WO2023024692A1 - 一种固毡热场件及单晶炉 - Google Patents

一种固毡热场件及单晶炉 Download PDF

Info

Publication number
WO2023024692A1
WO2023024692A1 PCT/CN2022/102061 CN2022102061W WO2023024692A1 WO 2023024692 A1 WO2023024692 A1 WO 2023024692A1 CN 2022102061 W CN2022102061 W CN 2022102061W WO 2023024692 A1 WO2023024692 A1 WO 2023024692A1
Authority
WO
WIPO (PCT)
Prior art keywords
felt
solid
thermal field
fixed
heater
Prior art date
Application number
PCT/CN2022/102061
Other languages
English (en)
French (fr)
Inventor
杨少平
李侨
程磊
朱永刚
邓浩
牛彩鹤
豆菲菲
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2023024692A1 publication Critical patent/WO2023024692A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • the present application relates to the technical field of monocrystalline silicon, in particular to a solid-felt thermal field element and a monocrystalline furnace.
  • the thermal field of the single crystal furnace used in the prior art belongs to the thermal field combined with soft felt and graphite/carbon-carbon insulation cylinder.
  • the current thermal field structure has reached the extreme cost reduction space, and urgently needs Innovation.
  • the purpose of this application is to provide a solid felt heat field element and a single crystal furnace, so as to achieve the purpose of reducing costs without changing the existing heat preservation requirements.
  • the present application provides a solid felt thermal field element.
  • the solid felt thermal field element provided by the present application is arranged at intervals between the inner wall of the single crystal furnace and the heater, and the solid felt thermal field element includes a solid felt structure and a protective element arranged on the first side of the solid felt structure, wherein , the solid felt is a rigid shaped felt, and the first side of the solid felt structure is the side of the solid felt structure close to the heater.
  • the present application provides a solid felt thermal field element, which is arranged at intervals between the inner wall of the single crystal furnace and the heater. Based on this, the solid felt thermal field component can replace the original thermal field component combined with the soft felt and the graphite/carbon-carbon insulation cylinder to realize the thermal insulation function. In addition, there is still a certain gap between the solid-felt thermal field part and the inner wall of the single crystal furnace and the heater, so that the solid-felt thermal field part can realize the heat preservation function without clinging to the inner wall of the furnace or the heater , to avoid aggravating the oxidation and corrosion of the thermal field parts of the solid felt.
  • the fixed felt thermal field element includes a fixed felt structure and a protective member arranged on the first side of the fixed felt structure, wherein the fixed felt is a hard shaped felt, and the first side of the fixed felt structure is the side of the fixed felt structure close to the heater .
  • the solid felt thermal field element provided by the present application reduces the cumbersome steps of manual cutting and installation of the soft felt, thereby reducing labor costs.
  • the protective part is located on the side of the solid felt structure close to the heater, which can prevent the heater from oxidizing and corroding the solid felt structure, making the solid felt structure not easy to age, prolonging the service life of the solid felt structure, thereby reducing the use cost of the solid felt structure.
  • the solid felt thermal field element provided by the present application can reduce the cost without changing the existing thermal insulation requirements.
  • the protective piece is a protective piece with a carbon-carbon composite material or a protective piece with an anti-oxidation material.
  • the protective part can prevent the heater from oxidizing and corroding the solid felt structure, so that the solid felt structure is not easy to age. Thereby prolonging the service life of the solid felt structure.
  • the protective piece when the protective piece is made of carbon-carbon composite material, the protective piece covers the first side of the solid felt structure, and the thickness of the protective piece is 2mm to 5mm.
  • the protective part made of carbon-carbon composite material can protect the solid felt structure, making the solid felt structure The structure is not easy to age and can prolong the service life of the solid felt structure.
  • the cost of protective parts made of carbon-carbon composite materials is low. Therefore, replacing the protective parts made of carbon-carbon composite materials is more conducive to reducing costs than replacing the oxidized and corroded solid felt structure.
  • the protective piece when the protective piece is a protective piece with an anti-oxidation material, the protective piece is a high-temperature-resistant alloy metal material piece, and the high-temperature-resistant alloy metal material piece covers the first side of the solid felt structure, and is resistant to The surface of the high-temperature alloy metal material part facing the heater is coated with a first anti-oxidation coating.
  • the high-temperature-resistant alloy metal can be tungsten-molybdenum alloy and other materials. Since the high-temperature-resistant alloy metal material can withstand high temperatures exceeding 1700°C, it is more conducive to protecting the solid felt structure and preventing the heater from damaging the solid felt. Oxidative corrosion of structures. Considering the high cost of high temperature resistant alloy metal, in order to reduce the cost, the present invention coats the surface of the high temperature resistant alloy metal part facing the heater to prevent oxidation when the high temperature resistant alloy metal plate protects the solid felt structure. Coating, so as to ensure that the high temperature resistant alloy metal parts themselves are not oxidized and corroded.
  • the protection member when the protection member is a protection member having an oxidation-resistant material, the protection member is a second anti-oxidation coating coated on the first side surface of the solid felt structure.
  • At least one layer of heat reflection plate is arranged between the solid felt thermal field element and the heater.
  • the distance between the heat reflection plate and the solid felt thermal field element is 2mm to 5mm, and the distance between the heat reflection plate and the heater is 18mm to 33mm.
  • the distance between two adjacent layers of heat reflection plates is 2 mm to 5 mm.
  • the heat reflection plate is arranged between the solid felt thermal field and the heater, and the heat reflection plate reflects the heat energy generated by the heater back into the single crystal furnace, which not only reduces heat energy loss, but also reduces
  • the thermal damage of the heater to the solid felt structure is conducive to the continuous and stable thermal insulation performance of the solid felt thermal field parts.
  • the heat reflection plate is a heat reflection plate made of tungsten-molybdenum material, and the thickness of the heat reflection plate is 0.5m to 1mm; or, the heat reflection plate is a carbon-carbon composite heat reflection plate, and the heat reflection plate The thickness is 1mm to 2mm.
  • the material of the solid felt structure is one of carbon fiber material, viscose-based material, and asphalt-based material.
  • the material selected for the solid felt structure is a low-density material. Since the low-density material is lighter in the same volume, it is beneficial to reduce the overall weight of the solid felt thermal field component.
  • the weight of a thermal insulation cylinder is about 100 kg.
  • the overall weight of the solid felt thermal field parts provided by this application is lighter, which reduces the strength of manual disassembly and assembly, provides the basic conditions for the convenience of selecting disassembly tools later, and avoids future large thermal field insulation
  • the barrel is too heavy, which is inconvenient to install and remove.
  • the distance between the first side of the solid felt structure and the heater is 18 mm to 35 mm
  • the distance between the second side of the solid felt structure and the inner wall of the furnace is 5 mm to 10 mm, wherein the solid felt structure
  • the second side is the side of the solid felt structure close to the inner wall of the furnace.
  • the present application also provides a single crystal furnace, including the solid felt thermal field element described in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the beneficial effect of the single crystal furnace provided by the second aspect is the same as that of the solid-felt thermal field element described in the first aspect or any possible implementation manner of the first aspect, and will not be repeated here.
  • a heat shield suspension system is also arranged above the solid felt heat field, and the heat shield suspension system includes a detachably connected heat shield and a heat exchanger, and the heat shield is fixedly connected to the heat exchanger through the heat exchanger.
  • the furnace wall of the single crystal furnace is also arranged above the solid felt heat field, and the heat shield suspension system includes a detachably connected heat shield and a heat exchanger, and the heat shield is fixedly connected to the heat exchanger through the heat exchanger.
  • the heat shield is detachably connected to the heat exchanger through threaded fasteners, and then the heat shield is fixed on the furnace wall of the single crystal furnace through the heat exchanger.
  • the screen is placed on the solid felt heat field part, the technical solution provided by the application reduces the weight of the solid felt heat field part, and avoids the problem of inconvenient installation and removal due to the heavy heat preservation cylinder of the large heat field in the future.
  • Figure 1 is a schematic structural view of the solid felt thermal field element provided by the embodiment of the present application.
  • Fig. 2 is a schematic diagram of the position of the heat reflection plate provided by the embodiment of the present application.
  • Fig. 3 is an overall schematic diagram of the structure of the solid-felt thermal field element in the embodiment of the present application.
  • 601-heat exchanger 602-heat shield.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more, unless otherwise specifically defined. "Several” means one or more than one, unless otherwise clearly and specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connection, or integral connection; it may be mechanical connection or electrical connection; it may be direct connection or indirect connection through an intermediary, and it may be the internal communication of two elements or the interaction relationship between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • Fig. 1 is a schematic structural diagram of a solid felt thermal field element provided in an embodiment of the present application.
  • a solid felt thermal field element provided by the embodiment of the present application is arranged between the furnace inner wall 400 and the heater 300 of the single crystal furnace at intervals, and the solid felt thermal field element includes a solid felt structure 100 and the protective member 200 disposed on the first side of the fixed felt structure 100 , wherein the fixed felt is a rigid shaped felt, and the first side of the fixed felt structure 100 is the side of the fixed felt structure 100 close to the heater 300 .
  • the solid felt thermal field element provided in the present application is arranged between the furnace inner wall 400 and the heater 300 of the single crystal furnace at intervals. Based on this, the solid felt thermal field piece can replace the thermal field combined with the original soft felt and graphite/carbon-carbon insulation cylinder to realize the thermal insulation function. Moreover, there is still a certain gap between the solid-felt thermal field part and the furnace inner wall 400 and the heater 300 of the single crystal furnace, so that the solid-felt thermal field part can realize the function of heat preservation without clinging to the inner wall 400 of the furnace. Or the heater 300, to avoid aggravating the oxidation and corrosion of the solid felt heat field parts.
  • the fixed felt thermal field element includes a fixed felt structure 100 and a protective member 200 arranged on the first side of the fixed felt structure 100, wherein the fixed felt is a hard shaped felt, and the first side of the fixed felt structure 100 is the solid felt structure 100 close to side of the heater 300. Based on this, compared with the prior art, the fixed felt thermal field element provided by the present application reduces the cumbersome steps of manual cutting and installation of the soft felt, thereby reducing labor costs.
  • the protective part 200 is located on the side of the solid felt structure 100 close to the heater 300, which can prevent the heater 300 from oxidizing and corroding the solid felt structure 100, so that the solid felt structure 100 is not easy to age, prolongs the service life of the solid felt structure 100, thereby reducing The cost of using the solid felt structure 100.
  • the solid felt thermal field element provided in the embodiment of the present application can reduce the cost without changing the existing thermal insulation requirements.
  • the solid felt is a coating made of graphite soft felt in the prior art by impregnating or spraying resin glue, then laminating and curing, coating graphite powder and resin glue, and finally carbonizing after high temperature treatment. Rigid shaping felt.
  • the protective piece 200 is the protective piece 200 with carbon-carbon composite material or the protective piece 200 with anti-oxidation material.
  • the protective member 200 can prevent the oxidation and corrosion effect of the heater 300 on the solid felt structure 100, so that the solid felt structure 100 is not easy to age, thereby The service life of the fixed felt structure 100 is extended.
  • the protective member 200 when the protective member 200 is a protective member 200 with a carbon-carbon composite material, the protective member 200 covers the first side of the solid felt structure 100, and the thickness c of the protective member 200 is 2 mm. to 5mm.
  • the thickness c of the protective piece of carbon-carbon composite material can be the average thickness of the protective piece of carbon-carbon composite material, the thickness c of each protective piece of carbon-carbon composite material can be 2mm, and the thickness c of each carbon-carbon composite material The thickness c of the protective piece can also be 3mm, or the thickness c of each protective piece made of carbon-carbon composite material can also be 5mm.
  • the protective piece of carbon-carbon composite material can be covered on the first side of the solid felt structure 100 through bonding, inlaying, bolting and other connection methods, which is not limited in this embodiment of the present application.
  • the protective piece made of carbon-carbon composite material can protect the solid felt structure 100, so that the solid felt structure 100 is not easy to age, and can prolong the service life of the solid felt structure 100.
  • the cost of the protective part made of carbon-carbon composite material is low, so, compared with replacing the solid felt structure 100 after being oxidized and corroded, replacing the protective part made of carbon-carbon composite material is more conducive to reducing costs.
  • the protective piece 200 when the protective piece 200 is a protective piece 200 with an oxidation-resistant material, the protective piece 200 is a high-temperature-resistant alloy metal material piece, and the high-temperature-resistant alloy metal material piece covers the solid felt structure 100.
  • the first side of the high temperature resistant alloy metal material is coated with a first anti-oxidation coating on the surface of the side facing the heater 300 .
  • the high-temperature-resistant alloy metal can be tungsten-molybdenum alloy and other materials, because the high-temperature-resistant alloy metal material can withstand a high temperature exceeding 1700 ° C, so it is more conducive to protecting the solid felt structure 100 and preventing the heater 300 from acting on the solid felt structure. 100 oxidation corrosion.
  • the present invention coats the surface of the high-temperature-resistant alloy metal piece facing the heater 300 when the high-temperature-resistant alloy metal plate protects the solid felt structure 100 Anti-oxidation coating, so as to ensure that the high-temperature-resistant alloy metal parts themselves are not oxidized and corroded.
  • alloy materials such as tungsten and molybdenum are also good reflective materials, which can reflect the heat energy generated by the heater 300 back into the single crystal furnace, which can reduce heat energy loss to a certain extent, and also reduce the heat generated by the heater 300.
  • the thermal damage of the felt structure 100 is also beneficial to the continuous and stable thermal insulation performance of the fixed felt thermal field components.
  • the protective member 200 when the protective member 200 is a protective member 200 having an oxidation-resistant material, the protective member 200 is a second anti-oxidation coating coated on the first side surface of the solid felt structure 100. layer.
  • an anti-oxidation coating can be applied to the surface of the solid felt structure 100 near the heater 300 to ensure that the solid felt structure 100 is The single crystal furnace is not easy to be oxidized and corroded, so that the solid felt structure 100 is not easy to age, thereby achieving the purpose of prolonging the service life of the solid felt structure 100 .
  • the anti-oxidation coating is mainly made of high-temperature-resistant ceramic materials, which can be single-component high-temperature-resistant ceramic materials, such as silicon oxide, silicon nitride or silicon carbide, etc., or composite high-temperature-resistant ceramic materials. This application is not limited to this.
  • Fig. 2 illustrates a schematic diagram of the position of the heat reflection plate provided by the embodiment of the present application.
  • At least one layer of heat reflection plate 500 is disposed between the solid felt thermal field element and the heater 300 .
  • the distance between the heat reflection plate 500 and the solid felt thermal field element is 2 mm to 5 mm, and the distance between the heat reflection plate 500 and the heater 300 is 18 mm to 33 mm.
  • the distance between the heat reflection plate 500 and the fixed felt thermal field element may be 2 mm, and the distance between the heat reflection plate 500 and the heater 300 may be 33 mm.
  • the distance between the heat reflection plate 500 and the fixed felt thermal field element may be 5 mm, and the distance between the heat reflection plate 500 and the heater 300 may be 18 mm.
  • the distance between the heat reflection plate 500 and the fixed felt thermal field element may be 3 mm, and the distance between the heat reflection plate 500 and the heater 300 may be 25 mm.
  • the distance between two adjacent layers of heat reflection plates 500 is 2 mm to 5 mm.
  • two layers of heat reflection plates 500 can be arranged between the solid felt thermal field element and the heater 300.
  • the first layer of heat reflection plates and the solid felt heat The distance between the field elements can be 2 mm, the distance between the first layer of heat reflection plate and the second layer of heat reflection plate can be 2 mm, and the distance between the first layer of heat reflection plate and the heater 300 is 33 mm.
  • the distance between the second-layer heat reflection plate and the heater 300 is 31mm.
  • the heat reflection plate of the first layer and the solid felt can be 5mm
  • the distance between the first layer of heat reflection plate and the second layer of heat reflection plate can be 5mm
  • the distance between the first layer of heat reflection plate and the heater 300 is 20mm, at this time,
  • the distance between the second heat reflection plate and the heater 300 is 25 mm.
  • the heat reflection plate of the first layer and the solid felt can also be 3mm
  • the distance between the first layer of heat reflection plate and the second layer of heat reflection plate can be 3mm
  • the distance between the first layer of heat reflection plate and the heater 300 is 31mm, at this time , the distance between the second heat reflection plate and the heater 300 is 29 mm.
  • the multi-layer heat reflection plate 500 can be set according to the distance between the fixed felt thermal field element and the heater 300, which is not limited in this embodiment of the present application
  • the heat reflection plate 500 is arranged between the solid felt thermal field element and the heater 300, and the heat reflection plate 500 reflects the heat energy generated by the heater 300 back into the single crystal furnace, which not only reduces heat energy loss, At the same time, the thermal damage of the heater 300 to the solid felt structure 100 is reduced, which is beneficial to the continuous and stable thermal insulation performance of the solid felt thermal field components.
  • the heat reflection plate 500 is a heat reflection plate 500 of tungsten-molybdenum material, and the thickness of the heat reflection plate 500 is 0.5m to 1mm; or, the heat reflection plate 500 is a heat reflection plate 500 of carbon carbon material, and the heat reflection plate 500 The thickness of the board 500 is 1 mm to 2 mm.
  • the thickness of the heat reflection plate 500 can be the average thickness of the plate body.
  • the thickness of the heat reflection plate 500 can be 0.5mm, and the thickness of the heat reflection plate 500 The thickness can also be 0.7 mm, or the thickness of the heat reflection plate 500 can also be 1 mm.
  • the thickness of the heat reflection plate 500 can be the average thickness of the plate body.
  • the thickness of the heat reflection plate 500 can be 1 mm, and the thickness of the heat reflection plate 500 can be It may be 1.5 mm, or the thickness of the heat reflection plate 500 may also be 2 mm.
  • the solid felt structure 100 is formed by splicing several rectangular plates with the same length, and the width d of each plate is 50 mm to 100 mm.
  • the specific width setting can be determined by the inner diameter of the solid felt structure 100 .
  • the width d of each plate body can be the average width of the plate body, the width d of each plate body can be 50mm, and the width d of each plate body can also be 55mm, or, the width of each plate body d can also be 100mm.
  • each plate body is overlapped by inclined surfaces, and then fixedly connected by fasteners.
  • the fasteners can be bolts or other threaded fasteners, which are not limited in the embodiment of the present application. .
  • the above-mentioned lap joint refers to the overlap and connection of two materials of the same type, which is an interface method that overlaps and overlaps each other.
  • the solid felt structure 100 is divided into an upper cover felt 101 , a middle cover felt 102 and a bottom pad felt 103 from top to bottom.
  • the middle felt 102 can be divided into 1 to 4 sections according to the actual situation, and at least one fitting notch 1021 is provided on the middle felt 102, which is used to cooperate with the board in the above embodiment for installation and positioning.
  • the middle cover felt 102 is divided into three sections, and two fitting notches 1021 are arranged on the middle cover felt 102 . It should be noted that, in order to reduce heat conduction and achieve a better heat preservation effect, the depth h of the joint 1021 needs to be ⁇ 40mm.
  • the material of the solid felt structure 100 is one of carbon fiber material, viscose-based material, and asphalt-based material.
  • the carbon fibers can be cut according to the specifications of the above boards, and then several boards are spliced to form the solid felt structure 100 .
  • the material selected for the solid felt structure 100 is a low-density material. Since the low-density material is lighter in the same volume, it is beneficial to reduce the overall weight of the solid felt thermal field component. In the prior art, the weight of a thermal insulation cylinder is about 100kg. When selecting a disassembly tool, it is necessary to select a disassembly tool that can bear the weight of the thermal insulation cylinder. Therefore, manual disassembly and assembly are very intensive.
  • the overall weight of the solid felt thermal field element provided by the embodiment of the present application is lighter, which reduces the strength of manual disassembly and assembly, provides a basic condition for the convenience of selecting disassembly tools later, and avoids future hot spots.
  • the field insulation tube is too heavy, which is inconvenient to install and remove.
  • the distance a between the first side of the solid felt structure 100 and the heater 300 is 18mm to 35mm
  • the distance b between the second side of the solid felt structure 100 and the inner wall 400 of the furnace is 5mm to 10mm, wherein the solid The second side of the felt structure 100 is the side of the fixed felt structure 100 close to the inner wall 400 of the furnace.
  • the distance a between the first side of the fixed felt structure 100 and the heater 300 may be 18 mm, and the distance b between the second side of the fixed felt structure 100 and the inner wall 400 of the furnace may be 5 mm.
  • the distance a between the first side of the fixed felt structure 100 and the heater 300 may be 35 mm, and the distance b between the second side of the fixed felt structure 100 and the inner wall 400 of the furnace may be 10 mm.
  • the distance a between the first side of the fixed felt structure 100 and the heater 300 may also be 27 mm, and the distance b between the second side of the fixed felt structure 100 and the inner wall 400 of the furnace may also be 7 mm.
  • the solid felt structure 100 needs to be provided with an appropriate distance between the heater 300 and the inner wall 400 of the furnace.
  • the distance between the solid felt structure 100 and the heater 300 and the distance between the furnace inner wall 400 should not be too far, so as not to affect the thermal insulation effect of the solid felt structure 100 and increase heat loss.
  • the fixed felt structure 100 and the heater 300 and the inner wall of the furnace 400 cannot be installed in close contact, so as not to accelerate the oxidation and corrosion of the fixed felt structure 100 and increase the maintenance cost.
  • the embodiment of the present application also provides a single crystal furnace, including the solid-felt thermal field element described in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the beneficial effect of the single crystal furnace provided by the second aspect is the same as that of the solid-felt thermal field element described in the first aspect or any possible implementation manner of the first aspect, and will not be repeated here.
  • Fig. 3 illustrates the overall schematic diagram of the structure of the solid felt thermal field element in the embodiment of the present application.
  • a heat shield suspension system 600 is arranged above the solid felt heat field element.
  • the heat shield suspension system 600 includes a heat shield 602 and a heat exchanger 601 that are detachably connected.
  • the screen 602 is fixedly connected to the furnace wall of the single crystal furnace through the heat exchanger 601 .
  • the heat shield 602 is detachably connected to the heat exchanger 601 through threaded fasteners, and then the heat shield is fixed on the furnace wall of the single crystal furnace through the heat exchanger 602. Compared with the prior art The heat shield 602 is placed on the solid felt heat field part.
  • the technical solution provided by the embodiment of the application reduces the weight of the solid felt heat field part and avoids the inconvenience of installation and removal due to the heavy heat preservation cylinder of the large heat field in the future. question.
  • threaded fasteners may be bolts or other threaded fasteners such as screws, which is not limited in this embodiment of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

一种固毡热场件及单晶炉,涉及单晶硅技术领域,以实现在不改变现有保温要求的条件下,达到降低成本的目的。所述固毡热场件间隔设置在所述单晶炉的炉体内壁与加热器之间,该固毡热场件包括固毡结构以及设置于固毡结构的第一侧的防护件,其中,固毡为硬质定型毡,固毡结构的第一侧为固毡结构靠近加热器的一侧。

Description

一种固毡热场件及单晶炉
本申请要求在2021年08月26日提交中国专利局、申请号为202122084351.3、名称为“一种固毡热场件及单晶炉”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及单晶硅技术领域,尤其涉及一种固毡热场件及单晶炉。
背景技术
随着单晶硅的应用越来越广泛,单晶硅的需求量不断增大,因此,单晶硅生产成本的降低就尤为重要。
现有技术使用的单晶炉热场属于软毡与石墨/碳碳保温筒组合的热场,在成本下降越来越迫切的情况下,目前的热场结构降本空间已到极致,亟需开拓创新。
发明内容
本申请的目的在于提供一种固毡热场件及单晶炉,以实现在不改变现有保温要求的条件下,达到降低成本的目的。
第一方面,本申请提供一种固毡热场件。本申请提供的固毡热场件间隔设置在单晶炉的炉体内壁与加热器之间,该固毡热场件包括固毡结构以及设置于固毡结构的第一侧的防护件,其中,固毡为硬质定型毡,固毡结构的第一侧为固毡结构靠近加热器的一侧。
与现有技术相比,本申请提供的一种固毡热场件,间隔设置在单晶炉的炉体内壁与加热器之间。基于此,固毡热场件能够替代原有软毡与石墨/碳碳保温筒组合的热场件,实现保温功能。且固毡热场件和单晶炉的炉体内壁及加热器之间还留有一定的间隙,使得固毡热场件能够在实现保温功能的同时,不会紧贴炉体内壁或者加热器,避免加剧对固毡热场件的氧化腐蚀。固毡热场件包括固毡结构以及设置于固毡结构的第一侧的防护件,其中,固毡为硬质定型毡,固毡结构的第一侧为固毡结构靠近加热器的一侧。基于此,本申请提供的固毡热场件相对于现有技术,减少了软毡需要人工进行剪裁并 安装的繁琐步骤,进而可以减少人工成本。防护件位于固毡结构靠近加热器的一侧,可以防止加热器对固毡结构的氧化腐蚀作用,使得固毡结构不易老化,延长固毡结构的使用寿命,从而降低固毡结构的使用成本。
因此,本申请提供的一种固毡热场件可以在不改变现有保温要求的条件下,达到降低成本的目的。
在一种可能的实现方式中,防护件为具有碳碳复合材料的防护件或具有防氧化材料的防护件。
采用上述技术方案的情况下,由于碳碳复合材料及防氧化材料具有耐高温和抗腐蚀的特性,因此,防护件可以防止加热器对固毡结构的氧化腐蚀作用,使得固毡结构不易老化,从而延长固毡结构的使用寿命。
在一种可能的实现方式中,当防护件为具有碳碳复合材料的防护件时,防护件覆盖在固毡结构的第一侧,防护件的厚度为2mm至5mm。
采用上述技术方案的情况下,由于碳碳复合材料的防护件的抗氧化性比固毡结构的抗氧化性更好,因此,碳碳复合材料制作的防护件可以防护固毡结构,使得固毡结构不易老化,能够延长固毡结构的使用寿命。其次,碳碳复合材料制作的防护件的成本低,因此,相较于更换被氧化腐蚀之后的固毡结构,更换碳碳复合材料的防护件更有利于降低成本。
在一种可能的实现方式中,当防护件为具有防氧化材料的防护件时,防护件为耐高温合金金属材料件,耐高温合金金属材料件覆盖在固毡结构的第一侧,且耐高温合金金属材料件朝向加热器的一侧表面上涂覆有第一防氧化涂层。
采用上述技术方案的情况下,耐高温合金金属可以为钨钼合金等材料,由于耐高温合金金属材料可以承受超过1700℃的高温,因此,更有利于保护固毡结构,防止加热器对固毡结构的氧化腐蚀作用。考虑到耐高温合金金属成本较高,为了降低成本,本发明在该耐高温合金金属板对固毡结构进行防护时,对该耐高温合金金属件朝向加热器的一侧表面上涂覆防氧化涂层,从而保证耐高温合金金属件本身不被氧化腐蚀。
在一种可能的实现方式中,当防护件为具有防氧化材料的防护件时,防护件为涂覆在固毡结构的第一侧表面上的第二防氧化涂层。
采用上述技术方案的情况下,由于固毡结构在单晶炉中容易被氧化,因此,可以通过对固毡结构靠近加热器的一侧表面涂覆防氧化涂层,用以保证固毡结构在单晶炉中不易被氧化腐蚀,使得固毡结构不易老化,进而达到延 长固毡结构的使用寿命的目的。
在一种可能的实现方式中,固毡热场件与加热器之间设置有至少一层热反射板。热反射板与固毡热场件的距离为2mm至5mm,热反射板与加热器的距离为18mm至33mm。
示例性的,当固毡热场件与加热器之间设置有多层热反射板时,相邻两层热反射板之间的距离为2mm至5mm。
采用上述技术方案的情况下,热反射板设置于固毡热场件与加热器之间,热反射板将加热器产生的热能反射回单晶炉中,不仅减少了热能损耗,同时也减少了加热器对固毡结构的热损害,有利于固毡热场件实现持续稳定的保温性能。
在一种可能的实现方式中,热反射板为钨钼材料的热反射板,热反射板的厚度为0.5m至1mm;或,热反射板为碳碳复合材料的热反射板,热反射板的厚度为1mm至2mm。
在一种可能的实现方式中,固毡结构的材料为碳纤维材料、黏胶基材料、沥青基材料中的一种。
采用上述技术方案的情况下,可以得到固毡结构选取的材料为低密度材料,由于在同等体积的情况下,低密度的材料质量更轻,有益于减轻固毡热场件的整体重量。在现有技术中,一个保温筒的重量大约在100kg左右,在选取拆装工具时,需要选择能够承受保温筒的重量的拆装工具,因此,人工拆装的强度很大。与现有技术相比,本申请提供的固毡热场件的整体重量更轻,降低了人工拆装的强度,为之后选取拆装工具的便利提供了基础条件,避免了未来大热场保温筒过重,不便安装、拆取的问题。
在一种可能的实现方式中,固毡结构的第一侧与加热器的距离为18mm至35mm,固毡结构的第二侧与炉体内壁的距离为5mm至10mm,其中,固毡结构的第二侧为固毡结构靠近炉体内壁的一侧。
第二方面,本申请还提供一种单晶炉,包括上述第一方面或第一方面任一可能的实现方式描述的固毡热场件。
第二方面提供的单晶炉的有益效果与第一方面或第一方面任一可能的实现方式描述的固毡热场件的有益效果相同,此处不做赘述。
在一种可能的实现方式中,固毡热场件上方还设置有热屏悬挂系统,所述热屏悬挂系统包括可拆卸连接的热屏与换热器,热屏通过换热器固定连接于单晶炉的炉壁。
采用上述技术方案的情况下,热屏通过螺纹紧固件与换热器可拆卸连接,之后,热屏通过换热器固定于单晶炉的炉壁上,相较于现有技术中将热屏放置在固毡热场件上,本申请提供的技术方案减轻了固毡热场件承载的重量,避免了未来大热场保温筒过重,不便安装、拆取的问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的固毡热场件结构示意图;
图2为本申请实施例提供的热反射板的位置示意图;
图3为本申请实施例中固毡热场件结构的整体示意图。
附图标记:
100-固毡结构,    200-防护件;
300-加热器,      400-炉体内壁;
101-上部盖毡,    102-中部罩毡;
103-底部垫毡,    c-碳碳复合材料的防护件的厚度;
a-固毡结构100的第一侧与加热器300的距离;
b-固毡结构100的第二侧与炉体内壁400的距离;
d-板体的宽度,    1021-配合止口;
h-配合止口1021的深度;
500-热反射板,    600-热屏悬挂系统;
601-换热器,      602-热屏。
具体实施例
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另 一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
图1为本申请实施例提供的固毡热场件结构示意图。
第一方面,请参阅图1,本申请实施例提供的一种固毡热场件间隔设置在单晶炉的炉体内壁400与加热器300之间,该固毡热场件包括固毡结构100以及设置于固毡结构100的第一侧的防护件200,其中,固毡为硬质定型毡,固毡结构100的第一侧为固毡结构100靠近加热器300的一侧。
通过上述固毡热场件的结构可知,本申请提供的一种固毡热场件,间隔设置在单晶炉的炉体内壁400与加热器300之间。基于此,固毡热场件能够替代原有软毡与石墨/碳碳保温筒组合的热场,实现保温功能。且固毡热场件和单晶炉的炉体内壁400及加热器300之间还留有一定的间隙,使得固毡热场件能够在实现保温功能的同时,不会紧贴炉体内壁400或者加热器300,避免加剧对固毡热场件的氧化腐蚀。固毡热场件包括固毡结构100以及设置于固毡结构100的第一侧的防护件200,其中,固毡为硬质定型毡,固毡结构100的第一侧为固毡结构100靠近加热器300的一侧。基于此,本申请提供的固毡热场件相对于现有技术,减少了软毡需要人工进行剪裁并安装的繁琐步骤,进而可以减少人工成本。防护件200位于固毡结构100靠近加热器 300的一侧,可以防止加热器300对固毡结构100的氧化腐蚀作用,使得固毡结构100不易老化,延长固毡结构100的使用寿命,从而降低固毡结构100的使用成本。
因此,本申请实施例提供的一种固毡热场件可以在不改变现有保温要求的条件下,达到降低成本的目的。
需要注意的是,固毡是现有技术中的石墨软毡通过浸渍或喷淋树脂胶,之后经过层压固化、涂覆石墨粉和树脂胶混合制成的涂层,最后经过高温处理炭化的硬质定型毡。
作为一种可能的实现方式,防护件200为具有碳碳复合材料的防护件200或具有防氧化材料的防护件200。
基于此,由于碳碳复合材料及防氧化材料具有耐高温和抗腐蚀的特性,因此,防护件200可以防止加热器300对固毡结构100的氧化腐蚀作用,使得固毡结构100不易老化,从而延长固毡结构100的使用寿命。
在一些实施例中,如图1所示,当防护件200为具有碳碳复合材料的防护件200时,防护件200覆盖在固毡结构100的第一侧,防护件200的厚度c为2mm至5mm。
示例性的,碳碳复合材料的防护件的厚度c可以是碳碳复合材料的防护件的平均厚度,每个碳碳复合材料的防护件的厚度c可以为2mm,每个碳碳复合材料的防护件的厚度c还可以为3mm,或者,每个碳碳复合材料的防护件的厚度c也可以为5mm。碳碳复合材料的防护件可以通过粘接、镶嵌、螺栓等连接方式覆盖在固毡结构100的第一侧,本申请实施例对此不作限定。
可以理解的是,由于碳碳复合材料的防护件的抗氧化性比固毡结构100的抗氧化性更好,因此,碳碳复合材料制作的防护件可以防护固毡结构100,使得固毡结构100不易老化,能够延长固毡结构100的使用寿命。其次,碳碳复合材料制作的防护件的成本低,因此,相较于更换被氧化腐蚀之后的固毡结构100,更换碳碳复合材料制作的防护件更有利于降低成本。
在一些实施例中,如图1所示,当防护件200为具有防氧化材料的防护件200时,防护件200为耐高温合金金属材料件,耐高温合金金属材料件覆盖在固毡结构100的第一侧,且耐高温合金金属材料件朝向加热器300的一侧表面上涂覆有第一防氧化涂层。
可以理解的是,耐高温合金金属可以为钨钼合金等材料,由于耐高温合金金属材料可以承受超过1700℃的高温,因此,更有利于保护固毡结构100, 防止加热器300对固毡结构100的氧化腐蚀作用。考虑到耐高温合金金属成本较高,为了降低成本,本发明在该耐高温合金金属板对固毡结构100进行防护时,对该耐高温合金金属件朝向加热器300的一侧表面上涂覆防氧化涂层,从而保证耐高温合金金属件本身不被氧化腐蚀。
此外,钨钼等合金材料本身也是一种很好的反射材料,可以将加热器300产生的热能反射回单晶炉中,在一定程度上可以减少热能损耗,同时也减少了加热器300对固毡结构100的热损害,也有利于固毡热场件实现持续稳定的保温性能。
在一些实施例中,如图1所示,当防护件200为具有防氧化材料的防护件200时,防护件200为涂覆在固毡结构100的第一侧表面上的第二防氧化涂层。
需要注意的是,由于固毡结构100在单晶炉中容易被氧化,因此可以通过对固毡结构100靠近加热器300的一侧表面涂覆防氧化涂层,用以保证固毡结构100在单晶炉中不易被氧化腐蚀,使得固毡结构100不易老化,进而达到延长固毡结构100的使用寿命的目的。
可以理解的是,防氧化涂层主要以耐高温陶瓷材料为主,可以是单一组分的耐高温陶瓷材料,如氧化硅、氮化硅或者碳化硅等,也可以是复合耐高温陶瓷材料,本申请对此不作限定。
图2示例出了本申请实施例提供的热反射板的位置示意图。
作为一种可能的实现方式,如图2所示,固毡热场件与加热器300之间设置有至少一层热反射板500。热反射板500与固毡热场件的距离为2mm至5mm,热反射板500与加热器300的距离为18mm至33mm。
在一个实施例中,热反射板500与固毡热场件的距离可以为2mm,热反射板500与加热器300的距离可以为33mm。
在一个实施例中,热反射板500与固毡热场件的距离可以为5mm,热反射板500与加热器300的距离可以为18mm。
在一个实施例中,热反射板500与固毡热场件的距离可以为3mm,热反射板500与加热器300的距离可以为25mm。
在一些实施例中,当固毡热场件与加热器300之间设置有多层热反射板500时,相邻两层热反射板500之间的距离为2mm至5mm。
在一个实施例中,可以在固毡热场件与加热器300之间设置两层热反射板500,在不考虑热反射板500本体厚度的情况下,第一层热反射板与固毡 热场件的距离可以为2mm,第一层热反射板与第二层热反射板之间的距离可以为2mm,第一层热反射板与加热器300之间的距离为33mm,此时,第二层热反射板与加热器300之间的距离为31mm。
在一个实施例中,在固毡热场件与加热器300之间设置有两层热反射板500时,在不考虑热反射板500本体厚度的情况下,第一层热反射板与固毡热场件的距离可以为5mm,第一层热反射板与第二层热反射板之间的距离可以为5mm,第一层热反射板与加热器300之间的距离为20mm,此时,第二层热反射板与加热器300之间的距离为25mm。
在一个实施例中,在固毡热场件与加热器300之间设置有两层热反射板500时,在不考虑热反射板500本体厚度的情况下,第一层热反射板与固毡热场件的距离还可以为3mm,第一层热反射板与第二层热反射板之间的距离可以为3mm,第一层热反射板与加热器300之间的距离为31mm,此时,第二层热反射板与加热器300之间的距离为29mm。
需要注意的是,在实际应用中,可以根据固毡热场件与加热器300之间的距离,设置多层热反射板500,本申请实施例对此不作限定
采用上述技术方案的情况下,热反射板500设置于固毡热场件与加热器300之间,热反射板500将加热器300产生的热能反射回单晶炉中,不仅减少了热能损耗,同时也减少了加热器300对固毡结构100的热损害,有利于固毡热场件实现持续稳定的保温性能。
在一些实施例中,热反射板500为钨钼材料的热反射板500,热反射板500的厚度为0.5m至1mm;或,热反射板500为碳碳材料的热反射板500,热反射板500的厚度为1mm至2mm。
示例性的,热反射板500的厚度可以是板体的平均厚度,当使用钨钼等金属材料作为热反射板500的材料时,热反射板500的厚度可以为0.5mm,热反射板500的厚度还可以为0.7mm,或者,热反射板500的厚度也可以为1mm。
示例性的,热反射板500的厚度可以是板体的平均厚度,当使用碳碳复合材料作为热反射板500的材料时,热反射板500的厚度可以为1mm,热反射板500的厚度还可以为1.5mm,或者,热反射板500的厚度也可以为2mm。
可以理解的是,与钨钼等耐高温的合金金属材料相比,碳碳复合材料的反射率更低,在单晶炉中也更易氧化腐蚀,因此,使用碳碳复合材料的热反 射板500时,需要增加热反射板500的厚度。
作为一种可能的实现方式,固毡结构100由若干长度一致的矩形板体拼接围成,每个板体的宽度d为50mm至100mm,具体的宽度设置可以由固毡结构100的内径大小决定。
示例性的,每个板体的宽度d可以是板体的平均宽度,每个板体的宽度d可以是50mm,每个板体的宽度d还可以是55mm,或者,每个板体的宽度d也可以是100mm。
可以理解的是,在具体应用中,可以根据实际情况选用其他几何形状的板体,如:三角形板体、菱形板体或梯形板体等,本申请实施例对此不作限定。
需要注意的是,每个板体之间均为斜面搭接,之后通过紧固件固定连接,紧固件可以是螺栓,也可以是别的螺纹紧固件,本申请实施例对此不作限定。
上述搭接是指两种同类型的材料重合相连,是一种有重叠、相互搭叠的接口方法。
如图1和图2所示,固毡结构100从上至下依次分为上部盖毡101、中部罩毡102和底部垫毡103。中部罩毡102可以根据实际情况分为1至4段,中部罩毡102上还设置有至少一个配合止口1021,用于配合上述实施例中的板体进行安装定位。
例如,如图1和图2所示,中部罩毡102分为了3段,在中部罩毡102上设置了2个配合止口1021。需要注意的是,为了降低热传导,实现更好的保温效果,配合止口1021的深度h需要≥40mm。
在一些实施例中,固毡结构100的材料为碳纤维材料、黏胶基材料、沥青基材料中的一种。
在选用碳纤维材料时,可以将碳纤维按照上述板体的规格进行切割,之后用若干板体拼接围成固毡结构100。
在选用黏胶基材料或者在选用沥青基材料时,需要先将黏胶基材料或者沥青基材料做成碳毡,其次将碳毡层压成固毡,之后再将固毡按照上述板体的规格进行切割,最后用若干板体拼接围成固毡结构100。
采用上述技术方案的情况下,可以得到固毡结构100选取的材料为低密度材料,由于在同等体积的情况下,低密度的材料质量更轻,有益于减轻固毡热场件的整体重量。在现有技术中,一个保温筒的重量大约在100kg左右,在选取拆装工具时,需要选择能够承受保温筒的重量的拆装工具,因此,人 工拆装的强度很大。与现有技术相比,本申请实施例提供的固毡热场件的整体重量更轻,降低了人工拆装的强度,为之后选取拆装工具的便利提供了基础条件,避免了未来大热场保温筒过重,不便安装、拆取的问题。
在一些实施例中,固毡结构100的第一侧与加热器300的距离a为18mm至35mm,固毡结构100的第二侧与炉体内壁400的距离b为5mm至10mm,其中,固毡结构100的第二侧为固毡结构100靠近炉体内壁400的一侧。
在一个实施例中,固毡结构100的第一侧与加热器300的距离a可以为18mm,固毡结构100的第二侧与炉体内壁400的距离b可以为5mm。
在一个实施例中,固毡结构100的第一侧与加热器300的距离a还可以为35mm,固毡结构100的第二侧与炉体内壁400的距离b还可以为10mm。
在一个实施例中,固毡结构100的第一侧与加热器300的距离a也可以为27mm,固毡结构100的第二侧与炉体内壁400的距离b也可以为7mm。
可以理解的是,固毡结构100在加热器300与炉体内壁400之间需要设置合适的距离。一方面,固毡结构100与加热器300的距离及炉体内壁400的距离不能太远,以免影响固毡结构100的保温效果,增加热能损耗。另一方面,固毡结构100与加热器300及炉体内壁400也不能紧贴设置,以免加速固毡结构100的氧化腐蚀,增加维修成本。
第二方面,本申请实施例还提供一种单晶炉,包括上述第一方面或第一方面任一可能的实现方式描述的固毡热场件。
第二方面提供的单晶炉的有益效果与第一方面或第一方面任一可能的实现方式描述的固毡热场件的有益效果相同,此处不做赘述。
图3示例出了本申请实施例中固毡热场件结构的整体示意图。
在一种可能的实现方式中,如图3所示,固毡热场件上方还设置有热屏悬挂系统600,热屏悬挂系统600包括可拆卸连接的热屏602与换热器601,热屏602通过换热器601固定连接于单晶炉的炉壁。
采用上述技术方案的情况下,热屏602通过螺纹紧固件与换热器601可拆卸连接,之后,热屏通过换热器602固定于单晶炉的炉壁上,相较于现有技术中将热屏602放置在固毡热场件上,本申请实施例提供的技术方案减轻了固毡热场件承载的重量,避免了未来大热场保温筒过重,不便安装、拆取的问题。
可以理解的是,螺纹紧固件可以是螺栓,也可以是螺钉等其他的螺纹紧固件,本申请实施例对此不作限定。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种固毡热场件,其特征在于,用于单晶炉中,所述固毡热场件间隔设置在所述单晶炉的炉体内壁与加热器之间;
    所述固毡热场件包括:固毡结构以及设置于所述固毡结构的第一侧的防护件,其中,所述固毡为硬质定型毡,所述固毡结构的第一侧为所述固毡结构靠近所述加热器的一侧。
  2. 根据权利要求1所述的固毡热场件,其特征在于,所述防护件为具有碳碳复合材料的防护件或具有防氧化材料的防护件。
  3. 根据权利要求2所述的固毡热场件,其特征在于,当所述防护件为具有碳碳复合材料的防护件时,所述防护件覆盖在所述固毡结构的第一侧,所述防护件的厚度为2mm至5mm。
  4. 根据权利要求2所述的固毡热场件,其特征在于,当所述防护件为具有防氧化材料的防护件时,所述防护件为耐高温合金金属材料件,所述耐高温合金金属材料件覆盖在所述固毡结构的第一侧,且所述耐高温合金金属材料件朝向所述加热器的一侧表面上涂覆有第一防氧化涂层。
  5. 根据权利要求2所述的固毡热场件,其特征在于,当所述防护件为具有防氧化材料的防护件时,所述防护件为涂覆在所述固毡结构的第一侧表面上的第二防氧化涂层。
  6. 根据权利要求2所述的固毡热场件,其特征在于,所述固毡热场件与所述加热器之间设置有至少一层热反射板;
    所述热反射板与所述固毡热场件的距离为2mm至5mm,所述热反射板与所述加热器的距离为18mm至33mm。
  7. 根据权利要求6所述的固毡热场件,其特征在于,当所述固毡热场件与所述加热器之间设置有多层所述热反射板时,相邻两层所述热反射板之间的距离为2mm至5mm。
  8. 根据权利要求6所述的固毡热场件,其特征在于,所述热反射板为钨钼材料的热反射板,所述热反射板的厚度为0.5m至1mm;或,
    所述热反射板为碳碳复合材料的热反射板,所述热反射板的厚度为1mm至2mm。
  9. 根据权利要求1至8任一项所述的固毡热场件,其特征在于,所述固毡结构的材料为碳纤维材料、黏胶基材料、沥青基材料中的一种。
  10. 根据权利要求1至8任一项所述的固毡热场件,其特征在于,所述固毡结构的第一侧与所述加热器的距离为18mm至35mm,所述固毡结构的第二侧与所述炉体内壁的距离为5mm至10mm,其中,所述固毡结构的第二侧为所述固毡结构靠近所述炉体内壁的一侧。
  11. 一种单晶炉,其特征在于,包括权利要求1至10任一项所述的固毡热场件。
  12. 根据权利要求11所述的单晶炉,其特征在于,所述固毡热场件上方还设置有热屏悬挂系统,所述热屏悬挂系统包括可拆卸连接的热屏与换热器,所述热屏通过所述换热器固定连接于所述单晶炉的炉壁。
PCT/CN2022/102061 2021-08-26 2022-06-28 一种固毡热场件及单晶炉 WO2023024692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122084351.3U CN216156019U (zh) 2021-08-26 2021-08-26 一种固毡热场件及单晶炉
CN202122084351.3 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023024692A1 true WO2023024692A1 (zh) 2023-03-02

Family

ID=80840703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102061 WO2023024692A1 (zh) 2021-08-26 2022-06-28 一种固毡热场件及单晶炉

Country Status (2)

Country Link
CN (1) CN216156019U (zh)
WO (1) WO2023024692A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216156019U (zh) * 2021-08-26 2022-04-01 隆基绿能科技股份有限公司 一种固毡热场件及单晶炉

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979720A (zh) * 2010-11-30 2011-02-23 奥特斯维能源(太仓)有限公司 一种单晶炉热场
CN202450187U (zh) * 2012-01-17 2012-09-26 浙江好亚能源股份有限公司 单晶炉新热场
CN202849596U (zh) * 2012-10-18 2013-04-03 北京京仪世纪电子股份有限公司 单晶炉热场的保温材料
CN203715785U (zh) * 2014-03-04 2014-07-16 无锡宝优科技有限公司 一种拼接型直拉单晶炉固化保温桶
JP2015124127A (ja) * 2013-12-27 2015-07-06 株式会社Sumco 単結晶の引上げ方法
CN205974744U (zh) * 2016-08-26 2017-02-22 奥特斯维能源(太仓)有限公司 一种多晶硅铸锭炉的热场结构
CN106917136A (zh) * 2015-12-24 2017-07-04 有研半导体材料有限公司 一种直拉单晶炉热场保温结构
CN211814711U (zh) * 2020-03-03 2020-10-30 湖南金创新材料有限公司 一种单晶炉用反射板
CN216156019U (zh) * 2021-08-26 2022-04-01 隆基绿能科技股份有限公司 一种固毡热场件及单晶炉

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979720A (zh) * 2010-11-30 2011-02-23 奥特斯维能源(太仓)有限公司 一种单晶炉热场
CN202450187U (zh) * 2012-01-17 2012-09-26 浙江好亚能源股份有限公司 单晶炉新热场
CN202849596U (zh) * 2012-10-18 2013-04-03 北京京仪世纪电子股份有限公司 单晶炉热场的保温材料
JP2015124127A (ja) * 2013-12-27 2015-07-06 株式会社Sumco 単結晶の引上げ方法
CN203715785U (zh) * 2014-03-04 2014-07-16 无锡宝优科技有限公司 一种拼接型直拉单晶炉固化保温桶
CN106917136A (zh) * 2015-12-24 2017-07-04 有研半导体材料有限公司 一种直拉单晶炉热场保温结构
CN205974744U (zh) * 2016-08-26 2017-02-22 奥特斯维能源(太仓)有限公司 一种多晶硅铸锭炉的热场结构
CN211814711U (zh) * 2020-03-03 2020-10-30 湖南金创新材料有限公司 一种单晶炉用反射板
CN216156019U (zh) * 2021-08-26 2022-04-01 隆基绿能科技股份有限公司 一种固毡热场件及单晶炉

Also Published As

Publication number Publication date
CN216156019U (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2023024692A1 (zh) 一种固毡热场件及单晶炉
CN202293474U (zh) 新型碳纤维保温材料及多晶铸锭炉
CN103085358A (zh) 新型碳纤维保温材料及多晶铸锭炉
CN103423998B (zh) 一种层复合轻质多功能工业炉窑壁结构
US3428545A (en) Carbon furnace electrode assembly
JPH1179776A (ja) 光フアイバ線引き炉用の含浸ガラス状(ガラス質)カーボングラファイトライナ及び加熱要素
CN210602794U (zh) 一种组合式节能电炉炉膛
EP1707032B1 (en) End-face seal for graphite electrodes
KR20230069864A (ko) 면상발열체를 이용하는 클램프 히터
CN212457903U (zh) 一种使用寿命长的窑炉用防护衬板
EP4027092A1 (en) Ethylene cracking furnace and thermally-insulating composite lining thereof
CN211074954U (zh) 一种隔热板
CN212339943U (zh) 一种铝熔炼炉炉盖绝热保温结构
CN213543827U (zh) 一种氮化硅保护管
CN218097217U (zh) 一种防开裂的组合式铝碳化硅耐磨砖
CN218566143U (zh) 一种装配式坩埚
CN217636805U (zh) 一种篦冷机窑头罩顶高效密封结构
CN215215347U (zh) 一种异质复合保温层结构及保温管路
CN112457030A (zh) 一种新型保温砖
CN217842635U (zh) 一种耐高温高效散热的硅橡胶密封圈
CN219995861U (zh) 一种回转窑及其功能模块
CN210511721U (zh) 反应炉及热反应系统
CN214094461U (zh) 一种耐磨耐高温烧嘴
CN214528687U (zh) 用于玻璃熔窑碹顶窜漏的硅质热修补料层结构
US7324576B2 (en) Joint strengthening ring for graphite electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE