WO2023020087A1 - 磁悬浮泵、具有其的制冷设备和空调室外机 - Google Patents

磁悬浮泵、具有其的制冷设备和空调室外机 Download PDF

Info

Publication number
WO2023020087A1
WO2023020087A1 PCT/CN2022/098940 CN2022098940W WO2023020087A1 WO 2023020087 A1 WO2023020087 A1 WO 2023020087A1 CN 2022098940 W CN2022098940 W CN 2022098940W WO 2023020087 A1 WO2023020087 A1 WO 2023020087A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing ring
ring
pump
axial
seal ring
Prior art date
Application number
PCT/CN2022/098940
Other languages
English (en)
French (fr)
Inventor
李思茹
韩聪
俞国新
朱万朋
常云雪
殷纪强
Original Assignee
青岛海尔智能技术研发有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Priority to EP22857400.0A priority Critical patent/EP4361448A4/en
Priority to JP2024509328A priority patent/JP2024530240A/ja
Publication of WO2023020087A1 publication Critical patent/WO2023020087A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings

Definitions

  • the invention belongs to the field of power devices, and specifically provides a magnetic levitation pump, refrigeration equipment and an outdoor air conditioner equipped with the magnetic levitation pump.
  • the magnetic levitation motor mainly includes a shell, a stator set in the shell and fixedly connected with the shell, a rotating shaft set in the stator, a radial magnetic levitation bearing for supporting the rotation of the rotating shaft, and an axial thrust bearing for maintaining the axial position of the rotating shaft .
  • the magnetic levitation motor also includes a protective bearing arranged in the casing, and the protective bearing is used to carry the stationary rotating shaft. When the magnetic levitation motor is working, the radial magnetic levitation bearing is energized to separate the rotating shaft from the protective bearing and levitate.
  • the magnetic levitation pump includes a magnetic levitation motor and a pump driven by the magnetic levitation motor.
  • the magnetic levitation pump When the magnetic levitation pump is powered off, the high-speed rotating shaft will lose its buoyancy and hit the protective bearing, which is easily damaged.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and solve the problem that the protective bearing of the existing magnetic levitation pump is easily damaged by the impact of the rotating shaft when the magnetic levitation motor is powered off.
  • a further object of the present invention is to prolong the service life of the first sealing ring and/or the second sealing ring.
  • the invention provides a magnetic levitation pump, comprising:
  • An electric motor which includes a casing and a shaft
  • a pump which includes a pump casing and an impeller, the pump casing is fixedly connected or integrally formed with the casing, and the impeller is fixedly connected coaxially with the rotating shaft;
  • a first sealing ring which is arranged on the casing and/or the pump casing
  • the second sealing ring is arranged on the impeller and matched with the first sealing ring, and when the second sealing ring rotates, it is on the first sealing ring or is marked by the first sealing ring. annular groove;
  • the buffer member is provided between the first sealing ring and the casing and/or the pump casing, and the buffer member can be deformed along the axial direction of the first sealing ring; and Or, the buffer member is provided between the second seal ring and the impeller, and the buffer member can be deformed along the axial direction of the second seal ring.
  • the buffer member is a buffer ring with an annular structure, and the buffer ring is arranged between the first seal ring and the pump housing along the radial direction of the first seal ring; the buffer ring The inner peripheral surface of the buffer ring is in contact with the first sealing ring, and the outer peripheral surface of the buffer ring is in contact with the pump casing.
  • the buffer member is a spring
  • the spring is arranged between the first sealing ring and the pump housing along the axial direction of the first sealing ring; one axial end of the spring is connected to the The first sealing ring is connected, and the other axial end of the spring is connected to the pump casing.
  • the spring abuts against the first sealing ring and the pump housing respectively, and at least one of the springs abuts against two axial ends of the first sealing ring respectively.
  • the first sealing ring includes a first axial sealing ring and a first radial sealing ring
  • the second sealing ring includes a second axial sealing ring and a second radial sealing ring
  • the first The axial seal ring matches the second axial seal ring
  • the first radial seal ring matches the second radial seal ring
  • the buffer pieces correspond to the sealing rings respectively.
  • the first sealing ring is an annular sleeve; the second sealing ring is an annular tooth, and the section of the annular tooth is wedge-shaped.
  • the hardness of the first sealing ring is smaller than that of the second sealing ring.
  • the pump is a centrifugal pump.
  • the present invention also provides a refrigeration device, including the magnetic levitation pump described in any one of the foregoing technical solutions.
  • the present invention also provides an outdoor unit of an air conditioner, including the magnetic levitation pump described in any one of the preceding technical solutions.
  • the gap between the first seal ring and the second seal ring is small. Therefore, when the motor is powered off, the first sealing ring and the second sealing ring can contact first, and then the rotating shaft contacts the protection bearing. When the first sealing ring and the second sealing ring are in contact with each other, they can absorb the kinetic energy and momentum of the rotating shaft, thereby reducing the impact force of the rotating shaft on the protective bearing and effectively avoiding the risk of damage to the protective bearing.
  • a buffer is provided between the first seal ring and the casing and/or the pump casing, and/or a buffer is provided between the second seal ring and the impeller, so that the first seal ring or the second seal ring
  • the impeller moves along the axial direction of the first sealing ring, it can move together with the impeller by means of the deformation of the buffer, preventing the side wall of the annular groove from being continuously scratched by the first sealing ring or the second sealing ring, thus avoiding the ring
  • the width of the groove becomes larger, so that the width of the annular groove can be kept smaller, thereby ensuring the gap between the first sealing ring and the second sealing ring, and prolonging the service life of the first sealing ring and/or the second sealing ring.
  • the width of the annular groove can be sufficiently narrow, thereby reducing the amount of leakage of the fluid in the pump casing to the outside.
  • first sealing ring to include a first axial sealing ring and a first radial sealing ring
  • second sealing ring to include a second axial sealing ring and a second radial sealing ring
  • Fig. 1 is a sectional view of a magnetic levitation pump in some embodiments of the present invention
  • Fig. 2 is an enlarged view of part A in Fig. 1;
  • Fig. 3 is an enlarged view of part B in Fig. 2;
  • Fig. 4 is an enlarged view of part C in Fig. 3;
  • Fig. 5 is a schematic diagram of the effect of the buffer member when the impeller is radially offset in some embodiments of the present invention
  • Fig. 6 is a schematic diagram of the effect of the buffer when the impeller is axially offset in some embodiments of the present invention.
  • Fig. 7 is a schematic diagram of the effect of the buffer member in other embodiments of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, or it may be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, or it may be the internal communication of two components.
  • Fig. 1 is a sectional view of a magnetic levitation pump in some embodiments of the present invention
  • Fig. 2 is an enlarged view of part A in Fig. 1
  • Fig. 3 is an enlarged view of part B in Fig. 2
  • Fig. 4 is an enlarged view of part C in Fig. 3 .
  • a magnetic levitation pump includes a motor 1 and a pump 2 .
  • the magnetic levitation pump includes two pumps 2 , and the two pumps 2 are respectively arranged at both ends of the motor 1 in the axial direction.
  • those skilled in the art can configure only one pump 2 for the magnetic levitation pump according to needs, that is, omit the pump 2 on the left or right side of the motor 1 in FIG. 1 .
  • those skilled in the art can connect at least two pumps 2 in series on the left or right side of the motor 1 as required.
  • the motor 1 includes a casing 11, a rotating shaft 12, a radial magnetic bearing 13, an axial magnetic bearing 14 and a protective bearing 15.
  • the rotating shaft 12 is rotatably arranged in the casing 11
  • the radial magnetic suspension bearing 13 , the axial magnetic suspension bearing 14 and the protective bearing 15 are fixedly arranged inside the casing 11 .
  • the radial clearance between the radial magnetic suspension bearing 13 and the rotating shaft 12 is greater than the radial clearance between the protective bearing 15 and the rotating shaft 12; and the radial clearance between the axial magnetic suspension bearing 14 and the rotating shaft 12 is greater than the radial clearance between the protective bearing 15 and the The radial clearance between the rotating shafts 12 is such that when the motor 1 is powered off, the rotating shaft 12 abuts against the protective bearing 15 instead of contacting the radial magnetic bearing 13 and/or the axial magnetic bearing 14 .
  • a thrust plate 121 is disposed on the rotating shaft 12 , and an axial magnetic suspension bearing 14 is respectively disposed on both sides of the thrust plate 121 .
  • an axial magnetic suspension bearing 14 is respectively disposed on both sides of the thrust plate 121 .
  • both the radial magnetic suspension bearing 13 and the axial magnetic suspension bearing 14 include coils, and/or components capable of generating magnetic force when electrified. Since the radial magnetic suspension bearing 13 and the axial magnetic suspension bearing 14 are commonly used parts in the field and can be purchased from the market, they will not be described too much in this disclosure.
  • the pump 2 includes a pump casing 21 and an impeller 22 .
  • the pump casing 21 is fixedly connected with the casing 11 or integrally formed, and the impeller 22 is fixedly connected with the rotating shaft 12 coaxially.
  • the impeller 22 is driven to rotate synchronously.
  • an inlet 201 and an outlet 202 are provided on the pump casing 21 .
  • the rotating impeller 22 creates a negative pressure in the pump casing 21 , thereby forcing the external fluid to enter the pump casing 21 from the inlet 201 , and make the fluid in the pump casing 21 flow out of the pump casing 21 from the outlet 202 .
  • the pump 2 is a centrifugal pump
  • the impeller 22 is a centrifugal impeller.
  • those skilled in the art can also set the pump 2 as a plunger pump, a gear pump, a vane pump or a rotor pump and other pumps in any other form in other embodiments of the present invention according to needs.
  • the pump casing 21 includes an inner volute 211 and an outer volute 212 .
  • the inner volute 211 and the outer volute 212 are fixedly connected together by screws or bolts, and the inner volute 211 is fixedly connected with the casing 11 by screws or bolts.
  • the magnetic levitation pump further includes a first sealing ring 3 , a second sealing ring 4 and a buffer member 5 .
  • the first sealing ring 3 and the second sealing ring 4 are matched with each other, and the first sealing ring 3 is arranged on the casing 11 and/or the pump casing 21, the second sealing ring 4 is arranged on the impeller 22, and the second sealing ring 4
  • An annular groove 6 is formed on or by the first sealing ring 3 when rotating.
  • the buffer member 5 is arranged between the first sealing ring 3 and the casing 11 and/or the pump casing 21, and the buffer member 5 can deform along the axial direction of the first sealing ring 3; and/or, the buffer member 5 is arranged at the second Between the second sealing ring 4 and the impeller 22 , the buffer member 5 can deform along the axial direction of the second sealing ring 4 .
  • first sealing ring 3 on the impeller 22 and the second sealing ring 4 on the pump casing 21 as required.
  • buffer member 5 between the second sealing ring 4 and the pump casing 21 can also arrange the buffer member 5 between the second sealing ring 4 and the pump casing 21 as required, or only arrange the buffer member 5 between the second sealing ring 4 and the pump casing 21 .
  • the first seal ring 3 includes a first radial seal ring 31 and a first axial seal ring 32
  • the second seal ring 4 includes a second radial seal ring 41 and a first radial seal ring 41 .
  • Two axial sealing rings 42 the first radial sealing ring 31 matches the second radial sealing ring 41
  • the first axial sealing ring 32 matches the second axial sealing ring 42 .
  • a first radial seal ring 31 and a first axial seal ring 32 are respectively provided on the inner volute 211 and the outer volute 212 .
  • those skilled in the art can also set the first radial seal ring 31 and the first axial seal ring 32 only on the inner volute 211 or the outer volute 212 according to needs; or, the inner volute 211 and the outer volute
  • a first radial sealing ring 31 is provided on one of the casings 212
  • a first axial sealing ring 32 is provided on the other of the inner volute 211 and the outer volute 212 .
  • first radial seal rings 41 and second axial seal rings 42 there can be multiple second radial seal rings 41 and second axial seal rings 42, so that the first radial seal ring 31 corresponds to a plurality of second radial seal rings 41, so that the first radial seal ring 31 corresponds to a plurality of second radial seal rings 41, so that the second One axial sealing ring 32 corresponds to a plurality of second axial sealing rings 42 .
  • making the first seal ring 3 correspond to a plurality of second seal rings 4 can reduce the stress between the second seal ring 4 and the first seal ring 3 and prevent the second seal ring 4 and the first seal ring from A sealing ring 3 wears excessively against each other.
  • making the first sealing ring 3 correspond to a plurality of second sealing rings 4 can also form multiple seals between the second sealing ring 4 and the first sealing ring 3 to prevent fluid leakage in the pump casing 21 .
  • the first sealing ring 3 is an annular sleeve, or the first sealing ring 3 is composed of multiple semi-annular structures. That is, the first radial sealing ring 31 and/or the first axial sealing ring 32 are annular sleeves, or the first sealing ring 3 is composed of multiple semi-annular structures.
  • the second sealing ring 4 is an annular tooth, that is, both the second radial sealing ring 41 and the second axial sealing ring 42 are annular teeth.
  • the cross-section of the ring teeth is wedge-shaped (as shown in Figure 4).
  • the second radial seal ring 41 and the second axial seal ring 42 are integrally formed on the impeller 22 .
  • those skilled in the art can also fix the second radial seal ring 41 and the second axial seal ring 42 to the impeller 22 through threaded connection, welding, interference fit, screw connection and other connection methods as required, and select
  • the buffer member 5 is permanently provided between the second radial seal ring 41 and the impeller 22 and/or between the second axial seal ring 42 and the impeller 22 .
  • the hardness of the first sealing ring 3 is smaller than that of the second sealing ring 4, so that the second sealing ring 4 can be scratched on the first sealing ring 3 when the impeller 22 rotates. A shallower scratch, the annular groove 6 (as shown in Figure 4).
  • the first sealing ring 3 of the present invention can be made of any feasible material, such as epoxy resin, phenolic resin and the like.
  • the first sealing ring 3 and the second sealing ring 4 are transitionally fitted.
  • the rotating shaft 12 drives the impeller 22 and the second seal ring 4 to rotate, and the rotating second seal ring 4 draws a shallow scratch on the first seal ring 3 through its peripheral edge, that is, the annular groove 6 (As shown in Figure 4).
  • the annular groove 6 on the first sealing ring 3 is drawn by the rotating second sealing ring 4, the gap between the first radial sealing ring 31 and the second radial sealing ring 41 The gap between them and the gap between the first axial seal ring 32 and the second axial seal ring 42 are sufficiently small (some areas may even be 0).
  • the annular groove 6 is produced to adapt to the operation of the magnetic levitation pump.
  • it not only saves the production cost, but also makes the second sealing ring 4 compatible with the first sealing ring.
  • the fit between the rings 3 is tight enough to provide a good seal for the pump 2 .
  • the present invention draws an annular groove 6 on the first seal ring 3 during the process of rotating the second seal ring 4, so that the first seal ring 3 and the second seal ring
  • the pressure when the two sealing rings 4 are in contact is almost zero, so that the second sealing ring 4 , the impeller 22 and the rotating shaft 12 can rotate freely relative to the first sealing ring 3 . Therefore, the first sealing ring 3 and the second sealing ring 4 of the present invention also improve the sealing performance of the pump 2 under the premise of ensuring the low-resistance operation of the magnetic levitation pump, and prevent the compressed fluid in the pump 2 from leaking (including external leakage and internal leakage).
  • the present invention also sets the first sealing ring 3 to include the first radial sealing ring 31 and the first axial sealing ring 32, and sets the second sealing ring 4 to include the second radial sealing ring 41 and the second Axial sealing ring 42, so that the first radial sealing ring 31 and the second radial sealing ring 41 can absorb the radial impact force when the rotating shaft 12 is powered off and limit the radial displacement of the rotating shaft 12.
  • the second axial sealing ring 42 can absorb the impact force in the axial direction when the rotating shaft 12 is powered off and limit the axial displacement of the rotating shaft 12 , thus preventing the rotating shaft 12 from deflecting.
  • those skilled in the art can also set only the first radial seal ring 31 and the second radial seal ring 41 on the pump 2, or only the first axial seal ring ring 32 and a second axial seal ring 42 .
  • the buffer member 5 is a buffer ring 51 having a ring structure. Moreover, the buffer ring 51 is disposed between the first seal ring 3 and the pump housing 21 along the radial direction of the first seal ring 3 . The inner peripheral surface of the buffer ring 51 is in contact with the first seal ring 3 , and the outer peripheral surface of the buffer ring 51 is in contact with the pump casing 21 .
  • At least one buffer ring 51 is provided between the first radial seal ring 31 and the pump casing 21 and between the first axial seal ring 32 and the pump casing 21 .
  • those skilled in the art can also set the buffer ring 51 only between the first radial seal ring 31 and the pump casing 21 according to the needs, or only set the buffer ring 51 between the first axial seal ring 32 and the pump casing 21. Ring 51.
  • the buffer ring 51 is made of elastic material, so that the buffer ring 51 can be deformed along the axial and/or radial direction of the first sealing ring 3 .
  • the elastic material can be any feasible material, such as rubber, silica gel, plastic and so on.
  • Fig. 5 is a schematic diagram of the effect of the buffer when the impeller is radially offset in some embodiments of the present invention
  • Fig. 6 is a schematic diagram of the effect of the buffer when the impeller is axially offset in some embodiments of the present invention.
  • the second radial seal ring 41 presses the first radial seal ring along its axial direction 31 (specifically, the second radial seal ring 41 presses the side wall of the annular groove 6 on the first radial seal ring 31 through its circumferential edge), and thus makes the first radial seal ring 31 move toward the arrow in Fig. 6 Squeeze the corresponding buffer ring 51 in the indicated direction, so that the corresponding part on the buffer ring 51 is deformed in the axial direction.
  • the second axial seal ring 42 presses the first axial seal ring 32 in its radial direction, and thus makes the first axial seal ring 32 press its corresponding buffer ring 51 in the direction indicated by the arrow in FIG. 6 , The corresponding portion on the buffer ring 51 is deformed in the radial direction to become thinner.
  • the arrangement of the buffer ring 51 enables the first radial seal ring 31 and the first axial seal ring 32 to move when the impeller 22 moves radially or axially. With the help of the deformation of the buffer member 51, it moves together with the impeller 22, preventing the side wall of the annular groove 6 on the second radial seal ring 41 and the second axial seal ring 42 from being damaged by the first radial seal ring 31 and the first shaft.
  • the buffer ring 51 absorbs the impact of the rotating shaft 12 and the impeller 22 during the deformation process, the buffer ring 51 can also reduce the impact of the rotating shaft 12 on the protective bearing 15, thereby improving the protective bearing 15. service life.
  • Fig. 7 is a schematic diagram of the effect of the buffer member in other embodiments of the present invention.
  • the buffer member 5 is a spring 52, and the spring 52 is arranged between the first sealing ring 3 and the pump casing 21 along the axial direction of the first sealing ring 3, and One axial end of the spring 52 is in contact with the first sealing ring 3 , and the other axial end of the spring 52 is in contact with the pump housing 21 .
  • the meeting may be hooking or abutting.
  • the springs 52 abut against the first sealing ring 3 and the pump housing 21 respectively, and at least one spring 52 abuts against the two axial ends of the first sealing ring 3 respectively.
  • first radial seal ring 31 abut against a spring 52 respectively, and one end of the spring 52 away from the first radial seal ring 31 abuts against the pump casing 21 .
  • the two axial ends of the first axial seal ring 32 are respectively abutted against a spring 52 , and the end of the spring 52 away from the first axial seal ring 32 is abutted against the pump housing 21 .
  • those skilled in the art can also configure only one spring 52 for the first radial seal ring 31 and/or the first axial seal ring 32 as required, and connect one end of the spring 52 to the first radial seal ring 31 and /or the first axial sealing ring 32 is fixedly connected, so that the other end of the spring 52 is fixedly connected with the pump housing 21 .
  • the first radial sealing ring 31 can slide relative to the pump housing 21 along its axial direction, and the first axial sealing ring 32 can also slide relative to the pump housing 21 along its axial direction.
  • the second axial sealing ring 42 presses the first axial sealing ring 32 along its axial direction (specifically The second axial sealing ring 42 presses the side wall of the annular groove 6 on the first axial sealing ring 32 through its circumferential edge), and thus makes the first axial sealing ring 32 compress its corresponding spring 52, so that the spring 52 is compressed.
  • the second radial seal ring 41 presses the first radial seal ring 31 along its axial direction (specifically, the second radial seal ring 41 presses through its circumferential edge The side wall of the annular groove 6 on the first radial seal ring 31), and thus make the first radial seal ring 31 press its corresponding spring 52, so that the spring 52 is compressed.
  • the buffer member 5 can also set the buffer member 5 as any other feasible structure according to the needs, for example, a plurality of arc-shaped plate-shaped members, and the plurality of arc-shaped plates
  • the shape member is arranged between the first seal ring 3 and the pump casing 21 along the radial direction of the first seal ring 3 .
  • the inner peripheral surface of each plate-shaped member is in contact with the first seal ring 3
  • the outer peripheral surface of each plate-shaped member is in contact with the pump casing 21 .
  • a refrigeration device which includes the magnetic levitation pump described in any one of the foregoing embodiments.
  • the magnetic levitation pump is used as a compressor of the refrigeration equipment for compressing the refrigerant.
  • the refrigeration equipment includes refrigerators, freezers and/or freezers.
  • an outdoor air conditioner is also provided, and the outdoor air conditioner includes the magnetic levitation pump described in any of the foregoing embodiments.
  • the magnetic levitation pump is used as a compressor of the outdoor unit of the air conditioner to compress the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing Devices (AREA)

Abstract

一种磁悬浮泵,包括电机、泵、第一密封环、第二密封环和缓冲件。其中,电机包括机壳和转轴;泵,其包括泵壳和叶轮,泵壳与机壳固定连接或一体制成,叶轮与转轴同轴固定连接;第一密封环设置在机壳和/或泵壳上;第二密封环设置在叶轮上并且与第一密封环相匹配,第二密封环转动时在第一密封环上或者被第一密封环划出有环形槽;第一密封环与机壳和/或泵壳之间设置有缓冲件,缓冲件能够沿着第一密封环的轴向产生形变;并且/或者,第二密封环与叶轮之间设置有缓冲件,缓冲件能够沿着第二密封环的轴向产生形变。

Description

磁悬浮泵、具有其的制冷设备和空调室外机 技术领域
本发明属于动力装置领域,具体提供了一种磁悬浮泵、具有其的制冷设备和空调室外机。
背景技术
磁悬浮电机主要包括壳体、设置在壳体内并且与壳体固定连接的定子、设置在定子内的转轴、用于支撑转轴旋转的径向磁悬浮轴承和用于保持转轴轴向位置的轴向推力轴承。磁悬浮电机还包括设置在壳体内的保护轴承,该保护轴承用于承载静止的转轴。在磁悬浮电机工作时,径向磁悬浮轴承通电使转轴与保护轴承分离,并悬浮起来。
磁悬浮泵包括磁悬浮电机和被磁悬浮电机驱动的泵。磁悬浮泵在断电时,高速旋转的转轴会失去浮力,撞击到保护轴承上,保护轴承容易被损坏。
发明内容
本发明的一个目的在于克服现有技术中的至少一个技术缺陷,解决现有磁悬浮泵的保护轴承在磁悬浮电机断电时容易被转轴撞击而损坏的问题。
本发明的一个进一步的目的在于,延长第一密封环和/或第二密封环的使用寿命。
为实现上述目的,本发明提供了一种磁悬浮泵,包括:
电机,其包括机壳和转轴;
泵,其包括泵壳和叶轮,所述泵壳与所述机壳固定连接或一体制成,所述叶轮与所述转轴同轴固定连接;
第一密封环,其设置在所述机壳和/或所述泵壳上;
第二密封环,其设置在所述叶轮上并且与所述第一密封环相匹配,所述第二密封环转动时在所述第一密封环上或者被所述第一密封环划出有环形槽;
缓冲件,所述第一密封环与所述机壳和/或所述泵壳之间设置有所述缓冲件,所述缓冲件能够沿着所述第一密封环的轴向产生形变;并且/或者,所述第二密封环与所述叶轮之间设置有所述缓冲件,所述缓冲件能够沿着所述第二密封环的轴向产生形变。
可选地,所述缓冲件是具有环形结构的缓冲环,所述缓冲环沿所述第一密封环的径向设置在所述第一密封环与所述泵壳之间;所述缓冲环的内周面与所述第一密封环抵接,所述缓冲环的外周面与所述泵壳抵接。
可选地,所述缓冲件是弹簧,所述弹簧沿所述第一密封环的轴向设置在所述第一密封环与所述泵壳之间;所述弹簧的一个轴向端与所述第一密封环相接,所述弹簧的另一个轴向端与所述泵壳相接。
可选地,所述弹簧与所述第一密封环和所述泵壳分别抵接,并且所述第一密封环的两个轴向端分别抵接有至少一个所述弹簧。
可选地,所述第一密封环包括第一轴向密封环和第一径向密封环,所述第二密封环包括第二轴向密封环和第二径向密封环,所述第一轴向密封环与所述第二轴向密封环相匹配,所述第一径向密封环与所述第二径向密封环相匹配,所述第一轴向密封环和所述第一径向密封环分别对应有所述缓冲件。
可选地,所述第一密封环为环形套筒;所述第二密封环为环形齿,所述环形齿的截面为楔形。
可选地,所述第一密封环的硬度小于所述第二密封环的硬度。
可选地,所述泵为离心泵。
此外,本发明还提供了一种制冷设备,包括前述技术方案中任一项所述的磁悬浮泵。
进一步,本发明还提供了一种空调室外机,包括前述技术方案中任一项所述的磁悬浮泵。
基于前文的描述,本领域技术人员能够理解的是,在本发明前述的技术方案中,通过在泵壳上设置第一密封环,在叶轮中上设置第二密封环,并使第一密封环和第二密封环相匹配,以及使第一密封环和第二密封环中的一个被另一个划出环形槽,使得泵壳和叶轮能够通过第一密封环和第二密封环实现动态密封,同时还能够通过该环形槽,使叶轮能够相对于泵壳自由旋转。
本领域技术人员还能够理解的是,由于环形槽是被第一密封环或第二密封环划出来的(具体是在叶轮转动时划出来的),所以第一密封环与第二密封环之间的间隙较小。故而,在电机断电时,第一密封环与第二密封环能够先接触,而后转轴才与保护轴承接触。在第一密封环和第二密封环彼此接触时,能够吸收转轴的动能和动量,从而减轻了转轴对保护轴承的撞击力度,有效地避免了保护轴承被损坏的风险。
进一步,通过在第一密封环与机壳和/或泵壳之间设置缓冲件,并且/或者,在第二密封环与叶轮之间设置缓冲件,使得第一密封环或第二密封环在叶轮沿第一密封环的轴向移动时,能够借助缓冲件的形变,而随叶轮一同移动,避免了环形槽的侧壁被第一密封环或第二密封环继续划削,进而避免了环形槽的宽度变大,使环形槽能够保持较小的宽度,进而保证了第一密封环与第二密封环之间的间隙,延长了第一密封环和/或第二密封环的使用寿命。
进一步,通过将第一密封环设置为环形齿,使得环形槽的宽度能够足够窄,从而减少了泵壳内流体向外的泄漏量。
再进一步,通过将第一密封环设置为包括第一轴向密封环和第一径向密封环,将第二密封环设置为包括第二轴向密封环和第二径向密封环,使得第一轴向密封环与第二轴向密封环能够吸收转轴断电时轴向上的冲击力并限制转轴轴向上的位移,第一径向密封环与第二径向密封环能够吸收转轴断电时径向上的冲击力并限制转轴径向上的位移,并因此能够防止转轴发生偏转。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
为了更清楚地说明本发明的技术方案,后文将参照附图来描述本发明的部分实施例。本领域技术人员应当理解的是,同一附图标记在不同附图中所标示的部件或部分相同或类似;本发明的附图彼此之间并非一定是按比例绘制的。附图中:
图1是本发明一些实施例中磁悬浮泵的剖视图;
图2是图1中A部的放大图;
图3是图2中B部的放大图;
图4是图3中C部的放大图;
图5是本发明一些实施例中缓冲件在叶轮沿径向偏移时的效果示意图;
图6是本发明一些实施例中缓冲件在叶轮沿轴向偏移时的效果示意图;
图7是本发明另一些实施例中缓冲件的效果示意图。
具体实施方式
现将详细参考本发明的实施例,其一个或多个示例在附图中示出。提供 的各个实施例旨在解释本发明,而非限制本发明。事实上,在不脱离本发明的范围或精神的情况下对本发明进行各种修改和变化对于本领域的技术人员来说是显而易见的。例如,图示或描述为一个实施例的一部分的特征可以与另一个实施例一起使用以产生再另外的实施例。因此,本发明旨在涵盖所附权利要求书及其等同物范围内的此类修改和变化。
本领域技术人员应当理解的是,下文所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,该一部分实施例旨在用于解释本发明的技术原理,并非用于限制本发明的保护范围。基于本发明提供的实施例,本领域普通技术人员在没有付出创造性劳动的情况下所获得的其它所有实施例,仍应落入到本发明的保护范围之内。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“顶部”“底部”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
图1是本发明一些实施例中磁悬浮泵的剖视图,图2是图1中A部的放大图,图3是图2中B部的放大图,图4是图3中C部的放大图。
如图1所示,在本发明的一些实施例中,磁悬浮泵包括电机1和泵2。优选地,磁悬浮泵包括两个泵2,两个泵2分别设置在电机1轴向上的两端。此外,本领域技术人员也可以根据需要,只为磁悬浮泵配置一个泵2,即,省去图1中电机1左侧或右侧的泵2。或者,本领域技术人员还可以根据需要,使电机1的左侧或右侧串联至少两个泵2。
继续参阅图1,电机1包括机壳11、转轴12、径向磁悬浮轴承13、轴 向磁悬浮轴承14和保护轴承15。其中,转轴12可转动地设置在机壳11内,径向磁悬浮轴承13、轴向磁悬浮轴承14和保护轴承15固定地设置在机壳11的内侧。
在电机1通电的状态下,径向磁悬浮轴承13、轴向磁悬浮轴承14和保护轴承15与转轴12之间都具有间隙。其中,径向磁悬浮轴承13与转轴12之间的径向间隙大于保护轴承15与转轴12之间的径向间隙;并且轴向磁悬浮轴承14与转轴12之间的径向间隙大于保护轴承15与转轴12之间的径向间隙,以便在电机1断电的状态下,转轴12与保护轴承15抵接,而不会与径向磁悬浮轴承13和/或轴向磁悬浮轴承14接触。
继续参阅图1,转轴12上设置有推力盘121,推力盘121的两侧分别设置有一个轴向磁悬浮轴承14。在电机1通电的状态下,推力盘121与两个轴向磁悬浮轴承14之间分别具有间隙。
需要说明的是,在本发明中,径向磁悬浮轴承13和轴向磁悬浮轴承14均包括线圈,和/或通电时能够产生磁力的构件。由于径向磁悬浮轴承13和轴向磁悬浮轴承14是本领域的常用零件,并且可以从市场上采购到,所以本公开不再做过多说明。
继续参阅图1,泵2包括泵壳21和叶轮22。其中,泵壳21与机壳11固定连接或一体制成,叶轮22与转轴12同轴固定连接。转轴12转动时带动叶轮22同步转动。进一步,泵壳21上设置有进口201和出口202。转动的叶轮22使泵壳21内形成负压,从而迫使外界的流体从进口201进入泵壳21,并使泵壳21内的流体从出口202流出泵壳21。
虽然图中并未示出,但是在本发明的一些实施例中,泵2为离心泵,叶轮22为离心式叶轮。当然,本领域技术人员也可以根据需要,在本发明的其他实施例中将泵2设置为柱塞泵、齿轮泵、叶片泵或者转子泵等其他任意可形式的泵。
继续参阅图1,泵壳21包括内侧蜗壳211和外侧蜗壳212。内侧蜗壳211和外侧蜗壳212通过螺钉或螺栓固定连接到一起,内侧蜗壳211通过螺钉或螺栓与机壳11固定连接到一起。
如图2和图3所示,在本发明的一些实施例中,磁悬浮泵还包括第一密封环3、第二密封环4和缓冲件5。其中,第一密封环3和第二密封环4彼此匹配,并且第一密封环3设置在机壳11和/或泵壳21上,第二密封环4 设置在叶轮22上,第二密封环4转动时在第一密封环3上或者被第一密封环3划出有环形槽6。缓冲件5设置在第一密封环3与机壳11和/或泵壳21之间,缓冲件5能够沿着第一密封环3的轴向产生形变;并且/或者,缓冲件5设置在第二密封环4与叶轮22之间,缓冲件5能够沿着第二密封环4的轴向产生形变。
此外,本领域技术人员也可以根据需要,将第一密封环3设置在叶轮22上,将第二密封环4设置在泵壳21上。
进一步,本领域技术人员还可以根据需要,在第二密封环4与泵壳21之间也设置缓冲件5,或者仅在第二密封环4与泵壳21之间设置缓冲件5。
优选地,如图2和图3所示地,第一密封环3包括第一径向密封环31和第一轴向密封环32,第二密封环4包括第二径向密封环41和第二轴向密封环42,第一径向密封环31与第二径向密封环41相匹配,第一轴向密封环32与第二轴向密封环42相匹配。
进一步优选地,如图2和图3所示地,内侧蜗壳211和外侧蜗壳212上分别设置有第一径向密封环31和第一轴向密封环32。此外,本领域技术人员也可以根据需要,仅在内侧蜗壳211或外侧蜗壳212上设置第一径向密封环31和第一轴向密封环32;或者,在内侧蜗壳211和外侧蜗壳212中的一个上设置第一径向密封环31,在内侧蜗壳211和外侧蜗壳212中的另一个上设置第一轴向密封环32。
从图中不难看出,第二径向密封环41和第二轴向密封环42可以分别为多个,以使第一径向密封环31对应多个第二径向密封环41,使第一轴向密封环32对应多个第二轴向密封环42。本领域技术人员能够理解的是,使第一密封环3对应多个第二密封环4能够减小第二密封环4与第一密封环3之间的应力,防止第二密封环4和第一密封环3彼此之间过度地磨损对方。并且,使第一密封环3对应多个第二密封环4还能够使第二密封环4与第一密封环3之间形成多重密封,防止泵壳21内的流体泄露。
虽然图中并未示出,但是,第一密封环3为环形套筒,或者,第一密封环3由多个半环形结构组成。即,第一径向密封环31和/或第一轴向密封环32为环形套筒,或者,第一密封环3由多个半环形结构组成。
进一步,虽然图中并未示出,但是,第二密封环4为环形齿,即,第二径向密封环41和第二轴向密封环42均为环形齿。优选地,环形齿的截面为 楔形(如图4所示)。
优选地,第二径向密封环41和第二轴向密封环42一体成型在叶轮22上。或者,本领域技术人员也可以根据需要,使第二径向密封环41和第二轴向密封环42通过螺纹连接、焊接、过盈配合、螺钉连接等连接方式固定到叶轮22上,并选择性地在第二径向密封环41与叶轮22之间和/或第二轴向密封环42与叶轮22之间设置缓冲件5。
进一步,在本发明的一些实施例中,第一密封环3的硬度小于第二密封环4的硬度,以使第二密封环4随着叶轮22转动时能够在第一密封环3上划出一个较浅的划痕,即环形槽6(如图4所示)。
为了实现上述目的,本发明的第一密封环3可以采用任意可行的材料制成,例如环氧树脂、酚醛树脂等。
优选地,在本发明的磁悬浮泵装配时,第一密封环3与第二密封环4之间过渡配合。在磁悬浮泵通电时,转轴12带动叶轮22和第二密封环4旋转,旋转的第二密封环4通过其圆周边缘在第一密封环3上划出一个较浅的划痕,即环形槽6(如图4所示)。
本领域技术人员能够理解的是,由于第一密封环3上的环形槽6是被转动的第二密封环4所划出,使得第一径向密封环31与第二径向密封环41之间的间隙和第一轴向密封环32与第二轴向密封环42之间的间隙足够小(部分区域甚至可以为0)。换句话说,环形槽6是为了适应磁悬浮泵的运行而产生的,相对于通过机械设备加工出来的环形槽而言,其不仅节约了生产成本,而且还使得第二密封环4与第一密封环3之间的配合足够紧密,能够对泵2起到良好的密封作用。
基于前文的描述,本领域技术人员能够理解的是,本发明通过使第二密封环4转动的过程中在第一密封环3上划出一个环形槽6,以使第一密封环3与第二密封环4接触时的压力几乎为零,从而使第二密封环4、叶轮22和转轴12相对于第一密封环3可以自由转动。因此,本发明的第一密封环3和第二密封环4在保证磁悬浮泵低阻力运行的前提下,还提升了泵2的密封性,防止泵2内被压缩的流体泄露(包括外泄和内泄)。
进一步,本发明还通过将第一密封环3设置为包括第一径向密封环31和第一轴向密封环32,将第二密封环4设置为包括第二径向密封环41和第二轴向密封环42,使得第一径向密封环31与第二径向密封环41能够吸收转 轴12断电时径向上的冲击力并限制转轴12径向上的位移,第一轴向密封环32与第二轴向密封环42能够吸收转轴12断电时轴向上的冲击力并限制转轴12轴向上的位移,并因此能够防止转轴12发生偏转。
此外,在本发明的其他实施例中,本领域技术人员也可以根据需要,在泵2上仅设置第一径向密封环31和第二径向密封环41,或仅设置第一轴向密封环32和第二轴向密封环42。
如图2和图3所示,在本发明的一些实施例中,缓冲件5为具有环形结构的缓冲环51。并且,缓冲环51沿第一密封环3的径向设置在第一密封环3与泵壳21之间。缓冲环51的内周面与第一密封环3抵接,缓冲环51的外周面与泵壳21抵接。
具体地,第一径向密封环31与泵壳21之间、第一轴向密封环32与泵壳21之间均设置有至少一个缓冲环51。或者,本领域技术人员也可以根据需要,仅在第一径向密封环31与泵壳21之间设置缓冲环51,或者,仅在第一轴向密封环32与泵壳21之间设置缓冲环51。
进一步,在本发明的一些实施例中,缓冲环51采用具有弹性材料制成,以使缓冲环51能够沿着第一密封环3的轴向和/或径向产生形变。其中,该弹性材料可以是任意可行的材料,例如橡胶、硅胶、塑料等。
下面参照图5和图6来对缓冲环51的形变进行详细说明。其中,图5是本发明一些实施例中缓冲件在叶轮沿径向偏移时的效果示意图,图6是本发明一些实施例中缓冲件在叶轮沿轴向偏移时的效果示意图。
如图5所示,当叶轮22从正常的转动的位置(与保护轴承15同轴的位置)发生了如图5中箭头所示方向的径向移动时,第二径向密封环41沿其径向挤压第一径向密封环31,并因此使第一径向密封环31朝图5中箭头所示方向挤压其对应的缓冲环51,使缓冲环51上的相应部分产生径向上的形变——变薄。同时,第二轴向密封环42沿其轴向挤压第一轴向密封环32(具体是第二轴向密封环42通过其周向边缘挤压第一轴向密封环32上环形槽6的侧壁),并因此使第一轴向密封环32朝图5中箭头所示方向挤压其对应的缓冲环51,使缓冲环51上的相应部分产生轴向上的形变。
如图6所示,当叶轮22从正常的转动的位置发生了如图6中箭头所示方向的轴向移动时,第二径向密封环41沿其轴向挤压第一径向密封环31(具体是第二径向密封环41通过其周向边缘挤压第一径向密封环31上环形槽6 的侧壁),并因此使第一径向密封环31朝图6中箭头所示方向挤压其对应的缓冲环51,使缓冲环51上的相应部分产生轴向上的形变。同时,第二轴向密封环42沿其径向挤压第一轴向密封环32,并因此使第一轴向密封环32朝图6中箭头所示方向挤压其对应的缓冲环51,使缓冲环51上的相应部分产生径向上的形变而变薄。
基于前文的描述,本领域技术人员能够理解的是,缓冲环51的设置,使得第一径向密封环31和第一轴向密封环32在叶轮22沿其径向或轴向移动时,能够借助缓冲件51的形变,而随叶轮22一同移动,避免了第二径向密封环41和第二轴向密封环42上环形槽6的侧壁被第一径向密封环31和第一轴向密封环32继续划削,进而避免了环形槽6的宽度变大,使环形槽6能够保持较小的宽度,进而保证了第一密封环3与第二密封环4之间的间隙,延长了第一密封环3的使用寿命。
本领域技术人员还能够理解的是,由于缓冲环51在形变的过程中会吸收转轴12、叶轮22的冲击,所以缓冲环51还能够减轻转轴12对保护轴承15的冲击,从而提升保护轴承15的使用寿命。
图7是本发明另一些实施例中缓冲件的效果示意图。
如图7所示,在本发明的另一些实施例中,缓冲件5是弹簧52,该弹簧52沿第一密封环3的轴向设置在第一密封环3与泵壳21之间,并且弹簧52的一个轴向端与第一密封环3相接,弹簧52的另一个轴向端与泵壳21相接。该相接可以是钩接或抵接。
具体地,弹簧52与第一密封环3和泵壳21分别抵接,并且第一密封环3的两个轴向端分别抵接有至少一个弹簧52。
进一步具体地,第一径向密封环31轴向上的两端分别抵接有一个弹簧52,弹簧52远离第一径向密封环31的一端与泵壳21抵接。第一轴向密封环32轴向上的两端也分别抵接有一个弹簧52,弹簧52远离第一轴向密封环32的一端与泵壳21抵接。或者,本领域技术人员也可以根据需要,为第一径向密封环31和/或第一轴向密封环32仅配置一个弹簧52,并使弹簧52的一端与第一径向密封环31和/或第一轴向密封环32固定连接,使弹簧52的另一端与泵壳21固定连接。
优选地,第一径向密封环31能够沿其轴向相对于泵壳21滑动,第一轴向密封环32也能够沿其轴向相对于泵壳21滑动。
进一步,当叶轮22在径向上偏离于工作位置(旋转中心与保护轴承15的旋转中心同轴)时,第二轴向密封环42沿其轴向挤压第一轴向密封环32(具体是第二轴向密封环42通过其周向边缘挤压第一轴向密封环32上环形槽6的侧壁),并因此使第一轴向密封环32挤压其对应的弹簧52,使弹簧52被压缩。
当叶轮22在轴向上偏离于工作位置时,第二径向密封环41沿其轴向挤压第一径向密封环31(具体是第二径向密封环41通过其周向边缘挤压第一径向密封环31上环形槽6的侧壁),并因此使第一径向密封环31挤压其对应的弹簧52,使弹簧52被压缩。
此外,在本发明的其他实施例中,本领域技术人员也可以根据需要,将缓冲件5设置为其他任意可行的结构,例如,多个弧形的板状构件,该多个弧形的板状构件沿第一密封环3的径向设置在第一密封环3与泵壳21之间。并且每一个板状构件的内周面都与第一密封环3抵接,每一个板状构件的外周面都与泵壳21抵接。
进一步,虽然图中并未示出,但是在本发明的又一些实施例中,还提供了一种制冷设备,该制冷设备包括前文任一实施例所述的磁悬浮泵。在本发明的该又一些实施例中,磁悬浮泵作为制冷设备的压缩机使用,用于压缩冷媒。该制冷设备包括冰箱、冰柜和/或冷柜。
再进一步,虽然图中并未示出,但是在本发明的再一些实施例中,还提供了一种空调室外机,该空调室外机包括前文任一实施例所述的磁悬浮泵。在本发明的该再一些实施例中,磁悬浮泵作为空调室外机的压缩机使用,用于压缩冷媒。
至此,已经结合前文的多个实施例描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围并不仅限于这些具体实施例。在不偏离本发明技术原理的前提下,本领域技术人员可以对上述各个实施例中的技术方案进行拆分和组合,也可以对相关技术特征作出等同的更改或替换,凡在本发明的技术构思和/或技术原理之内所做的任何更改、等同替换、改进等都将落入本发明的保护范围之内。

Claims (10)

  1. 一种磁悬浮泵,包括:
    电机,其包括机壳和转轴;
    泵,其包括泵壳和叶轮,所述泵壳与所述机壳固定连接或一体制成,所述叶轮与所述转轴同轴固定连接;
    第一密封环,其设置在所述机壳和/或所述泵壳上;
    第二密封环,其设置在所述叶轮上并且与所述第一密封环相匹配,所述第二密封环转动时在所述第一密封环上或者被所述第一密封环划出有环形槽;
    缓冲件,所述第一密封环与所述机壳和/或所述泵壳之间设置有所述缓冲件,所述缓冲件能够沿着所述第一密封环的轴向产生形变;并且/或者,所述第二密封环与所述叶轮之间设置有所述缓冲件,所述缓冲件能够沿着所述第二密封环的轴向产生形变。
  2. 根据权利要求1所述的磁悬浮泵,其中,
    所述缓冲件是具有环形结构的缓冲环,所述缓冲环沿所述第一密封环的径向设置在所述第一密封环与所述泵壳之间;
    所述缓冲环的内周面与所述第一密封环抵接,所述缓冲环的外周面与所述泵壳抵接。
  3. 根据权利要求1所述的磁悬浮泵,其中,
    所述缓冲件是弹簧,所述弹簧沿所述第一密封环的轴向设置在所述第一密封环与所述泵壳之间;
    所述弹簧的一个轴向端与所述第一密封环相接,所述弹簧的另一个轴向端与所述泵壳相接。
  4. 根据权利要求3所述的磁悬浮泵,其中,
    所述弹簧与所述第一密封环和所述泵壳分别抵接,并且所述第一密封环的两个轴向端分别抵接有至少一个所述弹簧。
  5. 根据权利要求2-4中任一项所述的磁悬浮泵,其中,
    所述第一密封环包括第一轴向密封环和第一径向密封环;
    所述第二密封环包括第二轴向密封环和第二径向密封环;
    所述第一轴向密封环与所述第二轴向密封环相匹配;
    所述第一径向密封环与所述第二径向密封环相匹配;
    所述第一轴向密封环和所述第一径向密封环分别对应有所述缓冲件。
  6. 根据权利要求1-4中任一项所述的磁悬浮泵,其中,
    所述第一密封环为环形套筒;
    所述第二密封环为环形齿,所述环形齿的截面为楔形。
  7. 根据权利要求1-4中任一项所述的磁悬浮泵,其中,
    所述第一密封环的硬度小于所述第二密封环的硬度。
  8. 根据权利要求7所述的磁悬浮泵,其中,
    所述泵为离心泵。
  9. 一种制冷设备,包括权利要求1至8中任一项所述的磁悬浮泵。
  10. 一种空调室外机,包括权利要求1至8中任一项所述的磁悬浮泵。
PCT/CN2022/098940 2021-08-19 2022-06-15 磁悬浮泵、具有其的制冷设备和空调室外机 WO2023020087A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22857400.0A EP4361448A4 (en) 2021-08-19 2022-06-15 MAGNETIC SUSPENSION PUMP, COOLING DEVICE AND OUTDOOR UNIT OF AN AIR CONDITIONING SYSTEM
JP2024509328A JP2024530240A (ja) 2021-08-19 2022-06-15 磁気浮上ポンプ、磁気浮上ポンプを有する冷凍機器および空気調和機の室外機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110954737.7A CN113864211A (zh) 2021-08-19 2021-08-19 磁悬浮泵、具有其的制冷设备和空调室外机
CN202110954737.7 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023020087A1 true WO2023020087A1 (zh) 2023-02-23

Family

ID=78990661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098940 WO2023020087A1 (zh) 2021-08-19 2022-06-15 磁悬浮泵、具有其的制冷设备和空调室外机

Country Status (4)

Country Link
EP (1) EP4361448A4 (zh)
JP (1) JP2024530240A (zh)
CN (1) CN113864211A (zh)
WO (1) WO2023020087A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864211A (zh) * 2021-08-19 2021-12-31 青岛海尔智能技术研发有限公司 磁悬浮泵、具有其的制冷设备和空调室外机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107891A (ja) * 1999-10-07 2001-04-17 Mitsubishi Heavy Ind Ltd 遠心多段型圧縮機
CN101892989A (zh) * 2010-06-13 2010-11-24 西安航天泵业有限公司 一种高压双吸泵
CN104100540A (zh) * 2014-08-07 2014-10-15 珠海格力电器股份有限公司 离心式压缩机及具有其的空调系统
CN104806560A (zh) * 2014-01-23 2015-07-29 珠海格力电器股份有限公司 密封零件及离心压缩机
CN112780584A (zh) * 2021-02-22 2021-05-11 珠海格力电器股份有限公司 磁悬浮压缩机
CN113864211A (zh) * 2021-08-19 2021-12-31 青岛海尔智能技术研发有限公司 磁悬浮泵、具有其的制冷设备和空调室外机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501477B1 (ko) * 2013-03-25 2015-03-12 두산중공업 주식회사 원심압축기
CN105927579B (zh) * 2016-07-01 2019-01-04 南京林业大学 一种无内漏轴向力自平衡的离心式流体输送装置
US20200355194A1 (en) * 2019-05-06 2020-11-12 Carrier Corporation Seal assembly for compressor
EP3805570A1 (de) * 2019-10-09 2021-04-14 Sulzer Management AG Kreiselpumpe zum fördern eines fluids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107891A (ja) * 1999-10-07 2001-04-17 Mitsubishi Heavy Ind Ltd 遠心多段型圧縮機
CN101892989A (zh) * 2010-06-13 2010-11-24 西安航天泵业有限公司 一种高压双吸泵
CN104806560A (zh) * 2014-01-23 2015-07-29 珠海格力电器股份有限公司 密封零件及离心压缩机
CN104100540A (zh) * 2014-08-07 2014-10-15 珠海格力电器股份有限公司 离心式压缩机及具有其的空调系统
CN112780584A (zh) * 2021-02-22 2021-05-11 珠海格力电器股份有限公司 磁悬浮压缩机
CN113864211A (zh) * 2021-08-19 2021-12-31 青岛海尔智能技术研发有限公司 磁悬浮泵、具有其的制冷设备和空调室外机

Also Published As

Publication number Publication date
CN113864211A (zh) 2021-12-31
EP4361448A4 (en) 2024-10-23
EP4361448A1 (en) 2024-05-01
JP2024530240A (ja) 2024-08-16

Similar Documents

Publication Publication Date Title
US11067080B2 (en) Low cost scroll compressor or vacuum pump
EP3401549A1 (en) Turbo compressor
WO2023020087A1 (zh) 磁悬浮泵、具有其的制冷设备和空调室外机
CN108252908B (zh) 一种自平衡湿式罗茨泵
CN203641009U (zh) 涡旋压缩机的支架及涡旋压缩机
JP2014196690A (ja) 固定スクロール体及びスクロール式流体機械
CN110177946A (zh) 涡旋压缩机
US11402022B2 (en) Mechanical seal having auxiliary lubricating device
CN104763631A (zh) 具有滑动和滚动摩擦副曲轴支撑结构的涡旋制冷压缩机
JP2016503856A (ja) 大型圧縮機バンドル組立体
CN202991488U (zh) 一种有轴向柔性密封的涡旋压缩机
WO2022111294A1 (zh) 气体轴承和具有其的离心压缩机
CN112943616B (zh) 压缩机及具有其的空调器
CN215949875U (zh) 磁悬浮泵、制冷设备和空调室外机
GB2614117A (en) Electric pump with isolated stator
CN111486107A (zh) 离心压缩机、热泵系统
WO2020253796A1 (zh) 轴组件和包括该轴组件的压缩机
WO2022087922A1 (zh) 一种容积式空气压缩机
CN211082364U (zh) 一种核电用设备冷却水泵的密封环结构
CN111425404A (zh) 一种高扬程低轴向力两级湿式电子离心泵及其使用方法
CN213392717U (zh) 一种封闭式铸铁泵
CN220566246U (zh) 一种润滑油加工的多级供油装置
CN214533609U (zh) 静压气体轴承支撑的空调压缩机
CN219827142U (zh) 一种制冷螺杆压缩机
CN210317920U (zh) 无油空气泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022857400

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022857400

Country of ref document: EP

Effective date: 20240124

WWE Wipo information: entry into national phase

Ref document number: 2024509328

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE