WO2023018244A1 - 연골 관련 질환 치료용 조성물 및 이의 제조방법 - Google Patents

연골 관련 질환 치료용 조성물 및 이의 제조방법 Download PDF

Info

Publication number
WO2023018244A1
WO2023018244A1 PCT/KR2022/011985 KR2022011985W WO2023018244A1 WO 2023018244 A1 WO2023018244 A1 WO 2023018244A1 KR 2022011985 W KR2022011985 W KR 2022011985W WO 2023018244 A1 WO2023018244 A1 WO 2023018244A1
Authority
WO
WIPO (PCT)
Prior art keywords
cartilage
cells
pharmaceutical composition
progenitor cells
stem cells
Prior art date
Application number
PCT/KR2022/011985
Other languages
English (en)
French (fr)
Inventor
유승호
장지영
Original Assignee
주식회사 유스바이오글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210130412A external-priority patent/KR20230024813A/ko
Application filed by 주식회사 유스바이오글로벌 filed Critical 주식회사 유스바이오글로벌
Priority to EP22856239.3A priority Critical patent/EP4386086A1/en
Priority to JP2024508478A priority patent/JP2024529683A/ja
Priority to CN202280059181.8A priority patent/CN117881781A/zh
Publication of WO2023018244A1 publication Critical patent/WO2023018244A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage

Definitions

  • the present invention relates to a pharmaceutical composition for treating cartilage-related diseases prepared by applying electrical stimulation and a method for preparing the same.
  • Articular cartilage damage is a very common problem that millions of people suffer from. Articular cartilage tissue is avascular and lacks stem cells, so the ability of adults to regenerate cartilage is limited. Defects extending to the subchondral bone result in the formation of fibrous or fibrocartilaginous tissue, and the repaired tissue undergoes immature degeneration because it is biochemically and biomechanically different from hyaline cartilage. In the case of joint problems, it was inevitable to cause pain or to be restricted in movement. In the past, there was no proper treatment, and there was no significant difference between joint age and actual life span due to a relatively shorter average life span than now.
  • Degenerative arthritis occurs as the cartilage wears out due to excessive use of the knee, and inflammation occurs in the knee joint and ligament at the same time, and 8 out of 10 elderly people aged 65 or older in Korea suffer from it.
  • Degenerative arthritis which was known only as a disease of the elderly, has become a factor instigating arthritis in young people due to an increase in traumatic arthritis due to wrong lifestyle and excessive exercise in modern times.
  • cartilage-related diseases In order to treat such cartilage-related diseases, a method of using artificial cartilage containing cartilage cells isolated from costal cartilage (Korean application number: 10-2006-0106812) or using stem cells, etc. is being researched, but stem cells Since the method of utilizing is mainly using the method of differentiating into chondrocytes through the addition of expensive growth factors, it is necessary to solve the cost problem in order to be used clinically. Since these problems such as cost and immunity have not yet been resolved, it is necessary to develop a therapeutic agent for the treatment of cartilage-related diseases that solves these problems.
  • the present inventors have made research efforts to develop a therapeutic agent capable of treating cartilage-related diseases without the addition of growth factors.
  • electrical stimulation is applied to stem cells, COL2
  • a marker of mature chondrocytes is not expressed.
  • the present invention was completed by confirming that the cells could be differentiated into chondrocytes having the characteristics of chondrocytes, even without the presence of chondrocytes.
  • an object of the present invention is to provide a pharmaceutical composition for treating or preventing cartilage-related diseases, comprising, as an active ingredient, cartilage progenitor cells or aggregates thereof having the following characteristics.
  • cartilage progenitor cells or aggregates thereof having the following characteristics.
  • (a) does not express Col2;
  • (b) the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • the present invention is a method for preparing a pharmaceutical composition for treating or preventing cartilage-related diseases, comprising the step of preparing cartilage progenitor cells or aggregates thereof by applying electrical stimulation to stem cells;
  • Another object of the cartilage progenitor cells is to provide a manufacturing method having the following characteristics. (a) does not express Col2; (b) the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • Another object of the present invention is to provide a method for treating or preventing cartilage-related diseases, comprising administering chondrocytes or aggregates thereof having the following characteristics to a subject in need thereof.
  • (a) does not express Col2;
  • (b) the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • the present invention provides the use of cartilage progenitor cells or aggregates thereof having the following characteristics for the manufacture of a drug for treating or preventing cartilage-related diseases.
  • (a) does not express Col2;
  • (b) the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • the present invention provides a pharmaceutical composition for treating or preventing cartilage-related diseases, comprising cartilage progenitor cells or aggregates thereof having the following characteristics as an active ingredient.
  • the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • the cartilage-related disease is osteoarthritis, arthritis, meniscus derangements, rheumatoid arthritis, meniscus tear, triangular fiber It may be selected from the group consisting of cartilage complex damage, traumatic cartilage damage, and degenerative arthritis.
  • the active ingredient of the pharmaceutical composition may contain 90% or more of cells homogenous to the cartilage progenitor cells.
  • the cartilage progenitor cells may be induced to differentiate from stem cells.
  • the stem cells may be mesenchymal stem cells (mesenchymal stem cells).
  • the differentiation induction may be by electrical stimulation.
  • the electrical stimulation in another embodiment of the present invention, is the electrical stimulation
  • the expression level of at least one gene selected from the group consisting of COL1 and COL5 or a protein encoded by the gene is reduced in the cartilage progenitor cells compared to mesenchymal stem cells; It may be that the expression level of the COL6 gene or the protein encoded by the gene is increased compared to mesenchymal stem cells.
  • the cartilage progenitor cells have at least one gene selected from the group consisting of GJB2, GJC1, PECAM1, CLDN2, CLDN7, CLDN10 and CLDN19, or a protein encoded by the gene. It may be that the level of expression is increased.
  • the pharmaceutical composition may be in the form of a dosage form that is easily implanted directly into a cartilage site.
  • the aggregates of the cartilage progenitor cells may be aggregated in the form of spheroids.
  • the diameter of the spheroid may be 0.5 to 1.5 mm.
  • the present invention is a method for preparing a pharmaceutical composition for treating or preventing cartilage-related diseases, comprising the step of preparing cartilage progenitor cells or aggregates thereof by applying electrical stimulation to stem cells;
  • the cartilage progenitor cells are provided having the following characteristics. (a) does not express Col2; (b) the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • the present invention provides a method for treating or preventing cartilage-related diseases comprising the step of administering chondrogenic progenitor cells or aggregates thereof having the following characteristics to a subject in need thereof.
  • (a) does not express Col2;
  • the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • the present invention provides the use of cartilage progenitor cells or aggregates thereof having the following characteristics for the manufacture of a drug for treating or preventing cartilage-related diseases.
  • (a) does not express Col2;
  • (b) the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • the composition for treating cartilage-related diseases according to the present invention can be manufactured by applying only electrical stimulation to stem cell aggregates without introducing growth factors derived from the outside, and can be manufactured without using expensive growth factors, thereby reducing medical costs. has the advantage of significantly lowering
  • the composition for treating cartilage-related diseases according to the present invention does not express Col2, a marker of mature chondrocytes, compared to cells prepared for the treatment of cartilage-related diseases in the past, immune-related side effects are lower than those of mature cells.
  • FIG. 1 relates to electrical stimulation to cells
  • FIG. 1a shows an approximate view of electrical stimulation conditions and electrical stimulation to cells
  • FIG. 1b is a result of observing cells to which electrical stimulation was applied with a phase contrast microscope
  • Figure 1c is the result of observing cells stained with Alcian Blue and Safranin-O
  • Figure 1d is the result of confirming cell viability with Live/Dead viability cytotoxicity kit
  • Figure 1e shows the number of cells in a single micromass.
  • 1f is the result of confirming the level of membrane antigens in cells.
  • Figure 2 confirms the calcium oscillation of cells by electrical stimulation
  • Figure 2a is the result of confirming the calcium movement through Fluo-4 staining
  • Figure 2b confirms the change in intracellular Ca 2+ concentration over time
  • 2c is the result of confirming the FITC intensity of the cells.
  • Figure 3 confirms the change in gene expression by electrical stimulation
  • Figure 3a is a workflow schematic for single cell RNA-seq analysis
  • Figure 3b is 2D (cultured ADSC), cells without applying electrical stimulation for 6 hours This is the result of clustering the gene expression profiles of the micromass, the cell micromass to which electrical stimulation was applied for 6 hours, and the cell micromass to which electrical stimulation was applied for 72 hours.
  • the result shows a heat map showing the expression of differentially expressed genes (DEGs) (the top 10 up-regulated markers are shown on the right).
  • DEGs differentially expressed genes
  • Figure 4 confirms the gene expression of chondrogenic markers by electrical stimulation
  • Figures 4a to 4c are the results of gene ontology enrichment analysis on the top 20 genes that were significantly upregulated in four samples.
  • Figures 4d to 4f are the results of comparing gene expression profiles of articular cartilage (left) and developing chondrocytes (middle, cartilage differentiation of BM-MSCs, right) using NCBI's gene expression omnibus (GEO)
  • GEO NCBI's gene expression omnibus
  • 4g shows the results of confirming the expression level of genes involved in chondrocyte development using gene ontology data of GO0060591, which is a chondroblast (or chondroblast).
  • Figure 5 confirms cell viability and cell karyotype changes by electrical stimulation.
  • Figure 5a shows condensed cell micromass and fragmented cells subjected to electrical stimulation for 3 days, transferred to a 96-well plate, and then analyzed for CCK-8 viability It is the result of confirming the viability of the cells with the kit, and
  • FIG. 5b is the result of confirming the expression level of SHARPIN mRNA, an apoptosis-related gene, for each cell sample to which electrical stimulation was applied.
  • FIG. AO/PI acridine orange/propidium iodide staining results
  • FIG. 5d shows a heat map of the expression of genes such as MKI67, HMMR, and TOP2A, which are genes related to stem cell activity
  • FIG. 5e shows electrical stimulation This is the result of confirming the normal karyotype in the cells of the applied micromass.
  • Figure 6 confirms the change in the expression level of collagen in cells according to the application of electrical stimulation.
  • Figure 6a shows the change in the expression level of all collagens in cells, including the change in the number of fine cells
  • Figure 6b shows a significant change among them. It was confirmed the expression changes of COL1A1, COL1A2, COL3A1, COL5A2, COL6A1 and COL6A3, and
  • FIG. 6c is the result of confirming the expression level of COL1A1 by RT-PCR
  • FIG. 6d is the expression level of COL1A1 confirmed by Western blotting. This is the result.
  • Figure 7 is a result confirming the genetic expression regulation of type 1 collagen according to the application of electrical stimulation
  • Figure 7a is a result confirming the expression of transcription factor genes such as RBFOX2, NFIC, YBX1 and ID3 related to TGF ⁇ signal transduction
  • Figure 7b is the result of confirming the expression level of transcription factors that bind to the promoter / enhancer of COL1A1
  • Figure 7c shows a heat map showing the expression level of the TGF ⁇ superfamily and its receptor
  • Figures 7d and 7e are Gene Ontology Data Portal This is the result of confirming changes in the expression levels of tissue formation-related genes of GO0007043 (cell-cell junction assembly) and GO0051495 (positive regulation of cytoskeletal tissue) in cells to which electrical stimulation was applied.
  • Figure 8 is a spheroid to which electrical stimulation was applied was implanted in the hind femoral cartilage of an experimental animal rabbit, and then the treatment effect was confirmed.
  • Figure 8a shows the overall progress of the experiment
  • Figures 8b and 8c show After a week, the femur was removed and cartilage regeneration was confirmed by imaging using micro-CT, and FIGS. It is the result of evaluating the regeneration evaluation of spheroids applied with electric stimulation for cartilage defects in rabbits through scoring, and 8m was not affected by inflammatory reactions or animal health problems due to defect production by checking the weight of the experimental animals. is the result of checking
  • the present inventors have made research efforts to develop a therapeutic agent capable of treating cartilage-related diseases without the addition of expensive growth factors.
  • electrical stimulation is applied to stem cells, even without expressing Col2, a marker of mature chondrocytes, cartilage It was confirmed that the cells could differentiate into chondrogenic progenitor cells having cellular characteristics, thereby completing the present invention.
  • the present invention provides a pharmaceutical composition for treating or preventing cartilage-related diseases, comprising cartilage progenitor cells or aggregates thereof having the following characteristics as an active ingredient.
  • the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • Col2 (Collagen 2) forms the basis of articular cartilage and hyaline cartilage, and accounts for 50% of the total protein of cartilage and 85 to 90% of the collagen of articular cartilage. Although it is used as a typical marker of mature chondrocytes because it has the above characteristics, it can be confirmed that the chondrogenic progenitor cells of the present invention are not mature chondrocytes because they do not express Col2 at all.
  • the cartilage progenitor cells are prepared by applying electrical stimulation to stem cells, preferably mesenchymal stem cells, such as MKI67, TOP2A and HMMR, which are factors related to the stem cell function of mesenchymal stem cells. They are different from mesenchymal stem cells themselves because they do not express proliferation markers.
  • the cartilage progenitor cells show characteristics similar to those of chondrocytes because they are capable of substrate staining by Alcian blue, safranin-O, etc., which are characteristic of chondrocytes. However, since they do not express COL2, which is a typical marker of mature chondrocytes, they are cells in the pre-stage of differentiation into mature chondrocytes. By naturally aggregating in the form of spheroids without external factors such as addition of growth factors or centrifugation, it can be used as a formulation that is easy to place for treatment.
  • the term "Spheroid” means a cell aggregate in the form of a spheroid, and in order to generate it, culture in 96-well, hanging drop method, etc. are generally utilized.
  • a step of embedding cells or aggregates thereof is required, and the spheroid form is suitable for this embedding process. Methods such as centrifugation are used to make the cell aggregates used for seeding into spheroids, but the cell aggregates of the present invention do not require such a separate step, simply by applying electrical stimulation for induction of differentiation into chondrogenic progenitor cells. It was confirmed that it formed a spheroid form that was easy to implant.
  • the cartilage-related diseases are not limited thereto, but include osteoarthritis, arthritis, meniscus derangements, rheumatoid arthritis, meniscus tear, triangular fibrocartilage complex damage, It may be selected from the group consisting of traumatic cartilage damage and degenerative arthritis.
  • prevention used in the present invention refers to all activities that suppress symptoms caused by cartilage-related diseases or delay the onset by administration of the pharmaceutical composition according to the present invention.
  • treatment used in the present invention refers to all activities in which symptoms of cartilage-related diseases are improved or beneficially changed by administration of the pharmaceutical composition according to the present invention.
  • the active ingredient of the pharmaceutical composition may contain 90% or more of cells homogenous to the chondrogenic progenitor cells, preferably 91%, 92%, 93%, 94%, 95%, 96%, It may include 97%, 98%, 99% or more.
  • they may be differentiated from stem cells, and preferably, the stem cells may be mesenchymal stem cells.
  • Mesenchymal stem cells (MSC) of the present invention are cells capable of differentiating into chondrocytes, osteocytes, adipocytes and muscle cells, etc. It is possible to induce differentiation into adipose tissue, etc. Since mesenchymal stem cells are easily extracted from bone marrow, many studies are being conducted on the possibility of using them as cell therapeutic agents for various intractable diseases. Since cartilage lacks regenerative power, it is very difficult to repair it once damaged. Since degenerative arthritis is caused by degenerative changes in joints, it cannot be completely stopped, and currently relies on drug therapy or physical therapy. However, a reliable drug for treating arthritis has not been developed, and long-term use of steroids and lubricants results in accelerated degeneration of cartilage.
  • Cartilage regeneration using cell therapy agents can be applied not only to diseases of the musculoskeletal system, but also to diseases such as the digestive system and the urinary system. That is, by locally regenerating cartilage tissue, it can be applied to the treatment of diseases such as reflux esophagitis and urethral reflux.
  • Differentiation induction of the present invention may be by electrical stimulation, but is not limited thereto, and the frequency of the electrical stimulation may have a frequency of more than 0 and less than 20 Hz, preferably a frequency of more than 3 and less than 15 Hz or It may have a frequency of more than 5 and less than 12 Hz, and more preferably may have a frequency of Hz.
  • the voltage of the electrical stimulation may have an amplitude of -20 V or more and 20 V or less, preferably -15 V or more and 15 V or less, more preferably -10 V or more and 10 V or less. may have
  • the chondrogenic progenitor cells of the present invention have a reduced expression level of one or more genes selected from the group consisting of COL1 and COL5 or proteins encoded by the genes compared to mesenchymal stem cells, but are not limited thereto; Compared to mesenchymal stem cells, the expression level of the COL6 gene or the protein encoded by the gene may be increased; Compared to mesenchymal stem cells, the expression level of one or more genes selected from the group consisting of GJB2, GJC1, PECAM1, CLDN2, CLDN7, CLDN10 and CLDN19 or proteins encoded by the genes may be increased.
  • the present inventors specifically confirmed through specific examples that the cells to which the electrical stimulation of the present invention was applied can differentiate into cartilage progenitor cells, and that cartilage-related diseases can be treated using this.
  • the present inventors confirmed that cell aggregation occurs when electrical stimulation under specific conditions is applied to canine mesenchymal stem cells.
  • cell aggregates were confirmed, it was confirmed that differentiation into cartilage progenitor cells occurred without the addition of exogenous factors, and when Alcian blue and safranin-O staining was performed, it was confirmed that matrix staining was possible, indicating that chondrocytes It was confirmed that it has the characteristics of (see Example 2-1).
  • cartilage progenitor cells prepared by inducing defects in rabbit cartilage and then applying electrical stimulation as described above are implanted in rabbit cartilage defects, the defective area It was confirmed that it could be reproduced at an effective level (see Example 5).
  • the present inventors have induced the differentiation of mesenchymal stem cells into cartilage progenitor cells different from both mesenchymal stem cells and chondrocytes when electrical stimulation under specific conditions is applied, even without the addition of expensive growth factors separately. confirmed that it is possible. Since the cartilage progenitor cells of the present invention do not express Col2, which is a marker for mature chondrocytes, they are immature cells and are expected to be free from immune-related problems, a problem that usually occurs during transplantation of mature cells.
  • pharmaceutical composition means prepared for the purpose of preventing or treating a disease, and may be formulated and used in various forms according to conventional methods, respectively.
  • oral formulations such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, etc.
  • oral formulations such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, etc.
  • the pharmaceutical composition according to the present invention may further include a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier is one commonly used in formulation, and includes, but is not limited to, saline, sterile water, Ringer's solution, buffered saline, cyclodextrin, dextrose solution, maltodextrin solution, glycerol, ethanol, liposome, etc. It is not, and if necessary, other conventional additives such as antioxidants and buffers may be further included. In addition, diluents, dispersants, surfactants, binders, lubricants, etc.
  • the pharmaceutical composition of the present invention is not particularly limited in formulation, but may be formulated as an injection, an inhalant, an external agent for skin, or an oral ingestion, and may be in the form of a formulation that is easy to place, preferably in the form of a spheroid.
  • the diameter of the spheroid is not limited thereto, but may be 0.5 to 1.5 mm, preferably 0.8 to 1.2 mm, more preferably 1.0 mm.
  • the pharmaceutical composition of the present invention may be administered orally or parenterally (for example, intravenously, subcutaneously, intraperitoneally or topically applied) depending on the desired method, and the dosage may vary depending on the patient's condition, body weight and disease. Depending on the degree, drug form, administration route and time, it can be appropriately selected by those skilled in the art.
  • composition of the present invention is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease with a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level is the type of patient's disease, severity, activity of the drug, It may be determined according to factors including sensitivity to the drug, administration time, route of administration and excretion rate, duration of treatment, drugs used concurrently, and other factors well known in the medical field.
  • the pharmaceutical composition according to the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered single or multiple times. Considering all of the above factors, it is important to administer an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the present invention provides a method for preventing or treating cartilage-related diseases comprising administering the pharmaceutical composition to a subject.
  • administration means providing a given composition of the present invention to a subject by any suitable method.
  • the term "individual” used in the present invention means a subject in need of treatment of a disease, and more specifically, a human or non-human primate, mouse, dog, cat, horse, cow, etc. means mammals.
  • the present invention provides a preventive or therapeutic use of the pharmaceutical composition for cartilage-related diseases.
  • the present invention is a method for preparing a pharmaceutical composition for treating or preventing cartilage-related diseases, comprising the step of preparing cartilage progenitor cells or aggregates thereof by applying electrical stimulation to stem cells;
  • the cartilage progenitor cells provide a manufacturing method having the following characteristics. (a) does not express Col2; (b) the chondrogenic progenitor cells are matrix stained by at least one selected from the group consisting of Alcian Blue, Safranin O, and Toluidine blue.
  • ADSC canine adipose derived stem cells
  • Canine ADSCs of passages 3 to 5 were isolated and then cultured at high density (2.5 x 10 7 cells) in serum-free advanced DMEM/F12 medium (GIBCO), a serum-free medium containing 1 x antibiotic-antimycotic and 1 x GlutaMax (GIBCO). /ml) was suspended. To generate micromass, 10 ⁇ l of cell suspension was placed on a 35-mm 2 dish (dish, Corning) and cultured so that it could be attached to an incubator (N-Biotek, Korea) at 37 ° C and 5% CO 2 conditions. . After 1 hour of incubation, serum-free advanced DMEM/F12 medium (GIBCO) was added.
  • GBCO serum-free advanced DMEM/F12 medium
  • the cells were placed in a multi-channel stimulator capable of chronic stimulation of the cells.
  • the micromass of canine primary ADSC was cultured with or without electrical stimulation (ES) at a frequency of 2.0 Hz, 10 V/cm, and 10 ms. After applying electrical stimulation for 3 days, the formation of condensed cell mass was observed through a phase-contrast microscope (Eclipse Ti2, Nikon, Japan).
  • RNA sequencing was performed through the RNA-seq analysis service of Macrogen (Macrogen, Korea).
  • Cell Ranger v3.1.0 (10X Genomics) was used to generate FASTQ files for data analysis. To this end, data were aligned with a canine reference genome (CanFam3.1 release 100), expression of genes was measured with UMIs and cell barcodes, cell clusters were determined, and differential gene expression analysis was performed. To normalize across multiple data sets, the final aggregate data set was imported into Seurat 3.1.3. Cell populations with a percentage of mitochondria > 0.2 were filtered to filter out cells with low UMI content. UMAP (Uniform Manifold Approximation and Projection) analysis was performed based on statistically significant principal components. Comparison of specific markers with all clusters and the rest of the cells was determined using the minimum fraction of the minimum percentage of cells, and a Wilcox rank summation test was performed to report only significant results.
  • transcriptome changes were analyzed using NCBI Gene Expression Omnibus (GEO).
  • GSE32398 Top 250 genes changed in human articular cartilage compared to growth plate cartilage
  • GSE51812 Top 239 genes changed in human articular cartilage cells at 17 weeks of development compared to chondrocytes by week 6 embryogenesis
  • GSE19664 Top 128 genes changed in healthy human bone marrow-derived stem cells (BMSCs) over time during cartilage formation
  • GO annotation Gene Ontology annotation
  • PANTHER classification system were used to analyze the list of important probes.
  • Dog primary ADSCs were suspended at a density of 2-2.5 x 10 7 cells/ml, and a 10 ⁇ l drop of the cell suspension was placed on a CellBIND surface 35-mm 2 dish (dish, Corning). Each micromass of dog ADSC was cultured with different electrical stimulation conditions (stimulation conditions: 10 V/cm for 10 ms at a frequency of 2.0 Hz). 14 hours after ES application, Fluo-4 reagent (Molecular Probe) without probenecid was loaded into the medium at a 1:1 ratio for 30 minutes according to the manufacturer's protocol. Calcium oscillation was stimulated by 1 second exposure to 488 nm without incubation for 10 minutes and then recorded at 1 fps. Time-lapse analysis of fluorescence intensity was analyzed using NIS-Elements Advanced Research Imaging software (Eclipse Ti2, Nikon, Japan).
  • GAG glycosaminoglycan
  • Alexa488 anti-dog CD44 (MCA1041A488, Bio-Rad), PE anti-dog CD90 (12-5900-42, BD), PerCP-Cy5.5 anti-dog CD29 (303024 , BioLegend), Alexa488 anti-dog CD45 (MCA1042F, Bio-Rad), Alexa647 anti-dog CD73 (Bs-4834R-A647, Bioss), FITC anti-dog CD54 (GTX76274, GeneTex), APC anti-dog CD49d (304308 , BioLegend), PE anti-dog CD34 (559369, BD), PE anti-hu/dog HLA-DR (361606, BioLegend) or APC anti-dog CD80 (104714, BD) at 4°C for 20 minutes and stained did Flow cytometry was performed using the BD LSRII analysis service of the Yonsei University Clinical Research Institute.
  • COL1A1 The expression level of COL1A1 was normalized to that of GAPDH, and the relative gene expression level was calculated using the 2- ⁇ CT method.
  • Primer sequences were determined in-house using Primer-BLAST as follows: dog GAPDH forward primer 5'-GGTGATGCTGGTGCTGAGTA, reverse primer 5'-GGCATTGCTGACAATTCTGA; canine COL1A1 forward primer 5'-CCGCTTCACCTACAGTGTCA, reverse primer 5'-CAGACAGGGCCAATATCCAT (Bioneer, Korea).
  • cell condensates induced by ES were broken into a uniform single cell suspension using a 70 ⁇ m pore size nylon mesh.
  • the cell suspension was collected in a 15 ml tube and then centrifuged at 450 x g for 5 minutes. After aspiration of the medium, the pellet was suspended in a fresh medium and the karyotype was analyzed using the GenDix Karyotyping service's G-banding staining and chromosome imaging analyzer system.
  • FIG. 3a Single cells were isolated from clumps of cells stimulated by ES. Single cell RNA-seq libraries were prepared on the 10X Genomics Chromium platform and data were imported into standard Seurat, a toolkit for data analysis. The entire experiment for confirming the transcriptome profile of cells is shown in FIG. 3a. Specifically, the normalized data set was analyzed using the Loupe Cell Browser to identify genes with high variability, and the 12 clusters were subdivided into 4 data sets (Fig. 3b). In addition, as shown in Fig. 3c, it was found that 2D ADSCs had significant differences in the phenotype and function of ES-applied cell micromass and transcriptome.
  • ES-triggered canine ADSC condensation induces a phenotype similar to the developmental stage of chondroblasts.
  • Physiological stress caused by ES can affect various cellular processes and can lead to various physiological and pathological results. Therefore, ADSCs subjected to ES stimulation for 3 days were examined for cell viability using the CCK-8 viability kit. As a result, as shown in Fig. 5a, it was confirmed that the application of the ES stimulus did not affect the viability of the dog ADSC micromass. Even when GO database analysis was performed, as shown in FIG. 5b, it was confirmed that electrical exposure did not affect the expression of SHARPIN, a gene related to apoptosis. PI (propidium iodide) staining was performed on a single ADSC suspension prepared by mechanically and enzymatically dissociating cell micromass. As a result, as shown in FIG. 5c , the number of PI-stained cells was confirmed to be independent of ES.
  • the present inventors confirmed that when cells aggregate, differentiation into a mature cell type, which is no longer a stem cell, proceeds.
  • RT-qPCR Real-time quantitative PCR
  • Collagen type 1 was selected and the mechanism by which the expression level was changed by electrical stimulation was analyzed.
  • transcription factors such as TCF12, POLR2A, ATF4, ARID4B, SMARCA5, GTF2F1, LARP7, HDAC2, and YY1 increased in the cell micromass for 72 hours after ES was applied (Fig. 7b).
  • cartilage matrix staining was performed.
  • the tissue staining of Alcian blue, trichrome, and safranin O as cartilage matrix staining on slides showed histological analysis of the implanted aggregates compared to defects in slides.
  • differentiation into chondrocytes similar to the characteristics of normal cartilage tissue and restoration of cartilage matrix were confirmed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 전기자극을 인가하여 제조한 연골관련 질환 치료용 약학적 조성물 및 이의 제조 방법에 관한 것으로서, 본 발명의 조성물은 구체적으로 외부로부터 유래된 성장인자 등의 도입없이, 줄기세포 응집체에 전기자극만을 가하는 방식으로 제조가 가능하며, 고가의 성장인자를 사용하지 않고 제조할 수 있으므로 의료비를 획기적으로 낮출 수 있는 장점이 있다. 또한, 본 발명에 따른 연골 관련 질환 치료용 조성물은 기존에 연골 관련 질환 치료를 위해 제조된 세포에 비해 성숙한 연골세포의 마커인 COL2를 발현하고 있지 않기에, 성숙한 세포에 비해 면역관련 부작용이 낮다는 장점이 있다.

Description

연골 관련 질환 치료용 조성물 및 이의 제조방법
본 발명은 전기자극을 인가하여 제조한 연골관련 질환 치료용 약학적 조성물 및 이의 제조 방법에 관한 것이다.
관절 연골의 손상은 수백만 명의 사람들이 겪고 있는 매우 보편적인 문제이다. 관절 연골 조직은 무혈관성이고 줄기세포(stem cell)가 없으므로 성인의 연골 재생능력은 제한적이다. 연골 하 뼈에까지 미치는 결함은 섬유 또는 섬유 연골성 조직 형성을 유발하며, 수복된 조직은 유리질 연골(hyaline cartilage)과는 생화학적, 생물기계적으로 상이하여 미성숙 퇴화를 겪게 된다. 관절에 문제가 생기는 경우, 통증을 일으키거나, 움직임에 많은 제약을 받을 수밖에 없었다. 과거에는 마땅한 치료법도 존재하지 않았고 지금보다 비교적 짧은 평균 수명으로 인해 관절나이와 실제 수명이 크게 차이가 나지 않았으나, 현재는 고령화로 인해 수명이 길어졌으나 관절 수명은 각종 환경적 요인으로 실제 수명을 따라오지 못하고 있다. 무릎을 많이 사용하여 연골이 닳게 되고 동시에 무릎관절과 인대에 염증이 생기면서 퇴행성 관절염이 발생하고, 대한민국 65세 이상 노인인구 10명중 8명이 앓고 있다. 노인성 질환으로만 알려져 있던 퇴행성 관절염이 현대에서는 잘못된 생활습관, 무리한 운동으로 인한 외상성관절염 증가 등으로 젊은 층의 관절염을 부추기는 요인이 되고 있다.
이와 같은 연골관련 질환을 치료하기 위하여 늑골 연골로부터 분리된 연골세포를 함유하는 인공 연골을 사용하거나(한국 출원번호: 10-2006-0106812) 줄기세포 등을 활용하여 치료하는 방법이 연구 중이나, 줄기세포를 활용하는 방법은 주로 고가의 성장인자 첨가를 통해 연골세포로 분화시키는 방법을 사용하고 있으므로 임상에 활용되기 위해서는 비용문제를 해결해야할 필요가 있다. 이러한 비용 및 면역 등과 같은 문제가 아직 해결되고 있지 않은 바, 이러한 문제를 해결한 연골 관련 질환의 치료를 위한 치료제 개발이 필요한 실정이다.
상기와 같은 배경하에, 본 발명자들은 성장인자의 첨가 없이도 연골 관련 질환을 치료할 수 있는 치료제를 개발하기 위하여 연구 노력한 결과, 줄기세포에 전기자극을 인가하는 경우, 성숙한 연골세포의 마커인 COL2를 발현하지 않으면서도, 연골세포의 특징을 가지고 있는 연골 전구세포로 분화할 수 있음을 확인함으로써 본 발명을 완성하였다.
이에, 본 발명은 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체를 유효성분으로 포함하는, 연골관련 질환 치료 또는 예방용 약학적 조성물을 제공하는 것을 목적으로 한다. (a) Col2를 발현하지 않고; (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
또한, 본 발명은 줄기세포에 전기자극을 인가하여 연골 전구세포 또는 이의 응집체를 제조하는 단계를 포함하는, 연골관련 질환 치료 또는 예방용 약학적 조성물의 제조방법으로서; 상기 연골 전구세포는 하기의 특징을 가지는 제조방법을 제공하는 것을 다른 목적으로 한다. (a) Col2를 발현하지 않고; (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
또한, 본 발명은 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체를 이를 필요로 하는 개체에 투여하는 단계를 포함하는 연골관련 질환 치료 또는 예방 방법을 제공하는 것을 또 다른 목적으로 한다. (a) Col2를 발현하지 않고; (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
또한, 본 발명은 연골관련 질환 치료 또는 예방용 약제의 제조를 위한 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체의 용도를 제공한다. (a) Col2를 발현하지 않고; (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은, 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체를 유효성분으로 포함하는, 연골관련 질환 치료 또는 예방용 약학적 조성물을 제공한다.
(a) Col2를 발현하지 않고;
(b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
본 발명에 일실시예에 있어서, 상기 연골관련 질환은 골관절염(Osteoarthritis), 관절염(Arthritis), 반달연골이상(Meniscus derangements), 류머티스 관절염(Rheumatoid arthritis), 반월판 연골손상(Tear of meniscus), 삼각섬유연골 복합체 손상, 외상성 연골 손상, 퇴행성 관절염으로 이루어진 군에서 선택되는 것일 수 있다.
본 발명의 다른 실시예에 있어서, 상기 약학적 조성물의 유효성분은 상기 연골 전구 세포와 동질성(homogenous)의 세포를 90% 이상 포함하는 것일 수 있다.
본 발명의 또 다른 실시예에 있어서, 상기 연골 전구 세포는 줄기세포에서 분화 유도되는 것일 수 있다.
본 발명의 또 다른 실시예에 있어서, 상기 줄기세포는 중간엽줄기세포(mesenchymal stem cell)일 수 있다.
본 발명의 또 다른 실시예에 있어서, 상기 분화 유도는 전기적 자극에 의한 것일 수 있다.
본 발명의 또 다른 실시예에 있어서, 상기 전기적 자극은,
0 초과 20 Hz 이하의 주파수; -20 V 이상, 20 V 이하 진폭; 및 0 초과 80% 이하의 듀티비;를 가지는 것일 수 있다.
본 발명의 또 다른 실시예에 있어서, 상기 연골 전구 세포는 중간엽줄기세포에 비해 COL1 및 COL5로 이루어진 군에서 선택되는 하나 이상의 유전자 또는 유전자가 암호화하는 단백질의 발현 수준이 감소하고; 중간엽줄기세포에 비해 COL6 유전자 또는 유전자가 암호화하는 단백질의 발현 수준이 증가하는 것일 수 있다.
본 발명의 또 다른 실시예에 있어서, 상기 연골 전구 세포는 중간엽줄기세포에 비해 GJB2, GJC1, PECAM1, CLDN2, CLDN7, CLDN10 및 CLDN19로 이루어진 군에서 선택되는 하나 이상의 유전자 또는 유전자가 암호화하는 단백질의 발현 수준이 증가하는 것일 수 있다.
본 발명의 또 다른 실시예에 있어서, 상기 약학적 조성물은 연골 부위에 직접 식립되기 용이한 투여 제형 형태일 수 있다.
본 발명의 또 다른 실시예에 있어서, 상기 연골 전구 세포의 응집체는 스페로이드(spheroid) 형태로 응집된 것일 수 있다.
본 발명의 또 다른 실시예에 있어서, 상기 스페로이드의 직경은 0.5 내지 1.5 mm 일 수 있다.
또한, 본 발명은 줄기세포에 전기자극을 인가하여 연골 전구세포 또는 이의 응집체를 제조하는 단계를 포함하는, 연골관련 질환 치료 또는 예방용 약학적 조성물의 제조방법으로서; 상기 연골 전구세포는 하기의 특징을 가지는 것을 제공한다. (a) Col2를 발현하지 않고; (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
또한, 본 발명은 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체를 이를 필요로 하는 개체에 투여하는 단계를 포함하는 연골관련 질환 치료 또는 예방 방법을 제공한다. (a) Col2를 발현하지 않고; (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
또한, 본 발명은 연골관련 질환 치료 또는 예방용 약제의 제조를 위한 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체의 용도를 제공한다. (a) Col2를 발현하지 않고; (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
본 발명에 따른 연골 관련 질환 치료용 조성물은 외부로부터 유래된 성장인자 등의 도입없이, 줄기세포 응집체에 전기자극만을 가하는 방식으로 제조가 가능하며, 고가의 성장인자를 사용하지 않고 제조할 수 있으므로 의료비를 획기적으로 낮출 수 있는 장점이 있다. 또한, 본 발명에 따른 연골 관련 질환 치료용 조성물은 기존에 연골 관련 질환 치료를 위해 제조된 세포에 비해 성숙한 연골세포의 마커인 Col2를 발현하고 있지 않기에, 성숙한 세포에 비해 면역관련 부작용이 낮다는 장점이 있다.
단, 본 발명의 효과는 상기 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 세포에 전기자극을 것에 관한 것으로서, 도 1a는 전기자극 조건 및 세포에 전기자극을 주는 대략적인 모습을 나타낸 것이고, 도 1b는 전기자극을 인가한 세포를 위상차 현미경으로 관찰한 결과이고, 도 1c는 알시안 블루 및 사프라닌-O로 염색한 세포를 관찰한 결과이고, 도 1d는 Live/Dead viability cytotoxicity kit으로 세포 생존능을 확인한 결과이고, 도 1e는 단일 마이크로매스의 세포 숫자를 나타낸 것이고, 도 1f는 세포의 막 항원 수준을 확인한 결과이다.
도 2는 전기자극에 의한 세포의 칼슘 오실레이션을 확인한 것으로서, 도 2a는 Fluo-4 염색을 통해 칼슘 이동을 확인한 결과이고, 도 2b는 세포내 Ca2+ 농도의 변화를 시간의 흐름에 따라 확인한 결과이고, 도 2c는 세포의 FITC 강도를 확인한 결과이다.
도 3은 전기자극에 의한 유전자 발현 변화를 확인한 것으로서, 도 3a는 단일 세포 RNA-seq 분석을 위한 워크 플로우 개략도이고, 도 3b는 2D(배양된 ADSC), 6시간 동안 전기자극을 인가하지 않은 세포 마이크로매스, 6시간 동안 전기자극을 인가한 세포 마이크로매스, 72시간 동안 전기자극을 인가한 세포 마이크로매스의 유전자 발현 프로필을 클러스터화 해서 나타낸 결과이고, 도 3c는 4개의 샘플에서 차등적으로 발현된 유전자(differentially expressed genes, DEGs)의 발현을 보여주는 히트맵을 나타낸 결과(상향 조절된 상위 10개의 마커는 오른쪽에 표시함)이다.
도 4는 전기자극에 의한 연골 형성 마커의 유전자 발현을 확인한 것으로서, 도 4a 내지 도 4c는 4개의 샘플에서 뚜렷하게 상향조절된 상위 20개 유전자에 대한 유전자 온톨로지 분석(gene ontology enrichment analysis)을 나타낸 결과이고, 도 4d 내지 도 4f는 NCBI의 GEO(gene expression omnibus)를 활용하여 관절 연골(왼쪽) 및 발달 중인 연골세포(가운데, BM-MSCs의 연골분화, 오른쪽)의 유전자 발현 프로필을 비교한 결과이고, 도 4g는 연골모 세포(또는 연골 아세포)인 GO0060591의 유전자 온톨로지 데이터를 활용해 연골세포 발달에 관여하는 유전자의 발현 수준을 확인한 결과이다.
도 5는 전기자극에 의한 세포 생존능 및 세포 핵형 변화를 확인한 것으로서, 도 5a는 3일간 전기자극을 인가한 응축된 세포 마이크로매스 및 단편화된 세포를 96-웰 플레이트로 옮긴 다음, CCK-8 생존능 분석 키트로 세포의 생존능을 확인한 결과이고, 도 5b는 전기자극을 인가한 세포 샘플별로 세포사멸 관련 유전자인 SHARPIN의 mRNA의 발현 수준을 확인한 결과이고, 도 5c는 마이크로매스의 단일 세포 수준에서 세포 사멸 정도를 AO/PI(acridine Orange/Propidium Iodide) 염색을 통해 확인한 결과이고, 도 5d는 줄기세포능과 관련된 유전자인 MKI67, HMMR 및 TOP2A 등과 같은 유전자의 발현 히트맵을 나타낸 것이며, 도 5e는 전기자극을 인가한 마이크로매스의 세포에서 정상 핵형을 확인한 결과이다.
도 6은 전기자극 인가에 따른 세포의 콜라겐 발현 수준 변화를 확인한 것으로서, 도 6a는 세포의 모든 콜라겐의 발현 수준의 변화를 미세 세포수에서의 변화까지 포함하여 나타낸 것이고, 도 6b는 그 중에서 상당한 변화를 보여준 COL1A1, COL1A2, COL3A1, COL5A2, COL6A1 및 COL6A3의 발현 변화를 확인한 것이고, 도 6c는 COL1A1의 발현수준을 RT-PCR로 확인한 결과이고, 도 6d는 COL1A1의 발현 수준을 웨스턴 블롯팅을 통해 확인한 결과이다.
도 7은 전기자극 인가에 따른 타입 1 콜라겐의 유전적 발현 조절을 확인한 결과로서, 도 7a는 TGFβ 신호 전달과 관련된 RBFOX2, NFIC, YBX1 및 ID3과 같은 전사인자 유전자의 발현을 확인한 결과이고, 도 7b는 COL1A1의 프로모터/인핸서에 결합하는 전사인자의 발현 수준을 확인한 결과이고, 도 7c는 TGFβ 슈퍼패밀리 및 그 수용체의 발현 수준을 보여주는 히트맵을 나타낸 것이고, 도 7d 및 도 7e는 유전자 온톨로지 데이터 포털을 활용하여 GO0007043(세포-세포 접합 어셈블리) 및 GO0051495(세포골격 조직의 양성 조절)의 조직 형성 관련 유전자의 발현 수준을 전기자극을 인가한 세포에서의 변화를 확인한 결과이다.
도 8은 전기자극을 인가한 스페로이드를 실험동물 토끼의 뒷다리 대퇴 연골에 매식한 다음, 치료효과를 확인한 것으로서, 도 8a는 실험의 전체적인 진행 과정을 나타낸 것이고, 도 8b 및 도 8c는 매식 후 16주 후에 대퇴를 적출하여 마이크로 CT 로 연골 재생을 영상촬영으로 확인한 결과이고 도 8d 내지 도 8g는 조직병리 슬라이드를 제작하여 조직학적 재생을 대표적인 연골 염색방법을 통해 확인한 결과이고 도 8h 내지 도 8l는 5마리 토끼의 연골결손에 대한 전기자극 인가한 스페로이드의 재생 평가를 스코어링을 통해 평가한 결과이고 8m은 실험 동물의 체중을 확인함으로써 결손 제작에 따른 염증반응이나 동물 건강상의 문제의 영향을 받지 않았음을 확인한 결과이다.
본 발명자들은 고가의 성장인자의 첨가 없이도 연골 관련 질환을 치료할 수 있는 치료제를 개발하기 위하여 연구 노력한 결과, 줄기세포에 전기자극을 인가하는 경우, 성숙한 연골세포의 마커인 Col2를 발현하지 않으면서도, 연골세포의 특징을 가지고 있는 연골 전구세포로 분화할 수 있음을 확인하였는바, 이로써 본 발명을 완성하게 되었다.
이에, 본 발명은 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체를 유효성분으로 포함하는, 연골관련 질환 치료 또는 예방용 약학적 조성물을 제공한다.
(a) Col2를 발현하지 않고; (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
본 발명에 있어서 Col2(Collagen 2)는 관절 연골 및 유리질 연골의 기초를 형성하는 것으로서, 연골의 전체 단백질의 50%, 관절연골의 콜라겐 중 85~90%를 차지한다. 상기와 특징을 가지기에 성숙한 연골세포의 전형적인 마커로서 활용되고 있으나, 본 발명의 연골 전구 세포는 상기와 같은 Col2를 전혀 발현하고 있지 않기에, 성숙한 연골 세포가 아니라는 사실을 확인할 수 있다.
본 발명에 있어서, 상기 연골 전구 세포는, 줄기세포, 바람직하게는 중간엽 줄기세포에 전기자극을 인가하여 제조한 것으로서, 중간엽 줄기세포의 줄기세포능과 관련된 인자인 MKI67, TOP2A 및 HMMR과 같은 증식 마커를 발현하지 않아 중간엽줄기세포 자체와는 상이하다. 상기 연골 전구 세포는 연골세포의 특징인 알시안 블루, 사프라닌-O 등에 의한 기질염색이 가능하기에 연골세포와 유사한 특성을 보여준다. 그러나, 성숙한 연골세포의 전형적인 마커인 COL2를 전혀 발현하고 있지 않기에 성숙한 연골세포로의 분화의 전단계에 있는 세포를 의미한다. 성장인자 첨가 또는 원심 분리 등의 외부적인 요인 없이도 자연적으로 스페로이드 형태로 응집함으로써, 치료를 위한 식립 등에 용이한 제형으로 활용될 수 있다.
본 발명에 있어서 용어 "스페로이드(Spheroid)"는 회전 타원체 형태의 세포 응집체를 의미하는 것으로서, 이를 생성하기 위해서는 일반적으로 96-well에서의 배양, hanging drop 방법 등이 활용된다. 본 발명의 용도인 연골관련 질환의 치료를 위해서는 세포 또는 이의 응집체를 매식하는 단계가 필요한데 스페로이드 형태는 이러한 매식과정에 적합하다. 매식에 사용되는 세포 응집체를 이와 같이 스페로이드 형태로 만들어주기 위하여 원심분리 등의 방법을 활용하나 본 발명의 세포 응집체는 이러한 별도의 단계 없이, 단순히 연골 전구세포로의 분화 유도를 위한 전기자극 인가만으로도 식립에 용이한 스페로이드 형태를 형성함을 확인하였다.
상기 연골관련 질환은 이에 제한되지 않으나, 골관절염(Osteoarthritis), 관절염(Arthritis), 반달연골이상(Meniscus derangements), 류머티스 관절염(Rheumatoid arthritis), 반월판 연골손상(Tear of meniscus), 삼각섬유연골 복합체 손상, 외상성 연골 손상, 퇴행성 관절염으로 이루어진 군에서 선택되는 것일 수 있다.
본 발명에서 사용되는 용어 "예방"은, 본 발명에 따른 약학적 조성물의 투여에 의해 연골 관련 질환에 의한 증상을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.
본 발명에서 사용되는 용어 "치료"는, 본 발명에 따른 약학적 조성물의 투여에 의해 연골 관련 질환에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
상기 약학적 조성물의 유효성분은 상기 연골 전구 세포와 동질성(homogenous)의 세포를 90% 이상 포함하는 것일 수 있으며, 바람직하게는 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 이상을 포함하는 것일 수 있다. 또한, 줄기세포로부터 분화되는 것일 수 있으며, 바람직하게는 줄기세포는 중간엽 줄기세포일 수 있다.
본 발명의 중간엽 줄기세포 (mesenchymal stem cells, MSC)는 연골세포, 골세포, 지방세포 및 근육세포 등으로 분화할 수 있는 세포로서, 시험관 내에서 특정 배양조건하에 연골, 뼈, 근육, 인대 및 지방조직 등으로의 분화 유도가 가능하다. 중간엽 줄기세포는 골수에서 추출이 용이하여 여러 가지 난치성 질환에 대한 세포 치료제로의 이용 가능성에 대하여 많은 연구가 진행되고 있다. 연골은 재생력이 부족하여 한번 손상된 후에는 이를 치료하는 것이 매우 어렵다. 퇴행성 관절염은 관절의 퇴행성 변화에 의해서 발생하므로 이를 완전히 정지시킬 수는 없으며, 현재는 약물요법이나 물리 치료 등에 의존하고 있다. 그러나 관절염을 치료하는 확실한 약물이 개발되지 않은 상태이며, 스테로이드제제 및 윤활제의 장기간 사용은 연골의 변성을 촉진시키는 결과를 초래한다. 최근에 자가 연골 세포 이식술이 개발되었으나, 연골조직의 제한, 연골세포의 시험관 배양 중 탈분화, 고 연령에 따른 세포증식의 한계 등이 문제점으로 남아 있다. 따라서, 재생력이 풍부한 중간엽 줄기세포의 이용은 생물학적 복원이 파괴된 연골을 재생하는데 효과적인 세포 치료제로서 응용될 수 있다. 세포치료제를 이용한 연골 재생은 근골격계 질환뿐만 아니라, 소화기계 및 비뇨기계 등의 질환에 응용될 수 있다. 즉, 국소적으로 연골 조직을 재생시켜 줌으로써 역류성 식도염 및 요도 역류 등의 질병 치료에 응용 가능하다.
본 발명의 분화 유도는 전기적 자극에 의한 것일 수 있으며, 이에 제한되는 것은 아니지만, 상기 전기적 자극의 주파수는 0 초과 20 Hz 이하의 주파수를 가지는 것일 수 있고, 바람직하게는 3 초과 15 Hz 이하의 주파수 또는 5 초과 12 Hz 이하의 주파수를 가지는 것일 수 있으며, 더욱 바람직하게는 Hz의 주파수를 가지는 것일 수 있다. 상기 전기자극의 전압은 -20 V 이상, 20 V 이하의 진폭을 가지는 것일 수 있으며, 바람직하게는 -15 V 이상, 15 V 이하의 진폭, 더욱 바람직하게는 -10 V 이상, 10 V 이하의 진폭을 가지는 것일 수 있다.
본 발명의 연골 전구 세포는 이에 제한되는 것은 아니지만, 중간엽줄기세포에 비해 COL1 및 COL5로 이루어진 군에서 선택되는 하나 이상의 유전자 또는 유전자가 암호화하는 단백질의 발현 수준이 감소하고; 중간엽줄기세포에 비해 COL6 유전자 또는 유전자가 암호화하는 단백질의 발현 수준이 증가하는 것일 수 있으며; 중간엽 줄기세포에 비해 GJB2, GJC1, PECAM1, CLDN2, CLDN7, CLDN10 및 CLDN19로 이루어진 군에서 선택되는 하나 이상의 유전자 또는 유전자가 암호화하는 단백질의 발현 수준이 증가하는 것일 수 있다.
본 발명자들은 구체적인 실시예를 통하여, 본 발명의 전기적 자극을 인가한 세포가 연골 전구세포로 분화할 수 있으며, 이를 활용하여 연골관련 질환을 치료할 수 있음을 구체적으로 확인하였다.
본 발명의 일실시예에 있어서, 본 발명자들은 개 중간엽 줄기세포에 특정 조건의 전기 자극을 인가하는 경우, 세포의 응집이 일어남을 확인하였다. 세포 응집체를 확인했을 때, 외인성 인자의 추가 없이도 연골 전구세포로의 분화가 일어남을 확인하였으며, 알시안 블루 및 사프라닌-O 염색을 수행했을 때, 기질염색이 가능함을 확인하여, 이는 연골세포의 특성을 가지고 있음을 확인하였다(실시예 2-1 참조). 이렇게 제조된 세포의 경우, 분화과정에서 발생하는 칼슘 오실레이션이 전기자극을 인가하지 않은 세포에 비해 증가됨을 확인하여 상기와 같은 전기자극을 통해 세포의 응집이 발생하고, 이를 통해 중간엽 줄기세포의 연골 전구세포로의 분화가 일어남을 확인하였다(실시예 2-2 참조).
본 발명의 다른 실시예에 있어서, 특정 조건의 전기 자극을 인가한 중간엽 줄기세포의 경우, 전기자극을 인가했음에도 생존능의 유의적인 차이를 확인하지 못하였으며(실시예 3-2 참조), 전기 자극을 인가한 세포는 줄기세포능과 관련되어 있는 인자인 MKI67, TOP2A 및 HMMR과 같은 마커를 발현하지 않아 중간엽 줄기세포와는 상이하면서(실시예 3-3 참조), 성숙한 연골세포의 전형적인 마커로 사용되고 있는 Col2를 전혀 발현하고 있지 않아 성숙한 연골세포와는 상이함을 구체적으로 확인하였다(실시예 3-4 참조).
본 발명의 또 다른 실시예에 있어서, 토끼의 연골 부위에 결손을 유도한 다음, 상기와 같이 전기자극을 인가하여 제조한 연골 전구세포를 토끼의 연골 결함 부위에 식립하는 경우, 결함이 있던 부위를 유효한 수준으로 재생시킬 수 있음을 확인하였다(실시예 5 참조).
본 발명자들은 상기와 같은 결과를 통해, 특정 조건의 전기자극을 인가하는 경우, 고가의 성장인자를 별도로 첨가하지 않더라도 중간엽줄기세포를 중간엽줄기세포 및 연골세포와 모두 상이한 연골 전구세포로 분화 유도가 가능함을 확인하였다. 본 발명의 연골 전구세포는 성숙한 연골세포의 마커인 Col2를 전혀 발현하지 않는다는 차이점이 있기에, 미성숙된 세포로서, 성숙한 세포의 이식 시 주로 발생하는 문제인 면역관련 문제에서 보다 자유로울 것으로 예상된다.
한편, 본 발명에서 "약학적 조성물"은 질병의 예방 또는 치료를 목적으로 제조된 것을 의미하며, 각각 통상의 방법에 따라 다양한 형태로 제형화하여 사용될 수 있다. 예컨대, 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽 등의 경구형 제형으로 제형화할 수 있고, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용할 수 있다.
본 발명에 따른 약제학적 조성물은 약학적으로 허용되는 담체를 추가로 포함할 수 있다. 상기 약학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 사이클로덱스트린, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올, 리포좀 등을 포함하지만 이에 한정되지 않으며, 필요에 따라 항산화제, 완충액 등 다른 통상의 첨가제를 더 포함할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제, 윤활제 등을 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립, 또는 정제로 제제화할 수 있다. 적합한 약학적으로 허용되는 담체 및 제제화에 관해서는 Remington's Pharmaceutical Sciences (19th edition, 1995)에 개시되어 있는 방법을 이용하여 각 성분에 따라 바람직하게 제제화할 수 있다. 본 발명의 약제학적 조성물은 제형에 특별한 제한은 없으나 주사제, 흡입제, 피부 외용제, 또는 경구 섭취제 등으로 제제화할 수 있으며, 식립에 용이한 제형의 형태, 바람직하게는 스페로이드(spheroid) 형태 일 수 있고, 상기 스페로이드의 직경은 이에 제한되는 것은 아니지만, 0.5 내지 1.5 mm, 바람직하게는 0.8 내지 1.2 mm, 더욱 바람직하게는 1.0 mm일 수 있다.
본 발명의 약학적 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구투여(예를 들어, 정맥 내, 피하, 복강내 또는 국소에 적용)할 수 있으며, 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 시간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다.
본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에 있어서 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
본 발명에 따른 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
또한, 본 발명은 상기 약학적 조성물을 개체에 투여하는 단계를 포함하는 연골 관련 질환의 예방 또는 치료 방법을 제공한다.
본 발명에서 사용되는 용어 "투여"는 임의의 적절한 방법으로 개체에게 소정의 본 발명의 조성물을 제공하는 것을 의미한다.
본 발명에서 사용되는 용어 "개체"란 질병의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는, 인간 또는 비-인간인 영장류, 생쥐(mouse), 개, 고양이, 말, 및 소 등의 포유류를 의미한다.
또한, 본 발명은 상기 약학적 조성물의 연골 관련 질환의 예방 또는 치료 용도를 제공한다.
또한, 본 발명은 줄기세포에 전기자극을 인가하여 연골 전구세포 또는 이의 응집체를 제조하는 단계를 포함하는, 연골관련 질환 치료 또는 예방용 약학적 조성물의 제조방법으로서; 상기 연골 전구세포는 하기의 특징을 가지는 제조방법을 제공한다. (a) Col2를 발현하지 않고; (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1. 실험재료 및 실험방법
1-1. 1차 세포 배양
4개월된 암컷 비글견 3마리의 복부 지방 조직에서 3개의 배치(batches) 분량의 개(Canine) 지방유래 줄기세포(Adipose derived stem cell, 이하 ADSC)를 수득하였다. 세포를 계대(passage) 0에서 보관하고 지방세포, 연골세포 및 조골세포로의 분화능을 평가하였다. 세포를 75-cm2 플라스크(5Х105 cells/flask, BD Falcon)에 플레이팅하고 10% FBS(GIBCO) 및 1 Х 항생제-항진균제(antibiotic-antimycotic)(GIBCO)를 포함하는 저포도당의 DMEM(Dulbecco` modified Eagle medium, GIBCO)에서 배양했다.
1-2. 마이크로매스(Micromass) 배양 및 전기 자극
3 내지 5 계대의 개 ADSC를 분리한 다음, 1 x 항생제-항진균제 및 1 x GlutaMax(GIBCO)를 포함하는 무혈청 배지인 serum-free advanced DMEM/F12 medium (GIBCO)에서 고밀도(2.5 x 107 cells/ml)로 현탁 시켰다. 마이크로매스를 생성하기 위하여 10μl의 세포 현탁액을 35-mm2의 접시(dish, Corning)에 놓고 37℃의 온도 및 5% CO2 조건의 인큐베이터(N-Biotek, 한국)에 부착될 수 있도록 배양하였다. 배양 1시간 후, serum-free advanced DMEM/F12 medium(GIBCO)를 첨가하였다. 세포는 세포의 만성 자극을 줄 수 있는 다중 채널 자극기(multi-channel stimulator)에 넣었다. 개 1차 ADSC의 마이크로매스를 2.0 Hz 주파수, 10 V/cm 및 10 ms 조건의 전기자극(Electrical stimulation, 이하 ES) 여부를 달리하며, 배양하였다. 전기자극을 3일동안 인가한 다음, 응축된 세포 덩어리의 형성을 위상차 현미경(phase-contrast microscope(Eclipse Ti2, Nikon, Japan)을 통해 관찰하였다.
1-3. 단일 세포 준비 및 RNA 시퀀싱
단일 세포 제조는 실온에서 MACS 조직 해리 키트(MACS tissue dissociation kit, (Miltenyi Biotech)) 및 젠틀MACS 해리기(gentleMACS dissociator, (Miltenyi Biotech))를 활용하여 수행되었다. 세포 현탁액을 세포 여과기로 옮긴 다음 완전 배지(complete medium)으로 세척하였다. 세포 생존율 분석을 위한 생존/사멸 분석(Live/Dead assay, Molecular Probe 활용하고, 90% 이하의 세포 생존율을 보이는 그룹은 컷오프 함)을 수행하였다. RNA 시퀀싱은 마크로젠(Macrogen, Korea)의 RNA-seq 분석 서비스를 통해 수행하였다.
단일 세포 라이브러리 제조를 위하여, 제조회사의 지침에 따라 약 500개 가량의 세포를 캡쳐할 수 있는 Next GEM Single Cell 3' Library & Single Cell3' V3.1 젤 비드(Gel beads)를 사용하여 세포를 10 x Genomics 플랫폼에 처리하였다. 고유하게 바코드된 cDNA 라이브러리는 단일 세포의 액적(single-cell droplets)에서 역전사, 정제 및 PCR 과정을 거쳐 RNA로 부터 제조할 수 있다. 라이브러리는 리드 1(read 1, 세포 바코드 및 고유 분자 식별자[UMI]), 8bp 인덱스 리드(index read, 샘플 바코드) 및 91bp 리드 2(read 2, RNA 리드)와 리드 길이가 28bp인 HiSeqX(Illumina)를 사용하여 시퀀싱 했다.
데이터 분석을 위한 FASTQ 파일 생성을 위해서는 Cell Ranger v3.1.0(10X Genomics)을 사용했다. 이를 위해 데이터를 개(canine)의 참조 게놈(CanFam3.1 release 100)과 정렬하였고, UMI 및 세포 바코드로 유전자의 발현을 측정하고, 세포 클러스터를 결정한 다음, 차등 유전자 발현 분석을 수행하였다. 여러 데이터 세트로 정규화하기 위해서 최종 집계 데이터 세트는 Seurat 3.1.3으로 가져왔다. 미토콘드리아의 비율이 > 0.2인 세포 집단은 낮은 UMI 함량을 포함하는 세포를 걸러내기 위하여 필터링 하였다. UMAP(Uniform Manifold Approximation and Projection) 분석은 통계적으로 유의한 주성분을 기반으로 수행했다. 모든 클러스터와 나머지 세포와의 특이적인 마커 비교는 최소 세포 백분율(minimum percentage of cells)의 최소 분율(minimum fraction)을 활용하여 결정하였고, Wilcox 순위 합산 테스트를 수행하여 유의적인 결과만 보고 하였다.
1-4. 온라인 데이터베이스 활용한 게놈 분석
개 ADSC의 연골 분화를 평가하기 위하여, NCBI GEO(Gene Expression Omnibus)를 활용하여 전사체(transcriptome) 변화를 분석하였다. 이를 위해 GSE32398(성장판 연골과 비교하여 인간의 관절 연골에서 변화된 상위 250개 유전자), GSE51812(발달 17주에 인간 관절 연골 세포에서 변화된 상위 239개 유전자가 주별 연골 세포와 비교) 6 배아 발생) 및 GSE19664(연골 형성 동안 시간이 지남에 따라 건강한 인간 BMSC(Bone marrow-derived stem cell)에서 변화된 상위 128개 유전자) 전사체들을 사용하였다. 중요한 프로브 리스트를 분석하기 위하여 GO annotation(Gene Ontology annotation)과 PANTHER 분류 시스템(PANTHER classification system)을 사용하였다.
1-5. 칼슘 오실레이션(Oscillation) 측정
개 1차 ADSC를 2~2.5 x 107 cells/ml의 밀도로 현탁시키고 세포 현탁액 10 μl 방울을 CellBIND 표면 35-mm2 접시(dish, Corning)에 놓았다. 개 ADSC의 마이크로매스마다 전기자극 인가 여부(자극 조건: 2.0 Hz의 주파수에서 10 ms 동안 10 V/cm)를 달리하면서 배양하였다. ES 인가 14시간 후, 프로베네시드(probenecid) 없는 Fluo-4 시약(Molecular Probe)를 제조업체의 프로토콜에 따라 30분 동안 1:1 비율로 배지에 로딩하였다. 칼슘 오실레이션은 10분 동안 인큐베이션 없이 488 nm에 1초 노출시켜 자극시킨 다음, 1 fps 기록하였다. 형광 세기의 시간 경과 분석(Time-lapse)은 NIS-Elements Advanced Research Imaging software(Eclipse Ti2, Nikon, Japan)를 활용하여 분석하였다.
1-6. 총 글리코사미노글리칸(glycosaminoglycan) 측정
글리코사미노글리칸(glycosaminoglycan, 이하 GAG)의 측정을 위해 세포를 PBS로 세척한 다음 파라포름알데히드(paraformaldehyde, Biosesang)으로 20분 동안 고정하고 염색 전까지 4℃에서 보관하였다. 세포를 알시안 블루(Alcian Blue, IHC world) 용액으로 실온에서 30분 동안 배양하거나 사프라닌-O(Safranin-O, IHC world) 용액으로 실온에서 1시간 동안 배양한 다음, 증류수로 여러 번 헹구었다. GAG의 축적은 디지털 USB 카메라를 활용하여 촬영하였다(My first lab, USA)
1-7. 유세포 분석(Flow Cytometry)
상기 실시예 1-3에서 준비한 단일세포를 Alexa488 anti-dog CD44 (MCA1041A488, Bio-Rad), PE anti-dog CD90 (12-5900-42, BD), PerCP-Cy5.5 anti-dog CD29 (303024, BioLegend), Alexa488 anti-dog CD45 (MCA1042F, Bio-Rad), Alexa647 anti-dog CD73 (Bs-4834R-A647, Bioss), FITC anti-dog CD54 (GTX76274, GeneTex), APC anti-dog CD49d (304308, BioLegend), PE anti-dog CD34 (559369, BD), PE anti-hu/dog HLA-DR (361606, BioLegend) 또는 APC anti-dog CD80 (104714, BD)를 4℃에서 20분 동안 처리하여 염색하였다. 유세포 분석은 연세대 임상연구기관읜 BD LSRII 분석 서비스를 이용하여 진행하였다.
1-8. RT qPCR 분석
제조업체의 프로토콜에 따라 GentleMACS dissociator(Miltenyi Biotech) 및 Direct-zol RNA MiniPrep(Zymo Research)를 사용하여 3일 동안 다양한 조건에서 배양된 개 ADSC에서 총 RNA를 분리하였다. RNA 농도는 바이오스펙트로미터(biospectrometer, Eppendorf)를 이용하여 측정하였고, 역전사 반응은 TOPscript cDNA 합성 키트(Enzynomics)를 이용하여 0.3-0.5 μg의 총 RNA로 수행하였다. GAPDH 및 COL1A1에 대한 실시간 PCR은 10 ng cDNA/튜브가 포함된 SYBR 2x Mix(Bio-Rad)와 CFX 연결 Real-Time PCR 검출 시스템(Bio-Rad)을 사용하여 수행하였다. 구체적으로 샘플을 95℃에서 15분 동안 유지한 후 95℃에서 10초 동안 변성 단계와 60℃에서 30초 동안 확장 및 어닐링 단계를 포함하는 40회 증폭 사이클을 수행하였다.
COL1A1의 발현 수준은 GAPDH의 발현 수준으로 정규화하였고, 상대적인 유전자 발현수준은 2-△△CT 방법을 사용하여 계산하였다. 프라이머 서열은 Primer-BLAST를 사용하여 하기와 같이 자체적으로 결정하였다: 개 GAPDH 정방향 프라이머 5'-GGTGATGCTGGTGCTGAGTA, 역방향 프라이머 5'-GGCATTGCTGACAATTCTGA; canine COL1A1 정방향 프라이머 5'-CCGCTTCACCTACAGTGTCA, 역방향 프라이머 5'-CAGACAGGGCCAATATCCAT(Bioneer, Korea).
1-9. 웨스턴 블롯 분석
세포를 ice-cold PBS를 사용하여 3회 세척한 다음, 포스파타제 억제제 칵테일(phosphatase inhibitor cocktails, genDEPOT)을 함유하는 RIPA 세포 용해 완충액(RIPA cell lysis buffer, genDEPOT)에서 수확하였다. 단백질 농도는 BCA 단백질 분석 키트(Pierce)를 사용하여 결정하였다. 단백질 샘플은 SDS-PAGE 젤에서 분리한 다음, 표준 절차를 사용하여 PVDF 멤브레인(ATTO)로 전기이동(electrotransferred) 시켰다. 0.05% TBST에 녹인 5% 무지방 분유로 멤브레인을 차단한 다음 4℃의 플랫폼(rocking platform)에서 12시간 동안 1차 항체와 함께 인큐베이션했다. 막을 15분 동안 TBST 완충액으로 3회 세척하고 HRP-접합 이차 항체(HRP-conjugated secondary antibody, GeneTex)를 포함하는 TBST에서 1% 탈지유와 함께 1시간 동안 인큐베이션하였다. 혼성화된 멤브레인을 TBST 완충액으로 세척하고 향상된 화학발광 검출 키트(enhanced chemiluminescence detection kit, Merk) 및 LAS500 이미징 시스템(LAS500 Imaging system, GE healthcare)을 사용하여 시각화 하였다.
1-10. 핵형분석(Karyotyping)
샘플링을 위해 ES에 의해 유도된 세포 응축물을 70 μm 기공 크기의 나일론 메쉬를 사용하여 균일한 단일 세포 현탁액으로 파괴시켰다. 세포 현탁액을 15 ml 튜브에 수집한 다음, 450 x g에서 5분 동안 원심분리하였다. 배지를 흡인(aspiration)한 후, 펠릿을 새로운 배지에 현탁하고 GenDix Karyotyping 서비스의 G-banding 염색 및 염색체 영상 분석기 시스템(chromosome imaging analyzer system)을 사용하여 핵형을 분석하였다.
1-11. 통계분석
모든 데이터는 평균 ± 표준 편차로 표시하였다(n = 개별 샘플 수). 모든 통계 분석은 MS Excel 소프트웨어(Microsoft 365)를 사용하여 수행하였으며, <0.05의 P 값은 유의한 차이를 나타내는 것으로 간주하였다.
실시예 2. 줄기세포에 전기자극 인가를 통한 연골 전구세포의 제조
2-1. 전기자극 인가에 의한 ADSC의 연골화
ES(10 V/cm, 10 ms, 2 Hz 주파수)로 개 ADSC(MSC)를 자극한 다음, 자극에 의해 응집된 세포를 확인하였다. 개 ADSC의 마이크로매스 배양은 혈청 및 외인성 인자의 추가 없이 진행하였다(도 1a). ES를 인가하고 3일이 경과한 다음, ES 인가 여부에 따른 응집체의 연골 기질관련 분자의 면역조직화학염색 결과를 위상차 현미경을 통해 확인하였다. 그 결과, 도 1b에 나타낸 바와 같이, ES를 인가하지 않은 세포에 비해 ES를 인가한 세포에서 시트 형태(sheet like)의 세포 응집 및 더 큰 응집을 확인하였다. 또한, ES에 의해 자극된 세포에서 알시안 블루 및 사프라닌-O 염색을 수행한 다음 관찰했을 때, 도 1c에 나타낸 바와 같이 프로테오글리칸의 침착을 확인할 수 있었다.
ES가 세포의 사멸에 미치는 영향을 확인하기 위하여, Live/Dead 시약을 사용한 생존력 평가를 수행하였다. 그 결과, 도 1d에 나타낸 바와 같이, ES의 인가 여부는 세포 생존력에 유의한 차이를 주지 못함을 확인할 수 있었고, 응집체는 도 1e에 나타낸 바와 같이, 약 105개의 세포를 포함하고 있음을 확인하였다. ES 인가에 따른 세포 막단백질 변화를 확인하기 위해 표면 분자에 대한 항체를 사용한 유세포 분석을 수행하였다. 단층에서 성장하는 ADSC와 막단백질의 발현을 비교했을 때, 1f에 나타낸 바와 같이, CD44, CD90, CD29, CD73, CD54, CD34, CD49d, CD45, HLA-DR 및 CD80는 유사한 발현을 보이는 것을 확인할 수 있었다.
본 발명자들은 상기와 같은 결과를 통해 ES가 개 ADSC의 매우 조밀한 연골 형성전 응축(prechondrogenic condensation)을 유도함을 확인할 수 있었다.
2-2. 연골화 과정에서 칼슘 오실레이션(oscillation) 확인
ES에 의한 연골 형성은 연골 발달에서 관찰되는 자발적인 세포 내 칼슘 오실레이션을 재생산하는 것으로 이전에 보고되었다. 본 발명자들은 ES를 인가했을 때, 본 발명의 개 ADSC 마이크로 매스에서도 이와 유사한 칼슘 오실레이션이 발생하는지 여부를 모니터링 하였다. Fluo-4 Direct를 사용한 칼슘 형광 측정은 도 2a에 나타낸 바와 같이, ES를 인가하지 않은 대조군보다 ES를 받은 세포 덩어리에서 더 규칙적인 주파수로 높은 진폭에서 변동하는 것을 확인하였다. 보다 구체적으로 도 2b 및 도 2c에 나타낸 바와 같이, 전기적으로 자극된 세포 응집체는 전형적인 칼슘 오실레이션의 Ca2+ 변동 패턴을 보여주었다. 이러한 결과는 외인성 인자가 없는 ES 인가 조건에서도, 마이크로매스 응집 과정 동안 ADSC 세포내 연골 형성 전 응축이 유도됨을 보여준다.
실시예 3. 전기자극에 의해 제조된 연골 전구세포의 특성 확인
3-1. 전사체 프로파일의 확인
ES에 의해 자극된 세포의 덩어리에서 단일 세포를 분리하였다. 단일 세포 RNA-seq 라이브러리는 10X Genomics Chromium 플랫폼에서 준비되었고 데이터는 데이터 분석을 위한 툴킷인 표준 Seurat로 가져왔다. 세포의 전사체 프로파일 확인을 위한 전체 실험은 도 3a에 나타내었다. 구체적으로 Loupe Cell Browser를 사용하여 정규화 된 데이터 세트를 분석하여 가변성이 높은 유전자를 식별하고 12개의 클러스터를 4개의 데이터 세트로 세분화하였다(도 3b). 또한, 도 3c에 나타낸 바와 같이, 2D ADSC가 표현형과 기능에서 ES를 인가한 세포 마이크로매스와 전사체 부분에서 상당한 차이점이 있음 발견하였다.
오픈 소스 GO annotation과 PANTHER 데이터베이스 분석 도구를 사용하여 4개의 데이터 세트의 유전자 발현 패턴을 탐색하였다. 6시간 동안 ES를 인가한 ADSC 마이크로매스에서 양성자 이온 수송(proton ion transport), 오르니틴 대사(ornithine metabolism), 생물발생(biogenesis) 및 칼슘 이온 출입(calcium ion import/release)과 관련된 유전자들이 상향 조절되는 것을 확인하였다(도 4a). ES를 인가하지 않은 세포 마이크로매스에서는 연골 응축(cartilage condensation), 칼슘 이온 막횡단 수송(calcium ion transmembrane transport), 골격근 조직 발달(skeletal muscle tissue development), NF-κB 경로(NF-κB pathway) 및 면역 세포의 화학적 주화성(chemotaxis of immune cells)과 관련된 유전자가 상향조절됨을 확인하였다(도 4b). 72시간동안 ES를 인가한 세포 마이크로매스는 프로스타글란딘 합성(prostaglandin synthesis), 다세포 유기체 발달(multicellular organism development), 아르기닌 이화작용(arginine catabolism) 및 세포사멸 음성조절(negative regulation of apoptosis)과 관련된 유전자가 상향조절됨을 확인하였다(도 4c).
상기와 같은 유전자 발현 패턴의 역할을 이해하기 위하여 공개적으로 이용가능한 연골전세포 분화(prechondrocyte differentiation) 유전자 발현 데이터 세포와의 비교를 수행하였다. 그 결과, 도 4d 내지 도 4f에 나타낸 바와 같이, 72시간동안 ES를 인가한 세포 마이크로매스는 배아 연골 형성 응축(embryonic chondrogenic condesation)으로부터 관절 연골 세포 분화(articular chondrocyte differentiation) 동안 상향 조절된 상당한 수의 유전자가 연골 형성 전 변화(prechondrogenic changes)를 유도하는 것을 확인하였다. 연골모세포(osteochondral progenitor cells)의 분화와 관련된 핵심인자를 식별하기 위한 연구를 수행했을 때, 골연골 전구 세포에서 RUNX2와 SOX9 사이의 균형은 연골 세포와 조골 세포의 분화에 필수적인 역할을 하는 것으로 확인되었다. ES를 인가한 마이크로매스에 대한 현재 데이터는 RUNX2 및 이의 억제인자 NKX3.2의 수준이 연골전 세포에 전형적인 양으로 특이적으로 변경되었음을 보여준다(도 4g).
본 발명자들은 상기와 같은 결과를 통해 ES에 의해 촉발된 개 ADSC의 응축이 연골모세포 발달 단계와 유사한 표현형을 유도함을 확인하였다.
3-2. 생존능 확인
ES로 인한 생리적 스트레스는 여러 세포 과정에 영향을 미칠 수 있으며 다양한 생리적 및 병리학적 결과를 초래할 수 있기에, ES 자극을 3일동안 인가한 ADSC를 CCK-8 viability kit를 사용하여 세포 생존능을 확인하였다. 그 결과, 도 5a에 나타낸 바와 같이 ES 자극 인가는 개 ADSC 마이크로매스의 생존력에 영향을 미치지 않음을 확인할 수 있었다. GO 데이터베이스 분석을 수행했을 때에도, 도 5b에 나타낸 바와 같이, 전기적 노출이 세포사멸과 관련된 유전자인 SHARPIN의 발현에 영향을 주지 않음을 확인하였다. 세포 마이크로매스를 기계적 및 효소적으로 해리시켜 제조한 단일 ADSC 현탁액에 PI(propidium iodide) 염색을 수행했다. 그 결과, 도 5c에 나타낸 바와 같이, PI 염색된 세포의 숫자는 ES 인가 여부에 무관한 것으로 확인되었다.
3-3. 연골 전구세포로의 분화 여부 확인
성체줄기세포는 성장하고 있는 일반적인 세포와 비교할 때, MKI67, TOP2A 및 HMMR과 같은 대표적인 증식 마커를 발현한다. 상기와 같은 증식 마커는 도 5d에 나타낸 바와 같이, ES 인가 여부와 무관하게 응집된 세포에서 발현되지 않음을 확인하였다. 이렇게 ES를 인가한 세포에서 핵형을 관찰한 결과, 도 5e에 나타낸 바와 같이 핵형의 변화가 발생하지 않음을 확인하였다.
본 발명자들은 상기와 같은 결과를 통해 세포가 응집하는 경우, 더 이상 줄기세포가 아닌 성숙한 세포 유형으로의 분화가 진행됨을 확인하였다.
3-4. 콜라겐 생성 수준 변화 확인
연골세포의 주요한 기능은 콜라겐 타입 2, 4, 6, 10, 11, 12 및 14와 같은 세포외 기질을 합성하는 것이기에, 본 발명의 ES 인가한 세포의 분화여부 확인을 위해 콜라겐 생성 수준을 확인하였다. 그 결과, 도 6a에 나타낸 바와 같이, ES 자극 여부와 무관하게 개 ADSC의 마이크로매스에서 COL3A1, COL4A1, COL4A2, COL4A5, COL5A3, COL6A1, COL6A3, COL6A5, COL8A1, COL13A1, COL14A1, COL15A1, COL16A1, COL21A1, COL23A1, COL24A1, COL24A1 및 COL27A1의 발현이 증가하는 것을 확인하였다. 그 중에서도 COL3A1, COL5A2 및 COL6A1/3의 발현은 ADSC 마이크로매스에서 강력하고 균일하게 증가하는 것을 확인하였다. ES를 인가한 세포의 경우 인가하지 않은 경우에 비해 COL6A3 및 COL16A1이 마이크로매스에서 전체적으로 억제되는 것을 확인하였다.
그러나, MSC의 연골 형성과 함께 발현되며 성숙한 연골 세포의 마커로 알려진 Col2의 경우, 도 6b에 나타낸 바와 같이, ES 인가 여부를 불문하고 발현되지 않는 것을 확인할 수 있었다. 기존에 중간엽 줄기세포에 전기자극을 인가하여 줄기세포를 연골세포로 분화시키는 방법을 개시하고 있는 기출원 특허(KR 10-2015-0047361)에서는 비교예를 통해, 성숙한 연골세포의 마커로 사용되는 Col2의 발현이 성장인자를 첨가한 중간엽 줄기세포 및 전기자극을 인가한 중간엽 줄기세포 모두에서 유의한 수준으로 증가되었음을 확인하였으나, 본원발명의 전기자극을 인가한 세포 응집체는 이와는 달리 Col2를 전혀 발현하고 있지 않음을 확인하였다.
한편, 콜라겐 타입 1에 대한 ES의 효과를 확인하기 위하여 RT-qPCR(Real-time quantitative PCR)을 수행하였다. 그 결과, 도 6c에 나타낸 바와 같이, ES를 인가한 세포의 경우, 그렇지 않은 세포에 비해서 COL1A1의 발현이 크게 증가됨을 확인하였다. COL1A1의 발현은 웨스턴 블롯팅을 통해 확인했을 때에도, 도 6d에 나타낸 바와 같이 발현이 크게 증가됨을 확인하였다.
3-5. 전기자극 인가에 따른 콜라겐 조절 관련 인자의 발현 확인
콜라겐 타입 1을 선정하여 전기자극에 의해 발현 수준이 변화하는 메커니즘을 분석하였다. 메커니즘 분석을 위해 다양한 소스의 인핸서를 통합한 GeneHancer에서 제공하는 오픈 소스 데이터베이스를 활용했다. ES 인가한 세포에서 COL1A1의 발현과 관련이 있다고 알려진 전사인자 NR4A1, RBFOX2, NFIC, ID3, HDGF, BMI1, YBX1, SMARCE1, HLTF 및 SMC3의 수준은 시간이 지남에 따라 상당히 감소함을 확인하였다(도 7a). 이와는 반대로 TCF12, POLR2A, ATF4, ARID4B, SMARCA5, GTF2F1, LARP7, HDAC2 및 YY1과 같은 전사인자는 ES를 인가한 다음 72시간 동안 세포 마이크로매스에서 증가함을 확인하였다(도 7b).
상기 인자들은 TGFβ 신호 전달과 관련이 있어 COL1A1의 발현 수준에 변화를 가져온다. COL1A1과 관련이 있는 전사인자의 발현이 증가함에도 불구하고, COL1A1의 발현은 유의하게 감소하였다. 이와 같은 결과를 통해, 상기 전사인자 외에 다른 요인이 COL1A1의 발현에 영향을 주고 있음을 확인하였다.
실시예 4. 본 발명 연골 전구세포의 조직 형성능 확인
세포 골격에서 ES의 역할을 확인하기 위하여 세포-세포 접합(cell-cell junction)을 포함한 세포골격 조직(cytoskeleton organization)을 구체적으로 조절하는 유전자의 발현을 확인하였다. 그 결과 도 7d 및 7e에 나타낸 바와 같이, 연골 세포외 기질(cartilage extracellular matrix)의 기능에 필수적인 것으로 보고된 커넥신(Connexins(GJB2/GJC1)), 세포 접착 단백질(PECAM1) 및 클라우딘(claudins(CLDN2/CLDN7/CLDN10/CLDN19))의 발현이 유의하게 상향조절됨을 확인하였다.
이와 같은 결과는 상기 실시예 2-1의 GAG 염색 결과와 부합한다. 세포 마이크로매스에 ES를 인가하는 경우, 아그레칸(aggrecan)을 구성하는 두가지 GAG인 콘드로이틴 설페이트(chondroitin sulfate) 및 케라탄 설페이트(keratan sulfate)의 생합성과 관련된 유전자의 상당히 높은 발현을 유도한다. 이러한 데이터는 전기자극이 직접적으로 연골 전구세포로의 분화를 유도할 수 있고, 연골 기질 및 연골 전구 세포의 가소성(plasticity)을 자극하여 유리 연골을 복구할 수 있음을 의미한다.
실시예 5. 본 발명 연골 전구세포의 생체 내 치료효과 확인
전기자극을 인가한 전연골세포 응집체의 연골조직으로의 분화 및 조직 생착에 따른 연골의 조직학적 재생 및 복구를 생체 내에서 확인하기 위해 4 kg 이상의 골성숙이 완료된 실험용 뉴질랜드 흰토끼 (NZW rabbit)의 대퇴 연골에 4 mm 지름 (토끼의 평균 연골 두께 0.3 mm)의 작은 연골결손부위를 생성하고 전기자극 응집체 8개를 매식 후 피브린글루를 도포하여 응집체를 고정하였다. 본 실험의 전체적인 진행 과정은 도 8a에 나타내었다. 매식한 전기자극 응집체는 개의 지방유래 중간엽줄기세포에서 유래하였기에 이종간 이식을 고려하여 면역억제제인 싸이클로스포린을 1일 1회 정맥투여 (10 mg/kg)하고 2주 이내로 적용 또는 정상적인 건강상태를 보이지 않을 경우 바로 중단하였다. 매식 후 16 주를 경과했을 때, 부검하여 대퇴연골을 적출한 후 마이크로 단위의 해상도를 가지는 마이크로 CT 촬영을 통해 대퇴연골의 결손 및 재생을 영상 촬영을 통해 획득한 이미지에서 평가하였다. 그 결과, 도 8b 및 도 8c에 나타난 바와 같이, 전기자극을 인가한 응집체를 매식한 결손부위는 4개월 이후 매식된 부위에서 연골층으로 평가되는 범위를 수복하는 것으로 확인되었다.
상기와 같은 결과를 확인하기 위하여 연골기질 염색을 수행하였다. 그 결과, 도 8c 내지 도 8g에 나타낸 바와 같이 전기자극 인가한 응집체를 매식한 경우, 연골기질 염색으로서 알시안 블루, 트라이크롬, 사프라닌 O의 조직 염색 슬라이드에서 결손 대비 매식된 응집체의 조직학적 평가에서 정상 연골 조직의 특성과 유사한 연골세포로의 분화 및 연골 기질의 회복을 확인할 수 있었다. 또한, 생체 내에서 장기간 생착 및 주변 정상 연골과의 연결 그리고 하부의 뼈조직과도 매끄러운 조직 접합성을 보임을 확인하였다. 이와 같은 결과는 상기에서 확인한 조직 병리 염색 결과와 부합한다.
이를 스코어링한 도표에서 5마리의 토끼에서 평균적으로 유의한 재생 및 회복이 확인하였고, 그 결과를 도 8h 내지 8m에 나타내었다. 이러한 데이터는 실험동물의 연골결손 부위 또는 매식한 응집체 부위에서 염증이 관찰되지 않았고, 실험동물의 몸무게 변화 및 육안관찰을 통해 헬스 모니터링을 실시하였을 때 이상 증상이 관찰되지 않음을 확인하였고 매식한 응집체의 효력을 평가하는 데 있어 추가적인 영향은 고려되지 않았다.
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (15)

  1. 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체를 유효성분으로 포함하는, 연골관련 질환 치료 또는 예방용 약학적 조성물:
    (a) Col2를 발현하지 않고;
    (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
  2. 제1항에 있어서,
    상기 연골관련 질환은 골관절염(Osteoarthritis), 관절염(Arthritis), 반달연골이상(Meniscus derangements), 류머티스 관절염(Rheumatoid arthritis), 반월판 연골손상(Tear of meniscus), 삼각섬유연골 복합체 손상, 외상성 연골 손상, 퇴행성 관절염으로 이루어진 군에서 선택되는 것인, 약학적 조성물.
  3. 제1항에 있어서,
    상기 약학적 조성물의 유효성분은 상기 연골 전구 세포와 동질성(homogenous)의 세포를 90% 이상 포함하는 것인, 약학적 조성물.
  4. 제1항에 있어서,
    상기 연골 전구 세포는 줄기세포에서 분화 유도된 것인, 약학적 조성물.
  5. 제4항에 있어서,
    상기 줄기세포는 중간엽줄기세포(mesenchymal stem cell)인 약학적 조성물.
  6. 제4항에 있어서,
    상기 분화 유도는 전기적 자극에 의한 것인, 약학적 조성물.
  7. 제6항에 있어서,
    상기 전기적 자극은,
    0 초과 20 Hz 이하의 주파수;
    -20 V 이상, 20 V 이하 진폭; 및
    0 초과 80% 이하의 듀티비;를 가지는 것인, 약학적 조성물.
  8. 제1항에 있어서,
    상기 연골 전구 세포는 중간엽줄기세포에 비해 COL1 및 COL5로 이루어진 군에서 선택되는 하나 이상의 유전자 또는 유전자가 암호화하는 단백질의 발현 수준이 감소하고;
    중간엽줄기세포에 비해 COL6 유전자 또는 유전자가 암호화하는 단백질의 발현 수준이 증가하는 것인, 약학적 조성물.
  9. 제1항에 있어서,
    상기 연골 전구 세포는 중간엽줄기세포에 비해 GJB2, GJC1, PECAM1, CLDN2, CLDN7, CLDN10 및 CLDN19로 이루어진 군에서 선택되는 하나 이상의 유전자 또는 유전자가 암호화하는 단백질의 발현 수준이 증가하는 것인, 약학적 조성물.
  10. 제1항에 있어서,
    상기 약학적 조성물은 연골 부위에 직접 식립되기 용이한 투여 제형 형태인 것인, 약학적 조성물.
  11. 제1항에 있어서,
    상기 연골 전구 세포의 응집체는 스페로이드(spheroid) 형태로 응집된 것인, 약학적 조성물.
  12. 제8항에 있어서,
    상기 스페로이드의 직경은 0.5 내지 1.5 mm인, 약학적 조성물.
  13. 줄기세포에 전기자극을 인가하여 연골 전구세포 또는 이의 응집체를 제조하는 단계를 포함하는, 연골관련 질환 치료 또는 예방용 약학적 조성물의 제조방법으로서;
    상기 연골 전구세포는 하기의 특징을 가지는 제조방법:
    (a) Col2를 발현하지 않고;
    (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
  14. 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체를 이를 필요로 하는 개체에 투여하는 단계를 포함하는 연골관련 질환 치료 또는 예방 방법:
    (a) Col2를 발현하지 않고;
    (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
  15. 연골관련 질환 치료 또는 예방용 약제의 제조를 위한 하기의 특징을 가지는 연골 전구 세포 또는 이의 응집체의 용도:
    (a) Col2를 발현하지 않고;
    (b) 상기 연골 전구 세포는 알시안블루(Alcian Blue), 사프라닌 O(Safranin O) 및 톨루이딘 블루(Toluidine blue)로 이루어진 군에서 선택되는 하나 이상에 의해 기질 염색이 되는 것.
PCT/KR2022/011985 2021-08-12 2022-08-11 연골 관련 질환 치료용 조성물 및 이의 제조방법 WO2023018244A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22856239.3A EP4386086A1 (en) 2021-08-12 2022-08-11 Composition for treatment of cartilage-related disease and preparation method therefor
JP2024508478A JP2024529683A (ja) 2021-08-12 2022-08-11 軟骨関連疾患治療用組成物及びその製造方法
CN202280059181.8A CN117881781A (zh) 2021-08-12 2022-08-11 用于治疗软骨相关疾病的组合物及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210106922 2021-08-12
KR10-2021-0106922 2021-08-12
KR10-2021-0130412 2021-09-30
KR1020210130412A KR20230024813A (ko) 2021-08-12 2021-09-30 연골 관련 질환 치료용 조성물 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2023018244A1 true WO2023018244A1 (ko) 2023-02-16

Family

ID=85200912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011985 WO2023018244A1 (ko) 2021-08-12 2022-08-11 연골 관련 질환 치료용 조성물 및 이의 제조방법

Country Status (3)

Country Link
EP (1) EP4386086A1 (ko)
JP (1) JP2024529683A (ko)
WO (1) WO2023018244A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050044849A (ko) * 2003-11-07 2005-05-13 학교법인 인하학원 중간엽 줄기세포로부터 연골세포를 분화시키는 방법
KR20060106812A (ko) 2003-08-21 2006-10-12 노보 노르디스크 에이/에스 라세미화 아미노산을 포함하는 폴리펩티드의 분리
KR20070025607A (ko) * 2005-09-02 2007-03-08 보령제약 주식회사 골막으로부터 연골전구세포를 분리하는 방법
KR100973453B1 (ko) * 2001-12-07 2010-08-02 제론 코포레이션 인간 배아 줄기 세포에서 유래되는 연골세포 전구체
KR20150047361A (ko) 2013-10-24 2015-05-04 제일모직주식회사 유기발광소자 봉지용 조성물 및 이를 사용하여 제조된 유기발광소자 표시장치
KR101603475B1 (ko) * 2015-04-03 2016-03-15 을지대학교 산학협력단 전기자극을 이용하여 중간엽 줄기세포를 연골세포로 분화시키는 방법
KR20190043413A (ko) * 2017-10-18 2019-04-26 서울대학교산학협력단 닭 골수 유래 골·연골전구세포 배양액을 유효성분으로 포함하는 골 생성 촉진용 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973453B1 (ko) * 2001-12-07 2010-08-02 제론 코포레이션 인간 배아 줄기 세포에서 유래되는 연골세포 전구체
KR20060106812A (ko) 2003-08-21 2006-10-12 노보 노르디스크 에이/에스 라세미화 아미노산을 포함하는 폴리펩티드의 분리
KR20050044849A (ko) * 2003-11-07 2005-05-13 학교법인 인하학원 중간엽 줄기세포로부터 연골세포를 분화시키는 방법
KR20070025607A (ko) * 2005-09-02 2007-03-08 보령제약 주식회사 골막으로부터 연골전구세포를 분리하는 방법
KR20150047361A (ko) 2013-10-24 2015-05-04 제일모직주식회사 유기발광소자 봉지용 조성물 및 이를 사용하여 제조된 유기발광소자 표시장치
KR101603475B1 (ko) * 2015-04-03 2016-03-15 을지대학교 산학협력단 전기자극을 이용하여 중간엽 줄기세포를 연골세포로 분화시키는 방법
KR20190043413A (ko) * 2017-10-18 2019-04-26 서울대학교산학협력단 닭 골수 유래 골·연골전구세포 배양액을 유효성분으로 포함하는 골 생성 촉진용 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1995

Also Published As

Publication number Publication date
EP4386086A1 (en) 2024-06-19
JP2024529683A (ja) 2024-08-08

Similar Documents

Publication Publication Date Title
JP4180228B2 (ja) 脂肪組織由来の間質細胞に関する多様な中胚葉系統分化能およびその使用
CN104703609B (zh) 干细胞微粒
CN106916783B (zh) 肌肉干细胞体外培养方法及其应用
Zhang et al. Therapeutic potential of non-adherent BM-derived mesenchymal stem cells in tissue regeneration
CN105142646A (zh) 产生微粒的方法
WO2015194753A1 (ko) Cpne7 단백질을 포함하는 비치계 중간엽 줄기세포의 상아모세포로의 분화방법, 조성물 및 이를 이용한 치수조직 재생 및 상아질 지각과민증 치료용 약학적 조성물
JPWO2003080822A1 (ja) 胎盤由来の間葉系細胞およびその医学的用途
WO2005123909A2 (en) Isolation and characterization of muscle regenerating cells
BR112016014116B1 (pt) Método para preparar células-tronco mesenquimais (mscs) de mamíferos
WO2013085303A1 (ko) 개과동물 양막-유래 다분화능 줄기세포
WO2023018244A1 (ko) 연골 관련 질환 치료용 조성물 및 이의 제조방법
WO2020242250A1 (ko) 조골세포 유래 미토콘드리아를 포함하는 골형성 촉진을 위한 약학적 조성물
Malejczyk et al. Natural cell-mediated cytotoxic activity against isolated chondrocytes in the mouse.
WO2013077639A1 (ko) 말과동물 양막-유래 중간엽 줄기세포
WO2011065661A2 (ko) 중간엽 줄기세포를 dkk-1 또는 sfrp-1을 이용하여 연골세포로 분화시키는 방법
US20230014549A1 (en) Mesenchymal stem cells for use in the treatment of chronic kidney disease
KR20230024813A (ko) 연골 관련 질환 치료용 조성물 및 이의 제조방법
WO2023280835A1 (en) Mesenchymal stem cells for use in the treatment of chronic gingivostomatitis
WO2020106097A1 (ko) 중간엽 줄기세포를 포함하는 지방 생성을 억제하기 위한 조성물
CN117881781A (zh) 用于治疗软骨相关疾病的组合物及其制备方法
EP2533859B1 (en) Pharmaceutical compositions for the treatment and prevention of cancer
WO2019190175A9 (ko) 편도 유래 중간엽 줄기세포로부터 운동신경세포의 분화방법
WO2019221477A1 (ko) 전구세포 배양액 및 다층 그래핀 필름을 포함하는 줄기세포 분화 촉진용 조성물 및 이의 용도
EP4397312A1 (en) Therapeutic agent for arthropathy, and method for producing therapeutic agent for arthropathy
WO2015080376A1 (ko) 태반의 융모막 또는 와튼제대교질 유래 간엽줄기세포로부터 신경세포 및 유모세포를 분화시키는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22856239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024508478

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280059181.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022856239

Country of ref document: EP

Effective date: 20240312