WO2023026369A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2023026369A1
WO2023026369A1 PCT/JP2021/031022 JP2021031022W WO2023026369A1 WO 2023026369 A1 WO2023026369 A1 WO 2023026369A1 JP 2021031022 W JP2021031022 W JP 2021031022W WO 2023026369 A1 WO2023026369 A1 WO 2023026369A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
potential
initialization
line
gate
Prior art date
Application number
PCT/JP2021/031022
Other languages
English (en)
French (fr)
Inventor
圭一 山本
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2021/031022 priority Critical patent/WO2023026369A1/ja
Publication of WO2023026369A1 publication Critical patent/WO2023026369A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix

Definitions

  • the present invention relates to display devices.
  • OLED organic light emitting diode
  • Patent Document 1 discloses a light-emitting device having a pixel having a pixel circuit and a temperature detection circuit.
  • the light-emitting device disclosed in Patent Document 1 has a reading line connected to the output end of the temperature detection circuit. This reading line is an unnecessary bus line in a light-emitting device that does not detect the temperature of pixels.
  • the degree of freedom in design is limited due to unnecessary bus lines provided in a light-emitting device that does not detect the temperature of pixels.
  • a display device includes at least one first pixel having a first drive transistor and a first initialization transistor that initializes the first drive transistor, and a second drive transistor. and a second initialization transistor that initializes the second drive transistor, and is connected to the first drive transistor through the first initialization transistor. a first initialization line connected to the second initialization transistor, a second initialization line connected to the second drive transistor through the second initialization transistor, a second initialization line connected to the second initialization line, and a gate a first temperature sensing transistor connected to the first initialization line.
  • a display device with a high degree of design freedom can be realized.
  • FIG. 1 is a schematic diagram of a display device according to each embodiment of the present invention
  • FIG. 1 is a circuit diagram showing a schematic configuration of a main part of a display device according to Embodiment 1 of the present invention
  • FIG. 4 is a circuit diagram showing an example of an output circuit
  • FIG. 4 is a timing chart showing an example of potentials of a gate line, a monitor line, an emission line, a data line, a first initialization line, and a second initialization line
  • 4 is a timing chart showing an example of on/off of a switch of an output circuit
  • 7 is a graph illustrating an example of a technique for detecting the temperature of the first pixel
  • 4 is a graph illustrating an example of compensation for voltage-current characteristic shift of the first drive transistor;
  • FIG. 1 is a schematic diagram of a display device according to each embodiment of the present invention
  • FIG. 1 is a circuit diagram showing a schematic configuration of a main part of a display device according to Embodiment 1 of the
  • FIG. 3 is a circuit diagram showing a schematic configuration of main parts of a display device according to Embodiment 2 of the present invention
  • FIG. 10 is a circuit diagram showing a schematic configuration of main parts of a display device according to Embodiment 3 of the present invention
  • FIG. 1 is a schematic diagram of a display device 100 according to each embodiment of the present invention.
  • the display device 100 is a specific example of an active matrix OLED display device.
  • the display device 100 includes a display control circuit 110 , a display section 120 , a source driver 130 , a gate driver 4 , a monitor driver 23 and an emission driver 5 .
  • the gate driver 4, the monitor driver 23, and the emission driver 5 are typically monolithic, but may have a non-monolithic configuration.
  • the display device 100 is further provided with power supply lines ELVDD and ELVSS common to a large number of pixels 2 .
  • the potential of the power supply line ELVDD is high level
  • the potential of the power supply line ELVSS is low level.
  • the display control circuit 110 has a compensation processing section 112 and a temperature detection section 113 .
  • the compensation processing unit 112 compensates for deterioration of a drive transistor and a light emitting element, which will be described later.
  • the temperature detection section 113 detects the temperature of the pixels 2 .
  • a large number of data lines S and a large number of gate lines G orthogonal to the large number of data lines S are provided in the display section 120 .
  • a large number of monitor lines M are provided in the display section 120 so as to correspond to the large number of gate lines G one-to-one.
  • a large number of emission lines E are provided in the display section 120 so as to correspond to the large number of gate lines G on a one-to-one basis.
  • Gate lines G, monitor lines M, and emission lines E are typically parallel to each other in display section 120 .
  • a pixel 2 is formed at each intersection of the data line S and the gate line G in the display section 120 .
  • a large number of pixels 2 are arranged in a matrix.
  • One pixel 2 corresponds to one pixel in the display device 100, and emits red, green, or blue light, for example.
  • a pixel unit 1 is a unit composed of one pixel 2 or a plurality of pixels 2 adjacent to each other along a certain row.
  • One pixel unit 1 may, for example, emit red, green, or blue light, or may emit a color consisting of a combination of two or more of these colors.
  • the display control circuit 110 receives an input image signal DIN and a timing signal group (eg, horizontal synchronization signal and vertical synchronization signal) TG sent from outside the display control circuit 110 .
  • the display control circuit 110 outputs a data signal DA, a source control signal SCTL, a gate control signal GCTL, a monitor driver control signal MCTL, and an emission driver control signal ECTL.
  • the source control signal SCTL is a signal for controlling the operation of the source driver 130 .
  • a gate control signal GCTL is a signal for controlling the operation of the gate driver 4 .
  • the monitor driver control signal MCTL is a signal for controlling the operation of the monitor driver 23 .
  • the emission driver control signal ECTL is a signal for controlling the operation of the emission driver 5 .
  • Data signal DA is a signal for image display, and compensation processing unit 112 and temperature detection unit 113 perform compensation arithmetic processing on input image signal DIN in accordance with monitor data MO given from source driver 130. generated.
  • the monitor data MO includes data necessary for obtaining the characteristics of the drive transistor, the characteristics of the light emitting element, and the temperature of the pixel 2 .
  • the gate driver 4 is connected to a large number of gate lines G, and supplies scanning signals to each gate line G based on the gate control signal GCTL.
  • the monitor driver 23 is connected to a large number of monitor lines M, and supplies a monitor control signal to each monitor line M based on the monitor driver control signal MCTL.
  • the emission driver 5 is connected to a large number of emission lines E, and supplies an emission control signal to each emission line E based on the emission driver control signal ECTL.
  • the source driver 130 has an output section 133 .
  • the output section 133 has a large number of output circuits 3301 connected to a large number of data lines S in one-to-one correspondence.
  • the output circuit 3301 supplies a luminance signal to the data line S connected thereto based on the data signal DA.
  • the output circuit 3301 operates based on the source control signal SCTL and measures the current flowing through the data line S connected thereto.
  • a large number of initialization lines N are provided on the display unit 120 .
  • a pixel unit 1 is formed at each intersection of the initialization line N and the gate line G.
  • Data lines S and initialization lines N are typically parallel to each other in display 120 .
  • the output unit 133 has a large number of output circuits 3302 connected to a large number of initialization lines N in one-to-one correspondence.
  • the output circuit 3302 operates based on the source control signal SCTL and functions as an initialization line driver that controls the potential of the initialization line N connected thereto.
  • the output circuit 3302 operates based on the source control signal SCTL and has a function as a monitor circuit that measures the current flowing through the initialization line N connected thereto.
  • the display unit 120 has a temperature detection circuit 3.
  • One temperature detection circuit 3 is provided for corresponding two of the large number of pixel units 1 .
  • a temperature detection circuit 3 is required to detect the temperature of one of the pixels 2 of these two pixel units 1 .
  • the output circuit 3301 is provided for each of a large number of data lines S, but may be provided commonly for two or more data lines S.
  • the output circuit 3302 is provided for each of many initialization lines N, but may be provided commonly for two or more initialization lines N.
  • FIG. 2 is a circuit diagram showing a schematic configuration of the main part 101 of the display device 100 according to Embodiment 1 of the present invention.
  • the main part 101 shows the first pixel unit 1a, the second pixel unit 1b, the first temperature detection circuit 3a, and their surroundings.
  • Each of the first pixel unit 1a and the second pixel unit 1b is one of a number of pixel units 1.
  • the first temperature detection circuit 3 a is one temperature detection circuit 3 .
  • the first pixel unit 1a has at least one (here, one) first pixel 2a. It is assumed that the first pixel unit 1a is arranged in the i-th row and the j-th column in a large number of pixel units 1 arranged in a matrix.
  • the first pixel 2a has a first write transistor T1a, a first drive transistor T2a, a first monitor transistor T3a, a first emission transistor T4a, a first initialization transistor T5a, a first capacitor Ca, and a first light emitting element ELa. are doing.
  • Each of the transistors included in the first pixel 2a is, for example, an n-channel MOSFET.
  • the gate of the first write transistor T1a and the gate of the first initialization transistor T5a are connected to the i-th row gate line G(i) corresponding to the first pixel unit 1a.
  • the first write transistor T1a is connected between the j-th data line S(j) corresponding to the first pixel unit 1a and the gate of the first drive transistor T2a.
  • the first initialization transistor T5a is connected between the first drive transistor T2a and the first initialization line N(j) corresponding to the first pixel unit 1a.
  • the first initialization line N(j) is also the initialization line N of the j-th column.
  • the first initialization transistor T5a when turned on, connects the source of the first drive transistor T2a to the first initialization line N(j), thereby changing the source potential of the first drive transistor T2a to the first initializing line N(j). (initialize the first drive transistor) to the potential of the initialization line N(j).
  • the gate of the first drive transistor T2a is connected to the data line S(j) via the first write transistor T1a.
  • the first drive transistor T2a is connected between the power supply line ELVDD and the first emission transistor T4a.
  • the gate of the first monitor transistor T3a is connected to the i-th monitor line M(i) corresponding to the first pixel unit 1a.
  • the first monitor transistor T3a is connected between the data line S(j) and the first drive transistor T2a.
  • the gate of the first emission transistor T4a is connected to the i-th emission line E(i) corresponding to the first pixel unit 1a.
  • the first emission transistor T4a is connected between the first drive transistor T2a and the anode of the first light emitting element ELa.
  • the anode of the first light emitting element ELa is connected to the first emission transistor T4a.
  • a cathode of the first light emitting element ELa is connected to the power supply line ELVSS.
  • One end of the first capacitor Ca is connected between the first write transistor T1a and the gate of the first drive transistor T2a.
  • the other end of the first capacitor Ca is connected between the first drive transistor T2a and the first monitor transistor T3a.
  • the second pixel unit 1b has at least one (here, one) second pixel 2b. It is assumed that the second pixel unit 1b is arranged in the i-th row and the (j+1)-th column in a large number of pixel units 1 arranged in a matrix.
  • the second pixel 2b has a second write transistor T1b, a second drive transistor T2b, a second monitor transistor T3b, a second emission transistor T4b, a second initialization transistor T5b, a second capacitor Cb, and a second light emitting element ELb. are doing.
  • Each of the transistors included in the second pixel 2b is, for example, an n-channel MOSFET.
  • the gate of the second write transistor T1b and the gate of the second initialization transistor T5b are connected to the gate line G(i) corresponding to the second pixel unit 1b.
  • the second write transistor T1b is connected between the (j+1)-th data line S(j+1) corresponding to the second pixel unit 1b and the gate of the second drive transistor T2b.
  • the second initialization transistor T5b is connected between the second drive transistor T2b and the second initialization line N(j+1) corresponding to the second pixel unit 1b.
  • the second initialization line N(j+1) is also the initialization line N of the (j+1)th column.
  • the second initialization transistor T5b when turned on, connects the source of the second drive transistor T2b to the second initialization line N(j+1), thereby changing the source potential of the second drive transistor T2b to the second initialization line N(j+1). (initialize the second drive transistor) to the potential of the initialization line N(j+1).
  • the gate of the second drive transistor T2b is connected to the data line S(j+1) through the second write transistor T1b.
  • the second drive transistor T2b is connected between the power supply line ELVDD and the second emission transistor T4b.
  • the gate of the second monitor transistor T3b is connected to the monitor line M(i) corresponding to the second pixel unit 1b.
  • the second monitor transistor T3b is connected between the data line S(j+1) and the second drive transistor T2b.
  • the gate of the second emission transistor T4b is connected to the emission line E(i) corresponding to the second pixel unit 1b.
  • the second emission transistor T4b is connected between the second drive transistor T2b and the anode of the second light emitting element ELb.
  • the anode of the second light emitting element ELb is connected to the second emission transistor T4b.
  • a cathode of the second light emitting element ELb is connected to the power supply line ELVSS.
  • One end of the second capacitor Cb is connected between the second write transistor T1b and the gate of the second drive transistor T2b.
  • the other end of the second capacitor Cb is connected between the second drive transistor T2b and the second monitor transistor T3b.
  • the first temperature detection circuit 3a has a first temperature detection transistor T6a and a first switch transistor T7a.
  • the gate of the first temperature detection transistor T6a is connected to the first initialization line N(j).
  • the first temperature detection transistor T6a is connected between the power supply line ELVDD and the second initialization line N(j+1).
  • the gate of the first switch transistor T7a is connected to the monitor line M(i) corresponding to the first pixel unit 1a.
  • the first switch transistor T7a is connected between the first temperature detection transistor T6a and the second initialization line N(j+1). In other words, the first temperature detection transistor T6a is connected to the second initialization line N(j+1) through the first switch transistor T7a.
  • the main part 101 has an output circuit 3301 and an output circuit 3302 .
  • An output circuit 3301 is connected to each of the data lines S(j) and S(j+1), and an output circuit 3302 is connected to each of the first initialization line N(j) and the second initialization line N(j+1). It is
  • FIG. 3 is a circuit diagram showing an example of the output circuit 330.
  • FIG. Output circuit 330 can be used as either one of output circuit 3301 and output circuit 3302 .
  • the output circuit 330 has an operational amplifier 7 , a capacitor 8 , switches 9 to 11 and a signal converter 12 .
  • the inverting input terminal of the operational amplifier 7 is connected to the connection target wirings (the first initialization line N(j), the second initialization line N(j+1), and the data lines S(j) and S(j+1) to which the output circuit 330 is connected. ) is connected with either ).
  • An analog voltage Vs is applied to the non-inverting input terminal of the operational amplifier 7 .
  • a capacitor 8 and a switch 9 are connected between the output terminal of the operational amplifier 7 and the connection target wiring.
  • the switches 9 to 11 are turned on and off by control clock signal So2, signal So1, and signal So0, respectively.
  • the output circuit 330 is configured by an integrating circuit.
  • the output circuit 330 when the switch 9 is turned on by the control clock signal So2, the output terminal and the inverting input terminal of the operational amplifier 7 are short-circuited. As a result, the potentials of the output terminal of the operational amplifier 7 and the wiring to be connected become equal to the potential of the analog voltage Vs.
  • the output circuit 330 functions as an initialization line driver that controls the potential of the connection target wiring according to the potential of the analog voltage Vs. can be done.
  • the output circuit 3302 connected to the first initialization line N(j) and the second initialization line N(j+1) outputs the potential of the first initialization line N(j) and the second initialization line N(j+1), respectively. It functions as an initialization line driver that controls the potential of the initialization line N(j+1).
  • the output circuit 330 changes the output terminal of the operational amplifier 7 according to the magnitude of the current flowing through the connection target wiring due to the existence of the capacitor 8. Electric potential changes.
  • An output signal from the operational amplifier 7 is used as output data to the signal conversion section 12 .
  • the signal converter 12 performs AD conversion on the output signal from the operational amplifier 7 and outputs it as monitor data MO.
  • the output circuit 330 can function as a monitor circuit that changes its output according to the magnitude of the current flowing through the connection target wiring.
  • the output circuit 3302 connected to the second initialization line N(j+1) functions as a monitor circuit that outputs an output that changes according to the magnitude of the current flowing through the second initialization line N(j+1). Function.
  • the output circuits 3301 connected to the data lines S(j) and S(j+1) also change according to the magnitude of the current flowing through the data lines S(j) and S(j+1), respectively. Functions as a monitor circuit for output.
  • the switch 10 is connected between the connection target wiring and the inverting input terminal of the operational amplifier 7 .
  • the switch 10 is provided to prevent current from flowing from the connection target wiring to the output circuit 330 when determining the output data of the output circuit 330 .
  • the switch 11 has one end connected between the connection target wiring and the switch 10, and the other end connected to a voltage source (not shown).
  • the switch 11 fixes the bus line to either black voltage (V0) or floating (Hi-Z) when the bus line of the panel is disconnected from the source driver side during AD conversion of the output data of the output circuit 330. It switches between Floating makes it easier for noise to occur in the bus line, so in the unlikely event that the display is affected, the voltage can be fixed to the black voltage. It is not essential that the output circuit 330 is provided with the switch 11 .
  • the output data of the output circuit 330 is monitor data MO and is sent to the display control circuit 110 .
  • the temperature detection unit 113 detects the characteristics of the first temperature detection transistor T6a associated with the current value of the output data. Then, the temperature detection unit 113 detects the temperature at which the first temperature detection transistor T6a exhibits the characteristic detected by the temperature detection unit 113 as the temperature of the first pixel 2a.
  • the compensation processing unit 112 can detect the characteristics of the first driving transistor T2a from the current value of the output data.
  • the compensation processing section 112 can detect the characteristics of the second driving transistor T2b from the current value of the output data.
  • FIG. 4 shows gate line G(i), monitor line M(i), emission line E(i), data line S, first initialization line N(j), and second initialization line N(j+1). 4 is a timing chart showing an example of potentials;
  • a display period t0 is a period of display performed immediately before display in the first pixel unit 1a.
  • the potential of the emission line E(i) is switched from high level to low level, and the potential of the gate line G(i) and the potential of the monitor line M(i) are at low level.
  • the first emission transistor T4a is switched from on to off, and the first write transistor T1a, the first monitor transistor T3a, the first initialization transistor T5a, and the first switch transistor T7a are off.
  • the potential of the data line S is the potential Vdata(n-1).
  • the potential Vdata(n ⁇ 1) is a potential corresponding to a data signal for display being supplied to the data line S corresponding to the pixel or pixel unit in which display is performed in the display period t0.
  • the corresponding output circuits 330 set the potential of the first initialization line N(j) and the potential of the second initialization line N(j+1) to the potential Vinit, which is the initialization potential.
  • the gate potential of the first temperature detection transistor T6a is the inactive potential.
  • the active potential and non-active potential of the gate potential of the first temperature detecting transistor T6a are the active potential when the gate potential of the first temperature detecting transistor T6a is the high potential for temperature detection, and not the high potential.
  • the state is the inactive potential, and the concept is slightly different from that of a mere ON/OFF switching element.
  • the potential of the gate line G(i) becomes high level.
  • the first write transistor T1a and the first initialization transistor T5a are turned on during the reset period t1.
  • the potential of the data line S is the initialization potential Vpc.
  • the charge accumulated in the source of the first drive transistor T2a is initialized by turning on the first initialization transistor T5a, and the initialization potential Vpc is applied to the gate and source of the first drive transistor T2a.
  • the reference voltage write period t2 is a period during which the monitor voltage is written to the gate of the transistor to be monitored by the first monitor transistor T3a, that is, the first drive transistor T2a.
  • the potential of the gate line G(i) becomes low level.
  • the first write transistor T1a and the first initialization transistor T5a are turned off.
  • the potential of the monitor line M(i) becomes high level.
  • the first monitor transistor T3a and the first switch transistor T7a are turned on during the line charging current stabilization period t3 and the measurement period t4.
  • the potential of the data line S is lowered from the potential Vref_TFT to the potential Vm_TFT.
  • the output circuit 3302 connected to the first initialization line N(j) raises the potential of the first initialization line N(j) to the potential Vref_temp.
  • the potential of the second initialization line N(j+1) is changed from potential Vinit to potential Vm_temp.
  • the first temperature detection transistor is switched through the first switch transistor T7a.
  • the gate potential of T6a becomes the potential Vref_temp
  • the source potential of the first temperature detection transistor T6a becomes the potential Vm_temp
  • a current flows accordingly. That is, the gate-source voltage of the first temperature detection transistor T6a becomes potential Vref_temp-potential Vm_temp, and a current corresponding thereto flows.
  • the source driver 130 itself also outputs a voltage corresponding to the potential Vm_temp to the second initialization line N(j+1).
  • the current set by the first temperature detection transistor T6a flows through the power supply line ELVDD ⁇ the first temperature detection transistor T6a ⁇ the first switch transistor T7a. and monitor its current.
  • the data line S is set to the monitor voltage, and the first monitor transistor T3a is turned on.
  • the line charging current stabilization period t3 current flows in the order of the first drive transistor T2a, the first monitor transistor T3a, the data line S(j), and the output circuit 3301 connected to the data line S(j). .
  • the second initialization line N(j+1) is set to the monitor voltage
  • the gate potential of the first temperature detection transistor T6a is set to the active potential
  • the first switch transistor T7a is turned on.
  • the potential of the monitor line M(i) becomes low level.
  • the first monitor transistor T3a and the first switch transistor T7a are turned off.
  • the output circuit 3302 connected to the first initialization line N(j) lowers the potential of the first initialization line N(j) from the potential Vref_temp to the potential Vinit.
  • no current flows through the first temperature detection transistor T6a.
  • the potential of the second initialization line N(j+1) is also changed from potential Vm_temp to potential Vinit.
  • a measurement period t4 and an AD conversion period t5 are periods in which when the current flowing from the data line S to the output circuit 3301 stabilizes, the current is measured by the output circuit 3301 and AD-converted so that it can be read. Referring to FIG. 3 and its description, the characteristics of the first driving transistor T2a can be detected from the output data of the output circuit 3301 connected to the data line S(j).
  • the characteristics of the first temperature detection transistor T6a can be detected from the output data of the output circuit 3302 connected to the second initialization line N(j+1).
  • the potential of the gate line G(i) becomes high level, and thereafter the potential of the emission line E(i) becomes high level.
  • the first write transistor T1a and the first initialization transistor T5a are turned on, and then the first emission transistor T4a is turned on.
  • the potential of the data line S is the potential Vdata(n).
  • the potential Vdata(n) is a potential corresponding to a data signal for display being supplied to the data line S(j).
  • the main part 101 it is possible to detect the characteristics of the first temperature detection transistor T6a together with the characteristics of the first drive transistor T2a.
  • FIG. 5 is a timing chart showing an example of on/off of the switches 9 to 11 of the output circuit 330.
  • the ON/OFF states of switches 9-11 correspond to the high level and low level of control clock signal So2, signal So1, and signal So0, respectively.
  • the on/off states of the switches 9 to 11 are as follows.
  • the switch 9 is off from the start of the measurement period t4 to the end of the AD conversion period t5, and is on during the rest of the period.
  • the switch 10 is off during the AD conversion period t5 and on during the other periods.
  • the switch 11 is on during the AD conversion period t5 and off during the other periods (see 3302 (N(j+1)) in FIG. 5).
  • the on/off states of the switches 9 to 11 are as follows.
  • the switch 9 is off from the start of the measurement period t4 to the end of the AD conversion period t5, and is on during the rest of the period.
  • the switch 10 is off during the AD conversion period t5 and on during the other periods.
  • the switch 11 is on during the AD conversion period t5 and off during the rest of the period (see 3301(S) in FIG. 5).
  • FIG. 6 is a graph explaining an example of a technique for detecting the temperature of the first pixels 2a.
  • the horizontal axis indicates the gate-source voltage of the first temperature detection transistor T6a
  • the vertical axis indicates the current flowing through the first temperature detection transistor T6a.
  • the difference between the candidates 18-22 corresponds to the difference in temperature of the first pixel 2a.
  • the main part 101 detects the magnitude of the current flowing through the first temperature detection transistor T6a when the gate-source voltage of the first temperature detection transistor T6a is potential Vref_temp ⁇ potential Vm_temp.
  • a second initialization line N(j+1) and an output circuit 3302 connected to the second initialization line N(j+1) are used for this detection. Then, applying the magnitude of the current flowing through the first temperature detecting transistor T6a when the gate-source voltage of the first temperature detecting transistor T6a is the potential Vref_temp ⁇ potential Vm_temp to one of the candidates 18 to 22. , the temperature of the first pixel 2a can be detected. For example, when the gate-source voltage of the first temperature detection transistor T6a is potential Vref_temp ⁇ potential Vm_temp, and the magnitude of the current flowing through the first temperature detection transistor T6a is the current Ic, it corresponds to candidate 22. The temperature of the first pixel 2a can be detected as the temperature of the first pixel 2a. If the number of candidates for the characteristics of the first temperature detection transistor T6a is small, new candidates may be created from existing candidates by linear interpolation.
  • FIG. 7 is a graph explaining an example of compensation for the voltage-current characteristic shift of the first drive transistor T2a.
  • the horizontal axis indicates voltage and the vertical axis indicates current.
  • the mechanism of external compensation is to monitor the characteristics of the first drive transistor T2a and determine the data voltage (the gate potential of the first drive transistor T2a) at which the target current flows according to the result. It will be. Referring to FIG. 7, monitoring is performed at several monitor voltages, and from the current value measured at that time, the current deterioration in the first drive transistor T2a is determined by which current-voltage characteristic among the characteristic candidates 13 to 17. You will be asked if there are any. If the current-voltage characteristics of the first driving transistor T2a are known, the current flowing through the first light emitting element 20a is determined according to the data necessary for display, and the gate potential of the first driving transistor T2a is determined accordingly.
  • the temperature information is used to determine the current to be supplied to the first light emitting element 20a from the data required for display. The same applies to each pixel 2 other than the first pixel 2a.
  • the second initialization line N(j+1) which is necessary even in a display device that does not detect the temperature of the first pixels 2a, is used as the reading line connected to the output end of the temperature detection circuit 3a. ing. Accordingly, in a display device that does not detect the temperature of the first pixels 2a, there is no need to provide an unnecessary bus line, so the display device 100 with a high degree of freedom in design can be realized.
  • the first switch transistor T7a is connected between the first temperature detection transistor T6a and the second initialization line N(j+1), and has a gate connected to the monitor line M(i). By providing the first switch transistor T7a, the first temperature detection transistor T6a and the second initialization line N(j+1) are separated from the active potential and the inactive potential of the gate potential of the first temperature detection transistor T6a itself. ) can be controlled. This is suitable for selecting pixels 2 for temperature detection from one column of pixel units 1 .
  • the first initialization line N(j) is generally common to all pixel units 1 belonging to the same row as the first pixel unit 1a.
  • the first initialization line N(j) sets the gate potential of the first temperature detection transistor T6a to the active potential
  • all the pixel units 1 belonging to the same column as the first pixel unit 1a are unintentionally reset.
  • the gate potential of the temperature detecting transistor corresponding to is set to the active potential.
  • the conduction and non-conduction between the first temperature detection transistor T6a and the second initialization line N(j+1) is minimized even by the activation potential and non-activation potential of the gate potential of the first temperature detection transistor T6a itself. limited control is possible. Therefore, the provision of the first switch transistor T7a in the main part 101 is not essential.
  • the first switch transistor T7a functions as a switch that switches between conduction and non-conduction between the first temperature detection transistor T6a and the second initialization line N(j+1). Therefore, the first switch transistor T7a may be switched on and off with a gate potential sufficiently higher than that of the first temperature detection transistor T6a. That is, the gate potential of the first temperature detection transistor T6a at which the gate potential of the first temperature detection transistor T6a switches from the inactive potential to the active potential is the same as the first switch transistor T7a at which the first switch transistor T7a switches from off to on. It may be smaller than the gate potential of T7a. This corresponds to the potential Vref_temp being lower than the high-level potential of the monitor line M(i) in the timing chart shown in FIG.
  • the period during which the gate potential of the first temperature detection transistor T6a is the active potential and the period during which the first switch transistor T7a is turned on substantially match (at least partially match).
  • This is the line charging current stabilization in which the potential of the monitor line M(i) is at a high level and the potential of the first initialization line N(j) is the potential Vref_temp in the timing chart shown in FIG. It corresponds to the period t3 and most of the measurement period t4.
  • the output circuit 3302 connected to the second initialization line N(j+1) has the function of a monitor circuit that changes its output according to the magnitude of the current flowing through the second initialization line N(j+1). .
  • the output circuit 3302 connected to the first initialization line N(j) has the function of an initialization line driver that switches between the first state and the second state.
  • the first state is a state in which the potential of the first initialization line N(j) is the potential Vinit (first potential) that is the gate potential of the first temperature detection transistor T6a as the inactive potential.
  • the second state is a state in which the potential of the first initialization line N(j) is the potential Vref_temp (second potential) that takes the gate potential of the first temperature detection transistor T6a as the active potential.
  • the first temperature detection transistor T6a itself has known temperature characteristics, and since the current that flows differs depending on the temperature even if the gate-source voltage is the same, the monitored current value can be converted into temperature. Since current does not flow through the first temperature detection transistor T6a during display by the display device 100, deterioration of the first temperature detection transistor T6a can be ignored. As a result, the temperature of the first pixel 2a affected by the heat generated by the display device 100 itself can be sensed, and the characteristics of the first drive transistor T2a and various current values for display can be corrected accordingly. be able to.
  • FIG. 8 is a circuit diagram showing a schematic configuration of the main part 102 of the display device 100 according to Embodiment 2 of the present invention.
  • the main part 102 shows the first pixel unit 1a, the second pixel unit 1b, the first temperature detection circuit 3a, and their surroundings.
  • the first pixel unit 1a has three first pixels 2a.
  • Gate lines G(i), monitor lines M(i), emission lines E(i), and first initialization lines N(j) use wiring common to the three first pixels 2a,
  • the data line S(j) is provided for each first pixel 2a.
  • the three first pixels 2a are, for example, a pixel that emits red light, a pixel that emits green light, and a pixel that emits blue light, respectively.
  • the second pixel unit 1b has three second pixels 2b.
  • the gate line G(i), the monitor line M(i), the emission line E(i), and the second initialization line N(j+1) wiring common to the three second pixels 2b is used,
  • the data line S(j+1) is provided for each second pixel 2b.
  • the three second pixels 2b are, for example, a pixel that emits red light, a pixel that emits green light, and a pixel that emits blue light, respectively.
  • each of the first pixel 2a and the second pixel 2b is not limited to one, and may be two or more.
  • FIG. 9 is a circuit diagram showing a schematic configuration of the main part 103 of the display device 100 according to Embodiment 3 of the present invention.
  • the main part 103 shows the first pixel unit 1a, the second pixel unit 1b, the third pixel unit 1c, the first temperature detection circuit 3a, the second temperature detection circuit 3b, and their surroundings.
  • the third pixel unit 1c is one of many pixel units 1.
  • the second temperature detection circuit 3 b is one temperature detection circuit 3 .
  • the main section 103 has, in addition to the configuration of the main section 102, a third pixel unit 1c and a second temperature detection circuit 3b.
  • the third pixel unit 1c has at least one (here, three) third pixels 2c. It is assumed that the third pixel unit 1c is arranged in the i-th row and the (j+2)-th column in a large number of pixel units 1 arranged in a matrix.
  • the third pixel 2c has a third write transistor T1c, a third drive transistor T2c, a third monitor transistor T3c, a third emission transistor T4c, a third initialization transistor T5c, a third capacitor Cc, and a third light emitting element ELc. are doing.
  • Each of the transistors included in the third pixel 2c is, for example, an n-channel MOSFET.
  • the gate of the third write transistor T1c and the gate of the third initialization transistor T5c are connected to the gate line G(i) corresponding to the third pixel unit 1c.
  • the third write transistor T1c is connected between the (j+2)-th data line S(j+2) corresponding to the third pixel unit 1c and the gate of the third drive transistor T2c.
  • the third initialization transistor T5c is connected between the third drive transistor T2c and the third initialization line N(j+2) corresponding to the third pixel unit 1c.
  • the third initialization line N(j+2) is also the initialization line N of the (j+2)th column.
  • the third initialization transistor T5c is turned on to connect the source of the third drive transistor T2c to the third initialization line N(j+2), thereby setting the source potential of the third drive transistor T2c to the third initial (initialize the third drive transistor) to the potential of the initialization line N(j+2).
  • the gate of the third drive transistor T2c is connected to the data line S(j+2) via the third write transistor T1c.
  • the third drive transistor T2c is connected between the power supply line ELVDD and the third emission transistor T4c.
  • the gate of the third monitor transistor T3c is connected to the monitor line M(i) corresponding to the third pixel unit 1c.
  • the third monitor transistor T3c is connected between the data line S(j+2) and the third drive transistor T2c.
  • the gate of the third emission transistor T4c is connected to the emission line E(i) corresponding to the third pixel unit 1c.
  • the third emission transistor T4c is connected between the third drive transistor T2c and the anode of the third light emitting element ELc.
  • the anode of the third light emitting element ELc is connected to the third emission transistor T4c.
  • a cathode of the third light emitting element ELc is connected to the power supply line ELVSS.
  • One end of the third capacitor Cc is connected between the third write transistor T1c and the gate of the third drive transistor T2c.
  • the other end of the third capacitor Cc is connected between the third drive transistor T2c and the third monitor transistor T3c.
  • the second temperature detection circuit 3b has a second temperature detection transistor T6b and a second switch transistor T7b.
  • the gate of the second temperature detection transistor T6b is connected to the second initialization line N(j+1).
  • the second temperature detection transistor T6b is connected between the power supply line ELVDD and the third initialization line N(j+2).
  • the gate of the second switch transistor T7b is connected to the monitor line M(i) corresponding to the second pixel unit 1b.
  • the second switch transistor T7b is connected between the second temperature detection transistor T6b and the third initialization line N(j+2). In other words, the second temperature detection transistor T6b is connected to the third initialization line N(j+2) via the second switch transistor T7b.
  • An output circuit 3301 is connected to the data line S(j+2), and an output circuit 3302 is connected to the third initialization line N(j+2).
  • the display device 100 includes at least one third pixel 2c having a third driving transistor T2c and a third initialization transistor T5c for initializing the third driving transistor T2c, and the third initialization transistor Via T5c, the third initialization line N(j+2) connected to the third drive transistor T2c and the third initialization line N(j+2), and the gate is connected to the second initialization line
  • a second temperature detection transistor T6b connected to N(j+1) may also be provided. Although this requires two measurements, there is an advantage that the temperature distribution can be observed in detail.
  • a display device includes at least one first pixel having a first drive transistor, a first initialization transistor for initializing the first drive transistor, and a second drive transistor. and a second initialization transistor that initializes the second drive transistor, and is connected to the first drive transistor through the first initialization transistor. a first initialization line connected to the second initialization transistor, a second initialization line connected to the second drive transistor through the second initialization transistor, a second initialization line connected to the second initialization line, and a gate a first temperature sensing transistor connected to the first initialization line.
  • the first pixel has a monitor transistor connected to the first drive transistor, and the display device is connected to the gate of the monitor transistor. and a switch transistor connected between the first temperature detection transistor and the second initialization line and having a gate connected to the monitor line. .
  • the gate potential of the first temperature detection transistor that switches from the non-active potential to the active potential is It is less than the gate potential of the switch transistor at which the switch transistor switches from off to on.
  • At least part of the period in which the gate potential of the first temperature detection transistor is the potential at the time of activation and the period in which the switch transistor is on are at least partially match.
  • the display device in any one of aspects 1 to 4, is connected to the second initialization line, and changes according to the magnitude of the current flowing through the second initialization line. It has a monitor circuit for output.
  • the monitor circuit performs the output when the writing transistor of the first pixel is off.
  • a display device is the display device according to any one of aspects 1 to 6, wherein the potential of the first initialization line is a first potential, the gate potential of the first temperature detection transistor being a non-active potential. and a second state in which the potential of the first initialization line is the second potential, the gate potential of the first temperature detecting transistor being the active potential.
  • the initialization line driver is connected to the gates of the first initialization transistor and the first temperature detection transistor.
  • the first potential is a potential for initializing the first drive transistor.
  • the initialization line driver does not perform an output that changes according to the magnitude of the current flowing through the first initialization line.
  • a display device is the display device according to any one of aspects 1 to 10, further comprising: a third driving transistor; and a third initialization transistor for initializing the third driving transistor. at least one pixel; a third initialization line connected to the third drive transistor through the third initialization transistor; A second temperature sensing transistor connected to the second initialization line.
  • the present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.

Abstract

表示装置の主要部(101)は、第2初期化ライン(N(j+1))と接続されており、かつ、ゲートが第1初期化ライン(N(j))と接続されている第1温度検出用トランジスタ(T6a)を備えている。

Description

表示装置
 本発明は、表示装置に関する。
 OLED(有機発光ダイオード)表示装置では、1画素単位で、画素回路に設けられた駆動トランジスタの特性シフトを補償するために画素の温度を検出することが知られている。
 特許文献1には、画素回路および温度検出回路を有している画素を備えた発光装置が開示されている。
日本国特開2010-224262号
 特許文献1に開示されている発光装置は、温度検出回路の出力端に接続された読取線を備えている。この読取線は、画素の温度を検出しない発光装置においては不要なバスラインである。
 特許文献1に開示されている発光装置においては、画素の温度を検出しない発光装置においては不要なバスラインが設けられていることにより、設計の自由度が制限されている。
 本発明の一態様に係る表示装置は、第1駆動トランジスタと、前記第1駆動トランジスタを初期化する第1初期化トランジスタと、を有している第1画素を少なくとも1つと、第2駆動トランジスタと、前記第2駆動トランジスタを初期化する第2初期化トランジスタと、を有している第2画素を少なくとも1つと、前記第1初期化トランジスタを介して、前記第1駆動トランジスタと接続されている第1初期化ラインと、前記第2初期化トランジスタを介して、前記第2駆動トランジスタと接続されている第2初期化ラインと、前記第2初期化ラインと接続されており、かつ、ゲートが前記第1初期化ラインと接続されている第1温度検出用トランジスタとを備えている。
 本発明の一態様によれば、設計の自由度が高い表示装置を実現することができる。
本発明の各実施形態に係る表示装置の概略図である。 本発明の実施形態1に係る、表示装置の主要部の概略構成を示す回路図である。 出力回路の一例を示す回路図である。 ゲートライン、モニタライン、エミッションライン、データライン、第1初期化ライン、および第2初期化ラインの電位の一例を示すタイミングチャートである。 出力回路のスイッチのオンオフの一例を示すタイミングチャートである。 第1画素の温度を検出する手法の一例を説明するグラフである。 第1駆動トランジスタの電圧‐電流特性シフトの補償の一例を説明するグラフである。 本発明の実施形態2に係る、表示装置の主要部の概略構成を示す回路図である。 本発明の実施形態3に係る、表示装置の主要部の概略構成を示す回路図である。
 本発明を実施するための形態について、以下に説明する。なお、説明の便宜上、先に説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない場合がある。
 図1は、本発明の各実施形態に係る表示装置100の概略図である。表示装置100は、アクティブマトリクス型のOLED表示装置の一具体例である。表示装置100は、表示制御回路110、表示部120、ソースドライバ130、ゲートドライバ4、モニタドライバ23、およびエミッションドライバ5を備えている。
 ゲートドライバ4、モニタドライバ23、およびエミッションドライバ5は、モノリシック化されていることが典型的であるが、モノリシック化されていない構成であってもよい。
 表示装置100にはさらに、多数の画素2に共通の電源ラインELVDDおよびELVSSが設けられている。後述する各発光素子の駆動に関し、電源ラインELVDDの電位はハイレベル、電源ラインELVSSの電位はローレベルである。
 表示制御回路110は、補償処理部112および温度検出部113を有している。補償処理部112は、後述する駆動トランジスタおよび発光素子の劣化を補償するものである。温度検出部113は、画素2の温度を検出するものである。
 表示部120には、多数のデータラインS、および多数のデータラインSと直交する多数のゲートラインGが設けられている。表示部120には、多数のゲートラインGと1対1に対応するように、多数のモニタラインMが設けられている。表示部120には、多数のゲートラインGと1対1に対応するように、多数のエミッションラインEが設けられている。ゲートラインG、モニタラインM、およびエミッションラインEは、表示部120において互いに平行であることが典型的である。
 表示部120には、データラインSとゲートラインGとの交差部分毎に、画素2が形成されている。多数の画素2は、マトリクス状に配置されている。1つの画素2は、表示装置100における1画素に対応し、例えば、赤色、緑色、および青色のいずれかを発光する。さらに、1つの画素2またはある1行に沿って互いに隣接する複数の画素2からなる単位を、画素ユニット1とする。1つの画素ユニット1は、例えば、赤色、緑色、および青色のいずれかを発光するものであってもよいし、これらの2色以上の組み合わせからなる色を発光するものであってもよい。
 表示制御回路110は、表示制御回路110の外部から送られる、入力画像信号DINおよびタイミング信号群(例:水平同期信号および垂直同期信号)TGを受け取る。表示制御回路110は、データ信号DA、ソース制御信号SCTL、ゲート制御信号GCTL、モニタドライバ制御信号MCTL、およびエミッションドライバ制御信号ECTLを出力する。ソース制御信号SCTLは、ソースドライバ130の動作を制御するための信号である。ゲート制御信号GCTLは、ゲートドライバ4の動作を制御するための信号である。モニタドライバ制御信号MCTLは、モニタドライバ23の動作を制御するための信号である。エミッションドライバ制御信号ECTLは、エミッションドライバ5の動作を制御するための信号である。データ信号DAは、画像表示用の信号であり、補償処理部112および温度検出部113がソースドライバ130から与えられるモニタデータMOに応じて、入力画像信号DINに対して補償演算処理を施すことによって生成される。モニタデータMOは、駆動トランジスタの特性、発光素子の特性、および画素2の温度を求めるために必要なデータを含んでいる。
 ゲートドライバ4は、多数のゲートラインGと接続されており、ゲート制御信号GCTLに基づいて、各ゲートラインGに対して走査信号を供給する。モニタドライバ23は、多数のモニタラインMと接続されており、モニタドライバ制御信号MCTLに基づいて、各モニタラインMに対してモニタ制御信号を供給する。エミッションドライバ5は、多数のエミッションラインEと接続されており、エミッションドライバ制御信号ECTLに基づいて、各エミッションラインEに対してエミッション制御信号を供給する。
 ソースドライバ130は、出力部133を有している。出力部133は、多数のデータラインSに対して1対1に対応するように接続された、多数の出力回路3301を有している。出力回路3301は、データ信号DAに基づいて、自身に接続されたデータラインSに対して輝度信号を供給する。出力回路3301は、ソース制御信号SCTLに基づいて動作し、自身に接続されたデータラインSに流れる電流を測定する。
 表示部120には、多数の初期化ラインNが設けられている。初期化ラインNとゲートラインGとの交差部分毎に、画素ユニット1が形成されている。データラインSおよび初期化ラインNは、表示部120において互いに平行であることが典型的である。
 出力部133は、多数の初期化ラインNに対して1対1に対応するように接続された、多数の出力回路3302を有している。出力回路3302は、ソース制御信号SCTLに基づいて動作し、自身に接続された初期化ラインNの電位を制御する初期化ラインドライバとしての機能を有している。出力回路3302は、ソース制御信号SCTLに基づいて動作し、自身に接続された初期化ラインNに流れる電流を測定するモニタ回路としての機能を有している。
 表示部120は、温度検出回路3を有している。多数の画素ユニット1のうち対応する2つに対して、1つの温度検出回路3が設けられている。温度検出回路3は、これら2つの画素ユニット1のいずれかの画素2の温度を検出するために必要なものである。
 表示装置100において、出力回路3301は、多数のデータラインS毎に設けられているが、2つ以上のデータラインSに共通に設けられていてもよい。表示装置100において、出力回路3302は、多数の初期化ラインN毎に設けられているが、2つ以上の初期化ラインNに共通に設けられていてもよい。
 〔実施形態1〕
 図2は、本発明の実施形態1に係る、表示装置100の主要部101の概略構成を示す回路図である。主要部101は、第1画素ユニット1a、第2画素ユニット1b、第1温度検出回路3a、およびその周囲を示したものである。第1画素ユニット1aおよび第2画素ユニット1bの各々は、多数の画素ユニット1のうちの1つである。第1温度検出回路3aは、1つの温度検出回路3である。
 第1画素ユニット1aは、少なくとも1つ(ここでは1つ)の第1画素2aを有している。第1画素ユニット1aは、マトリクス状に配置された多数の画素ユニット1におけるi行目かつj列目に配置されているものとする。第1画素2aは、第1書き込みトランジスタT1a、第1駆動トランジスタT2a、第1モニタトランジスタT3a、第1エミッショントランジスタT4a、第1初期化トランジスタT5a、第1コンデンサCa、および第1発光素子ELaを有している。第1画素2aに含まれるトランジスタの各々は例えば、nチャネル型のMOSFETである。
 第1書き込みトランジスタT1aのゲートおよび第1初期化トランジスタT5aのゲートは、第1画素ユニット1aに対応するi行目のゲートラインG(i)と接続されている。第1書き込みトランジスタT1aは、第1画素ユニット1aに対応するj列目のデータラインS(j)と、第1駆動トランジスタT2aのゲートとの間に接続されている。第1初期化トランジスタT5aは、第1駆動トランジスタT2aと、第1画素ユニット1aに対応する第1初期化ラインN(j)との間に接続されている。第1初期化ラインN(j)は、j列目の初期化ラインNでもある。第1初期化トランジスタT5aは、自身がオンすることによって、第1駆動トランジスタT2aのソースを第1初期化ラインN(j)と接続することで、第1駆動トランジスタT2aのソース電位を第1初期化ラインN(j)の電位とする(第1駆動トランジスタを初期化する)ものである。
 第1駆動トランジスタT2aのゲートは、第1書き込みトランジスタT1aを介して、データラインS(j)と接続されている。第1駆動トランジスタT2aは、電源ラインELVDDと、第1エミッショントランジスタT4aとの間に接続されている。
 第1モニタトランジスタT3aのゲートは、第1画素ユニット1aに対応するi行目のモニタラインM(i)と接続されている。第1モニタトランジスタT3aは、データラインS(j)と、第1駆動トランジスタT2aとの間に接続されている。
 第1エミッショントランジスタT4aのゲートは、第1画素ユニット1aに対応するi行目のエミッションラインE(i)と接続されている。第1エミッショントランジスタT4aは、第1駆動トランジスタT2aと、第1発光素子ELaのアノードとの間に接続されている。
 第1発光素子ELaのアノードは、第1エミッショントランジスタT4aと接続されている。第1発光素子ELaのカソードは、電源ラインELVSSと接続されている。第1コンデンサCaの一端は、第1書き込みトランジスタT1aと、第1駆動トランジスタT2aのゲートとの間に接続されている。第1コンデンサCaの他端は、第1駆動トランジスタT2aと、第1モニタトランジスタT3aとの間に接続されている。
 第2画素ユニット1bは、少なくとも1つ(ここでは1つ)の第2画素2bを有している。第2画素ユニット1bは、マトリクス状に配置された多数の画素ユニット1におけるi行目かつ(j+1)列目に配置されているものとする。第2画素2bは、第2書き込みトランジスタT1b、第2駆動トランジスタT2b、第2モニタトランジスタT3b、第2エミッショントランジスタT4b、第2初期化トランジスタT5b、第2コンデンサCb、および第2発光素子ELbを有している。第2画素2bに含まれるトランジスタの各々は例えば、nチャネル型のMOSFETである。
 第2書き込みトランジスタT1bのゲートおよび第2初期化トランジスタT5bのゲートは、第2画素ユニット1bに対応するゲートラインG(i)と接続されている。第2書き込みトランジスタT1bは、第2画素ユニット1bに対応する(j+1)列目のデータラインS(j+1)と、第2駆動トランジスタT2bのゲートとの間に接続されている。第2初期化トランジスタT5bは、第2駆動トランジスタT2bと、第2画素ユニット1bに対応する第2初期化ラインN(j+1)との間に接続されている。第2初期化ラインN(j+1)は、(j+1)列目の初期化ラインNでもある。第2初期化トランジスタT5bは、自身がオンすることによって、第2駆動トランジスタT2bのソースを第2初期化ラインN(j+1)と接続することで、第2駆動トランジスタT2bのソース電位を第2初期化ラインN(j+1)の電位とする(第2駆動トランジスタを初期化する)ものである。
 第2駆動トランジスタT2bのゲートは、第2書き込みトランジスタT1bを介して、データラインS(j+1)と接続されている。第2駆動トランジスタT2bは、電源ラインELVDDと、第2エミッショントランジスタT4bとの間に接続されている。
 第2モニタトランジスタT3bのゲートは、第2画素ユニット1bに対応するモニタラインM(i)と接続されている。第2モニタトランジスタT3bは、データラインS(j+1)と、第2駆動トランジスタT2bとの間に接続されている。
 第2エミッショントランジスタT4bのゲートは、第2画素ユニット1bに対応するエミッションラインE(i)と接続されている。第2エミッショントランジスタT4bは、第2駆動トランジスタT2bと、第2発光素子ELbのアノードとの間に接続されている。
 第2発光素子ELbのアノードは、第2エミッショントランジスタT4bと接続されている。第2発光素子ELbのカソードは、電源ラインELVSSと接続されている。第2コンデンサCbの一端は、第2書き込みトランジスタT1bと、第2駆動トランジスタT2bのゲートとの間に接続されている。第2コンデンサCbの他端は、第2駆動トランジスタT2bと、第2モニタトランジスタT3bとの間に接続されている。
 第1温度検出回路3aは、第1温度検出用トランジスタT6aおよび第1スイッチトランジスタT7aを有している。第1温度検出用トランジスタT6aのゲートは、第1初期化ラインN(j)と接続されている。第1温度検出用トランジスタT6aは、電源ラインELVDDと、第2初期化ラインN(j+1)との間に接続されている。第1スイッチトランジスタT7aのゲートは、第1画素ユニット1aに対応するモニタラインM(i)と接続されている。第1スイッチトランジスタT7aは、第1温度検出用トランジスタT6aと、第2初期化ラインN(j+1)との間に接続されている。換言すれば、第1温度検出用トランジスタT6aは、第1スイッチトランジスタT7aを介して、第2初期化ラインN(j+1)と接続されている。
 主要部101は、出力回路3301および出力回路3302を有している。データラインS(j)およびS(j+1)のそれぞれに出力回路3301が接続されており、第1初期化ラインN(j)および第2初期化ラインN(j+1)のそれぞれに出力回路3302が接続されている。
 図3は、出力回路330の一例を示す回路図である。出力回路330は、出力回路3301および出力回路3302のいずれか1つとして使用可能なものである。出力回路330は、オペアンプ7、コンデンサ8、スイッチ9~11、および信号変換部12を有している。オペアンプ7の反転入力端子は、出力回路330が接続される接続対象配線(第1初期化ラインN(j)、第2初期化ラインN(j+1)、ならびにデータラインS(j)およびS(j+1)のいずれか)と接続されている。オペアンプ7の非反転入力端子には、アナログ電圧Vsが与えられる。コンデンサ8およびスイッチ9は、オペアンプ7の出力端子と当該接続対象配線との間に接続されている。スイッチ9~11は、それぞれ、制御クロック信号So2、信号So1、および信号So0によってオンオフが切り替えられる。出力回路330は、積分回路によって構成されている。
 出力回路330は、制御クロック信号So2によってスイッチ9がオンとされると、オペアンプ7の出力端子と反転入力端子とが短絡される。これにより、オペアンプ7の出力端子および当該接続対象配線の電位が、アナログ電圧Vsの電位と等しくなる。スイッチ9がオンである状態において、アナログ電圧Vsの電位を変化させることにより、出力回路330は、アナログ電圧Vsの電位に応じて当該接続対象配線の電位を制御する初期化ラインドライバとして機能することができる。主要部101においては、第1初期化ラインN(j)および第2初期化ラインN(j+1)に接続された出力回路3302が、それぞれ、第1初期化ラインN(j)の電位および第2初期化ラインN(j+1)の電位を制御する初期化ラインドライバとして機能する。
 出力回路330は、制御クロック信号So2によってスイッチ9がオフとされることによって、コンデンサ8の存在に起因して、当該接続対象配線に流れている電流の大きさに応じてオペアンプ7の出力端子の電位が変化する。オペアンプ7からの出力信号を、信号変換部12への出力データとする。信号変換部12は、オペアンプ7からの出力信号に対してAD変換を施して、モニタデータMOとして出力する。こうして、出力回路330は、当該接続対象配線に流れる電流の大きさに応じて変化する出力を行うモニタ回路として機能することができる。主要部101においては、第2初期化ラインN(j+1)に接続された出力回路3302が、第2初期化ラインN(j+1)に流れる電流の大きさに応じて変化する出力を行うモニタ回路として機能する。主要部101においては、データラインS(j)およびS(j+1)に接続された出力回路3301も、それぞれ、データラインS(j)およびS(j+1)に流れる電流の大きさに応じて変化する出力を行うモニタ回路として機能する。
 スイッチ10は、当該接続対象配線と、オペアンプ7の反転入力端子との間に接続されている。スイッチ10は、出力回路330の出力データを確定させるときに、当該接続対象配線から出力回路330に電流が流れることを防ぐために設けられている。スイッチ11は、一端が当該接続対象配線とスイッチ10との間に接続されており、他端が図示しない電圧源と接続されている。スイッチ11は、出力回路330の出力データのAD変換時に、ソースドライバ側とパネルのバスラインとが切り離された時に当該バスラインを黒電圧(V0)およびフローティング(Hi-Z)のいずれに固定するかを切り替えるものである。フローティングではバスラインにノイズが生じやすくなるので、万一表示に影響が出た場合に黒電圧に固定できるようにしている。出力回路330にスイッチ11が設けられていることは必須でない。
 出力回路330の出力データは、モニタデータMOであり、表示制御回路110に送られる。
 当該接続対象配線が第2初期化ラインN(j+1)である場合、温度検出部113は、当該出力データの電流値と対応付けられた第1温度検出用トランジスタT6aの特性を検出する。そして、温度検出部113が検出した特性を第1温度検出用トランジスタT6aが呈する温度を、温度検出部113は第1画素2aの温度として検出する。
 当該接続対象配線がデータラインS(j)である場合、補償処理部112は、当該出力データの電流値から、第1駆動トランジスタT2aの特性を検出することができる。当該接続対象配線がデータラインS(j+1)である場合、補償処理部112は、当該出力データの電流値から、第2駆動トランジスタT2bの特性を検出することができる。
 図4は、ゲートラインG(i)、モニタラインM(i)、エミッションラインE(i)、データラインS、第1初期化ラインN(j)、および第2初期化ラインN(j+1)の電位の一例を示すタイミングチャートである。
 表示期間t0は、第1画素ユニット1aにおける表示の1つ前に行われる表示の期間である。表示期間t0においては、エミッションラインE(i)の電位がハイレベルからローレベルに切り替えられ、ゲートラインG(i)の電位およびモニタラインM(i)の電位がローレベルである。換言すれば、表示期間t0においては、第1エミッショントランジスタT4aがオンからオフに切り替えられ、第1書き込みトランジスタT1a、第1モニタトランジスタT3a、第1初期化トランジスタT5a、および第1スイッチトランジスタT7aがオフである。表示期間t0において、データラインSの電位は電位Vdata(n-1)である。電位Vdata(n-1)とは、表示期間t0において表示が行われる画素または画素ユニットに対応するデータラインSに、表示用のデータ信号が供給されていることに相当する電位である。表示期間t0において、それぞれ対応する出力回路330により、第1初期化ラインN(j)の電位および第2初期化ラインN(j+1)の電位は初期化電位である電位Vinitとされており、このとき第1温度検出用トランジスタT6aのゲート電位は非活性時電位となっている。第1温度検出用トランジスタT6aのゲート電位の活性時電位および非活性時電位は、第1温度検出用トランジスタT6aのゲート電位が温度検出用の高電位である状態を活性時電位、当該高電位でない状態を非活性時電位としており、単なるスイッチ素子におけるオンオフとは若干概念が異なるものである。
 続いて、リセット期間t1にて、ゲートラインG(i)の電位がハイレベルとなる。換言すれば、リセット期間t1にて、第1書き込みトランジスタT1aおよび第1初期化トランジスタT5aがオンとなる。リセット期間t1において、データラインSの電位は初期化電位Vpcである。リセット期間t1においては、第1初期化トランジスタT5aがオンすることによって第1駆動トランジスタT2aのソースに蓄積された電荷を初期化しつつ、第1駆動トランジスタT2aのゲートおよびソースに対して初期化電位Vpcの電圧を書き込む。
 続いて、基準電圧書き込み期間t2にて、データラインSの電位が、初期化電位Vpcから電位Vref_TFTまで上がる。基準電圧書き込み期間t2は、第1モニタトランジスタT3aによるモニタ対象のトランジスタすなわち第1駆動トランジスタT2aのゲートに対して、モニタ電圧を書き込む期間である。
 続いて、基準電圧書き込み期間t2の終了時に、ゲートラインG(i)の電位がローレベルとなる。換言すれば、基準電圧書き込み期間t2の終了時に、第1書き込みトランジスタT1aおよび第1初期化トランジスタT5aがオフとなる。
 続いて、ライン充電電流安定化期間t3および測定期間t4の間、モニタラインM(i)の電位がハイレベルとなる。換言すれば、ライン充電電流安定化期間t3および測定期間t4の間、第1モニタトランジスタT3aおよび第1スイッチトランジスタT7aがオンとなる。ライン充電電流安定化期間t3にて、データラインSの電位を、電位Vref_TFTから電位Vm_TFTまで下げる。ライン充電電流安定化期間t3および測定期間t4の間、第1初期化ラインN(j)に接続された出力回路3302は、第1初期化ラインN(j)の電位を電位Vref_tempまで上げる。同じく第2初期化ラインN(j+1)の電位は、電位Vinitから電位Vm_tempまで変化させる。第1初期化ラインN(j)の電位が電位Vref_tempまで上がり、第2初期化ラインN(j+1)の電位が電位Vm_tempに変化すると、第1スイッチトランジスタT7aを介して、第1温度検出用トランジスタT6aのゲート電位が電位Vref_tempとなり、第1温度検出用トランジスタT6aのソース電位が電位Vm_tempとなり、それに応じた電流が流れる。すなわち、第1温度検出用トランジスタT6aのゲート-ソース間電圧は、電位Vref_temp-電位Vm_tempになり、それに応じた電流が流れることになる。ライン充電電流安定化期間t3において、第2初期化ラインN(j+1)もソースドライバ130自体が電位Vm_tempに対応する電圧を出力する。その状態で、測定期間t4においてスイッチ9を開くことで、電源ラインELVDD→第1温度検出用トランジスタT6a→第1スイッチトランジスタT7aの経路で、第1温度検出用トランジスタT6aで設定された電流が流れてきて、その電流をモニタする。
 ライン充電電流安定化期間t3においては、データラインSをモニタ電圧として、第1モニタトランジスタT3aをオンとする。これにより、ライン充電電流安定化期間t3においては、第1駆動トランジスタT2a、第1モニタトランジスタT3a、データラインS(j)、データラインS(j)に接続された出力回路3301の順に電流が流れる。
 ライン充電電流安定化期間t3においては、第2初期化ラインN(j+1)をモニタ電圧として、第1温度検出用トランジスタT6aのゲート電位を活性時電位とし、第1スイッチトランジスタT7aをオンとする。これにより、ライン充電電流安定化期間t3においては、第1温度検出用トランジスタT6a、第1スイッチトランジスタT7a、第2初期化ラインN(j+1)、第2初期化ラインN(j+1)に接続された出力回路3302の順に電流が流れる。
 続いて、測定期間t4の終了時に、モニタラインM(i)の電位がローレベルとなる。換言すれば、測定期間t4の終了時に、第1モニタトランジスタT3aおよび第1スイッチトランジスタT7aがオフとなる。
 続いて、AD変換期間t5にて、第1初期化ラインN(j)に接続された出力回路3302は、第1初期化ラインN(j)の電位を電位Vref_tempから電位Vinitまで下げる。これにより、第1温度検出用トランジスタT6aに電流が流れない。第2初期化ラインN(j+1)の電位も、電位Vm_tempから電位Vinitまで変化させる。
 測定期間t4およびAD変換期間t5は、データラインSから出力回路3301に流れる電流が安定したところで、出力回路3301によって当該電流を測定し、読み出し可能なようにAD変換を行う期間である。図3およびその説明を参照すると、データラインS(j)に接続された出力回路3301の出力データから、第1駆動トランジスタT2aの特性を検出することができる。
 測定期間t4およびAD変換期間t5は、第2初期化ラインN(j+1)から出力回路3302に流れる電流が安定したところで、出力回路3302によって当該電流を測定し、読み出し可能なようにAD変換を行う期間である。図3およびその説明を参照すると、第2初期化ラインN(j+1)に接続された出力回路3302の出力データから、第1温度検出用トランジスタT6aの特性を検出することができる。
 続いて、データ書き込み期間t6にて、ゲートラインG(i)の電位がハイレベルとなり、その後、エミッションラインE(i)の電位がハイレベルとなる。換言すれば、データ書き込み期間t6にて、第1書き込みトランジスタT1aおよび第1初期化トランジスタT5aがオンとなり、その後、第1エミッショントランジスタT4aがオンとなる。データ書き込み期間t6において、データラインSの電位は電位Vdata(n)である。電位Vdata(n)とは、データラインS(j)に、表示用のデータ信号が供給されていることに相当する電位である。
 このように、主要部101においては、第1駆動トランジスタT2aの特性と併せて、第1温度検出用トランジスタT6aの特性を検出することができる。
 図5は、出力回路330のスイッチ9~11のオンオフの一例を示すタイミングチャートである。スイッチ9~11のオンオフは、それぞれ、制御クロック信号So2、信号So1、および信号So0のハイレベルおよびローレベルに対応する。
 第1初期化ラインN(j)に接続された出力回路3302において、スイッチ9および10は常にオンであり、スイッチ11は常にオフである(図5中、3302(N(j))参照)。
 第2初期化ラインN(j+1)に接続された出力回路3302において、スイッチ9~11のオンオフはそれぞれ以下のとおりである。スイッチ9は、測定期間t4開始からAD変換期間t5終了までの間においてオフであり、その他の期間においてオンである。スイッチ10は、AD変換期間t5においてオフであり、その他の期間においてオンである。スイッチ11は、AD変換期間t5においてオンであり、その他の期間においてオフである(図5中、3302(N(j+1))参照)。
 データラインSに接続された出力回路3301において、スイッチ9~11のオンオフはそれぞれ以下のとおりである。スイッチ9は、測定期間t4開始からAD変換期間t5終了までの間においてオフであり、その他の期間においてオンである。スイッチ10は、AD変換期間t5においてオフであり、その他の期間においてオンである。スイッチ11は、AD変換期間t5においてオンであり、その他の期間においてオフである(図5中、3301(S)参照)。
 図6は、第1画素2aの温度を検出する手法の一例を説明するグラフである。図6において、横軸は第1温度検出用トランジスタT6aのゲート-ソース間電圧、縦軸は第1温度検出用トランジスタT6aに流れる電流を示している。図6によれば、第1温度検出用トランジスタT6aの特性の候補18~22が存在している。候補18~22の相違は、第1画素2aの温度の相違と対応する。主要部101においては、第1温度検出用トランジスタT6aのゲート-ソース間電圧が電位Vref_temp-電位Vm_tempであるときに第1温度検出用トランジスタT6aに流れる電流の大きさを検出する。この検出に、第2初期化ラインN(j+1)、および第2初期化ラインN(j+1)に接続された出力回路3302が用いられる。そして、第1温度検出用トランジスタT6aのゲート-ソース間電圧が電位Vref_temp-電位Vm_tempであるときの第1温度検出用トランジスタT6aに流れる電流の大きさを、候補18~22のいずれかに当てはめることにより、第1画素2aの温度を検出することができる。例えば、第1温度検出用トランジスタT6aのゲート-ソース間電圧が電位Vref_temp-電位Vm_tempであるときに第1温度検出用トランジスタT6aに流れる電流の大きさが電流Icである場合、候補22に対応する第1画素2aの温度を、第1画素2aの温度として検出することができる。なお、第1温度検出用トランジスタT6aの特性の候補の数が少ない場合には、線形補間により、既存の候補から新たな候補を作成してもよい。
 図7は、第1駆動トランジスタT2aの電圧‐電流特性シフトの補償の一例を説明するグラフである。図7において、横軸は電圧、縦軸は電流を示している。
 第1画素2aに関し、外部補償の仕組みとしては、第1駆動トランジスタT2aの特性をモニタして、その結果に合わせて目標となる電流が流れるデータ電圧(第1駆動トランジスタT2aのゲート電位)を決めることになる。図7で言うと、いくつかのモニタ電圧でモニタを行ってその時に測定された電流の値から、第1駆動トランジスタT2aにおける現在の劣化が特性候補13~17のどの電流-電圧特性になっているのかを求めることになる。第1駆動トランジスタT2aの電流-電圧特性がわかれば、表示の際に必要なデータに応じて第1発光素子20aに流す電流が決まるので、それに応じた第1駆動トランジスタT2aのゲート電位が決まる。前記は基準温度での考え方となるので、第1駆動トランジスタT2aの温度特性を加味する必要がある。その際は図7の劣化特性の電流-電圧特性カーブのセットが温度に応じて複数枚あると考える。そこで、外部の温度センサー等の温度情報をもとに、どの電流-電圧特性カーブのセットを使用するのかを決定することになる。それにより、現在の第1駆動トランジスタT2aの劣化特性が分かるため、第1駆動トランジスタT2aに対して必要な電流を流すためのデータ電圧を決めることができる。また、第1発光素子20aの電流特性についても温度特性があるので、実際には表示に必要なデータから第1発光素子20aに流す電流を決める時にも温度情報を使って電流を決定する。第1画素2a以外の各画素2に関しても同様である。
 主要部101によれば、温度検出回路3aの出力端に接続された読取線として、第1画素2aの温度を検出しない表示装置においても必要な、第2初期化ラインN(j+1)を使用している。これにより、第1画素2aの温度を検出しない表示装置においては不要なバスラインを設ける必要が無いので、設計の自由度が高い表示装置100を実現することができる。
 第1スイッチトランジスタT7aは、第1温度検出用トランジスタT6aと第2初期化ラインN(j+1)との間に接続されており、かつ、ゲートがモニタラインM(i)と接続されている。第1スイッチトランジスタT7aを設けることによって、第1温度検出用トランジスタT6a自体のゲート電位の活性時電位および非活性時電位とは別に、第1温度検出用トランジスタT6aと第2初期化ラインN(j+1)との導通および非導通を制御することができる。これは、1列の画素ユニット1から、温度検出対象の画素2を選択することに好適である。第1初期化ラインN(j)は、第1画素ユニット1aと同列に属する全ての画素ユニット1に対して共通であることが一般的である。このため、第1初期化ラインN(j)が第1温度検出用トランジスタT6aのゲート電位を活性時電位とさせる場合、意図せずに、第1画素ユニット1aと同列に属する全ての画素ユニット1に対応する温度検出用トランジスタのゲート電位が活性時電位とされる。この場合、第1スイッチトランジスタT7aをオンとし、他のスイッチトランジスタをオフとすることにより、第1温度検出用トランジスタT6aのみを選択的に第2初期化ラインN(j+1)と導通させることができる。但し、第1温度検出用トランジスタT6a自体のゲート電位の活性時電位および非活性時電位によっても、第1温度検出用トランジスタT6aと第2初期化ラインN(j+1)との導通および非導通を最低限制御することは可能である。従って、主要部101において第1スイッチトランジスタT7aが設けられていることは必須でない。
 第1スイッチトランジスタT7aは、第1温度検出用トランジスタT6aと第2初期化ラインN(j+1)との導通および非導通を切り替えるスイッチとして機能するものである。このため、第1スイッチトランジスタT7aは、第1温度検出用トランジスタT6aより十分大きなゲート電位でオンオフが切り替えられるものであってもよい。つまり、第1温度検出用トランジスタT6aのゲート電位が非活性時電位から活性時電位に切り替わる第1温度検出用トランジスタT6aのゲート電位は、第1スイッチトランジスタT7aがオフからオンに切り替わる第1スイッチトランジスタT7aのゲート電位より小さくてもよい。これは、図4に示したタイミングチャートにおいて、電位Vref_tempが、モニタラインM(i)の電位におけるハイレベルの電位より小さいことに相当する。
 第1温度検出用トランジスタT6aのゲート電位が活性時電位となる期間と、第1スイッチトランジスタT7aがオンとなる期間とが略一致(少なくとも一部が一致)している。これは、図4に示したタイミングチャートにおける、モニタラインM(i)の電位がハイレベルであり、かつ、第1初期化ラインN(j)の電位が電位Vref_tempである、ライン充電電流安定化期間t3および測定期間t4の大部分に相当する。
 第2初期化ラインN(j+1)に接続された出力回路3302は、第2初期化ラインN(j+1)に流れる電流の大きさに応じて変化する出力を行うモニタ回路の機能を有している。
 一方、第1初期化ラインN(j)に接続された出力回路3302は、第1状態と第2状態とを切り替える初期化ラインドライバの機能を有している。第1状態とは、第1初期化ラインN(j)の電位が第1温度検出用トランジスタT6aのゲート電位を非活性時電位とする電位Vinit(第1電位)である状態である。第2状態とは、第1初期化ラインN(j)の電位が第1温度検出用トランジスタT6aのゲート電位を活性時電位とする電位Vref_temp(第2電位)である状態である。
 第1温度検出用トランジスタT6a自体は、既知の温度特性を持っており、温度により同じゲート-ソース間電圧でも流れる電流が異なるため、モニタした当該電流の値を温度に変換することができる。第1温度検出用トランジスタT6aは表示装置100の表示中に電流が流れないため、第1温度検出用トランジスタT6aの劣化は無視することができる。これにより、表示装置100自身の発熱の影響を受けた第1画素2aの温度をセンシングすることができ、それに対応した第1駆動トランジスタT2aの特性の補正および表示用の各種電流値の補正を行うことができる。
 〔実施形態2〕
 図8は、本発明の実施形態2に係る、表示装置100の主要部102の概略構成を示す回路図である。主要部102は、第1画素ユニット1a、第2画素ユニット1b、第1温度検出回路3a、およびその周囲を示したものである。
 主要部102において、第1画素ユニット1aは、3つの第1画素2aを有している。ゲートラインG(i)、モニタラインM(i)、エミッションラインE(i)、および第1初期化ラインN(j)については、3つの第1画素2aで共通の配線が用いられており、データラインS(j)については、第1画素2a毎に設けられている。3つの第1画素2aは例えば、それぞれ、赤色を発光する画素、緑色を発光する画素、および青色を発光する画素である。
 主要部102において、第2画素ユニット1bは、3つの第2画素2bを有している。ゲートラインG(i)、モニタラインM(i)、エミッションラインE(i)、および第2初期化ラインN(j+1)については、3つの第2画素2bで共通の配線が用いられており、データラインS(j+1)については、第2画素2b毎に設けられている。3つの第2画素2bは例えば、それぞれ、赤色を発光する画素、緑色を発光する画素、および青色を発光する画素である。
 このように、第1画素2aおよび第2画素2bの各々は、1つに限定されず、2つ以上であってもよい。
 〔実施形態3〕
 図9は、本発明の実施形態3に係る、表示装置100の主要部103の概略構成を示す回路図である。主要部103は、第1画素ユニット1a、第2画素ユニット1b、第3画素ユニット1c、第1温度検出回路3a、第2温度検出回路3b、およびその周囲を示したものである。第3画素ユニット1cは、多数の画素ユニット1のうちの1つである。第2温度検出回路3bは、1つの温度検出回路3である。
 主要部103は、主要部102の構成に加え、第3画素ユニット1cおよび第2温度検出回路3bを有している。
 第3画素ユニット1cは、少なくとも1つ(ここでは3つ)の第3画素2cを有している。第3画素ユニット1cは、マトリクス状に配置された多数の画素ユニット1におけるi行目かつ(j+2)列目に配置されているものとする。第3画素2cは、第3書き込みトランジスタT1c、第3駆動トランジスタT2c、第3モニタトランジスタT3c、第3エミッショントランジスタT4c、第3初期化トランジスタT5c、第3コンデンサCc、および第3発光素子ELcを有している。第3画素2cに含まれるトランジスタの各々は例えば、nチャネル型のMOSFETである。
 第3書き込みトランジスタT1cのゲートおよび第3初期化トランジスタT5cのゲートは、第3画素ユニット1cに対応するゲートラインG(i)と接続されている。第3書き込みトランジスタT1cは、第3画素ユニット1cに対応する(j+2)列目のデータラインS(j+2)と、第3駆動トランジスタT2cのゲートとの間に接続されている。第3初期化トランジスタT5cは、第3駆動トランジスタT2cと、第3画素ユニット1cに対応する第3初期化ラインN(j+2)との間に接続されている。第3初期化ラインN(j+2)は、(j+2)列目の初期化ラインNでもある。第3初期化トランジスタT5cは、自身がオンすることによって、第3駆動トランジスタT2cのソースを第3初期化ラインN(j+2)と接続することで、第3駆動トランジスタT2cのソース電位を第3初期化ラインN(j+2)の電位とする(第3駆動トランジスタを初期化する)ものである。
 第3駆動トランジスタT2cのゲートは、第3書き込みトランジスタT1cを介して、データラインS(j+2)と接続されている。第3駆動トランジスタT2cは、電源ラインELVDDと、第3エミッショントランジスタT4cとの間に接続されている。
 第3モニタトランジスタT3cのゲートは、第3画素ユニット1cに対応するモニタラインM(i)と接続されている。第3モニタトランジスタT3cは、データラインS(j+2)と、第3駆動トランジスタT2cとの間に接続されている。
 第3エミッショントランジスタT4cのゲートは、第3画素ユニット1cに対応するエミッションラインE(i)と接続されている。第3エミッショントランジスタT4cは、第3駆動トランジスタT2cと、第3発光素子ELcのアノードとの間に接続されている。
 第3発光素子ELcのアノードは、第3エミッショントランジスタT4cと接続されている。第3発光素子ELcのカソードは、電源ラインELVSSと接続されている。第3コンデンサCcの一端は、第3書き込みトランジスタT1cと、第3駆動トランジスタT2cのゲートとの間に接続されている。第3コンデンサCcの他端は、第3駆動トランジスタT2cと、第3モニタトランジスタT3cとの間に接続されている。
 第2温度検出回路3bは、第2温度検出用トランジスタT6bおよび第2スイッチトランジスタT7bを有している。第2温度検出用トランジスタT6bのゲートは、第2初期化ラインN(j+1)と接続されている。第2温度検出用トランジスタT6bは、電源ラインELVDDと、第3初期化ラインN(j+2)との間に接続されている。第2スイッチトランジスタT7bのゲートは、第2画素ユニット1bに対応するモニタラインM(i)と接続されている。第2スイッチトランジスタT7bは、第2温度検出用トランジスタT6bと、第3初期化ラインN(j+2)との間に接続されている。換言すれば、第2温度検出用トランジスタT6bは、第2スイッチトランジスタT7bを介して、第3初期化ラインN(j+2)と接続されている。
 データラインS(j+2)に出力回路3301が接続されており、第3初期化ラインN(j+2)に出力回路3302が接続されている。
 主要部103においては、第1画素ユニット1a、第2画素ユニット1b、第1温度検出回路3a、およびそれらの周囲の関係と、第2画素ユニット1b、第3画素ユニット1c、第2温度検出回路3b、およびそれらの周囲の関係とが同様となっている。このため、主要部103においては、第1温度検出回路3aを用いて第1画素2aの温度を検出することと同様の要領で、第2温度検出回路3bを用いて第2画素2bの温度を検出することができる。
 すなわち、表示装置100は、第3駆動トランジスタT2cと、第3駆動トランジスタT2cを初期化する第3初期化トランジスタT5cと、を有している第3画素2cを少なくとも1つと、第3初期化トランジスタT5cを介して、第3駆動トランジスタT2cと接続されている第3初期化ラインN(j+2)と、第3初期化ラインN(j+2)と接続されており、かつ、ゲートが第2初期化ラインN(j+1)と接続されている第2温度検出用トランジスタT6bとを備えていてもよい。これにより、2回測定が必要にはなるが、細かく温度分布を見ることができるというメリットがある。
 〔まとめ〕
 本発明の態様1に係る表示装置は、第1駆動トランジスタと、前記第1駆動トランジスタを初期化する第1初期化トランジスタと、を有している第1画素を少なくとも1つと、第2駆動トランジスタと、前記第2駆動トランジスタを初期化する第2初期化トランジスタと、を有している第2画素を少なくとも1つと、前記第1初期化トランジスタを介して、前記第1駆動トランジスタと接続されている第1初期化ラインと、前記第2初期化トランジスタを介して、前記第2駆動トランジスタと接続されている第2初期化ラインと、前記第2初期化ラインと接続されており、かつ、ゲートが前記第1初期化ラインと接続されている第1温度検出用トランジスタとを備えている。
 本発明の態様2に係る表示装置は、前記態様1において、前記第1画素は、前記第1駆動トランジスタと接続されたモニタトランジスタを有しており、前記表示装置は、前記モニタトランジスタのゲートと接続されているモニタラインと、前記第1温度検出用トランジスタと前記第2初期化ラインとの間に接続されており、かつ、ゲートが前記モニタラインと接続されているスイッチトランジスタとを備えている。
 本発明の態様3に係る表示装置は、前記態様2において、前記第1温度検出用トランジスタのゲート電位が非活性時電位から活性時電位に切り替わる前記第1温度検出用トランジスタのゲート電位は、前記スイッチトランジスタがオフからオンに切り替わる前記スイッチトランジスタのゲート電位より小さい。
 本発明の態様4に係る表示装置は、前記態様2または3において、前記第1温度検出用トランジスタのゲート電位が活性時電位となる期間の少なくとも一部と、前記スイッチトランジスタがオンとなる期間の少なくとも一部とが一致している。
 本発明の態様5に係る表示装置は、前記態様1から4のいずれかにおいて、前記第2初期化ラインと接続されており、前記第2初期化ラインに流れる電流の大きさに応じて変化する出力を行うモニタ回路を備えている。
 本発明の態様6に係る表示装置は、前記態様5において、前記モニタ回路は、前記第1画素の書き込みトランジスタがオフのときに、前記出力を行う。
 本発明の態様7に係る表示装置は、前記態様1から6のいずれかにおいて、前記第1初期化ラインの電位が前記第1温度検出用トランジスタのゲート電位を非活性時電位とする第1電位である第1状態と、前記第1初期化ラインの電位が前記第1温度検出用トランジスタのゲート電位を活性時電位とする第2電位である第2状態とを切り替える初期化ラインドライバを備えている。
 本発明の態様8に係る表示装置は、前記態様7において、前記初期化ラインドライバは、前記第1初期化トランジスタ、および前記第1温度検出用トランジスタのゲートと接続されている。
 本発明の態様9に係る表示装置は、前記態様7または8において、前記第1電位は、前記第1駆動トランジスタを初期化するための電位である。
 本発明の態様10に係る表示装置は、前記態様7から9のいずれかにおいて、前記初期化ラインドライバは、前記第1初期化ラインに流れる電流の大きさに応じて変化する出力を行わない。
 本発明の態様11に係る表示装置は、前記態様1から10のいずれかにおいて、第3駆動トランジスタと、前記第3駆動トランジスタを初期化する第3初期化トランジスタと、を有している第3画素を少なくとも1つと、前記第3初期化トランジスタを介して、前記第3駆動トランジスタと接続されている第3初期化ラインと、前記第3初期化ラインと接続されており、かつ、ゲートが前記第2初期化ラインと接続されている第2温度検出用トランジスタとを備えている。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
2a 第1画素
2b 第2画素
2c 第3画素
100 表示装置
101~103 表示装置の主要部
330、3301、3302 出力回路(モニタ回路、初期化ラインドライバ)
M(i) モニタライン
N(j) 第1初期化ライン
N(j+1) 第2初期化ライン
N(j+2) 第3初期化ライン
T1a 第1書き込みトランジスタ(第1画素の書き込みトランジスタ)
T2a 第1駆動トランジスタ
T2b 第2駆動トランジスタ
T2c 第3駆動トランジスタ
T3a 第1モニタトランジスタ(モニタトランジスタ)
T5a 第1初期化トランジスタ
T5b 第2初期化トランジスタ
T5c 第3初期化トランジスタ
T6a 第1温度検出用トランジスタ
T6b 第2温度検出用トランジスタ
T7a 第1スイッチトランジスタ(スイッチトランジスタ)

 

Claims (11)

  1.  第1駆動トランジスタと、前記第1駆動トランジスタを初期化する第1初期化トランジスタと、を有している第1画素を少なくとも1つと、
     第2駆動トランジスタと、前記第2駆動トランジスタを初期化する第2初期化トランジスタと、を有している第2画素を少なくとも1つと、
     前記第1初期化トランジスタを介して、前記第1駆動トランジスタと接続されている第1初期化ラインと、
     前記第2初期化トランジスタを介して、前記第2駆動トランジスタと接続されている第2初期化ラインと、
     前記第2初期化ラインと接続されており、かつ、ゲートが前記第1初期化ラインと接続されている第1温度検出用トランジスタとを備えている表示装置。
  2.  前記第1画素は、前記第1駆動トランジスタと接続されたモニタトランジスタを有しており、
     前記表示装置は、
      前記モニタトランジスタのゲートと接続されているモニタラインと、
      前記第1温度検出用トランジスタと前記第2初期化ラインとの間に接続されており、かつ、ゲートが前記モニタラインと接続されているスイッチトランジスタとを備えている請求項1に記載の表示装置。
  3.  前記第1温度検出用トランジスタのゲート電位が非活性時電位から活性時電位に切り替わる前記第1温度検出用トランジスタのゲート電位は、前記スイッチトランジスタがオフからオンに切り替わる前記スイッチトランジスタのゲート電位より小さい請求項2に記載の表示装置。
  4.  前記第1温度検出用トランジスタのゲート電位が活性時電位となる期間の少なくとも一部と、前記スイッチトランジスタがオンとなる期間の少なくとも一部とが一致している請求項2または3に記載の表示装置。
  5.  前記第2初期化ラインと接続されており、前記第2初期化ラインに流れる電流の大きさに応じて変化する出力を行うモニタ回路を備えている請求項1から4のいずれか1項に記載の表示装置。
  6.  前記モニタ回路は、前記第1画素の書き込みトランジスタがオフのときに、前記出力を行う請求項5に記載の表示装置。
  7.  前記第1初期化ラインの電位が前記第1温度検出用トランジスタのゲート電位を非活性時電位とする第1電位である第1状態と、前記第1初期化ラインの電位が前記第1温度検出用トランジスタのゲート電位を活性時電位とする第2電位である第2状態とを切り替える初期化ラインドライバを備えている請求項1から6のいずれか1項に記載の表示装置。
  8.  前記初期化ラインドライバは、前記第1初期化トランジスタ、および前記第1温度検出用トランジスタのゲートと接続されている請求項7に記載の表示装置。
  9.  前記第1電位は、前記第1駆動トランジスタを初期化するための電位である請求項7または8に記載の表示装置。
  10.  前記初期化ラインドライバは、前記第1初期化ラインに流れる電流の大きさに応じて変化する出力を行わない請求項7から9のいずれか1項に記載の表示装置。
  11.  第3駆動トランジスタと、前記第3駆動トランジスタを初期化する第3初期化トランジスタと、を有している第3画素を少なくとも1つと、
     前記第3初期化トランジスタを介して、前記第3駆動トランジスタと接続されている第3初期化ラインと、
     前記第3初期化ラインと接続されており、かつ、ゲートが前記第2初期化ラインと接続されている第2温度検出用トランジスタとを備えている請求項1から10のいずれか1項に記載の表示装置。
PCT/JP2021/031022 2021-08-24 2021-08-24 表示装置 WO2023026369A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031022 WO2023026369A1 (ja) 2021-08-24 2021-08-24 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031022 WO2023026369A1 (ja) 2021-08-24 2021-08-24 表示装置

Publications (1)

Publication Number Publication Date
WO2023026369A1 true WO2023026369A1 (ja) 2023-03-02

Family

ID=85321846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031022 WO2023026369A1 (ja) 2021-08-24 2021-08-24 表示装置

Country Status (1)

Country Link
WO (1) WO2023026369A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316356A (ja) * 2006-05-26 2007-12-06 Sony Corp 画像表示装置
JP2008181008A (ja) * 2007-01-25 2008-08-07 Sony Corp 温度検出装置、elパネル、el表示装置、電子機器、温度検出方法及びコンピュータプログラム
JP2009075320A (ja) * 2007-09-20 2009-04-09 Sony Corp 表示装置、表示駆動方法
JP2009080252A (ja) * 2007-09-26 2009-04-16 Sony Corp 表示装置、表示駆動方法
JP2009300285A (ja) * 2008-06-13 2009-12-24 Panasonic Corp 温度検知方法及び有機el表示装置
JP2012252216A (ja) * 2011-06-03 2012-12-20 Renesas Electronics Corp パネル表示装置のデータドライバ
JP2015043041A (ja) * 2013-08-26 2015-03-05 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 電気光学装置
US20190156716A1 (en) * 2017-11-23 2019-05-23 Silicon Works Co., Ltd. Display driving device
KR20200074739A (ko) * 2018-12-17 2020-06-25 엘지디스플레이 주식회사 유기발광 표시장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316356A (ja) * 2006-05-26 2007-12-06 Sony Corp 画像表示装置
JP2008181008A (ja) * 2007-01-25 2008-08-07 Sony Corp 温度検出装置、elパネル、el表示装置、電子機器、温度検出方法及びコンピュータプログラム
JP2009075320A (ja) * 2007-09-20 2009-04-09 Sony Corp 表示装置、表示駆動方法
JP2009080252A (ja) * 2007-09-26 2009-04-16 Sony Corp 表示装置、表示駆動方法
JP2009300285A (ja) * 2008-06-13 2009-12-24 Panasonic Corp 温度検知方法及び有機el表示装置
JP2012252216A (ja) * 2011-06-03 2012-12-20 Renesas Electronics Corp パネル表示装置のデータドライバ
JP2015043041A (ja) * 2013-08-26 2015-03-05 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 電気光学装置
US20190156716A1 (en) * 2017-11-23 2019-05-23 Silicon Works Co., Ltd. Display driving device
KR20200074739A (ko) * 2018-12-17 2020-06-25 엘지디스플레이 주식회사 유기발광 표시장치

Similar Documents

Publication Publication Date Title
US10269277B2 (en) Organic light emitting display panel, organic light emitting display device and the method for driving the same
KR102513528B1 (ko) 유기 발광 표시 장치 및 이의 구동 방법
KR102552959B1 (ko) 표시 장치
US9947271B2 (en) Threshold voltage detection circuit for OLED display device
KR101528148B1 (ko) 화소 전류 측정을 위한 유기 발광 다이오드 표시 장치 및 그의 화소 전류 측정 방법
JP4589614B2 (ja) 画像表示装置
JP5073547B2 (ja) 表示駆動回路と表示駆動方法
KR102643806B1 (ko) Oled 구동 특성 검출 회로 및 이를 포함하는 유기 발광 표시 장치
US8139006B2 (en) Power source, display including the same, and associated method
US10504422B2 (en) Compensation circuit and display panel
JP2019028426A (ja) 電界発光表示装置及びその駆動方法
WO2014021150A1 (ja) 表示装置およびその駆動方法
KR102226422B1 (ko) 유기 발광 표시 장치 및 이의 구동 방법
KR102496782B1 (ko) 전압변환 회로 및 이를 구비한 유기발광 표시장치
WO2014046029A1 (ja) データ線駆動回路、それを備える表示装置、およびデータ線駆動方法
US8294700B2 (en) Display device
WO2019227849A1 (zh) Oled像素驱动电路
KR20200076194A (ko) 발광표시장치 및 이의 구동방법
KR20220059776A (ko) 표시장치 및 이의 구동방법
KR102513097B1 (ko) 컨트롤러, 유기발광표시장치 및 구동방법
KR20170073364A (ko) 유기 발광 표시 장치 및 그 구동방법
WO2023026369A1 (ja) 表示装置
TWI545539B (zh) 有機發光二極體顯示器及其驅動方法
US11847959B2 (en) Display device having sensing mode for sensing electrical characteristics of pixels
TW202006691A (zh) 顯示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954984

Country of ref document: EP

Kind code of ref document: A1