WO2023017687A1 - Ii型未修飾セルロース微細繊維、及びii型未修飾セルロース微細繊維並びにその成形体の製造方法 - Google Patents

Ii型未修飾セルロース微細繊維、及びii型未修飾セルロース微細繊維並びにその成形体の製造方法 Download PDF

Info

Publication number
WO2023017687A1
WO2023017687A1 PCT/JP2022/025744 JP2022025744W WO2023017687A1 WO 2023017687 A1 WO2023017687 A1 WO 2023017687A1 JP 2022025744 W JP2022025744 W JP 2022025744W WO 2023017687 A1 WO2023017687 A1 WO 2023017687A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
type
fine fibers
unmodified
cellulose fine
Prior art date
Application number
PCT/JP2022/025744
Other languages
English (en)
French (fr)
Inventor
岩田一平
山崎明日香
Original Assignee
フタムラ化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フタムラ化学株式会社 filed Critical フタムラ化学株式会社
Priority to EP22855751.8A priority Critical patent/EP4386135A1/en
Priority to CN202280050153.XA priority patent/CN117751216A/zh
Priority to BR112023022490A priority patent/BR112023022490A2/pt
Priority to AU2022326295A priority patent/AU2022326295A1/en
Priority to KR1020237044340A priority patent/KR20240037197A/ko
Priority to CA3216919A priority patent/CA3216919A1/en
Priority to GB2401488.8A priority patent/GB2623697A/en
Publication of WO2023017687A1 publication Critical patent/WO2023017687A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/22Other features of pulping processes
    • D21C3/24Continuous processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides

Definitions

  • the present invention relates to a method for producing cellulose fine fibers, etc., and particularly to a method for producing type II unmodified cellulose fine fibers that obtains cellulose fine fibers that have not been chemically modified.
  • SDGs SUSTAINABLE DEVELOPMENT GOALS
  • microplastics are sometimes used in cosmetic products such as foundation for the purpose of improving mixability with other ingredients and smoothness and texture during use.
  • microplastics have been raised as one of the causes of aggravating marine environmental pollution, in particular, and efforts are being made to control their generation and recover them.
  • microplastics (beads)
  • fine resin raw materials such as microplastics (beads) having a particle size of 100 ⁇ m or less, in particular, have not been widely used as alternative materials, and that the supply is small in spite of the increasing demand.
  • cellulose which is a natural material and biodegradable, is attracting attention as an alternative raw material for microplastics.
  • cellulose fine fibers such as cellulose nanofibers and cellulose microfibers can be processed into molded articles, and can be processed into beads and films, and are expected as alternative raw materials for microplastics.
  • Methods for producing cellulose fine fibers include a method of oxidizing cellulose in water using a catalyst and defibrating the resulting oxidized cellulose to obtain a cellulose nanofiber dispersion (see Patent Document 1); In the carboxymethylation of , the carboxymethylation is performed in a mixed solvent of water and an organic solvent, and the obtained carboxymethylated cellulose is fibrillated to obtain a highly transparent carboxymethylated cellulose nanofiber dispersion.
  • Patent Document 2 and a manufacturing method for obtaining anion-modified cellulose nanofibers by subjecting anion-modified cellulose nanofiber salt to a cation exchange reaction using a cation-exchange resin for desalting (Patent Document 2). Reference 3.) and the like.
  • the cellulose fine fibers obtained by these production methods are chemically defibrated and mechanical (physical) defibrated to obtain type I cellulose fine fibers with a small fiber diameter, and are chemically modified. cellulose.
  • fibrillation is done using chemicals, not only is the process complicated due to the need for a chemical removal process, but the application is limited, such as not being able to be used in cosmetics, etc. There are concerns about the safety and environmental impact of the chemicals used.
  • the inventors have repeatedly studied and improved production methods that do not use chemical fibrillation. As a result, the present invention has led to a production method that can more easily and efficiently obtain chemically unmodified cellulose fine fibers.
  • the present invention has been made in view of the above points, and provides a cellulose fine fiber having a type II crystal structure obtained through mercerization of cellulose, and a method for producing the cellulose fine fiber and a molded product thereof, Type II unmodified cellulose fine fibers capable of efficiently obtaining chemically unmodified cellulose fine fibers with high transparency and safety in a simple process, the type II unmodified cellulose fine fibers, and a molded product thereof to provide a method of manufacturing
  • a raw material cellulose that has undergone a mercerization step of mercerizing cellulose to obtain mercerized cellulose and a depolymerization step of lowering the degree of polymerization of the mercerized cellulose to 760 or less has a total concentration of 2. .5 to 17.5% by addition of alkali metal hydroxide to defibrate to obtain cellulose fine fibers, and a neutralization step of neutralizing the cellulose fine fibers with an acid.
  • Kind Code A1 A method for producing Type II unmodified cellulose microfibers is disclosed.
  • a second invention comprises a molding step of molding the type II unmodified cellulose fine fibers obtained by the method for producing type II unmodified cellulose fine fibers of the first invention to obtain a type II unmodified cellulose fine fiber molding.
  • the third invention is a 0.1% by mass dispersion of type II unmodified cellulose fine fibers obtained by the method for producing type II unmodified cellulose fine fibers of the first invention in accordance with JIS K 7136 (2000).
  • Type II unmodified cellulose microfibers having a measured haze value of 35% or less.
  • a fourth invention relates to type II unmodified cellulose fine fibers according to the third invention, wherein the degree of polymerization of the type II unmodified cellulose fine fibers is 310 or less.
  • the mercerization step of mercerizing cellulose to obtain mercerized cellulose and the depolymerization step of lowering the degree of polymerization of the mercerized cellulose to 760 or less.
  • cellulose fine fibers that are not chemically modified can be efficiently obtained by a simple process.
  • the type II unmodified cellulose fine fibers obtained by the method for producing a type II unmodified cellulose fine fiber according to the first invention are molded. Since it has a molding step to obtain a type II unmodified cellulose fine fiber molding, it is useful as an alternative to plastic moldings.
  • type II unmodified cellulose fine fibers according to the third invention 0.1% by mass dispersion of type II unmodified cellulose fine fibers obtained by the method for producing type II unmodified cellulose fine fibers of the first invention Since the haze value measured according to JIS K 7136 (2000) is 35% or less, it has high transparency, excellent appearance characteristics, and high safety, so it can be used in a wide range of applications such as cosmetics.
  • the degree of polymerization of the type II unmodified cellulose fine fibers is 310 or less, the viscosity of the dispersion of the cellulose fine fibers is can be lowered, defoaming is facilitated, the appearance during molding is improved, pressure rise in the molding apparatus can be suppressed, and production efficiency can be improved.
  • FIG. 1 is a schematic process diagram of a method for producing type II unmodified cellulose fine fibers of the present invention.
  • the cellulose fine fibers produced by the production method of the present invention are type II cellulose fine fibers having a type II crystal structure because they are made into fine fibers through the mercerization process of mercerizing cellulose.
  • Cellulose fine fibers are generally often used as a reinforcing material for resins, and in such cases, type I cellulose fine fibers having a high strength and a type I crystal structure are preferably used.
  • the type II cellulose fine fibers are softer than the type I cellulose fine fibers, and therefore are suitable when added to cosmetics and the like because they have a good texture.
  • the production method of the present invention is aimed at cellulose fine fibers as an alternative to petroleum-derived plastics in the field of cosmetics, etc., it is possible to produce I-type cellulose fibers that are used in applications such as those contained in resins as reinforcing materials. It can be said that such strength characteristics are not required.
  • a wide range of applications that require designability and good appearance characteristics such as cosmetics are expected, and the dispersion of cellulose fine fibers produced by the production method of the present invention has excellent transparency and is not chemically modified. High safety. Furthermore, it is easy to handle and excellent in moldability.
  • cellulose is preferably a pulp.
  • Pulp is a raw material that is mainly obtained by pulverizing wood and removing impurities such as lignin to increase the purity of the cellulose component.
  • Cotton linter pulp is also used, which is obtained by removing impurities from cotton and increasing the purity of the cellulose component.
  • pulp since pulp is fibrous, it is highly reactive with chemicals and is therefore preferable as a raw material for cellulose.
  • animal cellulose such as bacterial cellulose produced by microorganisms can also be used.
  • purified cellulose obtained by purifying these raw materials can be used.
  • the mercerization step (S1) is a step of mercerizing cellulose to obtain mercerized cellulose.
  • cellulose as a raw material is added to an alkali metal hydroxide such as caustic soda (NaOH), and if necessary, the mixture is heated and stirred to swell the cellulose fibers.
  • an alkali metal hydroxide such as caustic soda (NaOH)
  • the mixture is heated and stirred to swell the cellulose fibers.
  • the cellulose fibers are immersed in the alkali metal hydroxide, they are negatively charged and a Coulomb force is generated. Since the mercerized cellulose is easily defibrated as described above, it is possible to reduce the energy required in the subsequent defibration step.
  • Alkali metal hydroxides used in the mercerization process include caustic soda (NaOH), lithium hydroxide, potassium hydroxide, etc.
  • Caustic soda is preferably used from the viewpoint of cost, safety and environmental impact.
  • the depolymerization step (S2) is performed by appropriately adjusting the solid content concentration.
  • the depolymerization step (S2) is a step of reducing the degree of polymerization of the mercerized cellulose obtained from the mercerization step (S1) to 760 or less.
  • the mercerized cellulose whose solid content has been adjusted is appropriately pulverized and aged by oxidative decomposition with oxygen in the air to reduce the degree of polymerization. At this time, the degree of polymerization is 760 or less.
  • the degree of polymerization of the mercerized cellulose is 760 or less, the transparency of the obtained cellulose fine fiber dispersion is ensured.
  • the lower the degree of polymerization of the mercerized cellulose the easier the disentanglement of the cellulose fibers in the later disentanglement step.
  • the aging of mercerized cellulose in the depolymerization step (S2) is performed at room temperature or under heating conditions. In order to speed up the depolymerization rate, heating conditions are preferably used so that the raw material is not dried. Also, an aging accelerator such as manganese (II) sulfate, which accelerates the aging reaction, can be added.
  • an aging accelerator such as manganese (II) sulfate, which accelerates the aging reaction
  • raw cellulose that can be defibrated into fine fibers is obtained.
  • the raw material cellulose becomes type II cellulose having a type II crystal structure.
  • Type II cellulose is said to be inferior to type I cellulose in strength and the like. strength is not required, the decrease in strength is not a problem.
  • an alkali metal hydroxide and a solvent are added to the raw material cellulose to adjust the total concentration to 2.5 to 17.5%, and fibrillation is performed.
  • the alkali metal hydroxide used here include caustic soda, lithium hydroxide, potassium hydroxide, etc., as described above, and caustic soda is preferably used from the viewpoint of cost and safety.
  • Defibrillation of raw material cellulose is performed by mechanical (physical) fibrillation. Mechanical (physical) defibration is performed by a known method using a homogenizer, a water jet, or the like.
  • the raw material cellulose is in a state where the fibers are swollen by mercerization and is easily defibrated, and the degree of polymerization is lowered by the depolymerization process, it can be easily defibrated without applying high pressure. is possible, and it is also significant in terms of facilities.
  • the concentration of the alkali metal hydroxide is lower than 2.5%, the swelling of the cellulose will be insufficient and defibration may become difficult.
  • the concentration of the alkali metal hydroxide is higher than 17.5%, the salt concentration increases and the cellulose fibers tend to agglomerate, which may rather hinder defibration. If the content of the alkali metal hydroxide is out of this range and defibration is insufficient, the resulting cellulose fine fiber dispersion will have low transparency and poor design.
  • the defibration may be performed in multiple times. For example, after preliminary defibration by a mixer, by performing main defibration using a homogenizer, it is possible to obtain uniform cellulose fine fibers having a small fiber diameter. Moreover, according to the preliminary defibration, it is possible to avoid problems such as clogging of the fibrillation device with the raw material cellulose. Preliminary defibration is performed by a known method using a mixer, refiner, or the like. Defibrillation of the cellulose fine fibers may be performed as long as the average fiber diameter is fibrillated from nano-size to several hundred nano-size. is better.
  • the cellulose fine fibers obtained through the fibrillation process are neutralized with an acid in the neutralization process (S4).
  • Cellulose fine fibers obtained through the fibrillation process are strongly alkaline and thus require neutralization.
  • Acids used include, for example, sulfuric acid, hydrochloric acid, and lactic acid.
  • the neutralized cellulose fine fibers are appropriately washed and defibrated to obtain type II unmodified cellulose fine fibers.
  • a molded body can be produced by using the dispersion of type II unmodified cellulose fine fibers obtained through these steps. For example, it can be used as a film by forming a coating film, or in cosmetics by forming a bead. Both can be produced by a drying molding process, and compared to conventional cellulose films and cellulose beads, it is possible to reduce the amount of chemicals that have a high environmental impact.
  • the 0.1% by mass dispersion of type II unmodified cellulose fine fibers obtained by the production method of the present invention has good transparency. Specifically, when the haze value measured in accordance with JIS K 7136 (2000) is 35% or less, the appearance when made into a film is good, it can be used in cosmetics, and it can be used in a wide range of applications. can be used.
  • the viscosity of the dispersion liquid can be lowered, and defoaming becomes easier, which facilitates molding.
  • the appearance of the molded product is improved as well as the strength is improved.
  • the viscosity of the dispersion liquid becomes low, it is possible to suppress the pressure rise of the molding apparatus, and it is possible to improve the production efficiency.
  • type II unmodified cellulose fine fibers In the production of type II unmodified cellulose fine fibers, the inventors used the following raw materials, etc., and changed the degree of polymerization in the depolymerization step and the alkali metal hydroxide concentration in the fibrillation step according to the process diagram of FIG. Then, an experiment for producing type II unmodified cellulose fine fibers was conducted.
  • Alkali metal hydroxide Caustic soda (manufactured by Kishida Chemical Co., Ltd.) was used as the alkali metal hydroxide used for mercerization in the mercerization step.
  • the fibrillation step used the same caustic soda.
  • a dispersion of type II Unmodified Cellulose Fine Fibers was prepared according to the following formulation using the raw materials described above.
  • the sample after neutralization was subjected to suction filtration, and displacement washing was performed with 300 mL of ion-exchanged water. Ion-exchanged water was added to the washed sample so that the total weight was 250 g, and preliminary fibrillation was performed using a mixer (“Labo Solution” manufactured by Primix Co., Ltd.). Thereafter, the fibers were defibrated by a homogenizer (manufactured by SMT Co., Ltd., "LAB1000”) to obtain a dispersion of type II unmodified cellulose fine fibers of Prototype Example 1.
  • Prototype Example 2 A dispersion of type II unmodified cellulose fine fibers of Prototype Example 2 was obtained in the same manner as in Prototype Example 1, except that the total concentration of caustic soda in the fibrillation step was changed to 9.5%.
  • Prototype Example 3 A dispersion of type II unmodified cellulose fine fibers of Prototype Example 3 was obtained in the same manner as in Prototype Example 1 except that the total concentration of caustic soda in the fibrillation step was changed to 17.5%.
  • Prototype Example 5 A dispersion of type II unmodified cellulose fine fibers of Prototype Example 5 was obtained in the same manner as in Prototype Example 1 except that the total concentration of caustic soda in the fibrillation step was changed to 18.5%.
  • Prototype example 6 A dispersion of type II unmodified cellulose fine fibers of Prototype Example 6 was obtained in the same manner as in Prototype Example 1, except that the raw cellulose was obtained by performing aging treatment until the degree of polymerization of the mercerized cellulose in the depolymerization step reached 299. rice field.
  • Prototype example 7 A dispersion of type II unmodified cellulose fine fibers of Prototype Example 7 was obtained in the same manner as in Prototype Example 2, except that aging treatment was performed until the degree of polymerization of the mercerized cellulose reached 299 in the depolymerization step to obtain raw cellulose. rice field.
  • Prototype Example 8 A dispersion of type II unmodified cellulose fine fibers of Prototype Example 8 was obtained in the same manner as in Prototype Example 3, except that the raw cellulose was obtained by aging treatment until the degree of polymerization of the mercerized cellulose reached 299 in the depolymerization step. rice field.
  • Comparative Example 2 A dispersion of type II unmodified cellulose fine fibers of Comparative Example 2 was obtained in the same manner as in Prototype Example 3 except that the depolymerization step was not performed (omitted).
  • the haze (%) and the degree of polymerization were measured for the type II unmodified cellulose fine fiber dispersions of each prototype example and comparative example.
  • Table 1 shows the degree of polymerization of each raw material cellulose in each prototype example and comparative example, and the type and concentration (%) of alkali metal hydroxide in the fibrillation process.
  • Haze (%) is an index of transparency, and is based on JIS K 7136 (2000). A mass % dispersion was measured. Ion-exchanged water was used to adjust the concentration of the dispersion in each prototype. The dispersion liquid was placed in a liquid glass cell (MG-40 manufactured by Fujiwara Seisakusho Co., Ltd.) with a light path of 1 cm and measured. Zero point measurement was performed by putting ion-exchanged water in the same glass cell. It should be noted that the prototype examples and comparative examples, in which cellulose fine fibers could not be obtained due to failure in defibration of cellulose, could not be measured, so they were indicated as "-".
  • the degree of polymerization was measured by the following method by a viscosity method using a copper ethylenediamine solution. Dried cellulose microfibers are dissolved in 0.5 M copper ethylenediamine solution 1 to form solution 2. Measure the viscosity of Solution 1 and Solution 2 using a capillary viscometer. Assuming that the viscosity of Solution 2 is ⁇ and the viscosity of Solution 1 is ⁇ 0 , the intrinsic viscosity [ ⁇ ] of the cellulose fine fibers was determined by the following formula, and the degree of polymerization DP was determined.
  • c is the concentration of cellulose fine fibers (g/L);
  • Intrinsic viscosity [ ⁇ ] ⁇ ( ⁇ / ⁇ 0 )-1 ⁇ /c
  • DP intrinsic viscosity [ ⁇ ] / (8.8 ⁇ 10 -4 )
  • the average fiber diameter was calculated by measuring the diameter of 50 or more fibers in a scanning range of 10 ⁇ m square using a scanning probe microscope (manufactured by Shimadzu Corporation, SPM-9700HT) and calculating the average value. Samples for scanning probe microscopic observation were prepared by diluting a dispersion of cellulose fine fibers with water to an arbitrary concentration, casting it on a mica substrate, and air-drying it. The average fiber diameter was measured only for Prototype Example 7.
  • a dispersion with a low haze can be obtained by setting the total concentration of alkali metal hydroxides in the fibrillation process to 2.5 to 17.5%, and in particular, setting the total concentration to about 10%. Then, it was found that a highly transparent dispersion can be obtained.
  • type II unmodified cellulose fine fibers of the present invention chemically unmodified cellulose fine fibers can be efficiently obtained in a simple process.
  • the type II unmodified cellulose fine fibers obtained have high transparency and low viscosity, are easy to handle, and have excellent appearance characteristics. is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】セルロースのマーセル化を経てセルロース微細繊維を得る製造方法であって、簡易な工程で効率的に化学修飾されていないセルロース微細繊維を得ることが可能なII型未修飾セルロース微細繊維の製造方法を提供する。 【解決手段】セルロースをマーセル化してマーセル化セルロースを得るマーセル化工程と、該マーセル化セルロースの重合度を760以下に低下させる解重合工程とを経た原料セルロースに、総濃度が2.5~17.5%となるようアルカリ金属水酸化物を添加し解繊してセルロース微細繊維を得る解繊工程と、該セルロース微細繊維を酸で中和する中和工程とを有することを特徴とするII型未修飾セルロース微細繊維の製造方法。

Description

II型未修飾セルロース微細繊維、及びII型未修飾セルロース微細繊維並びにその成形体の製造方法
 本発明は、セルロース微細繊維の製造方法等に関し、特に、化学修飾がされていないセルロース微細繊維を得るII型未修飾セルロース微細繊維の製造方法に関する。
 近年では、持続可能な開発目標(SUSTAINABLE DEVELOPMENT GOALS(SDGs))と呼ばれる持続可能な開発のために国連が定める国際目標が掲げられ、このうちの環境問題としてプラスチック使用量の削減等がある。石油由来のプラスチックの使用量を削減することによって、GHG削減による気候変動の解決を目指す取り組みがなされている。
 例えば、ファンデーション等の化粧料に、他の成分との混合性、使用時のノビや感触の向上を目的としてマイクロプラスチック(ビーズ)が使用されることがある。しかしながら、マイクロプラスチック(ビーズ)は、特に海洋環境汚染の深刻化の要因の一つとして問題提起されており、発生量の抑制や回収を目指す取り組みがなされている。
 これらから、市場においてはマイクロプラスチック(ビーズ)の代替が進んでいる。しかしながら、特に粒子径が100μm以下のマイクロプラスチック(ビーズ)のような微細な樹脂原料は代替材料の普及は進んでおらず、需要の高まりに対して供給が少ないことが知られている。
 また、マイクロプラスチックの代替原料としては、天然素材で生分解性を有するセルロースが注目されている。特に、セルロースナノファイバーやセルロースマイクロファイバー等のセルロース微細繊維は、成形体に加工することが可能で、ビーズやフィルム状に加工することができ、マイクロプラスチックの代替原料として期待されている。
 セルロース微細繊維の製造方法としては、水中で触媒を用いてセルロースを酸化処理し、得られた酸化セルロースを解繊することによりセルロースナノファイバー分散体を得る方法(特許文献1参照。)や、セルロースのカルボキシメチル化において、カルボキシメチル化を水と有機溶媒との混合溶媒下で行って、得られたカルボキシメチル化セルロースを解繊することにより透明度の高いカルボキシメチル化セルロースのナノファイバー分散体を得る方法(特許文献2参照。)、アニオン変性セルロースナノファイバー塩に対して、陽イオン交換樹脂を用いた陽イオン交換反応を行うことにより脱塩処理してアニオン変性セルロースナノファイバーを得る製造方法(特許文献3参照。)等が挙げられる。
特開2008-001728号公報 特開2019-99758号公報 国際公開第2019/059079号公報
 これらの製造方法で得られるセルロース微細繊維は、I型のセルロース微細繊維であって繊維径の小さいセルロース繊維を得るために、化学的解繊及び機械(物理)的解繊が用いられ、化学修飾されたセルロースとなる。つまり、化学薬品を用いて解繊がなされることから、脱薬品工程を要して工程が複雑化するのみならず、化粧品等には使用することができなかったりする等、用途が限定されたり使用薬品による安全性や環境的負荷が懸念されるといった課題がある。
 発明者らは、繊維径の小さいセルロース微細繊維を得る製造方法のうち、化学的解繊を用いない製造方法の検討、改良を重ねた。その結果、より簡易かつ効率的に化学修飾されていないセルロース微細繊維を得ることができる製造方法に至った。
 本発明は、前記の点に鑑みなされたものであり、セルロースのマーセル化を経て得られるII型の結晶構造を有するセルロース微細繊維及び、該セルロース微細繊維とその成形体の製造方法であって、透明性及び安全性の高い化学修飾されていないセルロース微細繊維を、簡易な工程で効率的に得ることが可能なII型未修飾セルロース微細繊維、及び該II型未修飾セルロース微細繊維並びにその成形体の製造方法を提供する。
 すなわち、第1の発明は、セルロースをマーセル化してマーセル化セルロースを得るマーセル化工程と、該マーセル化セルロースの重合度を760以下に低下させる解重合工程とを経た原料セルロースに、総濃度が2.5~17.5%となるようアルカリ金属水酸化物を添加し解繊してセルロース微細繊維を得る解繊工程と、該セルロース微細繊維を酸で中和する中和工程とを有することを特徴とするII型未修飾セルロース微細繊維の製造方法に係る。
 第2の発明は、第1の発明のII型未修飾セルロース微細繊維の製造方法より得たII型未修飾セルロース微細繊維が成形されてII型未修飾セルロース微細繊維成形物を得る成形工程とを有するII型未修飾セルロース微細繊維成形物の製造方法に係る。
 第3の発明は、第1の発明のII型未修飾セルロース微細繊維の製造方法により得たII型未修飾セルロース微細繊維の0.1質量%分散液のJIS K 7136(2000)に準拠して測定したヘーズ値が35%以下であるII型未修飾セルロース微細繊維に係る。
 第4の発明は、第3の発明において、前記II型未修飾セルロース微細繊維の重合度が310以下であるII型未修飾セルロース微細繊維に係る。
 第1の発明に係るII型未修飾セルロース微細繊維の製造方法によると、セルロースをマーセル化してマーセル化セルロースを得るマーセル化工程と、該マーセル化セルロースの重合度を760以下に低下させる解重合工程とを経た原料セルロースに、総濃度が2.5~17.5%となるようアルカリ金属水酸化物を添加し解繊してセルロース微細繊維を得る解繊工程と、該セルロース微細繊維を酸で中和する中和工程とを有することから、簡易な工程で効率的に化学修飾されていないセルロース微細繊維を得ることができる。
 第2の発明に係るII型未修飾セルロース微細繊維成形物の製造方法によると、第1の発明のII型未修飾セルロース微細繊維の製造方法より得たII型未修飾セルロース微細繊維が成形されてII型未修飾セルロース微細繊維成形物を得る成形工程とを有するため、プラスチック成形物の代替として有用である。
 第3の発明に係るII型未修飾セルロース微細繊維によると、第1の発明のII型未修飾セルロース微細繊維の製造方法により得たII型未修飾セルロース微細繊維の0.1質量%分散液のJIS K 7136(2000)に準拠して測定したヘーズ値が35%以下であることから、透明性が高く外観特性に優れるとともに安全性が高いため、化粧品等の幅広い用途に用いることができる。
 第4の発明に係るII型未修飾セルロース微細繊維によると、第3の発明において、前記II型未修飾セルロース微細繊維の重合度が310以下であることから、該セルロース微細繊維の分散液の粘度を低くすることができ、脱泡等がしやすくなり成形時の外観が良好となったり、成形装置の圧力上昇を抑えることができ、生産効率の向上を図ることができる。
本発明のII型未修飾セルロース微細繊維の製造方法に係る概略工程図である。
 本発明の製造方法により製造されるセルロース微細繊維は、セルロースをマーセル化するマーセル化工程を経て微細繊維へとされることから、II型の結晶構造を有するII型セルロース微細繊維である。セルロース微細繊維は、一般に樹脂の補強材として使用されることが多く、その際には強度の高いI型の結晶構造を有するI型セルロース微細繊維が好ましく用いられる。セルロース微細繊維のうち、II型セルロース微細繊維は、I型セルロース微細繊維よりも柔らかいため、化粧品等に添加されると質感が良好となり、好適である。
 本発明の製造方法は、化粧品等の分野における石油由来のプラスチックの代替としてのセルロース微細繊維を目的物としていることから、樹脂に補強材として含有されるような用途で用いられるI型セルロース繊維のような強度特性を要していないということができる。そして、化粧品等の意匠性や良好な外観特性が求められる幅広い用途が想定され、本発明の製造方法により製造されるセルロース微細繊維の分散液は、透明性に優れるとともに、化学修飾されておらず安全性が高い。さらには、取り回しも良好で成形性に優れる。
 これより、図1の工程図を用い、本発明のII型未修飾セルロース微細繊維の製造方法について順に説明する。まず、出発原料となるセルロースとしては、パルプが好ましく挙げられる。パルプは、主に木材を粉砕し、リグニン等の不純物を除去してセルロース成分の純度が高められた原料である。また、綿花からも不純物を除去してセルロース成分の純度が高められたコットンリンターパルプが用いられる。加えて、パルプは繊維状であるため薬品との反応性が高く、セルロース原料として好ましい。パルプの他にも微生物が生成するバクテリアセルロース等の動物性のセルロース等も使用することができる。さらに、これら原料を精製して得られる精製セルロースを用いることができる。
 マーセル化工程(S1)は、セルロースをマーセル化してマーセル化セルロースを得る工程である。マーセル化工程では、苛性ソーダ(NaOH)等のアルカリ金属水酸化物に原料であるセルロースが加えられ、必要に応じて加熱されながら撹拌されて、セルロースの繊維が膨潤化される。セルロース繊維がアルカリ金属水酸化物に浸漬されると、マイナスに帯電してクーロン力が生じ、それぞれの繊維が反発して解繊されやすくなる。マーセル化されたセルロースは、上記の通り解繊されやすくなることから、後の解繊工程におけるエネルギーを削減することができる。
 マーセル化工程で用いられるアルカリ金属水酸化物は、苛性ソーダ(NaOH)、水酸化リチウム、水酸化カリウム等が挙げられ、コストや安全性、環境負荷の観点から苛性ソーダが好ましく用いられる。
 マーセル化工程(S1)の後、必要に応じて余剰のアルカリ金属水酸化物は除去される。固形分濃度を適宜調整して、解重合工程(S2)が行われる。解重合工程(S2)は、マーセル化工程(S1)より得たマーセル化セルロースの重合度を760以下に低下させる工程である。固形分が調整されたマーセル化セルロースは、適宜粉砕され、空気中の酸素により酸化分解されて老成され、重合度の低下が図られる。この際、重合度は760以下とされる。マーセル化セルロースの重合度を760以下とすると、得られるセルロース微細繊維の分散液の透明性が確保される。また、マーセル化セルロースの重合度が低いほど、後の解繊工程におけるセルロース繊維の解繊が容易となる。
 解重合工程(S2)におけるマーセル化セルロースの老成は、室温又は加熱条件で行われる。解重合速度を速めるため、原料が乾燥しない程度の加熱条件が好ましく用いられる。また、老成反応を促進する硫酸マンガン(II)のような老成促進剤を添加することもできる。
 マーセル化工程(S1)及び解重合工程(S2)を経ることにより、微細繊維への解繊が可能な原料セルロースが得られる。セルロースがマーセル化されることによって、原料セルロースはII型の結晶構造を有するII型セルロースとなる。II型セルロースはI型セルロースよりも強度等に劣ると言われているが、本発明により得られるセルロース微細繊維は、化粧品等の分野におけるプラスチックの代替利用を目的とすることから、I型セルロースほどの強度は要求されないため、強度の低下は問題とはならない。
 そして、解繊工程(S3)では、該原料セルロースにアルカリ金属水酸化物や溶媒(イオン交換水)を添加して、総濃度が2.5~17.5%に調整され、解繊が行われる。ここで用いられるアルカリ金属水酸化物は、上記したように、苛性ソーダ、水酸化リチウム、水酸化カリウム等が挙げられ、コストや安全性の観点から苛性ソーダが好ましく用いられる。原料セルロースの解繊は、機械(物理)的解繊によりなされる。機械(物理)的解繊は、ホモジナイザーやウォータージェット等が用いられ公知の方法により行われる。ここで、原料セルロースはマーセル化により繊維が膨潤して解繊されやすい状態とされていること、解重合工程により重合度が低下されていることから、高い圧力がかけられなくとも容易に解繊が可能であり、設備の面でも有意である。
 アルカリ金属水酸化物の濃度は、2.5%よりも低いとセルロースの膨潤が不十分となり、解繊がされにくくなるおそれがある。また、アルカリ金属水酸化物の濃度が17.5%よりも高くなると、塩濃度が高くなり、セルロースの繊維が凝集しやすくなるため、かえって解繊がされにくくなるおそれがある。アルカリ金属水酸化物が該範囲を外れて解繊が不十分となった場合には、得られるセルロース微細繊維の分散液の透明性が低くなり、意匠性に劣るきらいがある。
 解繊は、複数回に分けて行われても良い。例えば、ミキサによる予備解繊の後に、ホモジナイザーを用いて本解繊を行うことによって、均一で繊維径の小さいセルロース微細繊維とすることができる。また、予備解繊によれば、原料セルロースが解繊装置に詰まる等の不具合を回避することができる。予備解繊は、ミキサやリファイナー等が用いられ、公知の方法により行われる。セルロース微細繊維の解繊は、平均繊維径がナノサイズから数百ナノサイズに解繊されればよく、2~800nm程度、より好ましくは100nm以下とされるとセルロース微細繊維の分散液の透明性がより良好となる。
 解繊工程を経て得られたセルロース微細繊維は、中和工程(S4)において、酸で中和される。解繊工程を経て得られたセルロース微細繊維は、強アルカリ性であるため、中和を要する。用いられる酸は、例えば、硫酸や塩酸、乳酸等が挙げられる。中和されたセルロース微細繊維は、適宜洗浄されて再解繊されてII型未修飾セルロース微細繊維が得られる。
 これら工程を経て得られたII型未修飾セルロース微細繊維の分散液を用いることにより、成形体を作製することができる。例えば、塗膜形成することでフィルム化したり、ビーズ状とすることにより化粧品等に用いることができる。いずれも乾燥による成形工程により作成可能であり、従来のセルロースフィルムやセルロースビーズと比較して環境負荷の高い薬品の使用量を削減することができる。
 本発明の製造方法により得たII型未修飾セルロース微細繊維の0.1質量%分散液は、良好な透明性を有する。具体的には、JIS K 7136(2000)に準拠して測定したヘーズ値が35%以下とすると、フィルムとした際の外観が良好であったり、化粧品に用いたりすることができ、幅広い用途に用いることができる。
 また、本発明の製造方法により得たII型未修飾セルロース微細繊維の重合度を310以下とすることにより、分散液としたときの粘度を低くすることができ、脱泡が容易となって成形性が向上するとともに、成形物の外観が良好となる。また、分散液の粘度が低くなると、成形装置の圧力上昇を抑制することができ、生産効率の向上を図ることも可能となる。
 発明者らは、II型未修飾セルロース微細繊維の製造に際し、以下の原料等を用い、図1の工程図に従って、解重合工程における重合度、解繊工程におけるアルカリ金属水酸化物濃度をそれぞれ変更してII型未修飾セルロース微細繊維の製造実験を行った。
  〔原料〕
 出発原料となるセルロース原料は、溶解パルプ(日本製紙株式会社製「LNDP」)を使用した。
  〔アルカリ金属水酸化物〕
 マーセル化工程におけるマーセル化に用いたアルカリ金属水酸化物は、苛性ソーダ(キシダ化学株式会社製)を使用した。なお、解繊工程は同苛性ソーダを用いた。
  〔酸〕
 中和工程における酸は、硫酸(キシダ化学株式会社製)を使用した。
 [II型未修飾セルロース微細繊維の分散液の調製]
 上記の原料等を用いて、下記の配合によりII型未修飾セルロース微細繊維の分散液の調製を行った。
  <試作例1>
 18重量%苛性ソーダを50℃まで加温し、パルプを2重量%となるよう投入してスラリー状になるまで撹拌し、マーセル化を行った(マーセル化工程)。その後、余剰の苛性ソーダを除去して固形分を33重量%に調整した。50℃で老成処理を行ってマーセル化セルロースの重合度を752として原料セルロース1を得た(解重合工程)。そして、原料セルロース1を10.6g、イオン交換水330.65g、苛性ソーダ8.75g(苛性ソーダ総濃度2.5%)として500mL容器に投入し、ミキサ(プライミクス株式会社製、「ラボ・リューション」)にて予備解繊を行った。その後、ホモジナイザー(株式会社SMT製、「LAB1000」)にて本解繊を行った(解繊工程)。調製したスラリーを125g採取し、撹拌しながら20重量%の硫酸を投入して中和した(中和工程)。中和後のサンプルを吸引ろ過し、イオン交換水300mLで置換洗浄を行った。洗浄後のサンプルを総重量250gになるようにイオン交換水を加え、ミキサ(プライミクス株式会社製、「ラボ・リューション」)にて予備解繊を行った。その後、ホモジナイザー(株式会社SMT製、「LAB1000」)にて本解繊し、試作例1のII型未修飾セルロース微細繊維の分散液を得た。
  <試作例2>
 解繊工程における苛性ソーダの総濃度を9.5%とした以外は試作例1と同様とし、試作例2のII型未修飾セルロース微細繊維の分散液を得た。
  <試作例3>
 解繊工程における苛性ソーダの総濃度を17.5%とした以外は試作例1と同様とし、試作例3のII型未修飾セルロース微細繊維の分散液を得た。
  <試作例4>
 解繊工程における苛性ソーダの総濃度を1.5%とした以外は試作例1と同様としたところ、セルロースが解繊されず、II型未修飾セルロース微細繊維の分散液は得られなかった。
  <試作例5>
 解繊工程における苛性ソーダの総濃度を18.5%とした以外は試作例1と同様とし、試作例5のII型未修飾セルロース微細繊維の分散液を得た。
  <試作例6>
 解重合工程におけるマーセル化セルロースの重合度を299となるまで老成処理を行って原料セルロースを得た以外は試作例1と同様とし、試作例6のII型未修飾セルロース微細繊維の分散液を得た。
  <試作例7>
 解重合工程におけるマーセル化セルロースの重合度を299となるまで老成処理を行って原料セルロースを得た以外は試作例2と同様とし、試作例7のII型未修飾セルロース微細繊維の分散液を得た。
  <試作例8>
 解重合工程におけるマーセル化セルロースの重合度を299となるまで老成処理を行って原料セルロースを得た以外は試作例3と同様とし、試作例8のII型未修飾セルロース微細繊維の分散液を得た。
  <比較例1>
 解重合工程を行わなかった(省略した)以外は試作例1と同様としたところ、セルロースが解繊されず、II型未修飾セルロース微細繊維の分散液は得られなかった。
  <比較例2>
 解重合工程を行わなかった(省略した)以外は試作例3と同様とし、比較例2のII型未修飾セルロース微細繊維の分散液を得た。
  <比較例3>
 マーセル化工程及び解重合工程を行わなかった(省略した)以外は試作例1と同様としたところ、セルロースが解繊されず、II型未修飾セルロース微細繊維の分散液は得られなかった。
 各試作例及び比較例のII型未修飾セルロース微細繊維の分散液に関し、ヘーズ(%)及び重合度を測定した。各試作例及び比較例の各原料セルロースの重合度と解繊工程におけるアルカリ金属水酸化物の種類と濃度(%)とともに表1に示した。
  〔ヘーズ〕
 ヘーズ(%)は、透明性の指標であって、JIS K 7136(2000)に準拠し、ヘーズメーター(日本電色工業株式会社製、NDH-4000)を使用して各試作例の0.1質量%分散液の測定を行った。なお、各試作例の分散液の濃度の調整にはイオン交換水を用いた。分散液は、光路1cmの液体用ガラスセル(株式会社藤原製作所製、MG-40)に入れて測定した。ゼロ点測定は、同ガラスセルにイオン交換水を入れて行った。なお、セルロースの解繊ができずにセルロース微細繊維の得られなかった試作例及び比較例については測定ができなかったため、「-」とした。
  〔重合度〕
 重合度は、銅エチレンジアミン溶液を用いた粘度法により、以下の方法で測定した。乾燥したセルロース微細繊維を0.5M銅エチレンジアミン溶液1に溶解して溶液2を形成する。毛細管粘度計を用いて溶液1と溶液2の粘度を測定する。溶液2の粘度をη、溶液1の粘度をηとし、次の計算式によりセルロース微細繊維の極限粘度[η]を求め、重合度DPを求めた。cは、セルロース微細繊維の濃度(g/L)である。
  極限粘度[η]={(η/η)-1}/c
  重合度DP=極限粘度[η]/(8.8×10-4
 なお、セルロースの解繊ができずにセルロース微細繊維の得られなかった試作例及び比較例については、セルロース微細繊維の分散液の重合度の測定ができなかったため、「-」とした。
  〔平均繊維径〕
 平均繊維径は、走査型プローブ顕微鏡(株式会社島津製作所製、SPM-9700HT)を用い、走査範囲10μm角の領域にて50本以上の繊維径を測定して平均値を算出した。走査型プローブ顕微鏡観察用サンプルは、セルロース微細繊維の分散液を水で任意の濃度に希釈し、マイカ基板上にキャストし、風乾して作成した。なお、平均繊維径の測定は試作例7のみ行った。
Figure JPOXMLDOC01-appb-T000001
 [結果と考察]
 アルカリ金属水酸化物濃度を同一とする試作例1,6,比較例1と、試作例3,8,比較例2をそれぞれ比較すると、原料セルロースの重合度を低くした試作例ほど、セルロース微細繊維の分散液のヘーズが低くなることが示された。このことから、解重合工程において、マーセル化セルロースの重合度をより低下させた原料セルロースを得ることにより、同じ解繊エネルギーでより細かく均一にセルロース微細繊維を分散可能であることが示された。比較例1のように、解重合工程を経ずに、重合度が760以上の原料セルロースとした場合には、解繊工程におけるアルカリ金属水酸化物濃度が低いとセルロースの解繊ができなかったり、比較例2のように、アルカリ金属水酸化物の濃度を高くして解繊ができた場合であってもヘーズの大きい分散液となった。
 原料セルロースの重合度を同一とする試作例1~5を比較すると、アルカリ金属水酸化物濃度が低すぎたり高すぎるとセルロース微細繊維の分散液のヘーズが高くなることが示された。特に、試作例4のように、アルカリ金属水酸化物濃度が2.5%未満とするとセルロース繊維の膨潤が不十分となり解繊ができずに、セルロース微細繊維が得られなかった。また、試作例5のように、アルカリ金属水酸化物濃度が17.5%よりも高くなると、塩濃度が高くなってセルロース繊維が凝集し、セルロースの解繊が不足となって分散液のヘーズが高くなったと考えられる。つまり、解繊工程におけるアルカリ金属水酸化物の総濃度を2.5~17.5%とすることによりヘーズの低い分散液を得ることができることが示され、特には総濃度を10%程度とするとさらに透明性の高い分散液が得られることが分かった。
 また、マーセル化工程を経ない比較例3にあっては、I型結晶構造を有すること及び解重合工程も省略して原料セルロースの重合度が高いことから、解繊ができずにセルロース微細繊維を得ることができなかった。
 以上のとおり、本発明の製造方法によれば、小さい解繊エネルギーによってもヘーズが低く、透明性の高いセルロース微細繊維の分散液を得ることができることから、簡易な工程で効率的に化学修飾されていないII型のセルロース微細繊維を製造することができることが示された。
 本発明のII型未修飾セルロース微細繊維の製造方法によれば、化学修飾されていないセルロース微細繊維を簡易な工程で効率的に得ることが可能である。また、得られたII型未修飾セルロース微細繊維は、透明性が高く、粘度が低いため、取り扱いが容易かつ外観特性に優れるため、化粧品等の幅広い用途に用いることができてプラスチックの代替として有用である。
 S1 マーセル化工程
 S2 解重合工程
 S3 解繊工程
 S4 中和工程
 

Claims (4)

  1.  セルロースをマーセル化してマーセル化セルロースを得るマーセル化工程と、
     該マーセル化セルロースの重合度を760以下に低下させる解重合工程とを経た原料セルロースに、
     総濃度が2.5~17.5%となるようアルカリ金属水酸化物を添加し解繊してセルロース微細繊維を得る解繊工程と、
     該セルロース微細繊維を酸で中和する中和工程とを有する
     ことを特徴とするII型未修飾セルロース微細繊維の製造方法。
  2.  請求項1に記載のII型未修飾セルロース微細繊維の製造方法より得たII型未修飾セルロース微細繊維が成形されてII型未修飾セルロース微細繊維成形物を得る成形工程とを有するII型未修飾セルロース微細繊維成形物の製造方法。
  3.  請求項1に記載の製造方法により得たII型未修飾セルロース微細繊維の0.1質量%分散液のJIS K 7136(2000)に準拠して測定したヘーズ値が35%以下であるII型未修飾セルロース微細繊維。
  4.  前記II型未修飾セルロース微細繊維の重合度が310以下である請求項3に記載のII型未修飾セルロース微細繊維。
PCT/JP2022/025744 2021-08-10 2022-06-28 Ii型未修飾セルロース微細繊維、及びii型未修飾セルロース微細繊維並びにその成形体の製造方法 WO2023017687A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22855751.8A EP4386135A1 (en) 2021-08-10 2022-06-28 Type ii unmodified cellulose microfibers, and method for manufacturing type ii unmodified cellulose microfibers and compact of same
CN202280050153.XA CN117751216A (zh) 2021-08-10 2022-06-28 Ii型未修饰纤维素微细纤维、以及ii型未修饰纤维素微细纤维及其成型体的制造方法
BR112023022490A BR112023022490A2 (pt) 2021-08-10 2022-06-28 Fibra fina de celulose não modificada tipo ii e métodos de fabricação de fibra fina de celulose não modificada tipo ii e corpo moldado da mesma
AU2022326295A AU2022326295A1 (en) 2021-08-10 2022-06-28 Type ii unmodified cellulose microfibers, and method for manufacturing type ii unmodified cellulose microfibers and compact of same
KR1020237044340A KR20240037197A (ko) 2021-08-10 2022-06-28 Ii형 미수식 셀룰로오스 미세 섬유, 및 ii형 미수식 셀룰로오스 미세 섬유 및 그 성형체의 제조 방법
CA3216919A CA3216919A1 (en) 2021-08-10 2022-06-28 Type ii unmodified cellulose microfibers, and method for manufacturing type ii unmodified cellulose microfibers and compact of same
GB2401488.8A GB2623697A (en) 2021-08-10 2022-06-28 Type II unmodified cellulose microfibers, and method for manufacturing type II unmodified cellulose microfibers and compact of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130565 2021-08-10
JP2021130565A JP7212732B1 (ja) 2021-08-10 2021-08-10 Ii型未修飾セルロース微細繊維、及びii型未修飾セルロース微細繊維並びにその成形体の製造方法

Publications (1)

Publication Number Publication Date
WO2023017687A1 true WO2023017687A1 (ja) 2023-02-16

Family

ID=85014918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025744 WO2023017687A1 (ja) 2021-08-10 2022-06-28 Ii型未修飾セルロース微細繊維、及びii型未修飾セルロース微細繊維並びにその成形体の製造方法

Country Status (10)

Country Link
EP (1) EP4386135A1 (ja)
JP (2) JP7212732B1 (ja)
KR (1) KR20240037197A (ja)
CN (1) CN117751216A (ja)
AU (1) AU2022326295A1 (ja)
BR (1) BR112023022490A2 (ja)
CA (1) CA3216919A1 (ja)
GB (1) GB2623697A (ja)
TW (1) TW202313702A (ja)
WO (1) WO2023017687A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004466A1 (ja) * 2022-07-01 2024-01-04 フタムラ化学株式会社 未修飾セルロースビーズ及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536155A (ja) * 2000-11-01 2004-12-02 ビーケイアイ・ホールディング・コーポレーション セルロースエーテル及びその製造方法
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2015157796A (ja) * 2014-01-21 2015-09-03 株式会社スギノマシン 乳化剤とその製造方法、及びオーガニック化粧料
WO2019111933A1 (ja) * 2017-12-07 2019-06-13 日本製紙株式会社 カルボキシメチル化セルロース及びカルボキシメチル化セルロースナノファイバーの製造方法
JP2019099758A (ja) 2017-12-07 2019-06-24 日本製紙株式会社 カルボキシメチル化セルロースナノファイバーの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197490B2 (ja) 2017-09-20 2022-12-27 日本製紙株式会社 アニオン変性セルロースナノファイバーの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536155A (ja) * 2000-11-01 2004-12-02 ビーケイアイ・ホールディング・コーポレーション セルロースエーテル及びその製造方法
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2015157796A (ja) * 2014-01-21 2015-09-03 株式会社スギノマシン 乳化剤とその製造方法、及びオーガニック化粧料
WO2019111933A1 (ja) * 2017-12-07 2019-06-13 日本製紙株式会社 カルボキシメチル化セルロース及びカルボキシメチル化セルロースナノファイバーの製造方法
JP2019099758A (ja) 2017-12-07 2019-06-24 日本製紙株式会社 カルボキシメチル化セルロースナノファイバーの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004466A1 (ja) * 2022-07-01 2024-01-04 フタムラ化学株式会社 未修飾セルロースビーズ及びその製造方法
JP7448590B2 (ja) 2022-07-01 2024-03-12 フタムラ化学株式会社 Ii型未修飾セルロースビーズ及びその製造方法

Also Published As

Publication number Publication date
CA3216919A1 (en) 2023-02-16
KR20240037197A (ko) 2024-03-21
GB2623697A (en) 2024-04-24
JP2023025376A (ja) 2023-02-22
TW202313702A (zh) 2023-04-01
BR112023022490A2 (pt) 2024-01-16
AU2022326295A1 (en) 2023-11-23
GB202401488D0 (en) 2024-03-20
CN117751216A (zh) 2024-03-22
JP7212732B1 (ja) 2023-01-25
EP4386135A1 (en) 2024-06-19
JP2023025708A (ja) 2023-02-22

Similar Documents

Publication Publication Date Title
Kargarzadeh et al. Advances in cellulose nanomaterials
Ji et al. Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid
JP6551233B2 (ja) セルロースナノファイバーとその製造方法、該セルロースナノファイバーを用いた水分散液、及び繊維強化複合材料
Li et al. Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis.
JP6254335B2 (ja) セルロースザンテートナノファイバー
WO2012115115A1 (ja) セルロース繊維およびその製造方法、セルロース繊維集合体並びにセルロース繊維複合材料
JP2011140738A (ja) 微細セルロース繊維複合体、微細セルロース繊維分散液及び複合材料
WO2012067113A1 (ja) セルロース繊維集合体およびその製造方法、解繊セルロース繊維およびその製造方法、並びにセルロース繊維複合体
JP6107297B2 (ja) 繊維樹脂複合材料
Lu et al. High-yield synthesis of functionalized cellulose nanocrystals for nano-biocomposites
WO2023017687A1 (ja) Ii型未修飾セルロース微細繊維、及びii型未修飾セルロース微細繊維並びにその成形体の製造方法
JP2017141394A (ja) 樹脂組成物、ならびに樹脂成形体及びその製造方法
Saini et al. Mixed-acid-assisted hydrothermal process for simultaneous preparation and carboxylation of needle-shaped cellulose nanocrystals
Du et al. Cellulose nanocrystals prepared by persulfate one-step oxidation of bleached bagasse pulp
JP2017052888A (ja) セルロース微小繊維分散液、セルロース微小繊維分散液の製造方法及び繊維複合樹脂
WO2019240169A1 (ja) セルロースアセテート、セルロースアセテート繊維、セルロースアセテート組成物、セルロースアセテートの製造方法、及びセルロースアセテート組成物の製造方法
WO2020096854A1 (en) Process for production of cellulose nanofibers from miscanthus x. giganteus and composites therefrom
EP4204626A1 (en) An efficient green process for the preparation of nanocelluloses, novel modified nanocelluloses and their application
JP6888274B2 (ja) 成形用組成物および成形体
Wu et al. Carboxyl cellulose nanocrystal extracted from hybrid poplar residue
JP2012098086A (ja) セルロース繊維を含む分散液の評価方法及びセルロース繊維を含むフィルムの評価方法
Govindan et al. Treated Nypa fruticans Husk-filled Regenerated Cellulose Biocomposite Films.
US20230313455A1 (en) Process for production of cellulose nanofibers from miscanthus x. giganteus and composites therefrom
Tavana et al. Renewable starch/polyvinyl alcohol nanocomposite foams reinforced by cellulose nanofibers isolated from carrot residues using a chemo-mechanical process
CN116377609A (zh) 一种纤维素纳米纤丝及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3216919

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022326295

Country of ref document: AU

Ref document number: AU2022326295

Country of ref document: AU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023022490

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022326295

Country of ref document: AU

Date of ref document: 20220628

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023022490

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231027

WWE Wipo information: entry into national phase

Ref document number: 202280050153.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 202401488

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220628

WWE Wipo information: entry into national phase

Ref document number: 2023129242

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855751

Country of ref document: EP

Effective date: 20240311