度よりも低い平均濃度となる。
 以上、第一例のように、混合槽1092に次亜塩素酸水及び水を供給して混合水を貯留する際に、次亜塩素酸水の供給サイクル(所定時間ごと)と、水の供給サイクル(渇水検知ごと)とを異ならせることで、従来の方法で次亜塩散水及び水を混合槽1092に供給する場合と比較して、吹出口1003の空気1009、つまり屋内空間1018に吹き出される空気に含まれる次亜塩素酸の濃度を減少させることができる。
 次に、日本の夏場での動作状況について説明する。なお、日本の夏場では、外気が湿潤してジメジメしているため空気浄化部1011に対する加湿要求量が少なく、水の供給は、次亜塩素酸水の供給よりも長い間隔で行われる。つまり、水の供給(第二制御)がなされるまでに、次亜塩素酸水の供給(第一制御)が何回も行われることになる。
 そこで、以下では、第二例として、稼働時間1時間の期間に、次亜塩素酸水原液の供給量に相当する混合水が消費され、その都度、次亜塩素酸水の供給(第一制御)が実行される加湿浄化条件での処理について説明する。つまり、第二例では、次亜塩素酸水の供給(第一制御)が連続して実行され、渇水検知に伴う水の供給(第二制御)は実行されない。
 第二例では、図9の(a)に示すように、混合槽1092への次亜塩素酸水原液の供給(第一制御)は、混合槽1092への次亜塩素酸水原液の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間・・・のタイミングで実行される。一方、混合槽1092への水の供給(第二制御)は、加湿浄化に伴う消費量と第一制御によって供給される次亜塩素酸水量と同等であるため、水位センサ1090による渇水検知がなされず実行されない。なお、運転開始となる0時間の時点では、混合槽1092に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽1092は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。
 そして、混合槽1092に貯留する混合水の排水判定は、1時間、2時間、3時間・・・のタイミングにおいて第一制御の実行の直前に行われる。
 具体的には、運転開始後の稼働時間1時間を迎えるタイミングでは、第一制御による次亜塩素酸水原液の供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達してないと判定される。そして、判定結果を受けて、第一制御が実行され、混合槽1092に次亜塩素酸水原液が供給される。
 次に、運転開始後の稼働時間が2時間を迎えるタイミングで、混合水の排水判定が実行される。ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の供給回数は1回であり、第一制御の実行回数が基準回数(5回)に達していないと判定される。そして、判定結果を受けて、第一制御が実行され、混合槽1092に次亜塩素酸水原液が供給される。
 その後、運転開始後の稼働時間が5時間までのタイミングまで、同様の制御が実行される。
 続いて、運転開始後の稼働時間が6時間を迎えるタイミングで混合水の排水判定が実行される。ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の連続供給回数が5回であり、第一制御の実行回数が基準回数(5回)であると判定される。そして、判定結果を受けて、第三制御が実行され、混合槽1092の混合水がすべて排水される。さらに、第三制御の実行後、混合槽1092に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽1092は、初期状態と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。
 その後は、6時間のタイミングを初期状態(0時間)と見なして、6時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。
 より詳細に説明する。
 まず、図9の(a)を参照して、混合槽1092内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽1092内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転によって一定の速度で混合水の水量が減少し、次亜塩素酸水の供給タイミングである1時間を迎える。そして、この1時間のタイミングで混合水の排水判定が実行される。
 ここまでの加湿浄化運転で、第二制御による水の供給及び第一制御による次亜塩素酸水原液の供給のいずれも実行していないので、第一制御による次亜塩素酸水原液の連続供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達していないと判定される。そして、判定結果を受けて、混合槽1092に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)から混合槽1092に供給される。これにより、混合槽1092内の水位は、満水状態にまで上昇する。その後も加湿浄化運転によって混合水の水位が減少していき、次亜塩素酸水の供給タイミングである2時間を迎える。そして、この2時間のタイミングで混合水の排水判定が実行される。
 ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の連続供給回数が1回であるので、第一制御の実行回数が基準回数(5回)に達してないと判定される。そして、判定結果を受けて、混合槽1092に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)から混合槽1092に供給される。これにより、混合槽1092内の水位は、満水状態にまで上昇する。このように、第二例では、加湿浄化運転によって一定の速度で混合水の水量が減少していくものの、消費した分量の次亜塩素酸水原液が供給されるので、消費量分減少した状態と満水状態との間で混合水の水量が増減するだけである。
 その後、次亜塩素酸水原液の供給タイミングである6時間を迎え、この6時間のタイミングで混合水の排水判定が実行される。
 ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の供給回数が5回であるので、第一制御の実行回数が基準回数(5回)に達していると判定される。そして、判定結果を受けて、第三制御が実行され、混合槽1092の混合水が排水される。さらに、第三制御による混合水の排水の実行後、混合槽1092に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽1092は、初期状態(0時間)と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。ここで、第一制御の連続実行回数はリセットされ、再び第一制御の実行回数の記憶が開始される。
 その後は、6時間のタイミングを初期状態(0時間)と見なして、6時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。より詳細には、これまでと同じように、次亜塩素酸水の供給タイミングにおいて第一制御によって次亜塩素酸水原液が供給されることを繰り返す。そして、第一制御の実行の直前において第三制御による混合水の排水判定を行い、条件を満たす場合に第三制御を実行する。そして、各動作に対応して混合槽1092内の次亜塩素酸水(混合水)の水位が増減する。
 次に、図9の(b)を参照して、混合槽1092内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽1092内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽1092内の次亜塩素酸水(混合水)の濃度は、運転開始から1時間まで時間の経過とともに減少する。これは、上述した通り、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。
 そして、運転開始から次亜塩素酸水の供給タイミングである1時間を迎えると、次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)からの次亜塩素酸水原液の供給に伴って混合槽1092内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、上述した通り、運転初期(0時間)において貯留する混合水の水量よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始から2時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素酸水の供給タイミングである2時間を迎えると、次亜塩素酸水生成部1030(次亜塩素酸水供給部1036)からの次亜塩素酸水原液の供給に伴って混合槽1092内の次亜塩素酸水の濃度が初期濃度以上にまでさらに上昇する。その後、運転開始から3時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少していく。これ以降の5時間のタイミングまで同様に、次亜塩素酸水(混合水)の濃度変化を繰り返し、徐々に次亜塩素酸水(混合水)の濃度が上昇していく。
 そして、運転開始から次亜塩素酸水原液の供給タイミングである6時間を迎えると、排水判定に基づいて排水タイミングとなるので、混合槽1092内の次亜塩素酸水(混合水)がすべて排水された後、混合槽1092内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽1092内における次亜塩素酸水の濃度は、運転初期(0時間)と同様の状態となる。その後は、これまでと同様に次亜塩素酸水(混合水)の濃度変化を繰り返す。
 次に、図9の(c)を参照して、吹出口1003の空気1009に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。
 吹出口1003から放出される空気1009に含まれる次亜塩素酸の濃度は、日本の冬場と同じく、空気浄化部1011における加湿量及び混合槽1092内の次亜塩素酸水の濃度によって決定されるので、図9の(c)に示すように、吹出口1003の空気1009に含まれる次亜塩素酸の濃度は、図9の(b)に示した混合槽1092の次亜塩素酸水の濃度の増減に対応して増減する。
 ここで、従来のように、水位センサ1090が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)から6時間まで次亜塩素酸水の濃度は減少し続けることになる。厳密には、6時間のうち満水状態から渇水を検知するまでの期間において次亜塩素酸水の濃度は減少し続けることになる。この場合には、吹出口1003の空気1009に含まれる次亜塩素酸の平均濃度は、例えば、図9の(c)に示す従来平均濃度のようになる。
 これに対して、第二例では、運転開始(0時間)から1時間までは従来と同じ状態であるものの、1時間から6時間までの期間は従来と状態が異なる。より詳細には、1時間から6時間までの期間では、図9の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間が、初期濃度よりも小さい期間よりもはるかに長くなっている。このため、運転開始(0時間)から6時間までの期間では、吹出口1003の空気1009に含まれる次亜塩素酸の平均濃度は、従来平均濃度よりも高い平均濃度となる。
 そして、6時間以降についても、6時間を1サイクルとして、6時間ごとに混合水の濃度変化を繰り返すことになるので、次亜塩素酸水の濃度が上昇し続けることなく、ある一定濃度以下の範囲で次亜塩素酸水の濃度を調整し続けることが可能である。つまり、加湿浄化運転を続けると混合槽1092内の次亜塩素酸水の濃度が上昇しすぎる可能性があるが、第一制御による次亜塩素酸水原液の連続供給回数に合わせた排水判定の制御を設けることで、一定間隔で混合槽1092内の次亜塩素酸水の濃度、ひいては吹出口1003の空気1009に含まれる次亜塩素酸の付加量をリセットすることができ、屋内空間1018への次亜塩素酸ガスの供給量をコントロールすることができる。
 以上のように、空間浄化システム1100では、第一制御として予め設定した時間(例えば、1時間)ごとに混合槽1092内に次亜塩素酸水を供給し、第二制御として水位センサ1090からの水位情報(渇水信号)に基づいて水を給水する処理を実行するとともに、第三制御として、第一制御の連続実行回数に基づいて、混合槽1092の混合水を排水するようにしている。さらに、空間浄化システム1100の空気浄化制御部1041は、空気浄化部1011に要求される加湿要求量(日本の冬場に相当する加湿要求量または日本の夏場に相当する加湿要求量)に基づいて、所定期間内における第一制御を行う回数と、所定期間内における第二制御を行う回数とを異ならせている。これにより、日本の冬場のように加湿要求量が高い状態では、従来の方法と比べて、次亜塩素酸量の含有量が少ない状態の空気1009を屋内空間1018に放出することができ、日本の夏場のように加湿要求量が低い状態では、従来の方法と比べて、次亜塩素酸量の含有量が多い状態の空気1009で屋内空間1018に放出することができる。さらに、加湿浄化運転を長時間続けた場合に、屋内空間1018に放出する次亜塩素酸濃度の過上昇を抑えることができる。
 つまり、次亜塩素酸水の供給、水の供給、及び混合水の排水をそれぞれ別々のトリガーで作動させることで、簡単な制御(第一制御、第二制御、第三制御)によって混合槽1092内の次亜塩素酸水の濃度(屋内空間1018に吹き出す空気1009に含まれる次亜塩素酸の濃度)を調節することができる。
 以上、本実施の形態2に係る空間浄化システム1100によれば、以下の効果を享受することができる。
 (1)空間浄化システム1100は、次亜塩素酸水を生成する次亜塩素酸水生成部1030と、次亜塩素酸水生成部1030から混合槽1092に次亜塩素酸水を供給する次亜塩素酸水供給部1036と、混合槽1092に水を供給する水供給部1050と、混合槽1092の水位を検知するための水位センサ1090と、混合槽1092に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する空気浄化部1011と、次亜塩素酸水供給部1036及び水供給部1050における供給処理、並びに、混合槽1092に貯留される混合水の排水処理を制御する空気浄化制御部1041とを備える。そして、空気浄化制御部1041は、供給処理として、次亜塩素酸水供給部1036による次亜塩素酸水の供給を所定時間(例えば60分)ごとに行う第一制御と、水位センサ1090からの混合槽1092の水位に関する情報(渇水情報)に基づいて水供給部1050による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、第一制御を連続して所定回数実行した場合に混合槽1092が貯留する混合水を排水する第三制御を実行させるようにした。
 これにより、日本の夏場のように、相対湿度の高い空気が通風される場合においては、混合槽1092に溜められた混合水の消費量が少ないため、混合槽1092への次亜塩素酸水の供給頻度(第一制御を行う回数)が多くなり、混合槽1092内における混合水の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出される。この際、第一制御を連続して所定回数(例えば5回)実行した場合に第三制御を実行し、混合槽1092が貯留する混合水を排出し、混合槽1092内の混合水をリセットすることで、混合槽1092内の次亜塩素酸濃度の上がりすぎを抑制することができる。この結果、微細化された次亜塩素酸水が気化されにくい状況であっても、所定濃度に高めた次亜塩素酸を空気に含ませて屋内空間1018に放出させることができる。
 一方、日本の冬場のように、相対湿度の低い空気が通風される場合においては、混合槽1092に溜められた混合水の消費量が多いため、混合槽1092への水の供給頻度(第二制御を行う回数)が多くなり、混合槽1092内における混合水の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出される。この結果、微細化された次亜塩素酸水が気化されやすい状況であっても、所定濃度に薄まった次亜塩素酸を空気に含ませて屋内空間1018に放出させることができる。
 つまり、空間浄化システム1100では、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 (2)空間浄化システム1100では、空気浄化制御部1041は、第一制御を連続して所定回数実行した後における第一制御を実行する直前に、第三制御を実行させるようにした。これにより、空間浄化システム1100では、第一制御によって混合槽1092に次亜塩素酸が供給された直後に第三制御による排水が行われることがなくなるので、第一制御によって供給された次亜塩素酸水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。
 また、空間浄化システム1100では、長時間運転(例えば24時間)する場合にも、混合槽1092内の次亜塩素酸水濃度が高まりすぎる前に、混合槽1092内の状態を運転初期の状態に戻すことができる。つまり、空間浄化システム1100は、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 (3)空間浄化システム1100では、空気浄化制御部1041は、供給処理において、空気浄化部1011に要求される加湿要求量が第一基準値以上である場合、第一制御を行う回数が第二制御を行う回数よりも少なくなるように制御し、加湿要求量が第一基準値未満である場合、第一制御を行う回数が第二制御を行う回数よりも多くなるようになるように制御するようにした。これにより、空間浄化システム1100では、供給処理において、加湿要求量が第一基準値未満である場合に、混合槽1092内の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出させることができる。一方、加湿要求量が第一基準値以上である場合に、混合槽1092内の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出させることができる。つまり、空間浄化システム1100では、加湿要求量に基づいて、屋内空間1018の環境に好適な条件で、空気浄化部1011から放出される空気1009に次亜塩素酸を付与することができる。
 以上、本開示に関して実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素あるいは各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されているところである。
 本実施の形態2に係る空間浄化システム1100における第一例及び第二例では、空気浄化部1011は、加湿浄化運転時間中、一定の加湿要求量で動作しているとして説明したが、実際には、一定時間ごとに、目標湿度と屋内空間1018の空気の湿度との間の湿度差に基づいて特定される加湿要求量で動作するようにしている。
 また、本実施の形態2に係る空間浄化システム1100では、第三制御における所定回数は、第一制御によって供給される次亜塩素酸水の濃度に基づいて設定されることが好ましい。これにより、例えば、空間浄化システム1100では、第一制御によって供給される次亜塩素酸水の濃度が高い時は、第一制御を連続して所定回数実行した場合に混合槽1092内の次亜塩素酸水の濃度の上昇が早くなるので、所定回数を少なく設定することで混合槽1092内の次亜塩素酸水の濃度が上がりすぎることをより確実に抑制することができる。
 (実施の形態3)
 従来の空間浄化装置として、屋内に供給する空気を浄化成分が含まれた気液接触部材部に接触させて放出することで空間を除菌する空気調和システムが知られている(例えば、特許文献1参照)。
 そして、こうした従来の空間浄化装置では、一般的に、微細化された水の放出に加えて、装置内に貯水された水(浄化成分を含ませた水)は、微細化動作に伴って一部の浄化成分を含ませた水及び浄化成分が気化され、空間に放出される。
 しかしながら、従来の空間浄化装置では、屋内空間に要求される加湿量の少ない状況、例えば日本の夏場(特に梅雨時期)に、空調機等で除湿された相対湿度の高い空気(例えば12℃95%)が通風される場合においては、微細化された浄化成分を含む水(次亜塩素酸水)が気化されにくいために、浄化成分(次亜塩素酸)が気化されず、屋内空間に浄化成分が放出されなくにくくなる。一方、要求される加湿量の多い状況、例えば日本の冬場に、温められた相対湿度の低い空気(例えば20℃30%)が通風される場合においては、微細化された浄化成分を含む水が気化されやすいために、屋内空間に浄化成分が多量に放出されてしまう。つまり、従来の空間浄化装置では、屋内空間(空気中)に放出される浄化成分の量を調節することが容易ではないという課題があった。
 そこで本開示は、上記従来の課題を解決するものであり、空気中に放出される浄化成分の量を調節しやすくできる技術を提供することを目的とする。
 そして、この目的を達成するために、本開示に係る空間浄化システムは、次亜塩素酸水を生成する次亜塩素酸水生成部と、次亜塩素酸水生成部から混合槽に次亜塩素酸水を供給する次亜塩素酸水供給部と、混合槽に水を供給する水供給部と、混合槽の水位を検知するための水位センサと、混合槽に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する加湿浄化部と、次亜塩素酸水供給部及び水供給部における供給処理、並びに、混合槽に貯留される混合水の排水処理を制御する制御部とを備える。制御部は、供給処理として、次亜塩素酸水供給部による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサからの混合槽の水位に関する情報に基づいて水供給部による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、水供給部による水の供給を行ってから第二制御を所定期間実行していない場合に、混合槽が貯留する混合水を排水する第三制御を実行させるものであり、これにより所期の目的を達成するものである。
 本開示に係る空間浄化システムによれば、空気中に放出される浄化成分の量を調節しやすくできる。
 改めて説明すると、本開示に係る空間浄化システムは、次亜塩素酸水を生成する次亜塩素酸水生成部と、次亜塩素酸水生成部から混合槽に次亜塩素酸水を供給する次亜塩素酸水供給部と、混合槽に水を供給する水供給部と、混合槽の水位を検知するための水位センサと、混合槽に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する加湿浄化部と、次亜塩素酸水供給部及び水供給部における供給処理、並びに、混合槽に貯留される混合水の排水処理を制御する制御部とを備える。制御部は、供給処理として、次亜塩素酸水供給部による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサからの混合槽の水位に関する情報に基づいて水供給部による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、水供給部による水の供給を行ってから第二制御を所定期間実行していない場合に、混合槽が貯留する混合水を排水する第三制御を実行させる。
 このようにすることで、日本の夏場のように、相対湿度の高い空気が通風される場合においては、混合槽に溜められた混合水の消費量が少ないため、混合槽への次亜塩素酸水の供給頻度(第一制御を行う回数)が多くなり、混合槽内における混合水の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出される。この際、水供給部による水の供給を行ってから第二制御を所定期間実行していない場合に第三制御を実行し、混合槽が貯留する混合水を排出し、混合槽内の混合水をリセットすることで、混合槽内の次亜塩素酸濃度の上がりすぎを抑制することができる。この結果、微細化された次亜塩素酸水が気化されにくい状況であっても、所定濃度に高めた次亜塩素酸を空気に含ませて屋内空間に放出させることができる。一方、日本の冬場のように、相対湿度の低い空気が通風される場合においては、混合槽に溜められた混合水の消費量が多いため、混合槽への水の供給頻度(第二制御を行う回数)が多くなり、混合槽内における混合水の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出される。この結果、微細化された次亜塩素酸水が気化されやすい状況であっても、所定濃度に薄まった次亜塩素酸を空気に含ませて屋内空間に放出させることができる。つまり、空間浄化システムでは、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 また、本開示に係る空間浄化システムでは、制御部は、第一制御を実行する直前に、第三制御を実行させることが好ましい。これにより、空間浄化システムでは、第一制御によって混合槽に次亜塩素酸が供給された直後に第三制御による排水が行われることがなくなるので、第一制御によって供給された次亜塩素酸水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。
 また、本開示に係る空間浄化システムでは、所定期間は、第一制御によって供給される次亜塩素酸水の濃度に基づいて設定されることが好ましい。例えば、空間浄化システムでは、第一制御によって供給される次亜塩素酸水の濃度が高い場合には、第二制御による水の供給を実行していないと、混合槽内の次亜塩素酸水の濃度の上昇が早くなる。このため、所定期間を短く設定することで、混合槽内の次亜塩素酸水の濃度が上がりすぎることをより確実に抑制することができる。
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、本開示に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。
 図10は、本開示の実施の形態3に係る空間浄化システム2100の構成を示す図である。空間浄化システム2100は、屋内空間2018の空気を循環させる際に、屋内空間2018からの空気2008(RA2)に対して必要に応じて冷却処理(除湿処理)または加熱処理を行うとともに、内部を流通する空気2008に対して微細化された水とともに空気浄化を行う成分(以下、単に「空気浄化成分」という)を含ませる装置である。空間浄化システム2100は、内部を流通した空気2009(SA2)を屋内空間2018に供給することで、屋内空間2018の殺菌と消臭を行う。ここでは、空気浄化成分として次亜塩素酸が用いられ、空気浄化成分を含む水は次亜塩素酸水である。
 空間浄化システム2100は、図10に示すように、主として、空間浄化装置2010、空気調和装置2015、及び次亜塩素酸水生成部2030を有して構成される。
 空間浄化装置2010は、吹出口2003、空気浄化部2011、及び空気浄化制御部2041を含む。空気調和装置2015は、吸込口2002、送風機2013、冷媒コイル2014、及び空気調和制御部2042を含む。空間浄化装置2010と空気調和装置2015のそれぞれは、装置の外枠を構成する筐体を有し、空間浄化装置2010と空気調和装置2015とは、ダクト2024により接続される。また、空気調和装置2015の側面に吸込口2002が形成され、空間浄化装置2010の側面に吹出口2003が形成される。
 吸込口2002は、屋内空間2018からの空気2008を空気調和装置2015に取り入れる取入口である。吸込口2002は、屋内空間2018の天井等に設けられた屋内吸込口2016aとの間でダクト2016を介して連通されている。これにより、吸込口2002は、屋内吸込口2016aから空気調和装置2015内に屋内空間2018の空気を吸い込むことができる。
 吹出口2003は、空間浄化装置2010内を流通した空気2009(SA2)を屋内空間2018に吐き出す吐出口である。吹出口2003は、屋内空間2018の天井等に設けられた屋内吹出口2017aとの間でダクト2017を介して連通されている。これにより、吹出口2003は、屋内吹出口2017aから屋内空間2018に向けて、空間浄化装置2010内を流通した空気2009を吹き出すことができる。
 また、空気調和装置2015及び空間浄化装置2010の内部には、ダクト2024を介して吸込口2002と吹出口2003とを連通する風路(前段風路2004、中段風路2005、後段風路2006)が構成されている。前段風路2004は、吸込口2002に隣接する風路である。前段風路2004には、送風機2013及び冷媒コイル2014が設けられている。
 中段風路2005は、前段風路2004(ダクト2024)に隣接した位置において、前段風路2004を流通した空気2008が流通する風路である。中段風路2005には、その風路内に空気浄化部2011が設けられている。
 後段風路2006は、吹出口2003に隣接する風路であり、後段風路2006では、中段風路2005を流通した空気2008が空気浄化部2011を流通し微細化された水とともに次亜塩素酸を含んだ空気2009となる。
 空気調和装置2015及び空間浄化装置2010では、吸込口2002から吸い込まれた空気2008は、前段風路2004を流通し、中段風路2005及び後段風路2006を流通し、空気2009として吹出口2003から吹き出される。
 空気調和装置2015の送風機2013は、屋内空間2018の空気2008(RA2)を吸込口2002から空気調和装置2015内に搬送するための装置である。送風機2013は、前段風路2004内において、冷媒コイル2014の上流側に設置されている。送風機2013では、空気調和制御部2042からの送風出力情報に応じて運転動作のオン/オフが制御される。送風機2013が運転動作することにより、屋内空間2018の空気2008は、空気調和装置2015に取り込まれて冷媒コイル2014に向かう。
 冷媒コイル2014は、前段風路2004内において、送風機2013の下流側に配置され、導入される空気2008を冷却または加熱するための部材である。冷媒コイル2014は、空気調和制御部2042からの出力信号に応じて出力状態(冷却、加熱またはオフ)を変化させ、導入される空気2008に対する冷却能力(冷却量)または加熱能力(加熱量)を調整する。冷媒コイル2014では、導入される空気2008を冷却すると、導入された空気2008の除湿がなされることになるので、空気2008に対する冷却能力(冷却量)は、空気2008に対する除湿能力(除湿量)ともいえる。
 冷媒コイル2014は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルにおいて、吸熱器または放熱器として機能し、室外機2020から導入される冷媒が内部を流通する際に吸熱(冷却)または放熱(加熱)するように構成されている。より詳細には、冷媒コイル2014は、冷媒が流れる冷媒回路2021を介して室外機2020と接続されている。室外機2020は、屋外空間2019に設置される室外ユニットであり、圧縮機2020aと、膨張器2020bと、屋外熱交換器2020cと、送風ファン2020dと、四方弁2020eとを有する。室外機2020には、一般的な構成のものを用いるので、各機器(圧縮機2020a、膨張器2020b、屋外熱交換器2020c、送風ファン2020d、及び四方弁2020e)の詳細な説明は省略する。
 冷媒コイル2014を含む冷凍サイクルには、四方弁2020eが接続されているので、空気調和装置2015では、四方弁2020eによって第一方向に冷媒が流通して空気(空気2008)を冷却して除湿する冷却モード(除湿モード)の状態と、四方弁2020eによって第二方向に冷媒が流通して空気(空気2008)に対して加熱を行う加熱モードの状態とを切り替え可能である。
 ここで、第一方向は、圧縮機2020aと屋外熱交換器2020cと膨張器2020bと冷媒コイル2014とをこの順序で冷媒が流通する方向である。また、第二方向は、圧縮機2020aと冷媒コイル2014と膨張器2020bと屋外熱交換器2020cとをこの順序で冷媒が流通する方向である。冷媒コイル2014では、導入される空気(空気2008)に対して冷却または加熱することが可能である。
 空間浄化装置2010の空気浄化部2011は、内部に取り入れた空気2008を加湿するためのユニットであり、加湿の際に、空気に対して微細化された水とともに次亜塩素酸を含ませる。より詳細には、空気浄化部2011は、混合槽2092、水位センサ2090、加湿モータ2011a、及び加湿ノズル2011bを有している。空気浄化部2011は、加湿モータ2011aを用いて加湿ノズル2011bを回転させ、空気浄化部2011の混合槽2092に貯留されている次亜塩素酸水を遠心力で吸い上げて周囲(遠心方向)に飛散・衝突・破砕させ、通過する空気に水分を含ませる遠心破砕式の構成をとる。空気浄化部2011は、空気浄化制御部2041からの出力信号に応じて加湿モータ2011aの回転数(以下、回転出力値)を変化させ、加湿能力(加湿量)を調整する。加湿量は、空気に対して次亜塩素酸を付加する付加量ともいえる。なお、空気浄化部2011は、請求項の「加湿浄化部」に相当する。
 水位センサ2090は、混合槽2092に貯留される次亜塩素酸水の水位を計測し、計測値を空気浄化制御部2041に出力する。より詳細には、水位センサ2090は、混合槽2092に貯留される次亜塩素酸水の水位として、混合槽2092が渇水状態となる水位及び混合槽2092が満水状態となる水位をそれぞれ計測し、計測値を水位情報として空気浄化制御部2041に出力する。なお、本実施の形態では、混合槽2092が渇水状態となる水位は、混合槽2092内に次亜塩素酸水が満水状態から約1/3まで次亜塩素酸水量が減少した状態での水位に設定されている。
 混合槽2092は、空気浄化部2011において次亜塩素酸水を貯留する槽であり、貯水部とも言える。混合槽2092では、後述する次亜塩素酸水供給部2036から供給される所定濃度の次亜塩素酸水と、後述する水供給部2050から供給される水とを槽内で混合し、希釈された次亜塩素酸水からなる混合水として貯留する。なお、混合槽2092内に貯留される次亜塩素酸水(混合水)は、空気浄化制御部2041からの出力信号に応じて動作する排水部2060によって、混合槽2092から外部に排出可能になっている。
 次亜塩素酸水生成部2030は、電解槽2031、電極2032、電磁弁2033、塩水タンク2034、塩水搬送ポンプ2035、水位センサ2039、及び次亜塩素酸水供給部2036を含む。
 塩水タンク2034は、塩水を貯めており、空気浄化制御部2041からの出力信号に応じて、塩水搬送ポンプ2035を介して電解槽2031に塩水を供給する。電解槽2031は、塩水タンク2034から供給された電気分解対象である塩水を貯める。電解槽2031には、空気浄化制御部2041からの出力信号に応じて、水道等の給水管から電磁弁2033を介して水道水も供給され、供給された水道水と塩水とが混合され、予め定められた濃度の塩水が貯められる。電極2032は、電解槽2031内に配置され、空気浄化制御部2041からの出力信号に応じて通電により塩水の電気分解を所定時間行い、予め定められた濃度の次亜塩素酸水を生成する。つまり、電解槽2031は、一対の電極間で、電解質として塩化物水溶液(例えば、塩化ナトリウム水溶液)を電気分解することで次亜塩素酸水を生成する。電解槽2031には、一般的な装置が使用されるので、詳細な説明は省略する。ここで、電解質は、次亜塩素酸水を生成可能な電解質であり、少量でも塩化物イオンを含んで入れば特に制限はなく、例えば、溶質として、塩化ナトリウム、塩化カルシウム、又は塩化マグネシウム等を溶解した水溶液が挙げられる。また、塩酸でも問題ない。本実施の形態では、電解質として、水に対して塩化ナトリウムを加えた塩化ナトリウム水溶液(塩水)を使用している。
 水位センサ2039は、電解槽2031内の水位を計測し、計測値を空気浄化制御部2041に出力する。
 次亜塩素酸水供給部2036は、空気浄化制御部2041からの出力信号に応じて、電解槽2031から空気浄化部2011の混合槽2092に次亜塩素酸水を供給する。次亜塩素酸水供給部2036は、次亜塩素酸水搬送ポンプ2037と送水管2038とを有する。次亜塩素酸水搬送ポンプ2037は、空気浄化制御部2041からの出力信号に応じて、電解槽2031の次亜塩素酸水を送水管2038に送り出す。送水管2038は、次亜塩素酸水搬送ポンプ2037と混合槽2092との間に接続され、次亜塩素酸水を混合槽2092に向けて送水する。
 水供給部2050は、空気浄化制御部2041からの出力信号に応じて、混合槽2092に水を供給する。水供給部2050は、電磁弁2051と送水管2052とを有する。電磁弁2051は、空気浄化制御部2041からの出力信号に応じて、空間浄化装置2010の外部の水道管から供給される水を送水管2052に流すか否か制御する。送水管2052は、電磁弁2051と混合槽2092との間に接続され、水を混合槽2092に向けて送水する。
 排水部2060は、混合槽2092の底部に接続され、空気浄化制御部2041からの出力信号に応じて、混合槽2092に貯留される混合水を外部に排出する。排水部2060は、電磁弁2061と送水管2062とを有する。電磁弁2061は、空気浄化制御部2041からの出力信号に応じて、混合槽2092に貯留される混合水を外部の排水管に流すか否か制御する。送水管2062は、混合槽2092と電磁弁2061との間に接続され、混合水を外部の排水管に送水する。
 空気浄化部2011では、次亜塩素酸水供給部2036からの次亜塩素酸水と、水供給部2050からの水とが混合槽2092にそれぞれ供給される。そして、空気浄化部2011の混合槽2092で次亜塩素酸水と水とが混合される。次亜塩素酸水と水との混合水も次亜塩素酸水と呼べる。より詳細には、空気浄化部2011の混合槽2092では、混合槽2092内に残存する次亜塩素酸水に対して、次亜塩素酸水供給部2036からの次亜塩素酸水または水供給部2050からの水がそれぞれ供給されて混合される。空気浄化部2011は、混合槽2092に貯められた次亜塩素酸水と水との混合水を遠心破砕することによって、次亜塩素酸水を屋内空間2018に対して放出する。微細化された次亜塩素酸水は、液体成分が蒸発した状態で屋内空間2018へ放出される。
 屋内空間2018の壁面には、操作装置2043が設置される。操作装置2043は、ユーザが操作可能なユーザインターフェースを備え、ユーザから温度設定値と湿度設定値を受けつける。操作装置2043には、温湿度センサ2044が含まれており、温湿度センサ2044は、屋内空間2018の空気の温度及び湿度を計測する。温湿度センサ2044における温度及び湿度の計測には公知の技術が使用されればよいので、ここでは説明を省略する。
 操作装置2043は、空気浄化制御部2041及び空気調和制御部2042に対して有線あるいは無線で接続されており、温度設定値、湿度設定値、温度計測値、及び湿度計測値を空気浄化制御部2041及び空気調和制御部2042に送信する。これらの情報は、すべてまとめて送信されてもよく、任意の2つ以上をまとめて送信されてもよく、それぞれを送信されてもよい。また、操作装置2043が空気浄化制御部2041に情報を送信し、空気浄化制御部2041が空気調和制御部2042に情報を転送してもよい。
 空気調和装置2015の空気調和制御部2042は、温度設定値と温度計測値とを受けつけ、温度計測値が温度設定値に近づくように、冷媒コイル2014及び室外機2020を制御する。空気調和制御部2042は、加熱モードにおいて、温度計測値が温度設定値よりも低い場合に、温度計測値と温度設定値との差異が大きくなるほど、加熱の程度を増加させる。
 次に、空間浄化装置2010の空気浄化制御部2041について説明する。
 空気浄化制御部2041は、次亜塩素酸水生成部2030及び空間浄化装置2010の処理動作として、電解槽2031における電気分解処理に関する動作、空気浄化部2011への次亜塩素酸水の供給処理に関する動作、空気浄化部2011への水の供給処理に関する動作、空気浄化部2011における加湿浄化処理に関する動作、及び空気浄化部2011における混合水の排水処理に関する動作をそれぞれ制御する。なお、空気浄化制御部2041は、プロセッサ及びメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御部として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。また、空気浄化制御部2041は、請求項の「制御部」に相当する。
 図11は、実施の形態3に係る空間浄化システム2100の空気浄化制御部2041の構成を示すブロック図である。具体的には、空気浄化制御部2041は、図11に示すように、入力部2041a、記憶部2041b、計時部2041c、処理部2041d、及び出力部2041eを備える。
 <電解槽における電気分解処理に関する動作>
 空気浄化制御部2041は、電解槽2031における電気分解処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部2041は、電解槽2031の電気分解処理のトリガーとして、水位センサ2039からの水位情報(渇水信号)及び計時部2041cからの時間に関する情報(時刻情報)を受け付け、処理部2041dへ出力する。
 処理部2041dは、水位センサ2039からの水位情報と、計時部2041cからの時刻情報と、記憶部2041bからの設定情報とに基づいて制御情報を特定し、出力部2041eに出力する。ここで、設定情報には、次亜塩素酸水生成の開始時刻または終了時刻に関する情報、電解槽2031に導入する水道水の供給量に関する情報、塩水搬送ポンプ2035における塩化物イオンを含む液体の投入量に関する情報、電極2032における電気分解条件(時間、電流値、電圧など)に関する情報、電磁弁2033の開閉タイミングに関する情報、及び次亜塩素酸水搬送ポンプ2037のオン/オフ動作に関する情報が含まれる。
 ここで、電極2032における電気分解条件は、電解槽2031内の水道水の水量、塩化物イオン濃度、電気分解時間、及び電極2032の劣化度合いから決定でき、アルゴリズムを作成して設定され、記憶部2041bに記憶される。
 そして、出力部2041eは、受け付けた制御情報に基づいて、各機器(塩水搬送ポンプ2035、電磁弁2033、及び次亜塩素酸水搬送ポンプ2037)に信号(制御信号)を出力する。
 より詳細には、まず、塩水搬送ポンプ2035は、出力部2041eからの信号に基づいて停止した状態を維持し、次亜塩素酸水搬送ポンプ2037は、出力部2041eからの信号に基づいて停止した状態を維持する。
 そして、電磁弁2033は、出力部2041eからの信号に基づいて開放される。これにより、電解槽2031には、水道管からの水道水の供給が開始される。その後、電磁弁2033は、水位センサ2039からの水位情報(満水)を受けた出力部2041eからの信号に基づいて閉止される。これにより、電解槽2031は、水道水が設定された供給量にて給水された状態となる。
 次に、塩水搬送ポンプ2035は、出力部2041eからの信号に基づいて動作を開始し、所定量の塩化物イオンを含む液体を電解槽2031へ搬送して停止する。これにより、水道水に塩化物イオンが溶解し、電解槽2031は、所定量の塩化物イオンを含む水溶液(塩化物水溶液)が生成された状態となる。
