WO2023026382A1 - 検査装置および検査方法 - Google Patents

検査装置および検査方法 Download PDF

Info

Publication number
WO2023026382A1
WO2023026382A1 PCT/JP2021/031082 JP2021031082W WO2023026382A1 WO 2023026382 A1 WO2023026382 A1 WO 2023026382A1 JP 2021031082 W JP2021031082 W JP 2021031082W WO 2023026382 A1 WO2023026382 A1 WO 2023026382A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural frequency
inspected
damage
unit
inspection
Prior art date
Application number
PCT/JP2021/031082
Other languages
English (en)
French (fr)
Inventor
紀彦 葉名
雅夫 秋吉
政樹 梅田
賢治 天谷
拓也 岩本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180101653.7A priority Critical patent/CN117836592A/zh
Priority to JP2022549632A priority patent/JP7203291B1/ja
Priority to PCT/JP2021/031082 priority patent/WO2023026382A1/ja
Publication of WO2023026382A1 publication Critical patent/WO2023026382A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table

Definitions

  • This application relates to an inspection device and an inspection method.
  • the damage inside the structure cannot be inspected by visual inspection, and the damage spreads without being noticed by normal inspection, affecting the life of the structure. Therefore, detecting damage inside the structure has become an important issue for the inspection of the structure.
  • methods for nondestructively inspecting damage inside a structure include changes in the vibration response of the structure, ultrasonic flaw detection, and X-ray inspection methods.
  • the change in vibration response of a structure can be easily miniaturized and can be measured without contact.
  • it is not a method to measure the reflection from internal damage such as ultrasonic waves or X-rays, so it is necessary to estimate internal damage by inverse analysis using the relationship between changes in structural vibration response and internal damage. .
  • the present application was made in order to solve the above problems, and an inspection apparatus and inspection method that improve the accuracy of estimating the size of damage that is not visible from the surface even if the rigidity of the supported part changes. intended to provide
  • the inspection device disclosed in the present application is a data storage unit for pre-storing changes in the natural frequency due to changes in the rigidity of the portion where the object to be inspected is supported and the degree of damage to the object to be inspected; a measurement unit that measures the vibration response of the vibrated object under test; The change in the natural frequency between the natural frequency of the inspected object calculated from the vibration response measured by the measurement unit and the natural frequency obtained by measuring the inspected object whose damage state is known, and the data an estimating unit for simultaneously estimating the rigidity of the portion where the inspected object is supported and the degree of damage of the inspected object based on the change in the natural frequency stored in the storage unit; do.
  • the size of damage invisible from the surface can be estimated even if the stiffness of the supported part changes. can improve the accuracy of estimating
  • FIG. 1 is a block diagram of an inspection device according to Embodiment 1;
  • FIG. 1 is a schematic diagram showing an inspection apparatus and an inspection object according to Embodiment 1.
  • FIG. FIG. 3 is a diagram showing the rigidity of a supporting portion for the test object of FIG. 2 ;
  • 2 is a diagram illustrating an example of a hardware configuration of a control device according to Embodiment 1;
  • FIG. 10 is a diagram showing an example of vibration modes when an inspection object has a crack;
  • FIG. 10 is a diagram showing an example in which a natural frequency changes due to a change in stiffness of a portion that supports an object to be inspected;
  • FIG. 5 is a diagram showing an example of change in natural frequency when an inspection object has a crack;
  • FIG. 5 is a diagram showing an example of changes in stiffness of a support portion to be inspected and changes in natural frequency due to cracks;
  • FIG. 4 is a flow diagram illustrating an estimation method for the inspection device according to Embodiment 1; It is a figure explaining the calculation flow of the probability distribution A calculation part of natural frequency among the flows of an estimation method. It is a figure explaining the calculation flow of the probability-distribution B calculation part of the measured natural frequency among the flows of an estimation method.
  • FIG. 4 is a diagram illustrating a calculation flow for determining the size of a crack that maximizes the product of probability distribution A and probability distribution B, and support conditions;
  • FIG. 1 is a flow diagram illustrating an estimation method for the inspection device according to Embodiment 1; It is a figure explaining the calculation flow of the probability distribution A calculation part of natural frequency among the flows of an estimation method. It is a figure explaining the calculation flow of the probability-distribution B calculation part of the measured natural frequency among the flows of an estimation method.
  • FIG. 4 is a diagram for explaining a vibration mode in which the natural frequency changes due to damage that is not visible from the surface of the inspection object;
  • FIG. 11 is a block diagram of an inspection device according to Embodiment 2;
  • FIG. 11 is a diagram for explaining changes in vibration frequency during operation or between operation and stop of the inspection object according to Embodiment 3;
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of a control device according to Embodiment 3;
  • FIG. FIG. 11 is a schematic diagram showing an inspection apparatus and an inspection object according to Embodiment 4;
  • FIG. 12 is a flow diagram for explaining an estimation method for an inspection device according to Embodiment 4;
  • FIG. 12 is another flow diagram for explaining the estimation method of the inspection device according to the fourth embodiment;
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of a control device according to Embodiment 4;
  • FIG. FIG. 12 is a schematic diagram showing an inspection apparatus and an inspection target according to Embodiment 5;
  • FIG. 12 is a schematic diagram showing an inspection apparatus and an inspection object according to Embodiment 6;
  • FIG. 12 is a schematic diagram showing an inspection apparatus and an inspection object according to Embodiment 7;
  • FIG. 1 is a block diagram showing a configuration example of an inspection apparatus according to Embodiment 1
  • FIG. 2 is a schematic diagram showing a crack inspection apparatus and inspection objects according to Embodiment 1. As shown in FIG.
  • FIG. 40 A crack inspection apparatus 20 (hereinafter referred to as inspection apparatus 20) shown in FIG. 40, the data storage unit 50 for storing the vibration response of the test object 1 with the rigidity of the support part 3 of the test object 1 changed shown in FIG. It consists of an estimating unit 60 for estimating the stiffness of the support unit 3 and the size of the crack 2, which is damage that cannot be seen from the surface, and an estimation result output unit 70 for outputting the estimation result of the estimating unit 60.
  • FIG. 3 is a diagram showing the rigidity of the support portion 3 of the inspection object 1. As shown in FIG. In FIG. 3, the inspection object 1 supports three axes of X, Y and Z of the coordinate system shown in FIG. 3 at both ends.
  • the stiffnesses 11-15 of the support 3 are represented in the form of springs.
  • the support structure may be bolt fixing, press-fitting, or the like, in addition to the spring.
  • the vibrating section 30 consists of the oscillator 101, the amplifier 102, and the vibrator 103 shown in FIG.
  • the vibration response measurement unit 40 is composed of the signal processing device 111 and the vibration meter 112 shown in FIG.
  • a transmission signal is generated by the oscillator 101 based on the signal input from the control device 100 for the inspection object 1 and input to the amplifier 102 .
  • the transmission signal amplified by the amplifier 102 is input to the vibrator 103 to vibrate the inspection object 1 .
  • Examples of the vibrators 103 include electric actuators, hydraulic actuators, and the like.
  • the vibration response of the vibrated test object 1 is measured by the vibrometer 112, the measured vibration response is converted into an electrical signal by the signal processing device 111, and input to the control device 100, thereby measuring the vibration response from the excitation. to control.
  • Examples of vibrometer 112 include accelerometers.
  • control device 100 includes the functions of the inspection device 20 . That is, the functions of the data storage section 50, the estimation section 60, and the estimation result output section 70, which will be described below, are included in the control device. The internal configuration of the control device 100 will be described later.
  • the data storage unit 50 of FIG. 1 obtains changes in the natural frequency of the inspection object 1 due to changes in the rigidity 11 to 15 of the support part 3 of the inspection object 1 shown in FIG. 2 or 3, and stores the results. .
  • the relationship between the natural frequency of the test object 1 stored in the data storage unit 50 and the stiffnesses 11 to 15 of the support part 3 may be obtained by actually measuring the vibration while changing the stiffness of the support part. It may be obtained by numerical analysis.
  • FIG. 1 shows an example obtained by numerical analysis.
  • the shape model generation unit 51 in the data storage unit 50 numerically models the object 1 to be inspected.
  • a portion that supports the shape model is numerically modeled by the stiffness generator 52 of the support portion.
  • the natural frequency calculation units 53 and 54 generated by changing the support conditions of the numerically modeled inspection object calculate the natural frequency by changing the support conditions of the inspection object 1 in the numerical model, and the storage unit 55 save the calculation results as data.
  • the natural frequency is calculated by the natural frequency calculation unit 61 from the vibration response measured by the vibration response measurement unit 40 .
  • a change amount of the natural frequency is calculated from the calculated natural frequency.
  • the estimating unit 63 for the rigidity of the supporting part and the magnitude of the damage calculates the rigidity of the supporting part 3. 11 to 15 and the size of the crack 2 of the inspection object 1 are estimated.
  • An estimation result output unit 70 outputs the result estimated by the estimation unit 60 .
  • FIG. 4 is a schematic diagram showing an example of hardware in the control device 100.
  • the storage of the vibration response data of the data storage unit 50 and the vibration response measurement unit 40 which is the function of the inspection device in the control device 100, is realized by the memory 302.
  • the memory 302 is, for example, a non-volatile or volatile semiconductor such as ROM (Read Only Memory), RAM (Random Access Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory).
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EPROM Erasable Programmable Read Only Memory
  • EEPROM Electrical Erasable Programmable Read Only Memory
  • a memory a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like.
  • the operations in the data storage unit 50 and the operations in the estimation unit 60 are realized by a processor 301 such as a CPU that executes programs stored in the memory 302 and a system LSI. Also, a plurality of processing circuits may work together to perform the functions described above. Furthermore, the above functions may be realized by dedicated hardware. When the above functions are realized by dedicated hardware, the dedicated hardware includes, for example, a single circuit, a composite circuit, a programmed processor, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), Or a combination of these. The above functions may be realized by a combination of dedicated hardware and software, or a combination of dedicated hardware and firmware. For example, the operations in the data storage unit 50 and the operations in the estimation unit 60 may be realized by the processor 301 such as a CPU or system LSI that executes programs stored in the memory 302 .
  • the processor 301 such as a CPU or system LSI that executes programs stored in the memory 302 .
  • control of the vibrating section 30 and the vibration response measuring section is realized by the processor 301 executing the program stored in the memory 302 in the same way as the functions of the inspection apparatus are executed.
  • FIG. 5 is a diagram for explaining vibration modes when the inspection object 1 has a crack. As shown in FIG. 5(a), when the crack 2 is present in the test object 1, the natural frequency changes.
  • FIGS. 5(b) and 5(c) are diagrams showing examples of vibration modes when the test object 1 has a crack 2.
  • FIG. 5(b) and 5(c) are views of the inspection object 1 viewed from the direction A in FIG. As shown in FIG.
  • crack 2 causes a partial change in the stiffness of the object to be inspected, and in a vibration mode in which the portion where the stiffness changes greatly deforms, crack 2 causes a large change in the natural frequency.
  • the vibration mode in which the portion where the rigidity has changed does not deform, the change in the natural frequency at the crack 2 is small.
  • a mode such as the mode shown in FIG. 5B having a large change in natural frequency due to the crack 2 will be described.
  • FIG. 6 shows an example in which the natural frequency changes due to changes in the rigidity of the supporting portion of the inspection object 1 .
  • FIG. 6A shows the support condition A, in which the stiffnesses 11 and 12 of the supporting portion are the spring P1, and the stiffnesses 14 and 15 are the spring Q1. The point where the response is measured is the point ⁇ .
  • the stiffnesses 11 and 12 of the supporting portion are the spring P2, and the stiffnesses 14 and 15 are the spring Q2.
  • the point for measuring the response is the same point ⁇ as in FIG. 6(a).
  • FIG. 6C shows a schematic diagram of the measured vibration response, with frequency on the horizontal axis and response displacement on the vertical axis.
  • the vibration response under the support condition A is indicated by a solid line
  • the vibration response under the support condition B is indicated by a broken line.
  • the natural frequency is obtained by the natural frequency calculator 61 from the vibration response of a mode with a large change in the natural frequency.
  • FIG. 6C the natural frequency S A of the support condition A and the natural frequency S B of the support condition B are shown.
  • the amount of change S V from the natural frequency S A to the natural frequency S B is calculated by the natural frequency change amount calculation unit 62 .
  • FIG. 7 shows an example in which the crack 2 changes the natural frequency. Setting the rigidity 11 and 12 of the support portion to the spring P1 and the rigidity 14 and 15 to the spring Q1 is the same as the support condition A explained in FIG. The point where the response is measured is the point ⁇ as in FIG. In the case of crack 2, as shown in FIG. 7B, the test object 1 under the support condition A has a crack 2.
  • FIG. 7C shows a schematic diagram of the measured vibration response, with frequency on the horizontal axis and response displacement on the vertical axis. In FIG. 7(c), the vibration response without crack 2 is indicated by a solid line, and the vibration response with crack 2 is indicated by a dashed line.
  • the natural frequency is calculated by the natural frequency calculator 61 from the vibration response of the mode with the presence or absence of the crack 2 and the change in the natural frequency due to the crack 2 being large.
  • the natural frequency S N without the crack 2 and the natural frequency S Y with the crack 2 are shown.
  • the amount of change Sw from the natural frequency SN to the natural frequency SY is calculated by the natural frequency change amount calculator 62 .
  • the amount of change in the natural frequency SW varies depending not only on the presence or absence of a crack but also on the size of the crack.
  • FIG. 8 shows an example of changes in the rigidity of the supporting portion of the inspection object 1 and changes in the natural frequency due to the cracks 2 .
  • the stiffnesses 11 and 12 of the support portion are the spring P1
  • the stiffnesses 14 and 15 are the spring Q1.
  • the stiffnesses 14 and 15 are a spring Q2.
  • the point ⁇ for measuring the response is the same as in FIGS. If there is a crack, the inspection target 1 has a crack 2 .
  • FIG. 8C shows a schematic diagram of the measured vibration response, with frequency on the horizontal axis and response displacement on the vertical axis.
  • the vibration response without a crack is indicated by a solid line
  • the vibration response with a crack 2 is indicated by a two-dot chain line.
  • the natural frequency is calculated by the natural frequency calculator 61 based on the vibration response of the mode with a large change in natural frequency due to the presence or absence of a crack and the crack 2 .
  • FIG. 8(c) under support condition A, the natural frequency S AN without crack 2, support condition B, and the natural frequency S BY with crack 2 are shown.
  • the amount of change SZ from the natural frequency S AN to the natural frequency S BY is calculated by the natural frequency change amount calculator 62 .
  • This natural frequency change S Z is different from the natural frequency change S V in FIG. 6 and the natural frequency change S W in FIG. 7 .
  • Changes in support conditions, presence or absence of cracks, and crack sizes are estimated from changes in the natural frequency by the following procedure.
  • FIG. 9 shows a flowchart of the estimation method.
  • the natural frequency calculator 53 knows the state of damage such as a crack, for example, there is no damage such as a crack (damage size is zero).
  • a natural frequency (referred to as a first natural frequency) is calculated by numerical analysis while changing the support conditions of a given test object 1 .
  • the calculation result is stored in the storage unit 55 .
  • the vibrating unit 30 vibrates the test object whose damage state such as cracks is known, and the eigenfrequency is calculated by the eigenfrequency calculator 61 from the measured vibration response. (referred to as the second natural frequency) is calculated.
  • the first natural frequency and the second natural frequency are input to the natural frequency probability distribution A calculator 163, and the support condition is obtained as the probability distribution A.
  • the natural frequency calculation unit 54 a plurality of shapes of damage are introduced into the inspection object (the magnitude of the non-zero damage is changed), the support conditions are changed, and the natural frequency (third ) is calculated.
  • the calculated third natural frequency is stored in the storage unit 55 (hereinafter, damage may also be referred to as crack).
  • the vibration response measuring unit 40 vibrates the inspection object 1 and measures the vibration response. From the measured vibration response, the natural frequency is calculated by the natural frequency calculator 61 (referred to as the fourth natural frequency). The difference between the second natural frequency and the fourth natural frequency measured before the inspection is calculated by the natural frequency variation calculator 62 . This calculation result and the difference between the first natural frequency and the third natural frequency stored in the storage unit 55 are input to the natural frequency probability distribution B calculator 171 .
  • the natural frequency probability distribution B calculator 171 obtains the size of the crack 2 of the inspection object 1 and the probability distribution B of the support conditions.
  • the product of the probability distribution A and the probability distribution B is obtained by the calculation unit 173 . From the result of the obtained product, the calculation unit 174 obtains the size of the crack that maximizes the probability distribution and the supporting condition of the supporting portion.
  • FIG. 10 shows the calculation flow of the natural frequency probability distribution A calculator 163 .
  • the change in support conditions to be estimated and the size of the crack 2 are assumed to be the vector of the parameter X to be estimated.
  • support conditions be K A and K B
  • the size of the crack 2 be C.
  • the size C of the crack 2 is set to 0 and the estimated parameter X prior .
  • the ranges for changing the support conditions K A and K B are determined.
  • the natural frequency calculation unit 61 A second natural frequency f obs_nocrack is calculated.
  • the second natural frequency f obs_nocrack and the first natural frequency f cal (X prior ) calculated by the natural frequency calculator 53 are input to the natural frequency probability distribution A calculator 163 .
  • the natural frequencies K A_center and K B_center that maximize the likelihood shown in the natural frequency probability distribution A calculator 163 are obtained.
  • the range ⁇ is determined so that the obtained natural frequencies K A_center and K B_center can be estimated even if they change within a certain range. Make the probability of being within the range greater than the probability of being outside the range.
  • U A and U B be the probabilities of being in that range.
  • probability distribution A be P prior (X prior ), and obtain from probabilities U A and U B .
  • FIG. 11 is a calculation flow for calculating the probability distribution B of the natural frequency calculated from the measured vibration response.
  • the natural frequency calculator 54 also estimates a crack size C that is not zero, with X likeli being the parameter to be estimated.
  • the ranges for changing the crack size C and the support conditions K A and K B are determined respectively.
  • the third natural frequency f cal (X likeli ) obtained by changing the crack size C and the support conditions K A and K B is obtained before the inspection. .
  • a difference ⁇ f cal (X likeli ) between the obtained third natural frequency f cal (X likeli ) and the first natural frequency f cal (X prior ) calculated by the natural frequency calculator 53 is obtained.
  • a storage unit 55 stores the difference ⁇ f cal (X likeli ).
  • the natural frequency calculator 61 calculates the fourth natural frequency f obs calculated from the output of the vibration response measurement unit 40, and the natural frequency change amount calculator 62 calculates the pre-inspection frequency described in FIG. A change amount ⁇ f obs from the second natural frequency f obs_nocrack calculated in 1 is obtained.
  • the natural frequency probability distribution B calculator 171 assumes that the error e between the change amount ⁇ f obs and the difference ⁇ f cal (X likeli ) has a certain probability distribution, and calculates the likelihood function L(X likeli
  • FIG. 12 shows a calculation flow for obtaining the crack size and support conditions that maximize the product of the probability distributions A and B.
  • FIG. Calculation unit 173 for obtaining the product of probability distributions A and B calculates the product of probability distribution B (L(X likeli
  • P posterior is marginalized to obtain P posterior (C).
  • This method is the same as the method of maximizing the posterior probability by the MAP method, which is one of Bayesian estimation.
  • the inspection apparatus 20 includes the vibrating unit 30 that vibrates the inspection object 1, the vibration response measurement unit 40 of the vibrated inspection object 1, and the inspection object 1 that is supported.
  • a data storage unit 50 that stores changes in the natural frequency obtained by changing the rigidity of the part where it is located and the magnitude of the damage, and a natural frequency calculation unit 61 obtains the natural frequency from the measured vibration response.
  • the stiffness of the part where the inspection object 1 is supported and the size of the damage invisible from the surface are estimated at the same time, even if the stiffness of the supported part changes, the size of the damage invisible from the surface can be estimated. The accuracy of estimating is improved.
  • Embodiment 2 Only points different from the first embodiment are shown.
  • a feature of this embodiment is that, as the vibration mode for obtaining the natural frequency in the inspection apparatus 20 shown in the first embodiment, a vibration mode in which the natural frequency changes greatly due to damage that is not visible from the surface of the inspection object 1 is selected. It is in.
  • FIG. 13 shows vibration modes in which the eigenfrequency changes due to damage that is not visible from the surface of the inspection object 1 .
  • FIG. 13 is a view of the inspection object 1 viewed from the direction A as described with reference to FIG.
  • the crack 2 partially changes the stiffness of the inspection object 1, and in the vibration mode X in which the portion where the stiffness changes is greatly deformed, the crack 2 causes a change in the natural frequency. big. As shown in FIG. 13(b), in the vibration mode Y in which the portion where the rigidity is changed does not deform, the change in the natural frequency at the crack 2 is small.
  • the change in the natural frequency Xc from the natural frequency Xa with the crack 2 obtained from the vibration response changes with a certain magnitude.
  • the magnitude of the change in natural frequency from the natural frequency Ya with crack 2, which is obtained from the vibration response of is very small. Therefore, the eigenfrequency and the amount of change in the eigenfrequency shown in the inspection apparatus 20 are calculated by limiting to the vibration mode in which the eigenfrequency changes greatly due to a crack, as typified by the vibration mode X.
  • the inspection apparatus 20 includes a selection unit 80 that selects a vibration mode in which the natural frequency changes greatly due to damage that the inspection object 1 cannot see from the surface.
  • the selection unit 80 may perform the selection based on the result of the natural frequency variation calculation unit 62 .
  • FIG. 15 is a diagram showing changes in the excitation frequency during operation or between starting and stopping at this time.
  • the horizontal axis in FIG. 15 is time, and the vertical axis is the frequency of the excitation force applied to the inspection object 1 during start, stop, or operation.
  • the inspection object 1 is described as a rotating machine. A rotating machine is started from a stopped state, and the number of revolutions increases until it is in operation. As the rotation speed increases, the frequency of the excitation force applied to the rotating machine also increases (E in FIG. 15). There is no or little change in frequency during operation (F in FIG. 15), and the frequency decreases when stopped (G in FIG. 15). In this way, the test object 1 is vibrated by changing the vibration frequency, and the vibration response at that time is measured.
  • FIG. 15 A hardware configuration diagram of this embodiment is shown in FIG. As described above, the vibrating unit 30 is not required, but the control of the rotating machine is performed by the processor 301 as shown in FIG. 15 by the program stored in the memory 302. .
  • FIG. 17 is a diagram showing an inspection apparatus and an inspection target according to this embodiment.
  • the inspection device 20 is included in the control device 100, but by separating a part of the functions of the inspection device 20 from the control device, the size reduction of the control device 100 is realized. This configuration will be described in detail below. It should be noted that this embodiment can also be applied to embodiments 5, 6, and 7 to be described later.
  • FIG. 18 is a flowchart of the estimation method of this embodiment. Only changes from Embodiment 1 will be described. As shown in FIGS. 17 and 18, a feature of this embodiment is that, during inspection, the vibration unit 30 vibrates the inspection object 1 and measures the vibration response. The vibration response transmission unit 175 transmits the measured vibration response, and the natural frequency calculation unit 61 calculates the natural frequency.
  • the estimation unit 60 of the inspection apparatus 20 does not need to be arranged near the inspection object 1. , the size of the inspection device can be reduced.
  • FIG. 19 is a flow diagram of another estimation method of the present embodiment. Only changes from Embodiment 1 will be described.
  • the feature of this embodiment is that the vibration response of the test object 1 is measured by the vibration response measuring unit 40 during the test. From the measured vibration response, the natural frequency calculator 61 calculates the natural frequency, and the natural frequency change calculator 62 calculates the change in the natural frequency. The calculated amount of change in the natural frequency is transmitted to the natural frequency probability distribution B calculator 171 by the natural frequency transmission unit 176, and the probability distribution B is calculated.
  • the amount of change in the natural frequency is calculated from the measured vibration response, and then transmitted by the transmission unit 176 for the natural frequency. Since the functions of the inspection device 20 can be partially divided and arranged via the transmission unit 176, the size of the inspection device 20 can be reduced.
  • the vibration response transmission unit 175 and the natural frequency transmission unit 176 are realized by a transmission device composed of a transmission device, a reception device, and an optical fiber or coaxial cable serving as a transmission/reception path.
  • a process of creating data to be transmitted is realized by a processor 401 such as a CPU or system LSI that executes a program stored in the memory 402 .
  • the memory 402 is, for example, non-volatile or volatile semiconductor memory such as ROM, RAM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini-disk, DVD, or the like.
  • a plurality of processing circuits may work together to perform the functions described above. Furthermore, the above functions may be realized by dedicated hardware.
  • dedicated hardware implements the above functions
  • the dedicated hardware may be, for example, a single circuit, multiple circuits, a programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the above functions may be realized by a combination of dedicated hardware and software, or a combination of dedicated hardware and firmware.
  • FIG. 21 is a schematic diagram showing an inspection apparatus according to the sixth embodiment and an object to be inspected by the inspection apparatus.
  • a vibrating section 30 shown in FIG. 21 comprises an oscillator 101 , an amplifier 102 and a vibrator 104 and is controlled by a control device 100 .
  • the vibration response measuring unit 40 is composed of a signal processing device 111 and a vibration meter 112 and is controlled by the control device 100 in the same manner as the vibrating unit 30 .
  • a transmission signal is generated by the oscillator 101 based on the signal input from the control device 100 and input to the amplifier 102 .
  • the transmission signal amplified by the amplifier 102 is input to the vibrator 104 to vibrate the inspection object 1 .
  • the vibration exciter 104 can vibrate the test object 1 with an induced electromagnetic force, and can vibrate the inspection object 1 by the electromagnetic force without contact.
  • FIG. 22 is a schematic diagram showing an inspection apparatus according to Embodiment 7 and an inspection target by the inspection apparatus.
  • the vibration response measuring unit 40 is composed of a signal processing device 111 and a vibration meter 113 and is controlled by the control device 100 in the same manner as the vibrating unit 30 .
  • a transmission signal is generated by the oscillator 101 based on the signal input from the control device 100 and input to the amplifier 102 .
  • the transmission signal amplified by the amplifier 102 is input to the vibration exciter 104 that excites the inspection object 1 by induced electromagnetic force.
  • the vibrometer 113 can measure the displacement of the vibration response in a non-contact manner using laser Doppler.
  • the vibration response can be measured without contact, and the inspection time can be shortened.
  • FIG. 23 is a schematic diagram showing an inspection apparatus according to the eighth embodiment and an object to be inspected by the inspection apparatus.
  • the vibration response measuring unit 40 is composed of a signal processing device 111 and vibration meters 113a and 113b, and is controlled by the control device 100 in the same manner as the vibrating unit 30.
  • a transmission signal is generated by the oscillator 101 based on the signal input from the control device 100 and input to the amplifier 102 .
  • the transmission signal amplified by the amplifier 102 is input to the vibration exciter 104 that excites the inspection object 1 by induced electromagnetic force.
  • the vibration exciter 104 that excites the inspection object 1 by induced electromagnetic force.
  • the measurement time of the response displacement can be shortened by using the vibrometers 113a and 113b based on multiple laser Dopplers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

被検査物体(1)が支持されている部分(3)の剛性と被検査物体(1)の損傷の大きさとを変化させたことによる固有振動数の変化を、あらかじめ記憶するデータ記憶部(50)、加振された被検査物体(1)の振動応答を測定部(40)で計測し、振動応答から算出された被検査物体(1)の固有振動数と損傷状態が既知である被検査物体(1)を計測して得られた固有振動数との間の固有振動数の変化と、データ記憶部(50)に記憶された固有振動数の変化と、に基づいて被検査物体(1)が支持されている部分(3)の剛性と被検査物体(1)の損傷の大きさとを同時に推定する推定部(60)を備えた検査装置(20)。

Description

検査装置および検査方法
 本願は、検査装置および検査方法に関するものである。
 構造内部の損傷は目視点検による検査ができず、通常の検査では気付かないまま損傷の拡大が生じ、構造物の寿命に影響を及ぼす。そのため、構造内部の損傷を検知することは構造物の検査にとって重要な課題となっている。
 一般に、構造内部の損傷を非破壊で検査する方法として、構造の振動応答の変化、超音波探傷、およびX線検査手法がある。構造の振動応答の変化は他の非破壊検査方法に比べて装置の小型化が容易で、非接触での計測が可能である。しかし、超音波またはX線など、内部の損傷からの反射を計測する方法ではないので、構造の振動応答の変化と内部の損傷との関係を用いた逆解析で内部損傷を推定する必要がある。
 例えば、被検査物体に音を照射し、たわみ振動を励起し、励起されたたわみ振動を検出し、検出されたたわみ振動の周波数と振幅とに基づいて、被検査物体の固有振動数を推定する。これによって、被検査物体の状態を検査することが知られている(特許文献1参照)。
特開2004-69301号公報
 被検査物体の振動応答の変化からき裂を推定するが、被検査物体を支持している条件が変化しても振動応答が変化するため、支持条件による変化と、き裂による変化とを分離することが出来ず、き裂の推定精度が低下するという問題があった。
 本願は上述のような問題を解決するためになされたもので、支持されている部分の剛性が変化しても表面から見えない損傷の大きさを推定する精度が向上する、検査装置および検査方法を提供することを目的とする。
 本願に開示される検査装置は、
 被検査物体が支持されている部分の剛性と被検査物体の損傷の大きさとを変化させたことによる固有振動数の変化を、あらかじめ記憶するデータ記憶部、
 加振された被検査物体の振動応答を計測する測定部、
 測定部で計測した振動応答から算出された被検査物体の固有振動数と損傷状態が既知である被検査物体を計測して得られた固有振動数との間の固有振動数の変化と、データ記憶部に記憶された固有振動数の変化と、に基づいて被検査物体が支持されている部分の剛性と被検査物体の損傷の大きさとを同時に推定する推定部、を備えたことを特徴とする。
 本願に開示されるき裂の検査装置によれば、
 被検査物体が支持されている部分の剛性と、表面から見えない損傷の大きさを同時に推定することができるため、支持されている部分の剛性が変化しても表面から見えない損傷の大きさを推定する精度を向上することができる。
実施の形態1に係る検査装置のブロック図である。 実施の形態1に係る検査装置と検査対象を示す模式図である。 図2の検査対象を支持部の剛性を示す図である。 実施の形態1に係る制御装置のハードウェア構成の一例を説明する図である。 検査対象にき裂が有る場合の振動モードの例を示す図である。 検査対象を支持している部分の剛性の変化により固有振動数が変化する例を示す図である。 検査対象にき裂がある場合の固有振動数が変化する例を示す図である。 検査対象の支持部の剛性の変化と、き裂により固有振動数が変化する例を示す図である。 実施の形態1に係る検査装置の推定方法を説明するフロー図である。 推定方法のフローの内、固有振動数の確率分布A算出部の計算フローを説明する図である。 推定方法のフローの内、測定した固有振動数の確率分布B算出部の計算フローを説明する図である。 確率分布Aと確率分布Bの積を最大とするき裂の大きさ、支持条件を求める計算フローを説明する図である。 検査対象が表面から見えない損傷により固有振動数の変化する振動モードを説明する図である。 実施の形態2に係る検査装置のブロック図である。 実施の形態3に係る検査対象の運転中または運転と停止の間の加振周波数の変化を説明する図である。 実施の形態3に係る制御装置のハードウェア構成の一例を説明する図である。 実施の形態4に係る検査装置と検査対象を示す模式図である。 実施の形態4に係る検査装置の推定方法を説明するフロー図である。 実施の形態4に係る検査装置の推定方法を説明する別のフロー図である。 実施の形態4に係る制御装置のハードウェア構成の一例を説明する図である。 実施の形態5に係る検査装置と検査対象を示す模式図である。 実施の形態6に係る検査装置と検査対象を示す模式図である。 実施の形態7に係る検査装置と検査対象を示す模式図である。
 以下、本願を実施するための実施の形態に係るき裂の検査装置について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。
実施の形態1.
 図1は、実施の形態1に関わる検査装置の構成例を示すブロック図、図2は、実施の形態1に関わるき裂の検査装置と検査対象を示す模式図である。
<検査装置の概略説明>
 図1に示す、き裂の検査装置20(以下、検査装置20と称す)は、検査対象1を加振する加振部30、加振した検査対象1の振動応答を計測する振動応答の測定部40、図2で示す検査対象1の支持部3の剛性を変化させた検査対象1の振動応答を記憶するデータ記憶部50、計測した振動応答から、検査対象1を支持している部分(以下支持部)3の剛性と、表面から見えない損傷である、き裂2の大きさを推定する推定部60、推定部60の推定結果を出力する推定結果出力部70から構成される。図3は検査対象1の支持部3の剛性を示す図である。図3において、検査対象1は、両端で図3に示す座標系のX、Y、Zの3軸を支持している。支持部3の剛性11~15は、バネの形で表現されている。支持構造は、バネ以外にもボルト固定、圧入などでも良い。
 図1において、加振部30は、図2に示す発振器101、増幅器102、加振器103から成り、制御装置100で制御される。振動応答の測定部40は、図2に示す信号処理装置111と振動計112から成り、加振部30と同様に制御装置100で制御される。
 検査対象1を、制御装置100から入力される信号に基づいて、発振器101で発信信号を生成し、増幅器102に入力する。増幅器102で増幅された発信信号を、加振器103に入力して、検査対象1を加振する。加振器103の例としては、電気式アクチュエーター、油圧式アクチュエーターなどがある。
 加振した検査対象1の振動応答を振動計112で計測し、信号処理装置111で、計測した振動応答を電気信号に変換し、制御装置100に入力することで、加振から振動応答の計測を制御する。振動計112の例としては加速度計などがある。
 なお、本実施の形態では、制御装置100に、検査装置20の機能が含まれる。すなわち、以下に説明するデータ記憶部50、推定部60および推定結果出力部70の機能は制御装置内に含まれる。制御装置100内の構成については、追って説明する。
 図1のデータ記憶部50では、図2または図3に示した検査対象1の支持部3の剛性11~15の変化による、検査対象1の固有振動数の変化を求め、その結果を記憶する。
 データ記憶部50に記憶する検査対象1の固有振動数と、支持部3の剛性11~15との関係は、支持部の剛性を変化させながら実際に振動を計測して求めても良いし、数値解析で求めてもよい。本実施の形態では、数値解析で求める例を図1に示している。
 数値解析は、最初に、データ記憶部50内の形状モデル生成部51で検査対象1を数値モデル化する。次に、支持部の剛性生成部52で、形状モデルを支持している部分を数値モデル化する。数値モデル化した検査対象の支持条件を変化させて生成した固有振動数の計算部53、54で、数値モデルにおいて検査対象1の支持条件を変化させて、固有振動数を計算し、保管部55で計算結果をデータとして保管する。
 図1の推定部60では、振動応答の測定部40で計測した振動応答から、固有振動数の算出部61で固有振動数を算出する。算出した固有振動数から固有振動数の変化量を算出する。データ記憶部50に保管した固有振動数のデータと、計測した振動応答から算出した固有振動数の変化量とから、支持部の剛性と損傷の大きさの推定部63で、支持部3の剛性11~15と検査対象1のき裂2の大きさを推定する。推定部60で推定した結果を推定結果出力部70で出力する。
 図4は、制御装置100内のハードウェアの一例を示す模式図である。
制御装置100内の検査装置の機能である、データ記憶部50および振動応答の測定部40の振動応答データの記憶は、メモリ302によって実現される。メモリ302は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性もしくは揮発性の半導体メモリ、または、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)などである。
 データ記憶部50内の動作、推定部60内の動作は、メモリ302に記憶されたプログラムを実行するCPU、システムLSI等のプロセッサ301によって実現される。また、複数の処理回路が連携して上記機能を実行してもよい。さらに、専用のハードウェアによって上記機能を実現してもよい。専用のハードウェアによって上記機能を実現する場合は、専用のハードウェアは、例えば、単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、あるいは、これらを組み合わせたものである。上記機能は、専用ハードウェアとソフトウェアとの組み合わせ、あるいは、専用ハードウェアとファームウェアとの組み合わせによって実現してもよい。例えば、データ記憶部50内の動作、推定部60内の動作は、メモリ302に記憶されたプログラムを実行するCPU、システムLSI等のプロセッサ301によって実現してもよい。
 なお、加振部30および振動応答の測定部の制御は、検査装置の機能を実行させるのと同様に、メモリ302に記憶されたプログラムをプロセッサ301が実行することによって実現される。
<固有振動数の変化量の説明>
 推定部60の固有振動数の算出部61、固有振動数の変化量算出部62について詳細に説明する。
 図5は、検査対象1にき裂がある場合の振動モードを説明する図である。図5(a)に示すように、き裂2が検査対象1にある場合、固有振動数が変化する。図5(b)、図5(c)は、検査対象1に、き裂2が有る場合の振動モードの例を示す図である。図5(b)、図5(c)は、検査対象1を図5(a)の方向Aから見た図であり、これら図により、き裂2による振動モードの変化を説明する。図5(b)に示すように、き裂2により検査対象の剛性が部分的に変化し、剛性が変化した部分が大きく変形する振動モードでは、き裂2で固有振動数の変化が大きい。これに対し、図5(c)に示すように、剛性が変化した部分が変形しない振動モードでは、き裂2で固有振動数の変化が小さい。本実施の形態では、検査対象の複数の振動モードの中で、き裂2により固有振動数の変化が大きいモード(図5(b)で示すようなモード)を対象に説明する。
 図6に、検査対象1の支持部の剛性の変化により固有振動数が変化する例を示す。図6(a)は、支持条件Aの場合で、支持部の剛性11、12をバネP1、剛性14、15をバネQ1とする。応答を計測する点は、点αとする。図6(b)の支持条件Bでは,支持部の剛性11、12をバネP2、剛性14、15をバネQ2とする。応答を計測する点は、図6(a)と同じ点αとする。計測した振動応答を、横軸に周波数、縦軸に応答変位とした模式図を図6(c)に示す。図6(c)において、支持条件Aの振動応答は実線で示し、支持条件Bの振動応答は破線で示す。各支持条件A、Bで、固有振動数の変化が大きいモードを対象に振動応答から、固有振動数の算出部61で固有振動数を求める。図6(c)では、支持条件Aの固有振動数S、支持条件Bの固有振動数Sである。固有振動数Sから固有振動数Sへの変化量Sを固有振動数の変化量算出部62で算出する。
 図7に、き裂2により固有振動数が変化する例を示す。支持部の剛性11、12をバネP1、剛性14、15をバネQ1とすることは、図6で説明した支持条件Aと同じである。応答を計測する点は、図6と同様に点αとする。き裂2ありの場合は、図7(b)で示すように、支持条件Aの検査対象1に、き裂2がある場合である。計測した振動応答を、横軸に周波数、縦軸に応答変位とした模式図を、図7(c)に示す。図7(c)において、き裂2なしの振動応答は実線で示し、き裂2有りの振動応答は一点鎖線で示す。き裂2の有無、およびき裂2により固有振動数の変化が大きいモードを対象に振動応答から、固有振動数の算出部61で固有振動数を求める。図7(c)において、き裂2なしの固有振動数S、き裂2有りの固有振動数Sを示している。固有振動数Sから固有振動数Sへの変化量Sを、固有振動数の変化量算出部62で算出する。この固有振動数の変化量Sは、き裂の有無だけでなくき裂の大きさによっても変化量が変わる。
 図8に、検査対象1の支持部の剛性の変化と、き裂2により固有振動数が変化する例を示す。図8(a)において、支持条件Aでは支持部の剛性11、12をバネP1、剛性14、15をバネQ1とし、図8(b)において、支持条件Bで、支持部の剛性11、12をバネP2、剛性14,15をバネQ2とする。応答を計測する点αは、図6、図7と同じである。き裂ありの場合は、検査対象1に、き裂2がある。計測した振動応答を、横軸に周波数、縦軸に応答変位とした模式図を図8(c)に示す。図8(c)において、支持条件Aで、き裂なしの振動応答は実線で示し、支持条件Bで、き裂2有りの振動応答は二点鎖線で示す。き裂の有無、およびき裂2により固有振動数の変化が大きいモードを対象に振動応答から、固有振動数の算出部61で固有振動数を求める。図8(c)において、支持条件Aで、き裂2なしの固有振動数SAN、支持条件B、き裂2有りの固有振動数SBYを示している。固有振動数SANから固有振動数SBYへの変化量Sを、固有振動数の変化量算出部62で算出する。
 この固有振動数の変化Sは、図6の固有振動数の変化S、図7の固有振動数の変化Sとは異なる。支持条件の変化、き裂の有無、き裂の大きさを、固有振動数の変化から以下の手順により推定する。
<検査前の手順>
 図1で示した推定部60の、支持部の剛性と損傷の大きさの推定部63について詳細に説明する。図9に推定手法のフロー図を示す。検査対象1が決まって実際に検査を行う前において、固有振動数の計算部53では、例えばき裂などの損傷がない(損傷の大きさがゼロ)等、き裂などの損傷状態が既知である検査対象1の支持条件を変化させて数値解析で固有振動数(第1の固有振動数と称す)を計算する。計算結果を保管部55に保管する。固有振動数の算出部61では、き裂などの損傷状態が既知である検査対象を加振部30により加振して、測定された振動応答から、固有振動数の算出部61で固有振動数(第2の固有振動数と称す)を算出する。第1の固有振動数と、第2の固有振動数とを、固有振動数の確率分布A算出部163に入力し、支持条件を確率分布Aとして求める。
 次に、固有振動数の計算部54で、検査対象に複数の形状の損傷を入れて(ゼロでない損傷の大きさを変化させ、)支持条件を変化させて数値解析で固有振動数(第3の固有振動数と称す)を算出する。算出した第3の固有振動数を保管部55に保管する(以下、損傷をき裂と称すこともある)。
<検査時の手順>
 検査時には、振動応答の測定部40で、検査対象1を加振して振動応答を測定する。測定した振動応答から、固有振動数の算出部61により、固有振動数を算出する(第4の固有振動数と称す)。上述の検査前に計測した第2の固有振動数と第4の固有振動数との差を固有振動数の変化量算出部62で算出する。この算出結果と、保管部55に保管されている第1の固有振動数と第3の固有振動数との差を固有振動数の確率分布B算出部171に入力する。固有振動数の確率分布B算出部171において、検査対象1のき裂2の大きさ、および支持条件の確率分布Bを求める。計算部173により、確率分布Aと確率分布Bの積を求める。求めた積の結果から、計算部174にて、確率分布を最大とするき裂の大きさ、および支持部の支持条件を求める。
<検査前のデータの流れ詳細>
 検査前の固有振動数の計算部53、固有振動数の算出部61、固有振動数の確率分布A算出部163の具体的なデータの流れを説明する。図10は、固有振動数の確率分布A算出部163の計算フローを示す。図10に示すように、推定する支持条件の変化と、き裂2の大きさを、推定するパラメータXのベクトルとする。支持条件K、K、き裂2の大きさCとする。まず、き裂2の大きさCを0とし、推定するパラメータXpriorとする。ここで、支持条件K、Kを変化させる範囲をそれぞれ決定する。図1で示した形状モデル生成部51で作成した形状モデルの、支持条件K、Kを、固有振動数の計算部53により変化させ、第1の固有振動数fcal(Xprior)を求める。
 き裂などの損傷がない(損傷の大きさがゼロ)等、き裂などの損傷状態が既知である検査対象を加振した振動応答の測定部40の出力から固有振動数の算出部61で第2の固有振動数fobs_nocrackを算出する。第2の固有振動数fobs_nocrackと、固有振動数の計算部53で算出した第1の固有振動数fcal(Xprior)とを固有振動数の確率分布A算出部163に入力する。そして、固有振動数の確率分布A算出部163に示す尤度が最大となる固有振動数KA_center、KB_centerを求める。求めた固有振動数KA_center、KB_centerが、ある範囲で変化しても推定できるように、範囲εを決める。その範囲内にある確率をその範囲外にある確率よりも大きくする。その範囲内にある確率をU、Uとする。確率分布AをPprior(Xprior)とし、確率U、Uから求める。
<検査時のデータの流れ詳細>
 検査時に算出した固有振動数の確率分布B算出のデータの流れを説明する。図11は測定した振動応答から算出した固有振動数の確率分布Bを算出する計算フローである。図11に示すように、固有振動数の計算部54では、推定するパラメータをXlikeliとして、ゼロでないき裂の大きさCも推定する。き裂の大きさC、支持条件K、Kを変化させる範囲をそれぞれ決定する。形状モデル生成部51で作成した形状モデルで、き裂の大きさC、支持条件K、Kを変化させた第3の固有振動数fcal(Xlikeli)を、検査前に求めておく。求めた第3の固有振動数fcal(Xlikeli)と、固有振動数の計算部53で計算した第1の固有振動数fcal(Xprior)との差Δfcal(Xlikeli)を求める。保管部55で、差Δfcal(Xlikeli)を保管する。
 固有振動数の算出部61では、振動応答の測定部40の出力から算出した第4の固有振動数fobsを算出し、固有振動数の変化量算出部62で、図10で説明した検査前に算出した第2の固有振動数fobs_nocrackとの変化量Δfobsを求める。固有振動数の確率分布B算出部171では、変化量Δfobsと差Δfcal(Xlikeli)との誤差eが、ある確率分布を持つとして、尤度関数L(Xlikeli|Δfobs)を確率分布Bとする。図11では、確率分布の例として、多次元ガウス分布とした。
 確率分布Aと確率分布Bの積を求める計算部173と、確率分布を最大とするき裂の大きさ、支持条件の計算部174について説明する。図12は、確率分布AとBの積を最大とするき裂の大きさ、支持条件を求める計算フローを示す。確率分布AとBの積を求める計算部173では、確率分布B(L(Xlikeli|Δfobs))と、確率分布A(Pprior(Xprior))の積を算出する。これを事後確率とする。また、き裂2の大きさCを推定するためにPposteriorを周辺化してPposterior(C)を求める。求めたPposterior(C)を最大化するCを、推定値Cestとして推定する。この手法は、ベイズ推定の一つであるMAP法により事後確率を最大化する方法と同じである。
 以上のように、実施の形態1による検査装置20は、検査対象1を加振する加振部30と、加振した検査対象1の振動応答の測定部40と、検査対象1が支持されている部分の剛性と損傷の大きさとを変化させた固有振動数の変化を記憶するデータ記憶部50と、計測した振動応答から固有振動数を固有振動数の算出部61で求め、き裂などの損傷がない(損傷の大きさがゼロ)等、き裂などの損傷状態が既知である場合からの固有振動数の変化を固有振動数の変化量算出部62で算出し、算出した固有振動数の変化と、データ記憶部50にある固有振動数の変化とを組合せて、検査対象1が支持されている部分の剛性と表面から見えない損傷の大きさとを同時に推定する推定部60と、により、検査対象1が支持されている部分の剛性と、表面から見えない損傷の大きさとを同時に推定することから、支持されている部分の剛性が変化しても、表面から見えない損傷の大きさを推定する精度が向上する。
実施の形態2.
 実施の形態1と異なる点のみを示す。本実施の形態の特徴は、実施の形態1に示す検査装置20で固有振動数を求める振動モードとして、検査対象1が表面から見えない損傷により大きく固有振動数が変化する振動モードを選定することにある。図13は、検査対象1が表面から見えない損傷により固有振動数の変化する振動モードを示すものである。図13では、図5で説明したように、検査対象1を方向Aから見た図で、き裂2による振動モードの変化を説明する。
 図13(a)に示すように、き裂2により検査対象1の剛性が部分的に変化し、剛性が変化した部分が大きく変形する振動モードXでは、き裂2で固有振動数の変化が大きい。図13(b)に示すように、剛性が変化した部分が変形しない振動モードYでは、き裂2で固有振動数の変化が小さい。
 図13(c)に示すように、剛性が変化した部分が大きく変形する振動モードXでは、き裂なしの振動応答から求めた、き裂なしの固有振動数Xと、き裂2ありの振動応答から求めた、き裂2ありの固有振動数Xとの固有振動数の変化Xは、ある程度の大きさを持って変化する。しかし、剛性が変化した部分が変形しない振動モードYでは、図13(d)に示すように、き裂なしの振動応答から求めた、き裂なしの固有振動数Yと、き裂2ありの振動応答から求めた、き裂2ありの固有振動数Yとの固有振動数の変化の大きさは、非常に小さい。そのため、振動モードXに代表されるような、き裂により固有振動数の変化が大きい振動モードに限定して、検査装置20に示す固有振動数および固有振動数の変化量を算出する。
 このため、図14に示すように、検査装置20は、検査対象1が表面から見えない損傷により大きく固有振動数が変化する振動モードを選定する選定部80を含む。選定部80は、固有振動数の変化量算出部62の結果に基づいて選定を行ってもよい。選定部80で選定した、固有振動数の変化が大きい振動モードを対象に、推定部60の処理を行うことで、推定に要する時間の短縮を図る。さらに、表面から見えない損傷に対して固有振動数の変化が小さいモードを使うことによる推定誤差の増大を防止する。
実施の形態3.
 本実施の形態は、検査装置20において、加振部30により加振する代わりに、検査対象1の運転中または運転と停止との間の振動応答を使用する。図15は、この際の運転中または起動と停止の間の加振周波数の変化を示す図である。図15の横軸は時間、縦軸は検査対象1に、起動、停止、または運転中に加わる加振力の周波数である。ここでは、例として検査対象1を回転機として説明する。回転機は停止している状態から起動し、運転中になるまでに回転数が増加する。その回転数の増加に伴い回転機に加わる加振力の周波数も増加する(図15中E)。運転中は周波数の変化はないか、あるいは小さく(図15中F)、停止する際には周波数が減少する(図15中G)。このように、加振周波数の変化で検査対象1を加振し、その際の振動応答を測定する。
 本実施の形態のハードウェア構成図を図16に示す。前述した通り、加振部30を必要としないが、回転機の制御をメモリ302に記憶されたプログラムにより図15に示すように図15で説明した起動、運転、停止の制御をプロセッサ301により行う。
 以上のような構成により、検査対象1の動作時の振動により検査対象1を加振することで、加振部を備える必要がなく、検査装置を小型化できる。
実施の形態4.
 図17は、本実施の形態の検査装置と検査対象を示す図である。実施の形態1では、制御装置100内に検査装置20が含まれていたが、検査装置20の機能の一部を制御装置から分けることにより、制御装置100の小型化を実現する。以下本構成について詳述する。なお、本実施の形態は、追って説明する実施の形態5、6、7にも適用できる。
 図18は、本実施の形態の推定手法のフロー図である。実施の形態1からの変更点のみ説明する。本実施の形態の特徴は、図17,図18に示すように、検査時には、加振部30で、検査対象1を加振して振動応答を計測する。計測した振動応答を振動応答の伝送部175で伝送し、固有振動数の算出部61で、固有振動数を算出する。
 以上のように、振動応答の伝送部175により、振動応答の測定部40により計測した振動応答を伝送することで、検査対象1の近くに、検査装置20の推定部60を配置する必要がなく、検査装置の小型化が可能となる。
 一方、図19は、本実施の形態の別の推定手法のフロー図である。実施の形態1からの変更点のみ説明する。本実施の形態の特徴は、図17、図19に示すように、検査時には、振動応答の測定部40で、検査対象1の振動応答を計測する。計測した振動応答から、固有振動数の算出部61で、固有振動数を算出し、固有振動数の変化量算出部62で固有振動数の変化量を算出する。算出した固有振動数の変化量を、固有振動数の伝送部176により、固有振動数の確率分布B算出部171に伝送し、確率分布Bを算出する。
 以上のように、計測した振動応答から固有振動数の変化量を算出した後、固有振動数の伝送部176により伝送することで、伝送するデータ量を小さくすることができるとともに、固有振動数の伝送部176を介して検査装置20の機能を一部分割して配置することができるため、検査装置20の小型化が可能となる。
 振動応答の伝送部175、固有振動数の伝送部176は、図20に示すように、送信装置、受信装置、送受信経路となる光ファイバあるいは同軸ケーブルなどにより構成される伝送装置によって実現される。伝送するためのデータを作製する処理は、メモリ402に記憶されたプログラムを実行するCPU、システムLSI等のプロセッサ401によって実現される。メモリ402は、例えば、ROM、RAM、フラッシュメモリ、EPROM、EEPROM等の不揮発性もしくは揮発性の半導体メモリ、または、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどである。また、複数の処理回路が連携して上記機能を実行してもよい。さらに、専用のハードウェアによって上記機能を実現してもよい。専用のハードウェアによって上記機能を実現する場合は、専用のハードウェアは、例えば、単一回路、複合回路、プログラム化されたプロセッサ、ASIC、FPGA、あるいは、これらを組み合わせたものである。上記機能は、専用ハードウェアとソフトウェアとの組み合わせ、あるいは、専用ハードウェアとファームウェアとの組み合わせによって実現してもよい。
実施の形態5.
 図21は、実施の形態6に関わる検査装置とその検査装置による検査対象を示す模式図である。図21に示す加振部30は、発振器101、増幅器102、加振器104から構成され、制御装置100で制御される。振動応答の測定部40は、信号処理装置111、振動計112から構成され、加振部30と同様に制御装置100で制御される。
 検査対象1を、制御装置100から入力される信号に基づいて発振器101で発信信号を生成し、増幅器102に入力する。増幅器102で増幅された発信信号を加振器104に入力して、検査対象1を加振する。加振器104は、誘導電磁力で加振し、電磁力により、非接触で検査対象1を加振できる。
 以上のように、加振部に電磁誘導加振を使用して加振することで、非接触で加振ができ、検査時間を短縮できる。
実施の形態6.
 図22は、実施の形態7に関わる検査装置とその検査装置による検査対象を示す模式図である。図22に示す加振部30は、発振器101、増幅器102、加振器104から構成され、制御装置100で制御される。振動応答の測定部40は、信号処理装置111と振動計113から構成され、加振部30と同様に制御装置100で制御される。
 検査対象1を、制御装置100から入力される信号に基づいて発振器101で発信信号を生成し、増幅器102に入力する。増幅器102で増幅された発信信号を、誘導電磁力で加振する加振器104に入力して、検査対象1を加振する。振動計113は、レーザードップラーにより、非接触に振動応答の変位を計測できる。
 以上のように、加振部に電磁誘導加振を使用し、レーザードップラーによる振動計113を使用することで、非接触に振動応答を計測でき、検査時間を短縮できる。
実施の形態7.
 図23は、実施の形態8に関わる検査装置とその検査装置による検査対象を示す模式図である。図19に示す加振部30は、発振器101、増幅器102、加振器104から構成され、制御装置100で制御される。振動応答の測定部40は、信号処理装置111と振動計113a、113bから成り、加振部30と同様に制御装置100で制御される。
 検査対象1を、制御装置100から入力される信号に基づいて発振器101で発信信号を生成し、増幅器102に入力する。増幅器102で増幅された発信信号を誘導電磁力で加振する加振器104に入力して、検査対象1を加振する。レーザードップラーによる振動計113a、113bを使うことで、振動応答の変位を複数個所一度に非接触で計測できる。
 以上のように、複数のレーザードップラーによる振動計113a、113bを使用することで、応答変位の計測時間を短縮できる。
 本願は、様々な例示的な実施の形態が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1:検査対象、2:き裂、3:支持部、20:検査装置、30:加振部、40:振動応答の測定部、50:データ記憶部、51:形状モデル生成部、52:支持部の剛性生成部、53,54:固有振動数の計算部、55:保管部、60:推定部、61:固有振動数の算出部、62:固有振動数の変化量算出部、63:支持部の剛性と損傷の大きさの推定部、70:推定結果出力部、100:制御装置、101:発振器、102:増幅器、103、104:加振器、111:信号処理装置、112、113、113a、113b:振動計、163:固有振動数の確率分布A算出部、171:固有振動数の確率分布B算出部、173、174:計算部、175:振動応答の伝送部、176:固有振動数の伝送部。

Claims (16)

  1.  被検査物体が支持されている部分の剛性と前記被検査物体の損傷の大きさとを変化させたことによる固有振動数の変化を、あらかじめ記憶するデータ記憶部、
     加振された前記被検査物体の振動応答を計測する測定部、
     前記測定部で計測した振動応答から算出された前記被検査物体の固有振動数と損傷状態が既知である前記被検査物体を計測して得られた固有振動数との間の固有振動数の変化と、前記データ記憶部に記憶された固有振動数の変化と、に基づいて前記被検査物体が支持されている部分の剛性と前記被検査物体の損傷の大きさとを同時に推定する推定部、
    を備えた検査装置。
  2.  前記推定部において、前記データ記憶部に記憶された損傷の大きさがゼロの前記被検査物体が支持されている部分の剛性を変化させて算出した第1の固有振動数と、計測された損傷状態が既知である前記被検査物体を加振して得られる剛性の変化による第2の固有振動数とから第1の確率分布を算出し、前記データ記憶部に記憶されたゼロでない大きさの損傷と剛性とを変化させた第3の固有振動数の前記第1の固有振動数からの変化と、検査時の被検査物体を計測した振動応答から算出された第4の固有振動数の前記第2の固有振動数からの変化から、損傷と剛性との変化による第2の確率分布を算出し、前記第1の確率分布と前記第2の確率分布とを積算した第3の確率分布が最大となる損傷の大きさを、推定した損傷の大きさとすることを特徴とする請求項1に記載の検査装置。
  3.  前記推定部において、前記第3の確率分布をベイズ推定を用いることにより最大にすることを特徴とする請求項2に記載の検査装置。
  4.  前記第2の固有振動数から前記第4の固有振動数への変化が、あらかじめ定められた値よりも大きい振動モードを選定する選定部を有し、前記選定部で選定した振動モードにより、検査を行うことを特徴とする請求項2または3に記載の検査装置。
  5.  前記被検査物体の動作時の振動により前記被検査物体を加振することを特徴とする請求項1から4のいずれか1項に記載の検査装置。
  6.  前記測定部からあらかじめ定められた距離を隔てて前記推定部が配置され、前記測定部で計測した振動応答を前記推定部に伝送する伝送部を備えたことを特徴とする請求項1から5のいずれか1項に記載の検査装置。
  7.  被検査物体が支持されている部分の剛性と前記被検査物体の損傷の大きさとを変化させたことによる固有振動数の変化を、あらかじめ記憶するデータ記憶部、
     加振された前記被検査物体の振動応答を計測する測定部、
     前記測定部で計測した振動応答から算出された前記被検査物体の固有振動数と損傷状態が既知である前記被検査物体を計測して得られた固有振動数との間の固有振動数の変化と、前記データ記憶部に記憶された固有振動数の変化と、に基づいて前記被検査物体が支持されている部分の剛性と前記被検査物体の損傷の大きさとを同時に推定する推定部、を備え、
     前記推定部は、前記データ記憶部に記憶された損傷の大きさがゼロの前記被検査物体が支持されている部分の剛性を変化させ第1の固有振動数を算出し、前記データ記憶部に記憶されたゼロでない大きさの損傷と剛性とを変化させた第3の固有振動数を算出する固有振動数計算部と、検査前に計測された損傷状態が既知である前記被検査物体を加振して得られる剛性の変化による第2の固有振動数を算出し、検査時の被検査物体を計測した振動応答から第4の固有振動数を算出する固有振動数算出部と、前記第2の固有振動数と前記第4の固有振動数の変化を算出する固有振動数変化量算出部と、前記第1の固有振動数と前記第2の固有振動数とに基づいて固有振動数の確率分布を算出する第1の確率分布算出部と、前記固有振動数変化量算出部の出力と、前記第1の固有振動数と前記第3の固有振動数との差に基づいて固有振動数の確率分布を算出する第2の確率分布算出部と、前記第1の確率分布算出部の出力と前記第2の確率分布算出部の出力とを積算する積算部とを有し、前記積算部の出力が最大となる損傷の大きさを、推定した損傷の大きさとすることを特徴とする検査装置。
  8.  前記推定部のうち、前記固有振動数算出部と前記固有振動数変化量算出部とは、前記推定部からあらかじめ定められた距離を隔てて前記測定部とともに配置され、伝送部を備えることにより、前記推定部と信号の伝送を行うことを特徴とする請求項7に記載の検査装置。
  9. 前記被検査物体の加振を電磁誘導による加振器で行うことを特徴とする請求項1から8のいずれか1項に記載の検査装置。
  10.  前記測定部にレーザードップラー振動計を備えたことを特徴とする請求項1から9のいずれか1項に記載の検査装置。
  11.  前記レーザードップラー振動計を複数備え、前記被検査物体の変位を複数個所一度に計測することを特徴とする請求項10に記載の検査装置。
  12.  被検査物体が支持されている部分の剛性と前記被検査物体の損傷の大きさとを変化させたことによる固有振動数の変化を、あらかじめ記憶する第1のステップ、
     加振された前記被検査物体の振動応答を計測する第2のステップ、
     前記第2のステップで計測した振動応答から算出された前記被検査物体の固有振動数と損傷状態が既知である前記被検査物体を計測して得られた固有振動数との間の固有振動数の変化と、前記第1のステップで記憶された固有振動数の変化と、に基づいて前記被検査物体が支持されている部分の剛性と前記被検査物体の損傷の大きさとを同時に推定する第3のステップ、
    を有する検査方法。
  13.  前記第3のステップにおいて、記憶された損傷の大きさがゼロの前記被検査物体が支持されている部分の剛性を変化させて算出した第1の固有振動数と、計測された損傷状態が既知である前記被検査物体を加振して得られる剛性の変化による第2の固有振動数とから第1の確率分布を算出し、前記第1のステップで記憶されたゼロでない大きさの損傷と剛性とを変化させた第3の固有振動数の前記第1の固有振動数からの変化と、検査時の被検査物体を計測した振動応答から算出された第4の固有振動数の前記第2の固有振動数からの変化から、損傷と剛性との変化による第2の確率分布を算出し、前記第1の確率分布と前記第2の確率分布とを積算した第3の確率分布が最大となる損傷の大きさを、推定した損傷の大きさとすることを特徴とする請求項12に記載の検査方法。
  14.  前記第3の確率分布をベイズ推定を用いることにより最大にすることを特徴とする請求項13に記載の検査方法。
  15.  前記第2の固有振動数から前記第4の固有振動数への変化が、あらかじめ定められた値よりも大きい振動モードを選定し、選定した振動モードにより、検査を行うことを特徴とする請求項13または14に記載の検査方法。
  16.  前記被検査物体の動作時の振動により前記被検査物体を加振することを特徴とする請求項12から15のいずれか1項に記載の検査方法。
PCT/JP2021/031082 2021-08-25 2021-08-25 検査装置および検査方法 WO2023026382A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180101653.7A CN117836592A (zh) 2021-08-25 2021-08-25 检查装置及检查方法
JP2022549632A JP7203291B1 (ja) 2021-08-25 2021-08-25 検査装置および検査方法
PCT/JP2021/031082 WO2023026382A1 (ja) 2021-08-25 2021-08-25 検査装置および検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031082 WO2023026382A1 (ja) 2021-08-25 2021-08-25 検査装置および検査方法

Publications (1)

Publication Number Publication Date
WO2023026382A1 true WO2023026382A1 (ja) 2023-03-02

Family

ID=84887144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031082 WO2023026382A1 (ja) 2021-08-25 2021-08-25 検査装置および検査方法

Country Status (3)

Country Link
JP (1) JP7203291B1 (ja)
CN (1) CN117836592A (ja)
WO (1) WO2023026382A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315204A (ja) * 2002-04-26 2003-11-06 Railway Technical Res Inst 振動測定を利用した構造物地震損傷度判定方法
JP2011149752A (ja) * 2010-01-20 2011-08-04 Railway Technical Research Institute 路盤下の空洞診断方法および路盤の補修方法
JP2012163439A (ja) * 2011-02-07 2012-08-30 Toshiba Corp 回転機振動監視システムおよび監視方法
KR101740896B1 (ko) * 2016-04-14 2017-05-29 한국기계연구원 해상 풍력발전기 구조물의 건전성 모니터링 시스템 및 방법
JP2018091033A (ja) * 2016-12-02 2018-06-14 大成建設株式会社 シールドマシンの劣化診断方法
JP2019100913A (ja) * 2017-12-05 2019-06-24 公益財団法人鉄道総合技術研究所 付帯物支持状態の評価方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315204A (ja) * 2002-04-26 2003-11-06 Railway Technical Res Inst 振動測定を利用した構造物地震損傷度判定方法
JP2011149752A (ja) * 2010-01-20 2011-08-04 Railway Technical Research Institute 路盤下の空洞診断方法および路盤の補修方法
JP2012163439A (ja) * 2011-02-07 2012-08-30 Toshiba Corp 回転機振動監視システムおよび監視方法
KR101740896B1 (ko) * 2016-04-14 2017-05-29 한국기계연구원 해상 풍력발전기 구조물의 건전성 모니터링 시스템 및 방법
JP2018091033A (ja) * 2016-12-02 2018-06-14 大成建設株式会社 シールドマシンの劣化診断方法
JP2019100913A (ja) * 2017-12-05 2019-06-24 公益財団法人鉄道総合技術研究所 付帯物支持状態の評価方法

Also Published As

Publication number Publication date
CN117836592A (zh) 2024-04-05
JP7203291B1 (ja) 2023-01-12
JPWO2023026382A1 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
US8949085B2 (en) System and method for obtaining and de-noising vibratory data
JP4954729B2 (ja) コンクリート杭の健全性評価支援装置、健全性評価支援方法及び健全性評価支援プログラム
SE518997C2 (sv) Förfarande och anordning för att detektera skada i material eller föremål
RU2371691C1 (ru) Способ мониторинга машин и сооружений
JP2013537981A (ja) 光学撮像技術を用いたダンピングの測定方法
JP3327303B2 (ja) 被測定物の寿命予測方法及び装置
JP2018100948A (ja) 振動試験方法及び振動試験装置
RU2538069C2 (ru) Способ и устройство определения направленности дефекта, имеющегося внутри механического конструктивного элемента
Mohamed et al. Experimental validation of FEM-computed stress to tip deflection ratios of aero-engine compressor blade vibration modes and quantification of associated uncertainties
WO2023026382A1 (ja) 検査装置および検査方法
JP2005037390A (ja) 軸支されたシャフトを備えている軸受システムの固有周波数の判定方法及び装置
JP2004069301A (ja) 音響式検査方法および音響式検査装置
CN111566467B (zh) 用于发信号通知具有至少一个用于传导介质的振动测量管的密度计的标准频率的方法
WO2019093294A1 (ja) 推定装置、推定方法及びプログラム記憶媒体
JPWO2015059956A1 (ja) 構造物診断装置、構造物診断方法、及びプログラム
JP2008185345A (ja) 振動測定方法、および装置
JP2001324420A (ja) 回転機械の翼の振動予測方法及びその装置
JP5223832B2 (ja) 内部構造測定方法及び内部構造測定装置
JP2002214209A (ja) 欠陥診断装置
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
CN117490807B (zh) 一种科氏质量流量计的品质因数获取方法及系统
JP7486672B2 (ja) 検査装置、検査システム、検査方法、及び検査プログラム
RU2705515C1 (ru) Способ инерциального возбуждения механических колебаний в упругой оболочке
JP5307047B2 (ja) のり面保護工の診断方法および健全度診断装置
JP4326192B2 (ja) 非接触超音波間隙検出センサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022549632

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101653.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE