WO2023018054A1 - 전극 조립체 - Google Patents

전극 조립체 Download PDF

Info

Publication number
WO2023018054A1
WO2023018054A1 PCT/KR2022/010701 KR2022010701W WO2023018054A1 WO 2023018054 A1 WO2023018054 A1 WO 2023018054A1 KR 2022010701 W KR2022010701 W KR 2022010701W WO 2023018054 A1 WO2023018054 A1 WO 2023018054A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
electrode
negative electrode
bent
cathode
Prior art date
Application number
PCT/KR2022/010701
Other languages
English (en)
French (fr)
Inventor
한현규
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023505758A priority Critical patent/JP2023540848A/ja
Priority to EP22847522.4A priority patent/EP4177999A1/en
Priority to CN202280006114.XA priority patent/CN116097520A/zh
Publication of WO2023018054A1 publication Critical patent/WO2023018054A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • H01M10/0454Cells or batteries with electrodes of only one polarity folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly.
  • Such a lithium secondary battery includes an electrode assembly formed by stacking or winding a positive electrode, a negative electrode, and a separator, and a metal case or pouch containing the electrode assembly and an electrolyte solution.
  • lithium ions may be deposited at the outermost portion of the electrode assembly while charging and discharging proceeds. That is, misalignment between the anode and the cathode may occur.
  • the separator is stacked in a single layer at the side end where the folding direction is changed in the stacked electrode assembly, the side surface of the electrode assembly can be easily damaged by external impact, and fine detachment of the active material or folding of the positive and negative electrodes can occur. may occur.
  • active materials may be detached or cracks may occur at the corners of the positive electrode and the negative electrode while the jelly roll-type electrode assembly winding the positive electrode, the separator, and the negative electrode undergoes a winding and pressing process.
  • the desorbed active material may cause a short circuit or damage the separator while moving around inside the secondary battery.
  • an electrode assembly in which an anode and a cathode are assembled with a zigzag-bent separator interposed therebetween has been developed.
  • conventionally developed zigzag electrode assemblies have limitations in that the bent portion is composed of only separators, making it difficult to secure the rigidity of the electrode assembly and low energy density due to low capacity per unit area of the assembled anode.
  • an object of the present invention is to provide an electrode assembly capable of realizing high safety and energy density of the battery as well as high productivity when manufacturing the battery, and a secondary battery including the same.
  • the present invention in one embodiment, the present invention
  • the negative electrode has a laminated structure in which separators are disposed on both sides and bent m times (an integer of 2 ⁇ m ⁇ 100) in a zigzag shape;
  • the distance between the nth inserted positive electrode end and the distance between the n+1th inserted positive end may have a deviation of 10 ⁇ m to 500 ⁇ m.
  • the distance between the nth inserted positive electrode end and the distance between the n+1th inserted positive end may have a deviation of 500 ⁇ m to 2,000 ⁇ m.
  • the other end of the end inserted into the separator has a separation distance of 50 ⁇ m to 150 ⁇ m based on the same side surface of the electrode assembly; Alternatively, it may have a separation distance of 400 ⁇ m to 2,000 ⁇ m.
  • the average thickness of the cathode may be 50 ⁇ m to 500 ⁇ m.
  • the average thickness of the separator may be 5 ⁇ m to 100 ⁇ m.
  • the average thickness of the positive electrode may be 50 ⁇ m to 500 ⁇ m.
  • the negative electrode may have a laminated structure in which separators are disposed on both sides and bent 20 to 60 times in a zigzag shape.
  • the negative electrode has a laminated structure in which separators are disposed on both sides and bent m times (an integer of 2 ⁇ m ⁇ 100) in a zigzag shape;
  • An electrode assembly having a deviation of 10 ⁇ m to 2 mm from the spacing distance of the n+1th inserted cathode end on the basis of the side surface including the bent structure of the cathode, and the electrode assembly
  • a secondary battery including a case containing an electrolyte is provided.
  • a positive electrode tab and a negative electrode tab are connected to the positive electrode and the negative electrode of the electrode assembly and are drawn out of the case, and the positive electrode tab and the negative electrode tab are on the side surface adjacent to the side surface of the electrode assembly including the bent structure of the negative electrode. can be located
  • the electrode assembly according to the present invention has a structure in which a negative electrode having a separator disposed on both sides is bent in a zigzag shape and a plurality of positive electrodes are individually inserted inside the bent separator together with the negative electrode, thereby improving the rigidity of the electrode assembly. Therefore, high safety of the battery can be realized.
  • the electrode assembly of the present invention implements the deviation of the separation distance between an arbitrary positive end and the end of the positive electrode adjacent to the positive electrode based on the side surface including the bent structure of the negative electrode at a constant ratio, so that the inserted end of the positive electrode is exposed.
  • the unit area of the inserted anode can be increased, the energy density of electricity can be improved.
  • FIG. 1 is a cross-sectional view showing the structure of a conventional electrode assembly.
  • FIG. 2 is a cross-sectional view showing an example of an electrode assembly according to the present invention.
  • FIG. 3 is a cross-sectional view showing another example of an electrode assembly according to the present invention.
  • FIG. 4 is a perspective view showing the structure of the electrode assembly according to the present invention before bending the negative electrode.
  • FIG. 5 is a perspective view showing the structure of an electrode assembly manufactured by bending the negative electrode according to FIG. 4;
  • the term "comprises” or “has” is intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
  • a part such as a layer, film, region, plate, etc. when a part such as a layer, film, region, plate, etc. is described as being “on” another part, this includes not only the case where it is “directly on” the other part, but also the case where another part is present in the middle thereof. . Conversely, when a part such as a layer, film, region, plate, or the like is described as being “under” another part, this includes not only being “directly under” the other part, but also the case where there is another part in the middle. In addition, in the present application, being disposed “on” may include the case of being disposed not only on the upper part but also on the lower part.
  • the present invention in one embodiment, the present invention
  • the negative electrode has a laminated structure in which separators are disposed on both sides and bent m times (an integer of 2 ⁇ m ⁇ 100) in a zigzag shape,
  • the distance between the n-th inserted positive electrode end and the distance between the n+1-th inserted positive electrode end provides an electrode assembly having a deviation of 10 ⁇ m to 2 mm.
  • FIG. 2 and 3 are cross-sectional views showing the structure of the electrode assemblies 20 and 30 according to the present invention.
  • the structure of the electrode assembly 20 according to the present invention will be described with reference to FIG. 2 .
  • the electrode assembly 20 has a configuration including positive electrodes 24a and 24b, a negative electrode 21 and separators 22 and 23.
  • the negative electrode 21 has a band shape
  • the separators 22 and 23 may be disposed on both sides of the negative electrode 21 and adhered to each other.
  • the separators 22 and 23 may contact or adhere to both surfaces of the negative electrode 21 by using an adhesive such as an adhesive or by a lamination method using heat and pressure. Accordingly, shrinkage of the separators 22 and 23 is prevented during charging and discharging of the battery, while the separators 22 and 23 are thin and support the negative electrode 21 having a large area, thereby providing mechanical strength to the large negative electrode 21. It is possible to prevent damage or breakage of the negative electrode 21 by providing.
  • the cathode 21 is formed in a strip shape, a single cathode 21 may be provided in the electrode assembly 20 . Therefore, unlike the case where the negative electrode 21 is configured in the form of a plate, detachment of the negative electrode active material and generation of foreign substances that may occur when the negative electrode 21 is cut one by one can be minimized, and the cleaning step in the manufacturing process can be simplified. .
  • the cathodes 21 on which the separators 22 and 23 are disposed on both sides are stacked in a folded zigzag structure by alternately bending m times (an integer of 2 ⁇ m ⁇ 100) in opposite directions while overlapping each other.
  • the anodes (24a and 24b) are made in the form of a plate cut so that the separators 22 and 23 and the cathode 21 can be completely inserted into the bent inner side, and are inserted into the bent separators 22 and 23.
  • the plurality of anodes 24a and 24b may have the same length, thickness and width.
  • the zigzag structure includes 'bent parts 21a and 21b' in which the separators 22 and 23 and the cathode 21 are bent and folded. and the negative electrode 21 are formed side by side as many times as the number of times they are bent, so that the positive electrodes 24a and 24b inserted inside are aligned, and at the same time, stress is applied to the positive electrode or the positive electrode active material coated on the positive electrodes 24a and 24b is desorbed can prevent it from happening.
  • the zigzag structure can implement a structure in which the positive electrodes 24a and 24b are completely surrounded by the negative electrode 21 with the separators 22 and 23 as the boundary, the positive electrode 21 is exposed to the outside and the electrode during charging and discharging of the battery. Precipitation of lithium ions at the outermost part of the assembly can be prevented.
  • the number (m) of bending and stacking the separators 22 and 23 and the cathode 21 may be 2 to 100 times, more specifically 2 to 80 times; No. 2 to No. 60; No. 2 to No. 40; No. 2 to No. 20; No. 2 to No. 50; 5 to 30 times; No. 10 to No. 50; No. 20 to No. 30; Nos. 10 to 15; Nos. 10 to 70; No. 20 to No. 60; Nos. 30 to 60; Nos. 10 to 70; 20 to 40 times; Nos. 40 to 60; Nos. 2 to 15; Nos. 2 to 13; Nos. 2 to 11; Nos. 2 to 9; No. 2 to No. 7; Or it may be 2 to 5 times.
  • the number of stacked positive electrodes 24a and 24b and the negative electrode 21 can be reduced without an excessive increase in the volume of the electrode assembly 20. Since it can be easily increased, the energy density of the electrode assembly 20 can be improved.
  • an arbitrary anode 24a inserted inside the separators 22 and 23 bent along the cathode 21 may be inserted and stacked so that both ends are offset from adjacent anodes 24b. Accordingly, the bending structure of the anode 21, that is, the separation distance between the ends of an arbitrary anode 24a located on the same side with respect to the side of the electrode assembly 20 including the bent portion is equal to that of the adjacent anode 24b. It may have a separation distance and a deviation (A) of a certain range.
  • the separation distance (B) of the end may have a deviation (A) of 10 ⁇ m to 500 ⁇ m from the separation distance (A + B) of the end of the n + 1th inserted anode 24b, and specifically, 10 ⁇ m to 450 ⁇ m; 10 ⁇ m to 400 ⁇ m; 50 ⁇ m to 400 ⁇ m; 80 ⁇ m to 380 ⁇ m; 80 ⁇ m to 350 ⁇ m; 100 ⁇ m to 400 ⁇ m; 120 ⁇ m to 380 ⁇ m; 120 ⁇ m to 350 ⁇ m; 140 ⁇ m to 290 ⁇ m; Or it may have a deviation (A) of 210 ⁇ m to 290 ⁇ m.
  • the separation distance (A + B) of the end may have a deviation (A) of 500 ⁇ m to 2,000 ⁇ m from the separation distance (B) of the end of the n + 1th inserted anode 34b, specifically, 500 ⁇ m to 1,900 ⁇ m; 500 ⁇ m to 1,700 ⁇ m; 500 ⁇ m to 1,500 ⁇ m; 500 ⁇ m to 1,000 ⁇ m; 500 ⁇ m to 800 ⁇ m; 750 ⁇ m to 1,800 ⁇ m; 750 ⁇ m to 1,300 ⁇ m; 1,000 ⁇ m to 1,900 ⁇ m; 1,200 ⁇ m to 1,700 ⁇ m; Or it may have a deviation (A) of 900 ⁇ m to 1,400 ⁇ m.
  • a plurality of anodes 24a, 24b, 34a, and 34b are inserted into the bent portions 21a, 21b, 31a, and 31b so that both ends are shifted so as to satisfy the above range, thereby forming anodes 14 as shown in FIG. It can be manufactured with high process efficiency compared to the case where both ends of the are stacked side by side without shifting.
  • the energy density of the electrode assembly 20 can be maximized when both ends of the positive electrodes 24a and 24b are shifted in the structure shown in FIG. 2, and both ends of the positive electrodes 34a and 34b have the structure shown in FIG.
  • the safety of the electrode assembly can be further improved.
  • the other ends of the positive electrodes 24a and 24b inserted into the separators 22 and 23 may have a distance within a certain range based on the same side surface of the electrode assembly 20.
  • the positive electrodes 24a and 24b have the other end of the end inserted inside the separators 22 and 23 having a thickness of 50 ⁇ m to 50 ⁇ m based on the same side of the electrode assembly 20. It may have a separation distance (B) of 150 ⁇ m, specifically 80 ⁇ m to 120 ⁇ m; 100 ⁇ m to 140 ⁇ m; 50 ⁇ m to 120 ⁇ m; 50 ⁇ m to 100 ⁇ m; 90 ⁇ m to 115 ⁇ m; 50 ⁇ m to 80 ⁇ m; Or it may have a separation distance (B) of 60 ⁇ m to 90 ⁇ m.
  • the positive electrodes 34a and 34b have the other end of the end inserted into the separators 32 and 33, 400 ⁇ m relative to the same side of the electrode assembly 30. to 2,000 ⁇ m to have a separation distance (A + B), specifically 400 ⁇ m to 1,200 ⁇ m; 600 ⁇ m to 1,200 ⁇ m; 400 ⁇ m to 1,000 ⁇ m; 600 ⁇ m to 1,000 ⁇ m; 400 ⁇ m to 800 ⁇ m; 800 ⁇ m to 1,200 ⁇ m; 800 ⁇ m to 1,000 ⁇ m; 1,000 ⁇ m to 1,500 ⁇ m; 1,000 ⁇ m to 1,200 ⁇ m; 1,200 ⁇ m to 2,000 ⁇ m; 1,500 ⁇ m to 2,000 ⁇ m; Alternatively, it may have a separation distance (A+B) of 1,400 ⁇ m to 1,700 ⁇ m.
  • the positive electrodes 24a, 24b, 34a, and 34b have the same side surface standard separation distance (B) of the electrode assemblies 20 and 30, which the other end of the end inserted into the separators 22, 23, 32, and 33 has.
  • A+B side surface standard separation distance
  • the electrode assembly according to the present invention is based on the side of the electrode assembly including the bent portion, the distance (B or A + B) of the end of the anode located on the same side, and the adjacent side of any anode and the anode It has a configuration that satisfies the above-described range of the separation distance deviation (A) of the anode, and this configuration includes the length of the cathode in the direction of bending in the manufacturing process of the electrode assembly; anode length; insertion speed during anode insertion; It may be controlled by the average thickness of the anode, cathode, and separator, but is not limited thereto.
  • the anode 21 is carbon-based, hard carbon, natural graphite, artificial graphite, graphite-based carbon coke-based carbon, silicon (Si) and silicon oxide (SiOx, where 0.8 ⁇ x ⁇ 2.5) at least one kind
  • a structure in which an anode mixture layer is formed on the copper current collector may be manufactured by mixing a negative electrode active material including the binder with a binder, applying the mixture to at least one surface of a strip-shaped copper current collector having oxidation resistance, and drying the negative electrode active material.
  • the mixture of the negative electrode active material and the binder may further include a conductive material, a filler, and the like.
  • the positive electrodes 24a and 24b include lithium cobalt oxide (LiCoO 2 ), lithium iron phosphate (LiFePO 4 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium nickel cobalt manganese oxide ( LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.9 Co 0.05 Mn 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.05 Al 0.05 O 2 and LiNi 0.7 Co 0.1 Mn 0.1 Al 0.1 O 2 )
  • the positive electrode mixture layer may have a higher coating thickness than the negative electrode mixture layer, and like the negative electrode 21, the mixture of the positive electrode active material and the binder may further include a conductive material, a filler, and the like.
  • the positive electrodes 24a and 24b may be cut into a plate shape after the positive electrode mixture layer is formed, and the cut positive electrodes 24a and 24b have a length in the direction of being inserted into the electrode assembly, that is, the bent separator 22 and 23) the length in the direction inserted into the inside may be the same as the length of the aluminum current collector and the positive electrode mixture layer included in the positive electrodes 24a and 24b.
  • the positive electrodes 24a and 24b and the negative electrode 21 may each independently have an average thickness of 50 ⁇ m to 500 ⁇ m, specifically 50 ⁇ m to 400 ⁇ m; 50 ⁇ m to 300 ⁇ m; 50 ⁇ m to 200 ⁇ m; 50 ⁇ m to 150 ⁇ m; 80 ⁇ m to 140 ⁇ m; 100 ⁇ m to 500 ⁇ m; 250 ⁇ m to 500 ⁇ m; 100 ⁇ m to 300 ⁇ m; 150 ⁇ m to 250 ⁇ m; 180 ⁇ m to 290 ⁇ m; 140 ⁇ m to 260 ⁇ m; Or it may be 80 ⁇ m to 170 ⁇ m.
  • the separators 22 and 23 may be formed of a polymer solid electrolyte film that allows lithium ions to pass through, or may be formed of chemically resistant and hydrophobic polypropylene; glass fiber; Alternatively, a sheet or non-woven fabric made of polyethylene may be used. In some cases, a composite separator in which inorganic particles/organic particles are coated with an organic binder polymer may be used on a porous polymer substrate such as the sheet or non-woven fabric.
  • the average pore diameter of the separators 22 and 23 is 0.01 to 10 ⁇ m, and the average thickness is 5 ⁇ m to 100 ⁇ m, specifically 5 ⁇ m to 80 ⁇ m; 5 ⁇ m to 60 ⁇ m; 5 ⁇ m to 30 ⁇ m; 5 ⁇ m to 20 ⁇ m; 10 ⁇ m to 50 ⁇ m; 10 ⁇ m to 30 ⁇ m; 8 ⁇ m to 20 ⁇ m; Or it may be 8 ⁇ m to 15 ⁇ m.
  • a plurality of positive electrodes 24a and 24b are individually inserted into the separators 22 and 23 bent along the negative electrode 21 and then stacked electrodes.
  • the outermost edges may have a taped shape.
  • the taping may be performed using an insulating tape commonly used in the art.
  • the electrode assembly according to the present invention has the configuration as described above, so that the negative electrode 21 having the separators 22 and 23 disposed on both sides is bent in a zigzag shape, and the separator 22 and 23), since the rigidity of the electrode assembly 20 can be improved by having a structure in which a plurality of positive electrodes 24a and 24b are individually inserted, high safety of the battery can be realized.
  • the electrode assembly 20 of the present invention has a separation distance between an end of an arbitrary positive electrode 24a and an end of the positive electrode 24b adjacent to the positive electrode 24a based on the side surface including the bent structure of the negative electrode 21
  • a separation distance between an end of an arbitrary positive electrode 24a and an end of the positive electrode 24b adjacent to the positive electrode 24a based on the side surface including the bent structure of the negative electrode 21
  • a secondary battery according to the present invention includes a cathode; cathode; and a separator;
  • the negative electrode has a laminated structure in which separators are disposed on both sides and bent m times (an integer of 2 ⁇ m ⁇ 100) in a zigzag shape;
  • An electrode assembly having a deviation of 10 ⁇ m to 2 mm from the spacing distance of the n+1th inserted cathode end on the basis of the side surface including the bent structure of the cathode, and the electrode assembly It has a configuration including a case containing an electrolyte solution.
  • the secondary battery according to the present invention is provided with the above-described electrode assembly of the present invention, so that the safety of the battery is high and the energy density is excellent.
  • the positive electrode and the negative electrode included in the electrode assembly may each include a coating portion on which a mixture containing an active material is applied on a current collector and a non-coated portion on which the mixture is not applied, and each uncoated portion includes a bent portion.
  • the side adjacent to the side of the may be provided.
  • FIGS. 4 and 5 show structures before and after bending of the electrode assemblies 40 and 50 according to the present invention, and the electrode assemblies 40 and 50 of the present invention are on the side adjacent to the side including the bent portion.
  • a non-coated portion 442 of the anode 44 and a non-coated portion 412 of the cathode 41 may be respectively provided.
  • the positive electrode uncoated portion 442 and the negative electrode uncoated portion 412 are portions to which the positive electrode tab 56 and the negative electrode tab 55 are connected by welding, respectively, and may be provided on the same side surface of the electrode assembly 40. In some cases, as shown in FIGS. 4 and 5 , it may be provided on both sides of the electrode assembly 40 so as to be disposed on opposite sides of each other.
  • the anode uncoated regions 442 and 542 and the negative uncoated regions 412 and 512 are spaced apart from each other.
  • the negative electrode uncoated portions 412 and 512 may be arranged at regular intervals along the length direction of the negative electrode 41 so that the negative electrode 41 and the separators 42 and 43 may be laminated and bonded on the same line after bending. there is.
  • the negative electrode uncoated portions 412 and 512 can be properly deformed according to the output of the secondary battery, and for example, can be formed corresponding to the number of positive electrodes 44 or formed differently from the number of positive electrodes 44. .
  • the negative electrode uncoated portions 412 and 512 are disposed at the center of a side surface adjacent to a side surface including the bent portion 45 of the electrode assembly 40, and at this time, the negative electrode uncoated portions 412 and 512
  • the width may be 1/3 to 2/3 times the width of the side on which the uncoated portions 412 and 512 are disposed.
  • the secondary battery according to the present invention can be applied without particular limitation as long as it is commonly used in the art as an electrolyte.
  • the electrolyte solution may be composed of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, or the like may be used as the electrolyte solution.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethine Toxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorane, formamide, dimethylformamide, dioxorane, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphoric acid triesters, trimethoxy methane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, propion An aprotic organic solvent such as methyl acid or ethyl propyl
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, ions
  • a polymeric material containing a sexual dissociation group or the like can be used.
  • Examples of the inorganic solid electrolyte include Li3N, LiI, Li5Ni2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2, and the like.
  • Nitrides, halides, sulfates and the like can be used.
  • the lithium salt is a material that is soluble in a non-aqueous electrolyte, and is, for example, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, chloro Lithium borane, lithium lower aliphatic carboxylic acid, lithium 4-phenylboronic acid, imide and the like can be used.
  • the secondary battery according to the present invention may be a battery case commonly used in the art, and specifically may include a cylindrical case, a pouch-type case, a prismatic case, and the like.
  • the battery case may be a pouch-type case, and in this case, the pouch may be formed of a multi-layer sheet structure surrounding the outside of the electrode assembly.
  • the pouch may include a polymer sheet for insulation and thermal bonding, a composite nylon sheet for protection by forming an outer surface, and a metal sheet provided between them to impart mechanical strength.
  • a strip-shaped negative electrode having a negative electrode mixture layer containing graphite as an active material on both sides of a copper current collector; polypropylene separator; And a plate-shaped positive electrode including a positive electrode composite layer containing lithium nickel cobalt manganese oxide as an active material on both sides of the aluminum current collector was prepared.
  • the average thickness of the positive electrode, the negative electrode, and the separator was 180 ⁇ m, 140 ⁇ m, and 12 ⁇ m, respectively, and the number of times the negative electrode with the separator disposed on both sides was bent 50 times.
  • the distance (B) between the ends of each inserted positive electrode was adjusted to 90 ⁇ 5 ⁇ m based on the side surface of the electrode assembly including the bent portion.
  • the deviation (A) of the separation distance between the n-th inserted anode end and the n+1-th inserted cathode end was 110 ⁇ 5 ⁇ m.
  • a strip-shaped negative electrode having a negative electrode mixture layer containing graphite as an active material on both sides of a copper current collector; polypropylene separator; And a plate-shaped positive electrode including a positive electrode composite layer containing lithium nickel cobalt manganese oxide as an active material on both sides of the aluminum current collector was prepared.
  • an electrode assembly having a cross-sectional structure as shown in FIG. 3 was manufactured by placing polypropylene separators on both sides of the negative electrode, and inserting the positive electrodes one by one inside the bent portion formed while bending them to laminate the electrodes.
  • the average thickness of the positive electrode, the negative electrode, and the separator was 180 ⁇ m, 140 ⁇ m, and 12 ⁇ m, respectively, and the number of times the negative electrode with the separator disposed on both sides was bent 50 times.
  • the distance (A+B) between the ends of each inserted positive electrode was adjusted to 1,200 ⁇ 10 ⁇ m based on the side surface of the electrode assembly including the bent portion.
  • the deviation (A) of the separation distance between the nth inserted anode end and the n+1th inserted anode end was 1,000 ⁇ 5 ⁇ m.
  • a strip-shaped negative electrode having a negative electrode mixture layer containing graphite as an active material on both sides of a copper current collector; polypropylene separator; And a plate-shaped positive electrode including a positive electrode composite layer containing lithium nickel cobalt manganese oxide as an active material on both sides of the aluminum current collector was prepared.
  • an electrode assembly having a cross-sectional structure as shown in FIG. 1 was manufactured by placing polypropylene separators on both sides of the negative electrode, and inserting the positive electrodes one by one inside the bent portion formed while bending them to laminate the electrodes.
  • the average thickness of the positive electrode, the negative electrode, and the separator was 180 ⁇ m, 140 ⁇ m, and 12 ⁇ m, respectively, and the number of times the negative electrode with the separator disposed on both sides was bent 50 times.
  • the distance (S) of the end of each positive electrode inserted was adjusted to 200 ⁇ 10 ⁇ m based on the side surface of the electrode assembly including the bent portion.
  • the deviation (A) of the separation distance between the nth inserted anode end and the n+1th inserted cathode end was 0 ⁇ m.
  • the electrode assembly prepared in Examples and Comparative Examples was inserted into a pouch, an electrolyte was injected, and then sealed to prepare a secondary battery, and the following experiments were performed. was performed.
  • Each of the secondary batteries including the electrode assemblies manufactured in Examples and Comparative Examples was fully charged under 4.2 to 4.25V conditions. Then, a nail with a diameter of 1 to 3 mm made of iron was pierced through the center of the battery made from above using a nail penetration tester to measure ignition and the maximum temperature of the non-ignited battery. At this time, the penetration speed of the nail was constant at 0.1 to 80 m/min, and the results are shown in Table 1 below.
  • Each secondary battery subjected to charging and discharging was disassembled to confirm whether lithium metal was deposited on the surface of the negative electrode.
  • the case where lithium metal was deposited on the surface of the decomposed negative electrode was marked as 'O', and the case where lithium metal was not deposited was marked as 'X'.
  • the battery including the electrode assembly according to the present invention has excellent stability and energy density.
  • the electrode assembly according to the present invention has a structure in which a negative electrode having a separator disposed on both sides is bent in a zigzag shape and a plurality of positive electrodes are individually inserted inside the bent separator together with the negative electrode, thereby increasing the rigidity of the electrode assembly can be improved, so high safety of the battery can be implemented.
  • the electrode assembly prevents the inserted anode end from being exposed by realizing the deviation of the separation distance between an arbitrary anode end and an anode end adjacent to the anode based on a side surface including a bent structure of the cathode at a predetermined ratio. It can be seen that not only the safety of the battery is further improved, but also the energy density of electricity is improved because the unit area of the inserted anode can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 전극 조립체에 관한 것으로서, 상기 전극 조립체는 양면에 분리막이 배치된 음극을 지그재그 형상으로 절곡시키고, 음극과 함께 절곡된 분리막의 내측에 복수의 양극이 개별적으로 삽입된 구조를 가짐으로써 전극 조립체의 강성을 향상시킬 수 있으므로 전지의 높은 안전성을 구현할 수 있다. 또한, 본 발명의 전극 조립체는 음극의 절곡 구조를 포함하는 측면을 기준으로 임의의 양극 단부와 상기 양극과 인접한 양극의 단부가 갖는 이격거리 편차를 일정 비율로 구현함으로써, 삽입된 양극 단부가 노출되는 것을 막을 수 있어 전지의 안전성이 보다 개선될 뿐만 아니라, 삽입된 양극의 단위 면적을 증가시킬 수 있으므로 전기의 에너지 밀도를 향상시킬 수 있는 이점이 있다.

Description

전극 조립체
본 발명은 전극 조립체에 관한 것이다.
본 출원은 2021. 08. 10일자 대한민국 특허 출원 제10-2021-0105389호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개신된 모든 내용은 본 명세서의 일부로서 포함된다.
현재, 전기 자동차 개발에 사용되는 에너지원은 대부분 중대형 리튬 이차 전지를 적용하고 있어, 이에 대한 개발이 주를 이루고 있으며, 향후, 신재생 에너지 및 스마트 그리드(Smart Grid)와 연계된 전력 저장 분야에서 에너지 저장 매체로써 중대형 리튬 이차 전지에 대한 연구가 지속적으로 진행될 것으로 보인다.
이러한 리튬 이차 전지는 양극, 음극 및 분리막의 적층 또는 와인딩으로 이루어지는 전극 조립체 및 전극 조립체와 전해액을 내장하는 금속 케이스 또는 파우치를 포함한다.
여기서, 음극 및 양극의 사이즈가 작은 소형 이차 전지에서는 전극의 취급이 용이하고, 적층 및 와인딩 공정에 대한 생산성이 비교적 용이하게 확보될 수 있다. 그러나, 중대형 이차 전지용으로 양극, 분리막 및 음극을 적층 및 와인딩하는 공정에서는 생산성 향상은 물론, 전지의 안전성 확보가 주요 과제로 남는다.
구체적으로, 양극, 분리막 및 음극을 적층하는 스택 형태의 전극 조립체에서, 양극이 음극의 최외곽을 벗어나게 되면, 충방전이 진행되면서 전극 조립체의 최외곽에서 리튬 이온이 석출될 수 있다. 즉 양극과 음극의 정렬 불량이 발생될 수 있다.
또한, 스택 형태의 전극 조립체에서 접히는 방향이 전환하는 측면 단부에서 분리막이 단일겹으로 적층되므로 외부의 충격에 의하여 전극 조립체의 측면이 쉽게 손상될 수 있으며, 활물질의 미세 탈리나 양극 및 음극의 접힘이 발생될 수 있다.
아울러, 양극, 분리막 및 음극을 와인딩하는 젤리롤 형태의 전극 조립체는 와인딩 및 가압 공정을 거치면서 양극과 음극의 코너 부분에서 활물질이 탈리되거나 크랙이 발생될 수 있다. 탈리된 활물질은 이차 전지의 내부를 돌아다니면서 쇼트를 일으키거나 분리막을 손상시킬 수 있다.
이에, 지그재그로 절곡된 분리막을 사이에 두고, 양극과 음극이 조립된 전극 조립체가 개발된 바 있다. 그러나, 종래 개발된 지그재그형 전극 조립체는 절곡 부분이 분리막으로만 구성되어 전극 조립체의 강성을 확보하기가 어렵고, 조립된 양극의 단위 면적당 용량이 적어 에너지 밀도가 낮은 한계가 있다.
이에, 본 발명의 목적은 전지의 제조 시 생산성이 높을 뿐만 아니라, 전지의 높은 안전성과 에너지 밀도를 구현할 수 있는 전극 조립체 및 이를 포함하는 이차전지를 제공하는데 있다.
상술된 문제를 해결하기 위하여,
본 발명은 일실시예에서,
양극; 음극; 및 분리막을 포함하되; 상기 음극은 양면에 분리막이 배치되어 지그재그 형상으로 m번(단, 2≤m≤100인 정수) 절곡된 적층 구조를 갖고; 상기 양극은 음극을 따라 절곡된 분리막의 내측에 n+1개(단, 1≤n≤99인 정수이되, m=n+1임)가 개별적으로 삽입된 구조를 가지며; 음극의 절곡 구조를 포함하는 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 10㎛ 내지 2㎜의 편차를 갖는 전극 조립체를 제공한다.
이때, 음극의 절곡 구조를 포함하는 전극 조립체의 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 10㎛ 내지 500㎛의 편차를 가질 수 있다.
또한, 음극의 절곡 구조를 포함하는 전극 조립체의 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 500㎛ 내지 2,000㎛의 편차를 가질 수 있다.
아울러, 상기 양극은 분리막 내측에 삽입된 단부의 타측 단부가, 전극 조립체의 동측면을 기준으로 50㎛ 내지 150㎛의 이격 거리를 갖거나; 또는 400㎛ 내지 2,000㎛의 이격 거리를 가질 수 있다.
또한, 상기 음극의 평균 두께는 50㎛ 내지 500㎛일 수 있다.
이와 더불어, 상기 분리막의 평균 두께는 5㎛ 내지 100㎛일 수 있다.
또한, 상기 양극의 평균 두께는 50㎛ 내지 500㎛일 수 있다.
아울러, 상기 음극은 양면에 분리막이 배치되어 지그재그 형상으로 20번 내지 60번 절곡된 적층 구조를 가질 수 있다.
나아가, 본 발명은 일실시예에서,
양극; 음극; 및 분리막을 포함하되; 상기 음극은 양면에 분리막이 배치되어 지그재그 형상으로 m번(단, 2≤m≤100인 정수) 절곡된 적층 구조를 갖고; 상기 양극은 음극을 따라 절곡된 분리막의 내측에 n+1개(단, 1≤n≤99인 정수이되, m=n+1임)가 개별적으로 삽입된 구조를 가지며; 음극의 절곡 구조를 포함하는 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 10㎛ 내지 2㎜의 편차를 갖는 전극 조립체, 및 상기 전극 조립체와 전해액을 내장하는 케이스를 포함하는 이차전지를 제공한다.
여기서, 상기 전극 조립체의 양극과 음극에 각각 연결되어 상기 케이스 외부로 인출되는 양극탭과 음극탭을 포함하고, 상기 양극탭 및 음극탭은 음극의 절곡 구조를 포함하는 전극 조립체의 측면과 인접한 측면에 위치할 수 있다.
본 발명에 따른 전극 조립체는 양면에 분리막이 배치된 음극을 지그재그 형상으로 절곡시키고, 음극과 함께 절곡된 분리막의 내측에 복수의 양극이 개별적으로 삽입된 구조를 가짐으로써 전극 조립체의 강성을 향상시킬 수 있으므로 전지의 높은 안전성을 구현할 수 있다.
또한, 본 발명의 전극 조립체는 음극의 절곡 구조를 포함하는 측면을 기준으로 임의의 양극 단부와 상기 양극과 인접한 양극의 단부가 갖는 이격거리 편차를 일정 비율로 구현함으로써, 삽입된 양극 단부가 노출되는 것을 막을 수 있어 전지의 안전성이 보다 개선될 뿐만 아니라, 삽입된 양극의 단위 면적을 증가시킬 수 있으므로 전기의 에너지 밀도를 향상시킬 수 있는 이점이 있다.
도 1은 종래 전극 조립체의 구조를 도시한 단면도이다.
도 2는 본 발명에 따른 전극 조립체의 일례를 도시한 단면도이다.
도 3은 본 발명에 따른 전극 조립체의 다른 일례를 도시한 단면도이다.
도 4는 본 발명에 따른 전극 조립체의 음극을 절곡하기 이전의 구조를 나타낸 사시도이다.
도 5는 도 4에 따른 음극을 절곡하여 제조되는 전극 조립체의 구조를 나타낸 사시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부 뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
전극 조립체
본 발명은 일실시예에서,
양극; 음극; 및 분리막을 포함하되,
상기 음극은 양면에 분리막이 배치되어 지그재그 형상으로 m번(단, 2≤m≤100인 정수) 절곡된 적층 구조를 갖고,
상기 양극은 음극을 따라 절곡된 분리막의 내측에 n+1개(단, 1≤n≤99인 정수이되, m=n+1임)가 개별적으로 삽입된 구조를 가지며,
음극의 절곡 구조를 포함하는 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 10㎛ 내지 2㎜의 편차를 갖는 전극 조립체를 제공한다.
도 2 및 도 3은 본 발명에 따른 전극 조립체(20 및 30)의 구조를 나타낸 단면도로서, 이하에서, 상기 도 2을 중심으로 본 발명에 따른 전극 조립체(20)의 구성을 설명한다.
본 발명에 따른 전극 조립체(20)는 양극(24a 및 24b), 음극(21) 및 분리막(22 및 23)을 포함하는 구성을 갖는다. 여기서, 상기 음극(21)은 띠(band) 형태를 가지며, 상기 분리막(22 및 23)은 음극(21)의 양면에 배치되어 서로 접착될 수 있다. 구체적으로, 상기 분리막(22 및 23)은 접착제 등의 접착 수단을 사용하거나 열과 압력을 이용한 라미네이션 방식에 의해 음극(21) 양면에 접촉 또는 접착될 수 있다. 이에 따라, 전지의 충방전 시 분리막(22 및 23)의 수축을 방지하는 한편, 분리막(22 및 23)이 얇고 대면적을 갖는 음극(21)을 지지하여 대형의 음극(21)에 기계적인 강도를 제공하여 음극(21)의 손상이나 파손을 방지할 수 있다.
또한, 상기 음극(21)은 띠 형태로 이뤄지므로, 전극 조립체(20)에 한 장의 음극(21)이 구비될 수 있다. 따라서, 음극(21)은 판 형태로 구성하는 경우와 대비하여, 한 장씩 절단될 때 발생될 수 있는 음극 활물질의 탈리 및 이물질의 발생을 최소화할 수 있고, 제조 공정 시 세척 단계를 간소화할 수 있다.
아울러, 분리막(22 및 23)이 양면에 배치된 음극(21)은 서로 포개진 상태로 서로 반대 방향으로 번갈아 m번(단, 2≤m≤100인 정수)번 절곡되어 접힌 지그재그 구조로 적층될 수 있고, 음극(21)을 따라 절곡된 분리막(22 및 23) 내측에 n+1개(단, 1≤n≤99인 정수이되, m=n+1임)의 양극(24a 및 24b)이 개별적으로 삽입된 구조를 가질 수 있다.
이때, 상기 양극(24a 및 24b)은 분리막(22 및 23)과 음극(21)이 절곡된 내측에 완전히 삽입될 수 있도록 절단된 판 형태로 이뤄지며, 절곡된 분리막(22 및 23) 내측에 삽입되는 복수의 양극(24a 및 24b)들은 길이, 두께 및 너비가 동일한 것일 수 있다.
또한, 상기 음극(21)의 양면에 배치된 분리막(22 및 23)은 m번(단, 2≤m≤100인 정수) 절곡되고, 절곡된 분리막(22 및 23)의 내측에 양극(24a 및 24b)이 n+1개(단, 1≤n≤99인 정수이되, m=n+1임)가 개별적으로 삽입되는데, 이에 따라 제조되는 전극 조립체(20)의 최외각에는 양면에 분리막(22 및 23)을 갖는 음극(21)이 배치될 수 있다.
아울러, 상기 지그재그 구조는 분리막(22 및 23)과 음극(21)이 구부러져 접힌 '절곡부(21a 및 21b)'를 포함하는데, 상기 '절곡부(21a 및 21b)'는 분리막(22 및 23)과 음극(21)이 절곡되는 횟수만큼 나란하게 형성되어, 내측에 삽입된 양극(24a 및 24b)이 정렬되도록 함과 동시에 양극에 스트레스가 가해지거나 양극(24a 및 24b)에 코팅된 양극활물질이 탈리되는 것을 방지할 수 있다. 또한, 상기 지그재그 구조는 분리막(22 및 23)을 경계로 양극(24a 및 24b)을 음극(21)으로 완전히 둘러싸는 구조를 구현할 수 있으므로 양극(21)이 외부로 노출되어 전지의 충방전 시 전극 조립체의 최외각에서 리튬 이온이 석출되는 것을 예방할 수 있다.
이와 더불어, 상기 분리막(22 및 23)과 음극(21)이 절곡되어 적층되는 횟수(m)는 2번 내지 100번일 수 있으며, 보다 구체적으로는 2번 내지 80번; 2번 내지 60번; 2번 내지 40번; 2번 내지 20번; 2번 내지 50번; 5번 내지 30번; 10번 내지 50번; 20번 내지 30번; 10번 내지 15번; 10번 내지 70번; 20번 내지 60번; 30번 내지 60번; 10번 내지 70번; 20 내지 40번; 40번 내지 60번; 2번 내지 15번; 2번 내지 13번; 2번 내지 11번; 2번 내지 9번; 2번 내지 7번; 또는 2번 내지 5번일 수 있다. 본 발명은 분리막(22 및 23)과 음극(21)이 절곡되는 횟수를 상기와 같이 제어함으로써 전극 조립체(20)의 과도한 부피 증가없이 양극(24a 및 24b)과 음극(21)이 적층되는 수량을 용이하게 증가시킬 수 있으므로 전극 조립체(20)의 에너지 밀도를 향상시킬 수 있다.
나아가, 음극(21)을 따라 절곡된 분리막(22 및 23)의 내측에 삽입되는 임의의 양극(24a)은 인접한 양극(24b)과 양 단부가 어긋나도록 삽입되어 적층될 수 있다. 이에 따라, 상기 양극(21)의 절곡 구조, 즉 절곡부를 포함하는 전극 조립체(20)의 측면을 기준으로 동일 측면에 위치하는 임의의 양극(24a)의 단부가 갖는 이격거리는 이웃한 양극(24b)의 단부가 갖는 이격거리와 일정 범위의 편차(A)를 가질 수 있다. 구체적으로는 10㎛ 내지 2mm의 편차(A), 보다 구체적으로는 10㎛ 내지 1,500㎛; 10㎛ 내지 1,200㎛; 10㎛ 내지 1,000㎛; 10㎛ 내지 500㎛; 100㎛ 내지 2,000㎛; 200㎛ 내지 1,500㎛; 400㎛ 내지 1,800㎛; 200㎛ 내지 1,200㎛; 200㎛ 내지 800㎛; 또는 700㎛ 내지 1,500㎛의 편차(A)를 가질 수 있다.
하나의 예로서, 도 2에 나타낸 바와 같이, 음극(21)의 절곡 구조를 포함하는 전극 조립체(20)의 측면을 기준으로, n번째(단, 1≤n≤19인 정수) 삽입된 양극(24a) 단부의 이격 거리(B)는 n+1번째 삽입된 양극(24b) 단부의 이격거리(A+B)와 10㎛ 내지 500㎛의 편차(A)를 가질 수 있으며, 구체적으로는 10㎛ 내지 450㎛; 10㎛ 내지 400㎛; 50㎛ 내지 400㎛; 80㎛ 내지 380㎛; 80㎛ 내지 350㎛; 100㎛ 내지 400㎛; 120㎛ 내지 380㎛; 120㎛ 내지 350㎛; 140㎛ 내지 290㎛; 또는 210㎛ 내지 290㎛의 편차(A)를 가질 수 있다.
다른 하나의 예로서, 도 3에 나타낸 바와 같이, 음극(31)의 절곡 구조를 포함하는 전극 조립체(30)의 측면을 기준으로, n번째(단, 1≤n≤19인 정수) 삽입된 양극(34a) 단부의 이격 거리(A+B)는 n+1번째 삽입된 양극(34b) 단부의 이격거리(B)와 500㎛ 내지 2,000㎛의 편차(A)를 가질 수 있으며, 구체적으로는 500㎛ 내지 1,900㎛; 500㎛ 내지 1,700㎛; 500㎛ 내지 1,500㎛; 500㎛ 내지 1,000㎛; 500㎛ 내지 800㎛; 750㎛ 내지 1,800㎛; 750㎛ 내지 1,300㎛; 1,000㎛ 내지 1,900㎛; 1,200㎛ 내지 1,700㎛; 또는 900㎛ 내지 1,400㎛의 편차(A)를 가질 수 있다.
본 발명은 복수의 양극(24a, 24b, 34a 및 34b)들이 상기 범위를 만족하도록 양 단부가 어긋나게 절곡부(21a, 21b, 31a 및 31b)의 내측에 삽입되도록 함으로써 도 1과 같이 양극(14)의 양 단부가 어긋나지 않고 나란히 적층된 경우와 대비하여 높은 공정 효율로 제조할 수 있다. 또한, 도 2와 같은 구조로 양극(24a 및 24b)의 양 단부가 어긋나는 경우 전극 조립체(20)의 에너지 밀도를 극대화할 수 있으며, 도 3과 같은 구조로 양극(34a 및 34b)의 양 단부가 어긋나는 경우 양극 양 단부(34a 및 34b)가 음극(31)로 완전히 둘러싸는 구조를 구현할 수 있으므로, 전극 조립체의 안전성을 보다 향상시킬 수 있다.
또한, 상기 양극(24a 및 24b)은 분리막(22 및 23) 내측에 삽입된 단부의 타측 단부가 전극 조립체(20)의 동측면을 기준으로 일정 범위의 이격거리를 가질 수 있다.
하나의 예로서, 도 2에 나타낸 바와 같이, 상기 양극(24a 및 24b)은 분리막(22 및 23) 내측에 삽입된 단부의 타측 단부가, 전극 조립체(20)의 동측면을 기준으로 50㎛ 내지 150㎛의 이격 거리(B)를 가질 수 있으며, 구체적으로는 80㎛ 내지 120㎛; 100㎛ 내지 140㎛; 50㎛ 내지 120㎛; 50㎛ 내지 100㎛; 90㎛ 내지 115㎛; 50㎛ 내지 80㎛; 또는 60㎛ 내지 90㎛의 이격거리(B)를 가질 수 있다.
다른 하나의 예로서, 도 3에 나타낸 바와 같이, 상기 양극(34a 및 34b)은 분리막(32 및 33) 내측에 삽입된 단부의 타측 단부가, 전극 조립체(30)의 동측면을 기준으로 400㎛ 내지 2,000㎛의 이격 거리(A+B)를 가질 수 있으며, 구체적으로는 400㎛ 내지 1,200㎛; 600㎛ 내지 1,200㎛; 400㎛ 내지 1,000㎛; 600㎛ 내지 1,000㎛; 400㎛ 내지 800㎛; 800㎛ 내지 1,200㎛; 800㎛ 내지 1,000㎛; 1,000㎛ 내지 1,500㎛; 1,000㎛ 내지 1,200㎛; 1,200㎛ 내지 2,000㎛; 1,500㎛ 내지 2,000㎛; 또는 1,400㎛ 내지 1,700㎛의 이격거리(A+B)를 가질 수 있다.
본 발명은 양극(24a, 24b, 34a 및 34b)이 분리막(22, 23, 32 및 33) 내측에 삽입된 단부의 타측 단부가 갖는, 전극 조립체(20 및 30)의 동측면 기준 이격 거리(B 또는 A+B)를 상기와 같은 범위로 제어함으로써 상기 전극 조립체(20 및 30)를 포함하는 전지의 에너지 밀도와 안전성을 동시에 향상시킬 수 있다.
나아가, 본 발명에 따른 전극 조립체는 절곡부를 포함하는 전극 조립체의 측면을 기준으로, 동일 측면에 위치하는 양극의 단부가 갖는 이격거리(B 또는 A+B)와, 임의의 양극과 상기 양극의 인접한 양극이 갖는 이격거리 편차(A)를 상술된 범위를 만족하는 구성을 가지며, 이러한 구성은 전극 조립체의 제조 과정에서 절곡되는 방향으로의 음극 길이; 양극의 길이; 양극 삽입 시 삽입 속도; 양극, 음극 및 분리막의 평균 두께 등에 의해 제어될 수 있으나, 이에 제한되는 것은 아니다.
한편, 상기 음극(21)은 탄소계, 하드카본, 천연흑연, 인조흑연, 흑연계 탄소 코크스계 탄소, 규소(Si) 및 산화규소(SiOx, 단, 0.8≤x≤2.5) 중 1종 이상을 포함하는 음극 활물질을 바인더와 혼합하여 내산화성을 갖는 띠 형태의 구리 집전체의 적어도 일면에 도포하고 건조함으로써 구리 집전체 상에 음극 합재층이 형성된 구조로 제작될 수 있다. 이때, 상기 음극 활물질과 바인더의 혼합물은 도전재, 충전재 등을 더 포함할 수 있다.
또한, 상기 양극(24a 및 24b)은 리튬 코발트 산화물(LiCoO2), 인산 철 리튬(LiFePO4), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMn2O4), 리튬 니켈 코발트 망간 산화물(LiNi1/3Co1/3Mn1/3O2, LiNi0.6Co0.2Mn0.2O2, LiNi0.8Co0.1Mn0.1O2, LiNi0.9Co0.05Mn0.05O2, LiNi0.8Co0.1Mn0.05Al0.05O2 및 LiNi0.7Co0.1Mn0.1Al0.1O2) 중 1종 이상을 포함하는 양극 활물질을 바인더와 혼합하여 알루미늄 집전체의 적어도 일면에 도포하고 건조함으로써 알루미늄 집전체 상에 양극 합재층이 형성된 구조로 제작될 수 있다. 이때, 상기 양극 합재층은 음극 합재층과 비교하여 도포 두께가 높을 수 있으며, 음극(21)과 마찬가지로 양극 활물질과 바인더의 혼합물은 도전재, 충전재 등을 더 포함할 수 있다. 아울러, 상기 양극(24a 및 24b)은 양극 합재층이 형성된 이후 판 형태로 절단될 수 있으며, 절단된 양극(24a 및 24b)은 전극 조립체에 삽입되는 방향으로의 길이, 즉, 절곡된 분리막(22 및 23) 내측으로 삽입되는 방향으로의 길이가 양극(24a 및 24b)에 포함된 알루미늄 집전체와 양극 합재층의 길이와 동일할 수 있다.
아울러, 상기 양극(24a 및 24b)과 음극(21)은 각각 독립적으로 평균 두께가 50㎛ 내지 500㎛일 수 있으며, 구체적으로는 50㎛ 내지 400㎛; 50㎛ 내지 300㎛; 50㎛ 내지 200㎛; 50㎛ 내지 150㎛; 80㎛ 내지 140㎛; 100㎛ 내지 500㎛; 250㎛ 내지 500㎛; 100㎛ 내지 300㎛; 150㎛ 내지 250㎛; 180㎛ 내지 290㎛; 140㎛ 내지 260㎛; 또는 80㎛ 내지 170㎛일 수 있다.
나아가, 상기 분리막(22 및 23)은 리튬 이온을 통과시키는 폴리머 고체 전해질 필름으로 형성되거나, 내화학성 및 소수성의 폴리프로필렌; 유리섬유; 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있으며, 경우에 따라서는, 상기 시트나 부직포와 같은 다공성 고분자 기재에 무기물 입자/유기물 입자가 유기 바인더 고분자에 의해 코팅된 복합 분리막이 사용될 수도 있다. 또한, 상기 분리막(22 및 23)의 기공 직경은 평균 0.01~10 ㎛이고, 두께는 평균 5㎛ 내지 100 ㎛, 구체적으로는 5㎛ 내지 80㎛; 5㎛ 내지 60㎛; 5㎛ 내지 30㎛; 5㎛ 내지 20㎛; 10㎛ 내지 50㎛; 10㎛ 내지 30㎛; 8㎛ 내지 20㎛; 또는 8㎛ 내지 15㎛일 수 있다.
나아가, 본 발명에 따른 전극 조립체(20)는 경우에 따라서, 음극(21)을 따라 절곡된 분리막(22 및 23)의 내측에 복수의 양극(24a 및 24b)이 개별적으로 삽입된 후 적층된 전극 조립체(20)가 뒤틀려 삽입된 양극(24a 및 24b)의 이격거리가 변화하거나 양극(24a 및 24b) 단부가 외부로 노출되는 것을 방지하기 위하여 최외각이 테이핑된 형태를 가질 수 있다. 이때, 상기 테이핑은 당업계에서 통상적으로 사용되는 절연 테이프를 이용하여 수행될 수 있다.
본 발명에 따른 전극 조립체는 상술된 바와 같은 구성을 가짐으로써, 양면에 분리막(22 및 23)이 배치된 음극(21)을 지그재그 형상으로 절곡시키고, 음극(21)과 함께 절곡된 분리막(22 및 23)의 내측에 복수의 양극(24a 및 24b)이 개별적으로 삽입된 구조를 가짐으로써 전극 조립체(20)의 강성을 향상시킬 수 있으므로 전지의 높은 안전성을 구현할 수 있다. 또한, 본 발명의 전극 조립체(20)는 음극(21)의 절곡 구조를 포함하는 측면을 기준으로 임의의 양극(24a) 단부와 상기 양극(24a)과 인접한 양극(24b)의 단부가 갖는 이격거리 편차(A)를 일정 비율로 구현함으로써, 삽입된 양극(24a 및 24b) 단부가 노출되는 것을 막을 수 있어 전지의 안전성이 보다 개선될 뿐만 아니라, 삽입된 양극(24a 및 24b)의 단위 면적을 증가시킬 수 있으므로 전기의 에너지 밀도를 향상시킬 수 있는 이점이 있다.
이차전지
또한, 본 발명은 일실시예에서,
상술된 본 발명의 전극 조립체를 포함하는 이차전지를 제공한다.
본 발명에 따른 이차전지는 양극; 음극; 및 분리막을 포함하되; 상기 음극은 양면에 분리막이 배치되어 지그재그 형상으로 m번(단, 2≤m≤100인 정수) 절곡된 적층 구조를 갖고; 상기 양극은 음극을 따라 절곡된 분리막의 내측에 n+1개(단, 1≤n≤99인 정수이되, m=n+1임)가 개별적으로 삽입된 구조를 가지며; 음극의 절곡 구조를 포함하는 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 10㎛ 내지 2㎜의 편차를 갖는 전극 조립체, 및 상기 전극 조립체와 전해액을 내장하는 케이스를 포함하는 구성을 갖는다.
본 발명에 따른 이차전지는 상술된 본 발명의 전극 조립체를 구비하여 전지의 안전성이 높을 뿐만 아니라, 에너지 밀도가 우수한 이점이 있다.
여기서, 상기 전극 조립체에 포함된 양극과 음극은 각각 집전체 상에 활물질을 포함하는 혼합물이 도포된 코팅부와 상기 혼합물이 도포되지 않은 무지부를 포함할 수 있고, 각 무지부는 절곡부를 포함하는 전극 조립체의 측면에 인접한 측면 마련될 수 있다.
구체적으로, 도 4 및 도 5는 본 발명에 따른 전극 조립체(40 및 50)의 절곡 전·후의 구조를 나타낸 것으로서, 본 발명의 전극 조립체(40 및 50)는 절곡부를 포함하는 측면과 인접한 측면에 양극(44)의 무지부(442) 및 음극(41)의 무지부(412)를 각각 구비할 수 있다.
구체적으로, 상기 양극 무지부(442) 및 음극 무지부(412)들은 각각 양극탭(56) 및 음극탭(55)이 용접으로 연결되는 부분으로서, 전극 조립체(40)의 동일 측면으로 마련될 수 있고, 경우에 따라서는 도 4 및 5에 나타낸 바와 같이 서로 반대 측면에 배치되도록 전극 조립체(40)의 양측면에 마련될 수 있다.
또한, 양극 무지부(442 및 542)와 음극 무지부(412 및 512)가 동일 측면에 마련되는 경우, 양극 무지부(442 및 542)와 음극 무지부(412 및 512)는 서로 이격되도록 마련될 수 있다.
아울러, 상기 음극 무지부(412 및 512)는 음극(41)과 분리막(42 및 43)의 절곡 후 동일 선상에서 적층되어 접합될 수 있도록 음극(41)의 길이 방향을 따라 일정한 간격으로 배치될 수 있다.
나아가, 상기 음극 무지부(412 및 512)는 이차 전지의 출력에 따라 적절히 변형 가능하며, 예를 들면, 양극(44)의 개수에 대응하여 형성되거나 양극(44)의 개수와 다르게 형성될 수 있다.
하나의 예로서, 상기 음극 무지부(412 및 512)는 전극 조립체(40)의 절곡부(45)를 포함하는 측면에 인접한 측면의 중앙에 배치되고, 이때 상기 음극 무지부(412 및 512)의 너비는 무지부(412 및 512)가 배치된 측면의 너비의 1/3~2/3배수를 가질 수 있다.
한편, 본 발명에 따른 이차전지는 전해액으로서 당업계에서 통상적으로 사용되는 것이라면 특별히 제한되지 않고 적용할 수 있다.
구체적으로, 상기 전해액은 전해액과 리튬염으로 이루어질 수 있으며, 상기 전해액으로는 비수계 유기용매, 유기고체 전해질, 무기 고체 전해질 등이 사용될 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸설폭사이드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 설파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합재 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5Ni2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐보론산 리튬, 이미드 등이 사용될 수 있다.
나아가, 본 발명에 따른 이차전지는 전지 케이스로서, 당업계에서 통상적으로 사용되는 것을 적용할 수 있으며, 구체적으로는 원통형 케이스, 파우치형 케이스, 각형 케이스 등을 포함할 수 있다.
하나의 예로서, 상기 전지 케이스는 파우치형 케이스 일 수 있으며, 이 경우, 상기 파우치는 전극 조립체의 외부를 감싸는 다층 시트 구조로 형성될 수 있다. 예를 들어, 파우치는 절연 및 열융착 작용하는 폴리머 시트, 외면을 형성하여 보호 작용하는 복합 나일론 시트, 및 이들 사이에 제공되어 기계적인 강도를 부여하는 금속 시트를 포함할 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
실시예 1.
구리 집전체 양면에 활물질로서 흑연을 함유하는 음극 합재층을 구비하는 띠 형상의 음극; 폴리프로필렌 분리막; 및 알루미늄 집전체 양면에 활물질로서 리튬 니켈 코발트 망간 산화물을 함유하는 양극 합재층을 포함하는 판 형상의 양극을 각각 준비하였다.
그런 다음, 음극의 양면에 폴리프로필렌 분리막을 배치하고, 이들을 절곡시키면서 형성된 절곡부 내측에 양극을 하나씩 삽입하여 전극을 적층시킨 후, 적층체 둘레를 절연 테이프로 테이핑하여 도 2와 같은 단면 구조를 갖는 전극 조립체를 제작하였다.
이때, 양극, 음극 및 분리막의 평균 두께는 각각 180㎛, 140㎛ 및 12㎛였으며, 양면에 분리막이 배치된 음극이 절곡된 횟수는 50번이었다.
또한, 전극 조립체는 절곡부를 포함하는 전극 조립체의 측면을 기준으로, 삽입된 각 양극의 단부가 갖는 이격 거리(B)는 90±5㎛로 조절되었다. 또한, n번째 삽입된 양극 단부와 n+1번째 삽입된 양극 단부의 이격거리 편차(A)는 110±5㎛이었다.
실시예 2.
구리 집전체 양면에 활물질로서 흑연을 함유하는 음극 합재층을 구비하는 띠 형상의 음극; 폴리프로필렌 분리막; 및 알루미늄 집전체 양면에 활물질로서 리튬 니켈 코발트 망간 산화물을 함유하는 양극 합재층을 포함하는 판 형상의 양극을 각각 준비하였다.
그런 다음, 음극의 양면에 폴리프로필렌 분리막을 배치하고, 이들을 절곡시키면서 형성된 절곡부 내측에 양극을 하나씩 삽입하여 전극을 적층시킴으로써 도 3과 같은 단면 구조를 갖는 전극 조립체를 제작하였다.
이때, 양극, 음극 및 분리막의 평균 두께는 각각 180㎛, 140㎛ 및 12㎛였으며, 양면에 분리막이 배치된 음극이 절곡된 횟수는 50번이었다.
또한, 전극 조립체는 절곡부를 포함하는 전극 조립체의 측면을 기준으로, 삽입된 각 양극의 단부가 갖는 이격 거리(A+B)는 1,200±10㎛로 조절되었다. 또한, n번째 삽입된 양극 단부와 n+1번째 삽입된 양극 단부의 이격거리 편차(A)는 1,000±5㎛이었다.
비교예 1.
구리 집전체 양면에 활물질로서 흑연을 함유하는 음극 합재층을 구비하는 띠 형상의 음극; 폴리프로필렌 분리막; 및 알루미늄 집전체 양면에 활물질로서 리튬 니켈 코발트 망간 산화물을 함유하는 양극 합재층을 포함하는 판 형상의 양극을 각각 준비하였다.
그런 다음, 음극의 양면에 폴리프로필렌 분리막을 배치하고, 이들을 절곡시키면서 형성된 절곡부 내측에 양극을 하나씩 삽입하여 전극을 적층시킴으로써 도 1과 같은 단면 구조를 갖는 전극 조립체를 제작하였다.
이때, 양극, 음극 및 분리막의 평균 두께는 각각 180㎛, 140㎛ 및 12㎛였으며, 양면에 분리막이 배치된 음극이 절곡된 횟수는 50번이었다.
또한, 전극 조립체는 절곡부를 포함하는 전극 조립체의 측면을 기준으로, 삽입된 각 양극의 단부가 갖는 이격 거리(S)는 200±10㎛로 조절되었다. 또한, n번째 삽입된 양극 단부와 n+1번째 삽입된 양극 단부의 이격거리 편차(A)는 0㎛이었다.
실험예.
본 발명에 따른 전극 조립체의 전지 안전성 및 에너지 밀도를 평가하기 위하여, 실시예 및 비교예에서 제작된 전극 조립체를 파우치에 삽입하고, 전해액을 주입한 다음 실링하여 이차전지를 제조하고, 하기와 같은 실험을 수행하였다.
가) 못 관통 실험
실시예 및 비교예에서 제작된 전극 조립체를 포함하는 각 이차전지들을 4.2~4.25V 조건에서 완전 충전하였다. 그런 다음, 못 관통 시험기를 이용하여 철로 만들어진 직경 1~3 mm의 못을 위에서 만들어진 전지의 중앙에 관통시켜 발화여부 및 미발화 전지의 최고 온도를 측정하였다. 이때, 못의 관통 속도는 0.1~80 m/min으로 일정하게 하였고, 그 결과를 하기 표 1에 나타내었다.
나) 전지의 에너지 밀도 평가
실시예 및 비교예의 전극 조립체를 포함하는 각 이차전지들의 충방전을 수행하여 단위 부피당 에너지를 분석하였다. 이때, 상기 충방전은 2.5V 내지 4.2V 사이에서 진행하였으며, 충전은 CC/CV, 방전은 CC로 측정하였다. C-rate 측정 기준은 1C을 60A로 하였을 때 3C의 에너지를 확인하였으며, 실시예 1의 에너지 밀도를 기준으로 측정된 각 에너지 밀도의 상대 비교를 수행하여 표 1에 나타내었다.
다) 리튬 금속의 석출 여부 평가
충방전이 수행된 각 이차전지를 분해하여 음극 표면에서 리튬 금속이 석출되었는지 확인하였다. 분해된 음극 표면에서 리튬 금속이 석출된 경우는 'O'로 표시하고, 리튬 금속이 석출되지 않은 경우에는 'X'로 표시하였다.
발화여부 미발화 전지의 최고 온도 실시예 1 대비 에너지 밀도 비율 리튬 금속
석출 여부
실시예 1 미발화 82.1℃ 100% X
실시예 2 미발화 80.4℃ 91% X
비교예 1 미발화 91.7℃ 85% X
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 전극 조립체를 포함하는 전지의 경우 전지의 안정성과 에너지 밀도가 모두 우수한 것을 알 수 있다.
이러한 결과로부터, 본 발명에 따른 전극 조립체는 양면에 분리막이 배치된 음극을 지그재그 형상으로 절곡시키고, 음극과 함께 절곡된 분리막의 내측에 복수의 양극이 개별적으로 삽입된 구조를 가짐으로써 전극 조립체의 강성을 향상시킬 수 있으므로 전지의 높은 안전성을 구현할 수 있다. 또한, 상기 전극 조립체는 음극의 절곡 구조를 포함하는 측면을 기준으로 임의의 양극 단부와 상기 양극과 인접한 양극의 단부가 갖는 이격거리 편차를 일정 비율로 구현함으로써, 삽입된 양극 단부가 노출되는 것을 막을 수 있어 전지의 안전성이 보다 개선될 뿐만 아니라, 삽입된 양극의 단위 면적을 증가시킬 수 있으므로 전기의 에너지 밀도가 향상됨을 알 수 있다.
이상에서는 본 발명 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.
[부호의 설명]
10: 종래 전극 조립체
20, 30, 40 및 50: 본 발명에 따른 전극 조립체
11, 21, 31 및 41: 음극
11a, 21a 및 31a: 음극의 m번째 절곡부
11b, 21b 및 31b: 음극의 m+1번째 절곡부
12, 22, 32 및 42: 제1 분리막
13, 23, 33 및 43: 제2 분리막
14: 양극
24a 및 34a: n번째로 삽입된 양극
24b 및 34b: n+1번째로 삽입된 양극
41: 음극
411: 음극의 코팅부
412 및 512: 음극의 무지부
42 및 43: 분리막
44: 양극
441: 양극의 코팅부
442 및 542: 양극의 무지부
45: 전극 조립체의 절곡부 위치
55: 음극탭
56: 양극탭
A: n번째 삽입된 양극 단부와 n+1번째 삽입된 양극 단부의 이격거리 편차
L: 절곡된 분리막 내측
S: 전극 조립체의 외측과 양극 단부의 이격거리
D: 절곡부를 포함하는 전극 조립체의 측면

Claims (11)

  1. 양극; 음극; 및 분리막을 포함하되,
    상기 음극은 양면에 분리막이 배치되어 지그재그 형상으로 m번(단, 2≤m≤100인 정수) 절곡된 적층 구조를 갖고,
    상기 양극은 음극을 따라 절곡된 분리막의 내측에 n+1개(단, 1≤n≤99인 정수이되, m=n+1임)가 개별적으로 삽입된 구조를 가지며,
    음극의 절곡 구조를 포함하는 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 10㎛ 내지 2㎜의 편차를 갖는 전극 조립체.
  2. 제1항에 있어서,
    음극의 절곡 구조를 포함하는 전극 조립체의 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 10㎛ 내지 500㎛의 편차를 갖는 전극 조립체.
  3. 제1항에 있어서,
    음극의 절곡 구조를 포함하는 전극 조립체의 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 500㎛ 내지 2,000㎛의 편차를 갖는 전극 조립체.
  4. 제1항에 있어서,
    양극은 분리막 내측에 삽입된 단부의 타측 단부가, 전극 조립체의 동측면을 기준으로 50㎛ 내지 150㎛의 이격 거리를 갖는 전극 조립체.
  5. 제1항에 있어서,
    양극은 분리막 내측에 삽입된 단부의 타측 단부가, 전극 조립체의 동측면을 기준으로 400㎛ 내지 2,000㎛의 이격 거리를 갖는 전극 조립체.
  6. 제1항에 있어서,
    음극의 평균 두께는 50㎛ 내지 500㎛인 전극 조립체.
  7. 제1항에 있어서,
    분리막의 평균 두께는 5㎛ 내지 100㎛인 전극 조립체.
  8. 제1항에 있어서,
    양극의 평균 두께는 50㎛ 내지 500㎛인 전극 조립체.
  9. 제1항에 있어서,
    음극은 양면에 분리막이 배치되어 지그재그 형상으로 20번 내지 60번 절곡된 적층 구조를 갖는 전극 조립체.
  10. 양극; 음극; 및 분리막을 포함하되; 상기 음극은 양면에 분리막이 배치되어 지그재그 형상으로 m번(단, 2≤m≤100인 정수) 절곡된 적층 구조를 갖고; 상기 양극은 음극을 따라 절곡된 분리막의 내측에 n+1개(단, 1≤n≤99인 정수이되, m=n+1임)가 개별적으로 삽입된 구조를 가지며; 음극의 절곡 구조를 포함하는 측면을 기준으로, n번째 삽입된 양극 단부의 이격 거리는 n+1번째 삽입된 양극 단부의 이격거리와 10㎛ 내지 2㎜의 편차를 갖는 전극 조립체, 및
    상기 전극 조립체와 전해액을 내장하는 케이스를 포함하는 이차전지.
  11. 제10항에 있어서,
    상기 전극 조립체의 양극과 음극에 각각 연결되어 상기 케이스 외부로 인출되는 양극탭과 음극탭을 포함하고,
    상기 양극탭 및 음극탭은 음극의 절곡 구조를 포함하는 전극 조립체의 측면과 인접한 측면에 위치하는 이차전지.
PCT/KR2022/010701 2021-08-10 2022-07-21 전극 조립체 WO2023018054A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023505758A JP2023540848A (ja) 2021-08-10 2022-07-21 電極組立体
EP22847522.4A EP4177999A1 (en) 2021-08-10 2022-07-21 Electrode assembly
CN202280006114.XA CN116097520A (zh) 2021-08-10 2022-07-21 电极组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210105389A KR20230023348A (ko) 2021-08-10 2021-08-10 전극 조립체
KR10-2021-0105389 2021-08-10

Publications (1)

Publication Number Publication Date
WO2023018054A1 true WO2023018054A1 (ko) 2023-02-16

Family

ID=85200266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010701 WO2023018054A1 (ko) 2021-08-10 2022-07-21 전극 조립체

Country Status (5)

Country Link
EP (1) EP4177999A1 (ko)
JP (1) JP2023540848A (ko)
KR (1) KR20230023348A (ko)
CN (1) CN116097520A (ko)
WO (1) WO2023018054A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199281A (ja) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd 蓄電デバイスおよびその製造方法
KR20130103202A (ko) * 2012-03-09 2013-09-23 한화케미칼 주식회사 전극 조립체 및 이를 포함하는 이차 전지
KR20180049537A (ko) * 2016-11-03 2018-05-11 에스케이이노베이션 주식회사 음극판, 이를 포함하는 전극조립체 및 그 제조방법
KR20180106408A (ko) * 2017-03-20 2018-10-01 주식회사 엘지화학 전극 조립체 및 그 제조방법
KR101933950B1 (ko) * 2015-07-09 2019-01-02 주식회사 엘지화학 지그재그형 전극조립체 및 이를 포함하고 있는 전지셀
KR20210105389A (ko) 2018-12-18 2021-08-26 크로다 인터내셔날 피엘씨 백신 아주반트 효과를 갖는 필라멘트형 나노입자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101084075B1 (ko) 2009-11-03 2011-11-16 삼성에스디아이 주식회사 이차전지 및 그 제조방법
KR102023530B1 (ko) 2015-08-12 2019-09-24 주식회사 엘지화학 전극 조립체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199281A (ja) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd 蓄電デバイスおよびその製造方法
KR20130103202A (ko) * 2012-03-09 2013-09-23 한화케미칼 주식회사 전극 조립체 및 이를 포함하는 이차 전지
KR101933950B1 (ko) * 2015-07-09 2019-01-02 주식회사 엘지화학 지그재그형 전극조립체 및 이를 포함하고 있는 전지셀
KR20180049537A (ko) * 2016-11-03 2018-05-11 에스케이이노베이션 주식회사 음극판, 이를 포함하는 전극조립체 및 그 제조방법
KR20180106408A (ko) * 2017-03-20 2018-10-01 주식회사 엘지화학 전극 조립체 및 그 제조방법
KR20210105389A (ko) 2018-12-18 2021-08-26 크로다 인터내셔날 피엘씨 백신 아주반트 효과를 갖는 필라멘트형 나노입자

Also Published As

Publication number Publication date
JP2023540848A (ja) 2023-09-27
KR20230023348A (ko) 2023-02-17
CN116097520A (zh) 2023-05-09
EP4177999A1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
WO2016167457A1 (ko) 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체
WO2010071387A2 (ko) 고출력 리튬 이차 전지
WO2017095002A1 (ko) 셀 케이스의 밀봉 신뢰성이 향상된 비정형 구조의 전지셀
WO2009096703A1 (en) Battery having enhanced electrical insulation capability
WO2014178590A1 (ko) 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2018169213A1 (ko) 이차 전지용 전극 제조방법 및 그에 따라 제조된 이차 전지용 전극
WO2020209529A1 (ko) 단락 유도 부재를 포함하는 전지셀 및 이를 이용한 안전성 평가방법
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018048126A1 (ko) 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
WO2021025358A1 (ko) 내부 단락 유도를 위한 전기화학소자 및 이를 이용한 안전성 평가방법
WO2021096025A1 (ko) 서로 다른 입경의 활물질을 포함하는 이중층 구조의 합제층을 포함하는 이차전지용 전극 및 이의 제조방법
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020080905A1 (ko) 이차전지 패키징용 필름 및 이를 포함하는 이차전지
WO2020080918A1 (ko) 플렉서블 이차전지용 패키징 및 이를 포함하는 플렉서블 이차전지
WO2019182242A1 (ko) 리튬 이차 전지의 제조방법 및 이에 의해 제조된 리튬 이차 전지
WO2020080710A1 (ko) 극박의 만곡 개선 및 접힘 현상을 방지할 수 있는 극박의 이송 및 가공방법
WO2018182195A1 (ko) 고로딩 전극의 제조 방법
WO2021101005A1 (ko) 이차전지 제조방법 및 그의 제조설비
WO2019083273A2 (ko) 비틀림 현상이 개선된 이차전지용 단면 전극 및 이의 제조방법
WO2023008952A1 (ko) 습윤 접착력이 우수한 전극용 절연 조성물, 및 이의 제조방법
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2020116939A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2016140453A1 (ko) 전극 리드를 통한 전기 연결 구조를 효율적으로 구성할 수 있는 비정형 구조의 전지셀
WO2023008953A1 (ko) 습윤 접착력이 우수한 절연층을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18017979

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023505758

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022847522

Country of ref document: EP

Effective date: 20230203

NENP Non-entry into the national phase

Ref country code: DE