 そして、電極2032は、出力部2041eからの信号に基づいて、塩化物水溶液の電解を開始し、設定された条件の次亜塩素酸水を生成して停止する。電極2032により生成される次亜塩素酸水は、例えば、次亜塩素酸濃度が100ppm~150ppm(例えば、120ppm)であり、pHが7.0~8.5(例えば、8.0)の状態となる。
 以上のようにして、空気浄化制御部2041は、電解槽2031において電気分解処理を実行し、予め定められた濃度と量の次亜塩素酸水が生成される。
 <空気浄化部への次亜塩素酸水の供給処理に関する動作>
 空気浄化制御部2041は、空気浄化部2011への次亜塩素酸水の供給処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部2041は、空気浄化部2011への次亜塩素酸水の供給処理のトリガーとして、加湿モータ2011aの稼働時間を計時部2041cが測定し、稼働時間が所定時間経過(例えば60分)するごとに次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)に次亜塩素酸水供給要求を出力する。ここで、所定時間は、次亜塩素酸水中の次亜塩素酸が気化して経時的に減少することを踏まえ、予め実験評価によって見積られた時間である。
 具体的には、処理部2041dは、計時部2041cから時間に関する情報(時刻情報)と、記憶部2041bから設定情報とに基づいて制御情報を特定し、出力部2041eに出力する。ここで、設定情報には、次亜塩素酸水の供給間隔(例えば60分)に関する情報及び次亜塩素酸水搬送ポンプ2037のオン/オフ動作に関する情報が含まれる。
 そして、出力部2041eは、受け付けた制御情報に基づいて、次亜塩素酸水供給部2036の次亜塩素酸水搬送ポンプ2037に信号(制御信号)を出力する。
 次亜塩素酸水搬送ポンプ2037は、出力部2041eからの信号に基づいて作動する。これにより、次亜塩素酸水生成部2030では、電解槽2031から空気浄化部2011(混合槽2092)への次亜塩素酸水の供給が開始される。なお、電解槽2031に貯留される次亜塩素酸水の濃度を担保するため、次亜塩素酸水生成部2030から混合槽2092に次亜塩素酸水が供給される際、電解槽2031で生成された次亜塩素酸水は全量供給される。そのため、次亜塩素酸水を供給した後は、電解槽2031は空の状態であり、次亜塩素酸水が電解槽2031内に残留した状態から次亜塩素酸水を作成し始めることはない。水位センサ2039は、電解槽2031内の次亜塩素酸水が全量供給された状態になると、水位情報として渇水信号を出力する。
 その後、次亜塩素酸水搬送ポンプ2037は、計時部2041cからの時間に関する情報(規定量を供給するための所要時間)を受けた出力部2041eからの信号に基づいて停止する。これにより、次亜塩素酸水生成部2030は、電解槽2031から空気浄化部2011(混合槽2092)に対して次亜塩素酸水が設定された供給量にて供給する。
 以上のようにして、空気浄化制御部2041は、次亜塩素酸水生成部2030(電解槽2031)から空気浄化部2011への次亜塩素酸水の供給処理を実行させる。なお、空気浄化制御部2041が次亜塩素酸水供給部2036による次亜塩素酸水の供給を所定時間ごとに行う制御を「第一制御」とする。
 <空気浄化部への水の供給処理に関する動作>
 空気浄化制御部2041は、空気浄化部2011への水の供給処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部2041は、空気浄化部2011への水の供給処理のトリガーとして、空間浄化装置2010の水位センサ2090からの水位情報(渇水信号)を受け付け、水供給部2050に水供給要求を出力する。
 具体的には、入力部2041aは、空間浄化装置2010の水位センサ2090からの水位情報(渇水信号)を受け付け、処理部2041dに出力する。
 処理部2041dは、入力部2041aからの水位情報(渇水信号)と、計時部2041cから時間に関する情報(時刻情報)と、記憶部2041bから設定情報とに基づいて制御情報を特定し、出力部2041eに出力する。ここで、設定情報には、水供給部2050の電磁弁2051のオン/オフ動作に関する情報が含まれる。
 そして、出力部2041eは、受け付けた制御情報に基づいて、電磁弁2051に信号(制御信号)を出力する。
 電磁弁2051は、出力部2041eからの信号に基づいて作動する。これにより、水供給部2050では、送水管2052を介して、外部の給水管から空気浄化部2011(混合槽2092)への水の供給が開始される。
 その後、電磁弁2051は、空間浄化装置2010の水位センサ2090からの水位情報(満水信号)を受け付けた出力部2041eからの信号に基づいて停止する。これにより、水供給部2050は、外部の給水管から空気浄化部2011(混合槽2092)に対して水が設定された量になるまで供給する。
 以上のようにして、空気浄化制御部2041は、水供給部2050から空気浄化部2011への水の供給処理を実行させる。なお、空気浄化制御部2041が水位センサ2090からの混合槽2092の水位に関する情報(渇水情報)に基づいて水供給部2050による水の供給を行う制御を「第二制御」とする。
 <空気浄化部における加湿浄化処理に関する動作>
 次に、空気浄化制御部2041の空気浄化部2011における加湿浄化処理に関する動作について説明する。
 入力部2041aは、操作装置2043からのユーザ入力情報と、温湿度センサ2044からの屋内空間2018の空気の温湿度情報と、水位センサ2090からの混合槽2092内の次亜塩素酸水(混合水)の水位情報とを受け付ける。入力部2041aは、受け付けた各情報を処理部2041dに出力する。
 ここで、操作装置2043は、空間浄化装置2010に関するユーザ入力情報(例えば、風量、目標温度、目標湿度、次亜塩素酸の添加の有無、次亜塩素酸の目標供給量レベル、等)を入力する端末であり、無線または有線により空気浄化制御部2041と通信可能に接続されている。
 また、温湿度センサ2044は、屋内空間2018内に設けられ、屋内空間2018の空気の温湿度を感知するセンサである。
 記憶部2041bは、入力部2041aが受け付けたユーザ入力情報と、装置内を流通する空気に対する次亜塩素酸の供給動作における供給設定情報とを記憶する。記憶部2041bは、記憶した供給設定情報を処理部2041dに出力する。なお、次亜塩素酸の供給動作における供給設定情報は、空気浄化部2011の加湿浄化動作における加湿設定情報とも言える。
 計時部2041cは、現在時刻に関する時刻情報を処理部2041dに出力する。
 処理部2041dは、入力部2041aからの各種情報(ユーザ入力情報、温湿度情報、水位情報)と、計時部2041cからの時刻情報と、記憶部2041bからの供給設定情報とを受け付ける。処理部2041dは、受け付けたユーザ入力情報、時刻情報、及び供給設定情報を用いて、加湿浄化運転動作に関する制御情報を特定する。
 具体的には、処理部2041dは、計時部2041cからの時刻情報によって一定時間ごとに、記憶部2041bに記憶された目標湿度と、温湿度センサ2044からの屋内空間2018の空気の温湿度情報の間の湿度差に基づいて、屋内空間2018に必要とされる加湿要求量を特定する。そして、処理部2041dは、特定した加湿要求量と、記憶部2041bに記憶された供給設定情報とに基づいて加湿浄化運転動作に関する制御情報を特定する。そして、処理部2041dは、特定した制御情報を出力部2041eに出力する。
 また、処理部2041dは、水位センサ2090からの水位情報に、混合槽2092内の次亜塩素酸水(混合水)の渇水を示す水位に関する情報(渇水信号)が含まれる場合には、出力部2041eは、水供給部2050に対する水供給要求の信号を出力部2041eに出力する。さらに、処理部2041dは、計時部2041cからの時刻情報に基づいて、空気浄化部2011(加湿モータ2011a)の稼働時間が所定時間(例えば60分)となった場合には、出力部2041eは、次亜塩素酸水生成部2030に対する次亜塩素酸水供給要求の信号を出力部2041eに出力する。なお、本実施の形態では、混合槽2092内の次亜塩素酸水(混合水)が渇水を示す水位は、混合槽2092内に次亜塩素酸水(混合水)が満水の状態から約1/3まで次亜塩素酸水量が減少した状態での水位に設定されている。
 そして、出力部2041eは、受け付けた各信号を空気浄化部2011、次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)、及び水供給部2050にそれぞれ出力する。
 そして、空気浄化部2011は、出力部2041eからの信号を受け付け、受け付けた信号に基づいて運転動作の制御を実行する。この際、次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)は、出力部2041eからの信号(次亜塩素酸水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部2011への次亜塩素酸水の供給処理に関する動作(第一制御)を実行する。また、水供給部2050は、出力部2041eからの信号(水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部2011への水の供給処理に関する動作(第二制御)を実行する。
 以上のようにして、空気浄化制御部2041は、供給処理として、次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサ2090からの混合槽2092の水位に関する情報(渇水情報)に基づいて水供給部2050による水の供給を行う第二制御とをそれぞれ実行させ、混合槽2092に混合水を貯留する。そして、空気浄化制御部2041は、混合槽2092に次亜塩素酸水と水とを供給して混合水を貯留する際に、次亜塩素酸水の供給サイクル(所定時間ごと)と、水の供給サイクル(渇水検知ごと)とを異ならせ、空間浄化装置2010(空気浄化部2011)を流通する空気への加湿浄化処理を実行させる。
 <空気浄化部の混合水の排水処理に関する動作>
 空気浄化制御部2041は、空気浄化部2011の混合槽2092に貯留される混合水の排水処理に関する動作として、以下の処理を実行させる。
 空気浄化制御部2041は、混合槽2092に貯留される混合水の排水処理のトリガーとして、水供給部2050における第二制御の実行時刻に関する情報(実行時刻情報)に基づいて排水処理の実施の有無を判定する。
 具体的には、記憶部2041bは、第二制御の実行時刻情報を記憶する。ここで、実行時刻は、混合槽2092の初期状態(例えば、排水処理後に実行される水の供給及び次亜塩素酸水の供給によって混合槽2092が満水となった状態)を起点として、加湿浄化処理動作の開始後(以下、「運転開始後」ともいう)に実行された第二制御の実行時刻である。第二制御の実行時刻は、第二制御が実行されるごとに記憶部2041bに記憶される。なお、記憶部2041bは、加湿浄化処理動作を開始した時刻も第二制御の実行時刻情報に含めて記憶している。
 処理部2041dは、記憶部2041bからの第二制御の実行時刻情報及び計時部2041cからの時間に関する情報(時刻情報)に基づいて、第二制御を実行していない期間(第二制御の非実行期間)を特定する。そして、処理部2041dは、特定した第二制御の非実行期間が基準時間以上であるか否かの判定を行う。
 ここで、基準時間は、第一制御による連続した次亜塩素酸水の供給のみによって、混合槽2092内の次亜塩素酸水濃度が基準濃度を超えないように、次亜塩素酸水供給部2036から供給される次亜塩素酸水の次亜塩素酸濃度に基づいて「6時間」に設定している。基準濃度は、屋内空間2018に吹き出される空気2009(次亜塩素酸を含む空気2009)の臭いなどによって、屋内空間2018内のユーザが不快とならない程度の次亜塩素酸濃度に設定されている。なお、基準時間は、請求項の「所定期間」に相当する。
 判定の結果、処理部2041dは、第二制御の非実行期間が基準時間以上である場合には、計時部2041cからの時刻情報と、記憶部2041bからの設定情報とに基づいて制御情報を特定し、出力部2041eに出力する。ここで、設定情報には、排水部2060の電磁弁2061のオン/オフ動作に関する情報が含まれる。
 そして、出力部2041eは、受け付けた制御情報に基づいて、電磁弁2061に信号(制御信号)を出力する。
 電磁弁2061は、出力部2041eからの信号に基づいて作動する。これにより、排水部2060では、送水管2062を介して、混合槽2092から外部の排水管への混合水の排出が開始される。
 その後、電磁弁2061は、計時部2041cからの時刻情報を受け付けた出力部2041eからの信号に基づいて所定時間(例えば、1分)の経過後に停止する。これにより、混合槽2092は、貯留していた混合水のすべてが排出されて空の状態となる。
 以上のようにして、空気浄化制御部2041は、混合槽2092から外部への混合水の排水処理を実行させる。なお、空気浄化制御部2041が水供給部2050における第二制御の実行時刻に関する情報(第二制御の非実行期間)に基づいて排水部2060による混合水の排水を行う制御を「第三制御」とする。
 次に、図12~図14を参照して、空間浄化システム2100において、空間浄化装置2010(空気浄化部2011)の混合槽2092内における混合水(第一制御または第二制御がなされて混合される混合水)について説明する。図12は、空間浄化システム2100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(冬場:第一例)を示す概略図である。より詳細には、図12の(a)は、混合槽2092内の次亜塩素酸水(混合水)の水量の経時変化を示す。図12の(b)は、混合槽2092内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図12の(c)は、吹出口2003の空気に含まれる次亜塩素酸の濃度の経時変化を示す。また、図13は、空間浄化システム2100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第二例)を示す概略図である。より詳細には、図13の(a)は、混合槽2092内の次亜塩素酸水(混合水)の水量の経時変化を示す。図13の(b)は、混合槽2092内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図13の(c)は、吹出口2003の空気に含まれる次亜塩素酸の濃度の経時変化を示す。また、図14は、空間浄化システム2100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第三例)を示す概略図である。より詳細には、図14の(a)は、混合槽2092内の次亜塩素酸水(混合水)の水量の経時変化を示す。図14の(b)は、混合槽2092内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図14の(c)は、吹出口2003の空気に含まれる次亜塩素酸の濃度の経時変化を示す。
 ここで、混合槽2092への次亜塩素酸水の供給は、所定時間(1時間)ごとに実行され、混合槽2092への水の供給は、水位センサ2090によって混合槽2092が渇水となる水位を検知するごとに実行される。
 なお、上述した通り、混合槽2092の次亜塩素酸水(混合水)が渇水となる水位となっても、混合槽2092内には、次亜塩素酸水(混合水)が満水時に対して約1/3残存している。また、説明を簡略化するために、空気浄化部2011は、加湿浄化運転時間中、一定の加湿要求量で動作しているとする。また、以下では、混合槽2092へ供給する所定量の次亜塩素酸水のことを「次亜塩素酸水原液」ともいう。
 まず、日本の冬場での動作状況について説明する。なお、日本の冬場では、外気が乾燥しているため空気浄化部2011に対する加湿要求量が多く、水の供給は、次亜塩素酸水の供給よりも短い間隔で行われる。つまり、次亜塩素酸水の供給タイミングよりも先に混合槽2092内の水位が渇水となる。
 そこで、以下では、第一例として、空気浄化部2011の運転開始後の稼働時間が3時間までの期間に、水の供給(第二制御)が4回実行され、次亜塩素酸水の供給(第一制御)が3回実行される加湿浄化条件での処理について説明する。
 なお、上記した加湿浄化条件は、空気浄化部2011に対する加湿要求量が第一基準値以上である場合に、第一制御を行う回数が第二制御を行う回数よりも少なくなるように空気浄化部2011を制御することに基づいて設定される条件である。ここで、第一基準値は、日本の冬場において空気の湿度が低く乾燥している状況と、日本の夏場において空気の湿度が高く湿っている状況とを区分するために設定される値である。
 第一例では、図12の(a)に示すように、混合槽2092への次亜塩素酸水の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間・・・のタイミングで実行される。一方、混合槽2092への水の供給(第二制御)は、a2時間、b2時間、c2時間、d2時間・・・のタイミングで実行される。なお、運転開始となる0時間の時点では、混合槽2092に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽2092は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。
 また、3時間目のタイミングでは、次亜塩素酸水の供給(第一制御)と水の供給(第二制御)とが重なるため、第一例は、3時間サイクルによる次亜塩素酸水の供給(第一制御)と水の供給(第二制御)と見なすことができる。但し、このタイミングでの水の供給(第二制御)では、混合槽2092内に混合水が満水時に対して約1/3残存していることに加え、次亜塩素酸水の供給量の分量だけ水の供給量が少なくなっているため、混合槽2092内の次亜塩素酸水濃度は、0時間の時点での初期状態よりも若干高くなる。
 第一例では、空気浄化部2011の運転開始後の稼働時間が3時間までの期間(稼働時間が0時間超から3時間以下までの期間)において、水の供給が4回に対して次亜塩素酸水の供給が3回となる。その後は、稼働時間が3時間目を初期状態(0時間)と見なして、稼働時間が3時間ごとに同じ供給動作が繰り返されることになる。
 つまり、第一例は、空気浄化部2011に対する加湿要求量が第一基準値以上である場合において、第一制御を行う回数が第二制御を行う回数よりも少なくなるように制御していると言える。
 なお、日本の冬場においては、空気浄化部2011に対する加湿要求量が多く、水の供給(第二制御)が基準時間(6時間)よりも短い間隔で実行される。このため、第二制御を頻繁に実行するため、第三制御による混合水の排水は実行されない。
 より詳細に説明する。
 図12の(a)を参照して、混合槽2092内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽2092内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転によって一定の速度で混合水の水量が減少し、運転開始からa2時間になったタイミングで渇水を検知し、水供給部2050から混合槽2092が満水になるまで水が供給される。その後、加湿浄化運転により一定の速度で混合水の水位が減少しながら、次亜塩素酸水の供給タイミングである1時間を迎え、第一制御が実行される。つまり、次亜塩素酸水原液が次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)から混合槽2092に供給される。これにより、混合槽2092内の水位がわずかに上昇する。その後も加湿浄化運転によって混合水の水位が減少していき、運転開始からb2時間のタイミングで再び渇水となり、水供給部2050から混合槽2092が満水になるまで水が供給される。
 その後、運転開始後の稼働時間が2時間となるタイミングで第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)から混合槽2092に供給される。これにより、混合槽2092内の水位がわずかに上昇する。その後も加湿浄化運転によって混合水の水位が減少していき、運転開始からc2時間のタイミングで再び渇水となり、水供給部2050から混合槽2092が満水になるまで水が供給される。
 その後、運転開始後の稼働時間が3時間(d2時間)のタイミングを迎える。このタイミングでは、渇水検知と次亜塩素酸水原液の供給タイミングが重なっているので、第一制御と第二制御とがこの順序で実行される。より詳細には、第一制御として、まず次亜塩素酸水原液が次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)から混合槽2092に供給される。その後、第二制御として、水供給部2050から混合槽2092が満水になるまで水が供給される。これにより、混合槽2092内に次亜塩素酸水原液及び水がそれぞれ供給され、混合槽2092内の水位は運転初期(0時間)と同じ状態となる。
 その後は、運転開始後の稼働時間が3時間までの期間と同じように、渇水となるタイミングにおいて水が供給され、次亜塩素酸水の供給タイミングにおいて次亜塩素酸水原液が供給されることを繰り返す。
 次に、図12の(b)を参照して、混合槽2092内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽2092内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽2092内の次亜塩素酸水(混合水)の濃度は、運転開始からa2時間まで時間の経過とともに減少する。これは、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。なお、次亜塩素酸が気化しなければ、空気浄化部2011によって微細化された水とともに、水に含まれる次亜塩素酸が消費されるだけなので、次亜塩素酸水は、加湿量に応じて一定の速度で減少するものの、混合槽2092内の次亜塩素酸水の濃度としては変化しない。また、水位センサ2090が渇水を検知したタイミングであるa2時間でも次亜塩素酸水の濃度がゼロでないのは、上述した通り、渇水が検知される状態となっても混合槽2092内に次亜塩素酸水(混合水)が残存しているためである。
 そして、運転開始からa2時間(渇水検知)になると、水供給部2050からの水の供給に伴って混合槽2092内の次亜塩素酸水が水で希釈されるため、混合槽2092内の次亜塩素酸水の濃度は減少する。その後、次亜塩素酸水の供給タイミングである1時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素酸水の供給タイミングである1時間を迎えると、次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)からの次亜塩素酸水原液の供給に伴って混合槽2092内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、運転初期(0時間)において供給した水よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始からb2時間(渇水検知)になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少する。なお、次亜塩素酸の減少速度が、運転初期よりも速いのは、混合水に含まれる次亜塩素酸の含有量が多い分、次亜塩素酸の気化量も多くなるためである。
 そして、運転開始からb2時間(渇水検知)になると、水供給部2050からの水の供給に伴って混合槽2092内の次亜塩素酸水が水で希釈されるため、混合槽2092内の次亜塩素酸水の濃度は減少する。その後、次亜塩素酸水の供給タイミングである2時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素酸水の供給タイミングである2時間を迎えると、次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)からの次亜塩素酸水原液の供給に伴って混合槽2092内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。その後、運転開始からc2時間(渇水検知)になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少する。
 そして、運転開始からc2時間(渇水検知)になると、水供給部2050からの水の供給に伴って混合槽2092内の次亜塩素酸水が水で希釈されるため、混合槽2092内の次亜塩素酸水の濃度は減少する。その後、次亜塩素酸水の供給タイミングである3時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から水(及び次亜塩素酸水)の供給タイミングである3時間(d2時間)になると、混合槽2092内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽2092内における次亜塩素酸水の濃度は、運転初期(0時間)と近い状態となる。その後は、これまでと同じように次亜塩素酸水(混合水)の濃度変化を繰り返す。
 次に、図12の(c)を参照して、吹出口2003の空気2009に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。
 吹出口2003から放出される空気2009に含まれる次亜塩素酸の濃度は、空気浄化部2011における加湿量及び混合槽2092内の次亜塩素酸水の濃度によって決定されるが、第一例では、加湿量を一定としているので、混合槽2092内の次亜塩素酸水の濃度が反映される。そのため、図12の(c)に示すように、吹出口2003の空気2009に含まれる次亜塩素酸の濃度は、図12の(b)に示した混合槽2092の次亜塩素酸水の濃度の増減に対応して増減する。
 ここで、従来のように、水位センサ2090が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)からa2時間までの状態を3時間(d2時間)のタイミングまで繰り返すことになる。この場合には、吹出口2003の空気2009に含まれる次亜塩素酸の平均濃度は、例えば、図12の(c)に示す従来平均濃度のようになる。これに対して、第一例では、運転開始(0時間)からa2時間までは従来と同じ状態であるものの、a2時間から3時間までの期間は従来と状態が異なる。より詳細には、a2時間から3時間までの期間では、図12の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間(1時間からb2時間までの期間の一部、2時間からc2時間までの期間)が、初期濃度よりも小さい期間(a2時間から1時間までの期間、b2時間から2時間までの期間、c2時間から3時間までの期間)よりも短くなっている。このため、運転開始(0時間)から3時間までの期間では、吹出口2003の空気2009に含まれる次亜塩素酸の平均濃度は従来平均濃度よりも低い平均濃度となる。
 以上、第一例のように、混合槽2092に次亜塩素酸水及び水を供給して混合水を貯留する際に、次亜塩素酸水の供給サイクル(所定時間ごと)と、水の供給サイクル(渇水検知ごと)とを異ならせることで、従来の方法で次亜塩散水及び水を混合槽2092に供給する場合と比較して、吹出口2003の空気2009、つまり屋内空間2018に吹き出される空気に含まれる次亜塩素酸の濃度を減少させることができる。
 次に、日本の夏場での動作状況について説明する。なお、日本の夏場では、外気が湿潤してジメジメしているため空気浄化部2011に対する加湿要求量が少なく、水の供給は、次亜塩素酸水の供給よりも長い間隔で行われる。つまり、水の供給(第二制御)がなされるまでに、次亜塩素酸水の供給(第一制御)が何回も行われることになる。
 そこで、以下では、第二例として、空気浄化部2011の運転開始後の稼働時間が5時間までの期間に、水の供給(第二制御)が1回実行され、次亜塩素酸水の供給(第一制御)が5回実行される加湿浄化条件での処理について説明する。
 第二例では、図13の(a)に示すように、混合槽2092への次亜塩素酸水原液の供給(第一制御)は、混合槽2092への次亜塩素酸水原液の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間、4時間、5時間のタイミングで実行される。一方、混合槽2092への水の供給(第二制御)は、水位センサ2090による渇水検知が5時間のタイミングでなされ実行される。なお、運転開始となる0時間の時点では、混合槽2092に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽2092は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。
 具体的には、運転開始後の稼働時間が1時間を迎えるタイミングでは、第一制御が実行され、混合槽2092に次亜塩素酸水原液が供給される。その後、運転開始後の稼働時間が4時間までのタイミングまで、同様の制御が実行される。
 続いて、運転開始後の稼働時間が5時間のタイミングを迎える。このタイミングでは、渇水検知と次亜塩素酸水原液の供給タイミングが重なっているので、第一制御と第二制御とがこの順序で実行される。より詳細には、第一制御として、次亜塩素酸水原液が次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)から混合槽2092に供給される。それに続いて、第二制御として、水供給部2050から混合槽2092が満水になるまで水が供給される。これにより、混合槽2092内に次亜塩素酸水原液及び水がそれぞれ供給され、混合槽2092内の水位は運転初期(0時間)に近い状態となる。
 その後は、稼働時間が5時間のタイミングを初期状態(0時間)と見なして、5時間の期間ごとに同じ供給動作及びが繰り返されることになる。
 より詳細に説明する。
 まず、図13の(a)を参照して、混合槽2092内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽2092内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転を開始すると、加湿浄化運転によって一定の速度で混合水の水量が減少し、次亜塩素酸水の供給タイミングである1時間を迎える。
 そして、運転開始から稼働時間が1時間までの期間の加湿浄化運転では、第二制御による水の供給が実行されていないので、第二制御の非実行期間(約1時間)が基準時間(6時間)に達していない。このため、混合槽2092に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)から混合槽2092に供給される。これにより、混合槽2092内の水位は、わずかに上昇する。その後も加湿浄化運転によって混合水の水位が減少していき、次亜塩素酸水の供給タイミングである2時間を迎える。
 運転開始から稼働時間が2時間までの期間の加湿浄化運転では、第二制御の非実行期間(約2時間)が基準時間(6時間)に達してない。このため、混合槽2092に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)から混合槽2092に供給される。これにより、混合槽2092内の水位は、わずかに上昇する。その後、運転開始後の稼働時間が4時間までのタイミングまで、同様の制御が実行される。このように、第二例では、加湿浄化運転によって一定の速度で混合水の水量が減少しながらも、次亜塩素酸水原液が供給されるので、混合水の水量が増加をしながらも加湿量と供給量との間の差に応じて減少していく。
 続いて、運転開始後の稼働時間が5時間のタイミングを迎える。運転開始から稼働時間が5時間までの期間の加湿浄化運転では、第二制御の非実行期間(約5時間)が基準時間(6時間)に達してない。このタイミングでは、渇水検知と次亜塩素酸水原液の供給タイミングが重なっているので、混合槽2092に貯留される混合水の排水を実行することなく第一制御と第二制御とがこの順序で実行される。上述した通り、第一制御として、まず次亜塩素酸水原液が次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)から混合槽2092に供給される。その後、第二制御として、水供給部2050から混合槽2092が満水になるまで水が供給される。これにより、混合槽2092内に次亜塩素酸水原液及び水がそれぞれ供給され、混合槽2092内の水位は運転初期(0時間)に近い状態となる。なお、水供給部2050による水の供給がなされたので、第二制御の非実行期間は、このタイミングを起点にして改めて特定される。
 その後は、稼働時間が5時間のタイミングを初期状態(0時間)と見なして、5時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。より詳細には、これまでと同じように、次亜塩素酸水の供給タイミングにおいて第一制御によって次亜塩素酸水原液が供給され、水の供給タイミングにおいて第二制御によって水が供給されることを繰り返す。そして、各動作に対応して混合槽2092内の次亜塩素酸水(混合水)の水位が増減する。
 次に、図13の(b)を参照して、混合槽2092内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽2092内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽2092内の次亜塩素酸水(混合水)の濃度は、運転開始から1時間まで時間の経過とともに減少する。これは、上述した通り、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。
 そして、運転開始から次亜塩素酸水の供給タイミングである1時間を迎えると、次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)からの次亜塩素酸水原液の供給に伴って混合槽2092内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、上述した通り、運転初期(0時間)において貯留する混合水の水量よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始から2時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素酸水の供給タイミングである2時間を迎えると、次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)からの次亜塩素酸水原液の供給に伴って混合槽2092内の次亜塩素酸水の濃度がさらに上昇する。これ以降の4時間のタイミングまで同様に、次亜塩素酸水(混合水)の濃度変化を繰り返し、徐々に次亜塩素酸水(混合水)の濃度が上昇していく。
 そして、運転開始から水及び次亜塩素酸水原液の供給タイミングである5時間を迎えると、混合槽2092内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽2092内における次亜塩素酸水の濃度は、水供給部2050からの水の供給に伴って混合槽2092内の次亜塩素酸水が水で希釈されるため、混合槽2092内の次亜塩素酸水の濃度は減少する。但し、約1/3の次亜塩素酸水が残留する状態で、次亜塩素酸水及び水を供給するので、混合槽2092内の次亜塩素酸水の濃度は、初期状態における初期濃度にまで希釈されない。その後は、次亜塩素酸水の濃度は時間経過に伴い全体的に上昇傾向となるが、基本的にはこれまでと同じように次亜塩素酸水(混合水)の濃度変化を繰り返す。
 次に、図13の(c)を参照して、吹出口2003の空気2009に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。
 吹出口2003から放出される空気2009に含まれる次亜塩素酸の濃度は、日本の冬場と同じく、空気浄化部2011における加湿量及び混合槽2092内の次亜塩素酸水の濃度によって決定されるので、図13の(c)に示すように、吹出口2003の空気2009に含まれる次亜塩素酸の濃度は、図13の(b)に示した混合槽2092の次亜塩素酸水の濃度の増減に対応して増減する。
 ここで、従来のように、水位センサ2090が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)から5時間まで次亜塩素酸水の濃度は減少し続けることになる。厳密には、5時間のうち満水状態から渇水を検知するまでの期間において次亜塩素酸水の濃度は減少し続けることになる。この場合には、吹出口2003の空気2009に含まれる次亜塩素酸の平均濃度は、例えば、図13の(c)に示す従来平均濃度のようになる。
 これに対して、第二例では、運転開始(0時間)から1時間までは従来と同じ状態であるものの、稼働時間が1時間から5時間までの期間は従来と状態が異なる。より詳細には、稼働時間が1時間から5時間までの期間では、図13の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間が、初期濃度よりも小さい期間よりもはるかに長くなっている。このため、運転開始(0時間)から5時間までの期間では、吹出口2003の空気2009に含まれる次亜塩素酸の平均濃度は、従来平均濃度よりも高い平均濃度となる。
 そして、稼働時間が5時間以降についても、5時間を1サイクルとして、5時間ごとに混合水の濃度変化を繰り返すことになるので、次亜塩素酸水の濃度が上昇し続けることなく、ある一定濃度以下の範囲で次亜塩素酸水の濃度を調整し続けることが可能である。
 次に、第三例として、空気浄化部2011の運転開始後の稼働時間が6時間までの期間に、水の供給(第二制御)が実行されない加湿浄化条件での処理について説明する。つまり、第三例は、日本の夏場において、第二例よりも加湿されにくい条件下での処理となる。
 第三例では、図14の(a)に示すように、混合槽2092への次亜塩素酸水原液の供給(第一制御)は、混合槽2092への次亜塩素酸水原液の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間・・・のタイミングで実行される。一方、混合槽2092への水の供給(第二制御)は、加湿浄化に伴う消費量が第二例よりも少ないため、水位センサ2090による渇水検知がなされず実行されない。なお、運転開始となる0時間の時点では、混合槽2092に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽2092は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。
 具体的には、運転開始後の稼働時間が1時間を迎えるタイミングでは、第一制御が実行され、混合槽2092に次亜塩素酸水原液が供給される。その後、運転開始後の稼働時間が5時間までのタイミングまで、同様の制御が実行される。
 続いて、運転開始後の稼働時間が6時間のタイミングを迎える。このタイミングでは、第二制御の非実行期間が6時間であるので、第二制御の非実行期間が基準時間(6時間)以上であると判定される。そして、判定結果を受けて、第三制御が実行され、混合槽2092の混合水がすべて排水される。さらに、第三制御の実行後、混合槽2092に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽2092は、初期状態と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。
 その後は、6時間のタイミングを初期状態(0時間)と見なして、6時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。
 より詳細に説明する。
 まず、図14の(a)を参照して、混合槽2092内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽2092内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転によって一定の速度で混合水の水量が減少し、次亜塩素酸水の供給タイミングである1時間を迎える。そして、この1時間のタイミングで混合水の排水判定が実行される。
 運転初期(0時間)には、混合槽2092内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転を開始すると、加湿浄化運転によって一定の速度で混合水の水量が減少し、次亜塩素酸水の供給タイミングである1時間を迎える。
 そして、運転開始から稼働時間が1時間までの期間の加湿浄化運転では、第二制御による水の供給が実行されていないので、第二制御の非実行期間(約1時間)が基準時間(6時間)に達していない。このため、混合槽2092に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)から混合槽2092に供給される。これにより、混合槽2092内の水位は、わずかに上昇する。その後も加湿浄化運転によって混合水の水位が減少していき、次亜塩素酸水の供給タイミングである2時間を迎える。
 運転開始から稼働時間が2時間までの期間の加湿浄化運転では、第二制御の非実行期間(約2時間)が基準時間(6時間)に達してない。このため、混合槽2092に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)から混合槽2092に供給される。これにより、混合槽2092内の水位は、わずかに上昇する。その後、運転開始後の稼働時間が5時間までのタイミングまで、同様の制御が実行される。このように、第三例では、加湿浄化運転によって一定の速度で混合水の水量が減少しながらも、次亜塩素酸水原液が供給されるので、混合水の水量が増加をしながらも加湿量と供給量との間の差に応じて減少していく。
 続いて、運転開始後の稼働時間が6時間のタイミングを迎える。運転開始から稼働時間が6時間までの期間の加湿浄化運転では、第二制御の非実行期間(約6時間)が基準時間(6時間)以上となり、基準時間に達していると判定される。そして、判定結果を受けて、第三制御が実行され、混合槽2092の混合水が排水される。さらに、第三制御による混合水の排水の実行後、混合槽2092に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽2092は、初期状態(0時間)と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。なお、水供給部2050による水の供給がなされたので、第二制御の非実行時間は、このタイミングを起点にして改めて特定される。
 その後は、稼働時間が6時間のタイミングを初期状態(0時間)と見なして、6時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。より詳細には、これまでと同じように、次亜塩素酸水の供給タイミングにおいて第一制御によって次亜塩素酸水原液が供給され、水の供給タイミングにおいて第二制御によって水が供給されることを繰り返す。そして、各動作に対応して混合槽2092内の次亜塩素酸水(混合水)の水位が増減する。
 次に、図14の(b)を参照して、混合槽2092内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。
 運転初期(0時間)には、混合槽2092内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽2092内の次亜塩素酸水(混合水)の濃度は、運転開始から1時間まで時間の経過とともに減少する。これは、上述した通り、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。
 そして、運転開始から次亜塩素酸水の供給タイミングである1時間を迎えると、次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)からの次亜塩素酸水原液の供給に伴って混合槽2092内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、上述した通り、運転初期(0時間)において貯留する混合水の水量よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始から2時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。
 そして、運転開始から次亜塩素酸水の供給タイミングである2時間を迎えると、次亜塩素酸水生成部2030(次亜塩素酸水供給部2036)からの次亜塩素酸水原液の供給に伴って混合槽2092内の次亜塩素酸水の濃度がさらに上昇する。これ以降の5時間のタイミングまで同様に、次亜塩素酸水(混合水)の濃度変化を繰り返し、徐々に次亜塩素酸水(混合水)の濃度が上昇していく。
 そして、運転開始から次亜塩素酸水原液の供給タイミングである6時間を迎えると、排水判定に基づいて排水タイミングとなるので、混合槽2092内の次亜塩素酸水(混合水)がすべて排水された後、混合槽2092内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽2092内における次亜塩素酸水の濃度は、運転初期(0時間)と同様の状態となる。その後は、これまでと同様に次亜塩素酸水(混合水)の濃度変化を繰り返す。
 次に、図14の(c)を参照して、吹出口2003の空気2009に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。
 吹出口2003から放出される空気2009に含まれる次亜塩素酸の濃度は、第二例と同じく、空気浄化部2011における加湿量及び混合槽2092内の次亜塩素酸水の濃度によって決定されるので、図14の(c)に示すように、吹出口2003の空気2009に含まれる次亜塩素酸の濃度は、図14の(b)に示した混合槽2092の次亜塩素酸水の濃度の増減に対応して増減する。
 ここで、従来のように、水位センサ2090が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)から6時間まで次亜塩素酸水の濃度は減少し続けることになる。厳密には、6時間のうち満水状態から渇水を検知するまでの期間において次亜塩素酸水の濃度は減少し続けることになる。この場合には、吹出口2003の空気2009に含まれる次亜塩素酸の平均濃度は、例えば、図14の(c)に示す従来平均濃度のようになる。
 これに対して、第三例では、運転開始(0時間)から1時間までは従来と同じ状態であるものの、1時間から6時間までの期間は従来と状態が異なる。より詳細には、1時間から6時間までの期間では、図14の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間が、初期濃度よりも小さい期間よりもはるかに長くなっている。このため、運転開始(0時間)から6時間までの期間では、吹出口2003の空気2009に含まれる次亜塩素酸の平均濃度は、従来平均濃度よりも高い平均濃度となる。
 そして、6時間以降についても、6時間を1サイクルとして、6時間ごとに混合水の濃度変化を繰り返すことになるので、次亜塩素酸水の濃度が上昇し続けることなく、ある一定濃度以下の範囲で次亜塩素酸水の濃度を調整し続けることが可能である。つまり、加湿浄化運転を続けると混合槽2092内の次亜塩素酸水の濃度が上昇しすぎる可能性があるが、第二制御による非実行期間に応じた排水判定の制御を設けることで、一定間隔で混合槽2092内の次亜塩素酸水の濃度、ひいては吹出口2003の空気2009に含まれる次亜塩素酸の付加量をリセットすることができ、屋内空間2018への次亜塩素酸ガスの供給量をコントロールすることができる。
 以上のように、空間浄化システム2100では、第一制御として予め設定した時間(例えば、1時間)ごとに混合槽2092内に次亜塩素酸水を供給し、第二制御として水位センサ2090からの水位情報(渇水信号)に基づいて水を給水する処理を実行するとともに、第三制御として、第二制御の非実行期間に基づいて、混合槽2092の混合水を排水するようにしている。さらに、空間浄化システム2100の空気浄化制御部2041は、空気浄化部2011に要求される加湿要求量(日本の冬場に相当する加湿要求量または日本の夏場に相当する加湿要求量)に基づいて、所定期間内における第一制御を行う回数と、所定期間内における第二制御を行う回数とを異ならせている。これにより、日本の冬場のように加湿要求量が高い状態では、従来の方法と比べて、次亜塩素酸量の含有量が少ない状態の空気2009を屋内空間2018に放出することができ、日本の夏場のように加湿要求量が低い状態では、従来の方法と比べて、次亜塩素酸量の含有量が多い状態の空気2009で屋内空間2018に放出することができる。さらに、加湿浄化運転を長時間続けた場合に、屋内空間2018に放出する次亜塩素酸濃度の過上昇を抑えることができる。
 つまり、次亜塩素酸水の供給、水の供給、及び混合水の排水をそれぞれ別々のトリガーで作動させることで、簡単な制御(第一制御、第二制御、第三制御)によって混合槽2092内の次亜塩素酸水の濃度(屋内空間2018に吹き出す空気2009に含まれる次亜塩素酸の濃度)を調節することができる。
 以上、本実施の形態3に係る空間浄化システム2100によれば、以下の効果を享受することができる。
 (1)空間浄化システム2100は、次亜塩素酸水を生成する次亜塩素酸水生成部2030と、次亜塩素酸水生成部2030から混合槽2092に次亜塩素酸水を供給する次亜塩素酸水供給部2036と、混合槽2092に水を供給する水供給部2050と、混合槽2092の水位を検知するための水位センサ2090と、混合槽2092に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する空気浄化部2011と、次亜塩素酸水供給部2036及び水供給部2050における供給処理、並びに、混合槽2092に貯留される混合水の排水処理を制御する空気浄化制御部2041とを備える。そして、空気浄化制御部2041は、供給処理として、次亜塩素酸水供給部2036による次亜塩素酸水の供給を所定時間(例えば60分)ごとに行う第一制御と、水位センサ2090からの混合槽2092の水位に関する情報(渇水情報)に基づいて水供給部2050による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、水供給部2050による水の供給を行ってから第二制御を所定期間(例えば6時間)実行していない場合に、混合槽2092が貯留する混合水を排水する第三制御を実行させるようにした。
 これにより、日本の夏場のように、相対湿度の高い空気が通風される場合においては、混合槽2092に溜められた混合水の消費量が少ないため、混合槽2092への次亜塩素酸水の供給頻度(第一制御を行う回数)が多くなり、混合槽2092内における混合水の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出される。この際、水供給部2050による水の供給を行ってから第二制御を所定期間(例えば6時間)実行していない場合に第三制御を実行し、混合槽2092が貯留する混合水を排出し、混合槽2092内の混合水をリセットすることで、混合槽2092内の次亜塩素酸濃度の上がりすぎを抑制することができる。この結果、微細化された次亜塩素酸水が気化されにくい状況であっても、所定濃度に高めた次亜塩素酸を空気に含ませて屋内空間2018に放出させることができる。
 一方、日本の冬場のように、相対湿度の低い空気が通風される場合においては、混合槽2092に溜められた混合水の消費量が多いため、混合槽2092への水の供給頻度(第二制御を行う回数)が多くなり、混合槽2092内における混合水の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出される。この結果、微細化された次亜塩素酸水が気化されやすい状況であっても、所定濃度に薄まった次亜塩素酸を空気に含ませて屋内空間2018に放出させることができる。
 つまり、空間浄化システム2100では、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 (2)空間浄化システム2100では、長時間運転(例えば24時間)する場合にも、混合槽2092内の次亜塩素酸水濃度が高まりすぎる前に、混合槽2092内の状態を運転初期の状態に戻すことができる。つまり、空間浄化システム2100は、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。
 (3)空間浄化システム2100では、空気浄化制御部2041は、供給処理において、空気浄化部2011に要求される加湿要求量が第一基準値以上である場合、第一制御を行う回数が第二制御を行う回数よりも少なくなるように制御し、加湿要求量が第一基準値未満である場合、第一制御を行う回数が第二制御を行う回数よりも多くなるようになるように制御するようにした。これにより、空間浄化システム2100では、供給処理において、加湿要求量が第一基準値未満である場合に、混合槽2092内の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出させることができる。一方、加湿要求量が第一基準値以上である場合に、混合槽2092内の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出させることができる。つまり、空間浄化システム2100では、加湿要求量に基づいて、屋内空間2018の環境に好適な条件で、空気浄化部2011から放出される空気2009に次亜塩素酸を付与することができる。
 以上、本開示に関して実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素あるいは各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されているところである。
 本実施の形態3に係る空間浄化システム2100における第一例、第二例、及び第三例では、空気浄化部2011は、加湿浄化運転時間中、一定の加湿要求量で動作しているとして説明したが、実際には、一定時間ごとに、目標湿度と屋内空間2018の空気の湿度との間の湿度差に基づいて特定される加湿要求量で動作するようにしている。
 また、本実施の形態3に係る空間浄化システム2100における第一例、第二例、及び第三例では、渇水検知と次亜塩素酸水原液の供給タイミングが重なっている状況で説明したが、実際には、渇水検知と次亜塩素酸水原液の供給タイミングが互いに異なる状況がほとんどである。こうした状況では、空気浄化制御部2041は、第二制御の非実行期間が基準時間(6時間)となったら直ちに第三制御を実行させるのではなく、第一制御を実行する直前に、第三制御を実行させることが好ましい。これにより、空間浄化システム2100では、第一制御によって混合槽2092に次亜塩素酸が供給された直後に第三制御による排水が行われることがなくなるので、第一制御によって供給された次亜塩素酸水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。
 また、本実施の形態3に係る空間浄化システム2100では、所定期間は、第一制御によって供給される次亜塩素酸水の濃度に基づいて設定されることが好ましい。例えば、空間浄化システム2100では、第一制御によって供給される次亜塩素酸水の濃度が高い場合には、第二制御による水の供給を実行していないと、混合槽2092内の次亜塩素酸水の濃度の上昇が早くなる。このため、所定期間を短く設定することで、混合槽2092内の次亜塩素酸水の濃度が上がりすぎることをより確実に抑制することができる。一方、空間浄化システム2100では、第一制御によって供給される次亜塩素酸水の濃度が低い場合には、所定期間を長く設定することで、第三制御による混合水の無駄な排水を減らすことができる。
 また、本実施の形態3に係る空間浄化システム2100では、何らかの排水制御(例えば、第三制御)によって混合槽2092内の混合水の排水を行ってから、その後の24時間以内に一度も混合水の排水を実行していない場合に、混合水を排水するようにしてもよい。このようにすることで、混合槽2092内の混合水がリセットされ、混合槽2092内の次亜塩素酸濃度の上がりすぎを抑制することができる。
 本開示に係る空間浄化システムは、次亜塩素酸水を微細化して次亜塩素酸を空気中に放出する際に、空気中に放出される次亜塩素酸の量を調節しやすくできるものであり、対象空間の空気を殺菌または消臭するシステムとして有用である。
 2  吸込口
 3  吹出口
 4  前段風路
 5  中段風路
 6  後段風路
 8  空気
 9  空気
 10  空間浄化装置
 11  空気浄化部
 11a  加湿モータ
 11b  加湿ノズル
 13  送風機
 14  冷媒コイル
 15  空気調和装置
 16  ダクト
 16a  屋内吸込口
 17  ダクト
 17a  屋内吹出口
 18  屋内空間
 20  室外機
 20a  圧縮機
 20b  膨張器
 20c  屋外熱交換器
 20d  送風ファン
 20e  四方弁
 21  冷媒回路
 24  ダクト
 30  次亜塩素酸水生成部
 31  電解槽
 32  電極
 33  電磁弁
 34  塩水タンク
 35  塩水搬送ポンプ
 36  次亜塩素酸水供給部
 37  次亜塩素酸水搬送ポンプ
 38  送水管
 39  水位センサ
 41  空気浄化制御部
 41a  入力部
 41b  記憶部
 41c  計時部
 41d  処理部
 41e  出力部
 42  空気調和制御部
 43  操作装置
 44  温湿度センサ
 50  水供給部
 51  電磁弁
 52  送水管
 60  排水部
 61  電磁弁
 62  送水管
 90  水位センサ
 92  混合槽
 100  空間浄化システム
 1002  吸込口
 1003  吹出口
 1004  前段風路
 1005  中段風路
 1006  後段風路
 1008  空気
 1009  空気
 1010  空間浄化装置
 1011  空気浄化部
 1011a  加湿モータ
 1011b  加湿ノズル
 1013  送風機
 1014  冷媒コイル
 1015  空気調和装置
 1016  ダクト
 1016a  屋内吸込口
 1017  ダクト
 1017a  屋内吹出口
 1018  屋内空間
 1020  室外機
 1020a  圧縮機
 1020b  膨張器
 1020c  屋外熱交換器
 1020d  送風ファン
 1020e  四方弁
 1021  冷媒回路
 1024  ダクト
 1030  次亜塩素酸水生成部
 1031  電解槽
 1032  電極
 1033  電磁弁
 1034  塩水タンク
 1035  塩水搬送ポンプ
 1036  次亜塩素酸水供給部
 1037  次亜塩素酸水搬送ポンプ
 1038  送水管
 1039  水位センサ
 1041  空気浄化制御部
 1041a  入力部
 1041b  記憶部
 1041c  計時部
 1041d  処理部
 1041e  出力部
 1042  空気調和制御部
 1043  操作装置
 1044  温湿度センサ
 1050  水供給部
 1051  電磁弁
 1052  送水管
 1060  排水部
 1061  電磁弁
 1062  送水管
 1090  水位センサ
 1092  混合槽
 1100  空間浄化システム
 2002  吸込口
 2003  吹出口
 2004  前段風路
 2005  中段風路
 2006  後段風路
 2008  空気
 2009  空気
 2010  空間浄化装置
 2011  空気浄化部
 2011a  加湿モータ
 2011b  加湿ノズル
 2013  送風機
 2014  冷媒コイル
 2015  空気調和装置
 2016  ダクト
 2016a  屋内吸込口
 2017  ダクト
 2017a  屋内吹出口
 2018  屋内空間
 2020  室外機
 2020a  圧縮機
 2020b  膨張器
 2020c  屋外熱交換器
 2020d  送風ファン
 2020e  四方弁
 2021  冷媒回路
 2024  ダクト
 2030  次亜塩素酸水生成部
 2031  電解槽
 2032  電極
 2033  電磁弁
 2034  塩水タンク
 2035  塩水搬送ポンプ
 2036  次亜塩素酸水供給部
 2037  次亜塩素酸水搬送ポンプ
 2038  送水管
 2039  水位センサ
 2041  空気浄化制御部
 2041a  入力部
 2041b  記憶部
 2041c  計時部
 2041d  処理部
 2041e  出力部
 2042  空気調和制御部
 2043  操作装置
 2044  温湿度センサ
 2050  水供給部
 2051  電磁弁
 2052  送水管
 2060  排水部
 2061  電磁弁
 2062  送水管
 2090  水位センサ
 2092  混合槽
 2100  空間浄化システム

Claims (12)

  1.  次亜塩素酸水を生成する次亜塩素酸水生成部と、
     前記次亜塩素酸水生成部から混合槽に前記次亜塩素酸水を供給する次亜塩素酸水供給部と、
     前記混合槽に水を供給する水供給部と、
     前記混合槽の水位を検知するための水位センサと、
     前記混合槽に貯められた前記次亜塩素酸水と前記水との混合水を微細化して空気中に放出する加湿浄化部と、
     前記次亜塩素酸水供給部及び前記水供給部における供給処理、並びに、前記混合槽に貯留される前記混合水の排水処理を制御する制御部と、
    を備え、
     前記制御部は、前記供給処理として、前記次亜塩素酸水供給部による前記次亜塩素酸水の供給を所定時間ごとに行う第一制御と、前記水位センサからの前記混合槽の水位に関する情報に基づいて前記水供給部による水の供給を行う第二制御とをそれぞれ実行させ、前記排水処理として、前記加湿浄化部における積算加湿量に基づいて、前記混合槽が貯留する前記混合水を排水する第三制御を実行させる、空間浄化システム。
  2.  前記制御部は、前記積算加湿量が基準量以上となった場合に、前記第三制御を実行させる、請求項1に記載の空間浄化システム。
  3.  前記積算加湿量は、前記第一制御及び前記第二制御の実行回数に基づいて算出される、請求項2に記載の空間浄化システム。
  4.  前記制御部は、前記第一制御を行った回数が基準回数となった場合に、前記第三制御を実行させる、請求項1~3のいずれか一項に記載の空間浄化システム。
  5.  前記制御部は、前記第三制御を、前記第一制御または前記第二制御を実行する直前に実行させる、請求項1~4のいずれか一項に記載の空間浄化システム。
  6.  前記制御部は、前記供給処理において、前記加湿浄化部に要求される加湿要求量が第一基準値以上である場合、前記第一制御を行う回数が前記第二制御を行う回数よりも少なくなるように制御し、前記加湿要求量が前記第一基準値未満である場合、前記第一制御を行う回数が前記第二制御を行う回数よりも多くなるようになるように制御する、請求項1~5のいずれか一項に記載の空間浄化システム。
  7.  次亜塩素酸水を生成する次亜塩素酸水生成部と、
     前記次亜塩素酸水生成部から混合槽に前記次亜塩素酸水を供給する次亜塩素酸水供給部と、
     前記混合槽に水を供給する水供給部と、
     前記混合槽の水位を検知するための水位センサと、
     前記混合槽に貯められた前記次亜塩素酸水と前記水との混合水を微細化して空気中に放出する加湿浄化部と、
     前記次亜塩素酸水供給部及び前記水供給部における供給処理、並びに、前記混合槽に貯留される前記混合水の排水処理を制御する制御部と、
    を備え、
     前記制御部は、前記供給処理として、前記次亜塩素酸水供給部による前記次亜塩素酸水の供給を所定時間ごとに行う第一制御と、前記水位センサからの前記混合槽の水位に関する情報に基づいて前記水供給部による水の供給を行う第二制御とをそれぞれ実行させ、前記排水処理として、前記第一制御を連続して所定回数実行した場合に、前記混合槽が貯留する前記混合水を排水する第三制御を実行させる、空間浄化システム。
  8.  前記制御部は、前記第一制御を連続して前記所定回数実行した後における前記第一制御を実行する直前に、前記第三制御を実行させる、請求項7に記載の空間浄化システム。
  9.  前記第三制御における前記所定回数は、前記第一制御によって供給される前記次亜塩素酸水の濃度に基づいて設定される、請求項7または8に記載の空間浄化システム。
  10.  次亜塩素酸水を生成する次亜塩素酸水生成部と、
     前記次亜塩素酸水生成部から混合槽に前記次亜塩素酸水を供給する次亜塩素酸水供給部と、
     前記混合槽に水を供給する水供給部と、
     前記混合槽の水位を検知するための水位センサと、
     前記混合槽に貯められた前記次亜塩素酸水と前記水との混合水を微細化して空気中に放出する加湿浄化部と、
     前記次亜塩素酸水供給部及び前記水供給部における供給処理、並びに、前記混合槽に貯留される前記混合水の排水処理を制御する制御部と、
    を備え、
     前記制御部は、前記供給処理として、前記次亜塩素酸水供給部による前記次亜塩素酸水の供給を所定時間ごとに行う第一制御と、前記水位センサからの前記混合槽の水位に関する情報に基づいて前記水供給部による水の供給を行う第二制御とをそれぞれ実行させ、前記排水処理として、前記水供給部による水の供給を行ってから前記第二制御を所定期間実行していない場合に、前記混合槽が貯留する前記混合水を排水する第三制御を実行させる、空間浄化システム。
  11.  前記制御部は、前記第一制御を実行する直前に、前記第三制御を実行させる、請求項10に記載の空間浄化システム。
  12.  前記所定期間は、前記第一制御によって供給される前記次亜塩素酸水の濃度に基づいて設定される、請求項10または11に記載の空間浄化システム。
PCT/JP2022/020377 2021-08-25 2022-05-16 空間浄化システム WO2023026605A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22860902.0A EP4394270A1 (en) 2021-08-25 2022-05-16 Space purification system
CN202280057166.XA CN117836566A (zh) 2021-08-25 2022-05-16 空间净化系统
US18/681,990 US20240350697A1 (en) 2021-08-25 2022-05-16 Space purification system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021136973A JP2023031471A (ja) 2021-08-25 2021-08-25 空間浄化システム
JP2021-136973 2021-08-25
JP2021-145172 2021-09-07
JP2021145172A JP2023038448A (ja) 2021-09-07 2021-09-07 空間浄化システム
JP2021-149062 2021-09-14
JP2021149062A JP2023042012A (ja) 2021-09-14 2021-09-14 空間浄化システム

Publications (1)

Publication Number Publication Date
WO2023026605A1 true WO2023026605A1 (ja) 2023-03-02

Family

ID=85321752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020377 WO2023026605A1 (ja) 2021-08-25 2022-05-16 空間浄化システム

Country Status (3)

Country Link
US (1) US20240350697A1 (ja)
EP (1) EP4394270A1 (ja)
WO (1) WO2023026605A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133521A (ja) 2007-11-29 2009-06-18 Sanyo Electric Co Ltd 空気調和システム及びチャンバ
JP2020173046A (ja) * 2019-04-09 2020-10-22 パナソニックIpマネジメント株式会社 液体微細化装置
JP2020176770A (ja) * 2019-04-18 2020-10-29 パナソニックIpマネジメント株式会社 液体微細化装置
JP6917553B1 (ja) * 2020-10-30 2021-08-11 パナソニックIpマネジメント株式会社 空間浄化装置及びこれを用いた空間浄化システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133521A (ja) 2007-11-29 2009-06-18 Sanyo Electric Co Ltd 空気調和システム及びチャンバ
JP2020173046A (ja) * 2019-04-09 2020-10-22 パナソニックIpマネジメント株式会社 液体微細化装置
JP2020176770A (ja) * 2019-04-18 2020-10-29 パナソニックIpマネジメント株式会社 液体微細化装置
JP6917553B1 (ja) * 2020-10-30 2021-08-11 パナソニックIpマネジメント株式会社 空間浄化装置及びこれを用いた空間浄化システム

Also Published As

Publication number Publication date
US20240350697A1 (en) 2024-10-24
EP4394270A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
US7875108B2 (en) Inactivating device for virus, bacteria, etc. and air conditioner using the same
JP2022073923A (ja) 空間浄化装置及びこれを用いた空間浄化システム
WO2022054616A1 (ja) 空気浄化装置及びそれを用いた空気浄化機能付き熱交換形換気装置
WO2022202071A1 (ja) 空間浄化装置
JP2023038448A (ja) 空間浄化システム
JP2022140242A (ja) 空間浄化装置及びこれを用いた空間浄化システム
WO2023026605A1 (ja) 空間浄化システム
JP2023031471A (ja) 空間浄化システム
JP2023042012A (ja) 空間浄化システム
JP2023012026A (ja) 空間浄化装置
WO2022209447A1 (ja) 空間浄化装置
WO2023074166A1 (ja) 次亜塩素酸水供給装置
JP2022153766A (ja) 空間浄化装置
WO2023074165A1 (ja) 次亜塩素酸水供給装置
JP7203299B2 (ja) 熱交換形換気装置
JP7403048B2 (ja) 空間浄化装置
CN114294770B (zh) 移动空调的控制方法和移动空调
JP7557671B2 (ja) 空気浄化システム
JP2023137225A (ja) 空間浄化装置
JP7557668B2 (ja) 空気浄化装置
JPWO2018078782A1 (ja) 加湿装置
JP2023141382A (ja) 空間浄化装置
JP2023043920A (ja) 空間浄化装置
JP2022140263A (ja) 空間浄化装置
JP2024121839A (ja) 機器制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18681990

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280057166.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022860902

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022860902

Country of ref document: EP

Effective date: 20240325