WO2023019630A1 - 发光基板和显示装置 - Google Patents

发光基板和显示装置 Download PDF

Info

Publication number
WO2023019630A1
WO2023019630A1 PCT/CN2021/115056 CN2021115056W WO2023019630A1 WO 2023019630 A1 WO2023019630 A1 WO 2023019630A1 CN 2021115056 W CN2021115056 W CN 2021115056W WO 2023019630 A1 WO2023019630 A1 WO 2023019630A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
emitting
emitting element
light emitting
Prior art date
Application number
PCT/CN2021/115056
Other languages
English (en)
French (fr)
Inventor
李彦辰
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/600,376 priority Critical patent/US20240045269A1/en
Publication of WO2023019630A1 publication Critical patent/WO2023019630A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources

Definitions

  • the present application relates to the field of display technology, in particular to a light-emitting substrate and a display device.
  • Mini-LED (submillimeter light-emitting diode) and Micro-LED (micro-light-emitting diode) (hereinafter collectively referred to as mLED) display technologies have the advantages of high brightness, high contrast, and long service life.
  • mLED can not only be used as a direct backlight to realize HDR function, but also can be used as a display to realize direct display, transparent display, flexible display and many other functions.
  • M rows and N columns of partitions are usually arranged on a known mLED light-emitting substrate.
  • more than two light emitting elements are arranged in each partition. More than two light-emitting elements in each partition are connected in series, in parallel or in series-parallel.
  • Figure 1(a) when the four light-emitting elements LED1, LED2, LED3 and LED4 in each partition are connected in series, if one light-emitting element 1 in the partition is disconnected, the entire partition will not emit light, that is, dark light .
  • Figure 1(b) assuming that the voltage applied across the four light-emitting elements in each partition is 2U, and U is the working voltage of LED1 to LED4.
  • the working voltages of LED1 to LED4 are all U.
  • LED1 When the four light emitting elements in each partition are connected in series and parallel, if LED1 is disconnected, LED2, LED3 and LED4 can still emit light.
  • the LED1 disconnection causes the brightness loss of a single partition. In the above connection mode, when one light-emitting element is disconnected, the luminance of a single partition will be reduced, which will seriously affect the display quality of the whole machine.
  • the purpose of the present application is to provide a light-emitting substrate and a display device, which can prevent dark lights or loss of brightness caused when light-emitting elements in a single partition are disconnected.
  • the present application provides a light-emitting substrate, which includes a plurality of partitions, and the partitions include:
  • a first light emitting unit comprising at least one light emitting element
  • the first backup unit is connected in parallel with the first light emitting unit, the first backup unit includes a backup light emitting element, and the operating voltage of the first backup unit is greater than the operating voltage of the first light emitting unit.
  • the operating voltage of the first standby unit is 105% to 150% of the operating voltage of the first light emitting unit.
  • the operating voltage of the first backup unit is 105% to 130% of the operating voltage of the first light emitting unit.
  • the light-emitting substrate further includes an optical film, and the optical film is disposed on the light-emitting sides of the first light-emitting unit and the first standby unit.
  • the first light-emitting unit includes more than two light-emitting elements, and the two or more light-emitting elements are arranged in series, in parallel, or in a combination of series and parallel.
  • the first light emitting unit and the first standby unit are integrated in the same chip.
  • the partitions also include:
  • a second light emitting unit connected in series with the first light emitting unit, the second light emitting unit including at least one light emitting element;
  • the second standby unit is connected in parallel with the second light emitting unit, and the working voltage of the second standby unit is higher than the working voltage of the second light emitting unit.
  • the second backup unit includes a backup light-emitting element and/or a Zener diode.
  • the first backup unit and the second backup unit are composed of light-emitting elements, and the first light-emitting unit, the second light-emitting unit, the first backup unit and the second The light emitting elements in the spare unit are the same device.
  • the first backup unit further includes a Zener diode, and the Zener diode is connected in series or in parallel with the backup light-emitting element.
  • the working voltage of the Zener diode is greater than the working voltage of the spare light-emitting element.
  • the present application provides a display device, which includes the light-emitting substrate described in any one of the above.
  • the display device is a liquid crystal display device or a self-luminous display device.
  • At least one partition of the light-emitting substrate of the present application is provided with a first light-emitting unit and a first backup unit connected in parallel, and the first backup unit includes a backup light-emitting element.
  • the first backup unit includes a backup light-emitting element.
  • the backup light-emitting element When the voltage at both ends of the first light-emitting unit and the first backup unit rises to the working voltage of the first backup unit, the backup light-emitting element will be turned on to replace the light-emitting element in the first light-emitting unit that is disconnected and turn on the circuit, thereby preventing a single When the light-emitting elements in the partition are disconnected, the dim light or the loss of brightness will be caused.
  • Figure 1(a) is a circuit diagram of a light-emitting component in a light-emitting substrate in the prior art
  • FIG. 1( b ) is another circuit diagram of a light-emitting component in a light-emitting substrate in the prior art.
  • FIG. 2 is a schematic side view of a light-emitting substrate according to an embodiment of the present application.
  • FIG. 3 is a schematic top view of the light-emitting substrate in FIG. 2 .
  • FIG. 4 is a schematic structural diagram of a driving circuit of a light-emitting substrate according to an embodiment of the present application.
  • FIG. 5 is a circuit diagram of a driving circuit of a partition of the light emitting substrate of FIG. 4 .
  • FIG. 6 is a circuit diagram of a light-emitting component of the light-emitting substrate according to the first embodiment of the present application.
  • FIG. 7 is a circuit diagram of a light-emitting component of a light-emitting substrate according to a second embodiment of the present application.
  • FIG. 8 is a circuit diagram of a light emitting component of a light emitting substrate according to a third embodiment of the present application.
  • FIG. 9 is a circuit diagram of a light-emitting component of a light-emitting substrate according to a fourth embodiment of the present application.
  • FIG. 10 is a circuit diagram of a light emitting component of a light emitting substrate according to a fifth embodiment of the present application.
  • FIG. 11 is a circuit diagram of a light-emitting component of a light-emitting substrate according to a sixth embodiment of the present application.
  • FIG. 12 is a circuit diagram of a light-emitting component of a light-emitting substrate according to a seventh embodiment of the present application.
  • FIG. 13 is a circuit diagram of a light-emitting component of a light-emitting substrate according to an eighth embodiment of the present application.
  • FIG. 14 is a circuit diagram of a light-emitting component of a light-emitting substrate according to a ninth embodiment of the present application.
  • FIG. 15 is a circuit diagram of a light-emitting component of a light-emitting substrate according to a tenth embodiment of the present application.
  • FIG. 16 is a circuit diagram of a light-emitting component of a light-emitting substrate according to an eleventh embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a display device of the present application.
  • a first feature being “on” or “below” a second feature may include the first and second features directly, or may include that the first and second features are not directly connected but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • "Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the present application provides a light-emitting substrate.
  • the light-emitting substrate can be used as a backlight source for a liquid crystal display (Liquid Crystal Display, LCD), and can also be used for self-luminous display.
  • LCD Liquid Crystal Display
  • the light-emitting substrate includes a plurality of partitions, and the partitions include: a first light-emitting unit and a first spare unit.
  • the first light emitting unit includes at least one light emitting element.
  • the first standby unit is connected in parallel with the first light emitting unit.
  • the first backup unit includes a backup light-emitting element, and the working voltage of the first backup unit is higher than the working voltage of the first light-emitting unit.
  • each partition of the light-emitting substrate of the present application is provided with a first light-emitting unit and a first backup unit connected in parallel, and the first backup unit includes a backup light-emitting element.
  • the first backup unit does not work.
  • the light-emitting element in the first light-emitting unit fails, causing the first light-emitting unit to be disconnected, the voltage across the first light-emitting unit and the first backup unit rises.
  • the backup light-emitting element When the voltage at both ends of the first light-emitting unit and the first backup unit rises to the working voltage of the first backup unit, the backup light-emitting element will be turned on to replace the light-emitting element in the first light-emitting unit that is disconnected and turn on the circuit, thereby preventing a single When the light-emitting elements in the partition are disconnected, the dim light or the loss of brightness will be caused.
  • the light-emitting substrate 100 includes a substrate 10 , a plurality of light-emitting components 20 and a plurality of packages 30 .
  • the substrate 10 may be a glass substrate or a plastic substrate.
  • a plurality of light emitting components 20 are disposed on the substrate 10 .
  • a plurality of packages 30 are disposed on a side of the plurality of light emitting components 20 away from the substrate 10 .
  • Each package body 30 encapsulates one light emitting component 20 .
  • the light emitting substrate 100 may further include an optical film 40 .
  • the optical film 40 is disposed on the side of the package body 30 away from the substrate 10 , that is, the light emitting side of the light emitting component 20 .
  • the optical film 40 may include a reflective sheet, a light guide plate, a diffuser sheet, a brightness enhancement sheet, and the like.
  • the light emitting substrate 100 includes a plurality of partitions 101 .
  • multiple partitions 101 are arranged in a matrix. It can be understood that the multiple partitions 101 can also be arranged in other ways.
  • each partition 101 corresponds to one or more sub-pixels of the liquid crystal display panel.
  • each partition 101 is a sub-pixel.
  • Each partition 101 is provided with a light emitting component 20 and a packaging body 30 .
  • the substrate 10 is provided with a driving circuit DC for driving the light emitting component 20 to emit light.
  • a plurality of scan lines SL and a plurality of data lines DL are disposed on the substrate 10 .
  • the plurality of scan lines extend along the first direction D1 and are arranged along the second direction D2.
  • the plurality of data lines DL extend along the second direction D2 and are arranged along the first direction D1.
  • the first direction D1 intersects the second direction D2.
  • the first direction D1 may be perpendicular to the second direction D2.
  • the intersections of multiple scan lines SL and multiple data lines DL define multiple partitions 101 .
  • the light emitting substrate 100 also includes a plurality of VDD signal lines and a plurality of VSS signal lines.
  • the plurality of VDD signal lines and the plurality of VSS signal lines respectively extend along the first direction D1 and are arranged along the second direction D2.
  • a VDD signal line and a VSS signal line are arranged between two adjacent scanning lines SL.
  • each VSS signal line may be located between a VDD signal line and a scan line SL.
  • the light emitting substrate 100 may be an active matrix light emitting substrate.
  • the light emitting substrate 100 can be driven by a constant voltage driving method. Specifically, it refers to a constant voltage between VDD and VSS, that is, the voltage at both ends of the light emitting component 20 is constant.
  • the light emitting substrate 100 may include a constant voltage driving source (not shown).
  • the drive circuit DC is connected to a constant voltage source.
  • each partition 101 includes a driving circuit DC.
  • the driving circuit DC may be a commonly used driving circuit DC in the field such as 2T1C, 1TFT 1MOS 1C, 3T1C, 5T1C or 7T1C.
  • the driving circuit DC in this embodiment is a 2T1C circuit.
  • the driving circuit DC includes a switching transistor T1 , a driving transistor T2 , a storage capacitor Cst and a light emitting component 20 .
  • the gate of the switch transistor T1 is connected to the scan line SL, the source is connected to the data line DL, and the drain is connected to the first plate of the storage capacitor Cst.
  • the first plate Cst-1 of the storage capacitor Cst is connected to the drain of the switching transistor T1, and the second plate is connected to the VSS signal line.
  • the gate of the driving transistor T2 is connected between the drain of the switching transistor T1 and the first plate Cst-1 of the storage capacitor Cst, the source is connected to the cathode of the light emitting component 20, and the drain is connected to the second electrode of the storage capacitor Cst Between board Cst-2 and VSS signal line.
  • the anode of the light emitting component 20 is connected to the VDD signal line, and the cathode is connected to the source of the driving transistor T2.
  • the scanning lines SL scan column by column to realize active matrix driving.
  • the light-emitting component 20 is driven by a constant voltage mode, and the working stages of the light-emitting component 20 include a data writing stage and a light-emitting stage.
  • the scanning signal Scan is at a high potential, and the scanning signal Scan controls the switching transistor T1 to turn on, and the data signal Data is input to the gate of the driving transistor T2 and stored in the storage capacitor Cst.
  • the driving transistor T2 is turned on, and the current flows from the VDD signal line into the light emitting assembly 20 and the driving transistor T2 and finally flows out from the VSS signal line, so that the light emitting assembly 20 emits light.
  • the scan signal Scan is at a low potential, and the switching transistor T1 is turned off.
  • the storage capacitor Cst can maintain the gate potential of the driving transistor T2, so that the light emitting device continues to emit light.
  • this embodiment is described by taking an example in which all the subregions 101 of the light emitting substrate 100 include the above structures. In other implementation manners, it is sufficient as long as at least one subregion 101 of the light emitting substrate 100 includes the above structure.
  • the lighting assembly 20 includes a first lighting unit 21, a second lighting unit 22, a third lighting unit 23, a fourth lighting unit 24, a first backup unit 25, a second backup unit 26, and a third backup unit 27. and a fourth backup unit 28 .
  • the first light emitting unit 21 , the second light emitting unit 22 , the third light emitting unit 23 and the fourth light emitting unit 24 are serially connected in sequence.
  • the first standby unit 25 is connected in parallel with the first light emitting unit 21 .
  • the second standby unit 26 is connected in parallel with the second light emitting unit 22 .
  • the third standby unit 27 is connected in parallel with the third light emitting unit 23 .
  • the fourth standby unit 28 is connected in parallel with the fourth light emitting unit 24 . It can be understood that this embodiment is described by taking the light emitting assembly 20 including four light emitting units and four spare elements as an example. However, the number of light emitting units and spare elements included in the light emitting assembly 20 of the present application is not limited thereto.
  • the first light emitting unit 21 , the second light emitting unit 22 , the third light emitting unit 23 and the fourth light emitting unit 24 respectively include at least one light emitting element.
  • the first light emitting unit 21 includes a first light emitting element LED1.
  • the second light emitting unit 22 includes a second light emitting element LED2.
  • the third light emitting unit 23 includes a third light emitting element LED3.
  • the fourth light emitting unit 24 includes a fourth light emitting element LED4. This embodiment is described by taking the first light emitting unit 21 , the second light emitting unit 22 , the third light emitting unit 23 and the fourth light emitting unit 24 each including one light emitting element as an example.
  • the number of light emitting elements included in the light emitting unit of the present application is not limited thereto.
  • the number of light emitting elements included in the first light emitting unit 21 , the second light emitting unit 22 , the third light emitting unit 23 and the fourth light emitting unit 24 may or may not be equal.
  • the light emitting element can be Micro-LED or Mini-LED. It can be understood that the light-emitting elements of the present application are not limited to Micro-LEDs or Mini-LEDs, and may also be LEDs or other light-emitting elements.
  • the light emitting elements in the first light emitting unit 21 , the second light emitting unit 22 , the third light emitting unit 23 and the fourth light emitting unit 24 are of the same type.
  • the first light emitting element LED1 to the fourth light emitting element LED4 are all Mini-LEDs.
  • the operating voltage of the first backup unit 25 is higher than that of the first light emitting unit 21 , so that when the light emitting substrate 100 works normally, the first light emitting unit 21 is turned on, while the first backup unit 25 is not turned on.
  • the operating voltage of the first backup unit 25 may be 105% to 150% of the operating voltage of the first light emitting unit 21 .
  • the operating voltage of the first backup unit 25 is 105% to 150% of the operating voltage of the first light emitting unit 21 , a relatively uniform light emitting effect can be obtained by using in conjunction with the optical film 40 .
  • the operating voltage of the first backup unit 25 may be close to the operating voltage of the first light emitting unit 21 .
  • the operating voltage of the first backup unit 25 may be 105% to 130% of the operating voltage of the first light emitting unit 21 .
  • the operating voltage of the first standby unit 25 is 105% to 120% of the operating voltage of the first light emitting unit 21 .
  • the first backup unit 25 includes a backup light emitting element.
  • the spare light emitting element may be the same device as the light emitting element in the first light emitting unit 21 . Specifically, it may be Micro-LED or Mini-LED.
  • the first backup unit 25 and the first light emitting unit 21 can be integrated in the same chip and packaged in the same package 30 , and then connected to the driving circuit DC in the partition 101 .
  • the first backup unit 25 can be stacked with the first light emitting unit 21 on the substrate 10 and packaged in the same package 30 .
  • the manufacturing process can be simplified, and the space occupied by the first backup unit 25 and the first light emitting unit 21 can be saved.
  • the space occupied by the first backup unit 25 and the first light-emitting unit 21 is reduced, and the area of the white oil for reflecting light on the substrate 10 is increased, which is beneficial to improve the brightness of the light-emitting substrate 100 .
  • the first backup unit 25 and the first light emitting unit 21 in the light emitting assembly 20 may also be independently disposed on the substrate 10 and packaged in different packages 30 respectively.
  • the first backup unit 25 is directly formed in the driving circuit DC, and then connected in parallel with the first light emitting unit 21 .
  • the operating voltage of the second backup unit 26 is higher than that of the second light emitting unit 22 , so that when the light emitting substrate 100 works normally, the second light emitting unit 22 is turned on, while the second backup unit 26 is not turned on.
  • the operating voltage of the second standby unit 26 may be 105% to 150% of the operating voltage of the second light emitting unit 22 .
  • the working voltage of the second backup unit 26 can be close to the working voltage of the second light emitting unit 22 .
  • the operating voltage of the second backup unit 26 may be 105% to 130% of the operating voltage of the second light emitting unit 22 . Furthermore, the operating voltage of the second standby unit 26 is 105% to 120% of the operating voltage of the second light emitting unit 22 .
  • the second backup unit 26 includes a backup lighting element.
  • the spare light emitting element may be the same device as the light emitting element in the second light emitting unit 22 .
  • the operating voltage of the third backup unit 27 is greater than that of the third light emitting unit 23 , so that when the light emitting substrate 100 works normally, the third light emitting unit 23 is turned on, while the third backup unit 27 is not turned on.
  • the operating voltage of the third backup unit 27 may be 105% to 150% of the operating voltage of the third light emitting unit 23 .
  • the operating voltage of the third backup unit 27 may be close to the operating voltage of the third light emitting unit 23 .
  • the operating voltage of the third backup unit 27 may be 105% to 130% of the operating voltage of the third light emitting unit 23 . Furthermore, the operating voltage of the third backup unit 27 is 105% to 120% of the operating voltage of the third light emitting unit 23 .
  • the third backup unit 27 includes a backup light emitting element.
  • the spare light emitting element may be the same device as the light emitting element in the third light emitting unit 23 .
  • the operating voltage of the fourth backup unit 28 is greater than that of the fourth light emitting unit 24 , so that when the light emitting substrate 100 works normally, the fourth light emitting unit 24 is turned on, while the fourth backup unit 28 is not turned on.
  • the operating voltage of the fourth standby unit 28 may be 105% to 150% of the operating voltage of the fourth light emitting unit 24 .
  • the operating voltage of the fourth backup unit 28 may be close to the operating voltage of the fourth light emitting unit 24 .
  • the operating voltage of the fourth standby unit 28 may be 105% to 130% of the operating voltage of the fourth light emitting unit 24 . Furthermore, the operating voltage of the fourth standby unit 28 is 105% to 120% of the operating voltage of the fourth light emitting unit 24 .
  • the fourth backup unit 28 includes a backup light emitting element.
  • the spare light emitting element may be the same device as the light emitting element in the fourth light emitting unit 24 .
  • the light emitting elements in the first light emitting unit 21 to the fourth light emitting unit 24 and the light emitting elements in the first backup unit 25 to the fourth backup unit 28 may be the same.
  • the difficulty of characteristic management of devices with different characteristics is reduced, and the stability and reliability of the light-emitting substrate 100 are improved.
  • the operating voltages of the first backup unit 25 to the fourth backup unit 28 may be approximately the same.
  • the operating voltages of the first backup unit 25 to the fourth backup unit 28 may be equal.
  • the first standby light-emitting element LED1' and the second standby light-emitting The element LED2', the third spare light-emitting element LED3', and the fourth spare light-emitting element LED4' It works as follows:
  • the operating voltages of the first light emitting element LED1 to the fourth light emitting element LED4 are all U0, and the operating voltages of the first standby light emitting element LED1' to the fourth standby light emitting element LED4' are U'.
  • the voltage applied to both ends of the light-emitting component 20 is 4U0.
  • U' is greater than U0, to ensure that when the first light-emitting element LED1 to the fourth light-emitting element LED4 work normally, the first standby light-emitting element LED1' to the fourth standby light-emitting element LED4' are in a high-resistance off-circuit state; at the same time, U' can be close to U0, so as to ensure that when at least one of the first standby light-emitting element LED1' to the fourth standby light-emitting element LED4' is working, the divided voltage across the first light-emitting element LED1 to the fourth light-emitting element LED4 will not change too much.
  • the first light-emitting element LED1 When the first light-emitting element LED1 is disconnected, the voltage across the first light-emitting element LED1 rises, and when the voltage across the first light-emitting element LED1 rises to U', the first standby light-emitting element LED1 connected in parallel with the first light-emitting element LED1 ' is turned on to replace the first light-emitting element LED1 to emit light. At this time, the voltage across the second light emitting element LED2, the third light emitting element LED3, and the fourth light emitting element LED4 drops to (4U0-U')/3.
  • the second standby light-emitting element LED2', the third standby light-emitting element LED3', and the fourth standby light-emitting element LED4' are still in a high-resistance off-circuit state, so as to ensure that when the first light-emitting element LED1 is open-circuited, the current can still pass through the first standby light-emitting element LED1' flows into the second light emitting element LED2, the third light emitting element LED3, and the fourth light emitting element LED4.
  • the three light-emitting elements in other light-emitting units connected in series with the disconnected light-emitting unit can still emit light normally, and the spare light-emitting element can replace the disconnected light-emitting element.
  • the light emitting element emits light.
  • the light-emitting substrate 100 of the second embodiment of the present application is similar to the first embodiment, the difference lies in:
  • the lighting assembly 20 includes a first lighting unit 21 , a second lighting unit 22 , a first backup unit 25 , and a second backup unit 26 .
  • the first light emitting unit 21 is connected in series with the second light emitting unit 22 .
  • the first standby unit 25 is connected in parallel with the first light emitting unit 21 .
  • the second standby unit 26 is connected in parallel with the second light emitting unit 22 .
  • the first light emitting unit 21 includes a first light emitting element LED1 and a second light emitting element LED2.
  • the second light emitting unit 22 includes a third light emitting element LED3 and a fourth light emitting element LED4.
  • the first light emitting element LED1 and the second light emitting element LED2 in the first light emitting unit 21 are connected in series.
  • the third light emitting element LED3 and the fourth light emitting element LED4 in the second light emitting unit 22 are also connected in series.
  • the first backup unit 25 includes a first backup light emitting element LED1'.
  • the second backup unit 26 includes a second backup light emitting element LED2'.
  • the first light-emitting element LED1 and the second light-emitting element LED2 are connected in series, and the first spare light-emitting element LED1' is connected in parallel at both ends; the third light-emitting element LED3 and the fourth light-emitting element LED4 are connected in series, The two ends are then connected in parallel with the second spare light-emitting element LED2'. It works as follows:
  • the operating voltages of the first light emitting element LED1 to the fourth light emitting element LED4 are all U0
  • the operating voltages of the first light emitting unit 21 and the second light emitting unit 22 are both 2*U0.
  • the operating voltages of the first standby light-emitting element LED1' and the second standby light-emitting element LED2' are both U'.
  • the voltage applied to both ends of the light-emitting component 20 is 4U0.
  • U' is greater than 2*U0, to ensure that when the first light-emitting element LED1 to the fourth light-emitting element LED4 work normally, the first standby light-emitting element LED1' and the second standby light-emitting element LED2' are in a high-resistance off-circuit state; at the same time, U' can close to 2*U0, so as to ensure that when at least one of the first standby light-emitting element LED1' and the second standby light-emitting element LED2' is working, the divided voltage across the first light-emitting element LED1 to the fourth light-emitting element LED4 will not change too much .
  • the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises, and when the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises to U', it is the same as the second A light emitting element LED1 and a first standby light emitting element LED1 ′ connected in parallel to the second light emitting element LED2 are turned on to replace the first light emitting unit 21 to emit light.
  • the voltage of the third light emitting element LED3 and the fourth light emitting element LED4 drops to (4U0-U')/2, and the second standby light emitting element LED2' is still in a high-resistance open circuit state, thereby ensuring that the first light emitting element LED1 is open circuit , the current can still flow into the third light-emitting element LED3 and the fourth light-emitting element LED4 through the first standby light-emitting element LED1'.
  • the other two light-emitting elements in the light-emitting unit connected in series with the disconnected light-emitting unit can still emit light normally.
  • the light-emitting substrate 100 of the third embodiment of the present application is similar to the first embodiment, the difference lies in:
  • the lighting assembly 20 includes a first lighting unit 21 , a second lighting unit 22 , a first backup unit 25 and a second backup unit 26 .
  • the first light emitting unit 21 is connected in series with the second light emitting unit 22 .
  • the first standby unit 25 is connected in parallel with the first light emitting unit 21 .
  • the second standby unit 26 is connected in parallel with the second light emitting unit 22 .
  • the first light emitting unit 21 includes a first light emitting element LED1 and a second light emitting element LED2.
  • the second light emitting unit 22 includes a third light emitting element LED3 and a fourth light emitting element LED4.
  • the first light emitting element LED1 and the second light emitting element LED2 in the first light emitting unit 21 are connected in parallel.
  • the third light emitting element LED3 and the fourth light emitting element LED4 in the second light emitting unit 22 are also connected in parallel.
  • the first backup unit 25 includes a first backup light emitting element LED1'.
  • the second backup unit 26 includes a second backup light emitting element LED2'.
  • the first light-emitting element LED1 and the second light-emitting element LED2 are connected in parallel, and the first spare light-emitting element LED1' is connected in parallel at both ends; the third light-emitting element LED3 and the fourth light-emitting element LED4 are connected in parallel, The two ends are then connected in parallel with the second spare light-emitting element LED2'. It works as follows:
  • the operating voltages of the first light emitting element LED1 to the fourth light emitting element LED4 are all U0
  • the operating voltages of the first light emitting unit 21 and the second light emitting unit 22 are both U0.
  • the operating voltages of the first standby light-emitting element LED1' and the second standby light-emitting element LED2' are both U'.
  • the voltage applied to both ends of the light-emitting component 20 is 2U0.
  • U' is greater than U0, to ensure that when the first light-emitting element LED1 to the fourth light-emitting element LED4 work normally, the first standby light-emitting element LED1' and the second standby light-emitting element LED2' are in a high-resistance off-circuit state; at the same time, U' can be close to U0, so as to ensure that when at least one of the first standby light-emitting element LED1' and the second standby light-emitting element LED2' is working, the divided voltage across the first light-emitting element LED1 to the fourth light-emitting element LED4 will not change too much.
  • the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises, and when the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises to U', it is the same as the second A light emitting element LED1 and a first standby light emitting element LED1' connected in parallel to the second light emitting element LED2 are turned on to replace the first light emitting element LED1 to emit light.
  • the voltage of the second light-emitting element LED2 rises to U'
  • the voltage of the third light-emitting element LED3 and the fourth light-emitting element LED4 drops to 2U0-U'
  • the second standby light-emitting element LED2' is still in a high-resistance off-circuit state. Therefore, when the first light-emitting element LED1 is disconnected, the current can still flow into the third light-emitting element LED3 and the fourth light-emitting element LED4 through the first standby light-emitting element LED1' and the second light-emitting element LED2. In this way, it is ensured that when a light-emitting element in the single partition 101 is disconnected, the first standby light-emitting element LED1' can replace the first light-emitting element LED1 where the circuit breaks to emit light.
  • the resistance of the first light-emitting unit 21 increases. is the resistance of the second light emitting element LED2.
  • the resistance of the first light-emitting unit 21 increases to the parallel connection of the second light-emitting element LED2 and the first standby light-emitting element LED1' resistance.
  • the light-emitting substrate 100 of the fourth embodiment of the present application is similar to the first embodiment, the difference lies in:
  • the first backup unit 25 to the fourth backup unit 28 are Zener diodes.
  • the Zener diode is a crystal diode, which works by using the characteristic of stable voltage in the breakdown region of the PN junction.
  • the characteristic of the Zener diode is that after the PN junction is broken down, the voltage at both ends remains basically unchanged. Zener diodes are reversed in the circuit. Set the working voltage of the Zener diode as Uz, when the voltage across the Zener diode is less than Uz, the Zener diode does not work and is in a high-resistance off-circuit state. When the voltage at both ends of the Zener diode is greater than Uz, the Zener diode conducts reverse breakdown and maintains the voltage at Uz, thereby playing a role in stabilizing the voltage.
  • the first zener diode DW1 and the second zener diode DW1 are connected in parallel at both ends of the first light-emitting element LED1, the second light-emitting element LED2, the third light-emitting element LED3, and the fourth light-emitting element LED4 respectively.
  • the operating voltages of the first light emitting element LED1 to the fourth light emitting element LED4 are all U0
  • the operating voltages of the first light emitting unit 21 and the second light emitting unit 22 are both U0.
  • the operating voltages of the first zener diode DW1 to the fourth zener diode DW4 are all Uz.
  • the voltage applied to both ends of the light-emitting component 20 is 4U0.
  • Uz is greater than U0, to ensure that when the first light-emitting element LED1 to the fourth light-emitting element LED4 work normally, the first zener diode DW1 to the fourth zener diode DW4 are in a high-resistance off-circuit state; at the same time, Uz can be close to U0, thereby ensuring When at least one of the first zener diode DW1 to the fourth zener diode DW4 is working, the divided voltage across the first light emitting element LED1 to the fourth light emitting element LED4 will not change too much.
  • the voltage across the first light-emitting element LED1 increases, and when the voltage across the first light-emitting element LED1 rises to Uz, the first zener diode DW1 connected in parallel with the first light-emitting element LED1 conducts Pass. At this time, the voltages across the second light emitting element LED2 , the third light emitting element LED3 , and the fourth light emitting element LED4 drop to (4U0 ⁇ Uz)/3.
  • the second zener diode DW2, the third zener diode DW3, and the fourth zener diode DW4 are still in a high-resistance off-circuit state, so as to ensure that when the first light-emitting element LED1 is off, the current can still flow into the first zener diode DW1.
  • the light-emitting substrate 100 of the fifth embodiment of the present application is similar to the second embodiment, the difference lies in:
  • Both the first backup unit 25 and the second backup unit 26 are Zener diodes.
  • the first light-emitting element LED1 and the second light-emitting element LED2 are connected in series, and the first Zener diode DW1 is connected in parallel at both ends; the third light-emitting element LED3 and the fourth light-emitting element LED4 are connected in series, and the two Then connect the second Zener diode DW2 in parallel. It works as follows:
  • the operating voltages of the first light emitting element LED1 to the fourth light emitting element LED4 are all U0
  • the operating voltages of the first light emitting unit 21 and the second light emitting unit 22 are both 2*U0.
  • the operating voltages of the first zener diode DW1 and the second zener diode DW2 are both Uz.
  • the voltage applied to both ends of the light-emitting component 20 is 4U0.
  • Uz is greater than 2*U0, to ensure that when the first light-emitting element LED1 to the fourth light-emitting element LED4 work normally, the first zener diode DW1 and the second zener diode DW2 are in a high-resistance off-circuit state; at the same time, Uz can be close to 2* U0, so as to ensure that when at least one of the first zener diode DW1 and the second zener diode DW2 is in operation, the divided voltages across the first light emitting element LED1 to the fourth light emitting element LED4 will not change too much.
  • the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises, and when the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises to Uz, it is the same as the first
  • the first zener diode DW1 connected in parallel with the light emitting element LED1 and the second light emitting element LED2 is turned on.
  • the voltage of the third light-emitting element LED3 and the fourth light-emitting element LED4 drops to (4U0-Uz)/2, and the second Zener diode DW2 is still in a high-resistance off-circuit state, thereby ensuring that when the first light-emitting element LED1 is off-circuit, The current can still flow into the third light emitting element LED3 and the fourth light emitting element LED4 through the first Zener diode DW1.
  • the two light-emitting elements in other light-emitting units connected in series with the disconnected light-emitting unit can still emit light normally.
  • the light-emitting substrate 100 of the sixth embodiment of the present application is similar to the third embodiment, the difference lies in:
  • Both the first backup unit 25 and the second backup unit 26 are Zener diodes.
  • the first light-emitting element LED1 and the second light-emitting element LED2 are connected in parallel, and the first Zener diode DW1 is connected in parallel at both ends; the third light-emitting element LED3 and the fourth light-emitting element LED4 are connected in parallel, and the two Then connect the second Zener diode DW2 in parallel. It works as follows:
  • the operating voltages of the first light emitting element LED1 to the fourth light emitting element LED4 are all U0
  • the operating voltages of the first light emitting unit 21 and the second light emitting unit 22 are both U0.
  • the operating voltages of the first zener diode DW1 and the second zener diode DW2 are both Uz.
  • the voltage applied to both ends of the light-emitting component 20 is 2U0.
  • Uz is greater than U0, to ensure that when the first light-emitting element LED1 to the fourth light-emitting element LED4 work normally, the first voltage regulator tube and the second voltage regulator tube are in a high-resistance off-circuit state; at the same time, Uz can be close to U0, thereby ensuring that the first When at least one of the zener diode DW1 and the second zener diode DW2 is in operation, the divided voltages across the first light emitting element LED1 to the fourth light emitting element LED4 will not change too much.
  • the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises, and when the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises to Uz, it is the same as the first
  • the first zener diode DW1 connected in parallel with the light emitting element LED1 and the second light emitting element LED2 is turned on.
  • the voltage of the second light-emitting element LED2 rises to Uz
  • the voltage of the third light-emitting element LED3 and the fourth light-emitting element LED4 drops to 2U0-Uz
  • the second Zener diode DW2 is still in a high-resistance off-circuit state, thereby ensuring the first
  • a light-emitting element LED1 is disconnected
  • current can still flow into the third light-emitting element LED3 and the fourth light-emitting element LED4 through the first zener diode DW1 and the second light-emitting element LED2. In this way, it is ensured that when all the light-emitting elements in one light-emitting unit in the single partition 101 are disconnected, the light-emitting elements connected in parallel with the light-emitting unit where the disconnection occurs can still emit light normally.
  • the resistance of the first light-emitting unit 21 increases. is the resistance of the second light emitting element LED2.
  • the resistance of the first light-emitting unit 21 increases to the parallel resistance of the second light-emitting element LED2 and the first zener diode DW1.
  • the light-emitting substrate 100 of the seventh embodiment of the present application is similar to the second embodiment, the difference lies in:
  • the first backup unit 25 is the first backup light emitting element LED1'.
  • the second backup unit 26 is the first Zener diode DW1.
  • the spare light-emitting element used in the first spare light-emitting unit 25 may be the same device as the light-emitting elements used in the first light-emitting unit 21 and the second light-emitting unit 22 .
  • the first light emitting element LED1 , the second light emitting element LED2 and the first backup unit 25 are all Mini-LEDs.
  • the first light-emitting element LED1 and the second light-emitting element LED2 are connected in series, and the first spare light-emitting element LED1' is connected in parallel at both ends; the third light-emitting element LED3 and the fourth light-emitting element LED4 are connected in parallel,
  • the first Zener diode DW1 is connected in parallel at both ends. It works as follows:
  • the operating voltages of the first light emitting element LED1 to the fourth light emitting element LED4 are all U0
  • the operating voltages of the first light emitting unit 21 and the second light emitting unit 22 are both 2*U0.
  • the operating voltage of the first standby light-emitting element LED1' is U'
  • the operating voltage of the first Zener diode DW1 is Uz.
  • U' and Uz are greater than 2*U0, to ensure that when the first light-emitting element LED1 to the fourth light-emitting element LED4 work normally, the first standby light-emitting element LED1' and the first Zener diode DW1 are in a high-resistance off-circuit state; at the same time, U' and Uz can be close to 2*U0, so as to ensure that when at least one of the first standby light-emitting element LED1' and the first Zener diode DW1 is working, the divided voltage across the first light-emitting element LED1 to the fourth light-emitting element LED4 will not be excessive. Big change.
  • the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises, and when the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises to U', it is the same as the second A light emitting element LED1 and a first standby light emitting element LED1 ′ connected in parallel to the second light emitting element LED2 are turned on to replace the first light emitting unit 21 to emit light.
  • the voltage of the third light emitting element LED3 and the fourth light emitting element LED4 drops to (4U0-U')/2, and the second standby light emitting element LED2' is still in a high-resistance open circuit state, thereby ensuring that the first light emitting element LED1 is open circuit , the current can still flow into the third light-emitting element LED3 and the fourth light-emitting element LED4 through the first standby light-emitting element LED1'.
  • the other two light-emitting elements in the light-emitting unit connected in series with the disconnected light-emitting unit can still emit light normally.
  • the third light-emitting element LED3 When the third light-emitting element LED3 is disconnected, the voltage at both ends of the third light-emitting element LED3 and the fourth light-emitting element LED4 increases, and when the voltage at both ends of the third light-emitting element LED3 and the fourth light-emitting element LED4 rises to Uz, it is connected with the third The light-emitting element LED3 and the fourth light-emitting element LED4 are connected in parallel to the first Zener diode DW1 to conduct.
  • the voltage of the first light-emitting element LED1 and the second light-emitting element LED2 drops to (4U0-Uz)/2, and the first standby light-emitting element LED1' is still in a high-resistance off-circuit state, thereby ensuring that when the third light-emitting element LED3 is off-circuit , the current can still flow into the first light emitting element LED1 and the second light emitting element LED2 through the first Zener diode DW1.
  • each light emitting unit in the light emitting assembly 20 can also be reduced, thereby reducing the brightness variation.
  • the light-emitting substrate 100 of the eighth embodiment of the present application is similar to the second embodiment, the difference lies in:
  • the first light emitting element LED1 and the second light emitting element LED2 in the first light emitting unit 21 are connected in series.
  • the third light emitting element LED3 and the fourth light emitting element LED4 in the second light emitting unit 22 are connected in parallel.
  • the first light-emitting element LED1 and the second light-emitting element LED2 are connected in series, and the first spare light-emitting element LED1' is connected in parallel at both ends; the third light-emitting element LED3 and the fourth light-emitting element LED4 are connected in series, The two ends are then connected in parallel with the second spare light-emitting element LED2'.
  • the second embodiment and the third embodiment For its working principle, reference may be made to the second embodiment and the third embodiment, and detailed descriptions are omitted here.
  • the light-emitting substrate 100 of the ninth embodiment of the present application is similar to the second embodiment, the difference lies in:
  • the first light emitting unit 21 further includes a fifth light emitting element LED5, which is connected in parallel with the first light emitting element LED1 and connected in series with the second light emitting element LED2.
  • a fifth light emitting element LED5 which is connected in parallel with the first light emitting element LED1 and connected in series with the second light emitting element LED2.
  • the light-emitting substrate 100 of the tenth embodiment of the present application is similar to the second embodiment, the difference lies in:
  • the first backup unit 25 also includes a first voltage regulator diode DW1, and the first voltage regulator diode DW1 is connected in parallel with the first backup light emitting unit LED1'.
  • the second backup unit 26 also includes a second voltage regulator diode DW2, and the second voltage regulator diode DW2 is connected in parallel with the second backup light emitting unit LED2'.
  • the working voltage of the first Zener diode DW1 is greater than or equal to the working voltage of the first standby light emitting unit LED1'. Further, the operating voltage of the first voltage regulator diode DW1 and the first standby light emitting unit LED1' is 105% to 150% of the operating voltage of the first light emitting unit 21.
  • the working voltage of the second Zener diode DW2 is greater than or equal to the working voltage of the second standby light-emitting unit LED2', and the working voltage of the second standby light-emitting unit LED2' is greater than the working voltage of the second light-emitting element LED2.
  • the operating voltage of the second voltage regulator diode DW2 and the first standby light emitting unit LED1' is 105% to 150% of the operating voltage of the second light emitting unit 22.
  • the first light-emitting element LED1 and the second light-emitting element LED2 are connected in series, and the first spare light-emitting element LED1' and the first voltage regulator diode DW1 are connected in parallel at both ends; the third light-emitting element LED3 and The fourth light-emitting element LED4 is connected in series, and the second backup light-emitting element LED2' and the second Zener diode DW2 are connected in parallel at both ends. It works as follows:
  • the operating voltages of the first light emitting element LED1 to the fourth light emitting element LED4 are all U0
  • the operating voltages of the first light emitting unit 21 and the second light emitting unit 22 are both 2*U0.
  • the operating voltages of the first standby light-emitting element LED1' and the second standby light-emitting element LED2' are both U'.
  • the operating voltages of the first zener diode DW1 and the second zener diode DW2 are both Uz.
  • Uz U'.
  • U' is greater than 2*U0, ensuring that when the first light-emitting element LED1 to the fourth light-emitting element LED4 work normally, the first standby light-emitting element LED1' to the fourth standby light-emitting element LED4' are in a high-resistance off-circuit state; at the same time, U' can It is close to 2*U0, so as to ensure that when at least one of the first standby light-emitting element LED1' to the second standby light-emitting element LED2' is working, the divided voltage at both ends of the first light-emitting element LED1 to the fourth light-emitting element LED4 will not change too much .
  • the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises, and when the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises to Uz, it is the same as the first
  • the first spare light emitting element LED1 ′ connected in parallel with the light emitting element LED1 and the second light emitting element LED2 is turned on and the first Zener diode DW1 is turned on to replace the first light emitting unit 21 to emit light and conduct the circuit.
  • the voltage at both ends of the first standby light-emitting element LED1' can be guaranteed to be stable, thereby ensuring the stability of the luminous brightness.
  • the voltage of the third light-emitting element LED3 and the fourth light-emitting element LED4 drops to (4U0-Uz)/2, and the second standby light-emitting element LED2' and the second Zener diode DW2 are still in a high-resistance off-circuit state, thereby ensuring
  • the first light-emitting element LED1 is disconnected, the current can still flow into the third light-emitting element LED3 and the fourth light-emitting element LED4 through the first standby light-emitting element LED1'.
  • the light-emitting substrate 100 of the eleventh embodiment of the present application is similar to the second embodiment, the difference lies in:
  • the first backup unit 25 also includes a first voltage regulator diode DW1, and the first voltage regulator diode DW1 is connected in series with the first backup light emitting unit LED1'.
  • the second backup unit 26 also includes a second voltage regulator diode DW2, and the second voltage regulator diode DW2 is connected in series with the second backup light emitting unit LED2'.
  • the operating voltage of the first standby light emitting unit LED1' is greater than the operating voltage of the first light emitting element LED1. After the Zener diode reversely breaks down, the voltage at both ends will remain stable.
  • the working voltage of the first zener diode DW1 is lower than the working voltage of the first standby light-emitting unit LED1', when the first zener diode DW1 reversely breaks down, the voltage at both ends will no longer rise, and the first standby light-emitting unit cannot be turned on. Unit LED1'.
  • the working voltage of the first Zener diode DW1 is greater than or equal to the working voltage of the first standby light emitting unit LED1'.
  • the sum of the operating voltages of the first zener diode DW1 and the first standby light emitting unit LED1' is 105% to 150% of the operating voltage of the first light emitting unit 21.
  • the working voltage of the second Zener diode DW2 is greater than or equal to the working voltage of the second standby light-emitting unit LED2', and the working voltage of the second standby light-emitting unit LED2' is greater than the working voltage of the second light-emitting element LED2.
  • the sum of the operating voltages of the second Zener diode DW2 and the first standby light emitting unit LED1' is 105% to 150% of the operating voltage of the second light emitting unit 22.
  • the first light-emitting element LED1 and the second light-emitting element LED2 are connected in series, and the first spare light-emitting element LED1' and the first Zener diode DW1 are connected in parallel at both ends;
  • the third light-emitting element LED3 It is connected in series with the fourth light-emitting element LED4, and the second backup light-emitting element LED2' and the second Zener diode DW2 are connected in parallel at both ends. It works as follows:
  • the operating voltages of the first light emitting element LED1 to the fourth light emitting element LED4 are all U0
  • the operating voltages of the first light emitting unit 21 and the second light emitting unit 22 are both 2*U0.
  • the operating voltages of the first standby light-emitting element LED1' and the second standby light-emitting element LED2' are both U'.
  • the operating voltages of the first zener diode DW1 and the second zener diode DW2 are both Uz.
  • Uz U'.
  • the sum of U' and Uz is greater than 2*U0, ensuring that when the first light-emitting element LED1 to the fourth light-emitting element LED4 work normally, the first standby light-emitting element LED1' to the fourth standby light-emitting element LED4' are in a high-resistance off-circuit state; at the same time , the sum of U' and Uz can be close to 2*U0, so as to ensure that when at least one of the first standby light-emitting element LED1' to the second standby light-emitting element LED2' is working, the two ends of the first light-emitting element LED1 to the fourth light-emitting element LED4 Partial pressure will not change too much.
  • the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises, and when the voltage across the first light-emitting element LED1 and the second light-emitting element LED2 rises to Uz, it is the same as the first The first standby light emitting element LED1 ′ and the first Zener diode DW1 in which the light emitting element LED1 and the second light emitting element LED2 are connected in series are turned on to replace the first light emitting unit 21 to emit light and conduct the circuit.
  • the voltage at both ends of the first standby light-emitting element LED1' can be guaranteed to be stable, thereby ensuring the stability of the luminous brightness.
  • the voltage of the third light emitting element LED3 and the fourth light emitting element LED4 drops to (4U0-U'-Uz)/2, and the second spare light emitting element LED2' and the second Zener diode DW2 are still in a high-resistance off-circuit state , so as to ensure that when the first light-emitting element LED1 is disconnected, the current can still flow into the third light-emitting element LED3 and the fourth light-emitting element LED4 through the first standby light-emitting element LED1'.
  • the other two light-emitting elements in the light-emitting unit connected in series with the disconnected light-emitting unit can still emit light normally and
  • the present application also provides a display device 1 .
  • the display device 1 can be an electronic device with a display function such as a mobile phone, a tablet computer, a notebook, a game machine, an electronic billboard, and an automatic teller machine.
  • the display device 1 may be a liquid crystal display device.
  • the display device 1 includes a liquid crystal display panel 200 and a light emitting substrate 100 of the present application. It can be understood that the liquid crystal display device also includes components such as upper and lower polarizers and a cover plate. It can be understood that, in other embodiments of the present application, the display device 1 may also be a self-luminous display device.
  • the display device 1 can prevent the entire circuit from being disconnected due to the first light-emitting unit being disconnected or the first light-emitting unit having too much voltage division, resulting in excessive brightness changes.
  • At least one partition of the light-emitting substrate of the present application is provided with a first light-emitting unit and a first backup unit connected in parallel, and the first backup unit includes a backup light-emitting element.
  • the first backup unit includes a backup light-emitting element.
  • the backup light-emitting element When the voltage at both ends of the first light-emitting unit and the first backup unit rises to the working voltage of the first backup unit, the backup light-emitting element will be turned on to replace the light-emitting element in the first light-emitting unit that is disconnected and turn on the circuit, thereby preventing a single When the light-emitting elements in the partition are disconnected, the dim light or the loss of brightness will be caused.
  • the operating voltage of the first backup unit is 105% to 130% of the operating voltage of the first light emitting unit, that is, the operating voltage of the first backup unit is close to the operating voltage of the first light emitting unit, which can prevent The brightness change in the light-emitting assembly is too large due to the excessively large working voltage difference between the first backup unit and the first light-emitting unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

本申请提供一种发光基板和显示装置。发光基板包括多个分区,所述分区包括:第一发光单元和第一备用单元。第一发光单元包括至少一个发光元件。第一备用单元与所述第一发光单元并联。所述第一备用单元包括备用发光元件,所述第一备用单元的工作电压大于所述第一发光单元的工作电压。

Description

发光基板和显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种发光基板和显示装置。
背景技术
Mini-LED(次毫米发光二极管)和Micro-LED(微发光二极管)(以下,统称为mLED)显示技术具有高亮度、高对比度、长使用寿命等优点。mLED不仅可以用作直下式背光实现HDR功能,还能作为显示器实现直接显示、透明显示、柔性显示等诸多功能。
已知的一种mLED发光基板上通常设置M行N列个分区。为了提高各分区的亮度和均一性,每个分区中会设置两个以上发光元件。每个分区中的两个以上发光元件会采用串联、并联或者串并联的方式进行连接。请参考图1(a),当每个分区中的4个发光元件LED1、LED2、LED3和LED4串联时,如果分区中的一颗发光元件1发生断路,会导致整个分区不发光,即暗灯。请参考图1(b),设每个分区中的4个发光元件两端施加的电压为2U,U为LED1至LED4的工作电压。在正常工作状态下,LED1至LED4的工作电压均为U。当每个分区中的4个发光元件采用串并联的方式连接时,如果LED1发生断路,LED2、LED3和LED4仍能发光。但LED1断路造成单分区亮度损失。如上连接方式中,当有1颗发光元件断路时,单个分区的发光亮度都会有所降低,严重影响整机的画面显示质量。
技术问题
有鉴于此,本申请目的在于提供一种发光基板和显示装置,能够防止单个分区中发光元件发生断路时,引起的暗灯或者亮度损失。
技术解决方案
本申请提供一种发光基板,其包括多个分区,所述分区包括:
第一发光单元,包括至少一个发光元件;和
第一备用单元,与所述第一发光单元并联,所述第一备用单元包括备用发光元件,所述第一备用单元的工作电压大于所述第一发光单元的工作电压。
在一种实施方式中,所述第一备用单元的工作电压为所述第一发光单元的工作电压的105%至150%。
在一种实施方式中,所述第一备用单元的工作电压为所述第一发光单元的工作电压的105%至130%。
在一种实施方式中,所述发光基板还包括光学膜片,所述光学膜片设置于所述第一发光单元与所述第一备用单元的出光侧。
在一种实施方式中,所述第一发光单元包括两个以上发光元件,两个所述以上发光元件串联设置、并联设置或者串联与并联结合的方式设置。
在一种实施方式中,所述第一发光单元与所述第一备用单元集成在同一芯片中。
在一种实施方式中,所述分区还包括:
第二发光单元,与所述第一发光单元串联,所述第二发光单元包括至少一个发光元件;和
第二备用单元,与所述第二发光单元并联,所述第二备用单元的工作电压大于所述第二发光单元的工作电压。
在一种实施方式中,所述第二备用单元包括备用发光元件和/或稳压二极管。
在一种实施方式中,所述第一备用单元与所述第二备用单元由发光元件构成,所述第一发光单元、所述第二发光单元、所述第一备用单元与所述第二备用单元中的发光元件为相同器件。
在一种实施方式中,所述第一备用单元还包括稳压二极管,所述稳压二极管与所述备用发光元件串联或者并联。
在一种实施方式中,所述稳压二极管的工作电压大于所述备用发光元件的工作电压。
本申请提供一种显示装置,其包括如上任一项所述的发光基板。
在一种实施方式中,所述显示装置为液晶显示装置或者自发光显示装置。
有益效果
本申请的发光基板的至少一个分区中设置有并联的第一发光单元和第一备用单元,第一备用单元中包括备用发光元件。当第一发光单元中的发光元件发生故障,导致第一发光单元发生断路时,第一发光单元和第一备用单元两端的电压上升。当第一发光单元和第一备用单元两端的电压上升至第一备用单元的工作电压时,备用发光元件导通,代替第一发光单元中发生断路的发光元件发光并导通电路,从而防止单个分区中发光元件发生断路时,引起的暗灯或者亮度损失。
附图说明
为了更清楚地说明本申请中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1(a)为现有技术的发光基板中的发光组件的一种电路图;
图1(b)为现有技术的发光基板中的发光组件的另一种电路图。
图2为本申请实施例的发光基板的侧面示意图。
图3为本图2的发光基板的俯视示意图。
图4为本申请实施例的发光基板的驱动电路结构示意图。
图5为图4的发光基板的一个分区的驱动电路的电路图。
图6为本申请的第一实施方式的发光基板的发光组件的电路图。
图7为本申请的第二实施方式的发光基板的发光组件的电路图。
图8为本申请的第三实施方式的发光基板的发光组件的电路图。
图9为本申请的第四实施方式的发光基板的发光组件的电路图。
图10为本申请的第五实施方式的发光基板的发光组件的电路图。
图11为本申请的第六实施方式的发光基板的发光组件的电路图。
图12为本申请的第七实施方式的发光基板的发光组件的电路图。
图13为本申请的第八实施方式的发光基板的发光组件的电路图。
图14为本申请的第九实施方式的发光基板的发光组件的电路图。
图15为本申请的第十实施方式的发光基板的发光组件的电路图。
图16为本申请的第十一实施方式的发光基板的发光组件的电路图。
图17为本申请的显示装置的结构示意图。
本发明的实施方式
下面将结合本申请实施方式中的附图,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接,也可以包括第一和第二特征不是直接连接而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请提供一种发光基板。发光基板可以用作液晶显示器(Liquid Crystal Display,LCD)的背光源,也可以用于进行自发光显示。
发光基板包括多个分区,所述分区包括:第一发光单元和第一备用单元。第一发光单元包括至少一个发光元件。第一备用单元与所述第一发光单元并联。所述第一备用单元包括备用发光元件,所述第一备用单元的工作电压大于所述第一发光单元的工作电压。相较于现有技术中的发光基板,本申请的发光基板的每一分区中设置有并联的第一发光单元和第一备用单元,第一备用单元中包括备用发光元件。发光基板工作时,对每一分区施加电压,控制第一发光单元和第一备用单元两端的电压大于或者等于第一发光单元的工作电压,且小于第一备用单元的工作电压。当第一发光单元中的发光元件正常工作时,第一备用单元不工作。当第一发光单元中的发光元件发生故障,导致第一发光单元发生断路时,第一发光单元和第一备用单元两端的电压上升。当第一发光单元和第一备用单元两端的电压上升至第一备用单元的工作电压时,备用发光元件导通,代替第一发光单元中发生断路的发光元件发光并导通电路,从而防止单个分区中发光元件发生断路时,引起的暗灯或者亮度损失。
以下,结合附图说明本申请的具体实施方式。
请参考图2和图3,发光基板100包括基板10、多个发光组件20以及多个封装体30。基板10可以为玻璃基板或者塑料基板。多个发光组件20设置在基板10上。多个封装体30设置在多个发光组件20远离基板10的一侧。每一封装体30封装一个发光组件20。发光基板100还可以包括光学膜片40。光学膜片40设置于封装体30远离基板10的一侧,即发光组件20的出光侧。光学膜片40可以包括反射片、导光板、扩散片以及增光片等。
发光基板100包括多个分区101。可选的,多个分区101呈矩阵状排列。可以理解,多个分区101也可以以其他方式排列。当发光基板100为液晶显示装置的背光模组时,每一分区101对应液晶显示面板的一个或多个子像素。当发光基板100为自发光显示装置时,每一分区101为一个子像素。每一分区101中设置有一个发光组件20和一个封装体30。
请参考图4,基板10上设置有驱动发光组件20发光的驱动电路DC。具体地,基板10上设置有多条扫描线SL和多条数据线DL。多条扫描线沿第一方向D1延伸,且沿第二方向D2排列。多条数据线DL沿第二方向D2延伸,且沿第一方向D1排列。第一方向D1与第二方向D2相交。可选的,第一方向D1可以与第二方向D2垂直。多条扫描线SL与多条数据线DL相交定义出多个分区101。发光基板100还包括多条VDD信号线和多条VSS信号线。多条VDD信号线和多条VSS信号线分别沿第一方向D1延伸,且沿第二方向D2排列。相邻两条扫描线SL之间设置有一条VDD信号线和一条VSS信号线。可选的,每一VSS信号线可以位于一条VDD信号线与一条扫描线SL之间。
发光基板100可以为主动矩阵式发光基板。发光基板100可以采用恒压驱动方式驱动。具体地是指VDD和VSS之间恒压,即,发光组件20两端的电压是恒定的。发光基板100可以包括恒压驱动源(未图示)。驱动电路DC与恒压源连接。
请参考图5,每一分区101包括一个驱动电路DC。驱动电路DC可以是2T1C、1TFT 1MOS 1C、3T1C、5T1C或者7T1C等本领域常用的驱动电路DC。可选的,本实施方式的驱动电路DC为2T1C电路。驱动电路DC包括开关晶体管T1、驱动晶体管T2、存储电容Cst以及发光组件20。其中,开关晶体管T1的栅极连接于扫描线SL,源极连接于数据线DL,漏极连接于存储电容Cst的第一极板。存储电容Cst的第一极板Cst-1连接于开关晶体管T1的漏极,第二极板连接于VSS信号线。驱动晶体管T2的栅极连接于开关晶体管T1的漏极与存储电容Cst的第一极板Cst-1之间,源极连接于发光组件20的阴极,漏极连接于存储电容Cst的第二极板Cst-2与VSS信号线之间。发光组件20的阳极连接于VDD信号线,阴极连接于驱动晶体管T2的源极。
扫描线SL逐列扫描以实现主动矩阵式驱动。发光组件20采用恒压方式驱动,发光组件20的工作阶段包括数据写入阶段和发光阶段。在数据写入阶段,扫描信号Scan为高电位,扫描信号Scan控制开关晶体管T1打开,将数据信号Data输入至驱动晶体管T2的栅极,并存储在存储电容Cst中。然后,驱动晶体管T2打开,电流从VDD信号线流入发光组件20和驱动晶体管T2并最终从VSS信号线流出,使发光组件20发光。在发光阶段,扫描信号Scan为低电位,开关晶体管T1关闭。存储电容Cst可以维持驱动晶体管T2的栅极电位,使得发光器件继续发光。
可以理解,本实施例以发光基板100的所有分区101中均包括上述结构为例进行了说明。在其他实施方式中,只要发光基板100的至少一个分区101包括上述结构即可。
请参考图6,发光组件20包括第一发光单元21、第二发光单元22、第三发光单元23、第四发光单元24、第一备用单元25、第二备用单元26、第三备用单元27以及第四备用单元28。第一发光单元21、第二发光单元22、第三发光单元23与第四发光单元24依次串联。第一备用单元25与第一发光单元21并联。第二备用单元26与第二发光单元22并联。第三备用单元27第三发光单元23与并联。第四备用单元28与第四发光单元24并联。可以理解,本实施方式以发光组件20包括四个发光单元以及四个备用元件为例进行了说明。但本申请的发光组件20所包括的发光单元和备用元件的数量不限于此。
第一发光单元21、第二发光单元22、第三发光单元23与第四发光单元24分别包括至少一个发光元件。具体地,第一发光单元21包括第一发光元件LED1。第二发光单元22包括第二发光元件LED2。第三发光单元23包括第三发光元件LED3。第四发光单元24包括第四发光元件LED4。本实施方式以第一发光单元21、第二发光单元22、第三发光单元23与第四发光单元24分别包括一个发光元件为例进行说明。可以理解,本申请的发光单元所包括的发光元件的数量不限于此。可选的,第一发光单元21、第二发光单元22、第三发光单元23与第四发光单元24中包括的发光元件的数量可以相等也可以不相等。
发光元件可以为Micro-LED或者Mini-LED。可以理解,本申请的发光元件不限于Micro-LED或者Mini-LED,也可以是LED或者其他发光元件。可选的,第一发光单元21、第二发光单元22、第三发光单元23与第四发光单元24中的发光元件的类型相同。在本实施方式中,第一发光元件LED1至第四发光元件LED4均为Mini-LED。
第一备用单元25的工作电压大于第一发光单元21的工作电压,以使发光基板100正常工作时,第一发光单元21导通,而第一备用单元25不导通。可选的,第一备用单元25的工作电压可以为第一发光单元21的工作电压的105%至150%。当第一备用单元25的工作电压为第一发光单元21的工作电压的105%至150%时,通过与光学膜片40配合使用,能够获得较为均匀的出光效果。
进一步,为了防止第一备用单元25与第一发光单元21的工作电压差过大,导致第一备用单元25导通后分压过大,与第一发光单元21串联的其他发光单元的分压急剧降低而引起的发光组件20中的亮度变化过大。第一备用单元25的工作电压可以接近于第一发光单元21的工作电压。具体地,第一备用单元25的工作电压可以为第一发光单元21的工作电压的105%至130%。更进一步,第一备用单元25的工作电压为第一发光单元21的工作电压的105%至120%。
第一备用单元25包括备用发光元件。备用发光元件可以为与第一发光单元21中的发光元件相同的器件。具体的,可以为Micro-LED或者Mini-LED。如图2所示,第一备用单元25与第一发光单元21可以集成在同一芯片中并封装在同一封装体30中,再与分区101中的驱动电路DC连接。第一备用单元25可以与第一发光单元21层叠设置在基板10上,并封装在同一封装体30中。由此,能够简化制程,并且节约第一备用单元25与第一发光单元21占用的空间。第一备用单元25与第一发光单元21占用的空间减小,则基板10上用来反光的白油的面积增大,有利于提高发光基板100的亮度。在本申请的其他实施方式中,发光组件20中的第一备用单元25与第一发光单元21也可以分别独立设置在基板10上,并分别封装在不同封装体30中。具体的,第一备用单元25直接形成在驱动电路DC中,再与第一发光单元21并联起来。
第二备用单元26的工作电压大于第二发光单元22的工作电压,以使发光基板100正常工作时,第二发光单元22导通,而第二备用单元26不导通。可选的,第二备用单元26的工作电压可以为第二发光单元22的工作电压的105%至150%。进一步,为了防止第二备用单元26与第二发光单元22的工作电压差过大,导致第二备用单元26导通后分压过大。第二备用单元26的工作电压可以接近于第二发光单元22的工作电压。具体地,第二备用单元26的工作电压可以为第二发光单元22的工作电压的105%至130%。更进一步,第二备用单元26的工作电压为第二发光单元22的工作电压的105%至120%。第二备用单元26包括备用发光元件。备用发光元件可以为与第二发光单元22中的发光元件相同的器件。
第三备用单元27的工作电压大于第三发光单元23的工作电压,以使发光基板100正常工作时,第三发光单元23导通,而第三备用单元27不导通。可选的,第三备用单元27的工作电压可以为第三发光单元23的工作电压的105%至150%。进一步,为了防止第三备用单元27与第三发光单元23的工作电压差过大,导致第三备用单元27导通后分压过大。第三备用单元27的工作电压可以接近于第三发光单元23的工作电压。具体地,第三备用单元27的工作电压可以为第三发光单元23的工作电压的105%至130%。更进一步,第三备用单元27的工作电压为第三发光单元23的工作电压的105%至120%。第三备用单元27包括备用发光元件。备用发光元件可以为与第三发光单元23中的发光元件相同的器件。
第四备用单元28的工作电压大于第四发光单元24的工作电压,以使发光基板100正常工作时,第四发光单元24导通,而第四备用单元28不导通。可选的,第四备用单元28的工作电压可以为第四发光单元24的工作电压的105%至150%。进一步,为了防止第四备用单元28与第四发光单元24的工作电压差过大,导致第四备用单元28导通后分压过大。第四备用单元28的工作电压可以接近于第四发光单元24的工作电压。具体地,第四备用单元28的工作电压可以为第四发光单元24的工作电压的105%至130%。更进一步,第四备用单元28的工作电压为第四发光单元24的工作电压的105%至120%。第四备用单元28包括备用发光元件。备用发光元件可以为与第四发光单元24中的发光元件相同的器件。
可选的,第一发光单元21至第四发光单元24中的发光元件和第一备用单元25至第四备用单元28中的发光元件可以相同。以降低不同特性的器件的特性管理难度,提升发光基板100的稳定性和可靠性。进一步,为了简化电路设计难度和特性管理难度,第一备用单元25至第四备用单元28的工作电压可以大致相同。可选的,第一备用单元25至第四备用单元28的工作电压可相等。
本申请第一实施方式的发光基板100在第一发光元件LED1、第二发光元件LED2、第三发光元件LED3、第四发光元件LED4两端分别并联第一备用发光元件LED1’、第二备用发光元件LED2’、第三备用发光元件LED3’、第四备用发光元件LED4’。其工作原理如下:
设第一发光元件LED1至第四发光元件LED4的工作电压均为U0,第一备用发光元件LED1’至第四备用发光元件LED4’的工作电压为U’。发光基板100正常工作时,施加在发光组件20两端的电压为4U0。U’大于U0,确保第一发光元件LED1至第四发光元件LED4正常工作时,第一备用发光元件LED1’至第四备用发光元件LED4’处于高电阻的断路状态;同时,U’可以接近于U0,从而确保第一备用发光元件LED1’至第四备用发光元件LED4’的至少一个工作时,第一发光元件LED1至第四发光元件LED4两端的分压不会有过大变化。当第一发光元件LED1断路时,第一发光元件LED1两端的电压升高,当第一发光元件LED1两端的电压升高至U’时,与第一发光元件LED1并联的第一备用发光元件LED1’导通,代替第一发光元件LED1发光。此时,第二发光元件LED2、第三发光元件LED3、第四发光元件LED4两端的电压下降至(4U0-U’)/3。第二备用发光元件LED2’、第三备用发光元件LED3’、第四备用发光元件LED4’依然处于高电阻的断路状态,从而确保第一发光元件LED1断路时,电流仍能通过第一备用发光元件LED1’流入第二发光元件LED2、第三发光元件LED3、第四发光元件LED4。由此,确保发光基板100的单分区101中一颗发光元件发生断路时,与发生断路的发光单元串联的其他发光单元中的三颗发光元件仍能正常发光,并且备用发光元件能够代替断路的发光元件进行发光。
请参考图7,本申请第二实施方式的发光基板100与第一实施方式相似,不同点在于:
发光组件20包括第一发光单元21、第二发光单元22、第一备用单元25、以及第二备用单元26。第一发光单元21与第二发光单元22串联。第一备用单元25与第一发光单元21并联。第二备用单元26与第二发光单元22并联。第一发光单元21包括第一发光元件LED1和第二发光元件LED2。第二发光单元22包括第三发光元件LED3和第四发光元件LED4。第一发光单元21中的第一发光元件LED1和第二发光元件LED2串联。第二发光单元22中的第三发光元件LED3和第四发光元件LED4也串联。第一备用单元25包括第一备用发光元件LED1’。第二备用单元26包括第二备用发光元件LED2’。本申请第二实施方式的发光基板100中,第一发光元件LED1和第二发光元件LED2串联,两端再并联第一备用发光元件LED1’;第三发光元件LED3和第四发光元件LED4串联,两端再并联第二备用发光元件LED2’。其工作原理如下:
设第一发光元件LED1至第四发光元件LED4的工作电压均为U0,则第一发光单元21与第二发光单元22的工作电压均为2*U0。第一备用发光元件LED1’和第二备用发光元件LED2’的工作电压均为U’。发光基板100正常工作时,施加在发光组件20两端的电压为4U0。U’大于2*U0,确保第一发光元件LED1至第四发光元件LED4正常工作时,第一备用发光元件LED1’和第二备用发光元件LED2’处于高电阻的断路状态;同时,U’可以接近于2*U0,从而确保第一备用发光元件LED1’和第二备用发光元件LED2’的至少一个工作时,第一发光元件LED1至第四发光元件LED4两端的分压不会有过大变化。当第一发光元件LED1断路时,第一发光元件LED1和第二发光元件LED2两端的电压升高,当第一发光元件LED1和第二发光元件LED2两端的电压升高至U’时,与第一发光元件LED1和第二发光元件LED2并联的第一备用发光元件LED1’导通,代替第一发光单元21发光。此时,第三发光元件LED3、第四发光元件LED4的电压下降至(4U0-U’)/2,第二备用发光元件LED2’依然处于高电阻的断路状态,从而确保第一发光元件LED1断路时,电流仍能通过第一备用发光元件LED1’流入第三发光元件LED3、第四发光元件LED4。由此,确保单分区101中一颗发光元件发生断路时,与发生断路的发光单元串联的发光单元中的其他两颗发光元件仍能正常发光。
请参考图8,本申请第三实施方式的发光基板100与第一实施方式相似,不同点在于:
发光组件20包括第一发光单元21、第二发光单元22、第一备用单元25以及第二备用单元26。第一发光单元21与第二发光单元22串联。第一备用单元25与第一发光单元21并联。第二备用单元26与第二发光单元22并联。第一发光单元21包括第一发光元件LED1和第二发光元件LED2。第二发光单元22包括第三发光元件LED3和第四发光元件LED4。第一发光单元21中的第一发光元件LED1和第二发光元件LED2并联。第二发光单元22中的第三发光元件LED3和第四发光元件LED4也并联。第一备用单元25包括第一备用发光元件LED1’。第二备用单元26包括第二备用发光元件LED2’。
本申请第三实施方式的发光基板100中,第一发光元件LED1和第二发光元件LED2并联,两端再并联第一备用发光元件LED1’;第三发光元件LED3和第四发光元件LED4并联,两端再并联第二备用发光元件LED2’。其工作原理如下:
设第一发光元件LED1至第四发光元件LED4的工作电压均为U0,则第一发光单元21与第二发光单元22的工作电压均为U0。第一备用发光元件LED1’和第二备用发光元件LED2’的工作电压均为U’。发光基板100正常工作时,施加在发光组件20两端的电压为2U0。U’大于U0,确保第一发光元件LED1至第四发光元件LED4正常工作时,第一备用发光元件LED1’和第二备用发光元件LED2’处于高电阻的断路状态;同时,U’可以接近于U0,从而确保第一备用发光元件LED1’和第二备用发光元件LED2’的至少一个工作时,第一发光元件LED1至第四发光元件LED4两端的分压不会有过大变化。当第一发光元件LED1断路时,第一发光元件LED1和第二发光元件LED2两端的电压升高,当第一发光元件LED1和第二发光元件LED2两端的电压升高至U’时,与第一发光元件LED1和第二发光元件LED2并联的第一备用发光元件LED1’导通,代替第一发光元件LED1发光。此时,第二发光元件LED2的电压上升至U’,第三发光元件LED3、第四发光元件LED4的电压下降至2U0-U’,第二备用发光元件LED2’依然处于高电阻的断路状态,从而确保第一发光元件LED1断路时,电流仍能通过第一备用发光元件LED1’和第二发光元件LED2流入第三发光元件LED3、第四发光元件LED4。从而确保单分区101中一颗发光元件发生断路时,第一备用发光元件LED1’能够代替发生断路的第一发光元件LED1发光。
此外,在如图1(b)所示的现有技术中,如果没有设置第一备用单元25和第二备用单元26,当第一发光元件LED1发生断路,第一发光单元21的电阻增大为第二发光元件LED2的电阻。在本申请中,由于并联了第一备用发光元件LED1’,当第一发光元件LED1发生断路,第一发光单元21的电阻增大为第二发光元件LED2与第一备用发光元件LED1’的并联电阻。相较于现有技术,本申请在第一发光元件LED1发生断路时,第一发光单元21的电阻增大较小,分压的增加也较小,从而与第一发光单元21串联的第二发光单元22的分压的降低也小,能够降低发光组件20中的各发光单元的电压变化,从而降低亮度的变化。
请参考图9,本申请第四实施方式的发光基板100与第一实施方式相似,不同点在于:
第一备用单元25至第四备用单元28均为稳压二极管。稳压二极管是一种晶体二极管,其利用PN结的击穿区具有稳定电压的特性工作。稳压二极管的特点在于PN结被击穿后,其两端的电压基本保持不变。稳压二极管反接在电路中。将稳压二极管的工作电压设为Uz,当稳压二极管两端的电压小于Uz时,稳压二极管不工作,处于高电阻的断路状态。当稳压二极管两端的电压大于Uz时,稳压二极管反向击穿导通且电压维持在Uz,从而起到稳压作用。
本申请第一实施方式的发光基板100在第一发光元件LED1、第二发光元件LED2、第三发光元件LED3、第四发光元件LED4两端分别并联第一稳压二极管DW1、第二稳压二极管DW2、第三稳压二极管DW3、第四稳压二极管DW4。其工作原理如下:
设第一发光元件LED1至第四发光元件LED4的工作电压均为U0,则第一发光单元21与第二发光单元22的工作电压均为U0。第一稳压二极管DW1至第四稳压二极管DW4的工作电压均为Uz。发光基板100正常工作时,施加在发光组件20两端的电压为4U0。Uz大于U0,确保第一发光元件LED1至第四发光元件LED4正常工作时,第一稳压二极管DW1至第四稳压二极管DW4处于高电阻的断路状态;同时,Uz可以接近于U0,从而确保第一稳压二极管DW1至第四稳压二极管DW4的至少一个工作时,第一发光元件LED1至第四发光元件LED4两端的分压不会有过大变化。当第一发光元件LED1断路时,第一发光元件LED1两端的电压升高,当第一发光元件LED1两端的电压升高至Uz时,与第一发光元件LED1并联的第一稳压二极管DW1导通。此时,第二发光元件LED2、第三发光元件LED3、第四发光元件LED4两端的电压下降至(4U0-Uz)/3。第二稳压二极管DW2、第三稳压二极管DW3、第四稳压二极管DW4依然处于高电阻的断路状态,从而确保第一发光元件LED1断路时,电流仍能通过第一稳压二极管DW1流入第二发光元件LED2、第三发光元件LED3、第四发光元件LED4。由此,确保发光基板100的单分区101中一颗发光元件发生断路时,与发生断路的发光单元串联的其他发光单元中的三颗发光元件仍能正常发光。
请参考图10,本申请第五实施方式的发光基板100与第二实施方式相似,不同点在于:
第一备用单元25和第二备用单元26均为稳压二极管。
本申请第五实施方式的发光基板100中,第一发光元件LED1和第二发光元件LED2串联,两端再并联第一稳压二极管DW1;第三发光元件LED3和第四发光元件LED4串联,两端再并联第二稳压二极管DW2。其工作原理如下:
设第一发光元件LED1至第四发光元件LED4的工作电压均为U0,则第一发光单元21与第二发光单元22的工作电压均为2*U0。第一稳压二极管DW1和第二稳压二极管DW2的工作电压均为Uz。发光基板100正常工作时,施加在发光组件20两端的电压为4U0。Uz大于2*U0,确保第一发光元件LED1至第四发光元件LED4正常工作时,第一稳压二极管DW1和第二稳压二极管DW2处于高电阻的断路状态;同时,Uz可以接近于2*U0,从而确保第一稳压二极管DW1和第二稳压二极管DW2的至少一个工作时,第一发光元件LED1至第四发光元件LED4两端的分压不会有过大变化。当第一发光元件LED1断路时,第一发光元件LED1和第二发光元件LED2两端的电压升高,当第一发光元件LED1和第二发光元件LED2两端的电压升高至Uz时,与第一发光元件LED1和第二发光元件LED2并联的第一稳压二极管DW1导通。此时,第三发光元件LED3、第四发光元件LED4的电压下降至(4U0-Uz)/2,第二稳压二极管DW2依然处于高电阻的断路状态,从而确保第一发光元件LED1断路时,电流仍能通过第一稳压二极管DW1流入第三发光元件LED3、第四发光元件LED4。由此,确保单分区101中一颗发光元件发生断路时,与发生断路的发光单元串联的其他发光单元中的两颗发光元件仍能正常发光。
请参考图11,本申请第六实施方式的发光基板100与第三实施方式相似,不同点在于:
第一备用单元25和第二备用单元26均为稳压二极管。
本申请第六实施方式的发光基板100中,第一发光元件LED1和第二发光元件LED2并联,两端再并联第一稳压二极管DW1;第三发光元件LED3和第四发光元件LED4并联,两端再并联第二稳压二极管DW2。其工作原理如下:
设第一发光元件LED1至第四发光元件LED4的工作电压均为U0,则第一发光单元21与第二发光单元22的工作电压均为U0。第一稳压二极管DW1和第二稳压二极管DW2的工作电压均为Uz。发光基板100正常工作时,施加在发光组件20两端的电压为2U0。Uz大于U0,确保第一发光元件LED1至第四发光元件LED4正常工作时,第一稳压管和第二稳压管处于高电阻的断路状态;同时,Uz可以接近于U0,从而确保第一稳压二极管DW1和第二稳压二极管DW2的至少一个工作时,第一发光元件LED1至第四发光元件LED4两端的分压不会有过大变化。当第一发光元件LED1断路时,第一发光元件LED1和第二发光元件LED2两端的电压升高,当第一发光元件LED1和第二发光元件LED2两端的电压升高至Uz时,与第一发光元件LED1和第二发光元件LED2并联的第一稳压二极管DW1导通。此时,第二发光元件LED2的电压上升至Uz,第三发光元件LED3、第四发光元件LED4的电压下降至2U0-Uz,第二稳压二极管DW2依然处于高电阻的断路状态,从而确保第一发光元件LED1断路时,电流仍能通过第一稳压二极管DW1和第二发光元件LED2流入第三发光元件LED3、第四发光元件LED4。从而确保单分区101中一个发光单元中全部的发光元件发生断路时,与发生断路的发光单元并联的发光元件仍能正常发光。
此外,在如图1(b)所示的现有技术中,如果没有设置第一备用单元25和第二备用单元26,当第一发光元件LED1发生断路,第一发光单元21的电阻增大为第二发光元件LED2的电阻。在本申请中,由于并联了第一稳压二极管DW1,当第一发光元件LED1发生断路,第一发光单元21的电阻增大为第二发光元件LED2与第一稳压二极管DW1的并联电阻。相较于现有技术,本申请在第一发光元件LED1发生断路时,第一发光单元21的电阻增大较小,分压的增加也较小,从而与第一发光单元21串联的第二发光单元22的分压的降低也小,能够降低发光组件20中的各发光单元的电压变化,从而降低亮度的变化。
请参考图12,本申请第七实施方式的发光基板100与第二实施方式相似,不同点在于:
第一备用单元25为第一备用发光元件LED1’。第二备用单元26为第一稳压二极管DW1。第一备用发光单元25中使用的备用发光元件可以与第一发光单元21和第二发光单元22中使用的发光元件的为相同器件。在本实施方式中,第一发光元件LED1、第二发光元件LED2以及第一备用单元25均为Mini-LED。
本申请第七实施方式的发光基板100中,第一发光元件LED1和第二发光元件LED2串联,两端再并联第一备用发光元件LED1’;第三发光元件LED3和第四发光元件LED4并联,两端再并联第一稳压二极管DW1。其工作原理如下:
设第一发光元件LED1至第四发光元件LED4的工作电压均为U0,则第一发光单元21与第二发光单元22的工作电压均为2*U0。第一备用发光元件LED1’的工作电压为U’,第一稳压二极管DW1的工作电压为Uz。发光基板100正常工作时,施加在发光组件20两端的电压为4U0。U’和Uz大于2*U0,确保第一发光元件LED1至第四发光元件LED4正常工作时,第一备用发光元件LED1’和第一稳压二极管DW1处于高电阻的断路状态;同时,U’和Uz可以接近于2*U0,从而确保第一备用发光元件LED1’和第一稳压二极管DW1的至少一个工作时,第一发光元件LED1至第四发光元件LED4两端的分压不会有过大变化。当第一发光元件LED1断路时,第一发光元件LED1和第二发光元件LED2两端的电压升高,当第一发光元件LED1和第二发光元件LED2两端的电压升高至U’时,与第一发光元件LED1和第二发光元件LED2并联的第一备用发光元件LED1’导通,代替第一发光单元21发光。此时,第三发光元件LED3、第四发光元件LED4的电压下降至(4U0-U’)/2,第二备用发光元件LED2’依然处于高电阻的断路状态,从而确保第一发光元件LED1断路时,电流仍能通过第一备用发光元件LED1’流入第三发光元件LED3、第四发光元件LED4。由此,确保单分区101中第一发光单元21中一颗发光元件发生断路时,与发生断路的发光单元串联的发光单元中的其他两颗发光元件仍能正常发光。
当第三发光元件LED3断路时,第三发光元件LED3和第四发光元件LED4两端的电压升高,当第三发光元件LED3、第四发光元件LED4两端的电压升高至Uz时,与第三发光元件LED3、第四发光元件LED4并联的第一稳压二极管DW1导通。此时,第一发光元件LED1和第二发光元件LED2的电压下降至(4U0-Uz)/2,第一备用发光元件LED1’依然处于高电阻的断路状态,从而确保第三发光元件LED3断路时,电流仍能通过第一稳压二极管DW1流入第一发光元件LED1和第二发光元件LED2。由此,确保单分区101中第二发光单元中全部发光元件发生断路时,与发生断路的发光单元串联的其他发光单元中的两颗发光元件仍能正常发光。此外,与第三实施方式相同的,还能够降低发光组件20中的各发光单元的电压变化,从而降低亮度的变化。
请参考图13,本申请第八实施方式的发光基板100与第二实施方式相似,不同点在于:
第一发光单元21中的第一发光元件LED1和第二发光元件LED2串联。第二发光单元22中的第三发光元件LED3和第四发光元件LED4并联。
本申请第二实施方式的发光基板100中,第一发光元件LED1和第二发光元件LED2串联,两端再并联第一备用发光元件LED1’;第三发光元件LED3和第四发光元件LED4串联,两端再并联第二备用发光元件LED2’。其工作原理可以参考第二实施方式和第三实施方式,在此省略详细说明。
请参考图14,本申请第九实施方式的发光基板100与第二实施方式相似,不同点在于:
第一发光单元21还包括第五发光元件LED5,第五发光元件LED5与第一发光元件LED1并联,再与第二发光元件LED2串联。其工作原理可以参考第二实施方式,在此省略详细说明。
请参考图15,本申请第十实施方式的发光基板100与第二实施方式相似,不同点在于:
第一备用单元25还包括第一稳压二极管DW1,第一稳压二极管DW1与第一备用发光单元LED1’并联。第二备用单元26还包括第二稳压二极管DW2,第二稳压二极管DW2与第二备用发光单元LED2’并联。由于稳压二极管反向击穿后,两端的电压会维持稳定。如果第一稳压二极管DW1的工作电压小于第一备用发光单元LED1’的工作电压,则当第一稳压二极管DW1反向击穿后,两端电压不再上升,无法点亮第一备用发光单元LED1’。可选的,第一稳压二极管DW1的工作电压大于或者等于第一备用发光单元LED1’的工作电压。进一步,第一稳压二极管DW1与第一备用发光单元LED1’的工作电压为第一发光单元21的工作电压的105%至150%。第二稳压二极管DW2的工作电压大于或者等于第二备用发光单元LED2’的工作电压,第二备用发光单元LED2’的工作电压大于第二发光元件LED2的工作电压。可选的,第二稳压二极管DW2与第一备用发光单元LED1’的工作电压为第二发光单元22的工作电压的105%至150%。
本申请第十实施方式的发光基板100中,第一发光元件LED1和第二发光元件LED2串联,两端再并联第一备用发光元件LED1’和第一稳压二极管DW1;第三发光元件LED3和第四发光元件LED4串联,两端再并联第二备用发光元件LED2’和第二稳压二极管DW2。其工作原理如下:
设第一发光元件LED1至第四发光元件LED4的工作电压均为U0,则第一发光单元21与第二发光单元22的工作电压均为2*U0。第一备用发光元件LED1’和第二备用发光元件LED2’的工作电压均为U’。第一稳压二极管DW1和第二稳压二极管DW2的工作电压均为Uz。Uz= U’。发光基板100正常工作时,施加在发光组件20两端的电压为4U0。U’大于2*U0,确保第一发光元件LED1至第四发光元件LED4正常工作时,第一备用发光元件LED1’至第四备用发光元件LED4’处于高电阻的断路状态;同时,U’可以接近于2*U0,从而确保第一备用发光元件LED1’至第二备用发光元件LED2’的至少一个工作时,第一发光元件LED1至第四发光元件LED4两端的分压不会有过大变化。当第一发光元件LED1断路时,第一发光元件LED1和第二发光元件LED2两端的电压升高,当第一发光元件LED1和第二发光元件LED2两端的电压升高至Uz时,与第一发光元件LED1和第二发光元件LED2并联的第一备用发光元件LED1’和第一稳压二极管DW1导通,代替第一发光单元21发光和导通电路。由于第一稳压二极管DW1的稳压作用,能够保证第一备用发光元件LED1’两端的电压稳定,从而保证发光亮度的稳定性。此时,第三发光元件LED3、第四发光元件LED4的电压下降至(4U0-Uz)/2,第二备用发光元件LED2’和第二稳压二极管DW2依然处于高电阻的断路状态,从而确保第一发光元件LED1断路时,电流仍能通过第一备用发光元件LED1’流入第三发光元件LED3、第四发光元件LED4。由此,确保单分区101中一颗发光元件发生断路时,与发生断路的发光单元串联的发光单元中的其他两颗发光元件仍能正常并稳定地发光。
请参考图16,本申请第十一实施方式的发光基板100与第二实施方式相似,不同点在于:
第一备用单元25还包括第一稳压二极管DW1,第一稳压二极管DW1与第一备用发光单元LED1’串联。第二备用单元26还包括第二稳压二极管DW2,第二稳压二极管DW2与第二备用发光单元LED2’串联。第一备用发光单元LED1’的工作电压大于第一发光元件LED1的工作电压。由于稳压二极管反向击穿后,两端的电压会维持稳定。如果第一稳压二极管DW1的工作电压小于第一备用发光单元LED1’的工作电压,则当第一稳压二极管DW1反向击穿后,两端电压不再上升,无法点亮第一备用发光单元LED1’。可选的,第一稳压二极管DW1的工作电压大于或者等于第一备用发光单元LED1’的工作电压。进一步,第一稳压二极管DW1与第一备用发光单元LED1’的工作电压之和为第一发光单元21的工作电压的105%至150%。第二稳压二极管DW2的工作电压大于或者等于第二备用发光单元LED2’的工作电压,第二备用发光单元LED2’的工作电压大于第二发光元件LED2的工作电压。可选的,第二稳压二极管DW2与第一备用发光单元LED1’的工作电压之和为第二发光单元22的工作电压的105%至150%。
本申请第十一实施方式的发光基板100中,第一发光元件LED1和第二发光元件LED2串联,两端再并联第一备用发光元件LED1’和第一稳压二极管DW1;第三发光元件LED3和第四发光元件LED4串联,两端再并联第二备用发光元件LED2’和第二稳压二极管DW2。其工作原理如下:
设第一发光元件LED1至第四发光元件LED4的工作电压均为U0,则第一发光单元21与第二发光单元22的工作电压均为2*U0。第一备用发光元件LED1’和第二备用发光元件LED2’的工作电压均为U’。第一稳压二极管DW1和第二稳压二极管DW2的工作电压均为Uz。Uz= U’。发光基板100正常工作时,施加在发光组件20两端的电压为4U0。U’与Uz的和大于2*U0,确保第一发光元件LED1至第四发光元件LED4正常工作时,第一备用发光元件LED1’至第四备用发光元件LED4’处于高电阻的断路状态;同时,U’与Uz的和可以接近于2*U0,从而确保第一备用发光元件LED1’至第二备用发光元件LED2’的至少一个工作时,第一发光元件LED1至第四发光元件LED4两端的分压不会有过大变化。当第一发光元件LED1断路时,第一发光元件LED1和第二发光元件LED2两端的电压升高,当第一发光元件LED1和第二发光元件LED2两端的电压升高至Uz时,与第一发光元件LED1和第二发光元件LED2串联的第一备用发光元件LED1’和第一稳压二极管DW1导通,代替第一发光单元21发光和导通电路。由于第一稳压二极管DW1的稳压作用,能够保证第一备用发光元件LED1’两端的电压稳定,从而保证发光亮度的稳定性。此时,第三发光元件LED3、第四发光元件LED4的电压下降至(4U0-U’-Uz)/2,第二备用发光元件LED2’和第二稳压二极管DW2依然处于高电阻的断路状态,从而确保第一发光元件LED1断路时,电流仍能通过第一备用发光元件LED1’流入第三发光元件LED3、第四发光元件LED4。由此,确保单分区101中一颗发光元件发生断路时,与发生断路的发光单元串联的发光单元中的其他两颗发光元件仍能正常并稳定地发光。
请参考图17,本申请还提供一种显示装置1。显示装置1可以为手机、平板电脑、笔记本、游戏机、电子广告牌、自动取款机等具有显示功能的电子设备。显示装置1可以为液晶显示装置。显示装置1包括液晶显示面板200和本申请的发光基板100。可以理解,液晶显示装置还包括上下偏光片、盖板等部件。可以理解,在本申请其他实施方式中,显示装置1还可以为自发光显示装置。
显示装置1通过使用本申请提供的发光基板100,能够防止由于第一发光单元发生断路,导致整个电路发生断路或者第一发光单元分压过大,而引起亮度变化过大。
本申请的发光基板的至少一个分区中设置有并联的第一发光单元和第一备用单元,第一备用单元中包括备用发光元件。当第一发光单元中的发光元件发生故障,导致第一发光单元发生断路时,第一发光单元和第一备用单元两端的电压上升。当第一发光单元和第一备用单元两端的电压上升至第一备用单元的工作电压时,备用发光元件导通,代替第一发光单元中发生断路的发光元件发光并导通电路,从而防止单个分区中发光元件发生断路时,引起的暗灯或者亮度损失。
根据本申请的一个实施方式,第一备用单元的工作电压为第一发光单元的工作电压的105%至130%,即,第一备用单元的工作电压接近第一发光单元的工作电压,可以防止第一备用单元与第一发光单元的工作电压差过大而引起的发光组件中的亮度变化过大。
以上对本申请实施方式提供了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种发光基板,包括多个分区,所述分区包括:
    第一发光单元,包括至少一个发光元件;和
    第一备用单元,与所述第一发光单元并联,所述第一备用单元包括备用发光元件,所述第一备用单元的工作电压大于所述第一发光单元的工作电压。
  2. 如权利要求1所述的发光基板,其中,所述第一备用单元的工作电压为所述第一发光单元的工作电压的105%至150%。
  3. 如权利要求2所述的发光基板,其中,所述第一备用单元的工作电压为所述第一发光单元的工作电压的105%至130%。
  4. 如权利要求3所述的发光基板,其中,所述发光基板还包括光学膜片,所述光学膜片设置于所述第一发光单元与所述第一备用单元的出光侧。
  5. 如权利要求1所述的发光基板,其中,所述第一发光单元包括两个以上发光元件,两个以上所述发光元件串联设置、并联设置或者串联与并联结合的方式设置。
  6. 如权利要求1所述的发光基板,其中,所述第一发光单元与所述第一备用单元集成在同一芯片中。
  7. 如权利要求1所述的发光基板,其中,所述分区还包括:
    第二发光单元,与所述第一发光单元串联,所述第二发光单元包括至少一个发光元件;和
    第二备用单元,与所述第二发光单元并联,所述第二备用单元的工作电压大于所述第二发光单元的工作电压。
  8. 如权利要求7所述的发光基板,其中,所述第二备用单元包括备用发光元件和/或稳压二极管。
  9. 如权利要求7所述的发光基板,其中,所述第一备用单元与所述第二备用单元由发光元件构成,所述第一发光单元、所述第二发光单元、所述第一备用单元与所述第二备用单元中的发光元件为相同器件。
  10. 如权利要求1所述的发光基板,其中,所述第一备用单元还包括稳压二极管,所述稳压二极管与所述备用发光元件串联或者并联。
  11. 如权利要求10所述的发光基板,其中,所述稳压二极管的工作电压大于所述备用发光元件的工作电压。
  12. 一种显示装置,包括发光基板,所述发光基板包括多个分区,所述分区包括:
    第一发光单元,包括至少一个发光元件;和
    第一备用单元,与所述第一发光单元并联,所述第一备用单元包括备用发光元件,所述第一备用单元的工作电压大于所述第一发光单元的工作电压。
  13. 如权利要求12所述的显示装置,其中,所述显示装置为液晶显示装置或者自发光显示装置。
  14. 如权利要求12所述的显示装置,其中,所述第一备用单元的工作电压为所述第一发光单元的工作电压的105%至150%。
  15. 如权利要求14所述的显示装置,其中,所述第一备用单元的工作电压为所述第一发光单元的工作电压的105%至130%。
  16. 如权利要求15所述的显示装置,其中,所述发光基板还包括光学膜片,所述光学膜片设置于所述第一发光单元与所述第一备用单元的出光侧。
  17. 如权利要求12所述的显示装置,其中,所述第一发光单元包括两个以上发光元件,两个以上所述发光元件串联设置、并联设置或者串联与并联结合的方式设置。
  18. 如权利要求12所述的显示装置,其中,所述第一发光单元与所述第一备用单元集成在同一芯片中。
  19. 如权利要求12所述的显示装置,其中,所述分区还包括:
    第二发光单元,与所述第一发光单元串联,所述第二发光单元包括至少一个发光元件;和
    第二备用单元,与所述第二发光单元并联,所述第二备用单元的工作电压大于所述第二发光单元的工作电压。
  20. 如权利要求19所述的显示装置,其中,所述第一备用单元与所述第二备用单元由发光元件构成,所述第一发光单元、所述第二发光单元、所述第一备用单元与所述第二备用单元中的发光元件为相同器件。
PCT/CN2021/115056 2021-08-19 2021-08-27 发光基板和显示装置 WO2023019630A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/600,376 US20240045269A1 (en) 2021-08-19 2021-08-27 Light-emitting substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110954245.8 2021-08-19
CN202110954245.8A CN113671752B (zh) 2021-08-19 2021-08-19 发光基板和显示装置

Publications (1)

Publication Number Publication Date
WO2023019630A1 true WO2023019630A1 (zh) 2023-02-23

Family

ID=78544072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115056 WO2023019630A1 (zh) 2021-08-19 2021-08-27 发光基板和显示装置

Country Status (3)

Country Link
US (1) US20240045269A1 (zh)
CN (1) CN113671752B (zh)
WO (1) WO2023019630A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114758629B (zh) * 2022-06-16 2022-09-02 惠科股份有限公司 背光模组及其点亮方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090219460A1 (en) * 2006-01-13 2009-09-03 Sharp Kabushiki Kaisha Illumination Device and Liquid Crystal Display Apparatus
CN102307412A (zh) * 2011-03-09 2012-01-04 友达光电股份有限公司 具高运作可靠度的发光装置与应用该发光装置的光源系统
CN102788331A (zh) * 2012-08-06 2012-11-21 苏州佳世达电通有限公司 Led灯条线路结构
CN105023522A (zh) * 2015-06-01 2015-11-04 友达光电股份有限公司 显示面板及其修补方法
CN111462622A (zh) * 2019-01-21 2020-07-28 群创光电股份有限公司 可折式显示装置
CN111798803A (zh) * 2020-07-07 2020-10-20 Tcl华星光电技术有限公司 Led背光驱动电路、背光模组及液晶显示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399093A (zh) * 2002-08-04 2003-02-26 叶关荣 长寿命的发光二极管信号灯
CN100544041C (zh) * 2004-06-10 2009-09-23 颜怀玮 交直流电源两用桥式照明发光二极管及制造方法
JP4516467B2 (ja) * 2005-03-29 2010-08-04 シャープ株式会社 面照明装置及びそれを備えた液晶表示装置
JP2007165161A (ja) * 2005-12-15 2007-06-28 Sharp Corp Led照明装置、ledバックライト装置、及び画像表示装置
CN2896782Y (zh) * 2006-04-25 2007-05-02 健生工厂股份有限公司 发光装置
CN201160331Y (zh) * 2007-12-27 2008-12-03 张飞然 Led串联供电保护电路
CN102141206A (zh) * 2010-01-28 2011-08-03 中山兴瀚科技有限公司 具有旁路保护的串联led光源
CN101986009A (zh) * 2010-11-02 2011-03-16 华南理工大学 一种备用型交流led灯丝及照明灯
CN102466152A (zh) * 2010-11-19 2012-05-23 晶宏半导体股份有限公司 发光模块及具有该发光模块的发光装置
CN201944632U (zh) * 2011-03-14 2011-08-24 刘幼平 一种led日光灯
CN102325415A (zh) * 2011-09-09 2012-01-18 西安明泰半导体科技有限公司 减小分布寄生电容反冲引起led光衰的光源板保护方法
CN103096561B (zh) * 2011-10-31 2015-06-10 英飞特电子(杭州)股份有限公司 一种led光源的恒流驱动器
CN202432350U (zh) * 2011-12-09 2012-09-12 Tcl王牌电器(惠州)有限公司 直下式led背光模组及led背光显示装置
CN103807828A (zh) * 2014-03-02 2014-05-21 孙传钢 一种无线路板的插接式通透led灯及插片led灯珠
CN104333958A (zh) * 2014-11-20 2015-02-04 中山市美耐特光电有限公司 一种照明电路和使用该照明电路的灯带
CN206159897U (zh) * 2016-07-04 2017-05-10 广东欧曼科技股份有限公司 一种恒流高压保护的led灯带
DE202016106181U1 (de) * 2016-11-04 2016-11-18 Guangdong Oml Technology Co., Ltd. LED-Lichtstreifenschaltung
CN206582611U (zh) * 2017-03-17 2017-10-24 南京养元素电子科技有限公司 一种高可靠性的led照明装置
CN107390428A (zh) * 2017-07-24 2017-11-24 武汉华星光电技术有限公司 直下式背光模组以及液晶显示器
JP7197765B2 (ja) * 2018-08-03 2022-12-28 日亜化学工業株式会社 発光装置
CN209728079U (zh) * 2019-03-08 2019-12-03 中车四方车辆有限公司 一种动车组用故障显示电路及故障显示器
CN111798802B (zh) * 2020-07-07 2021-10-08 Tcl华星光电技术有限公司 Mini LED背光模组及显示装置
CN212628476U (zh) * 2020-09-14 2021-02-26 湖南雅欧电子科技有限公司 一种带备用灯珠的led模组控制电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090219460A1 (en) * 2006-01-13 2009-09-03 Sharp Kabushiki Kaisha Illumination Device and Liquid Crystal Display Apparatus
CN102307412A (zh) * 2011-03-09 2012-01-04 友达光电股份有限公司 具高运作可靠度的发光装置与应用该发光装置的光源系统
CN102788331A (zh) * 2012-08-06 2012-11-21 苏州佳世达电通有限公司 Led灯条线路结构
CN105023522A (zh) * 2015-06-01 2015-11-04 友达光电股份有限公司 显示面板及其修补方法
CN111462622A (zh) * 2019-01-21 2020-07-28 群创光电股份有限公司 可折式显示装置
CN111798803A (zh) * 2020-07-07 2020-10-20 Tcl华星光电技术有限公司 Led背光驱动电路、背光模组及液晶显示装置

Also Published As

Publication number Publication date
CN113671752B (zh) 2024-02-02
CN113671752A (zh) 2021-11-19
US20240045269A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US20230096807A1 (en) Display device
US7413333B2 (en) Lighting apparatus and liquid crystal display apparatus
CN111505868A (zh) 背光模组和显示面板
US10529701B2 (en) MicroLED display panel
TWI711199B (zh) 微發光二極體顯示面板
US10362651B2 (en) Micro lighting device
KR102623093B1 (ko) 픽셀 구동 회로 및 디스플레이 패널
US11705440B2 (en) Micro LED display panel
US20230258987A1 (en) Display device
CN113035134A (zh) 显示面板和显示装置
WO2023019630A1 (zh) 发光基板和显示装置
CN114397781A (zh) 背光模组及其制备方法和显示装置
US10969637B2 (en) Electrostatic discharging circuit and display panel
KR20210055149A (ko) 백라이트
US20230307597A1 (en) Display device using micro led
US11963429B2 (en) Display module and display apparatus
JP2007005014A (ja) 照明装置及び液晶表示装置
CN111951739A (zh) 背光模组及显示装置
CN113433735A (zh) 背光模块、背光板、显示屏和电子设备
US20050226003A1 (en) Backlight module and display device utilizing the same
US11768404B1 (en) Driving substrate, backlight, and display device
US20230401993A1 (en) Flat lighting device and display device using light-emitting diode
US11385493B1 (en) Touch display panel
EP4254057A1 (en) Display device
CN109936890B (zh) 电子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17600376

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE