WO2023021870A1 - 高炉炉内充填物の堆積形状の推定方法および高炉炉内コークスの置換方法 - Google Patents

高炉炉内充填物の堆積形状の推定方法および高炉炉内コークスの置換方法 Download PDF

Info

Publication number
WO2023021870A1
WO2023021870A1 PCT/JP2022/026800 JP2022026800W WO2023021870A1 WO 2023021870 A1 WO2023021870 A1 WO 2023021870A1 JP 2022026800 W JP2022026800 W JP 2022026800W WO 2023021870 A1 WO2023021870 A1 WO 2023021870A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
coke
shape
filling
estimating
Prior art date
Application number
PCT/JP2022/026800
Other languages
English (en)
French (fr)
Inventor
亮太郎 松永
晃太 盛家
和平 市川
哲也 山本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP22858193.0A priority Critical patent/EP4357465A1/en
Priority to KR1020247002655A priority patent/KR20240024991A/ko
Priority to CN202280051590.3A priority patent/CN117693597A/zh
Publication of WO2023021870A1 publication Critical patent/WO2023021870A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII

Definitions

  • the present invention relates to a method for estimating the shape of deposits of filling material in a blast furnace and a method for replacing coke in a blast furnace.
  • Blast furnaces are operated by charging iron ore and coke from the top of the furnace, blowing high-temperature air through tuyeres at the bottom of the furnace, and discharging molten iron slag from the taphole.
  • Hot metal is produced by heating, reducing, and melting the iron ore descending in the furnace while the high-temperature reducing gases such as CO and H2 generated at the tuyere tip rise in the furnace.
  • high-temperature air continues to be blown into the furnace. I may take In such a case, the temperature of the in-furnace filling drops due to heat extraction from the furnace body and air suction from the tuyeres.
  • the melt inside the furnace becomes more viscous and even solidifies, making it difficult to discharge from the taphole. If air is blown from the tuyere in such a situation, the hot metal slag that has been reduced and melted is not discharged, so the amount of molten iron slag that remains in the lower part of the furnace increases. As the temperature of the lower part of the furnace rises due to dripping molten iron slag, the molten iron slag remaining in the lower part of the furnace may be discharged.
  • a furnace cooling accident means that the heat level in the blast furnace has dropped significantly, making it impossible to discharge molten iron slag from the tap hole, making it difficult to continue steady operation.
  • the following measures will be taken to restore the reactor condition. That is, the solidified material between one tap hole and the tuyere immediately above it is melted by oxygen blowing or the like and discharged to secure the outlet of the melted material. After that, air is blown through the tap hole and two or three tuyeres directly above the tap hole, and the generated molten material gradually melts the surrounding solidified layer, and the number of tap holes and tuyeres to be used is adjusted in steady operation.
  • the furnace filling is reduced in volume from the top of the blast furnace bosh to the tuyere level under conditions of a high coke ratio, then the air is rested, and before starting up from the rest, again A method of resuming air blowing into the furnace after charging the raw material under conditions of a high coke ratio is adopted.
  • a dormancy is called a reduced dormancy.
  • a reduced wind break is carried out during large-scale equipment repairs and long-term suspension of blast furnace operations, but it is a longer wind break than a normal wind break, and the risk of furnace cooling during startup is even higher. Become.
  • a burner is inserted into the taphole to blow oxygen and fuel into the tap hole before blowing air to reduce the risk of furnace cooling when the wind is not blowing or when the wind is being reduced.
  • a method has been proposed in which air blowing is started after the heat level up to the iron hole is sufficiently raised (Patent Document 1).
  • a method has been proposed in which part of the pulverized and weakened coke (deteriorated coke) in the lower part of the furnace is removed by burning and replaced with new coke. (Patent document 2).
  • JP 2016-30833 A JP-A-5-295415
  • Patent Document 1 The method described in Patent Document 1 is effective for improving the heat level in the lower part of the blast furnace.
  • the lower part of the furnace can be further improved. It is considered that the ventilation and liquid permeability of the furnace can be secured, and the risk of furnace cooling accidents can be reduced.
  • the coke existing around the deteriorated coke is only unloaded. It cannot be said that it will be replaced by coke.
  • An object of the present invention is to provide a method for estimating the shape of the deposits of the furnace filling after consuming the coke in the furnace using a burner when starting up the blast furnace during the downtime and wind reduction.
  • Another object of the present invention is to provide a method for replacing coke in a blast furnace using the estimation method.
  • the present invention has the following configurations. [1] In a blast furnace that is in a reduced wind break, when starting up the blast furnace, a burner is inserted into the furnace from the tapping hole of the blast furnace, and the coke in the furnace is consumed using the burner.
  • a method for estimating a pile shape of a blast furnace filling material for estimating a pile shape of the internal filling material A step of estimating the deposition shape of the furnace filling during the reduction break; A step of estimating a furnace coke filling area from the accumulated shape of the furnace filling estimated in the above step and the shape of the solidified layer at the bottom of the furnace; estimating the amount of in-furnace coke consumed using the burner; A step of estimating the deposition shape of the furnace filling after consuming the furnace coke from the furnace coke amount; A method for estimating a pile shape of a blast furnace filling material.
  • [2] A method for replacing coke in a blast furnace furnace using the method for estimating the pile shape of the filling in the blast furnace according to [1] above, Coke in the blast furnace furnace, which fills the blast furnace furnace with coke so as to suppress changes in the deposition shape of the furnace filling during the reduction rest and the deposition shape of the furnace filling after the consumption of the in-furnace coke. replacement method.
  • the present invention it is possible to estimate the deposition shape of the in-furnace filling after consuming the in-furnace coke (deteriorated coke) using the burner when starting up the blast furnace in the blast furnace during the downtime. .
  • the change in the piled shape of the furnace filling due to the consumption of deteriorated coke is estimated, and the estimation result is referred to fill the blast furnace with coke.
  • the coke in the furnace (deteriorated coke) during the reduction break is replaced with new coke to ventilate the lower part of the furnace. Liquid permeability can be improved.
  • the blast furnace in the dormant state can be stably started up to the steady operation state.
  • FIG. 1 is a schematic diagram showing an example of a piled shape of a filling material in a blast furnace during a reduction break and a state in which a burner is inserted into the furnace from a tap hole of the blast furnace.
  • FIG. 2 is a diagram showing the in-furnace coke charging region estimated in this example.
  • FIG. 3 is a diagram showing the deposition shape of the in-furnace filling after in-furnace coke consumption estimated in this example.
  • a blast furnace is an industrial furnace that produces hot metal using main raw materials containing iron oxide such as iron ore and sintered ore and reducing agents containing carbon and hydrogen such as coke.
  • the main raw material and reducing agent are charged in layers from the top of the furnace, and hot air containing oxygen and reducing agents such as pulverized coal are sent into the furnace from the tuyeres.
  • the CO and H2 generated by the gasification of the reducing agent near the tuyeres flow to the upper part of the furnace, where the main raw material charged from the top of the furnace is heated, reduced, and melted to produce hot metal. .
  • the produced molten iron drips inside the furnace, accumulates in the hearth, and is discharged out of the furnace from the tapping hole installed on the lower side of the blast furnace.
  • the equipment design of the blast furnace such as the inner volume of the blast furnace, the raw material charging mechanism, the number of tuyeres, etc., often differs for each furnace body, but the present invention can be applied regardless of the difference in the equipment design.
  • Main raw materials include iron ore, sintered ore, pellets, scrap, and reduced iron.
  • Lump coke, coke smaller than lump coke, and ferro coke are examples of the reducing material charged from the top of the furnace.
  • the reducing material injected from the tuyere include pulverized coal, coke powder, plastics, combustible gas containing at least one of carbon atoms and hydrogen atoms such as natural gas, and liquid fossil fuels.
  • the present invention can be applied regardless of the types of raw materials and reducing agents used.
  • the deposition shape (hereinafter also referred to as the initial deposition shape) of the filling in the blast furnace furnace during the reduction break the shape of the solidified layer at the bottom of the furnace (solidified layer shape), and the coke in the furnace (deteriorated coke).
  • the method for estimating the piled shape of the blast furnace filling of the present invention includes a step of estimating the piled shape of the furnace filling during the reduction break, the piled shape of the furnace filling estimated in the above step, A step of estimating a filling area of coke in the furnace from the shape of the solidified layer at the bottom of the furnace, a step of estimating the amount of coke in the furnace consumed using a burner, and after consuming the coke in the furnace from the amount of coke in the furnace and estimating the pile shape of the in-furnace filling.
  • Step of estimating the piled shape of the furnace filling during the reduction break the deposition shape (initial deposition shape) of the furnace filling during the reduction rest period is estimated.
  • the deposition shape initial deposition shape
  • the rangefinder include, but are not particularly limited to, a non-contact rangefinder such as a laser rangefinder.
  • the deposition shape By measuring the distance to the surface of the in-furnace filling at several points using the rangefinder, the deposition shape can be estimated three-dimensionally.
  • the method of estimating the initial deposition shape is not limited to this, and the technique of the present invention can be implemented regardless of the method of estimating the initial deposition shape.
  • Step of estimating the filling area of coke in the furnace In the process of estimating the filling area of coke in the furnace, from the deposition shape (initial deposition shape) of the in-furnace filling estimated in the process of estimating the initial deposition shape and the shape of the solidified layer at the bottom of the furnace, Estimate the coke filling area.
  • a blast furnace that is being cut and blown there is a solidified layer that has grown at the bottom of the furnace.
  • the shape of the solidified layer existing at the bottom of the furnace is estimated.
  • a method for estimating the shape of the solidified layer at the bottom of the furnace there is a method using a boundary element method, such as the method described in Non-Patent Document 1.
  • Non-Patent Document 1 assumes that the solidified layer interface is an isotherm of the solidification temperature (1150° C.) of pig iron, and performs heat transfer calculation by the boundary element method. Then, it is a method of successively calculating a solidification interface that minimizes the error between the measured value of the temperature of the bottom of the furnace measured by a thermocouple in an actual furnace and the temperature calculated by the boundary element method. The shape of the solidified layer at the bottom of the furnace can be estimated from the solidified interface thus calculated.
  • thermocouples are generally installed at a plurality of positions in the circumferential direction and the height direction of the blast furnace at the bottom of the blast furnace below the tuyeres.
  • the coke filling area in the furnace is estimated.
  • the area other than the shape of the solidified layer is defined as the coke filling area in the furnace.
  • Step of estimating the amount of coke in the furnace consumed using a burner and step of estimating the deposition shape of the furnace filling after consuming the coke in the furnace from the amount of coke in the furnace In the step of estimating the in-furnace coke amount consumed using the burner, the in-furnace coke amount consumed by the burner inserted into the furnace from the tap hole of the blast furnace is estimated.
  • this estimation method for example, using the flow path in the coke packed bed (the coke filling area in the furnace) of the combustion gas blown into the furnace from the burner and the composition of the combustion gas, all the combustion gas blown from the burner A method of estimating by assuming reaction with coke can be mentioned.
  • the temperature of the combustion gas gradually decreases as it rises in the furnace, it may be lower than the temperature at which the reaction proceeds in the coke packed bed. Further, even if the temperature of the combustion gas is the temperature at which the reaction proceeds, the reaction rate changes depending on the temperature. Therefore, it is desirable to estimate the consumption behavior of the in-furnace coke (degraded coke) after taking into account the heat transfer between the combustion gas and the in-furnace coke and the temperature dependence of the reaction rate of various reactions.
  • the gas used for the burner inserted from the tap hole may be gas itself, or gas that reacts and consumes coke in the furnace after burning the gas.
  • the present inventors used LNG and oxygen as the gases, but the gas species that can be used in the technology described in the present invention are not limited to these.
  • the estimation Based on the calculated in-furnace coke amount, the deposition shape of the in-furnace filling after the in-furnace coke consumption is estimated.
  • the deposition shape after the consumption of coke in the furnace is based on the cavity region generated by the consumption of the coke in the furnace (degraded coke) by the combustion gas. It can be presumed to be the deposition shape of the furnace filling after the consumption of coke in the furnace.
  • a method for replacing coke in a blast furnace according to the present invention uses the above-described method for estimating the shape of deposits of filler in a blast furnace. Specifically, based on the deposition shape (initial deposition shape) of the furnace filling during the reduction break and the deposition shape of the furnace filling after consuming the coke in the furnace, changes in these deposition shapes In order to suppress the blast furnace, new coke is filled in the blast furnace and the coke in the furnace during the reduction break is replaced with new coke. That is, it is desirable that the amount and position of newly charged coke be such that the initial deposition shape of the in-furnace filling material is reproduced.
  • a method of newly charging coke for example, a method of charging from the top of the furnace as in normal operation, and a method of inserting a belt conveyor into the furnace from the tuyere and charging with this belt conveyor can be mentioned.
  • the change in deposit shape accompanying the consumption of in-furnace coke (deteriorated coke) present in the furnace during a reduced wind reduction can be estimated, and the estimation results can be referred to. to fill the blast furnace with coke.
  • the blast furnace in the dormant state can be more stably started up to the steady operation state.
  • the deposition shape of the furnace filling after consuming deteriorated coke is estimated based on the above-described embodiment, and then new coke is filled. , started blowing air from the tuyeres and started up the blast furnace.
  • FIG. 2 shows the results of estimating the in-furnace coke filling area from these methods.
  • FIG. 2(a) is a diagram showing the estimated coke filling area in the furnace from obliquely above
  • FIG. 2(b) is a vertical sectional view of the tap hole (2th) in FIG. 2(a). (schematic diagram).
  • FIG. 3 shows the estimation result of the deposition shape of the furnace filling after the consumption of deteriorated coke.
  • FIG. 3(a) is a diagram showing the accumulated shape of the estimated furnace filling after consumption of deteriorated coke from obliquely above
  • FIG. 3(b) is a tap hole ( 2th) is a vertical sectional view (schematic diagram). Comparing Figs.
  • a burner is inserted from the taphole to consume the deteriorated coke in the furnace, and after filling the cavity with new coke from the tuyere, the furnace top is placed above the tuyere level.
  • Coke the main raw material, was charged from the After that, when we started blowing air from the tuyere and started up operation, the molten iron slag was discharged smoothly from the tap hole, and the molten iron slag could not be discharged and the furnace reached the tuyere level (height of the tuyere). It was possible to return to a steady state of operation without causing a serious trouble such as residual iron slag inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

減尺休風中の高炉において、高炉の立上げを行う際に、バーナーを用いて炉内コークスを消費した後の炉内充填物の堆積形状の推定方法を提供する。 高炉炉内充填物の堆積形状の推定方法は、減尺休風中の高炉において、高炉の立上げを行う際に、該高炉の出銑孔からバーナーを炉内に挿入し、前記バーナーを用いて炉内コークスを消費した後の炉内充填物の堆積形状を推定するものであり、減尺休風中の炉内充填物の堆積形状を推定する工程と、前記工程で推定された炉内充填物の堆積形状と、炉内底部の凝固層の形状から、炉内コークスの充填領域を推定する工程と、前記バーナーを用いて消費される炉内コークス量を推定する工程と、前記炉内コークス量から炉内コークス消費後の炉内充填物の堆積形状を推定する工程と、を有する。

Description

高炉炉内充填物の堆積形状の推定方法および高炉炉内コークスの置換方法
 本発明は、高炉炉内充填物の堆積形状の推定方法および高炉炉内コークスの置換方法に関する。
 高炉では、炉頂から鉄鉱石やコークスを装入し、炉下部に設けられた羽口から高温の空気を吹き込み、出銑孔から溶銑滓を排出するといった操業を行っている。羽口先で生成した高温のCO、Hといった還元性ガスが炉内を上昇する過程で、炉内を降下する鉄鉱石を昇温、還元、溶融することで、溶銑が製造される。定常操業時は炉内に高温空気を送風し続けるが、炉体の補修や操業トラブル対応等、非定常な事象に起因して一時的に高炉への送風を停止する、休風と呼ばれる措置をとることがある。このような場合、炉体からの抜熱や、羽口からの空気吸引に起因して炉内充填物の温度は低下する。
 炉内の温度が低下すると、炉内溶融物は、粘性が上昇し、さらには凝固するため、出銑孔からの排出が難しくなっていく。そのような状況で羽口から送風を行うと、還元溶融された溶銑滓が排出されないため、炉下部における溶銑滓の滞留量が増加する。滴下した溶銑滓による炉下部の昇温に伴い、炉下部に滞留した溶銑滓が排出可能となることもある。しかしながら、炉下部の温度上昇が不十分な場合は、溶銑滓を排出しにくい状況が続き、溶銑滓の滞留量がさらに増加する。滞留量の著しい増加により溶銑滓レベル(溶銑滓の表面の高さ)が羽口に到達すると、羽口の溶損や、送風管の閉塞等のトラブルを引き起こす。そのような場合、炉内への送風が不可能となることから炉内への入熱がなくなり、炉冷事故に至る。
 ここで炉冷事故とは、高炉炉内の熱レベルが著しく低下して出銑孔からの溶銑滓の排出が不可能となり、定常操業の継続が困難となることを指す。このような事故の際は、次のような手段で炉況の回復を図る。すなわち、ある1つの出銑孔とその直上の羽口の間の凝固物を酸素吹き付け等の手法で溶融して排出し、溶融物の出口を確保する。その後、前記出銑孔と前記直上の羽口2~3本の送風を行い、生成した溶融物をもって周囲の凝固層を徐々に融解しながら、使用する出銑孔、羽口の数を定常操業に近づけていく。炉冷事故から定常操業への復帰には通例2~3か月かかるため、当然その間は溶銑製造量が著しく減少する。そのほか、復帰作業の過程で作業者が高温溶融物や有毒ガスにさらされる危険性も高い。そのため、炉冷事故は、経済的にも安全的にも損失・リスクの非常に大きな操業上のトラブルであるといえる。
 前述の通り、休風からの立上げ操業時は炉内の熱レベルが低いため、前記炉冷事故に至るリスクが高まる。そのため、従来は休風前にコークス比を上げて炉内の熱レベルを高めておき、炉冷事故へ至るリスクを低減させてきた。しかし、休風期間が長くなるにつれて、次第にコークス比増による熱補償では炉内の熱レベルを維持できなくなる。そのような場合、図1のように、炉内充填物を、コークス比の高い条件で高炉朝顔部上端から羽口レベルまで減容してから休風し、休風からの立上げ前に再びコークス比の高い条件で原料を装入してから炉内への送風を再開するといった方法がとられる。このような休風は減尺休風と呼ばれる。減尺休風は、大規模な設備補修や高炉操業の長期休止の際に実施されるが、通常の休風に比して長い期間の休風となり、立上げ時の炉冷リスクは一層高くなる。
 こういった休風、あるいは減尺休風時の炉冷リスクを低下させる手段として、図1のように、送風前に出銑孔にバーナーを挿入して酸素や燃料を吹き込み、羽口から出銑孔までの間の熱レベルを十分に引き上げてから送風を開始する方法が提案されている(特許文献1)。また、炉下部の通気、通液性を向上させるために、炉下部の粉化・強度低下したコークス(劣化コークス)を一部燃焼除去し、新しいコークスに置換する、といった方法も提案されている(特許文献2)。
特開2016-30833号公報 特開平5-295415号公報
吉川文明、他5名、「高炉炉床部の耐火物浸食と凝固層分布の推定および操業への応用」、鉄と鋼、第73年(1987)第15号、p.2068-2075
 特許文献1に記載の手法は、高炉炉下部の熱レベルを向上させるために有効である。しかしながら、炉冷事故のリスク低減という目的から考えると、同時に特許文献2に記載のような、粉化・強度低下した劣化コークスを新しいコークスに置換する手法を併用することで、より一層の炉下部の通気、通液性を確保でき、炉冷事故のリスクを低減できると考えられる。ただし、前記劣化コークスの置換を行う場合、特許文献2に記載の手法では、劣化コークスの周囲に存在するコークスが荷下がりするに過ぎないため、必ずしも処置前に存在したコークスよりも性状の良好なコークスに置換されるとは言い切れない。さらに、炉下部の一部のコークスを中途半端に消費することにより、その上部の充填物が局所的に降下し、その後に装入される原料の積層構造が不均一になるため、炉上部の通気性悪化や原料の還元不良などの操業への悪影響の顕現が懸念される。
 本発明は、減尺休風中の高炉において、高炉の立上げを行う際に、バーナーを用いて炉内コークスを消費した後の炉内充填物の堆積形状の推定方法を提供することを目的とする。
 また、本発明は、前記推定方法を用いた高炉炉内コークスの置換方法を提供することを目的とする。
 本発明は、以下の構成を有する。
[1]減尺休風中の高炉において、高炉の立上げを行う際に、該高炉の出銑孔からバーナーを炉内に挿入し、前記バーナーを用いて炉内コークスを消費した後の炉内充填物の堆積形状を推定する高炉炉内充填物の堆積形状の推定方法であって、
減尺休風中の炉内充填物の堆積形状を推定する工程と、
前記工程で推定された炉内充填物の堆積形状と、炉内底部の凝固層の形状から、炉内コークスの充填領域を推定する工程と、
前記バーナーを用いて消費される炉内コークス量を推定する工程と、
前記炉内コークス量から炉内コークス消費後の炉内充填物の堆積形状を推定する工程と、
を有する、高炉炉内充填物の堆積形状の推定方法。
[2]前記[1]に記載の高炉炉内充填物の堆積形状の推定方法を用いた高炉炉内コークスの置換方法であって、
前記減尺休風中の炉内充填物の堆積形状と、前記炉内コークス消費後の炉内充填物の堆積形状の変化を抑制するように高炉炉内にコークスを充填する、高炉炉内コークスの置換方法。
 本発明によれば、減尺休風中の高炉において、高炉の立上げを行う際に、バーナーを用いて炉内コークス(劣化コークス)を消費した後の炉内充填物の堆積形状を推定できる。
 本発明によれば、劣化コークス消費に伴う炉内充填物の堆積形状の変化を推定し、その推定結果を参照して高炉炉内にコークスを充填する。これにより、高炉炉内コークスの置換に伴う炉内充填物の堆積形状の変化を緩和しながら、減尺休風中の炉内コークス(劣化コークス)を新しいコークスに置換して炉下部の通気、通液性を向上させることができる。その結果、休風状態の高炉を安定的に定常操業状態まで立ち上げることができる。
図1は、減尺休風中の高炉炉内充填物の堆積形状と、高炉の出銑孔からバーナーを炉内に挿入した状態の一例を示す模式図である。 図2は、本実施例において推定した炉内コークスの充填領域を示す図である。 図3は、本実施例において推定した炉内コークス消費後の炉内充填物の堆積形状を示す図である。
 本発明は、高炉において実施されるものである。高炉とは、鉄鉱石や焼結鉱などの酸化鉄を含む主原料と、コークスをはじめとした炭素や水素を含む還元材を用いて溶銑を製造する工業炉を指す。炉頂から主原料と還元材を層状に装入し、羽口部から酸素を含む熱風と、微粉炭をはじめとした還元材を炉内に送る。羽口近傍で還元材がガス化することで生成したCOやHが炉上部へ流通する過程で、炉頂から装入された主原料を昇温、還元、溶融し、溶銑が生成される。生成された溶銑は炉内を滴下して炉床部に溜まり、高炉下部側面に設置された出銑孔から炉外へ排出される。高炉の内容積や、原料装入機構、羽口の本数等、高炉の設備設計は炉体ごとに異なることが多いが、本発明は前記設備設計の差異にかかわらず適用できるものである。
 また、高炉操業では、炉頂から装入される主原料や還元材、羽口部から吹き込まれる還元材として様々なものを用いる。主原料としては、鉄鉱石、焼結鉱、ペレット、スクラップ、還元鉄などが挙げられる。炉頂から装入する還元材としては、塊コークスやそれよりも小さい小粒コークス、フェロコークスなどが挙げられる。羽口部から吹き込まれる還元材としては、微粉炭、粉コークス、プラスチック、天然ガスをはじめとした炭素原子や水素原子の少なくともどちらか一方を含む可燃性ガス、液体化石燃料などが挙げられる。本発明は使用する前記原料や還元材の種類にかかわらず適用できるものである。
 本発明では、減尺休風中の高炉炉内充填物の堆積形状(以後、初期堆積形状ともいう)、炉内底部の凝固層の形状(凝固層形状)、炉内コークス(劣化コークス)の消費挙動、劣化コークス消費後の炉内充填物の堆積形状を推定することで、劣化コークス消費前後における炉内充填物の堆積形状変化を推定できることを見出した。また、前記堆積形状変化の推定結果に基づいて新たに充填するコークスの量や充填位置を適宜決定することで、減尺休風中に炉内に充填されていたコークスと、減尺休風から立ち上げる際に新たに充填するコークスの置換前後での炉内充填物の堆積形状変化を抑制することができることを見出した。
 <高炉炉内充填物の堆積形状の推定方法>
 本発明の高炉炉内充填物の堆積形状の推定方法は、減尺休風中の炉内充填物の堆積形状を推定する工程と、前記工程で推定された炉内充填物の堆積形状と、炉内底部の凝固層の形状から、炉内コークスの充填領域を推定する工程と、バーナーを用いて消費される炉内コークス量を推定する工程と、前記炉内コークス量から炉内コークス消費後の炉内充填物の堆積形状を推定する工程と、を有する。
 (減尺休風中の炉内充填物の堆積形状を推定する工程)
 減尺休風中の炉内充填物の堆積形状を推定する工程では、減尺休風中の炉内充填物の堆積形状(初期堆積形状)を推定する。初期堆積形状の推定方法としては、たとえば減尺休風中の高炉の炉頂から距離計を用いて、炉内充填物表面までの距離を数点測定し、その結果から初期堆積形状を推定する方法が挙げられる。前記距離計としては、特に限定されないが、非接触式の距離計、例えばレーザー距離計が挙げられる。そして、前記距離計を用いて、炉内充填物表面までの距離を数点測定することで3次元的に堆積形状を推定できる。ただし、初期堆積形状の推定方法はこれに限定されず、本発明の技術は、初期堆積形状の推定方法の如何に依らず実施することができる。
 (炉内コークスの充填領域を推定する工程)
 炉内コークスの充填領域を推定する工程では、上記初期堆積形状を推定する工程で推定された炉内充填物の堆積形状(初期堆積形状)と、炉内底部の凝固層の形状から、炉内コークスの充填領域を推定する。減尺休風中の高炉には、炉内底部において成長した凝固層が存在する。本工程では、この炉内底部に存在する凝固層の形状を推定する。炉内底部の凝固層の形状の推定方法としては、境界要素法による手法が挙げられ、たとえば非特許文献1に記載の手法が挙げられる。非特許文献1に記載の手法は、凝固層界面を銑鉄の凝固温度(1150℃)の等温線と仮定し、境界要素法による伝熱計算を行う。そして、実炉において熱電対により測定された炉底の温度の実測値と境界要素法による温度の計算結果の誤差が最小となるような凝固界面を逐次計算して算出する方法である。このように算出した凝固界面から炉内底部の凝固層の形状を推定できる。なお、高炉の羽口より下の炉底部には、高炉周方向および高さ方向の複数位置に熱電対が設置されていることが一般的である。
 上述のようにして、炉内底部の凝固層の形状を推定した後、炉内コークスの充填領域を推定する。炉内コークスの充填領域の推定方法としては、上述のように推定された初期堆積形状と、炉内底部の凝固層の形状から、前記凝固層の形状以外の領域を、炉内コークスの充填領域と推定することができる。
 (バーナーを用いて消費される炉内コークス量を推定する工程および前記炉内コークス量から炉内コークス消費後の炉内充填物の堆積形状を推定する工程)
 バーナーを用いて消費される炉内コークス量を推定する工程では、高炉の出銑孔から炉内に挿入されたバーナーにより消費される炉内コークス量を推定する。この推定方法としては、たとえば前記バーナーから炉内に吹き込まれる燃焼ガスのコークス充填層(炉内コークスの充填領域)における流路と、燃焼ガスの組成を用いて、バーナーから吹き込んだ燃焼ガスが全てコークスと反応すると仮定して推定する方法が挙げられる。ただし、燃焼ガスの温度は、炉内を上昇しながら徐々に低下するため、コークス充填層中で反応が進行する温度よりも低くなる可能性がある。また、燃焼ガスの温度は、反応が進行する温度であっても、その温度によって反応速度は変化する。そのため、燃焼ガスと炉内コークスとの間の伝熱と、各種反応の反応速度の温度依存性を考慮したうえで、炉内コークス(劣化コークス)の消費挙動を推定することが望ましい。
 出銑孔から挿入するバーナーに用いるガスとしては、ガスそのもの、あるいはガスの燃焼後に炉内コークスを反応消費するようなものであればよい。本発明者らは、前記ガスとしてLNGと酸素を用いたが、本発明に記載の技術において使用できるガス種はこれらに限るものではない。
 上述のようにして、バーナーを用いて消費される炉内コークス量(炉内コークス消費領域)を推定した後、炉内コークス消費後の炉内充填物の堆積形状を推定する工程において、前記推定した炉内コークス量をもとに、炉内コークス消費後の炉内充填物の堆積形状を推定する。炉内コークス消費後の堆積形状は、図3に示すように、炉内コークス(劣化コークス)が燃焼ガスによって消費されることで生じた空洞領域をもとに、前記空洞領域以外の領域を、炉内コークス消費後の炉内充填物の堆積形状と推定することができる。
 <高炉炉内コークスの置換方法>
 本発明の高炉炉内コークスの置換方法は、上述の高炉炉内充填物の堆積形状の推定方法を用いるものである。具体的には、減尺休風中の炉内充填物の堆積形状(初期堆積形状)と、前記炉内コークス消費後の炉内充填物の堆積形状をもとに、これらの堆積形状の変化を抑制するように、高炉炉内に新たなコークスを充填し、減尺休風中の炉内コークスを新たなコークスと置換するものである。すなわち、新たに充填するコークスの量や位置は、炉内充填物の初期堆積形状を再現するように充填されることが望ましい。コークスを新たに充填する方法としては、たとえば通常操業時と同様に炉頂から充填する方法や、羽口部からベルトコンベアを炉内に挿入し、このベルトコンベアにより充填する方法が挙げられる。新たなコークスを充填する位置と炉内充填物との高度差が大きいほど、充填される新しいコークスの細粒化が進む可能性が高まる。そのため、できるだけ炉内充填物との高度差が小さい位置から新たなコークスを炉内に充填することが望ましい。
 以上に説明したように、本発明の手法を用いれば、減尺休風中の炉内に存在する炉内コークス(劣化コークス)消費に伴う堆積形状の変化を推測し、その推測結果を参照して高炉内にコークスを充填する。これにより、高炉炉内コークスの置換に伴う炉内充填物の堆積形状の変化を緩和しながら、劣化コークスを新しいコークスに置換して炉下部の通気、通液性を向上させることができる。その結果、休風状態の高炉をより安定的に定常操業状態まで立ち上げることができる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は、以下の実施例に限定されない。
 本実施例では、長期間減尺休風状態にある商用高炉について、上述の実施形態に基づいて劣化コークス消費後の炉内充填物の堆積形状を推定し、その後、新しいコークスを充填してから、羽口からの送風を開始し、当該高炉の立上げ操業を行った。
 まず、減尺休風中の当該高炉炉頂部から非接触式の距離計(本実施例ではレーザー距離計)を使用して測定された炉内充填物までの距離データから、炉内充填物の初期堆積形状を推定した。さらに、当該高炉炉底部に設置された温度計のデータを用いて、前記実施形態に記載の手法により当該高炉炉内底部の凝固層形状を境界要素法により推定した。これらの手法から、炉内コークスの充填領域を推定した結果を図2に示す。なお、図2(a)は、推定した炉内コークスの充填領域を斜め上方から示した図であり、図2(b)は、図2(a)の出銑孔(2th)の垂直断面図(模式図)を示している。
 続いて、当該高炉炉底部の出銑孔からバーナーを挿入して燃焼ガスを炉内に吹き込むことを想定し、前記燃焼ガスの吹き込みによる炉内コークス(劣化コークス)消費に伴う、炉内充填物の堆積形状の変化を、上述の実施形態に記載の手法により推定した。劣化コークス消費後の炉内充填物の堆積形状の推定結果を図3に示す。なお、図3(a)は、推定した劣化コークス消費後の炉内充填物の堆積形状を斜め上方から示した図であり、図3(b)は、図3(a)の出銑孔(2th)の垂直断面図(模式図)を示している。図2、図3を比較すると、出銑孔の近傍から上方に向かって、劣化コークスが消費されて、すり鉢状の空洞が形成されたことが分かった。また、図2、図3の推定結果の比較により、空洞の体積から、空洞を充填するために必要な新しいコークスの重量を計算した。
 前記重量の計算結果を基に、出銑孔からバーナーを挿入して炉内の劣化コークスを消費し、前記空洞に羽口から新しいコークスを充填した後、羽口レベルより上の部分に炉頂からコークス、主原料を装入した。その後、羽口より送風を開始し立上げ操業を行ったところ、出銑孔からの溶銑滓排出は順調に行われ、溶銑滓が排出できずに羽口レベル(羽口の高さ)まで炉内の残銑滓が滞留するといった重大なトラブルを引き起こすことなく、定常操業状態に復帰させることができた。
 以上の結果から、本発明により、高炉内コークス置換に伴う炉内充填物の堆積形状の変化を緩和しながら、劣化コークスを新しいコークスに置換して炉下部の通気、通液性を向上させ、減尺休風状態の高炉を安定的に定常操業状態まで立ち上げることができることが分かった。
 1 高炉炉体
 2 羽口(送風羽口)
 3 出銑孔
 4 コークス
 5 凝固層
 6 バーナー

Claims (2)

  1. 減尺休風中の高炉において、高炉の立上げを行う際に、該高炉の出銑孔からバーナーを炉内に挿入し、前記バーナーを用いて炉内コークスを消費した後の炉内充填物の堆積形状を推定する高炉炉内充填物の堆積形状の推定方法であって、
    減尺休風中の炉内充填物の堆積形状を推定する工程と、
    前記工程で推定された炉内充填物の堆積形状と、炉内底部の凝固層の形状から、炉内コークスの充填領域を推定する工程と、
    前記バーナーを用いて消費される炉内コークス量を推定する工程と、
    前記炉内コークス量から炉内コークス消費後の炉内充填物の堆積形状を推定する工程と、
    を有する、高炉炉内充填物の堆積形状の推定方法。
  2. 請求項1に記載の高炉炉内充填物の堆積形状の推定方法を用いた高炉炉内コークスの置換方法であって、
    前記減尺休風中の炉内充填物の堆積形状と、前記炉内コークス消費後の炉内充填物の堆積形状の変化を抑制するように高炉炉内にコークスを充填する、高炉炉内コークスの置換方法。
PCT/JP2022/026800 2021-08-17 2022-07-06 高炉炉内充填物の堆積形状の推定方法および高炉炉内コークスの置換方法 WO2023021870A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22858193.0A EP4357465A1 (en) 2021-08-17 2022-07-06 Method for estimating depositional shape of blast furnace filling and method for substituting blast furnace coke
KR1020247002655A KR20240024991A (ko) 2021-08-17 2022-07-06 고로 로내 충전물의 퇴적 형상의 추정 방법 및 고로 로내 코크스의 치환 방법
CN202280051590.3A CN117693597A (zh) 2021-08-17 2022-07-06 高炉炉内填充物的堆积形状的推定方法及高炉炉内焦炭的置换方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132661 2021-08-17
JP2021132661A JP7196967B1 (ja) 2021-08-17 2021-08-17 高炉炉内充填物の堆積形状の推定方法および高炉炉内コークスの置換方法

Publications (1)

Publication Number Publication Date
WO2023021870A1 true WO2023021870A1 (ja) 2023-02-23

Family

ID=84687853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026800 WO2023021870A1 (ja) 2021-08-17 2022-07-06 高炉炉内充填物の堆積形状の推定方法および高炉炉内コークスの置換方法

Country Status (5)

Country Link
EP (1) EP4357465A1 (ja)
JP (1) JP7196967B1 (ja)
KR (1) KR20240024991A (ja)
CN (1) CN117693597A (ja)
WO (1) WO2023021870A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465211A (en) * 1987-09-03 1989-03-10 Kobe Steel Ltd Method for estimating deviation in packing state of furnace core solid reducing agent
JPH05295415A (ja) 1992-04-23 1993-11-09 Nippon Steel Corp 高炉操業方法
JP2014047397A (ja) * 2012-08-31 2014-03-17 Nippon Steel & Sumitomo Metal 高炉の操業方法
JP2016030833A (ja) 2014-07-25 2016-03-07 Jfeスチール株式会社 高炉の送風開始方法および炉床部昇温用バーナー
JP2018003044A (ja) * 2016-06-27 2018-01-11 Jfeスチール株式会社 操業異常推定方法および操業異常推定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465211A (en) * 1987-09-03 1989-03-10 Kobe Steel Ltd Method for estimating deviation in packing state of furnace core solid reducing agent
JPH05295415A (ja) 1992-04-23 1993-11-09 Nippon Steel Corp 高炉操業方法
JP2014047397A (ja) * 2012-08-31 2014-03-17 Nippon Steel & Sumitomo Metal 高炉の操業方法
JP2016030833A (ja) 2014-07-25 2016-03-07 Jfeスチール株式会社 高炉の送風開始方法および炉床部昇温用バーナー
JP2018003044A (ja) * 2016-06-27 2018-01-11 Jfeスチール株式会社 操業異常推定方法および操業異常推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIKAWA FUMIAKI: "Estimation of Refractory Wear and Solidified Layer Distribution in the Blast Furnace Hearth and Its Application to the Operation", TETSU-TO-HAGANE, vol. 73, no. 15, 1987, pages 2068 - 2075

Also Published As

Publication number Publication date
KR20240024991A (ko) 2024-02-26
JP7196967B1 (ja) 2022-12-27
JP2023027519A (ja) 2023-03-02
EP4357465A1 (en) 2024-04-24
CN117693597A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
US8845779B2 (en) Process for producing molten iron
US20230175085A1 (en) Blast furnace operation method
AU2008301651A1 (en) Process for producing molten iron
CN104540968A (zh) 启动一种熔炼工艺
WO2023021870A1 (ja) 高炉炉内充填物の堆積形状の推定方法および高炉炉内コークスの置換方法
JP4326581B2 (ja) 竪型炉の操業方法
JP5862519B2 (ja) 高炉の操業方法
JP7306421B2 (ja) 高炉の休風立ち上げ方法
US8475561B2 (en) Method for producing molten iron
JP4926790B2 (ja) 高炉の操業方法
TWI776499B (zh) 高爐操作方法
RU2812287C1 (ru) Способ работы доменной печи
JP4161526B2 (ja) 溶融還元炉の操業方法
JP7243677B2 (ja) 炉底の昇温方法および高炉の立ち上げ方法
WO2024122239A1 (ja) 高炉操業方法
JP2019019347A (ja) 高炉の操業方法
JPH08199213A (ja) 溶銑の製造方法
JPH0776713A (ja) 移動層型スクラップ溶融炉の操業方法
JP5012596B2 (ja) 高炉の減尺操業方法
JP2001073016A (ja) 高炉操業方法
JP3879539B2 (ja) 高炉の操業方法
JP2023152640A (ja) 高炉操業方法
JP2921392B2 (ja) 高炉の操業方法
TW202313989A (zh) 供給熱量推定方法、供給熱量推定裝置、供給熱量推定程式及高爐之操作方法
JP2921374B2 (ja) 高炉の操業方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858193

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317088068

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022858193

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280051590.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247002655

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002655

Country of ref document: KR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024001264

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2024102578

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2022858193

Country of ref document: EP

Effective date: 20240119

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112024001264

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240122