WO2023020526A1 - 一种炉体的窗体装置 - Google Patents

一种炉体的窗体装置 Download PDF

Info

Publication number
WO2023020526A1
WO2023020526A1 PCT/CN2022/112969 CN2022112969W WO2023020526A1 WO 2023020526 A1 WO2023020526 A1 WO 2023020526A1 CN 2022112969 W CN2022112969 W CN 2022112969W WO 2023020526 A1 WO2023020526 A1 WO 2023020526A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
sub
gas
window device
baffle
Prior art date
Application number
PCT/CN2022/112969
Other languages
English (en)
French (fr)
Inventor
王宇
顾鹏
李敏
梁振兴
Original Assignee
眉山博雅新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山博雅新材料股份有限公司 filed Critical 眉山博雅新材料股份有限公司
Priority to EP22857837.3A priority Critical patent/EP4372131A1/en
Publication of WO2023020526A1 publication Critical patent/WO2023020526A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • This description relates to the technical field of crystal preparation, in particular to a window device for a furnace body.
  • windows are generally provided on the side of the furnace body, so that operators can monitor the conditions in the furnace and perform corresponding operations.
  • part of the molten raw material or gas in the furnace may volatilize and adhere to the inside of the window, thereby affecting the observation effect of the window. Therefore, it is necessary to provide a window device for the furnace body, which is convenient for clearly observing the situation in the furnace body.
  • a window device for a furnace body includes a frame, the frame is set on the side wall of the furnace body; a window, the window is set on the On the frame body; the air inlet, the air inlet is arranged on the frame body; at least two gas outlets, wherein the at least two gas outlets communicate with the air inlet and the interior of the furnace body; And the tangential direction of the air outlet pipes at the at least two air outlets is within a preset included angle range.
  • the at least two air outlets are oppositely arranged along the circumferential direction of the window.
  • the air outlet is a strip-shaped air outlet.
  • the air outlets are a group of circular air outlets.
  • it also includes a wind direction adjustment plate disposed outside the air outlet.
  • the included angle between the wind direction adjusting plate and the window can be adjusted.
  • the included angle between the wind direction adjusting plate and the window is in the range of 10°-65°.
  • the wind direction adjusting board includes at least two sub-boards.
  • the included angle between the sub-boards is adjustable.
  • the included angle between the sub-boards is in the range of 10°-65°.
  • At least two baffles are also included, and the at least two baffles are respectively arranged on the circumferential outer side of the window.
  • the angle between the baffle and the window can be adjusted.
  • the baffle is a curved baffle.
  • the baffle includes a set of sub-baffles with adjustable angles between them.
  • the at least two air outlets are respectively disposed on the at least two baffles and face the window.
  • a suction port is also included, and the suction port is arranged on the baffle.
  • a powder collection frame is also included.
  • At least two staggered sloping plates are arranged inside the powder collection frame.
  • the airflow output by the air outlet is in the form of airflow pulses.
  • a water inlet and a water outlet are provided on the outer side of the frame, and a cooling channel flowing through the window device is formed through the water inlet and the water outlet.
  • Fig. 1 is a schematic structural view of a furnace body including a window device according to some embodiments of the present specification
  • Fig. 2 is a schematic structural view of the outside of the window device according to some embodiments of the present specification
  • Fig. 3 is a schematic structural view of the inside of the window device according to some embodiments of the present specification.
  • Fig. 4 is a schematic structural diagram of a wind direction adjusting plate according to some embodiments of the present specification.
  • 5A is a top view of a window device according to some embodiments of the present specification.
  • Figure 5B is a schematic diagram of window devices blocking volatiles according to some embodiments of the present specification.
  • Fig. 6A is a top view of a window device according to some other embodiments of the present specification.
  • Fig. 6B is a schematic diagram of window devices blocking volatiles according to some other embodiments of the present specification.
  • Fig. 6C is a schematic diagram of window devices blocking volatiles according to some other embodiments of the present specification.
  • Fig. 7 is a top view of a window device according to some other embodiments of the present specification.
  • Fig. 8 is a schematic structural diagram of a powder collection frame according to some embodiments of the present specification.
  • 10 is the furnace body
  • 11 is the furnace wall
  • 100 is the window device
  • 110 is the window
  • 120 is the frame
  • 130 is the air inlet
  • 131 is the suction port
  • 140 is the water inlet
  • 150 is the water outlet
  • 160 is the air outlet
  • 170 is the wind direction adjustment plate
  • 171 is the sub-board
  • 172 is the sub-board
  • 180 is the baffle
  • 180-1 is the sub-baffle
  • 180-2 is the sub-baffle
  • 180-3 is the sub-baffle
  • 181 is the direction of the arrow
  • 190 is the powder collecting frame
  • 191 is the inclined plate
  • 192 is the inclined plate
  • 193 is the inclined plate
  • 194 is the inclined plate
  • 195 is the inclined plate.
  • system means for distinguishing different components, elements, parts, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • Fig. 1 is a schematic structural view of a furnace body including a window device according to some embodiments of the present specification.
  • the furnace body 10 can be used in industries such as metallurgy, chemical industry, non-ferrous metals, building materials, machinery, and light industry.
  • the furnace body 10 can be used to grow crystals (for example, sapphire, ruby, yttrium aluminum garnet, gadolinium gallium garnet, spinel, etc.), and accordingly, the furnace body 10 can include a crystal growth furnace (for example, , induction furnace, resistance furnace, etc.).
  • the furnace body 10 can be used for smelting metals (for example, metals such as copper, iron, magnesium, aluminum), and accordingly, the furnace body 10 can include smelting furnaces (for example, metal smelting furnaces, ore sintering furnaces, coking furnaces, etc. furnace, etc.).
  • the furnace body 10 can be used to produce light oil (for example, gasoline, kerosene, diesel oil, etc.), and accordingly, the furnace body 10 can include catalytic cracking furnaces, reforming heating furnaces, hydrocracking furnaces, Hydrogen refining reaction heating furnace, etc.
  • the furnace body 10 can be used to manufacture coal gas, water gas, semi-water gas, etc., and accordingly, the furnace body 10 can include a gas generator.
  • the hearth of the furnace body 10 is composed of the furnace wall 11 (that is, the side wall of the furnace body) and the bottom of the furnace hearth, and the furnace hearth of the furnace body 10 can provide industrial production (for example, crystal growth, metal smelting, chemical reaction) place.
  • industrial production for example, crystal growth, metal smelting, chemical reaction
  • the hearth of the furnace body 10 can be under suitable conditions such as temperature, air pressure and atmosphere, products with better quality and quality (for example, crystals, metals, light oil, gas) can be produced.
  • a window device 100 may be provided on the furnace wall 11 of the furnace body 10 .
  • the window device 100 By setting the window device 100 on the furnace wall 11 of the furnace body 10, it is convenient for the operator to monitor the situation in the furnace in real time and perform corresponding operations.
  • the crystal growth temperature is adjusted according to the shape and height of crystal growth to improve the quality of crystal growth.
  • the reaction temperature is adjusted according to the components of the light oil, so as to adjust the proportions of different types of oil in the light oil.
  • connection manner between the window device 100 and the furnace wall 11 may be one or more of bolt connection, welding, hinge connection and clip connection.
  • the frame of the window device 100 can be connected to the furnace wall 11 to realize the connection of the window device 100 to the furnace wall 11 .
  • the connection manner between the frame of the window device 100 and the furnace wall 11 may be one or more of bolt connection, welding, hinge connection and clip connection.
  • the raw materials required for crystal growth can be loaded into the crucible, and the crucible with the raw materials is placed in the furnace hearth of the furnace body 10, and the furnace body 10 is controlled to be in a suitable Under conditions such as temperature, air pressure and atmosphere, crystals are grown in the hearth of the furnace body 10 . During this process, the operator can observe the growth of crystals inside the hearth from the window device 100 .
  • Fig. 2 is a schematic structural view of the outside of the window device according to some embodiments of the present specification
  • Fig. 3 is a schematic structural view of the inside of the window device according to some embodiments of the present specification.
  • the window device 100 involved in the embodiment of this specification will be described in detail below with reference to FIGS. 2 and 3 . It should be noted that the following examples are only used to explain the technical solution, and do not constitute a limitation to the technical solution.
  • the window device 100 may include a window 110 and a frame 120 .
  • the window 110 can be disposed on the frame body 120 .
  • the connection manner between the window 110 and the frame body 120 may be one or more of bolt connection, welding, hinge connection and clip connection.
  • the frame body 120 can be arranged on the side wall of the furnace body of the furnace body 10, so that one side of the frame body 120 (or called the outside of the frame body 120) is located outside the furnace body and in the external environment; The other side of the body 120 (or called the inner side of the frame body 120 ) is located in the furnace body, in the industrial production environment in the furnace.
  • the planar shape of the window 110 may be one or more of regular or irregular shapes such as rectangle, circle, triangle, and polygon.
  • the window 110 is made of transparent material.
  • the window 110 may include glass, transparent ceramics, wafers (eg, white sapphire wafers, titanium sapphire wafers, YAG wafers), and the like.
  • the shape inside the frame body 120 can match the plane shape of the window 110 .
  • the shape inside the frame body 120 is a rectangle, and the plane shape of the window 110 is also a rectangle, and the plane size meets the requirement of being embedded in the frame body 120 .
  • the window arrangement 100 may include at least one air inlet 130 .
  • at least one air inlet 130 may be disposed on the frame body 120 .
  • at least one air inlet 130 may be disposed outside the frame body 120 .
  • gas can be introduced into the furnace body through at least one gas inlet 130 .
  • the injected gas may be used to form a gas barrier in front of the window 110 and/or to clean the window 110 to reduce or avoid deposition of volatiles on the window.
  • the gas may be a gas required for industrial production in the furnace body (for example, oxygen, hydrogen or raw gas).
  • the gas may also be other gases (eg, noble gases).
  • argon and nitrogen can be introduced into the crystal growth furnace through at least one air inlet 130 , carbon monoxide gas, hydrogen, carbon dioxide and one or more gases.
  • air or oxygen-containing gas can be fed into the crystal growth furnace through at least one gas inlet 130 .
  • the gas composition, gas pressure, gas flow rate, etc. of the fed gas can be controlled according to the industrial production requirements in the furnace body 10 .
  • the gas can be divided into two or more pipelines and passed into the furnace body 10, and the first pipeline (for example, the gas inlet 130) is mainly used to form a gas barrier or clean the window 110.
  • the gas through the second pipeline or other pipelines (not shown in the figure), separately feeds the gas required for industrial production into the furnace body 10 .
  • the gas flow rate in the second pipeline or other pipelines can be greater than the gas flow rate in the first pipeline, so that the gas entering the furnace through the first pipeline will cause less disturbance to the production environment in the furnace and maintain Stable furnace production environment.
  • the window device 100 may further include at least two air outlets 160 .
  • at least two air outlets 160 may be disposed inside the frame body 120 .
  • at least two gas outlets 160 may communicate with the gas inlet 130 and the interior of the furnace body 10 .
  • the gas introduced from at least one gas inlet 130 can flow out from at least two gas outlets 160 to enter the interior of the furnace body 10 .
  • the tangential direction of the air outlet ducts at at least two air outlets 160 may be within a preset angle range.
  • the air outlet pipes at at least two air outlets 160 may be the air outlet pipes connected to the air outlets 160 .
  • the tangent direction of the air outlet duct at the at least two air outlets 160 may be the direction in which the tangent of the air outlet duct is along the airflow direction (or called "airflow direction").
  • corners of a certain radian may be provided on the outer sides of at least two air outlets 160 to adjust the tangential direction of the air outlet duct.
  • the tangential direction of the air outlet duct at the air outlet 160 may be the same as the airflow direction at the air outlet 160 .
  • the preset included angle may include 10°-170°. In some embodiments, the preset included angle may include 20° ⁇ 160°. In some embodiments, the preset included angle may include 30°-150°. In some embodiments, the preset included angle may include 40° ⁇ 140°. In some embodiments, the preset included angle may include 50° ⁇ 130°. In some embodiments, the preset included angle may include 60°-120°. In some embodiments, the preset included angle may include 70°-120°. In some embodiments, the preset included angle may include 90° ⁇ 120°. In some embodiments, the preset included angle may include 95° ⁇ 110°.
  • At least two air outlets 160 may be disposed opposite to each other along the circumferential direction of the window 110 .
  • the at least two air outlets 160 may include two air outlets disposed on opposite sides of the window 110 (eg, left and right sides, upper and lower sides).
  • the at least two air outlets 160 may include four air outlets disposed opposite to each other in a circumferential direction of the window 110 (for example, up, down, left, and right).
  • taking the shape of the window 110 as a circle or an arc as an example the at least two air outlets 160 may include air outlets arranged around the circumference of the window 110 .
  • the air outlet 160 may be an elongated air outlet. In some embodiments, taking the air outlet 160 arranged on one side of the window 110 as an example, the air outlet 160 can be a long strip-shaped air outlet, or a plurality of long strips arranged in parallel on one side of the window 110 gas outlet.
  • the distance between two adjacent elongated air outlets may be less than or equal to the first threshold.
  • the first threshold may be in the range of 1mm-10mm. In some embodiments, the first threshold may be in the range of 2mm-9mm. In some embodiments, the first threshold may be in the range of 3mm-8mm. In some embodiments, the first threshold may be in the range of 4mm-7mm. In some embodiments, the first threshold may be in the range of 5mm-6mm.
  • the gas flowing out through the gas outlet 160 can flow out in the form of a gas flow surface.
  • the air outlet 160 may be a single circular air outlet. In some embodiments, the air outlet 160 may be a set of circular air outlets. In some embodiments, a group of circular air outlets may be a row of circular air outlets or a plurality of parallel rows of circular air outlets arranged along one side of the window 110 .
  • the distance between two adjacent circular air outlets in a row of circular air outlets may be less than or equal to the second threshold.
  • the second threshold may be in the range of 1mm-5mm. In some embodiments, the second threshold may be in the range of 2mm-4mm. In some embodiments, the second threshold may be in the range of 3mm-3.5mm.
  • the distance between two adjacent columns of circular air outlets may be less than or equal to the third threshold.
  • the third threshold may be in the range of 1mm-10mm. In some embodiments, the third threshold may be in the range of 2mm-9mm. In some embodiments, the third threshold may be in the range of 3mm-8mm. In some embodiments, the third threshold may be in the range of 4mm-7mm. In some embodiments, the third threshold may be in the range of 5mm-6mm.
  • the gas flowing out through the gas outlet 160 can flow out in the form of a gas stream or a gas stream surface formed by multiple gas streams.
  • the air outlet 160 may be a single arc-shaped air outlet. In some embodiments, the air outlet 160 may be a group of arc-shaped air outlets. In some embodiments, a group of arc-shaped air outlets may be a row of arc-shaped air outlets arranged along one side of the window 110 or multiple parallel rows of arc-shaped air outlets.
  • the distance between two adjacent air outlets in a row of arc-shaped air outlets may be less than or equal to the fourth threshold.
  • the fourth threshold may be in the range of 1mm-5mm. In some embodiments, the fourth threshold may be in the range of 2mm-4mm. In some embodiments, the fourth threshold may be in the range of 3mm-3.5mm.
  • the distance between two adjacent rows of arc-shaped air outlets may be less than or equal to the fifth threshold.
  • the fifth threshold may be in the range of 1mm-10mm. In some embodiments, the fifth threshold may be in the range of 2mm-9mm. In some embodiments, the fifth threshold may be in the range of 3mm-8mm. In some embodiments, the fifth threshold may be in the range of 4mm-7mm. In some embodiments, the fifth threshold may be in the range of 5mm-6mm.
  • the gas flowing out through the gas outlet 160 can flow out in the form of one or more arc-shaped gas flow surfaces.
  • the shape and/or distribution of the at least two air outlets 160 may be related to the shape of the window 110 . In some embodiments, the shape and/or distribution of the at least two air outlets 160 may be related to the profile shape of the window 110 . For example, assuming that the outline shape of the window 110 is circular or oval, at least two air outlets 160 can be a plurality of arc air outlets distributed along the circumferential direction of the window 110; or at least two air outlets 160 can be multiple A group of circular air outlets, each group of circular air outlets has an arc shape along the circumferential direction. For another example, the outline shape of the window 110 is triangular, rectangular or polygonal, and the at least two air outlets 160 may be a plurality of strip-shaped air outlets arranged along the side length direction of the window 110 .
  • the at least two air outlets 160 may also be in any other suitable shape and/or distribution, for example, quadrilateral, triangular, circular, irregular, etc.
  • the at least two air outlet holes 160 may be arranged in any suitable arrangement, for example, arranged in parallel, arranged at intervals, arranged in a cross, arranged in a circle, and so on.
  • At least two streams of gas flowing out from at least two gas outlets 160 correspond to at least two airflow directions.
  • the angle formed between the at least two airflow directions formed by them is also preset. within the angle range.
  • at least two streams of gas flowing out from at least two gas outlets 160 can converge near the window 110 to form a gas barrier, which can prevent other gases or volatiles in the furnace body 10 (for example, volatilization in the molten raw material) Exhaust gas) adheres to the surface of the window 110, so that the operator can clearly see the industrial production situation in the furnace body 10.
  • the window device 100 may further include at least two wind direction adjustment plates 170 , and the at least two wind direction adjustment plates 170 may be respectively disposed outside the at least two air outlets 160 .
  • at least two wind direction adjusting plates 170 can be used to adjust the airflow direction of the gas flowing out from the at least two air outlets 160 .
  • FIG. 4 For more details about the wind direction adjusting plate 170, please refer to the relevant description of FIG. 4 , which will not be repeated here.
  • the size of at least two air outlets 160 can match the size of the window 110 , so that the airflow surface flowing out of the air outlets 160 can better protect the window 110 .
  • the length of the at least two air outlets 160 can be greater than or equal to the length of the window 110, so that the length of the airflow surface flowing out of the at least two air outlets 160 is greater than or equal to the length of the window 110, thereby better The window 110 is protected.
  • the airflow output by the air outlet 160 may be an airflow with a constant flow rate.
  • the furnace environment can be kept stable, so that industrial production can be carried out in a more stable reaction environment.
  • the airflow output by the air outlet 160 may be in the form of airflow pulses.
  • the airflow pulse form may be that the airflow is intermittently output at a large flow rate within a certain period of time, and a small flow rate is output stably during the rest of the time.
  • the flow rate or flow rate can be increased intermittently to clean the window 110 and remove volatiles or other components attached to the surface of the window 110 under the condition that the total amount of gas introduced remains unchanged.
  • the air flow of the air outlet 160 can be adjusted according to the amount of volatiles.
  • the amount of volatile matter is relatively large, and accordingly, the air flow rate can be set to a relatively large value.
  • the air flow can be adjusted to a smaller value.
  • movable cover plates may also be provided on at least two air outlets 160 .
  • the opening and closing of the movable cover plates on at least two air outlets 160 can be controlled to adjust the size of the air outlets 160 , thereby adjusting the air flow of the air outlets 160 .
  • the opening and closing of the movable cover plates on at least some of the at least two air outlets 160 can also be controlled to keep the size and air flow of some of the air outlets adjustable, while the air flow of the rest of the air outlets can be adjusted. fixed.
  • a water inlet 140 and a water outlet 150 may also be provided outside the frame body 120 .
  • the inside of the frame body 120 may be a hollow structure, and circulating cooling water flows into the frame body 120 through the water inlet 140 and flows out of the frame body 120 through the water outlet 150 to form a cooling channel flowing through the window device 100 .
  • a plurality of cooling channels may be provided in the hollow structure inside the frame body 120 to facilitate circulation of circulating cooling water according to a preset flow direction.
  • a plurality of baffles can also be arranged on the plurality of cooling passages inside the frame body 120 to increase the turbulence of the circulating cooling water and improve the heat exchange efficiency, thereby better cooling the window 110 Cool down.
  • the window device 100 may further include at least two baffles 180 .
  • At least two baffles 180 may be respectively disposed on the circumferential outer side of the window 110 . In some embodiments, at least two baffles 180 may be respectively disposed outside the at least two air outlets 160 . In some embodiments, the inside of the baffle 180 may be a hollow structure and communicate with the inside of the frame body 120 . In some embodiments, a plurality of cooling passages (not shown) can be set in the hollow structure inside the baffle 180, so that circulating cooling water can also flow through the inside of the baffle 180, so that the temperature of the surface of the baffle 180 lower than the temperature inside the furnace. For more details about the baffle 180 , please refer to the related descriptions of FIGS. 5A and 5B , which will not be repeated here.
  • the window device 100 may further include a powder collection frame 190 .
  • the powder collection frame 190 may be disposed under the inner side of the baffle 180 for collecting powder or other particles falling from the inner wall of the baffle 180 .
  • the number of powder collection frames 190 may be one or more. For example, only one powder collection frame 190 may be provided, located below the two baffles 180 and the window 110 . For another example, as shown in FIG. 3 , two powder collection frames 190 may be provided, respectively located under the two side baffles 180 .
  • a powder collection frame 190 (not shown in the figure) can also be set under the outer side of baffle plate 180, Used to collect powder or other particles falling from the outer wall of the baffle 180 .
  • the powder collection frame 190 may be disposed under the window 110 for collecting powder or other particles falling from the window 110 .
  • Fig. 4 is a schematic structural diagram of a wind direction regulating plate according to some embodiments of the present specification.
  • the wind direction regulating board 170 may include one or more sub-boards.
  • the flow direction of the gas is changed due to being blocked by the sub-plate.
  • the flow direction of the gas (or called the airflow direction) can be controlled by adjusting the direction of the sub-plate.
  • the wind direction adjusting plate 170 and the window 110 can be installed at a certain angle.
  • the wind direction adjusting plate 170 and the window 110 may be installed in a flexible connection (eg, hinged).
  • the angle ⁇ between the wind direction adjusting plate 170 and the window 110 can be adjusted.
  • the air outlet 160 and the wind direction adjustment plate In order to ensure the air outlet efficiency and the stability of the gas barrier, and to prevent the outflowing gas from directly entering the inner area of the furnace of the furnace body and causing fluctuations in the temperature or temperature field inside the furnace body, the air outlet 160 and the wind direction adjustment plate When the 170 is installed on the frame body 120, the angle ⁇ between the wind direction adjusting plate 170 and the window 110 needs to be controlled within a certain range.
  • the included angle ⁇ between the wind direction adjusting plate 170 and the window 110 may be 10° ⁇ 65°. In some embodiments, the included angle ⁇ between the wind direction adjusting plate 170 and the window 110 may be 15° ⁇ 60°. In some embodiments, the included angle ⁇ between the wind direction adjusting plate 170 and the window 110 may be 20° ⁇ 55°. In some embodiments, the included angle ⁇ between the wind direction adjusting plate 170 and the window 110 may be 25° ⁇ 50°. In some embodiments, the angle ⁇ between the wind direction adjusting plate 170 and the window 110 may be 30° ⁇ 45°. In some embodiments, the included angle ⁇ between the wind direction adjusting plate 170 and the window 110 may be 35° ⁇ 40°. In some embodiments, the included angle ⁇ between the wind direction adjusting plate 170 and the window 110 may be 38° ⁇ 40°.
  • the wind direction adjusting board 170 may include two sub-boards, namely a sub-board 171 and a sub-board 172 .
  • the sub-board 171 may be provided with one or more air outlets (not shown in FIG. 4 ).
  • the wind direction regulating plate 170 including two sub-boards is set On the outside of the air outlet 160, the size and shape of the air outlet on the sub-board 171 can be adjusted according to requirements.
  • the gas outlet on the sub-board 171 can match the gas outlet 160 , so that the gas can flow out through the gas outlet on the sub-board 171 after passing through the gas outlet 160 .
  • the air outlets on the sub-board 171 may match the air outlets 160 in such a way that the shapes and/or distributions of the two are the same or similar, and the size difference is within a certain threshold range (for example, 3 mm).
  • the gas outlet on the sub-board 171 can be a strip-shaped gas outlet, or can be adjusted to a square, round hole or arbitrary shape according to actual needs, so as to adjust the gas flow rate of the gas outlet.
  • the air outlet on the sub-board 171 may be one long strip-shaped air outlet, or multiple long strip-shaped air outlets arranged in parallel.
  • the distance between two adjacent elongated air outlets may be less than or equal to the first threshold.
  • the air outlet on the sub-board 171 may be a circular air outlet.
  • the air outlet on the sub-board 171 can be a single circular air outlet, or a group of circular air outlets (for example, a group of circular air outlets can be arranged along the vertical direction of the sub-board 171 single list of pores or parallel multiple columns of pores).
  • a group of circular air outlets is a list of air holes arranged along the vertical direction of the sub-board 171
  • the distance between two adjacent air outlets in a list of air holes may be less than or equal to the second threshold.
  • the distance between two adjacent air holes may be less than or equal to the third threshold.
  • the air outlet on the sub-board 171 may be a single arc-shaped air outlet.
  • the air outlets on the sub-board 171 may be a set of arc-shaped air outlets.
  • a group of arc-shaped air outlets may be a row of arc-shaped air outlets arranged along the vertical direction of the sub-board 171 or multiple parallel rows of arc-shaped air outlets.
  • a group of arc-shaped air outlets is a row of arc-shaped air outlets arranged along the vertical direction of the sub-board 171
  • the distance between two adjacent air outlets in a row of arc-shaped air outlets may be less than or equal to the fourth threshold.
  • the distance between two adjacent rows of arc-shaped air outlets may be less than or equal to the fifth threshold.
  • the sub-board 171 and the sub-board 172 may be installed at a certain angle. In some embodiments, the sub-board 171 and the sub-board 172 may be installed in a flexible connection (eg, hinged). In some embodiments, the included angle ⁇ 1 between the sub-board 171 and the sub-board 172 can be adjusted.
  • the sub-board 171 and the sub-board 172 In order to ensure the air outlet efficiency and the stability of the gas barrier, and to prevent the outflowing gas from directly entering the inner area of the furnace body of the furnace body to cause fluctuations in the temperature or temperature field inside the furnace body, the sub-board 171 and the sub-board 172 The included angle ⁇ 1 needs to be controlled within a certain range.
  • the included angle ⁇ 1 between the sub-board 171 and the sub-board 172 may be 10° ⁇ 65°. In some embodiments, the included angle ⁇ 1 between the sub-board 171 and the sub-board 172 may be 15° ⁇ 60°. In some embodiments, the included angle ⁇ 1 between the sub-board 171 and the sub-board 172 may be 20° ⁇ 55°. In some embodiments, the included angle ⁇ 1 between the sub-board 171 and the sub-board 172 may be 25° ⁇ 50°. In some embodiments, the included angle ⁇ 1 between the sub-board 171 and the sub-board 172 may be 30° ⁇ 45°.
  • the included angle ⁇ 1 between the sub-board 171 and the sub-board 172 may be 35° ⁇ 40°. In some embodiments, the included angle ⁇ 1 between the sub-board 171 and the sub-board 172 may be 38° ⁇ 40°.
  • the gas flows out from the air outlet 160 and flows out through the air outlet on the sub-board 171 of the air outlet 170 .
  • the flow track of the gas on the wind direction regulating plate 170 can be: the direction in which the gas flows out from the air outlet on the sub-board 171 is the airflow direction A, and under the blocking effect of the sub-board 172, the flow direction of the gas changes is the airflow direction B, and the angle between the airflow direction B and the glass window 110 is less than 90°.
  • At least two streams of gas flowing out of at least two air outlets 160 are near the window 110 (that is, the window 110 The side facing the furnace) meet to form a gas barrier.
  • the airflow direction near the window 110 can be effectively adjusted, so that at least two The gas barrier formed by gas confluence can better prevent volatiles from adhering to the window 110 and ensure the observation effect of the window 110 .
  • FIG. 5A is a top view of a window device according to some embodiments of the present specification.
  • the baffle 180 may be a curved baffle.
  • the cross-sectional shape of the baffle 180 may be a curved arc.
  • the baffle 180 may be a fan-shaped baffle.
  • the cross-sectional shape of the baffle 180 may also be fan-shaped or other shapes.
  • the cross-sectional length of the baffle 180 can be adjusted, so that the baffle 180 has a telescopic function in the horizontal direction.
  • the included angle between the baffle plate 180 and the window 110 is ⁇ 2 . In some embodiments, the included angle between the baffle plate 180 and the window 110 is ⁇ 2 , which can be adjusted.
  • the included angle ⁇ between the baffle plate 180 and the window 110 is ⁇ 2 It needs to be controlled within a certain range so that the volatile matter is blocked by the baffle plate 180 and then collected in the powder collection frame 190 .
  • the included angle ⁇ 2 between the baffle plate 180 and the window 110 is 30° ⁇ 90°. In some embodiments, the included angle ⁇ 2 between the baffle plate 180 and the window 110 is 35° ⁇ 85°. In some embodiments, the included angle ⁇ 2 between the baffle plate 180 and the window 110 is 40° ⁇ 80°. In some embodiments, the included angle ⁇ 2 between the baffle plate 180 and the window 110 is 45° ⁇ 75°. In some embodiments, the included angle ⁇ 2 between the baffle plate 180 and the window 110 is 50° ⁇ 70°. In some embodiments, the included angle ⁇ 2 between the baffle plate 180 and the window 110 is 55° ⁇ 65°. In some embodiments, the included angle ⁇ 2 between the baffle plate 180 and the window 110 is 58° ⁇ 63°. In some embodiments, the included angle ⁇ 2 between the baffle plate 180 and the window 110 is 60° ⁇ 63°.
  • the included angle ⁇ 1 needs to satisfy a certain matching relationship.
  • the value is less than or equal to the preset threshold (for example, 40°), so that the air outlet efficiency and the gas barrier of the gas flowing out from the wind direction regulating plate 170 are relatively stable, and the baffle plate 180 can prevent the gas flowing out from directly entering the furnace of the furnace body In the industrial production area, the temperature or temperature field inside the furnace body fluctuates, and it can prevent the volatiles blocked by the gas barrier from re-entering the industrial production area and depositing on the surface of the product.
  • the preset threshold for example, 40°
  • the angle ⁇ between the wind direction adjusting plate 170 and the window 110 (or the angle ⁇ 1 between the sub-board 171 and the sub-board 172) is 10°-65°
  • the angle ⁇ between the baffle plate 180 and the window 110 2 can be 30° to 90°.
  • the angle between the baffle plate 180 and the window 110 ⁇ 2 is 60° to 80°.
  • FIG. 5B is a schematic diagram of a window device for blocking volatiles according to some embodiments of the present specification.
  • the gas flowing out from the air outlet 160 is regulated by the wind direction adjusting plate 170, forming an airflow at a certain angle with the window 110 near the window 110, and the airflow on both sides of the window 110 converges to form a gas barrier M1 , can block the volatiles outside the gas barrier M1.
  • the volatile X1 moves toward the window 110
  • the volatile X1 moves away from the window 110 and moves toward the baffle 180 due to the blocking effect of the gas barrier M1 on the volatile X1 .
  • the kinetic energy of the volatile X1 decreases rapidly (close to 0).
  • the volatile matter X1 will be cooled rapidly.
  • the kinetic energy is reduced and the cooled volatile matter X1 falls down into the powder collection frame 190 under the action of gravity, or the kinetic energy is reduced and the cooled volatile matter X1 is deposited on the side wall of the baffle plate 180, when the deposited weight After reaching a certain value, it falls down into the powder collection frame 190 under the action of gravity.
  • Fig. 6A is a top view of a window device according to some other embodiments of the present specification.
  • At least two air outlets 160 may be respectively disposed on at least two baffles 180 .
  • at least two air outlets 160 can be respectively arranged on the inner side of at least two baffles 180, and face the window 110 (for example, the tangential direction or the airflow direction of the air outlet duct is toward the window. 110).
  • At least two air outlets 160 may be arranged opposite to each other along the vertical direction of the baffle 180 (arrow direction 181 shown in FIG. 3 ). In some embodiments, the at least two air outlets 160 may include two air outlets disposed on opposite sides (eg, left and right sides) of the baffle 180 .
  • the air outlet 160 may be provided on only one baffle 180 .
  • the air outlet 160 can be disposed inside a baffle 180 and facing the window 110 , the airflow direction of the air outlet 160 crosses the other baffle 180 so that the gas barrier can shield the window 110 .
  • the window device 100 may further include at least two wind direction adjustment plates 170 , and the at least two wind direction adjustment plates 170 may be respectively disposed outside the at least two air outlets 160 .
  • the wind direction adjusting plate 170 please refer to the relevant descriptions in FIG. 2-FIG.
  • Fig. 6B is a schematic diagram of window devices blocking volatiles according to some other embodiments of the present specification.
  • the gas flowing out from the air outlet 160 is regulated by the wind direction adjusting plate 170, forming two airflows with a certain angle towards the window 110 near the window 110, and the two airflows meet to form a gas barrier M2, Volatiles can be kept out of the gas barrier M2.
  • the volatile X2 moves toward the window 110
  • the volatile X2 moves away from the window 110 or moves toward the baffle 180 due to the blocking effect of the gas barrier M2 on the volatile X2 .
  • the volatile X2 enters the furnace after leaving the window 110 , which will not affect the observation effect of the window 110 .
  • the kinetic energy of the volatile X2 decreases rapidly (close to 0), and at the same time, the volatile X2 is rapidly cooled due to the circulating cooling water inside the baffle 180 .
  • the kinetic energy is reduced and the cooled volatile matter X2 falls down into the powder collection frame 190 under the action of gravity, or the kinetic energy is reduced and the cooled volatile matter X2 is deposited on the side wall of the baffle plate 180, when the deposited weight After reaching a certain value, it falls down into the powder collection frame 190 under the action of gravity.
  • Fig. 6C is a schematic diagram of window devices blocking volatiles according to some other embodiments of the present specification.
  • the gas flowing out from the air outlet 160 is regulated by the wind direction regulating plate 170 to form two streams of airflow blowing towards the window 110, and the two streams of airflow are blown towards the window 110 to realize the cleaning of the window 110.
  • the two airflows are reflected by the window 110 and then converge into two airflows with a certain angle, forming a gas barrier M3 in front of the window 110, which can block volatiles from the gas barrier M3.
  • the volatile X3 moves toward the window 110
  • the volatile X3 moves away from the window 110 or moves toward the baffle 180 due to the blocking effect of the gas barrier M3 on the volatile X3 .
  • the volatile X3 enters the furnace after leaving the window 110 , which will not affect the observation effect of the window 110 .
  • the kinetic energy of the volatile X3 decreases rapidly (close to 0), and at the same time, the volatile X3 is rapidly cooled due to the circulating cooling water inside the baffle 180 .
  • the kinetic energy is reduced and the cooled volatile matter X3 falls down into the powder collection frame 190 under the action of gravity, or the kinetic energy is reduced and the cooled volatile matter X3 is deposited on the side wall of the baffle plate 180, when the deposited weight After reaching a certain value, it falls down into the powder collection frame 190 under the action of gravity.
  • the angle between the wind direction adjusting plate 170 and the tangent line of the outlet pipe at the air outlet 160 can also be adjusted to adjust the gas flow direction, so that the air flow does not have a sweeping function as shown in FIG. 6B but has a gas barrier function, or makes The gas flow has both a sweeping function and a gas barrier function as shown in Figure 6C.
  • the gas flow direction and gas flow size can be adjusted, so that the air flow has both a cleaning function and a gas barrier function as shown in FIG. Volatile matter and prevent volatile matter from entering the vicinity of the window 110.
  • the gas flow direction and the size of the gas flow can be adjusted, so that the air flow does not have a cleaning function as shown in Figure 6B and only has a gas barrier function to prevent volatiles from entering the window.
  • Near body 110 when the amount of volatiles is small, the gas flow direction and the size of the gas flow can be adjusted, so that the air flow does not have a cleaning function as shown in Figure 6B and only has a gas barrier function to prevent volatiles from entering the window.
  • the gas flow direction and the size of the gas flow can be adjusted, so that the air flow does not have a cleaning function as shown in Figure 6B and only has a gas barrier function to prevent volatiles from entering the window.
  • Near body 110 when the amount of volatiles is small, the gas flow direction and the size of the gas flow can be adjusted, so that the air flow does not have a cleaning function as shown in Figure 6B and only has a gas barrier function to prevent volatiles from entering the window.
  • Near body 110 when the amount of volatiles is small, the gas flow direction and the size of the gas
  • the orientation and angle of the wind direction adjustment plate 170 can also be adjusted to adjust the orientation of the gas output from the air outlet 160 so that the gas is directed toward the window 110 and flows out downwards, so as to blow the volatiles from the window 110 Fall directly into the powder collection box below the form 110 after falling.
  • Fig. 7 is a top view of a window device according to some other embodiments of the present specification.
  • the baffle 180 may include a group of sub-baffles with adjustable angles between them.
  • the bezel 180 may include a sub-bezel 180-1, a sub-bezel 180-2, and a sub-bezel 180-3.
  • the included angle between the sub-bezel 180-1 and the sub-bezel 180-2 can be adjusted.
  • the included angle between the sub-bezel 180-2 and the sub-bezel 180-3 can be adjusted.
  • the included angle between the sub-bezel 180-1 and the sub-bezel 180-2 may be within a range of 0° ⁇ 30°. In some embodiments, the included angle between the sub-bezel 180-1 and the sub-bezel 180-2 may be within a range of 5° ⁇ 25°. In some embodiments, the included angle between the sub-bezel 180-1 and the sub-bezel 180-2 may be within a range of 10° ⁇ 20°. In some embodiments, the included angle between the sub-bezel 180-1 and the sub-bezel 180-2 may be within a range of 15° ⁇ 18°.
  • the included angle between the sub-bezel 180-2 and the sub-bezel 180-3 may be within a range of 0° ⁇ 30°. In some embodiments, the included angle between the sub-baffle 180-2 and the sub-baffle 180-3 may be within a range of 5° ⁇ 25°. In some embodiments, the included angle between the sub-bezel 180-2 and the sub-bezel 180-3 may be within a range of 10° ⁇ 20°. In some embodiments, the included angle between the sub-bezel 180-2 and the sub-bezel 180-3 may be within a range of 15° ⁇ 18°.
  • the amount of volatile matter is large, the included angle between sub-baffle plate 180-1, sub-baffle plate 180-2, and sub-baffle plate 180-3 can be adjusted to be small, so that the baffle plate 180 has a greater impact on the volatile matter. Has a better blocking effect.
  • the included angle between the sub-baffle 180-1, the sub-baffle 180-2, and the sub-baffle 180-3 can be increased.
  • the baffle 180 may include a set of sub-baffles with a telescopic function.
  • the sub-bezel 180 - 1 , the sub-bezel 180 - 2 and the sub-bezel 180 - 2 can expand and contract respectively.
  • whether to use sub-baffles and the number of used sub-baffles can be determined according to industrial production conditions (for example, the amount of volatiles). In some embodiments, if the amount of volatile matter is large, three sub-baffles can be used, and the sub-baffle 180-1, the sub-baffle 180-2 and the sub-baffle 180-3 are extended. In some embodiments, if the amount of volatiles is moderate, 2 sub-baffles can be used, with two of the sub-baffles extended and the other sub-baffle retracted. In some embodiments, if the amount of volatile matter is small, only one sub-baffle can be used, and one of the sub-baffles 180-1 is extended, and the other two sub-baffles are retracted.
  • industrial production conditions for example, the amount of volatiles. In some embodiments, if the amount of volatile matter is large, three sub-baffles can be used, and the sub-baffle 180-1, the sub-ba
  • the volatiles can be better blocked, and the distance between the sub-baffles can be adjusted according to the amount of volatiles.
  • the included angle and/or telescopic situation so as to better block the volatiles.
  • the window device 100 may further include at least one suction port 131 .
  • at least one suction port 131 may be disposed on the baffle 180 .
  • at least one suction port 131 may be disposed on the sub-baffle 180-3.
  • at least one suction port 131 can also be arranged on the sub-baffle 180-1, the sub-baffle 180-2 or the baffle 180 shown in FIGS.
  • the setting position is not limited.
  • at least one suction port 131 may be connected to a suction device (for example, a suction pump) through a pipeline, so as to suck the air flowing out from the gas outlet 160 .
  • a suction device for example, a suction pump
  • the airflow flowing out from the air outlet 160 is sucked through the air inlet 131, which can reduce the air flow near the window device 100, thereby reducing the disturbance of the shielding gas to the inside of the furnace and maintaining a stable furnace environment.
  • the suction flow rate of the suction port 131 may be less than or equal to the gas output flow rate of the gas outlet port 160 .
  • the suction flow rate of the air inlet 131 may be less than or equal to the gas outlet flow rate of the gas outlet port 160 .
  • Fig. 8 is a schematic structural diagram of a powder collection frame according to some embodiments of the present specification.
  • At least two Interlaced sloping boards In order to further prevent volatiles or other gases from floating out of the powder collection frame 190 again into the cavity of the furnace body, in some embodiments, as shown in FIG. 8 , at least two Interlaced sloping boards.
  • the number of at least two inclined plates can be set according to actual needs.
  • at least two staggered inclined plates may be inclined downward.
  • the downward inclination angles of at least two staggered sloping plates can be adjusted according to actual conditions.
  • the downward inclination angle of the inclined plate may be 10°-60°. In some embodiments, for example, the downward inclination angle of the inclined plate may be 15°-55°. In some embodiments, for example, the downward angle of the sloping plate may be 20°-50°. In some embodiments, for example, the downward inclination angle of the inclined plate may be 25°-45°. In some embodiments, for example, the downward inclination angle of the inclined plate may be 30°-40°. In some embodiments, for example, the downward inclination angle of the inclined plate may be 35°-38°.
  • the body is stuck on the middle or upper inclined plate.
  • volatiles or other gas powders can be prevented from being stuck on the middle or upper sloping plates, so that falling volatiles or other gas powders can fall into the bottom of the powder collection frame 190 At the same time, it can also prevent the powder from floating out of the powder collection frame 190 again to a certain extent, entering into the hearth of the furnace body, and then floating to the surface of the product to cause corrosion of the product.
  • part of the raw material for example, Ga 2 O 3 or SiO 2
  • the volatile matter will randomly float in the entire furnace, and part of the volatile matter flows to the vicinity of the window 110 .
  • the gas required for crystal growth or inert gas introduced from the air inlet 130 flows into the furnace through the air outlet 160, and is regulated by the wind direction regulating plate 170 , the flowing gas converges near the window 110 to form a gas barrier.
  • the airflow can have both the cleaning function and the gas barrier function
  • the volatile powder can be collected in the powder collection frame, Prevent the deposited volatile matter powder from floating in the cavity of the furnace body again, causing corrosion to the surface of the product (for example, crystal);
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种炉体(10)的窗体装置(100),该窗体装置(100)包括框体(120),所述框体(120)设置于所述炉体(10)的侧壁;窗体(110),所述窗体(110)设置于所述框体(120)上;进气口(130),所述进气口(130)设置于所述框体(120)上;至少两个出气口(160),其中,所述至少两个出气口(160)与所述进气口(130)及所述炉体(10)内部连通;以及所述至少两个出气口(160)处的出气管道的切线方向在预设夹角范围内。

Description

一种炉体的窗体装置
交叉引用
本申请要求2021年8月17日提交的中国申请号202110942349.7的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及晶体制备技术领域,特别涉及一种炉体的窗体装置。
背景技术
在炉体(例如,工业炉)的使用过程中,一般会在炉体侧面设置窗体,便于操作人员监测炉内情况并执行相应的操作。在炉体使用过程中,部分熔融原料或炉内气体可能会挥发粘附在窗体内侧,从而影响窗体的观察效果。因此,需要提供一种炉体的窗体装置,便于清晰观察炉体内的情况。
发明内容
本说明书实施例之一提供一种炉体的窗体装置,所述窗体装置包括框体,所述框体设置于所述炉体的侧壁;窗体,所述窗体设置于所述框体上;进气口,所述进气口设置于所述框体上;至少两个出气口,其中,所述至少两个出气口与所述进气口及所述炉体内部连通;以及所述至少两个出气口处的出气管道的切线方向在预设夹角范围内。
在一些实施例中,所述至少两个出气口沿所述窗体周向相对设置。
在一些实施例中,所述出气口为长条形出气口。
在一些实施例中,所述出气口为一组圆形出气孔。
在一些实施例中,还包括风向调节板,设置于所述出气口外侧。
在一些实施例中,所述风向调节板与所述窗体的夹角可调节。
在一些实施例中,所述风向调节板与所述窗体的夹角在10°~65°的范围内。
在一些实施例中,所述风向调节板包括至少两块子板。
在一些实施例中,所述子板间的夹角可调节。
在一些实施例中,所述子板间的夹角在10°~65°的范围内。
在一些实施例中,还包括至少两个挡板,所述至少两个挡板分别设置于所述窗体周向 外侧。
在一些实施例中,所述挡板和所述窗体间的夹角可调节。
在一些实施例中,所述挡板为弧形挡板。
在一些实施例中,所述挡板包括一组彼此间夹角可调节的子挡板。
在一些实施例中,所述至少两个出气口分别设置于所述至少两个挡板上,且朝向所述窗体。
在一些实施例中,还包括吸气口,所述吸气口设置于所述挡板上。
在一些实施例中,还包括粉体收集框。
在一些实施例中,所述粉体收集框内部设置至少两个相互交错的斜板。
在一些实施例中,所述出气口输出的气流为气流脉冲形式。
在一些实施例中,所述框体的外侧设置进水口和出水口,经由所述进水口和所述出水口形成流经所述窗体装置的冷却通道。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的包括窗体装置的炉体的结构示意图;
图2是根据本说明书一些实施例所示的窗体装置外侧的结构示意图;
图3是根据本说明书一些实施例所示的窗体装置内侧的结构示意图;
图4是根据本说明书一些实施例所示的风向调节板的结构示意图;
图5A是根据本说明书一些实施例所示的窗体装置的俯视图;
图5B是根据本说明书一些实施例所示的窗体装置阻挡挥发物的示意图;
图6A是根据本说明书又一些实施例所示的窗体装置的俯视图;
图6B是根据本说明书又一些实施例所示的窗体装置阻挡挥发物的示意图;
图6C是根据本说明书又一些实施例所示的窗体装置阻挡挥发物的示意图;
图7是根据本说明书又一些实施例所示的窗体装置的俯视图;
图8是根据本说明书一些实施例所示的粉体收集框的结构示意图。
图中,10为炉体,11为炉膛壁,100为窗体装置,110为窗体,120为框体,130为进气口,131为吸气口,140为进水口,150为出水口,160为出气口,170为风向调节板,171为子板,172为子板,180为挡板,180-1为子挡板,180-2为子挡板,180-3为子挡板, 181为箭头方向,190为粉体收集框,191为斜板,192为斜板,193为斜板,194为斜板,195为斜板。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据本说明书一些实施例所示的包括窗体装置的炉体的结构示意图。
在一些实施例中,炉体10可以用于冶金、化工、有色金属、建材、机械、轻工业等行业。在一些实施例中,炉体10可以用于生长晶体(例如,蓝宝石、红宝石、钇铝石榴石、钆镓石榴石、尖晶石等),相应地,炉体10可以包括晶体生长炉(例如,感应炉、电阻炉等)。在一些实施例中,炉体10可以用于冶炼金属(例如,铜、铁、镁、铝等金属),相应地,炉体10可以包括冶炼炉(例如,金属熔炼炉、矿石烧结炉、炼焦炉等)。在一些实施例中,炉体10可以用于生产轻质油(例如,汽油、煤油、柴油等),相应地,炉体10可以包括催化裂化炉、重整加热炉、加氢裂化炉、加氢精制反应加热炉等。在一些实施例中,炉体10可以用于制造煤气、水煤气及半水煤气等,相应地,炉体10可以包括煤气发生炉。
如图1所示,炉体10的炉膛由炉膛壁11(即,炉体的侧壁)和炉膛底部构成,炉体 10的炉膛可以提供工业生产(例如,晶体生长、金属冶炼、化学反应)的场所。通过控制炉体10的炉膛处于适宜的温度、气压和气氛等条件下,可以制备出质量和品质较好的产品(例如,晶体、金属、轻质油、煤气)。
在一些实施例中,炉体10的炉膛壁11上可以设置窗体装置100(或称为观察窗装置)。通过在炉体10的炉膛壁11上设置窗体装置100,可以便于操作人员实时监测炉内情况并执行相应的操作。例如,根据晶体生长的形状和高度对晶体生长温度进行调整,以提高晶体生长的质量。又例如,根据轻质油的组分对反应温度进行调整,以调整轻质油中不同种类油品的占比。
在一些实施例中,窗体装置100与炉膛壁11的连接方式可以为螺栓连接、焊接、铰接、卡接中的一种或多种。在一些实施例中,可以将窗体装置100的框体与炉膛壁11连接,以实现窗体装置100与炉膛壁11的连接。在一些实施例中,窗体装置100的框体与炉膛壁11的连接方式可以为螺栓连接、焊接、铰接、卡接中的一种或多种。
在一些实施例中,以晶体生长为例,可以将晶体生长所需原料装入坩埚内,并将装有原料的坩埚置于炉体10的炉膛内,通过控制炉体10的炉膛处于适宜的温度、气压和气氛等条件下,在炉体10的炉膛内生长晶体,在此过程中,操作人员可以从窗体装置100观察炉膛内部晶体的生长情况。
图2是根据本说明书一些实施例所示的窗体装置外侧的结构示意图;图3是根据本说明书一些实施例所示的窗体装置内侧的结构示意图。以下将结合图2和3对本说明书实施例所涉及的窗体装置100进行详细说明。值得注意的是,以下实施例仅仅用以解释本技术方案,并不构成对本技术方案的限定。
在一些实施例中,如图2所述,窗体装置100可以包括窗体110和框体120。在一些实施例中,窗体110可以设置于框体120上。在一些实施例中,窗体110与框体120的连接方式可以为螺栓连接、焊接、铰接、卡接中的一种或多种。在一些实施例中,框体120可以设置于炉体10的炉体的侧壁上,使得框体120的一侧(或称为框体120的外侧)位于炉体外,处于外界环境中;框体120的另一侧(或称为框体120的内侧)位于炉体内,处于炉膛内的工业生产环境中。
在一些实施例中,窗体110的平面形状可以为矩形、圆形、三角形、多边形等规则或不规则形状中的一种或多种。在一些实施例中,窗体110为透明材质。在一些实施例中,窗体110可以包括玻璃、透明陶瓷、晶片(例如,白宝石晶片、钛宝石晶片、YAG晶片)等。
在一些实施例中,框体120内部的形状可以与窗体110的平面形状相匹配。例如,框 体120内部的形状为长方形,窗体110的平面形状也为长方形,且平面尺寸大小满足内嵌于框体120中。
在一些实施例中,窗体装置100可以包括至少一个进气口130。在一些实施例中,至少一个进气口130可以设置于框体120上。在一些实施例中,至少一个进气口130可以设置于框体120的外侧。在一些实施例中,可以通过至少一个进气口130向炉体内通入气体。在一些实施例中,通入的气体可以用于在窗体110前形成气体屏障和/或用于清扫窗体110,以减少或避免会挥发物在窗体的沉积。在一些实施例中,气体可以为炉体中工业生产所需的气体(例如,氧气、氢气或原料气体)。在一些实施例中,气体也可以为其他气体(例如,惰性气体)。在一些具体的实施例中,在晶体生长过程中,对于高熔点晶体(例如,熔点>1800℃),例如,硅酸钇镥(LYSO)闪烁晶体、钇铝石榴石(YAG)晶体或钆铝镓石榴石(GAGG)晶体,由于该类晶体生长过程中通常使用铱坩埚,为避免铱坩埚在高温环境下被氧化,可以通过至少一个进气口130向晶体生长炉中通入氩气、氮气、一氧化碳气体、氢气、二氧化碳等一种或多种气体。在又一些实施例中,在晶体生长过程中,对于低熔点晶体,可以通过至少一个进气口130向晶体生长炉中通入空气或含氧气体。在一些实施例中,可以根据炉体10中的工业生产需要控制通入气体的气体组分、气体压力、气体流速等。
在一些实施例中,气体可以分为两个或多个管路通入炉体10内,通过第一管路(例如,进气口130)通入主要用于形成气体屏障或清扫窗体110的气体,通过第二管路或其他管路(图中未示出)单独通入工业生产所需的气体进入炉体10内。在一些实施例中,第二管路或其他管路中的气体流量可以大于第一管路中的气体流量,使得通过第一管路进入炉膛的气体对炉膛内生产环境的扰动较小,维持稳定的炉膛生产环境。
在一些实施例中,窗体装置100可以还包括至少两个出气口160。在一些实施例中,如图3所示,至少两个出气口160可以设置于框体120的内侧。在一些实施例中,至少两个出气口160可以与进气口130及炉体10内部连通。在一些实施例中,从至少一个进气口130通入的气体可以从至少两个出气口160流出,进入炉体10内部。
在一些实施例中,至少两个出气口160处的出气管道的切线方向可以在预设夹角范围内。在一些实施例中,至少两个出气口160处的出气管道可以是与出气口160连接处的出气管道。在一些实施例中,至少两个出气口160处的出气管道的切线方向可以是出气管道的切线沿气流流动的方向(或称为“气流方向”)。在一些实施例中,可以在至少两个出气口160的外侧设置一定弧度的拐角,以调整出气管道的切线方向。在一些实施例中,出气口160处的出气管道的切线方向可以与出气口160处的气流方向相同。
在一些实施例中,预设夹角可以包括10°~170°。在一些实施例中,预设夹角可以包括20°~160°。在一些实施例中,预设夹角可以包括30°~150°。在一些实施例中,预设夹角可以包括40°~140°。在一些实施例中,预设夹角可以包括50°~130°。在一些实施例中,预设夹角可以包括60°~120°。在一些实施例中,预设夹角可以包括70°~120°。在一些实施例中,预设夹角可以包括90°~120°。在一些实施例中,预设夹角可以包括95°~110°。
在一些实施例中,至少两个出气口160可以沿窗体110的周向相对设置。在一些实施例中,以窗体110的形状为四边形为例,至少两个出气口160可以包括两个相对设置于窗体110两侧(例如,左右两侧、上下两侧)的出气口。在一些实施例中,至少两个出气口160可以包括四个相对设置于窗体110的周向(例如,上下左右四周)的出气口。在一些实施例中,以窗体110的形状为圆形或圆弧形为例,至少两个出气口160可以包括沿窗体110的周向环绕设置的出气口。
在一些实施例中,出气口160可以为长条形出气口。在一些实施例中,以设置于窗体110一侧的出气口160为例,出气口160可以为一个长条形出气口,也可以为平行设置于窗体110一侧的多个长条形出气口。
在一些实施例中,若出气口160是平行设置于窗体110一侧的多个长条形出气口,相邻两个长条形出气口之间的间距(例如,一个长条形出气口边缘与相邻的另一个长条形出气口边缘的最短距离)可以小于等于第一阈值。在一些实施例中,第一阈值可以在1mm-10mm的范围内。在一些实施例中,第一阈值可以在2mm-9mm的范围内。在一些实施例中,第一阈值可以在3mm-8mm的范围内。在一些实施例中,第一阈值可以在4mm-7mm的范围内。在一些实施例中,第一阈值可以在5mm-6mm的范围内。
通过设置长条形出气口,可以使得经出气口160流出的气体以气流面的形式流出。
在一些实施例中,出气口160可以为单个圆形出气口。在一些实施例中,出气口160可以为一组圆形出气孔。在一些实施例中,一组圆形出气孔可以是沿窗体110的一侧设置的一列圆形出气孔或平行的多列圆形出气孔。
在一些实施例中,若一组圆形出气孔是沿窗体110的一侧设置的一列圆形出气孔,一列圆形出气孔中相邻两个圆形出气孔之间的间距(例如,一个圆形出气孔边缘与相邻的另一个圆形出气孔边缘的最短距离)可以小于等于第二阈值。在一些实施例中,第二阈值可以在1mm-5mm的范围内。在一些实施例中,第二阈值可以在2mm-4mm的范围内。在一些实施例中,第二阈值可以在3mm-3.5mm的范围内。
在一些实施例中,若一组圆形出气孔是沿窗体110的一侧设置的平行的多列圆形出气 孔,相邻两列圆形出气孔之间的间距(例如,一列圆形出气孔边缘与相邻的另一列圆形出气孔边缘的最短距离)可以小于等于第三阈值。在一些实施例中,第三阈值可以在1mm-10mm的范围内。在一些实施例中,第三阈值可以在2mm-9mm的范围内。在一些实施例中,第三阈值可以在3mm-8mm的范围内。在一些实施例中,第三阈值可以在4mm-7mm的范围内。在一些实施例中,第三阈值可以在5mm-6mm的范围内。
通过设置单个圆形出气口或一组圆形出气孔,可以使得经出气口160流出的气体以一个气流束或多个气流束形成的气流面的形式流出。
在一些实施例中,出气口160可以为单个弧形出气口。在一些实施例中,出气口160可以为一组弧形出气口。在一些实施例中,一组弧形出气口可以是沿窗体110的一侧设置的一列弧形出气口或平行的多列弧形出气口。
在一些实施例中,若一组弧形出气口是沿窗体110的一侧设置的一列弧形出气口,一列弧形出气口中相邻两个出气口之间的间距(例如,一个出气口边缘与相邻的另一个出气口边缘的最短距离)可以小于等于第四阈值。在一些实施例中,第四阈值可以在1mm-5mm的范围内。在一些实施例中,第四阈值可以在2mm-4mm的范围内。在一些实施例中,第四阈值可以在3mm-3.5mm的范围内。
在一些实施例中,若一组弧形出气口是沿窗体110的一侧设置的平行的多列弧形出气口,相邻两列弧形出气口之间的间距(例如,一列弧形出气口边缘与相邻的另一列弧形出气口边缘的最短距离)可以小于等于第五阈值。在一些实施例中,第五阈值可以在1mm-10mm的范围内。在一些实施例中,第五阈值可以在2mm-9mm的范围内。在一些实施例中,第五阈值可以在3mm-8mm的范围内。在一些实施例中,第五阈值可以在4mm-7mm的范围内。在一些实施例中,第五阈值可以在5mm-6mm的范围内。
通过设置单个弧形出气口或一组弧形出气口,可以使得经出气口160流出的气体以一个或多个弧形气流面的形式流出。
在一些实施例中,至少两个出气口160的形状和/或分布可以与窗体110的形状相关。在一些实施例中,至少两个出气口160的形状和/或分布可以与窗体110的轮廓形状相关。例如,假设窗体110的轮廓形状为圆形或椭圆形,至少两个出气口160可以是沿窗体110的圆周方向分布的多个弧形出气口;或至少两个出气口160可以是多组圆形出气孔,每组圆形出气口沿圆周方向的弧形形状。又例如,窗体110的轮廓形状为三角形、矩形或多边形,至少两个出气口160可以是沿窗体110的边长方向设置的多个长条形出气口。
在一些实施例中,至少两个出气口160还可以是其他任何合适的形状和/或分布,例 如,四边形、三角形、圆弧形、不规则形状等。在一些实施例中,至少两个出气孔160可以是任何合适的排列方式,例如,平行排列、间隔排列、交叉排列、环形排列等。
在一些实施例中,从至少两个出气口160流出的至少两股气体对应至少两个气流方向。在一些实施例中,结合上文,由于至少两个出气口160处的出气管道的切线方向在预设夹角范围内,那么其形成的至少两个气流方向之间形成的角度也在预设夹角范围内。相应地,从至少两个出气口160流出的至少两股气体可以在窗体110附近交汇以形成气体屏障,该气体屏障可以防止炉体10内的其他气体或挥发物(例如,熔融原料中挥发出的气体)粘附在窗体110的表面,使得操作人员可以清楚看到炉体10内的工业生产情况。
在一些实施例中,如图3所示,窗体装置100还可以包括至少两个风向调节板170,至少两个风向调节板170可以分别设置于至少两个出气口160的外侧。在一些实施例中,至少两个风向调节板170可以用于调节从至少两个出气口160流出的气体的气流方向。关于风向调节板170的更多内容可以参见图4的相关描述,在此不作赘述。
在一些实施例中,至少两个出气口160的尺寸可以与窗体110的尺寸相匹配,使得出气口160流出的气流面更好地对窗体110进行保护。在一些实施例中,至少两个出气口160的长度可以大于或等于窗体110的长度,使得从至少两个出气口160流出的气流面的长度大于或等于窗体110的长度,从而更好地对窗体110进行保护。
在一些实施例中,出气口160输出的气流可以为流速恒定的气流。通过输入流速恒定的气流,可以维持炉膛环境的稳定,以在更稳定的反应环境下进行工业生产。
在一些实施例中,出气口160输出的气流可以为气流脉冲形式。在一些实施例中,气流脉冲形式可以是气流在一定时间内间歇性且大流量输出,其余时间内小流量稳定输出。通过以气流脉冲形式通入气体,可以在通入气体总量不变的情况下,间歇性提高流量或流速,以对窗体110进行清扫,去除窗体110表面附着的挥发物或其他成分。
在一些实施例中,可以根据挥发物的量调整出气口160的气流量。在一些实施例中,在工业生产初期,挥发物量较大,相应地,气流量可以设置为较大值。在一些实施例中,在工业生产稳定后,挥发物量变小,相应地,气流量可以调整为较小值。
在一些实施例中,还可以在至少两个出气口160上设置可移动盖板(图中未示出)。在一些实施例中,可以控制至少两个出气口160上的可移动盖板的开闭,以对出气口160的大小进行调节,从而调整出气口160的气流量。在一些实施例中,还可以控制至少两个出气口160中的至少部分出气口上的可移动盖板的开闭,以保持部分出气口的大小和气流量可调节,其余部分出气口的气流量固定。
在一些实施例中,返回图2所示,框体120的外侧还可以设置进水口140和出水口150。在一些实施例中,框体120的内部可以为中空结构,循环冷却水经进水口140流入框体120、并经出水口150流出框体120,形成流经窗体装置100的冷却通道。在一些实施例中,可以在框体120内部的中空结构中设置多个冷却通道,便于循环冷却水按照预设的流通方向流通。在一些实施例中,还可以在框体120内部的多个冷却通道上设置多个折流板,以增加循环冷却水的湍动程度,提高换热效率,从而更好地对窗体110进行降温。
在一些实施例中,如图3所示,窗体装置100还可以包括至少两个挡板180。
在一些实施例中,至少两个挡板180可以分别设置于窗体110的周向外侧。在一些实施例中,至少两个挡板180可以分别设置于至少两个出气口160的外侧。在一些实施例中,挡板180内部可以为中空结构,且与框体120内部连通。在一些实施例中,挡板180内部的中空结构中可以设置多个冷却通道(图中未示出),使得循环冷却水也可以流经挡板180的内部,从而使得挡板180表面的温度低于炉膛内部温度。关于挡板180的更多内容可以参见图5A和5B的相关描述,在此不作赘述。
在一些实施例中,如图3所示,窗体装置100还可以包括粉体收集框190。在一些实施例中,粉体收集框190可以设置于挡板180的内侧下方,用于收集从挡板180的内壁上掉落的粉体或其他颗粒物。在一些实施例中,粉体收集框190的数目可以为一个或者多个。例如,可以仅设置一个粉体收集框190,位于两个挡板180和窗体110的下方。再例如,如图3所示,可以设置两个粉体收集框190,分别位于两个两侧挡板180的下方。
在一些实施例中,由于循环冷却水流经挡板180的内部,使得挡板180表面的温度低于炉膛内部温度,炉膛内的部分挥发物被挡板180的外侧壁阻挡后会沉积在挡板180的外侧壁上,为防止在挡板180的外侧壁上沉积的粉体再次掉落至炉膛内,还可以在挡板180的外侧下方设置粉体收集框190(图中未示出),用于收集从挡板180的外侧壁上掉落的粉体或其他颗粒物。
在一些实施例中,粉体收集框190可以设置于窗体110的下方,用于收集从窗体110上掉落的粉体或其他颗粒物。
关于粉体收集框190的更多内容可以参见图7的相关描述,在此不作赘述。
图4是根据本说明书一些实施例所示的风向调节板的结构示意图。
在一些实施例中,风向调节板170可以包括一块或多块子板。气体因被子板阻挡而改变流动方向,相应地,可以通过调整子板的方向控制气体的流动方向(或称为气流方向)。
在一些实施例中,风向调节板170为一块子板时(即风向调节板170为一块单独的 板),风向调节板170可以与窗体110可以成一定夹角安装。在一些实施例中,风向调节板170与窗体110的安装方式可以为活动连接(例如,铰接)。在一些实施例中,风向调节板170与窗体110的夹角θ可调节。
在一些实施例中,为了保证出风效率和气体屏障的稳定性,且防止流出的气体直接进入炉体的炉膛内部区域从而造成炉体内部的温度或温场波动,出气口160和风向调节板170安装于框体120上时,风向调节板170与窗体110的夹角θ需控制在一定范围内。
在一些实施例中,风向调节板170与窗体110的夹角θ可以为10°~65°。在一些实施例中,风向调节板170与窗体110的夹角θ可以为15°~60°。在一些实施例中,风向调节板170与窗体110的夹角θ可以为20°~55°。在一些实施例中,风向调节板170与窗体110的夹角θ可以为25°~50°。在一些实施例中,风向调节板170与窗体110的夹角θ可以为30°~45°。在一些实施例中,风向调节板170与窗体110的夹角θ可以为35°~40°。在一些实施例中,风向调节板170与窗体110的夹角θ可以为38°~40°。
在一些实施例中,如图4所示,风向调节板170可以包括两块子板,即子板171和子板172。在一些实施例中,子板171可以设置一个或多个出气口(图4中未示出)。
为了使得出气口适用于不同需求的场景,例如,气体的流速大小不同的场景、气体的气流形状不同的场景、气体的气流方向不同的场景等,将包括两块子板的风向调节板170设置于出气口160的外侧,子板171上的出气口的大小和形状可以根据需求进行调节。
在一些实施例中,子板171上的出气口可以与出气口160相匹配,使得气体经过出气口160后,可以经子板171上的出气口流出。在一些实施例中,子板171上的出气口与出气口160相匹配可以是两者形状和/或分布相同或相近,并且尺寸差值在一定阈值范围(例如,3mm)内。
在一些实施例中,子板171上的出气口可以为长条形出气口,也可以根据实际需求调整为方形、圆孔形或任意形状的出气口,以调整出气口的气体流速。
在一些实施例中,结合前文,子板171上的出气口可以为一个长条形出气口,也可以为平行设置的多个长条形出气口。
在一些实施例中,若子板171上的出气口是平行设置的多个长条形出气口,相邻两个长条形出气口之间的间距(例如,一个长条形出气口边缘与相邻的另一个长条形出气口边缘的最短距离)可以小于等于第一阈值。
在一些实施例中,结合前文,子板171上的出气口可以为圆形出气孔。在一些实施例中,子板171上的出气口可以为单个圆形出气孔,也可以是一组圆形出气孔(例如,一组圆 形出气孔可以是沿子板171的竖直方向设置的一列出气孔或平行的多列出气孔)。
在一些实施例中,若一组圆形出气孔是沿子板171的竖直方向设置的一列出气孔,一列出气孔中相邻两个出气孔之间的间距(例如,一个出气孔边缘与相邻的另一个出气孔边缘的最短距离)可以小于等于第二阈值。
在一些实施例中,若一组圆形出气孔是沿子板171的竖直方向设置的平行的多列出气孔,相邻两列出气孔之间的间距(例如,一列出气孔边缘与相邻的另一列出气孔边缘的最短距离)可以小于等于第三阈值。
在一些实施例中,结合前文,子板171上的出气口可以为单个弧形出气口。在一些实施例中,子板171上的出气口可以为一组弧形出气口。在一些实施例中,一组弧形出气口可以是沿子板171的竖直方向设置的一列弧形出气口或平行的多列弧形出气口。
在一些实施例中,若一组弧形出气口是沿子板171的竖直方向设置的一列弧形出气口,一列弧形出气口中相邻两个出气口之间的间距(例如,一个出气口边缘与相邻的另一个出气口边缘的最短距离)可以小于等于第四阈值。
在一些实施例中,若一组弧形出气口是沿子板171的竖直方向设置的平行的多列弧形出气口,相邻两列弧形出气口之间的间距(例如,一列弧形出气口边缘与相邻的另一列弧形出气口边缘的最短距离)可以小于等于第五阈值。
在一些实施例中,子板171和子板172可以成一定夹角安装。在一些实施例中,子板171和子板172的安装方式可以为活动连接(例如,铰接)。在一些实施例中,子板171与子板172之间的夹角θ 1可调节。
在一些实施例中,为了保证出风效率和气体屏障的稳定性,且防止流出的气体直接进入炉体的炉膛内部区域从而造成炉体内部的温度或温场波动,子板171和子板172的夹角θ 1需控制在一定范围内。
在一些实施例中,子板171与子板172之间的夹角θ 1可以为10°~65°。在一些实施例中,子板171与子板172之间的夹角θ 1可以为15°~60°。在一些实施例中,子板171与子板172之间的夹角θ 1可以为20°~55°。在一些实施例中,子板171与子板172之间的夹角θ 1可以为25°~50°。在一些实施例中,子板171与子板172之间的夹角θ 1可以为30°~45°。在一些实施例中,子板171与子板172之间的夹角θ 1可以为35°~40°。在一些实施例中,子板171与子板172之间的夹角θ 1可以为38°~40°。
在一些实施例中,在出气口160外侧安装好风向调节板170后,气体从出气口160流出后,经风向调节板170的子板171上的出气口流出。如图4所示,气体在风向调节板170 上的流动轨迹可以为:气体从子板171上的出气口流出的方向为气流方向A,在子板172的阻挡作用下,气体的流动方向变化为气流方向B,气流方向B与玻璃窗110的夹角小于90°。相应地,通过分别设置于至少两个出气口160外侧的至少两个风向调节板170的风向调节,由至少两个出气口160流出的至少两股气体在窗体110附近(即,窗体110朝向炉膛的一侧)交汇形成气体屏障。
通过设置风向调节板170,并且设置风向调节板170(或风向调节板170的子板)与窗体110之间的夹角可调节,可以有效调节窗体110附近的气流方向,使得至少两股气体交汇形成的气体屏障可以更好地防止挥发物粘接在窗体110上,保证窗体110的观察效果。
图5A是根据本说明书一些实施例所示的窗体装置的俯视图。
在一些实施例中,挡板180可以为弧形挡板。在一些实施例中,如图5A所示,挡板180的横截面形状可以为弯曲弧形。在一些实施例中,挡板180可以为扇形挡板。在一些实施例中,挡板180的横截面形状也可以为扇形或其他形状。在一些实施例中,挡板180的横截面长度可以调节,使得挡板180在水平方向具有伸缩功能。通过设置弧形或扇形挡板,可以使从出气口160流出的气体较为平缓地进入生长腔内,维持稳定的炉体炉膛内的工业生产环境。
在一些实施例中,如图5A所示,挡板180与窗体110的夹角为θ 2。在一些实施例中,挡板180与窗体110的夹角为θ 2可调节。
在一些实施例中,为了防止被气体屏障阻挡的挥发物重新进入炉体炉膛内的工业生产区域并沉积于产品(例如,晶体、金属)表面,挡板180与窗体110的夹角θ 2需控制在一定范围内,以使挥发物经挡板180阻挡而后收集于粉体收集框190内。
在一些实施例中,挡板180与窗体110的夹角θ 2为30°~90°。在一些实施例中,挡板180与窗体110的夹角θ 2为35°~85°。在一些实施例中,挡板180与窗体110的夹角θ 2为40°~80°。在一些实施例中,挡板180与窗体110的夹角θ 2为45°~75°。在一些实施例中,挡板180与窗体110的夹角θ 2为50°~70°。在一些实施例中,挡板180与窗体110的夹角θ 2为55°~65°。在一些实施例中,挡板180与窗体110的夹角θ 2为58°~63°。在一些实施例中,挡板180与窗体110的夹角θ 2为60°~63°。
如上文所述,为了保证出风效率和气体屏障的稳定性,且防止流出的气体直接进入炉体炉膛内的工业生产区域从而造成炉膛内部的温度或温场波动,同时为了防止被气体屏障阻挡的挥发物重新进入工业生产区域并沉积于产品表面,挡板180与窗体110的夹角θ 2以及风向调节板170与窗体110的夹角θ(或子板171与子板172之间的夹角θ 1)需要满足一定的 匹配关系。在一些实施例中,挡板180与窗体110的夹角θ 2与风向调节板170与窗体110的夹角θ(或子板171与子板172之间的夹角θ 1)的差值小于或等于预设阈值(例如,40°),使得从风向调节板170流出的气体的出风效率和气体屏障较为稳定性,又使得挡板180可以防止流出的气体直接进入炉体炉膛内的工业生产区域从而造成炉体炉膛内部的温度或温场波动,又可以防止被气体屏障阻挡的挥发物重新进入工业生产区域并沉积于产品表面。例如,当风向调节板170与窗体110的角度θ(或子板171与子板172之间的夹角θ 1)为10°~65°时,挡板180与窗体110的夹角θ 2可以为30°~90°。又例如,当风向调节板170与窗体110的角度θ(或子板171与子板172之间的夹角θ 1)为20°~40°时,挡板180与窗体110的夹角θ 2为60°~80°。
图5B是根据本说明书一些实施例所示的窗体装置阻挡挥发物的示意图。
如图5B所示,从出气口160流出的气体经风向调节板170的调节,在窗体110附近形成与窗体110存在一定夹角的气流,窗体110两侧的气流交汇形成气体屏障M1,可以将挥发物阻挡在气体屏障M1之外。当挥发物X1向窗体110移动时,由于气体屏障M1对挥发物X1的阻挡作用,使得挥发物X1远离窗体110并向挡板180方向移动。进一步地,由于被挡板180阻挡,挥发物X1的动能急速减小(接近于0)。同时由于挡板180内部通有循环冷却水,挥发物X1会被快速冷却。动能降低且受冷后的挥发物X1,在重力的作用下向下掉落进粉体收集框190,或者动能降低且受冷后的挥发物X1在挡板180侧壁发生沉积,当沉积重量达到一定值后在重力的作用下向下掉落进粉体收集框190。
图6A是根据本说明书又一些实施例所示的窗体装置的俯视图。
在一些实施例中,至少两个出气口160可以分别设置于至少两个挡板180上。在一些实施例中,如图6A所示,至少两个出气口160可以分别设置于至少两个挡板180的内侧,且朝向窗体110(例如,出气管道的切线方向或气流方向朝向窗体110)。
在一些实施例中,至少两个出气口160可以沿挡板180的竖直方向(如图3所示的箭头方向181)相对设置。在一些实施例中,至少两个出气口160可以包括两个相对设置于挡板180两侧(例如,左右两侧)的出气口。
在一些实施例中,可以仅在一个挡板180上设置出气口160。该出气口160可以设置于一个挡板180的内侧且朝向窗体110,该出气口160的气流方向与另一个挡板180交叉,以使得气体屏障对窗体110起到遮挡作用。
关于出气口160和挡板180的更多内容可以参见图2和图3的相关描述,在此不作赘述。
在一些实施例中,结合前文,窗体装置100还可以包括至少两个风向调节板170,至少两个风向调节板170可以分别设置于至少两个出气口160的外侧。关于风向调节板170的更多内容可以参见图2-图4的相关描述,在此不作赘述。
图6B是根据本说明书又一些实施例所示的窗体装置阻挡挥发物的示意图。
如图6B所示,从出气口160流出的气体经风向调节板170的调节,在窗体110附近形成朝向窗体110且具有一定夹角的两股气流,两股气流交汇形成气体屏障M2,可以将挥发物阻挡在气体屏障M2之外。当挥发物X2向窗体110移动时,由于气体屏障M2对挥发物X2的阻挡作用,使得挥发物X2远离窗体110或者向挡板180方向移动。进一步地,挥发物X2远离窗体110后进入炉膛,不会影响窗体110的观察效果。或者,由于被挡板180阻挡,挥发物X2的动能急速减小(接近于0),同时由于挡板180内部通有循环冷却水,挥发物X2会被快速冷却。动能降低且受冷后的挥发物X2,在重力的作用下向下掉落进粉体收集框190,或者动能降低且受冷后的挥发物X2在挡板180侧壁发生沉积,当沉积重量达到一定值后在重力的作用下向下掉落进粉体收集框190。
图6C是根据本说明书又一些实施例所示的窗体装置阻挡挥发物的示意图。
如图6C所示,从出气口160流出的气体经风向调节板170的调节,形成朝向窗体110吹扫的两股气流,两股气流吹向窗体110实现对窗体110的清扫,清除窗体110上吸附的挥发物。两股气流经窗体110反射后再交汇成具有一定夹角的两股气流,在窗体110前方形成气体屏障M3,可以将挥发物阻挡在气体屏障M3之外。当挥发物X3向窗体110移动时,由于气体屏障M3对挥发物X3的阻挡作用,使得挥发物X3远离窗体110或者向挡板180方向移动。进一步地,挥发物X3远离窗体110后进入炉膛,不会影响窗体110的观察效果。或者,由于被挡板180阻挡,挥发物X3的动能急速减小(接近于0),同时由于挡板180内部通有循环冷却水,挥发物X3会被快速冷却。动能降低且受冷后的挥发物X3,在重力的作用下向下掉落进粉体收集框190,或者动能降低且受冷后的挥发物X3在挡板180侧壁发生沉积,当沉积重量达到一定值后在重力的作用下向下掉落进粉体收集框190。
在一些实施例中,还可以调节风向调节板170与出气口160处出口管道的切线的夹角,以调整气体流向,使得气流如图6B所示不具有清扫功能仅有气体屏障功能,或者使得气流如图6C所示同时具有清扫功能和气体屏障功能。在一些实施例中,在工业生产初期,挥发物量较大时,可以调节气体流向和气体流量大小,使得气流如图6C所示同时具有清扫功能和气体屏障功能,以清扫窗体110上附着的挥发物以及阻挡挥发物进入窗体110附近。在一些实施例中,在工业稳定生产过程中,挥发物量较小时,可以调节气体流向和气体流量大小, 使得气流如图6B所示不具有清扫功能仅有气体屏障功能,以阻挡挥发物进入窗体110附近。
在一些实施例中,还可以调整风向调节板170的朝向和角度,以调整出气口160输出气体的朝向使得气体朝向窗体110且向下偏移流出,以将挥发物从窗体110上吹掉后直接落入窗体110下方的粉体收集框中。
图7是根据本说明书又一些实施例所示的窗体装置的俯视图。
在一些实施例中,挡板180可以包括一组彼此间夹角可调节的子挡板。在一些实施例中,如图7所示,挡板180可以包括子挡板180-1、子挡板180-2和子挡板180-3。在一些实施例中,子挡板180-1与子挡板180-2之间的夹角可调节。在一些实施例中,子挡板180-2与子挡板180-3之间的夹角可调节。
在一些实施例中,子挡板180-1与子挡板180-2之间的夹角可以在0°~30°范围内。在一些实施例中,子挡板180-1与子挡板180-2之间的夹角可以在5°~25°范围内。在一些实施例中,子挡板180-1与子挡板180-2之间的夹角可以在10°~20°范围内。在一些实施例中,子挡板180-1与子挡板180-2之间的夹角可以在15°~18°范围内。
在一些实施例中,子挡板180-2与子挡板180-3之间的夹角可以在0°~30°范围内。在一些实施例中,子挡板180-2与子挡板180-3之间的夹角可以在5°~25°范围内。在一些实施例中,子挡板180-2与子挡板180-3之间的夹角可以在10°~20°范围内。在一些实施例中,子挡板180-2与子挡板180-3之间的夹角可以在15°~18°范围内。
在一些实施例中,可以根据工业生产情况(例如,挥发物的量)确定是否需要调整子挡板之间的夹角及夹角大小。在一些实施例中,若挥发物的量较大,可以将子挡板180-1、子挡板180-2和子挡板180-3之间的夹角调小,使挡板180对挥发物具有更好地阻挡作用。在一些实施例中,若挥发物的量较小,可以将子挡板180-1、子挡板180-2和子挡板180-3之间的夹角调大。
在一些实施例中,挡板180可以包括一组具有伸缩功能的子挡板。在一些实施例中,如图7所示,子挡板180-1、子挡板180-2与子挡板180-2可以分别进行伸缩。
在一些实施例中,可以根据工业生产情况(例如,挥发物的量)确定是否需要使用子挡板以及使用子挡板的数量。在一些实施例中,若挥发物的量较大,可以使用3个子挡板,将子挡板180-1、子挡板180-2和子挡板180-3伸出。在一些实施例中,若挥发物的量适中,可以使用2个子挡板,将其中两个子挡板伸出,并将另一自挡板收缩。在一些实施例中,若挥发物的量较小,可以仅使用1个子挡板,将其中一个子挡板180-1伸出,并将另外两个将子挡板收缩。
通过设置一组彼此间夹角可调节的子挡板和/或具有伸缩功能的子挡板,可以对挥发物起到更好的阻挡作用,并且可以根据挥发物的量调整子挡板之间的夹角和/或伸缩情况,从而更好地对挥发物起到阻挡作用。
在一些实施例中,窗体装置100还可以包括至少一个吸气口131。在一些实施例中,至少一个吸气口131可以设置于挡板180上。在一些实施例中,如图7所示,至少一个吸气口131可以设置于子挡板180-3上。在一些实施例中,至少一个吸气口131也可以设置于子挡板180-1、子挡板180-2或图5A-6C所示的挡板180上,本说明书对吸气口131的设置位置不作限制。在一些实施例中,至少一个吸气口131可以通过管道与抽气设备(例如,抽气泵)连接,以对从出气口160流出的气流进行抽气。
通过吸气口131对从出气口160流出的气流进行抽气,可以减少窗体装置100附近的气流量,从而减小屏蔽气体对炉膛内部的扰动,维持稳定的炉膛环境。
在一些实施例中,吸气口131的抽气流量可以小于或等于出气口160的出气流量。通过设置吸气口131的抽气流量可以小于或等于出气口160的出气流量,一方面可以形成稳定的循环气流,减小气流对炉膛内部的扰动,维持稳定的炉膛环境;另一方面,对于工业生产所需的气体,可以使得部分工业生产所需气体稳定流入炉膛内,以供工业生产顺利进行。
图8是根据本说明书一些实施例所示的粉体收集框的结构示意图。
为了进一步防止挥发物或其他气体再次从粉体收集框190中漂浮出来进入炉体的腔体中,在一些实施例中,如图8所示,粉体收集框190的内部可以设置至少两个相互交错的斜板。在一些实施例中,至少两个斜板的数量可以根据实际需要设定。在一些实施例中,至少两个相互交错的斜板可以向下倾斜。
在一些实施例中,至少两个相互交错的斜板向下倾斜的角度可以根据实际情况进行调整。在一些实施例中,斜板向下倾斜的角度可以为10°~60°。在一些实施例中例如,斜板向下倾斜的角度可以为15°~55°。在一些实施例中例如,斜板向下倾斜的角度可以为20°~50°。在一些实施例中例如,斜板向下倾斜的角度可以为25°~45°。在一些实施例中例如,斜板向下倾斜的角度可以为30°~40°。在一些实施例中例如,斜板向下倾斜的角度可以为35°~38°。
在一些实施例中,至少两个相互交错的斜板之间存在间隙,以使得掉落的挥发物或其他气体粉体可以落入粉体收集框190的底部,避免出现挥发物或其他气体粉体卡在中部或上部的斜板上。
如图8所示,挥发物或其他气体粉体落入粉体收集框190后,落到左侧的斜板191上, 由于重力作用从倾斜的斜板191滑落至右侧的斜板192上,然后由于重力作用依次滑落至斜板193、斜板194、斜板195上,最终落入粉体收集框190的底部。如果环境波动或者粉体再次受热会再次漂浮,向上漂浮的粉体会依次受到斜板195、斜板194、斜板193、斜板192、斜板191的下表面的阻挡作用,而难以向上漂浮出粉体收集框190。
通过设置交错布置的多个斜板,可以避免挥发物或其他气体粉体卡在中部或上部的斜板上,使得掉落的挥发物或其他气体粉体可以落入粉体收集框190的底部,同时还可以在一定程度上防止粉体再次漂浮出粉体收集框190,进入炉体的炉膛中,进而漂浮至产品表面对产品造成腐蚀。
下面以晶体生长炉生长晶体为例,结合图2-8对安装在炉体上的窗体装置100的使用过程进行说明,需要注意的是,本实施例仅用以说明技术方案而非限制技术方案。如图2所示,通过进气口130通入晶体生长所需气体或惰性气体,通过进水口140通入循环冷却水,流经整个窗体装置100的框体120的中空结构中(图2未示出),从出水口150流出。在晶体生长过程中,熔融原料表面的部分原料(例如,Ga 2O 3或SiO 2)易挥发,挥发物会随机漂浮在整个炉膛内,其中部分挥发物流动至窗体110附近。如图3-4、5A-5B和6A-6B所示,从进气口130通入的晶体生长所需气体或惰性气体,经出气口160流入炉膛内,在风向调节板170的调节作用下,流动气体在窗体110附近交汇形成气体屏障。如图5B所示,当挥发物靠近气体屏障M1时,在气体屏障M1的阻挡作用下,挥发物X1漂移至挡板180,并被挡板180阻挡;由于挡板180内部通有循环冷却水其表面温度较低,挥发物X1受冷后在重力的作用下会向下沿箭头方向181掉落进粉体收集框190。如图6B所示,当挥发物靠近气体屏障M2时,在气体屏障M2的阻挡作用下,挥发物X2漂移至挡板180,并被挡板180阻挡;由于挡板180内部通有循环冷却水其表面温度较低,挥发物X2受冷后在重力的作用下会向下沿箭头方向181掉落进粉体收集框190。如图6C所示,当挥发物靠近气体屏障M3时,在气体屏障M3的阻挡作用下,挥发物X3漂移至挡板180,并被挡板180阻挡;由于挡板180内部通有循环冷却水其表面温度较低,挥发物X3受冷后在重力的作用下会向下沿箭头方向181掉落进粉体收集框190。随着晶体生长过程的进行,如图8所示,大量的挥发物粉体会掉落进粉体收集框190,并由于重力作用依次从相互交错的多个斜板上滑落至粉体收集框190的底部,由于相互交错的多个斜板的阻挡作用,可以防止粉体再次漂浮出粉体收集框190,进入晶体生长炉的炉膛中,进而漂浮至晶体表面对晶体造成腐蚀。
本说明书一些实施例可能带来的有益效果包括但不限于:
(1)利用工业生产(例如,晶体生长)过程中需要通入所需气体或惰性气体的特点, 通过调节气体流向(例如,通过风向调节板调节),使通入的气体在窗体附近形成气体屏障,防止挥发物粘附在窗体的内侧,使得窗体表面保持洁净,便于更好地观察炉体内的情况;
(2)通过将出气口设置于挡板上以及通过风向调节板调整气流方向,可以使得气流可以同时具有清扫功能和气体屏障功能;
(3)通过设置具有冷却效果、横截面长度可调节、弯曲弧形的挡板,以及设置挡板与窗体的夹角θ 2和风向调节板与窗体的夹角θ(或挡板与窗体的夹角θ 2和两个子板之间的夹角θ 1)的匹配关系,以及设置一组彼此间夹角可调节和具有伸缩功能的子挡板,可以更好地实现对挥发物或其他气体的阻挡作用,避免出气口的流动气体直接流入工业生产(例如,晶体生长)的加热区,扰动温场稳定性;
(4)通过在挡板下方内侧、挡板下方外侧或窗体下方设置粉体收集框,并将挡板与粉体收集框组合使用,可以将挥发物粉体收集在粉体收集框内,防止沉积后的挥发物粉体再次在炉体的腔体中漂浮,对产品(例如,晶体)表面造成腐蚀;
(5)通过设置吸气口以及吸气口的抽气流量小于或等于出气口的出气流量,一方面可以形成稳定的循环气流,减小气流对炉膛内部的扰动,维持稳定的炉膛环境;另一方面,对于工业生产所需的气体,可以使得部分工业生产所需气体稳定流入炉膛内,以供工业生产顺利进行;
(6)通过在粉体收集框内部设置向下倾斜、交错的多个斜板,可以避免挥发物或其他气体粉体卡在中部或上部的斜板上,使得挥发物或其他气体粉体落入粉体收集框的底部,同时还可以防止粉体再次漂浮出粉体收集框,进入炉体的炉膛中,对产品(例如,晶体)表面造成腐蚀。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
应当注意的是,以上实施例仅用以说明本发明的技术方案而非限制技术方案,本领域的普通技术人员应当理解,那些对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,均应涵盖在本发明的权利要求范围当中。

Claims (20)

  1. 一种炉体的窗体装置,包括:
    框体,所述框体设置于所述炉体的侧壁;
    窗体,所述窗体设置于所述框体上;
    进气口,所述进气口设置于所述框体上;
    至少两个出气口,其中,
    所述至少两个出气口与所述进气口及所述炉体内部连通;以及
    所述至少两个出气口处的出气管道的切线方向在预设夹角范围内。
  2. 根据权利要求1所述的窗体装置,所述至少两个出气口沿所述窗体周向相对设置。
  3. 根据权利要求1所述的窗体装置,所述出气口为长条形出气口。
  4. 根据权利要求1所述的窗体装置,所述出气口为一组圆形出气孔。
  5. 根据权利要求1所述的窗体装置,还包括风向调节板,设置于所述出气口外侧。
  6. 根据权利要求5所述的窗体装置,所述风向调节板与所述窗体的夹角可调节。
  7. 根据权利要求5所述的窗体装置,所述风向调节板与所述窗体的夹角在10°~65°的范围内。
  8. 根据权利要求5所述的窗体装置,所述风向调节板包括至少两块子板。
  9. 根据权利要求8所述的窗体装置,所述子板间的夹角可调节。
  10. 根据权利要求8所述的窗体装置,所述子板间的夹角在10°~65°的范围内。
  11. 根据权利要求1所述的窗体装置,还包括至少两个挡板,所述至少两个挡板分别设置于所述窗体周向外侧。
  12. 根据权利要求11所述的窗体装置,所述挡板和所述窗体间的夹角可调节。
  13. 根据权利要求11所述的窗体装置,所述挡板为弧形挡板。
  14. 根据权利要求11所述的窗体装置,所述挡板包括一组彼此间夹角可调节的子挡板。
  15. 根据权利要求11所述的窗体装置,所述至少两个出气口分别设置于所述至少两个挡板上,且朝向所述窗体。
  16. 根据权利要求11所述的窗体装置,还包括吸气口,所述吸气口设置于所述挡板上。
  17. 根据权利要求1所述的窗体装置,还包括粉体收集框。
  18. 根据权利要求17所述的窗体装置,所述粉体收集框内部设置至少两个相互交错的斜板。
  19. 根据权利要求1所述的窗体装置,所述出气口输出的气流为气流脉冲形式。
  20. 根据权利要求1所述的窗体装置,所述框体的外侧设置进水口和出水口,经由所述进水口和所述出水口形成流经所述窗体装置的冷却通道。
PCT/CN2022/112969 2021-08-17 2022-08-17 一种炉体的窗体装置 WO2023020526A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22857837.3A EP4372131A1 (en) 2021-08-17 2022-08-17 Window apparatus for oven body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110942349.7 2021-08-17
CN202110942349.7A CN113564721B (zh) 2021-08-17 2021-08-17 一种晶体生长炉的观察窗装置

Publications (1)

Publication Number Publication Date
WO2023020526A1 true WO2023020526A1 (zh) 2023-02-23

Family

ID=78171966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112969 WO2023020526A1 (zh) 2021-08-17 2022-08-17 一种炉体的窗体装置

Country Status (3)

Country Link
EP (1) EP4372131A1 (zh)
CN (1) CN113564721B (zh)
WO (1) WO2023020526A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564721B (zh) * 2021-08-17 2022-06-07 眉山博雅新材料股份有限公司 一种晶体生长炉的观察窗装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110581A (ja) * 1995-10-14 1997-04-28 Shin Etsu Handotai Co Ltd 単結晶引上装置用整流筒の観察窓用石英製窓板の曇り防止構造
CN2844146Y (zh) * 2005-09-22 2006-12-06 长春理工大学 可自行除去挥发物的真空晶体生长炉观察窗
CN102978712A (zh) * 2012-12-13 2013-03-20 苏州工业园区杰士通真空技术有限公司 一种水气复合冷却蓝宝石晶体生长炉观察窗
CN106381524A (zh) * 2016-10-21 2017-02-08 北京鼎泰芯源科技发展有限公司 一种基于原位合成法的InP单晶炉用观察窗装置
CN207109157U (zh) * 2017-06-30 2018-03-16 山东天岳先进材料科技有限公司 一种温场可调的碳化硅晶体生长炉
CN208545515U (zh) * 2018-07-13 2019-02-26 北京奇峰蓝达光学科技发展有限公司 一种晶体炉观察窗
CN113564721A (zh) * 2021-08-17 2021-10-29 眉山博雅新材料有限公司 一种晶体生长炉的观察窗装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201648568U (zh) * 2009-09-27 2010-11-24 上海元亮光电科技有限公司 一种新型晶体炉观察窗挡板结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110581A (ja) * 1995-10-14 1997-04-28 Shin Etsu Handotai Co Ltd 単結晶引上装置用整流筒の観察窓用石英製窓板の曇り防止構造
CN2844146Y (zh) * 2005-09-22 2006-12-06 长春理工大学 可自行除去挥发物的真空晶体生长炉观察窗
CN102978712A (zh) * 2012-12-13 2013-03-20 苏州工业园区杰士通真空技术有限公司 一种水气复合冷却蓝宝石晶体生长炉观察窗
CN106381524A (zh) * 2016-10-21 2017-02-08 北京鼎泰芯源科技发展有限公司 一种基于原位合成法的InP单晶炉用观察窗装置
CN207109157U (zh) * 2017-06-30 2018-03-16 山东天岳先进材料科技有限公司 一种温场可调的碳化硅晶体生长炉
CN208545515U (zh) * 2018-07-13 2019-02-26 北京奇峰蓝达光学科技发展有限公司 一种晶体炉观察窗
CN113564721A (zh) * 2021-08-17 2021-10-29 眉山博雅新材料有限公司 一种晶体生长炉的观察窗装置

Also Published As

Publication number Publication date
CN113564721B (zh) 2022-06-07
EP4372131A1 (en) 2024-05-22
CN113564721A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2023020526A1 (zh) 一种炉体的窗体装置
CN107304474A (zh) 一种反应腔室及半导体加工设备
CN102108006A (zh) 浮法玻璃制造装置的退火炉
TWI428297B (zh) 製造浮法玻璃用之浮浴槽及其冷卻方法
JP7470143B2 (ja) 結晶成長炉
CN103088413B (zh) 刻蚀烘烤设备
CN102312284A (zh) 具有多个均布向下的排气管道的直拉式硅单晶炉热场
CN209024408U (zh) 一种用于玻璃生产时退火炉内温度和应力的控制装置
CN207365695U (zh) 一种用于生产钒氮合金的推板窑
JP5664375B2 (ja) ガラス板製造装置、及びガラス板製造方法
CN109437531A (zh) 一种风幕装置、退火设备及玻璃退火工艺
CA2811580C (en) Raw gas collection system
CN202595217U (zh) 一种带钢冷却系统
TWI812518B (zh) 拉晶爐
CN111412746A (zh) 一种可调式陶瓷辊道窑烧嘴布局结构
JP2015124131A (ja) 溶融ガラス供給装置、及びガラス板製造装置
CN219807889U (zh) 冷却装置和冷却系统
CN209260254U (zh) 一种单晶炉用导流筒外屏及导流筒
CN209113743U (zh) 一种改善盖板玻璃退火翘曲及辊子污染的装置
CN212770824U (zh) 一种氩站钢水吹氩监控摄像头的防护装置
CA3064776C (en) Hood for si-metal tapping and process for production of silicon using such a hood
CN107840562A (zh) 一种石英制品的制备装置
CN208872118U (zh) 一种冷却用水夹套
KR20050070369A (ko) 보일러 배기가스 폐열을 이용한 소결광 표층부의 온도제어장치 및 그의 온도 제어방법
WO2012009900A1 (zh) 可消除挥发份在热屏外侧沉积的单晶炉热场

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022857837

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022857837

Country of ref document: EP

Effective date: 20240212

NENP Non-entry into the national phase

Ref country code: DE