WO2023020054A1 - 分配器和空调器 - Google Patents

分配器和空调器 Download PDF

Info

Publication number
WO2023020054A1
WO2023020054A1 PCT/CN2022/093921 CN2022093921W WO2023020054A1 WO 2023020054 A1 WO2023020054 A1 WO 2023020054A1 CN 2022093921 W CN2022093921 W CN 2022093921W WO 2023020054 A1 WO2023020054 A1 WO 2023020054A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
equal
channel
inner diameter
jet
Prior art date
Application number
PCT/CN2022/093921
Other languages
English (en)
French (fr)
Inventor
郜哲明
刘艳涛
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2023020054A1 publication Critical patent/WO2023020054A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions

Definitions

  • the present application relates to the technical field of air conditioning, in particular to a distributor and an air conditioner.
  • some air conditioners use multi-flow heat exchangers.
  • the refrigerant usually needs to be divided into multiple flow paths of the heat exchanger through a distributor.
  • the current low-pressure drop distributors are usually non-vertical Direct installation, when the two-phase refrigerant entering the distributor is an unstable intermittent flow or a slug flow, when large gas bombs or large bubbles in the refrigerant enter the distribution chamber from the inlet pipe, they will gather in the distribution chamber under the action of buoyancy above, while the liquid phase gathers below the distribution chamber under the action of gravity.
  • the main purpose of this application is to propose a distributor aimed at improving the distribution uniformity.
  • the dispenser proposed by the present application includes:
  • the liquid inlet part is provided with a steady flow channel, a transition flow channel and a jet flow channel sequentially connected in the direction of refrigerant flow, the size of the jet flow channel is smaller than the size of the steady flow channel, and the size of the transition channel is the inner diameter gradually decreases in a direction approaching the jet flow path;
  • a splitter part is connected to the liquid inlet part, the splitter part is provided with a plurality of splitter channels, and the plurality of splitter channels are all in communication with the jet flow channel.
  • liquid inlet part and the flow diversion part are integrally formed.
  • the inner wall of the steady flow channel is cylindrical; and/or, the inner wall of the jet channel is cylindrical.
  • the axis of each of the sub-channels is inclined relative to the axis of the jet flow channel, and the included angle between the axis of the sub-runner and the axis of the jet flow channel is greater than or equal to 5°, and less than or equal to equal to 30°.
  • the liquid inlet part is further provided with a first connection hole, the first connection hole is connected to the end of the steady flow channel away from the jet flow channel, and the first connection hole
  • the inner diameter is larger than the inner diameter of the steady flow channel, and the first connection hole is used for inserting a refrigerant inlet pipe.
  • the length of the first connecting hole is greater than or equal to 3 mm and less than or equal to 10 mm.
  • the inner diameter of the first connection hole is greater than or equal to 5mm and less than or equal to 16mm.
  • the inner diameter of the steady flow channel is greater than or equal to 5mm and less than or equal to 16mm.
  • the inner diameter of the jet channel is greater than or equal to 3mm and less than or equal to 12mm.
  • the inner diameter of the branch channel is greater than or equal to 2mm and less than or equal to 7mm.
  • the length of the steady flow channel is greater than or equal to 3 mm and less than or equal to 10 mm.
  • the length of the jet channel is greater than or equal to 5 mm and less than or equal to 10 mm.
  • the length of the transition channel is greater than or equal to 1 mm and less than or equal to 10 mm.
  • the splitter part is provided with a second connecting hole, the second connecting hole is connected to an end of the splitting channel away from the jet flow channel, and the inner diameter of the second connecting hole is larger than that of the jet channel.
  • the inner diameter of the flow channel, the second connection hole is used for plugging the refrigerant outlet pipe.
  • the inner diameter of the second connection hole is greater than or equal to 4mm and less than or equal to 10mm.
  • the present application also proposes an air conditioner, including the above-mentioned distributor.
  • the liquid inlet part of the distributor is provided with a steady flow channel, a transition flow channel and a jet flow channel sequentially connected in the refrigerant flow direction, so that the size of the jet flow channel is smaller than the size of the steady flow channel, and The inner diameter of the transition channel decreases gradually towards the jet channel.
  • the flow rate of the two-phase refrigerant in the jet channel can be increased.
  • the gas-liquid two-phase mixing of the two-phase refrigerant in the jet flow channel is more fully and evenly mixed, so that when the two-phase refrigerant quickly flows to each sub-flow channel, the refrigerant flowing into each sub-flow channel is a two-phase refrigerant with uniform gas-liquid two-phase mixing, Improved distribution uniformity.
  • Fig. 1 is the structural representation of an embodiment of the dispenser of the present application
  • Fig. 2 is a schematic structural view of the distributor in Fig. 1 viewed from another angle;
  • Fig. 3 is a cross-sectional view at C-C in Fig. 2 .
  • the directional indication is only used to explain the relationship between the components in a certain posture. If the specific posture changes, the directional indication will also change accordingly.
  • the present application proposes a distributor for an air conditioner, and the distributor can be used for an evaporator or a condenser of the air conditioner.
  • the distributor 10 includes a liquid inlet part 11 and a splitter part 12, and the liquid inlet part 11 is provided with a steady flow channel 112 sequentially connected in the refrigerant flow direction, a transition The flow channel 113 and the jet flow channel 114 , the size of the jet flow channel 114 is smaller than that of the steady flow channel 112 , and the inner diameter of the transition flow channel 113 gradually decreases toward the jet flow channel 114 .
  • the splitter part 12 is connected to the liquid inlet part 11 , and the splitter part 12 is provided with a plurality of splitter channels 121 , and the plurality of splitter channels 121 communicate with the jet flow channel 114 .
  • the inner wall surface of the steady flow channel 112 is cylindrical, that is, the inner diameter of the steady flow channel 112 remains constant in the refrigerant flow direction.
  • the flow state of the two-phase refrigerant flowing in the steady flow channel 112 can be avoided from changing, and the two-phase refrigerant can flow in the steady flow channel 112 The flow gradually tends to a steady flow state, so that the two-phase refrigerant can flow stably from the transition flow channel 113 to the jet flow channel 114 .
  • the interior of the steady flow channel 112 can also adopt other structures.
  • the technical solution of the present application provides a steady flow channel 112, a transition flow channel 113 and a jet flow channel 114 which are sequentially connected in the direction of refrigerant flow in the liquid inlet portion 11 of the distributor 10, so that the size of the jet flow channel 114 is smaller than that of the steady flow channel.
  • the size of the flow channel 112 , and the inner diameter of the transition flow channel 113 gradually decreases in the direction approaching the jet flow channel 114 .
  • the flow state of the two-phase refrigerant flowing in the steady flow channel 112 can be avoided from changing, and the two-phase refrigerant can flow in the steady flow channel 112
  • the flow gradually tends to a steady flow state, so that the two-phase refrigerant can flow stably from the transition flow channel 113 to the jet flow channel 114 .
  • the two-phase refrigerant flows from the transition flow channel 113 to the jet flow channel 114, under the same pressure, since the size of the jet flow channel 114 is smaller than the size of the steady flow channel 112, the flow of the two-phase refrigerant in the jet flow can be increased.
  • the flow velocity in the passage 114 so that the gas-liquid two-phase mixture of the two-phase refrigerant in the jet flow passage 114 is more fully and evenly mixed, so that when the two-phase refrigerant quickly flows to each sub-flow passage 121, the refrigerant flowing into each sub-flow passage 121 is equal to
  • the gas-liquid two-phase mixed uniform two-phase refrigerant improves the distribution uniformity.
  • the steady flow channel 112 when the inner diameter of the transition flow channel 113 is gradually reduced in the direction close to the jet flow channel 114, it can effectively prevent the two-phase refrigerant from flowing from the steady flow channel 112 to the jet flow channel.
  • the flow noise of the two-phase refrigerant increases due to a sudden change in the hole diameter, so the flow noise in the distributor 10 can be reduced.
  • the inner wall surface of the jet channel 114 is cylindrical, that is, the inner diameter of the jet channel 114 remains constant in the refrigerant flow direction. In this way, when the two-phase refrigerant flows into the jet flow channel 114, the flow state of the two-phase refrigerant with uniform gas-liquid two-phase mixing can be avoided from changing in the flow state of the jet flow channel 114, and the two-phase refrigerant can flow in the jet flow channel 114.
  • the flow is diverted to each distribution channel 121 in a relatively stable state, which reduces the risk of small bubbles in the two-phase refrigerant colliding with each other and merging to form large bubbles, and can further improve the uniformity of distribution.
  • the inner diameter of the jet channel 114 decreases gradually in the direction of refrigerant flow.
  • the liquid inlet part 11 and the diverter part 12 are integrally formed. That is, by forming the steady flow channel 112, the transition channel 113, the jet flow channel 114 and a plurality of branch channels 121 on a complete material, the structure is simple, easy to form, and can also reduce the gap between the liquid inlet part 11 and the flow part 12. assembly process, so that the production efficiency of the dispenser 10 can be improved. Moreover, it is also convenient to ensure the matching accuracy of the plurality of sub-flow channels 121 and the jet flow channel 114, which can reduce or even avoid the possibility of steps or gaps between the sub-flow channels 121 and the jet flow channels 114, and can further reduce the flow rate in the distributor 10. noise.
  • the liquid inlet part 11 and the flow distribution part 12 can also be welded together.
  • the axis of each branch channel 121 is inclined relative to the axis of the jet channel 114, and the included angle between the axis of the branch channel 121 and the axis of the jet channel 114 (refer to label a in FIG. 3 ) is greater than or equal to 5 °, and less than or equal to 30°.
  • the included angle between the axis of the branch channel 121 and the axis of the jet channel 114 is too large, the flow direction of the two-phase refrigerant will be greatly changed, and on the one hand, the flow of the two-phase refrigerant from the jet channel 114 to the branch channel 121 will be increased The flow resistance, on the other hand, will cause the two-phase refrigerant to collide with the inner wall of the sub-flow channel 121 to generate loud noise.
  • the included angle between the axis of the flow channel 121 and the axis of the jet channel 114 is too small, the distance between the outlets of the flow channels 121 will be small, which increases the difficulty of installing the refrigerant pipeline.
  • the flow resistance and noise of the two-phase refrigerant flowing from the jet flow channel 114 to the sub-flow channel 121 can be relatively low.
  • the small size also makes the distance between the outlets of the sub-flow channels 121 relatively large, so as to facilitate the installation of refrigerant pipelines.
  • the included angle between the axis of each branch channel 121 and the axis of the main channel can be 5°, 6°, 7°, 8°, 9°, 10°, 11°, 12°, 13°, 14°, 15° , 16°, 17°, 18°, 19°, 20°, 21°, 22°, 23°, 24°, 25°, 26°, 27°, 28°, 29° or 30° etc.
  • the included angle between the axis of the branch channel 121 and the axis of the jet channel 114 may also be less than 5° or greater than 30°.
  • the inner diameter of the branch channel 121 is greater than or equal to 2 mm and less than or equal to 7 mm. Specifically, too small inner diameter of the flow channel 121 will increase the flow resistance of the two-phase refrigerant flowing into the flow channel 121 , which is not conducive to the flow of the refrigerant, and will increase the difficulty of forming the flow channel 121 and increase the production cost.
  • each sub-flow channel 121 may not be filled with two-phase refrigerant, resulting in two-phase refrigerant entering part of the sub-flow channels 121. There are more two-phase refrigerants, but less two-phase refrigerants entering the other part of the flow channel 121 , and the distribution uniformity is poor.
  • the inner diameter of the flow distribution channel 121 between 2mm and 7mm, it can ensure that the flow effect of the two-phase refrigerant flowing into the flow distribution channel 121 is better, and the distribution uniformity is better.
  • the inner diameter of the flow channel 121 may be 2mm, 3mm, 4mm, 5mm, 6mm or 7mm and so on. Of course, in other embodiments, the inner diameter of the flow channel 121 may also be smaller than 2mm or larger than 7mm.
  • the liquid inlet part 11 is also provided with a first connection hole 111, the first connection hole 111 is connected to the end of the steady flow channel 112 away from the jet flow channel 114, and the inner diameter of the first connection hole 111 is larger than that of the steady flow channel 114.
  • the inner diameter of the flow channel 112 and the first connection hole 111 are used for inserting the refrigerant inlet pipe.
  • the inner diameter of the first connecting hole 111 is less than or equal to the inner diameter of the steady flow channel 112
  • the inner diameter of the refrigerant inlet pipe and the steady flow channel 112 will If the difference is large, it will disturb the flow channel of the two-phase refrigerant, and may cause the bubbles in the two-phase refrigerant to expand and form large bubbles due to the sudden increase in space when the two-phase refrigerant flows from the refrigerant inlet pipe to the steady flow channel 112 The situation is not conducive to the distribution uniformity.
  • the inner diameter of the first connecting hole 111 larger than the inner diameter of the steady flow channel 112
  • the inner diameter of the refrigerant inlet pipe and the inner diameter of the steady flow channel 112 can be compared. It is close to or equivalent, which can reduce the risk of changing the state of the flow channel and generating large air bubbles due to sudden changes in space when the two-phase refrigerant flows from the refrigerant inlet pipe to the steady flow channel 112 .
  • the inner diameter of the first connecting hole 111 is greater than or equal to 5 mm and less than or equal to 16 mm.
  • the first connection hole 111 can be adapted to more refrigerant inlet pipes of different sizes, so that the applicability of the distributor 10 is wider.
  • the inner diameter of the first connection hole 111 may be 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, 11mm, 12mm, 13mm, 14mm, 15mm or 16mm and so on.
  • the inner diameter of the first connecting hole 111 may also be smaller than 5 mm or larger than 16 mm.
  • the length of the first connecting hole 111 is greater than or equal to 3 mm and less than or equal to 10 mm. Specifically, if the length of the first connecting hole 111 is too small, the connection area between the refrigerant inlet pipe and the distributor 10 will be too small, the connection stability will be poor, and the risk of the refrigerant inlet pipe being separated from the distributor 10 during use is high. On the other hand, if the length of the first connecting hole 111 is too long, it will increase the manufacturing difficulty and cost of the first connecting hole 111 , and also increase the overall length of the dispenser 10 , resulting in a waste of resources.
  • the length of the first connection hole 111 When the length of the first connection hole 111 is set between 3 mm and 10 mm, it can better ensure that the refrigerant inlet pipe and the distributor 10 are reliably connected, and can also avoid the distributor 10 being too long, so that the structure of the distributor 10 is comparatively low. compact.
  • the length of the first connection hole 111 may be 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm or 10mm and so on. Of course, in other embodiments, the length of the first connection hole 111 may also be less than 3 mm or greater than 10 mm.
  • the length of the steady flow channel 112 is greater than or equal to 3 mm and less than or equal to 10 mm. Specifically, if the length of the steady flow channel 112 is too small, it is difficult to play the role of steady flow, and if the length of the steady flow channel 112 is too large, the length of the distributor 10 will be too long, and it will also make the The jet flow channel 114 is far away from the inlet of the distributor 10 , which increases the difficulty of forming the jet flow channel 114 . By setting the length of the steady flow channel 112 between 3 mm and 10 mm, it can be ensured that the steady flow channel 112 can better stabilize the flow while avoiding the jet flow caused by the excessive length of the steady flow channel 112.
  • the length of the steady flow channel 112 may be 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm or 10mm and so on. Of course, in other embodiments, the length of the steady flow channel 112 may also be less than 3 mm or greater than 10 mm.
  • the inner diameter of the steady flow channel 112 is greater than or equal to 5 mm and less than or equal to 16 mm.
  • the steady flow passage 112 can be adapted to more refrigerant inlet pipes of different sizes, and the inner diameter of the refrigerant inlet pipe and the inner diameter of the steady flow passage 112 are prevented from being too large.
  • the inner diameter of the steady flow channel 112 may be 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, 11mm, 12mm, 13mm, 14mm, 15mm or 16mm.
  • the inner diameter of the steady flow channel 112 may also be smaller than 5mm or larger than 16mm.
  • the length of the jet channel 114 is greater than or equal to 5 mm and less than or equal to 10 mm. Specifically, if the length of the jet flow channel 114 is too small, the gas-liquid two phases of the two-phase refrigerant entering the jet flow channel 114 may be divided into the distribution channels 121 before they are evenly mixed, resulting in poor distribution uniformity. However, if the length of the jet channel 114 is too large, the overall length of the distributor 10 will be increased, and the degree of improvement in the distribution uniformity will be small, which will increase the production cost.
  • the length of the jet flow channel 114 By setting the length of the jet flow channel 114 between 5 mm and 10 mm, the two-phase refrigerant entering the jet flow channel 114 can be mixed uniformly, further improving the uniformity of flow distribution, and avoiding the overall length of the distributor 10 from being too long. Situations that increase difficulty and cost of production.
  • the length of the jet channel 114 may be 5mm, 6mm, 7mm, 8mm, 9mm or 10mm and so on. Certainly, in other embodiments, the length of the jet channel 114 may also be less than 5 mm or greater than 10 mm.
  • the inner diameter of the jet channel 114 is greater than or equal to 3 mm and less than or equal to 12 mm. Specifically, if the inner diameter of the jet flow channel 114 is too small, the difference between the inner diameters of the steady flow channel 112 and the jet flow channel 114 will be relatively large, which may increase the flow of the two-phase refrigerant from the steady flow channel 112 to the jet flow channel 114. If the inner diameter of the jet flow channel 114 is too large, the difference between the inner diameters of the steady flow channel 112 and the jet flow channel 114 will be small, and the gas-liquid two-phase mixing degree will be low when the two-phase refrigerant enters the jet flow channel 114 , poor distribution uniformity.
  • the inner diameter of the flow distribution channel 121 By setting the inner diameter of the flow distribution channel 121 between 3 mm and 12 mm, excessive noise of the two-phase refrigerant flowing from the steady flow flow channel 112 to the jet flow channel 114 can be avoided, and good distribution uniformity can also be ensured.
  • the inner diameter of the jet channel 114 can be 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, 11mm or 12mm, etc.
  • the inner diameter of the jet channel 114 may also be smaller than 3mm or larger than 12mm.
  • the length of the transition channel 113 is greater than or equal to 1 mm and less than or equal to 10 mm. Specifically, when the dimensions of the steady-flow channel 112 and the jet channel 114 remain unchanged, if the length of the transition channel 113 is too small, the rate of change of the inner diameter between the large-diameter end and the small-diameter end of the transition channel 113 will be too large , which makes it difficult for the transition channel 113 to realize the transition effect between the steady flow channel 112 and the jet flow channel 114 , which will result in relatively loud flow noise of the two-phase refrigerant.
  • the length of the transition flow channel 113 may be 1mm, 2mm, 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm or 10mm and so on. Certainly, in other embodiments, the length of the transition channel 113 may also be less than 1 mm or greater than 10 mm.
  • the splitter 12 is provided with a second connecting hole 122, the second connecting hole 122 is connected to the end of the splitting channel 121 away from the jet flow channel 114, the inner diameter of the second connecting hole 122 is larger than the inner diameter of the splitting channel 121,
  • the second connection hole 122 is used for inserting the refrigerant outlet pipe. Specifically, if the inner diameter of the second connection hole 122 is less than or equal to the inner diameter of the steady flow channel 112, when the refrigerant outlet pipe is inserted into the second connection hole 122, the refrigerant outlet pipe will protrude from the inner wall surface of the flow distribution channel 121. , so that the two-phase refrigerant will collide with the end of the refrigerant outlet pipe and generate loud noise.
  • the inner diameter of the second connecting hole 122 After making the inner diameter of the second connecting hole 122 larger than the inner diameter of the steady flow channel 112, when the refrigerant outlet pipe is inserted into the second connection hole 122, the inner diameter of the refrigerant outlet pipe and the inner diameter of the steady flow channel 112 can be compared. Close or equal, can reduce the risk of noise caused by two-phase refrigerant impinging on the end of the refrigerant outlet pipe.
  • the inner diameter of the second connecting hole 122 is greater than or equal to 4 mm and less than or equal to 10 mm.
  • the second connection hole 122 can be adapted to more refrigerant outlet pipes of different sizes, so that the applicability of the distributor 10 is wider.
  • the inner diameter of the second connecting hole 122 may be 4mm, 5mm, 6mm, 7mm, 8mm, 9mm or 10mm and so on.
  • the inner diameter of the second connecting hole 122 may also be smaller than 4mm or larger than 10mm.
  • the present application also proposes an air conditioner, which includes a heat exchanger and a distributor 10.
  • an air conditioner which includes a heat exchanger and a distributor 10.
  • the heat exchanger has a plurality of flow paths, and the inflow end of each flow path communicates with a branch flow channel 121 correspondingly.
  • the heat exchanger can be an evaporator or a condenser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本申请公开一种分配器和空调器,其中,该分配器包括进液部和分流部,所述进液部设有在冷媒流动方向上依次连接的稳流流道、过渡流道和射流流道,所述射流流道的尺寸小于所述稳流流道的尺寸,所述过渡流道的内径在靠近所述射流流道的方向上逐渐减小。所述分流部连接于所述进液部,所述分流部设有多个分流道,多个所述分流道均与所述射流流道连通。

Description

分配器和空调器
本申请要求于2021年8月18日申请的、申请号为202121944071.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,特别涉及一种分配器和空调器。
背景技术
目前一些空调器中会采用多流路换热器,这种空调器中通常需要通过分配器将冷媒分流至换热器的多个流路中,而目前的低压降型分配器通常为非竖直安装,当进入分配器的两相冷媒为不稳定间歇流或弹状流时,冷媒中大的气弹或者大的气泡由入口管进入到分配腔时,将在浮力作用下聚集在分配腔上方,而液相则在重力作用下聚集在分配腔下方。两相冷媒流动到各出口管时,处于上方的出口管将主要被气相占据,而处于下方的出口管则将主要被液相占据,导致从分配器各出口管流入换热器支路的制冷剂流量相差较大,分流均匀性严重下降。
技术问题
本申请的主要目的是提出一种分配器,旨在提高分流均匀性。
技术解决方案
为实现上述目的,本申请提出的分配器,包括:
进液部,设有在冷媒流动方向上依次连接的稳流流道、过渡流道和射流流道,所述射流流道的尺寸小于所述稳流流道的尺寸,所述过渡流道的内径在靠近所述射流流道的方向上逐渐减小;以及
分流部,所述分流部连接于所述进液部,所述分流部设有多个分流道,多个所述分流道均与所述射流流道连通。
在一实施例中,所述进液部与所述分流部一体成型。
在一实施例中,所述稳流流道的内壁面呈圆柱面形;和/或,所述射流流道的内壁面呈圆柱面形。
在一实施例中,各个所述分流道的轴线均相对所述射流流道的轴线倾斜,所述分流道的轴线与所述射流流道的轴线的夹角大于或等于5°,且小于或等于30°。
在一实施例中,所述进液部还设有第一连接孔,所述第一连接孔连接于所述稳流流道的远离所述射流流道的一端,所述第一连接孔的内径大于所述稳流流道的内径,所述第一连接孔用于供冷媒进管插接。
在一实施例中,所述第一连接孔的长度大于或等于3mm,且小于或等于10mm。
在一实施例中,所述第一连接孔的内径大于或等于5mm,且小于或等于16mm。
在一实施例中,所述稳流流道的内径大于或等于5mm,且小于或等于16mm。
在一实施例中,所述射流流道的内径大于或等于3mm,且小于或等于12mm。
在一实施例中,所述分流道的内径大于或等于2mm、且小于或等于7mm。
在一实施例中,所述稳流流道的长度大于或等于3mm,且小于或等于10mm。
在一实施例中,所述射流流道的长度大于或等于5mm,且小于或等于10mm。
在一实施例中,所述过渡流道的长度大于或等于1mm,且小于或等于10mm。
在一实施例中,所述分流部设有第二连接孔,所述第二连接孔连接于所述分流道的远离所述射流流道的一端,所述第二连接孔的内径大于所述分流道的内径,所述第二连接孔用于供冷媒出管插接。
在一实施例中,所述第二连接孔的内径大于或等于4mm,且小于或等于10mm。
本申请还提出一种空调器,包括如上述的分配器。
有益效果
本申请技术方案通过在分配器的进液部设有在冷媒流动方向上依次连接的稳流流道、过渡流道和射流流道,使得射流流道的尺寸小于稳流流道的尺寸,且过渡流道的内径在靠近射流流道的方向上逐渐减小。如此当两相冷媒从冷媒进管流入稳流流道内后,能避免两相冷媒在稳流流道中流动时流动状态产生变化的情况,可以使得两相冷媒在稳流流道流动过程中逐渐趋于稳定流动的状态,从而使得两相冷媒可以稳定地从过渡流道流向射流流道。而当两相冷媒从过渡流道流向射流流道的过程中,在相同的压力下,由于射流流道的尺寸小于稳流流道的尺寸,故可以增加两相冷媒在射流流道中的流速,从而使射流流道内两相冷媒的气液两相混合更充分均匀,以在两相冷媒快速流向各分流道时,使得各分流道中流入的冷媒均为气液两相混合均匀的两相冷媒,提高了分流均匀性。此外,在设置稳流流道的情况下,再将过渡流道的内径在靠近射流流道的方向上逐渐减小时,可以有效避免两相冷媒从稳流流道流向射流流道时因孔径突变而导致两相冷媒流动噪音增大的情况,能够降低分配器内的流动噪音。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请分配器一实施例的结构示意图;
图2为图1中分配器从另一角度看的结构示意图;
图3为图2中C-C处的剖视图。
附图标号说明:
标号 名称 标号 名称
10 分配器 114 射流流道
11 进液部 12 分流部
111 第一连接孔 121 分流道
112 稳流流道 122 第二连接孔
113 过渡流道    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B为例”,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种分配器,用于空调器,该分配器可以用于空调器的蒸发器,也可以用于冷凝器。
在本申请实施例中,请参照图1至图3,该分配器10包括进液部11和分流部12,进液部11设有在冷媒流动方向上依次连接的稳流流道112、过渡流道113和射流流道114,射流流道114的尺寸小于稳流流道112的尺寸,过渡流道113的内径在靠近射流流道114的方向上逐渐减小。分流部12连接于进液部11,分流部12设有多个分流道121,多个分流道121均与射流流道114连通。
本实施例中,稳流流道112的内壁面呈圆柱面形,即稳流流道112的内径在冷媒流动方向上保持不变。如此当两相冷媒从冷媒进管流入稳流流道112内后,能避免两相冷媒在稳流流道112中流动时流动状态产生变化的情况,可以使得两相冷媒在稳流流道112流动过程中逐渐趋于稳定流动的状态,从而使得两相冷媒可以稳定地从过渡流道113流向射流流道114。当然,在其它实施例中,在保证稳流流道112沿其长度方向各处的横截面积相同时,稳流流道112的内部也可以采用其它结构。
本申请技术方案通过在分配器10的进液部11设有在冷媒流动方向上依次连接的稳流流道112、过渡流道113和射流流道114,使得射流流道114的尺寸小于稳流流道112的尺寸,且过渡流道113的内径在靠近射流流道114的方向上逐渐减小。如此当两相冷媒从冷媒进管流入稳流流道112内后,能避免两相冷媒在稳流流道112中流动时流动状态产生变化的情况,可以使得两相冷媒在稳流流道112流动过程中逐渐趋于稳定流动的状态,从而使得两相冷媒可以稳定地从过渡流道113流向射流流道114。而当两相冷媒从过渡流道113流向射流流道114的过程中,在相同的压力下,由于射流流道114的尺寸小于稳流流道112的尺寸,故可以增加两相冷媒在射流流道114中的流速,从而使射流流道114内两相冷媒的气液两相混合更充分均匀,以在两相冷媒快速流向各分流道121时,使得各分流道121中流入的冷媒均为气液两相混合均匀的两相冷媒,提高了分流均匀性。此外,在设置稳流流道112的情况下,再将过渡流道113的内径在靠近射流流道114的方向上逐渐减小时,可以有效避免两相冷媒从稳流流道112流向射流流道114时因孔径突变而导致两相冷媒流动噪音增大的情况,能够降低分配器10内的流动噪音。
在一实施例中,射流流道114的内壁面呈圆柱面形,即射流流道114的内径在冷媒流动方向上保持不变。如此当两相冷媒流入射流流道114内后,能避免气液两相混合均匀的两相冷媒在射流流道114中流动时流动状态产生变化的情况,可以使得两相冷媒在射流流道114以较为稳定的状态分流至各分流道121,降低两相冷媒中小气泡相互碰撞融合形成大气泡的风险,能进一步提高分流均匀性。当然,在其它实施例中,射流流道114的内径在冷媒流动方向上逐渐减小。
在一实施例中,进液部11与分流部12一体成型。即通过在一个完整材料上成型出稳流流道112、过渡流道113、射流流道114和多个分流道121,如此结构简单,便于成型,也能减少进液部11与分流部12的装配工序,从而可以提升分配器10的生产效率。而且如此还能便于保证多个分流道121和射流流道114的配合精度,可以降低甚至避免分流道121和射流流道114之间存在台阶或缝隙的可能,能够进一步降低分配器10内的流动噪音。当然,在其它实施例中,进液部11和分流部12也可以焊接在一起。
在一实施例中,各个分流道121的轴线均相对射流流道114的轴线倾斜,分流道121的轴线与射流流道114的轴线的夹角(参照图3中的标注a)大于或等于5°,且小于或等于30°。具体而言,若分流道121的轴线与射流流道114的轴线的夹角过大,会大幅改变两相冷媒的流动方向,一方面增大两相冷媒从射流流道114流向分流道121的流动阻力,另一方面会导致两相冷媒撞击在分流道121的内壁而产生较大噪音的情况。而若分流道121的轴线与射流流道114的轴线的夹角过小,会导致各分流道121的出口之间的间距较小,增加冷媒管路的安装难度。而通过将分流道121的轴线与射流流道114的轴线的夹角设置在5°至30°之间时,可以使得两相冷媒从射流流道114流向分流道121时的流动阻力和噪音较小,也使得各分流道121出口之间的间距较大,以便于安装冷媒管路。其中,各分流道121的轴线与主流道的轴线的夹角可以为5°、6°、7°、8°、9°、10°、11°、12°、13°、14°、15°、16°、17°、18°、19°、20°、21°、22°、23°、24°、25°、26°、27°、28°、29°或30°等。当然,在其它实施例中,分流道121的轴线与射流流道114的轴线的夹角也可以小于5°或大于30°。
在一实施例中,分流道121的内径大于或等于2mm,且小于或等于7mm。具体而言,分流道121的内径过小时,会增大两相冷媒流入分流道121时的流动阻力,不利于冷媒的流动,而且会导致分流道121的成型难度增大,生产成本高。而若分流道121的内径过大,当各分流道121的总截面面积大于稳流流道112的截面面积时,可能导致各分流道121不能充满两相冷媒,导致进入部分分流道121的两相冷媒较多,而进入另一部分分流道121的两相冷媒较少,分流均匀性差。通过将分流道121的内径设置在2mm至7mm之间时,可以保证两相冷媒流入分流道121的流动效果较好,保证分流均匀性较好。其中,分流道121的内径可以为2mm、3mm、4mm、5mm、6mm或7mm等。当然,在其它实施例中,分流道121的内径也可以小于2mm或大于7mm。
在一实施例中,进液部11还设有第一连接孔111,第一连接孔111连接于稳流流道112的远离射流流道114的一端,第一连接孔111的内径大于稳流流道112的内径,第一连接孔111用于供冷媒进管插接。具体而言,若第一连接孔111的内径小于或等于稳流流道112的内径,在将冷媒进管插入第一连接孔111内时,会导致冷媒进管与稳流流道112的内径相差较大,会对两相冷媒的流道产生扰动,且可能导致两相冷媒从冷媒进管流向稳流流道112时因空间突然增大而导致两相冷媒中的气泡膨胀形成大气泡的情况,不利于分流均匀性。而通过使第一连接孔111的内径大于稳流流道112的内径后,再将冷媒进管插入第一连接孔111内时,可以使得冷媒进管的内径与稳流流道112的内径较为接近或相当,可以降低两相冷媒从冷媒进管流向稳流流道112时因空间突变而改变流道状态和产生大气泡的风险。
在一实施例中,第一连接孔111的内径大于或等于5mm,且小于或等于16mm。如此设置,可以使得第一连接孔111可以适应更多不同尺寸的冷媒进管,使得分配器10的适用范围更广。其中,第一连接孔111的内径可以为5mm、6mm、7mm、8mm、9mm、10mm、11mm、12mm、13mm、14mm、15mm或16mm等。当然,在其它实施例中,第一连接孔111的内径也可以小于5mm或大于16mm。
在一实施例中,第一连接孔111的长度大于或等于3mm,且小于或等于10mm。具体而言,若第一连接孔111的长度过小,会导致冷媒进管与分配器10的连接面积过小,连接稳定性差,在使用过程中冷媒进管与分配器10脱离风险高。而若第一连接孔111的长度过长,会增加第一连接孔111的制造难度和成本,也会增加分配器10的整体长度,造成资源浪费。而将第一连接孔111的长度设置在3mm至10mm之间时,既能较好的保证冷媒进管与分配器10连接可靠,也能避免分配器10过长,使得分配器10的结构较为紧凑。第一连接孔111的长度可以为3mm、4mm、5mm、6mm、7mm、8mm、9mm或10mm等。当然,在其它实施例中,第一连接孔111的长度也可以小于3mm或大于10mm。
在一实施例中,稳流流道112的长度大于或等于3mm,且小于或等于10mm。具体而言,若稳流流道112的长度过小,难以起到稳流的作用,而若稳流流道112的长度过大,则会导致分配器10的长度过长,而且也会使得射流流道114距分配器10入口的距离较远,增大射流流道114的成型难度。通过将稳流流道112的长度设置在3mm至10mm之间时,可以保证稳流流道112能较好地起到稳流作用的同时,避免因稳流流道112长度过长而导致射流流道114的成型难度过大的情况。其中,稳流流道112的长度可以为3mm、4mm、5mm、6mm、7mm、8mm、9mm或10mm等。当然,在其它实施例中,稳流流道112的长度也可以小于3mm或大于10mm。
在一实施例中,稳流流道112的内径大于或等于5mm,且小于或等于16mm。如此设置,可以使得稳流流道112可以适应更多不同尺寸的冷媒进管,避免冷媒进管的内径与稳流流道112的内径相差过大。其中,稳流流道112的内径可以为5mm、6mm、7mm、8mm、9mm、10mm、11mm、12mm、13mm、14mm、15mm或16mm等。当然,在其它实施例中,稳流流道112的内径也可以小于5mm或大于16mm。
在一实施例中,射流流道114的长度大于或等于5mm,且小于或等于10mm。具体而言,若射流流道114的长度过小,进入射流流道114的两相冷媒的气液两相可能还没混合均匀就分流至各分流道121,导致分流均匀性较差。而若射流流道114的长度过大,会增加分配器10的整体长度,且对于分流均匀性的提升幅度较小,增加生产成本。而通过将射流流道114的长度设置在5mm至10mm之间时,能够使得进入射流流道114的两相冷媒混合均匀,进一步提升分流均匀性,也能避免分配器10的整体长度过长而增加生产难度和成本的情况。其中,射流流道114的长度可以为5mm、6mm、7mm、8mm、9mm或10mm等。当然,在其它实施例中,射流流道114的长度也可以小于5mm或大于10mm。
在一实施例中,射流流道114的内径大于或等于3mm,且小于或等于12mm。具体而言,若射流流道114的内径过小,会导致稳流流道112和射流流道114的内径相差较大,可能会增大两相冷媒从稳流流道112流向射流流道114时的噪音,而若射流流道114的内径过大,会导致稳流流道112和射流流道114的内径相差较小,两相冷媒进入射流流道114时气液两相混合度较低,分流均匀性较差。通过将分流道121的内径设置在3mm至12mm之间时,即可以避免两相冷媒从稳流流道112流向射流流道114时的噪音过大的情况,也能保证分流均匀性较好。其中,射流流道114的内径可以为3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm、11mm或12mm等。当然,在其它实施例中,射流流道114的内径也可以小于3mm或大于12mm。
在一实施例中,过渡流道113的长度大于或等于1mm,且小于或等于10mm。具体而言,在稳流流道112和射流流道114的尺寸不变的情况下,若过渡流道113的长度过小,会导致过渡流道113大径端与小径端的内径变化率过大,导致过渡流道113难以实现稳流流道112和射流流道114之间的过渡效果,会导致两相冷媒流动噪音较大。而若过渡流道113的长度过大,会增大分配器10的长度,而且也会使得射流流道114距分配器10入口的距离较远,增大射流流道114的成型难度。通过将过渡流道113的长度设置在1mm至10mm之间时,能够使得过渡流道113的过渡效果较好,降低分配器10内的流动噪音,而且能避免分配器10的整体长度过长而增加生产难度和成本的情况。其中,过渡流道113的长度可以为1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm或10mm等。当然,在其它实施例中,过渡流道113的长度也可以小于1mm或大于10mm。
在一实施例中,分流部12设有第二连接孔122,第二连接孔122连接于分流道121的远离射流流道114的一端,第二连接孔122的内径大于分流道121的内径,第二连接孔122用于供冷媒出管插接。具体而言,若第二连接孔122的内径小于或等于稳流流道112的内径,在将冷媒出管插入第二连接孔122内时,会导致冷媒出管凸出分流道121的内壁面,这样两相冷媒会撞击在冷媒出管的端部而产生较大的噪音。而通过使第二连接孔122的内径大于稳流流道112的内径后,再将冷媒出管插入第二连接孔122内时,可以使得冷媒出管的内径与稳流流道112的内径较为接近或相当,可以降低两相冷媒撞击在冷媒出管的端部而产生噪音的风险。
在一实施例中,第二连接孔122的内径大于或等于4mm、且小于或等于10mm。如此设置,可以使得第二连接孔122可以适应更多不同尺寸的冷媒出管,使得分配器10的适用范围更广。其中,第二连接孔122的内径可以为4mm、5mm、6mm、7mm、8mm、9mm或10mm等。当然,在其它实施例中,第二连接孔122的内径也可以小于4mm或大于10mm。
本申请还提出一种空调器,该空调器包括换热器和分配器10,该分配器10的具体结构参照上述实施例,由于本空调器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,换热器具有多个流路,每一个流路的流入端对应与一个分流道121连通。该换热器可以为蒸发器,也可以为冷凝器。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种分配器,其中,包括:
    进液部,设有在冷媒流动方向上依次连接的稳流流道、过渡流道和射流流道,所述射流流道的尺寸小于所述稳流流道的尺寸,所述过渡流道的内径在靠近所述射流流道的方向上逐渐减小;以及
    分流部,所述分流部连接于所述进液部,所述分流部设有多个分流道,多个所述分流道均与所述射流流道连通。
  2. 如权利要求1所述的分配器,其中,所述进液部与所述分流部一体成型。
  3. 如权利要求1所述的分配器,其中,所述稳流流道的内壁面呈圆柱面形;和/或,所述射流流道的内壁面呈圆柱面形。
  4. 如权利要求1所述的分配器,其中,各个所述分流道的轴线均相对所述射流流道的轴线倾斜,所述分流道的轴线与所述射流流道的轴线的夹角大于或等于5°,且小于或等于30°。
  5. 如权利要求1所述的分配器,其中,所述进液部还设有第一连接孔,所述第一连接孔连接于所述稳流流道的远离所述射流流道的一端,所述第一连接孔的内径大于所述稳流流道的内径,所述第一连接孔用于供冷媒进管插接。
  6. 如权利要求5所述的分配器,其中,所述第一连接孔的长度大于或等于3mm,且小于或等于10mm;和/或,
    所述第一连接孔的内径大于或等于5mm,且小于或等于16mm。
  7. 如权利要求1所述的分配器,其中,所述稳流流道的内径大于或等于5mm,且小于或等于16mm;和/或,
    所述射流流道的内径大于或等于3mm,且小于或等于12mm;和/或,
    所述分流道的内径大于或等于2mm、且小于或等于7mm;和/或,
    所述稳流流道的长度大于或等于3mm,且小于或等于10mm;和/或,
    所述射流流道的长度大于或等于5mm,且小于或等于10mm;和/或,
    所述过渡流道的长度大于或等于1mm,且小于或等于10mm。
  8. 如权利要求1至7中任意一项所述的分配器,其中,所述分流部设有第二连接孔,所述第二连接孔连接于所述分流道的远离所述射流流道的一端,所述第二连接孔的内径大于所述分流道的内径,所述第二连接孔用于供冷媒出管插接。
  9. 如权利要求8所述的分配器,其中,所述第二连接孔的内径大于或等于4mm,且小于或等于10mm。
  10. 一种空调器,其中,包括如权利要求1至9中任意一项所述的分配器。
PCT/CN2022/093921 2021-08-18 2022-05-19 分配器和空调器 WO2023020054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121944071.9U CN215638163U (zh) 2021-08-18 2021-08-18 分配器和空调器
CN202121944071.9 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023020054A1 true WO2023020054A1 (zh) 2023-02-23

Family

ID=79899530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093921 WO2023020054A1 (zh) 2021-08-18 2022-05-19 分配器和空调器

Country Status (2)

Country Link
CN (1) CN215638163U (zh)
WO (1) WO2023020054A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215638163U (zh) * 2021-08-18 2022-01-25 广东美的制冷设备有限公司 分配器和空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340649A (ja) * 1992-06-10 1993-12-21 Mitsubishi Electric Corp 冷媒分配器及び熱交換器
CN202993693U (zh) * 2012-11-30 2013-06-12 广东美的电器股份有限公司 空调器及其冷媒分配器
CN204718205U (zh) * 2015-06-17 2015-10-21 新昌县丰亿电器有限公司 一种分配器
CN207035350U (zh) * 2017-07-26 2018-02-23 珠海格力电器股份有限公司 分流器、制冷系统及空调器
CN207556035U (zh) * 2017-11-29 2018-06-29 珠海格力电器股份有限公司 分流器及具有其的空调器
CN207649177U (zh) * 2017-12-19 2018-07-24 海信科龙电器股份有限公司 空调分配器及空调
CN210602360U (zh) * 2019-09-27 2020-05-22 广东美的制冷设备有限公司 冷媒分流器、蒸发器分流组件及空调器
CN215638163U (zh) * 2021-08-18 2022-01-25 广东美的制冷设备有限公司 分配器和空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340649A (ja) * 1992-06-10 1993-12-21 Mitsubishi Electric Corp 冷媒分配器及び熱交換器
CN202993693U (zh) * 2012-11-30 2013-06-12 广东美的电器股份有限公司 空调器及其冷媒分配器
CN204718205U (zh) * 2015-06-17 2015-10-21 新昌县丰亿电器有限公司 一种分配器
CN207035350U (zh) * 2017-07-26 2018-02-23 珠海格力电器股份有限公司 分流器、制冷系统及空调器
CN207556035U (zh) * 2017-11-29 2018-06-29 珠海格力电器股份有限公司 分流器及具有其的空调器
CN207649177U (zh) * 2017-12-19 2018-07-24 海信科龙电器股份有限公司 空调分配器及空调
CN210602360U (zh) * 2019-09-27 2020-05-22 广东美的制冷设备有限公司 冷媒分流器、蒸发器分流组件及空调器
CN215638163U (zh) * 2021-08-18 2022-01-25 广东美的制冷设备有限公司 分配器和空调器

Also Published As

Publication number Publication date
CN215638163U (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
US8171987B2 (en) Minichannel heat exchanger header insert for distribution
CN101487669B (zh) 包括多管式分配器的热交换器
US8302673B2 (en) Parallel flow evaporator with spiral inlet manifold
US20080190134A1 (en) Refrigerant flow distributor
WO2012034436A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
JP2010190523A (ja) 冷媒分配器
WO2023020054A1 (zh) 分配器和空调器
CN105783349A (zh) 制冷剂管路分配器
JP2006349229A (ja) 冷媒分流器
WO2012034437A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
CN211854540U (zh) 导流式分配器
KR200475023Y1 (ko) 유체분배기
CN111780255A (zh) 一种空调器
CN214307717U (zh) 分配器及空调设备
JPH085195A (ja) 熱交換器
CN210892266U (zh) 微通道换热器和制冷系统
JP2017141999A (ja) ヘッダー分配器、ヘッダー分配器を搭載した室外機、及び空気調和装置
JP2013050221A (ja) 冷媒分配器およびそれを用いたヒートポンプ機器
CN219693606U (zh) 一种节流分液装置及换热设备
JP6667070B2 (ja) 冷媒分流器およびそれを用いた冷凍システム
JPH0217368A (ja) 空気調和機の分配器
CN205619632U (zh) 制冷剂集流分液装置
JP2010139085A (ja) 冷媒分流器
CN218237929U (zh) 冷媒散热器及具有其的空调器
KR200473576Y1 (ko) 유체분배기의 분배가이드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE