WO2023016301A1 - 电子设备、用户设备、无线通信方法和存储介质 - Google Patents

电子设备、用户设备、无线通信方法和存储介质 Download PDF

Info

Publication number
WO2023016301A1
WO2023016301A1 PCT/CN2022/109820 CN2022109820W WO2023016301A1 WO 2023016301 A1 WO2023016301 A1 WO 2023016301A1 CN 2022109820 W CN2022109820 W CN 2022109820W WO 2023016301 A1 WO2023016301 A1 WO 2023016301A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
relay device
energy
candidate relay
wireless communication
Prior art date
Application number
PCT/CN2022/109820
Other languages
English (en)
French (fr)
Inventor
周明拓
刘敏
Original Assignee
索尼集团公司
周明拓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 周明拓 filed Critical 索尼集团公司
Priority to CN202280053057.0A priority Critical patent/CN117837215A/zh
Publication of WO2023016301A1 publication Critical patent/WO2023016301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/10Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • Embodiments of the present disclosure generally relate to the field of wireless communication, and specifically relate to electronic equipment, user equipment, a wireless communication method, and a storage medium. More specifically, the present disclosure relates to an electronic device as a network-side device in a wireless communication system, a user device in a wireless communication system, a wireless communication method performed by a network-side device in a wireless communication system, a A wireless communication method performed by user equipment in a wireless communication system and a computer-readable storage medium.
  • NTN Non-Terrestrial Network, non-terrestrial network
  • the data packets generated by many user equipment are relatively small and not particularly urgent, so they can tolerate a large delay. Every time the user equipment generates data, it will be immediately transmitted to the satellite equipment, which will consume a lot of signaling resources and energy.
  • multiple user equipments in close locations transmit data at the same time, they may interfere with each other, thus affecting the quality of transmission.
  • user equipment can supply power by means of energy harvesting.
  • the available power of each user equipment varies dynamically with the energy harvesting capabilities of the user equipment and the conditions of the energy sources.
  • the purpose of the present disclosure is to provide an electronic device, a user equipment, a wireless communication method and a storage medium, so as to reduce signaling overhead and save energy of the user equipment in an NTN including the user equipment supplying electric energy by means of energy harvesting.
  • an electronic device including a processing circuit configured to: determine one or more candidate relay devices of the user equipment; sorting the one or more candidate relay devices to generate an ordered set of candidate relay devices; and sending the ordered set of candidate relay devices to the user equipment for use by the user
  • the device determines a relay device according to the ordered set of candidate relay devices and utilizes the relay device to communicate with the satellite device, wherein the candidate relay device converts collected energy into electrical energy for the candidate relay device The device is powered.
  • a user equipment including a processing circuit configured to: receive an ordered set of candidate relay devices from a network side device, wherein the ordered set of candidate relay devices is Generated by sorting the one or more candidate relay devices according to their energy harvesting capabilities; according to the order in the ordered set of the candidate relay devices, sequentially The candidate relay devices in the ordered set of relay devices are connected until a candidate relay device is successfully connected, and the successfully connected candidate relay device is determined as the relay device; and using the relay device to communicate with the satellite device Communicating, wherein the candidate relay device converts the harvested energy into electrical energy to power the candidate relay device.
  • a wireless communication method performed by an electronic device, including: determining one or more candidate relay devices of the user equipment; energy collection according to the one or more candidate relay devices capability to rank the one or more candidate relays to generate an ordered set of candidate relays; and sending the ordered set of candidate relays to the user equipment for use in the
  • the user equipment determines a relay device according to the ordered set of candidate relay devices and uses the relay device to communicate with the satellite device, wherein the candidate relay device converts the collected energy into electrical energy as the candidate Relay device power supply.
  • a wireless communication method performed by a user equipment including: receiving an ordered set of candidate relay devices from a network side device, wherein the ordered set of candidate relay devices is Generated by sorting the one or more candidate relay devices according to their energy harvesting capabilities; according to the order in the ordered set of the candidate relay devices, sequentially The candidate relay devices in the ordered set of relay devices are connected until a candidate relay device is successfully connected, and the successfully connected candidate relay device is determined as the relay device; and using the relay device to communicate with the satellite device Communicating, wherein the candidate relay device converts the harvested energy into electrical energy to power the candidate relay device.
  • a computer-readable storage medium including executable computer instructions, which when executed by a computer cause the computer to perform the wireless communication method according to the present disclosure.
  • a computer program which, when executed by a computer, causes the computer to execute the wireless communication method according to the present disclosure.
  • the electronic device can sort the candidate relay devices according to the energy harvesting capability, so that the user equipment can determine the relay devices and utilize the relay devices Communicate with satellite devices. In this way, the user equipment can use the relay device to communicate with the satellite equipment, thereby reducing the energy consumption of the user equipment.
  • the relay device needs to forward data for multiple user equipments, so more energy is required. Since the relay device is determined according to the energy collection capability, it can be ensured that the selected relay device has a better energy collection capability.
  • FIG. 1 is a schematic diagram illustrating an application scenario according to an embodiment of the present disclosure
  • FIG. 2 is a graph illustrating energy of a user equipment over time according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram illustrating an example of a configuration of an electronic device as a network side device according to an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram showing a scenario where a user equipment communicates with a satellite device using a relay device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram illustrating an energy variation curve according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing a process of determining a candidate relay device according to transmission power according to an embodiment of the present disclosure
  • FIG. 7 is a signaling flow diagram illustrating a process of determining a relay device of a user equipment according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram illustrating an update time and a transmission time of a relay device according to an embodiment of the present disclosure
  • FIG. 9 is a signaling flow diagram illustrating a process of updating user equipment groups and relay equipment according to an embodiment of the present disclosure
  • FIG. 10 is a block diagram illustrating an example of a configuration of a user equipment according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart showing a wireless communication method performed by an electronic device as a network side device according to an embodiment of the present disclosure
  • FIG. 12 is a flowchart illustrating a wireless communication method performed by a user equipment according to an embodiment of the present disclosure
  • FIG. 13 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B, evolved Node B);
  • FIG. 14 is a block diagram showing a second example of a schematic configuration of an eNB
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a smartphone.
  • Fig. 16 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • Fig. 1 is a schematic diagram illustrating an application scenario according to an embodiment of the present disclosure.
  • a wireless communication system may include satellite equipment and multiple user equipments. Wherein, the user equipment can directly communicate with the satellite equipment, and D2D communication can also be performed between the user equipment.
  • each user equipment can perform energy collection, so as to convert the collected energy into electrical energy to provide power for the user equipment.
  • Energy can include solar energy, wind energy, tidal energy, geothermal energy and all other energies that can be converted into electrical energy.
  • each user equipment Energy harvests at different speeds.
  • the size of the data packet of the user equipment, the sending rate of the data packet, the time interval of the data packet, and the experimental requirements for transmission are different, the speed of energy consumption of each user equipment is different. Therefore, the curves of energy varying with time of each user equipment may be different.
  • FIG. 2 is a graph illustrating energy of a user equipment over time according to an embodiment of the present disclosure. As shown in FIG. 2 , the horizontal axis represents time, and the vertical axis represents energy value, and the curves of the energy value of user equipment A and user equipment B changing with time are different.
  • the present disclosure proposes an electronic device in a wireless communication system, a user equipment, a wireless communication method performed by an electronic device in a wireless communication system, a wireless communication method performed by a user equipment in a wireless communication system, and a computer
  • the readable storage medium is used to reduce signaling overhead and save energy of the user equipment in an NTN including user equipment supplying electric energy in an energy harvesting manner.
  • the wireless communication system according to the present disclosure may be a 5G NR (New Radio, new wireless) communication system. Further, the wireless communication system according to the present disclosure may include NTN (Non-Terrestrial Network, non-terrestrial network). That is, a wireless communication system may include multiple satellite devices and multiple user equipments. Further, the satellite device may be a non-transparent satellite device, that is, the base station device may be set on the satellite device, so that the user equipment may communicate with the base station device on the satellite device. The satellite equipment can also be a transparent satellite equipment, that is, the base station equipment can be set on the ground equipment communicating with the satellite equipment, so that the user equipment can communicate with the base station equipment on the ground through the satellite equipment.
  • NTN Non-Terrestrial Network, non-terrestrial network
  • some of the user equipments can be used as relay equipment, and the user equipment can communicate with the satellite equipment through the relay equipment, including uplink communication and/or downlink communication, and the relay equipment can receive The data from one or more user devices is buffered, so that the buffered data is sent to the satellite device at an appropriate time.
  • some or all of the user equipments can periodically enter the sleep mode and the wake-up mode by any method known in the art, so as to save the energy of the user equipments.
  • the network side device may be a base station device, such as an eNB, or a gNB (a base station in a 5th generation communication system).
  • a base station device such as an eNB, or a gNB (a base station in a 5th generation communication system).
  • the user equipment may be a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle terminal (such as a car navigation device ).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • FIG. 3 is a block diagram illustrating an example of a configuration of an electronic device 300 according to an embodiment of the present disclosure.
  • the electronic device 300 here may serve as a network-side device in the wireless communication system, specifically, may serve as a base station device in the wireless communication system.
  • the base station equipment may be located on satellite equipment or on the ground.
  • the electronic device 300 may include a candidate relay device determining unit 310 , a sorting unit 320 and a communication unit 330 .
  • each unit of the electronic device 300 may be included in the processing circuit.
  • the electronic device 300 may include one processing circuit, or may include multiple processing circuits.
  • the processing circuitry may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be realized by the same physical entity.
  • the candidate relay device determining unit 310 may determine one or more candidate relay devices of the user equipment.
  • the user equipment may be any user equipment within the coverage of the electronic device 300 .
  • the candidate relay device may convert the harvested energy into electrical energy to power the candidate relay device.
  • the ranking unit 320 may sort the one or more candidate relay devices according to the energy harvesting capabilities of the one or more candidate relay devices, so as to generate an ordered set of candidate relay devices.
  • the electronic device 300 can send the ordered set of candidate relay devices to the user equipment through the communication unit 330, so that the user equipment can determine the relay device according to the ordered set of candidate relay devices and use the middle
  • the relay device communicates with the satellite device.
  • the candidate relay devices can be sorted according to the energy harvesting capability, so that the user equipment can determine the relay device and use the relay device to communicate with the satellite device. In this way, the user equipment can use the relay device to communicate with the satellite equipment, thereby reducing the energy consumption of the user equipment.
  • the relay device needs to forward data for multiple user equipments, so more energy is required. Since the relay device is determined according to the energy collection capability, it can be ensured that the selected relay device has a better energy collection capability.
  • Fig. 4 is a schematic diagram illustrating a scenario in which a user equipment communicates with a satellite device using a relay device according to an embodiment of the present disclosure.
  • UE1 , UE2 , UE3 , UE4 , UE6 , UE7 , and UE8 all communicate with satellite devices through UE5 .
  • UE5 may be referred to as a relay device of UE1, UE2, UE3, UE4, UE6, UE7, and UE8.
  • UE5 can be used to forward uplink data, and can also be used to forward downlink data.
  • UE5 can forward the data from UE1, UE2, UE3, UE4, UE6, UE7, UE8 to the satellite equipment, and can also forward the data from the satellite equipment to UE1, UE2, UE3, UE4, UE6, UE7, UE8. In this way, the energy consumption of UE1, UE2, UE3, UE4, UE6, UE7, and UE8 can be reduced. In addition, UE5 may not forward the data immediately after receiving the data, but waits for an opportunity to forward the data of multiple UEs together, which can reduce signaling overhead.
  • the electronic device 300 may further include a predicting unit 340 configured to predict an energy change curve representing the change of energy of the user equipment with time within a predetermined time in the future.
  • the predicting unit 340 may predict the energy change curve of the user equipment according to the current energy of the user equipment, changes in energy collection capabilities, and changes in energy consumption capabilities.
  • the electronic device 300 may receive a current energy value of the user equipment from the user equipment through the communication unit 330 .
  • the unit of energy may be joules.
  • the prediction unit 340 may determine the change of the energy harvesting capability of the user equipment according to one or more of the following parameters: the location of the user equipment, the energy source of the user equipment, and the energy source related to the user equipment The weather conditions of the network, the antenna parameters of the user equipment, and the energy harvesting capabilities of the user equipment.
  • the electronic device 300 may receive the location of the user equipment from the user equipment through the communication unit 330, so that the prediction unit 340 may determine the change of the energy harvesting capability of the user equipment according to the location of the user equipment. Specifically, the prediction unit 340 may determine local geographical conditions according to the location of the user equipment, thereby determining the energy collection capability of the user equipment. For example, in the case of user equipment collecting solar energy, the energy harvesting capability on the shaded side of a mountain is worse than that on the sunny side of the mountain.
  • the electronic device 300 may receive the energy source of the user equipment from the user equipment through the communication unit 330, so that the prediction unit 340 may determine the change of the energy harvesting capability of the user equipment according to the energy source of the user equipment.
  • energy sources include, but are not limited to, the sun, wind, tides, geothermal.
  • the electronic device 300 can obtain weather conditions associated with the energy source of the user equipment, so that the prediction unit 340 can determine the change of the energy harvesting capability of the user equipment according to the weather conditions associated with the energy source of the user equipment .
  • the electronic device 300 may obtain the above information from institutions such as the Meteorological Bureau through the network. For example, in the case that the energy source is the sun, the energy collection capability of the user equipment under very weak light conditions is worse than that under very strong light conditions.
  • the electronic device 300 may receive the antenna parameters of the user equipment from the user equipment through the communication unit 330, so that the prediction unit 340 may determine the change of the energy harvesting capability of the user equipment according to the antenna parameters of the user equipment.
  • Antenna parameters include, but are not limited to, antenna height, antenna type, and antenna emission pattern.
  • the electronic device 300 may receive the energy harvesting capability of the user equipment from the user equipment through the communication unit 330, so that the prediction unit 340 may determine the change of the energy harvesting capability of the user equipment according to the energy harvesting capability of the user equipment.
  • the energy collection capability of the user equipment may be quantified as the energy value collected by the user equipment per unit time under standard weather conditions associated with the energy source. For example, when the energy source is the sun, the energy harvesting capability of the user equipment can be quantified as the energy value collected by the user equipment per unit time under standard lighting conditions.
  • the unit time includes but not limited to one day. That is to say, the energy harvesting capability of the user equipment represents the energy harvesting capability of the user equipment itself, and has nothing to do with weather conditions.
  • the predicting unit 340 may determine the change of the energy harvesting capability of the user equipment according to one or more of the above parameters.
  • the present disclosure does not limit the manner in which the prediction unit 340 determines the change of the energy harvesting capability.
  • the prediction unit 340 may determine the curve of the collected energy changing with time according to one or more of the above parameters.
  • the prediction unit 340 may determine the change of the energy consumption capability of the user equipment according to one or more of the following parameters: the size of the data packet of the user equipment, the sending rate of the data packet of the user equipment, the user equipment The time interval of the data packets of the device, and the requirements of the user equipment on the transmission delay.
  • the electronic device 300 may receive from the user equipment through the communication unit 330 the size of the data packet of the user equipment, the sending rate of the data packet of the user equipment, the time interval of the data packet of the user equipment, the transmission time of the user equipment One or more of the extension requirements, so that the prediction unit 340 can determine the change of the energy consumption capability of the user equipment according to one or more of the above parameters.
  • the larger the data packet of the user equipment, the higher the transmission rate, the shorter the time interval, and the higher the requirement on the transmission delay the faster the energy consumption of the user equipment will be.
  • the disclosure does not limit the manner in which the prediction unit 340 determines the change of the energy consumption capability.
  • the prediction unit 340 may determine a curve of consumed energy over time according to one or more of the above parameters.
  • the predicting unit 340 may predict the energy change curve of the user equipment according to the current energy of the user equipment, changes in energy collection capabilities, and changes in energy consumption capabilities. Further, the electronic device 300 may determine that the start time of the energy change curve is the current time, and the difference between the end time and the start time is T0. That is to say, the prediction unit 340 may predict the energy change curve within a predetermined time in the future starting from the current time.
  • FIG. 5 is a schematic diagram showing energy change curves according to an embodiment of the present disclosure. As shown in FIG. 5 , the horizontal axis represents time, the vertical axis represents the energy change curve of UE5, the start time is 0, and the end time is T0.
  • the electronic device 300 may further include a power determining unit 350, configured to determine the transmission power of the user equipment according to the energy change curve predicted by the predicting unit 340.
  • the power determining unit 350 may determine the transmission power of the user equipment according to the energy change curve of the user equipment and the mapping relationship between the energy of the user equipment and the transmission power.
  • the electronic device 300 may receive the mapping relationship between the energy of the user equipment and the transmission power from the user equipment through the communication unit 330 .
  • each user equipment within the coverage of the electronic device 300 can adjust the transmission power according to the energy, the transmission power is high when the energy is high, and the transmission power is low when the energy is low.
  • the mapping relationship between energy and transmission power can be expressed as a mapping relationship between energy points and transmission power, such as (E1, P1), (E2, P2), (E3, P3), ... .
  • the user equipment and the electronic device 300 can agree that when the actual energy of the user equipment is closest to E1, the transmission power P1 is used; when the actual energy of the user equipment is the closest to E2, the transmission power P2 is used; when the actual energy of the user equipment is the closest to When E3 is the closest, the transmission power P3, . . . is adopted.
  • the mapping relationship between energy and transmission power can also be expressed as a mapping relationship between energy range and transmission power, for example ([0, E1), P1), ([E1, E2), P2), ( [E2, E3), P3).
  • the user equipment and the electronic device 300 can agree that when the actual energy of the user equipment is less than E1, the transmission power P1 is used; when the actual energy of the user equipment is greater than or equal to E1 and less than E2, the transmission power P2 is used; when the actual energy of the user equipment is greater than When it is equal to E2 and less than E3, transmit power P3... is used.
  • the power determining unit 350 may determine the energy range of the user equipment according to the energy change curve of the user equipment, so as to determine the transmission power of the user equipment according to the energy range and the mapping relationship between the energy of the user equipment and the transmission power .
  • the energy range of UE5 is smaller than E2, so the mapping relationship between energy and transmission power is ([0, E1), P1), ([E1, E2), P2), ([E2, In the case of E3), P3), before time T1, the transmit power of UE5 is P1; at time T1-T2, the transmit power of UE5 is P2; at time T2-T3, the transmit power of UE5 is P1; At time T4, the transmit power of UE5 is P2; at time T4-T0, the transmit power of UE5 is P1. That is to say, the power determining unit 350 may determine that the transmission power of the user equipment is P1 or P2.
  • the candidate relay device determining unit 310 may determine one or more candidate relay devices of the user equipment according to the transmit power of the user equipment.
  • the candidate relay device determining unit 310 may, for each of the one or more transmit powers of the user equipment, determine one or more candidate relay devices for the transmit power. That is to say, the candidate relay device determining unit 310 may determine one or more candidate relay devices for P1, and also determine one or more candidate relay devices for P2.
  • the candidate relay device determining unit 310 may determine a relay device capable of receiving information sent by the user equipment according to the transmission power of the user equipment, and determine the relay device capable of receiving the information sent by the user equipment A candidate relay device for the user equipment.
  • FIG. 6 is a schematic diagram illustrating a process of determining a candidate relay device according to transmission power according to an embodiment of the present disclosure.
  • UE3, UE4, UE7, UE1, UE2 and UE6 can all serve as relay devices.
  • the transmit power of UE5 when the transmit power of UE5 is P1, its transmit range is indicated by the dotted circle inside. That is to say, when the transmit power of UE5 is P1, the relay devices capable of receiving the information sent by UE5 are UE3, UE4 and UE7. Therefore, UE3, UE4 and UE7 are candidate relay devices for P1.
  • the sending power of UE5 is P2, its sending range is indicated by the dotted circle on the outside.
  • the transmission range of the transmission power P2 is greater than the transmission range of the transmission power P1. That is to say, when the transmit power of UE5 is P2, the relay devices that can receive the information sent by UE5 are UE3, UE4, UE7, UE1, UE2 and UE6. Therefore, UE3, UE4, UE7, UE1, UE2 and UE6 are candidate relay devices for P2.
  • the sorting unit 320 can sort the candidate relay devices for each transmission power. For example, for candidate relay devices UE3, UE4 and UE7 with transmission power P1, the sorting unit 320 can sort UE3, UE4 and UE7 according to the energy harvesting capabilities of UE3, UE4 and UE7 to generate an ordered set A1. For the candidate relay devices UE3, UE4, UE7, UE1, UE2 and UE6 with transmission power P2, the sorting unit 320 can rank UE3, UE4, UE7, UE1, UE2 and UE6 sort to generate ordered set A2.
  • the energy collection capability of the candidate relay device may represent the energy value Ec collected by the candidate relay device within a unit time under standard weather conditions associated with the energy source. Further, the stronger the energy collection capability of the candidate relay device, the higher the ranking unit 320 can rank the candidate relay device.
  • the ranking unit 320 ranks the candidate relay devices according to the energy harvesting capabilities of the candidate relay devices, which can be expressed as R Ec .
  • the sorting unit 320 can also sort the candidate relay devices according to one or more of the following parameters of the candidate relay devices: the distance between the candidate relay device and the user equipment, and the The weather condition associated with the energy source of the relay device, the buffer size of the candidate relay device, the number of user equipment served by the candidate relay device, and the connection quality between the candidate relay device and the satellite device.
  • the smaller the distance d between the candidate relay device and the user equipment, the higher the ranking unit 320 may rank the candidate relay device.
  • the ranking unit 320 ranks the candidate relay devices according to the distance between the candidate relay devices and the user equipment, which may be denoted as R d .
  • the weather condition associated with the energy source of the candidate relay device may represent the energy value Ce collected by the standard energy harvesting device within a unit time under the weather condition. That is to say, Ce represents the energy harvesting capability related to the weather condition associated with the energy source of the candidate relay device, and has nothing to do with the energy harvesting capability of the candidate relay device itself. Further, the greater the value of Ce, the higher the sorting unit 320 can rank the candidate relay device. The ranking unit 320 ranks the candidate relay devices according to the weather conditions associated with the energy sources of the candidate relay devices, which may be denoted as R Ce .
  • the ranking of the candidate relay devices by the sorting unit 320 according to the cache size of the candidate relay devices can be denoted as RB .
  • the ranking unit 320 ranks the candidate relay devices according to the number of user equipment served by the candidate relay devices, which may be denoted as R Na .
  • the connection quality between the candidate relay device and the satellite device may be expressed as the average received power Pa of the candidate relay device during the connection with the satellite device. Further, the larger Pa is, the higher the candidate relay device can be ranked.
  • the ranking unit 320 ranks the candidate relay devices according to the connection quality between the candidate relay devices and the satellite device, which can be expressed as R Pa .
  • the sorting unit 320 may sort the candidate relay devices according to one or more of the above parameters, and then determine the final ranking Score of the candidate relay devices as follows:
  • Score a 1 ⁇ R d +a 2 ⁇ R Ec +a 3 ⁇ R Ce +a 4 ⁇ R B +a 5 ⁇ R Na +a 6 ⁇ R Pa .
  • a 1 , a 2 , a 3 , a 4 , a 5 , and a 6 respectively represent the weights of R d , R Ec , R Ce , R B , R Na , and R Pa in the final ranking.
  • the ranking unit 320 determines the final ranking of candidate relay devices according to the above six parameters, but the present disclosure is not limited thereto.
  • the sorting unit 320 only uses some parameters, unused parameters may be removed from the above formula for obtaining the Score.
  • the electronic device 300 may send each ordered set to the user equipment through the communication unit 330 . Further, while sending the ordered set, the electronic device 300 may also send the sending power corresponding to the ordered set. For example, the electronic device 300 may send the following information (P1, A1), (P2, A2) to the user equipment. In this way, the user equipment can determine the corresponding relationship between the ordered set and the transmission power, so as to determine a suitable ordered set and determine the relay device.
  • the electronic device 300 may also send the location of each candidate relay device to the user equipment.
  • the electronic device 300 may further include a setting unit 360 .
  • the candidate relay device determining unit 310 determines that there is no relay device capable of receiving the information sent by the user equipment for each transmission power. That is to say, for each transmit power, if the candidate relay device determining unit 310 cannot determine a candidate relay device, the setting unit 360 may determine the user equipment as the relay device. In this way, the user equipment can serve as a relay device to provide services for other user equipment.
  • the user equipment may be a user equipment that has just joined the network, or a user equipment that has joined the network before but has just woken up after entering a sleep state. That is to say, the user equipment may be a user equipment that has not been allocated a relay device before, so the electronic device 300 may perform the above operations to determine a candidate relay device for the user equipment.
  • Fig. 7 is a signaling flow diagram illustrating a process of determining a relay device of a user equipment according to an embodiment of the present disclosure.
  • the gNB may be implemented by the electronic device 300, and the UE may be a user equipment that has not been allocated a relay device before.
  • step S701 when the UE joins the network or wakes up from a sleep state, the UE reports parameters to the gNB, including but not limited to the location of the user equipment, the energy source of the user equipment, the antenna parameters of the user equipment, the user equipment The energy harvesting capability of the device, the size of the data packet of the user equipment, the sending rate of the data packet of the user equipment, the time interval of the data packet of the user equipment, and the requirement of the user equipment for transmission delay.
  • step S702 the gNB predicts the energy change curve of the UE according to the parameters reported by the UE, and determines one or more transmission powers according to the energy change curve.
  • step S703 the gNB determines one or more candidate relay devices for each transmission power, and generates an ordered set of candidate relay devices.
  • step S704 the gNB sends to the UE the ordered set of candidate relay devices for each transmission power, the position of each candidate relay device, and the start time of the next update time of each candidate relay device.
  • step S705 the UE determines the actual transmission power according to the actual energy, and selects an ordered set of candidate relay devices according to the actual transmission power. It is assumed here that the ordered set of candidate relay devices determined by the UE includes candidate relay device 1 and candidate relay device 2 , and the ranking of candidate relay device 1 is higher than that of candidate relay device 2 .
  • step S706 the UE tries to connect with the candidate relay device 1 at the starting time of the next update time of the candidate relay device 1 . It is assumed here that the connection between the UE and the candidate relay device 1 fails.
  • step S707 the UE tries to connect with the candidate relay device 2 at the starting time of the next update time of the candidate relay device 2. It is assumed here that the connection between UE1 and candidate relay device 2 is successful.
  • step S708 the UE determines the candidate relay device 2 as the relay device, so as to perform communication with the satellite device through the candidate relay device 2. As described above, with the assistance of the gNB, the UE can reasonably determine the relay device, thereby saving energy and signaling overhead.
  • the electronic device 300 can predict the energy change curve of the user equipment, and generate different ordered sets of candidate relay devices according to different transmission powers. In this way, the user equipment can select an ordered set of candidate relay devices according to the actual transmission power, and determine the relay device therefrom, thereby saving signaling overhead and energy. Since the ordered set of candidate relay devices is related to the energy collection capability of the candidate relay devices, the user equipment can select a relay device with relatively sufficient energy. Further, the user equipment can adjust the transmission power according to the change of energy, so as to ensure that there is enough energy to transmit data. In addition, if the candidate relay device cannot be determined, the electronic device 300 may set the user equipment as a relay device, so as to provide services for user equipment around it.
  • the electronic device 300 may further include a configuration unit 370 configured to configure an update time, a transmission time, and a start time of a first update time for each relay device.
  • a configuration unit 370 configured to configure an update time, a transmission time, and a start time of a first update time for each relay device.
  • each relay device can periodically enter the update time and transmission time according to the configuration of the electronic device 300 .
  • the relay device establishes a connection with the core network through the satellite device, and during the transmission time, the relay device communicates with the user equipment or the relay device communicates with the satellite device.
  • FIG. 8 is a schematic diagram illustrating an update time and a transmission time of a relay device according to an embodiment of the present disclosure.
  • the relay device periodically enters the update time Tw and the transmission time Tup.
  • the sum of an update time Tw and a transmission time Tup can be called a cycle.
  • the lengths of each period of the relay device are the same, that is, the lengths of all update times Tw are the same, and the lengths of all transmission times Tup are the same.
  • the length of each cycle of the relay device may also be slightly different, for example, the length of the transmission time Tup may be adjusted to be Tup ⁇ t, where ⁇ t represents an adjustment amount.
  • the relay device within the update time, can establish a connection with the core network through the satellite device.
  • the relay device can establish a connection with the core network on the ground through the base station device installed on the satellite device, and the relay device can also establish a connection with the base station device on the ground through the satellite device, thereby establishing a connection with the core network on the ground .
  • the relay device can also perform signaling interaction with the user equipment it serves.
  • the user equipment to which the relay device has just been allocated may also establish a connection with the relay device, or the user equipment whose relay device has been updated may also establish a connection with the updated relay device. That is, during the update time, all transfers except data transfers can be performed.
  • the configuration unit 370 may determine the length of the update time according to the number of user equipment served by the relay device. Specifically, the more the number of user equipments served by the relay device, the longer the update time of the relay device may be.
  • the configuration unit 370 may determine the start time of each update time of the relay device according to the ephemeris of each satellite device. For example, the configuration unit 370 may determine the start time of each update time, so that there is a serviceable satellite device above the relay device within each update time. In this way, within the update time, the relay device can exchange information with the satellite device with high quality. Further, the electronic device 300 may send the start time of any update time to the relay device, so that the relay device may determine the start time of each update time according to the start time of any update time, the length of the update time, and the length of the transmission time. start time.
  • the start time of any update time may include the start time of the update time before the current time and the start time of the update time after the current time.
  • the start time of the update time sent by the electronic device 300 to the relay device may be the start time of the update time closest to the current time after the current time, that is, the start time of the next update time starting from the current time start time.
  • the configuration unit 370 may determine the length of the transmission time according to the energy consumption capability of the relay device. Specifically, the faster the energy consumption of the relay device is, the shorter the configuration unit 370 can configure the transmission time. In addition, the configuration unit 370 may also determine the length of the transmission time according to the ephemeris of each satellite device. For example, the configuration unit 370 may adjust the length of the transmission time, so that there is a serviceable satellite device above the relay device at the next update time.
  • the configuration unit 370 may configure the above parameters for each user equipment used as a relay device. Further, when the setting unit 360 sets the user equipment as a relay device, the configuration unit 370 may also configure the above parameters for the user equipment.
  • the electronic device 300 when the electronic device 300 sends to the user equipment an ordered set of candidate relay devices for each transmission power, the electronic device 300 may also send the user equipment the next The start time of the update time. In this way, the user equipment may attempt to connect to the candidate relay device at the starting time of the next update time of the candidate relay device.
  • the electronic device 300 may further include an update unit 380 configured to update the relay device within the update time of each relay device.
  • the electronic device 300 may establish a connection with the relay device. Further, the electronic device 300 may receive from the relay device the current energy of the relay device, the energy collection capability of the relay device, the current energy of each user equipment served by the relay device, and the energy of each user equipment served by the relay device from the relay device through the communication unit 330. Energy Harvesting Capabilities.
  • the relay device and all user equipment served by the relay device wake up from the sleep mode. Further, the relay device may broadcast an energy report notification to the user equipment, so that each user equipment reports the current energy value and energy collection capability to the relay device. In this way, the relay device can send the current energy and energy collection capability of each user equipment, as well as the current energy and energy collection capability of the relay device itself to the electronic device 300 .
  • the update unit 380 may group user equipment served by the relay device according to information received from the relay device, and determine a target relay device for each user equipment group. Further, the electronic device 300 may send the grouping result of the user equipment and the target relay device of each user equipment group to the relay device (for ease of distinction, the relay device is also called the source relay device) through the communication unit 330 .
  • the updating unit 380 may determine the target relay device from the user equipment served by the source relay device and meeting the conditions of the relay device and the source relay device.
  • there may be one or more target relay devices.
  • the update unit 380 may also determine the user equipments served by each target relay device, that is, group all the user equipments.
  • the electronic device 300 may further include a judging unit 390 for judging whether the user equipment satisfies the conditions of a relay device, that is, judging whether the user equipment can be used as a relay device. Further, the judging unit 390 can judge whether each user equipment served by the source relay device satisfies the requirements of the relay device, so that the update unit 380 can obtain the user equipment served by the source relay device that meets the requirements of the relay device and the source relay device Identify the target relay device in .
  • a judging unit 390 for judging whether the user equipment satisfies the conditions of a relay device, that is, judging whether the user equipment can be used as a relay device. Further, the judging unit 390 can judge whether each user equipment served by the source relay device satisfies the requirements of the relay device, so that the update unit 380 can obtain the user equipment served by the source relay device that meets the requirements of the relay device and the source relay device Identify the target relay device in .
  • the user equipment when the user equipment satisfies one or more of the following conditions, it is determined that the user equipment satisfies the condition of the relay device: 1) The connection quality between the user equipment and the satellite equipment is greater than the first Predetermined threshold; 2) The connection quality between the user equipment and a predetermined number of other user equipments is greater than the second predetermined threshold; 3) The cache size of the user equipment is greater than the third predetermined threshold; 4) The remaining time of the user equipment in a period of time in the future The energy is greater than a fourth predetermined threshold.
  • the relay device since the relay device needs to forward data between the user equipment and the satellite device, the user equipment serving as the relay device needs to have good connection quality with the satellite device. Further, since the relay device needs to provide services for the user equipment, it needs to have good connection quality with a predetermined number of other user equipments around it. In addition, because the relay device needs to cache the data from the user equipment, it needs to have enough cache space. Furthermore, the relay device needs to consume a large amount of energy, so it needs to have enough energy for a period of time in the future.
  • a period of time in the future may refer to the transmission time of the relay device, that is, a period of time before the arrival of the next update time of the relay device.
  • the judging unit 390 may determine according to the current energy value of the user equipment, the energy collected in a certain period of time in the future according to the energy collection capability of the user equipment, the energy consumed by sending data, and the energy consumed by receiving data.
  • the energy consumed by the user equipment's own circuit and the energy consumed by the user equipment's own circuit are used to determine the remaining energy of the user equipment in a certain period of time in the future. Further, in the case that the remaining energy is greater than the fourth predetermined threshold, the judging unit 390 may determine that the user equipment satisfies the above condition 4).
  • the remaining energy of the user equipment within a period of time in the future can be expressed as the following formula: E 0 +E g -N r ⁇ D r ⁇ -N t ⁇ D t ⁇ -E b.
  • E 0 represents the current energy value of the user equipment
  • E g represents the energy collected in a certain period of time in the future determined according to the energy harvesting capability of the user equipment
  • N r represents the average number of data reception times
  • D r represents each reception
  • represents the energy value per unit of data received when receiving data
  • N t represents the average number of times data is sent
  • D t represents the average amount of data sent each time
  • represents the energy consumed per unit of data when sending data Consumed energy value
  • E b represents the average energy consumed by the user equipment's own circuit, that is, the energy consumed when neither sending data nor receiving data.
  • the judging unit 390 may determine that the user equipment satisfies the above condition 4), where E th represents the fourth predetermined threshold.
  • the updating unit 380 may determine the target relay device from the user equipment served by the source relay device and meeting the conditions of the relay device and the source relay device. Further, the updating unit 380 may select the target relay device according to the remaining energy of each user equipment within a certain period of time in the future and the remaining energy of the source relay device within a certain period of time in the future. For example, the update unit 380 can calculate the remaining 0 of each user equipment and source relay device in a period of time in the future according to the formula E 0 +E g -N r ⁇ D r ⁇ -N t ⁇ D t ⁇ -E b Energy, so that the device with the largest remaining energy is selected as the target relay device.
  • the update unit 380 may determine that the target relay device is the source relay device, and the user equipment does not need to be grouped, or The user equipments are grouped into a group, and all user equipments are still served by the source relay.
  • the electronic device 300 may send the result that the packet does not need to be changed and the target relay device does not need to be changed to the source relay device, so that the source relay device broadcasts the information to each user equipment.
  • the update unit 380 may determine that the target relay device is the user equipment, and the other user equipment and the source relay device are still into a group to be served by the user equipment.
  • the electronic device 300 may send the result that the packet does not need to be changed and that the target relay device is the user equipment to the source relay device, so that the source relay device broadcasts the information to each user equipment. Afterwards, other user equipments try to connect with the target relay device. If the connection is successful, the target relay device will be served. If the connection fails, the electronic device 300 will be reported.
  • the electronic device 300 can determine an ordered set of candidate relay devices for the user equipment. It is used for the user equipment to select a relay device.
  • the update unit 380 may also determine the target relay device in combination with remaining energy and other parameters, and other parameters include but not limited to the connection quality between the user equipment and a predetermined number of surrounding user equipment, and the cache memory of the user equipment. size.
  • the update unit 380 determines that the connection quality between user equipment A and some other user equipments is good, and the cache size can support the data of this part of user equipments, and the remaining energy is large, and the connection quality between user equipment B and another part of other user equipments and sources
  • the connection quality of the relay device is better, and the cache size can support the other part of other user equipment and the source relay device, and the remaining energy is also relatively large
  • the update unit 380 can determine user equipment A as the target of a part of other user equipment
  • the relay device determines the user equipment B as the target relay device of another part of other user equipments and the source relay device. That is to say, some other user equipments are classified into one group, and another part of other user equipments and the source relay device are classified into another group.
  • the electronic device 300 may send the grouping result and the target relay devices of each group to the source relay device, so that the source relay device multicasts the target relay devices of the group to different groups. Afterwards, each user equipment attempts to connect with its respective target relay device. If the connection succeeds, the target relay device will serve it. If the connection fails, it will report to the electronic device 300. The electronic device 300 can determine the order of the candidate relay devices for the user equipment. The set is used for the user equipment to select a relay device.
  • the updating unit 380 may also determine the target relay device from user equipments that do not belong to the user equipment served by the source relay device. That is to say, the updating unit 380 may also set the source relay device and all user equipments to be served by user equipments of other groups. For example, the update unit 380 can calculate the remaining 0 of each user equipment and source relay device in a period of time in the future according to the formula E 0 +E g -N r ⁇ D r ⁇ -N t ⁇ D t ⁇ -E b Energy, and calculate the remaining energy of one or more user equipments from other groups in a period of time in the future, so as to select the equipment with the largest remaining energy as the target relay equipment.
  • the update unit 380 may also determine whether the transmission time of the relay device needs to be changed. For example, the update unit 380 may determine whether the transmission time of the target relay device is the same as the transmission time of the source relay device. If not, the electronic device 300 may also send the transmission time of the target relay device to the source relay device, so that the source relay device forwards it to the user equipment. Further, in the case that the target relay device is different from the source relay device, the electronic device 300 may also send the start time of the next update time of the target relay device to the source relay device, so that the source relay device The information is forwarded to the user device.
  • the user equipment may try to establish a connection with the target relay device at the start time of the next update time of the target relay device.
  • the electronic device 300 may also send the weather conditions associated with each energy source to the source relay device, so that the source relay device forwards the information to the user device.
  • FIG. 9 is a signaling flow diagram illustrating a process of updating a user equipment group and a relay device according to an embodiment of the present disclosure.
  • the gNB can be implemented by an electronic device 300 , and UE1 and UE2 perform communication with the satellite device through a relay device.
  • step S901 when the update time of the relay device starts, the relay device, UE1 and UE2 wake up.
  • the relay device connects to the gNB.
  • the relay device sends an energy report notification by broadcast.
  • UE1 and UE2 respectively report current energy and energy collection capability to the relay device.
  • step S905 the relay device sends the current energy and energy collection capability of the relay device, the current energy and energy collection capability of UE1, and the current energy and energy collection capability of UE2 to the gNB.
  • the gNB updates the user equipment combination target relay device according to the received information.
  • step S907 the gNB sends the updated user equipment combination target relay device to the relay device.
  • step S908 the relay device broadcasts or multicasts the updated user equipment combination target relay device to the user equipment. All the steps in Figure 9 are completed within the update time of the relay device. As shown in FIG. 9 , during the update time of the relay device, the gNB can update the user equipment group and the relay device.
  • the relay device can periodically enter the update time and transmission time in turn, and because it has a better connection quality with the satellite device during the update time, it can communicate with the satellite device and the network side device at a high speed. To interact with quality, the relay device can transmit data between the satellite device or the user device within the transmission time. Further, within the update time, the electronic device 300 can update the target relay device and the user group according to the remaining energy of each device within a certain period of time in the future, so that the device with sufficient energy is always selected as the relay device to better Serving user equipment. In addition, the electronic device 300 can also send the weather conditions associated with the energy source to the relay device, so that each user equipment can predict its own energy according to such information, so as to change the transmission power according to the energy to save energy .
  • FIG. 10 is a block diagram showing a structure of a user equipment 1000 in a wireless communication system according to an embodiment of the present disclosure.
  • the user equipment 1000 may include a communication unit 1010 , a connection unit 1020 and a relay device determination unit 1030 .
  • each unit of the user equipment 1000 may be included in the processing circuit. It should be noted that the user equipment 1000 may include not only one processing circuit, but may also include multiple processing circuits. Further, the processing circuitry may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be realized by the same physical entity.
  • the user equipment 1000 may receive an ordered set of candidate relay devices from the network side device through the communication unit 1010, wherein the ordered set of candidate relay devices is based on one or more candidate relay devices
  • the energy harvesting capability is generated by sorting one or more candidate relay devices.
  • the candidate relay device converts the collected energy into electrical energy to power the candidate relay device.
  • connection unit 1020 may sequentially connect to the candidate relay devices in the ordered set of candidate relay devices according to the sequence in the ordered set of candidate relay devices until it connects to a candidate relay device until a successful connection is made.
  • the relay device determining unit 1030 may determine a successfully connected candidate relay device as a relay device.
  • the user equipment 1000 may use the relay device determined by the relay device determining unit 1030 to communicate with the satellite device through the communication unit 1010 .
  • the user equipment 1000 can use the relay device to communicate with the satellite device, thereby saving the energy of the user equipment 1000 .
  • the relay device is determined from the ordered set of candidate relay devices, and the ordered set of candidate relay devices is generated by sorting the candidate relay devices according to the energy harvesting capabilities of the candidate relay devices, so it can be Make sure that the selected relay device has enough power.
  • each ordered set of candidate relay devices may corresponds to one transmission of the user equipment 1000. power. That is to say, the user equipment 1000 may receive multiple ordered sets of candidate relay devices and the transmission power corresponding to each ordered set.
  • the user equipment 1000 may determine actual transmission power according to its own actual energy. Specifically, the greater the actual energy of the user equipment is, the greater the transmission power of the user equipment 1000 is. In this way, the user equipment 1000 can adjust the amount of transmission power according to the amount of energy, thereby saving energy consumption.
  • the user equipment 1000 may further include a set determining unit 1040 configured to determine an ordered set of candidate relay devices corresponding to the actual transmission power according to the actual transmission power of the user equipment.
  • the set determination unit 1040 may determine the transmission power that is closest to the actual transmission power and less than the actual transmission power, and determine the ordered set of candidate relay devices corresponding to the transmission power as the candidate relay device corresponding to the actual transmission power.
  • An ordered collection of relay devices For example, in the example shown in FIG. 6 , the ordered set of candidate relay devices corresponding to P1 is A1, and the ordered set of candidate relay devices corresponding to P2 is A2.
  • the set determining unit 1040 can determine the ordered set A1; when the actual transmission power of the user equipment 1000 is greater than or equal to P2 and less than P3 (located outside of P2, not shown), the set determining unit 1040 can determine Ordered set A2.
  • the user equipment 1000 may also receive the location of each candidate relay device from the network side device through the communication unit 1010 .
  • the user equipment 1000 may also receive the start time of the next update time of each candidate relay device from the network side device through the communication unit 1010 .
  • each candidate relay device periodically enters the update time and transmission time.
  • the candidate relay device establishes a connection with the core network through the satellite device, and during the transmission time, the candidate relay device communicates with the user The device communicates or the candidate relay device communicates with the satellite device.
  • connection unit 1020 may sequentially communicate with the candidate relay devices in the ordered set of candidate relay devices in the order of the candidate relay device in the next update of the candidate relay device according to the order in the candidate relay device ordered set.
  • the connection is made at the start time of the time until a successful connection is made with a candidate relay device.
  • the user equipment 1000 may try to connect with UE3 at the start time of the next update time of UE3. If the connection between the user equipment 1000 and UE3 fails, the user equipment 1000 may try to connect with UE4 at the starting time of the next update time of UE4. If the connection between the user equipment 1000 and UE4 is successful, the relay device determining unit 1030 may determine UE4 as the relay device of the user equipment 1000 without connecting with UE7 again.
  • the user equipment 1000 may further include an information generating unit 1050 configured to generate various information.
  • the user equipment 1000 may generate information that needs to be reported to the network-side device when it just accesses the network or wakes up from a sleep state.
  • the information may include one or more of the following parameters: the location of the user equipment, the current energy of the user equipment, the energy source of the user equipment, the mapping relationship between the energy of the user equipment and the transmission power, the antenna parameters of the user equipment, the user equipment The size of the data packet of the device, the sending rate of the data packet of the user equipment, the time interval of the data packet of the user equipment, and the requirement of the user equipment for transmission delay.
  • the network side device can use the foregoing information to determine an ordered set of candidate relay devices for the user equipment 1000 .
  • the user equipment 1000 may not receive an ordered set of candidate relay devices from the network-side device, but receive information indicating that the user equipment 1000 is used as a relay device from the network-side device through the communication unit 1010 . Further, the user equipment 1000 may also receive the update time, the transmission time, and the start time of the first update time of the user equipment from the network side device through the communication unit 1010 .
  • the start time of the first update time is preferably the start time of the next update time starting from the current time.
  • the user equipment 1000 may further include a processing unit 1060 configured to periodically enter the update time according to the update time sent by the network side device, the transmission time, and the start time of the first update time. time and transmission time.
  • a processing unit 1060 configured to periodically enter the update time according to the update time sent by the network side device, the transmission time, and the start time of the first update time. time and transmission time.
  • the user equipment 1000 establishes a connection with the core network through the satellite equipment, and during the transmission time, the user equipment 1000 communicates with other user equipment served by it or the user equipment 1000 communicates with the satellite equipment.
  • the user equipment 1000 can wake up from the sleep state at the beginning of each update time of the relay device, and receive energy from the relay device through the communication unit 1010 Escalation notice. Further, the information generation unit 1050 may generate current energy and energy collection capability information of the user equipment 1000, so that the user equipment 1000 sends the current energy and energy collection capability of the user equipment 1000 to the relay device through the communication unit 1010.
  • the user equipment 1000 may also receive a target relay device from the relay device through the communication unit 1010 . Further, the connection unit 1020 may connect with the target relay device, so that the original relay device no longer serves the user equipment 1000, but the target relay device serves the user equipment 1000.
  • the user equipment 1000 may also receive the start time of the next update time of the target relay device from the relay device through the communication unit 1010, so that the user equipment 1000 may receive the start time of the next update time of the target relay device Start time to try to connect with this target relay device. If the connection between the user equipment 1000 and the target relay device is unsuccessful, the user equipment 1000 can send the information that the connection is unsuccessful to the network-side device, so that the ordered set of candidate relay devices can be received from the network-side device, and then the relay The device determination unit 1030 re-determines the relay device.
  • the user equipment 1000 can also receive the weather conditions associated with the energy source of the user equipment 1000 from the relay device through the communication unit 1010, so that the user equipment 1000 can use this information to predict its own energy change, so as to timely Adjust the transmit power.
  • the relay device can be used to communicate with the satellite device, thereby saving energy.
  • the user equipment 1000 may report information to the network side device for the network side device to determine the ordered set of candidate relay devices.
  • the relay device changes, the user equipment 1000 can connect to the target relay device according to the information of the source relay device, so as to ensure that the user equipment can always be connected to a relay device with sufficient energy.
  • FIG. 11 is a flowchart illustrating a wireless communication method performed by an electronic device 300 as a network-side device in a wireless communication system according to an embodiment of the present disclosure.
  • step S1110 one or more candidate relay devices of the user equipment are determined.
  • the candidate relay device converts the collected energy into electrical energy to power the candidate relay device.
  • step S1120 the one or more candidate relay devices are sorted according to the energy harvesting capabilities of the one or more candidate relay devices, so as to generate an ordered set of candidate relay devices.
  • step S1130 the ordered set of candidate relay devices is sent to the user equipment, so that the user equipment determines the relay device according to the ordered set of candidate relay devices and uses the relay device to communicate with the satellite device .
  • the wireless communication method further includes: predicting an energy change curve indicating that the energy of the user equipment changes with time within a predetermined time in the future; determining the transmission power of the user equipment according to the energy change curve; and determining the transmission power of the user equipment according to the transmission power of the user equipment One or more candidate relay devices, and the user equipment converts the collected energy into electrical energy to power the user equipment.
  • the wireless communication method further includes: for each of the one or more transmission powers of the user equipment, determining one or more candidate relay devices for the transmission power.
  • predicting the energy change curve includes: predicting the energy change curve according to the current energy of the user equipment, changes in energy collection capabilities, and changes in energy consumption capabilities.
  • determining the change in the energy harvesting capability of the user equipment includes: determining the change in the energy harvesting capability of the user equipment according to one or more of the following parameters: the location of the user equipment, the energy source of the user equipment, and the relationship between the user equipment The weather conditions associated with the energy source, the antenna parameters of the user equipment, and the energy harvesting capability of the user equipment.
  • determining the change in the energy consumption capability of the user equipment includes: determining the change in the energy consumption capability of the user equipment according to one or more of the following parameters: the size of the data packet of the user equipment, the transmission of the data packet of the user equipment rate, the time interval of data packets of the user equipment, and the requirements of the user equipment for transmission delay.
  • determining the transmission power of the user equipment includes: determining the transmission power of the user equipment according to an energy change curve of the user equipment and a mapping relationship between energy and transmission power of the user equipment.
  • determining one or more candidate relay devices of the user equipment according to the transmission power of the user equipment includes: determining a relay device capable of receiving information sent by the user equipment according to the transmission power of the user equipment; and being able to receive The relay device of the information sent by the user equipment is determined as a candidate relay device of the user equipment.
  • the wireless communication method further includes: if there is no relay device capable of receiving the information sent by the user equipment, determining the user equipment as a relay device.
  • sorting the one or more candidate relay devices includes: further sorting the one or more candidate relay devices according to one or more of the following parameters of the one or more candidate relay devices: the distance between the candidate relay and the user equipment, the weather conditions associated with the energy source of the candidate relay, the cache size of the candidate relay, the number of user equipment served by the candidate relay, the distance between the candidate relay and The quality of the connection between satellite devices.
  • the wireless communication method further includes: setting the update time, the transmission time, and the start time of the first update time for each relay device, so that the relay device periodically enters the update time and transmission time, wherein, in the update During the transmission time, the relay device establishes a connection with the core network through the satellite device, and during the transmission time, the relay device communicates with the user equipment or the relay device communicates with the satellite device.
  • the wireless communication method further includes: determining the length of the update time according to the number of user equipment served by the relay device.
  • the wireless communication method further includes: determining the length of the transmission time according to the energy consumption capability of the relay device and the ephemeris of each satellite device.
  • the wireless communication method further includes: sending the start time of the next update time of each candidate relay device to the user equipment.
  • the wireless communication method further includes: establishing a connection with the relay device within the update time of each relay device; receiving from the relay device the current energy of the relay device, the energy collection capability of the relay device, and the relay device service The current energy of each user equipment, the energy collection capability of each user equipment served by the relay device; group the user equipment served by the relay device according to the information received from the relay device, and determine the target relay device of each user equipment group ; and sending the grouping result of the user equipment and the target relay device of each user equipment group to the relay device.
  • grouping the user equipment served by the relay device and determining the target relay device of each user equipment group includes: determining the target relay device from the user equipment served by the relay device that meets the conditions of the relay device and the relay device Relay equipment, and in the case that the user equipment satisfies one or more of the following conditions, it is determined that the user equipment meets the conditions of the relay equipment: the connection quality between the user equipment and the satellite equipment is greater than the first predetermined threshold; the user equipment and the satellite equipment The connection quality between the predetermined number of other user equipments is greater than a second predetermined threshold; the cache size of the user equipment is greater than a third predetermined threshold; the remaining energy of the user equipment in a period of time in the future is greater than a fourth predetermined threshold.
  • grouping the user equipment served by the relay device and determining the target relay device of each user equipment group includes: determining the target relay device from user equipment not belonging to the user equipment served by the relay device.
  • the subject for performing the above method may be the electronic device 300 according to the embodiment of the present disclosure, so all the foregoing embodiments about the electronic device 300 are applicable here.
  • FIG. 12 is a flowchart illustrating a wireless communication method performed by a user equipment 1000 in a wireless communication system according to an embodiment of the present disclosure.
  • step S1210 an ordered set of candidate relay devices is received from the network side device, wherein the ordered set of candidate relay devices is based on the energy harvesting capability of one or more candidate relay devices.
  • One or more candidate relay devices are sorted and generated. Further, the candidate relay device converts the collected energy into electrical energy to power the candidate relay device.
  • step S1220 according to the order in the ordered set of candidate relay devices, connect with the candidate relay devices in the ordered set of candidate relay devices in sequence until a successful connection is made to a candidate relay device , and determine a successfully connected candidate relay device as a relay device.
  • step S1230 use the relay device to communicate with the satellite device.
  • the wireless communication method further includes: receiving an ordered set of one or more candidate relay devices from the network side device, where each ordered set of candidate relay devices corresponds to a transmit power of the user equipment; The actual transmission power determines an ordered set of candidate relay devices corresponding to the actual transmission power.
  • the wireless communication method further includes: sending one or more of the following parameters to the network side device: the location of the user equipment, the current energy of the user equipment, the energy source of the user equipment, the difference between the energy of the user equipment and the transmission power
  • the wireless communication method further includes: receiving the start time of the next update time of each candidate relay device from the network side device;
  • the candidate relay devices in the ordered set of are connected at the starting time of the next update time of the candidate relay device until they are successfully connected with a candidate relay device.
  • Each candidate relay device periodically enters the update time and transmission time, wherein, within the update time, the candidate relay device establishes a connection with the core network through the satellite device, and within the transmission time, the candidate relay device communicates with the user equipment or the candidate The relay device communicates with the satellite device.
  • the wireless communication method further includes: receiving from the network-side device information indicating that the user equipment is used as a relay device; receiving from the network-side device the update time, transmission time, and start time of the first update time of the user equipment; And periodically enter the update time and transmission time, wherein, within the update time, the user equipment establishes a connection with the core network through the satellite equipment, and within the transmission time, the user equipment communicates with other user equipment served by it or the user equipment communicates with the satellite equipment .
  • the wireless communication method further includes: receiving an energy report notification from the relay device; and sending the current energy and energy collection capability of the user equipment to the relay device.
  • the wireless communication method further includes: receiving a target relay device from the relay device; and connecting with the target relay device.
  • the subject that performs the above method may be the user equipment 1000 according to the embodiments of the present disclosure, so all the foregoing embodiments about the user equipment 1000 are applicable here.
  • the network side equipment can be implemented as any type of base station equipment, such as macro eNB and small eNB, and can also be implemented as any type of gNB (base station in the 5G system).
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, micro eNB, and home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • a base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at places different from the main body.
  • RRHs remote radio heads
  • the user equipment may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle terminal such as a car navigation device.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned user equipment.
  • FIG. 13 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • An eNB 1300 includes one or more antennas 1310 and base station equipment 1320.
  • the base station apparatus 1320 and each antenna 1310 may be connected to each other via an RF cable.
  • Each of the antennas 1310 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a Multiple Input Multiple Output (MIMO) antenna, and is used for the base station apparatus 1320 to transmit and receive wireless signals.
  • eNB 1300 may include multiple antennas 1310 .
  • multiple antennas 1310 may be compatible with multiple frequency bands used by eNB 1300.
  • FIG. 13 shows an example in which the eNB 1300 includes multiple antennas 1310, the eNB 1300 may also include a single antenna 1310.
  • the base station device 1320 includes a controller 1321 , a memory 1322 , a network interface 1323 and a wireless communication interface 1325 .
  • the controller 1321 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1320 .
  • the controller 1321 generates a data packet according to data in a signal processed by the wireless communication interface 1325 and transfers the generated packet via the network interface 1323 .
  • the controller 1321 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet.
  • the controller 1321 may have a logical function to perform control such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1322 includes RAM and ROM, and stores programs executed by the controller 1321 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1323 is a communication interface for connecting the base station apparatus 1320 to the core network 1324 .
  • the controller 1321 may communicate with a core network node or another eNB via a network interface 1323 .
  • eNB 1300 and core network nodes or other eNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1323 can also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1323 is a wireless communication interface, the network interface 1323 may use a higher frequency band for wireless communication than that used by the wireless communication interface 1325 .
  • the wireless communication interface 1325 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 1300 via the antenna 1310.
  • Wireless communication interface 1325 may generally include, for example, a baseband (BB) processor 1326 and RF circuitry 1327 .
  • the BB processor 1326 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
  • L1 Medium Access Control
  • RLC Radio Link Control
  • Packet Data Convergence Protocol Various types of signal processing for PDCP
  • the BB processor 1326 may have a part or all of the logic functions described above.
  • the BB processor 1326 may be a memory storing a communication control program, or a module including a processor configured to execute a program and related circuits.
  • the update program can cause the function of the BB processor 1326 to change.
  • the module may be a card or a blade inserted into a slot of the base station device 1320 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 1327 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1310 .
  • the wireless communication interface 1325 may include multiple BB processors 1326 .
  • multiple BB processors 1326 may be compatible with multiple frequency bands used by eNB 1300.
  • the wireless communication interface 1325 may include a plurality of RF circuits 1327 .
  • multiple RF circuits 1327 may be compatible with multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 1325 includes a plurality of BB processors 1326 and a plurality of RF circuits 1327 , the wireless communication interface 1325 may also include a single BB processor 1326 or a single RF circuit 1327 .
  • FIG. 14 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • eNB 1430 includes one or more antennas 1440, base station equipment 1450 and RRH 1460.
  • the RRH 1460 and each antenna 1440 may be connected to each other via RF cables.
  • the base station apparatus 1450 and the RRH 1460 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1440 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the RRH 1460 to transmit and receive wireless signals.
  • eNB 1430 may include multiple antennas 1440.
  • multiple antennas 1440 may be compatible with multiple frequency bands used by eNB 1430.
  • FIG. 14 shows an example in which the eNB 1430 includes multiple antennas 1440, the eNB 1430 may also include a single antenna 1440.
  • the base station device 1450 includes a controller 1451 , a memory 1452 , a network interface 1453 , a wireless communication interface 1455 and a connection interface 1457 .
  • the controller 1451, the memory 1452, and the network interface 1453 are the same as the controller 1321, the memory 1322, and the network interface 1323 described with reference to FIG. 13 .
  • the wireless communication interface 1455 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1460 via the RRH 1460 and the antenna 1440.
  • Wireless communication interface 1455 may generally include, for example, BB processor 1456 .
  • the BB processor 1456 is the same as the BB processor 1326 described with reference to FIG. 13 except that the BB processor 1456 is connected to the RF circuit 1464 of the RRH 1460 via the connection interface 1457.
  • the wireless communication interface 1455 may include multiple BB processors 1456 .
  • multiple BB processors 1456 may be compatible with multiple frequency bands used by eNB 1430.
  • FIG. 14 shows an example in which the wireless communication interface 1455 includes a plurality of BB processors 1456 , the wireless communication interface 1455 may also include a single BB processor 1456 .
  • connection interface 1457 is an interface for connecting the base station device 1450 (wireless communication interface 1455) to the RRH 1460.
  • the connection interface 1457 can also be a communication module for communication in the above-mentioned high-speed line for connecting the base station device 1450 (wireless communication interface 1455) to the RRH 1460.
  • the RRH 1460 includes a connection interface 1461 and a wireless communication interface 1463.
  • connection interface 1461 is an interface for connecting the RRH 1460 (wireless communication interface 1463) to the base station device 1450.
  • the connection interface 1461 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1463 transmits and receives wireless signals via the antenna 1440 .
  • Wireless communication interface 1463 may generally include RF circuitry 1464, for example.
  • the RF circuit 1464 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1440 .
  • the wireless communication interface 1463 may include a plurality of RF circuits 1464 .
  • multiple RF circuits 1464 may support multiple antenna elements.
  • FIG. 14 shows an example in which the wireless communication interface 1463 includes a plurality of RF circuits 1464 , the wireless communication interface 1463 may also include a single RF circuit 1464 .
  • the updating unit 380 and the judging unit 390 may be implemented by the controller 1321 and/or the controller 1451, and the communication unit 330 described in FIG. 1463 realized. At least part of the functions may also be implemented by the controller 1321 and the controller 1451 .
  • the controller 1321 and/or the controller 1451 may perform determining candidate relay devices, sorting candidate relay devices, predicting energy change curves, determining transmission power, and setting user equipment by executing corresponding instructions stored in the memory.
  • For the relay device configure the update time, transmission time and the start time of the first update time for the relay device, update the user equipment group and the relay device, and determine whether the user equipment can be used as a relay device.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a smartphone 1500 to which the technology of the present disclosure can be applied.
  • the smartphone 1500 includes a processor 1501, a memory 1502, a storage device 1503, an external connection interface 1504, a camera 1506, a sensor 1507, a microphone 1508, an input device 1509, a display device 1510, a speaker 1511, a wireless communication interface 1512, one or more Antenna switch 1515 , one or more antennas 1516 , bus 1517 , battery 1518 , and auxiliary controller 1519 .
  • the processor 1501 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 1500 .
  • the memory 1502 includes RAM and ROM, and stores data and programs executed by the processor 1501 .
  • the storage device 1503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1504 is an interface for connecting an external device, such as a memory card and a universal serial bus (USB) device, to the smartphone 1500 .
  • USB universal serial bus
  • the imaging device 1506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1507 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1508 converts sound input to the smartphone 1500 into an audio signal.
  • the input device 1509 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 1510, a keypad, a keyboard, buttons, or switches, and receives operations or information input from the user.
  • the display device 1510 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 1500 .
  • the speaker 1511 converts an audio signal output from the smartphone 1500 into sound.
  • the wireless communication interface 1512 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1512 may generally include, for example, a BB processor 1513 and an RF circuit 1514 .
  • the BB processor 1513 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1514 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1516 .
  • the wireless communication interface 1512 may be a chip module on which a BB processor 1513 and an RF circuit 1514 are integrated. As shown in FIG.
  • the wireless communication interface 1512 may include multiple BB processors 1513 and multiple RF circuits 1514 .
  • FIG. 15 shows an example in which the wireless communication interface 1512 includes a plurality of BB processors 1513 and a plurality of RF circuits 1514 , the wireless communication interface 1512 may also include a single BB processor 1513 or a single RF circuit 1514 .
  • the wireless communication interface 1512 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to a cellular communication scheme.
  • the wireless communication interface 1512 may include a BB processor 1513 and an RF circuit 1514 for each wireless communication scheme.
  • Each of the antenna switches 1515 reselects the connection destination of the antenna 1516 among a plurality of circuits included in the wireless communication interface 1512 , such as circuits for different wireless communication schemes.
  • Each of the antennas 1516 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 1512 to transmit and receive wireless signals.
  • smartphone 1500 may include multiple antennas 1516 . While FIG. 15 shows an example in which the smartphone 1500 includes multiple antennas 1516 , the smartphone 1500 may include a single antenna 1516 as well.
  • the smartphone 1500 may include an antenna 1516 for each wireless communication scheme.
  • the antenna switch 1515 may be omitted from the configuration of the smartphone 1500 .
  • the bus 1517 connects the processor 1501, memory 1502, storage device 1503, external connection interface 1504, camera device 1506, sensor 1507, microphone 1508, input device 1509, display device 1510, speaker 1511, wireless communication interface 1512, and auxiliary controller 1519 to each other. connect.
  • the battery 1518 provides power to the various blocks of the smartphone 1500 shown in FIG. 15 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 1519 operates minimum necessary functions of the smartphone 1500, for example, in a sleep mode.
  • connection unit 1020, the relay device determination unit 1030, the set determination unit 1040, the information generation unit 1050, and the processing unit 1060 described in FIG. 10 may be controlled by the processor 1501 or auxiliary 1519, and by using the communication unit 1010 described in FIG. 10 can be realized by the wireless communication interface 1512. At least part of the functions may also be implemented by the processor 1501 or the auxiliary controller 1519 .
  • the processor 1501 or the auxiliary controller 1519 may execute the instructions stored in the memory 1502 or the storage device 1503 to perform connection with the relay device, determine the relay device, select an ordered set of candidate relay devices, generate information, Periodic access to update time and transmit time functions.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a car navigation device 1620 to which the technology of the present disclosure can be applied.
  • Car navigation device 1620 includes processor 1621, memory 1622, global positioning system (GPS) module 1624, sensor 1625, data interface 1626, content player 1627, storage medium interface 1628, input device 1629, display device 1630, speaker 1631, wireless communication interface 1633 , one or more antenna switches 1636 , one or more antennas 1637 , and battery 1638 .
  • GPS global positioning system
  • the processor 1621 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 1620 .
  • the memory 1622 includes RAM and ROM, and stores data and programs executed by the processor 1621 .
  • the GPS module 1624 measures the location (such as latitude, longitude, and altitude) of the car navigation device 1620 using GPS signals received from GPS satellites.
  • Sensors 1625 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1626 is connected to, for example, the in-vehicle network 1641 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 1627 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 1628 .
  • the input device 1629 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1630, and receives an operation or information input from a user.
  • the display device 1630 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1631 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 1633 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1633 may generally include, for example, a BB processor 1634 and an RF circuit 1635 .
  • the BB processor 1634 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1635 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1637 .
  • the wireless communication interface 1633 can also be a chip module on which the BB processor 1634 and the RF circuit 1635 are integrated. As shown in FIG.
  • the wireless communication interface 1633 may include multiple BB processors 1634 and multiple RF circuits 1635 .
  • FIG. 16 shows an example in which the wireless communication interface 1633 includes a plurality of BB processors 1634 and a plurality of RF circuits 1635
  • the wireless communication interface 1633 may also include a single BB processor 1634 or a single RF circuit 1635 .
  • the wireless communication interface 1633 may support another type of wireless communication scheme, such as a short-distance wireless communication scheme, a near field communication scheme, and a wireless LAN scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 1633 may include a BB processor 1634 and an RF circuit 1635 for each wireless communication scheme.
  • Each of the antenna switches 1636 reselects the connection destination of the antenna 1637 among a plurality of circuits included in the wireless communication interface 1633 , such as circuits for different wireless communication schemes.
  • Each of the antennas 1637 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a MIMO antenna, and is used for the wireless communication interface 1633 to transmit and receive wireless signals.
  • the car navigation device 1620 may include a plurality of antennas 1637 .
  • FIG. 16 shows an example in which the car navigation device 1620 includes a plurality of antennas 1637 , the car navigation device 1620 may also include a single antenna 1637 .
  • the car navigation device 1620 may include an antenna 1637 for each wireless communication scheme.
  • the antenna switch 1636 can be omitted from the configuration of the car navigation device 1620 .
  • the battery 1638 supplies power to the various blocks of the car navigation device 1620 shown in FIG. 16 via feeder lines, which are partially shown as dotted lines in the figure.
  • the battery 1638 accumulates electric power supplied from the vehicle.
  • connection unit 1020, the relay device determination unit 1030, the set determination unit 1040, the information generation unit 1050 and the processing unit 1060 described in FIG. 10 may be implemented by the processor 1621, And the communication unit 1010 described by using FIG. 10 can be realized by the wireless communication interface 1633 . At least part of the functions may also be implemented by the processor 1621.
  • the processor 1621 may execute the instructions stored in the memory 1622 to perform connection with the relay device, determine the relay device, select an ordered set of candidate relay devices, generate information, periodically enter the update time and transmission time. Function.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1640 including one or more blocks in a car navigation device 1620 , an in-vehicle network 1641 , and a vehicle module 1642 .
  • the vehicle module 1642 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 1641 .
  • the units shown in dotted line boxes in the functional block diagrams shown in the accompanying drawings all indicate that the functional units are optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to realize the desired function .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be respectively implemented by separate devices.
  • one of the above functions may be realized by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in the steps of time-series processing, needless to say, the order can be appropriately changed.

Abstract

本公开涉及电子设备、用户设备、无线通信方法和存储介质。根据本公开的电子设备包括处理电路,被配置为:确定用户设备的一个或多个候选中继设备;根据一个或多个候选中继设备的能量收集能力对一个或多个候选中继设备进行排序,以生成候选中继设备的有序集合;以及将候选中继设备的有序集合发送至用户设备,以用于用户设备根据候选中继设备的有序集合确定中继设备并利用中继设备与卫星设备进行通信,其中,候选中继设备将收集的能量转换为电能以为候选中继设备供电。使用根据本公开的电子设备、用户设备、无线通信方法和存储介质,在包括采用能量收集的方式供应电能的用户设备的NTN中,可以减小信令开销、节约用户设备的能量。

Description

电子设备、用户设备、无线通信方法和存储介质
本申请要求于2021年8月10日提交中国专利局、申请号为202110913959.4、发明名称为“电子设备、用户设备、无线通信方法和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、用户设备、无线通信方法和存储介质。更具体地,本公开涉及一种作为无线通信系统中的网络侧设备的电子设备、一种无线通信系统中的用户设备、一种由无线通信系统中的网络侧设备执行的无线通信方法、一种由无线通信系统中的用户设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
在NTN(Non-Terrestrial Network,非地面网络)中,很多用户设备产生的数据包比较小并且不是特别紧急,因此能够忍受较大的时延。用户设备每次产生数据就会立刻传输给卫星设备,这样会消耗很多的信令资源和能量。此外,在位置相近的多个用户设备同时传输数据的情况下,可能相互干扰,从而影响传输的质量。
另一方面,在没有电力供应的物联网中,用户设备可以采用能量收集的方式供应电能。在这样的网络中,每一个用户设备的可用电能随着用户设备的能量收集能力和能量来源的条件动态变化。
因此,有必要提出一种技术方案,以在包括采用能量收集的方式供应电能的用户设备的NTN中,减小信令开销,节约用户设备的能量。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、用户设备、无线通信方法和 存储介质,以在包括采用能量收集的方式供应电能的用户设备的NTN中,减小信令开销,节约用户设备的能量。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:确定用户设备的一个或多个候选中继设备;根据所述一个或多个候选中继设备的能量收集能力对所述一个或多个候选中继设备进行排序,以生成候选中继设备的有序集合;以及将所述候选中继设备的有序集合发送至所述用户设备,以用于所述用户设备根据所述候选中继设备的有序集合确定中继设备并利用所述中继设备与卫星设备进行通信,其中,所述候选中继设备将收集的能量转换为电能以为所述候选中继设备供电。
根据本公开的另一方面,提供了一种用户设备,包括处理电路,被配置为:从网络侧设备接收候选中继设备的有序集合,其中,所述候选中继设备的有序集合是根据一个或多个候选中继设备的能量收集能力对所述一个或多个候选中继设备进行排序生成的;按照所述候选中继设备的有序集合中的顺序,依次与所述候选中继设备的有序集合中的候选中继设备进行连接,直到与一个候选中继设备成功连接为止,将成功连接的候选中继设备确定为中继设备;以及利用所述中继设备与卫星设备进行通信,其中,所述候选中继设备将收集的能量转换为电能以为所述候选中继设备供电。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:确定用户设备的一个或多个候选中继设备;根据所述一个或多个候选中继设备的能量收集能力对所述一个或多个候选中继设备进行排序,以生成候选中继设备的有序集合;以及将所述候选中继设备的有序集合发送至所述用户设备,以用于所述用户设备根据所述候选中继设备的有序集合确定中继设备并利用所述中继设备与卫星设备进行通信,其中,所述候选中继设备将收集的能量转换为电能以为所述候选中继设备供电。
根据本公开的另一方面,提供了一种由用户设备执行的无线通信方法,包括:从网络侧设备接收候选中继设备的有序集合,其中,所述候选中继设备的有序集合是根据一个或多个候选中继设备的能量收集能力对所述一个或多个候选中继设备进行排序生成的;按照所述候选中继设备的有序集合中的顺序,依次与所述候选中继设备的有序集合中的候选中继设备进行连接,直到与一个候选中继设备成功连接为止,将成功连接的候选中继设备确定为中继设备;以及利用所述中继设备与卫星设备进行通信,其中,所述候选中继设备将收集的能量转换为电能以为所述候选中继设备 供电。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
根据本公开的另一方面,提供了一种计算机程序,所述计算机程序当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、用户设备、无线通信方法和计算机可读存储介质,电子设备能够根据能量收集能力对候选中继设备进行排序,以用于用户设备确定中继设备从而利用中继设备与卫星设备进行通信。这样一来,用户设备可以利用中继设备与卫星设备进行通信,从而减少了用户设备的能量消耗。此外,中继设备需要为多个用户设备进行数据转发,因此需要的能量较多,由于中继设备是根据能量收集能力确定出来的,因此可以确保选择的中继设备的能量收集能力较好。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的应用场景的示意图;
图2是示出根据本公开的实施例的用户设备的能量随时间变化的曲线图;
图3是示出根据本公开的实施例的作为网络侧设备的电子设备的配置的示例的框图;
图4是示出根据本公开的实施例的用户设备利用中继设备与卫星设备进行通信的场景的示意图;
图5是示出根据本公开的实施例的能量变化曲线的示意图;
图6是示出根据本公开的实施例的根据发送功率确定候选中继设备的过程的示意图;
图7是示出根据本公开的实施例的确定用户设备的中继设备的过程的信令流程图;
图8是示出根据本公开的实施例的中继设备的更新时间和传输时间的示意图;
图9是示出根据本公开的实施例的更新用户设备组和中继设备的过程的信令流程图;
图10是示出根据本公开的实施例的用户设备的配置的示例的框图;
图11是示出根据本公开的实施例的由作为网络侧设备的电子设备执行的无线通信方法的流程图;
图12是示出根据本公开的实施例的由用户设备执行的无线通信方法的流程图;
图13是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图14是示出eNB的示意性配置的第二示例的框图;
图15是示出智能电话的示意性配置的示例的框图;以及
图16是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实 施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.网络侧设备的配置示例;
3.用户设备的配置示例;
4.方法实施例;
5.应用示例。
<1.场景的描述>
图1是示出根据本公开的实施例的应用场景的示意图。如图1所示,无线通信系统可以包括卫星设备和多个用户设备。其中,用户设备可以与卫星设备直接进行通信,用户设备之间也可以进行D2D通信。
根据本公开的实施例,在该无线通信系统中,每个用户设备都可以进行能量收集,从而将收集的能量转换为电能以为该用户设备进行供电。能量可以包括太阳能、风能、潮汐能、地热能等一切能够转换为电能的能量。
根据本公开的实施例,由于用户设备的能量收集能力、用户设备的位置、用户设备的能量来源、与用户设备的能量来源相关联的天气条件、用户设备的天线参数等不同,因此各个用户设备能量收集的速度不同。此外,由于用户设备的数据包的大小、数据包的发送速率、数据包的时间间隔、对传输的实验要求不同,因此各个用户设备能量消耗的速度不同。因此,各个用户设备的能量随时间变化的曲线可能不同。
图2是示出根据本公开的实施例的用户设备的能量随时间变化的曲线图。如图2所示,横轴表示时间,纵轴表示能量值,用户设备A和用户设备B的能量值随时间变化的曲线不相同。
本公开针对这样的场景提出了一种无线通信系统中的电子设备、用户设备、由无线通信系统中的电子设备执行的无线通信方法、由无线通信系统中的用户设备执行的无线通信方法以及计算机可读存储介质,以在包括采用能量收集的方式供应电能的用户设备的NTN中,减小信令开销,节约用户设备的能量。
根据本公开的无线通信系统可以是5G NR(New Radio,新无线)通信系统。进一步,根据本公开的无线通信系统可以包括NTN(Non-Terrestrial Network,非地面网络)。也就是说,无线通信系统可以包括多个卫星设备以及多个用户设备。进一步,卫星设备可以为非透明卫星设备,即可以将基站设备设置在卫星设备上,从而用户设备可以与位于卫星设备上的基站设备进行通信。卫星设备也可以为透明卫星设备,即可以将基站设备设置在与卫星设备通信的地面设备上,从而用户设备可以通过卫星设备与位于地面上的基站设备进行通信。
根据本公开的实施例,用户设备中的一部分用户设备可以用作中继设备,用户设备可以通过中继设备与卫星设备进行通信,包括上行通信和/或下行通信,中继设备可以对接收到的来自一个或多个用户设备的数据进行缓存,从而在合适的时刻将缓存的数据发送至卫星设备。
根据本公开的实施例,用户设备中的部分或者全部用户设备可以以本领域公知的任何方法周期性进入睡眠模式和醒来模式,从而节约用户设备的能量。
根据本公开的网络侧设备可以是基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.网络侧设备的配置示例>
图3是示出根据本公开的实施例的电子设备300的配置的示例的框图。这里的电子设备300可以作为无线通信系统中的网络侧设备,具体地可以作为无线通信系统中的基站设备。此外,该基站设备可以位于卫星设备上,也可以位于地面上。
如图3所示,电子设备300可以包括候选中继设备确定单元310、排序单元320和通信单元330。
这里,电子设备300的各个单元都可以包括在处理电路中。需要说明的是,电子设备300既可以包括一个处理电路,也可以包括多个处理电 路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,候选中继设备确定单元310可以确定用户设备的一个或多个候选中继设备。这里,用户设备可以是电子设备300覆盖范围内的任意一个用户设备。此外,候选中继设备可以将收集的能量转换为电能以为该候选中继设备供电。
根据本公开的实施例,排序单元320可以根据一个或多个候选中继设备的能量收集能力对一个或多个候选中继设备进行排序,以生成候选中继设备的有序集合。
根据本公开的实施例,电子设备300可以通过通信单元330将候选中继设备的有序集合发送至用户设备,以用于用户设备根据候选中继设备的有序集合确定中继设备并利用中继设备与卫星设备进行通信。
由此可见,根据本公开的实施例的电子设备300,能够根据能量收集能力对候选中继设备进行排序,以用于用户设备确定中继设备从而利用中继设备与卫星设备进行通信。这样一来,用户设备可以利用中继设备与卫星设备进行通信,从而减少了用户设备的能量消耗。此外,中继设备需要为多个用户设备进行数据转发,因此需要的能量较多,由于中继设备是根据能量收集能力确定出来的,因此可以确保选择的中继设备的能量收集能力较好。
图4是示出根据本公开的实施例的用户设备利用中继设备与卫星设备进行通信的场景的示意图。如图4所示,UE1、UE2、UE3、UE4、UE6、UE7、UE8都通过UE5执行与卫星设备之间的通信。这里,UE5可以称为UE1、UE2、UE3、UE4、UE6、UE7、UE8的中继设备。此外,UE5可以用于转发上行数据,也可以用于转发下行数据。也就是说,UE5可以将来自UE1、UE2、UE3、UE4、UE6、UE7、UE8的数据转发至卫星设备,也可以将来自卫星设备的数据转发至UE1、UE2、UE3、UE4、UE6、UE7、UE8。这样一来,可以减少UE1、UE2、UE3、UE4、UE6、UE7、UE8的能量消耗。此外,UE5在收到数据之后,可以不立刻转发,而是等待时机从而将多个UE的数据一起转发,这样可以减少信令的开销。
根据本公开的实施例,如图3所示,电子设备300还可以包括预测单元340,用于预测表示在未来的预定时间内用户设备的能量随时间变化 的能量变化曲线。
根据本公开的实施例,预测单元340可以根据用户设备的当前能量、能量收集能力的变化和能量消耗能力的变化来预测用户设备的能量变化曲线。
根据本公开的实施例,电子设备300可以通过通信单元330从用户设备接收用户设备的当前能量的值。例如,能量的单位可以为焦耳。
根据本公开的实施例,预测单元340可以根据以下参数中的一种或多种来确定用户设备的能量收集能力的变化:用户设备的位置、用户设备的能量来源、与用户设备的能量来源相关联的天气条件、用户设备的天线参数、用户设备的能量收集能力。
根据本公开的实施例,电子设备300可以通过通信单元330从用户设备接收用户设备的位置,从而预测单元340可以根据用户设备的位置确定用户设备的能量收集能力的变化。具体地,预测单元340可以根据用户设备的位置确定当地的地理条件,从而确定用户设备的能量收集能力。例如,在用户设备收集太阳能的情况下,在山的阴面的能量收集能力差于在山的阳面的能量收集能力。
根据本公开的实施例,电子设备300可以通过通信单元330从用户设备接收用户设备的能量来源,从而预测单元340可以根据用户设备的能量来源确定用户设备的能量收集能力的变化。这里,能量来源包括但不限于太阳、风、潮汐、地热。
根据本公开的实施例,电子设备300可以获取与用户设备的能量来源相关联的天气条件,从而预测单元340可以根据与用户设备的能量来源相关联的天气条件确定用户设备的能量收集能力的变化。例如,电子设备300可以通过网络从气象局等机构获取上述信息。例如,在能量来源为太阳的情况下,在极弱光照条件下用户设备的能量收集能力差于在极强光照条件下用户设备的能量收集能力。
根据本公开的实施例,电子设备300可以通过通信单元330从用户设备接收用户设备的天线参数,从而预测单元340可以根据用户设备的天线参数确定用户设备的能量收集能力的变化。天线参数包括但不限于天线高度、天线类型、天线发射图。
根据本公开的实施例,电子设备300可以通过通信单元330从用户设备接收用户设备的能量收集能力,从而预测单元340可以根据用户设备 的能量收集能力确定用户设备的能量收集能力的变化。例如,用户设备的能量收集能力可以量化为在标准的与能量来源相关联的天气条件下,用户设备在单位时间内收集到的能量值。例如,当能量来源为太阳时,用户设备的能量收集能力可以量化为在标准光照条件下,用户设备在单位时间内收集到的能量值。单位时间包括但不限于一天。也就是说,用户设备的能量收集能力表征用户设备本身的能量收集的能力,与天气条件无关。
如上所述,预测单元340可以根据以上参数中的一种或多种来确定用户设备的能量收集能力的变化。本公开对于预测单元340确定能量收集能力的变化的方式不做限定。例如,预测单元340可以根据以上参数中的一种或多种确定收集到的能量随时间变化的曲线。
根据本公开的实施例,预测单元340可以根据以下参数中的一种或多种来确定用户设备的能量消耗能力的变化:用户设备的数据包的大小、用户设备的数据包的发送速率、用户设备的数据包的时间间隔、用户设备对传输时延的要求。
根据本公开的实施例,电子设备300可以通过通信单元330从用户设备接收用户设备的数据包的大小、用户设备的数据包的发送速率、用户设备的数据包的时间间隔、用户设备对传输时延的要求中的一者或者多者,从而预测单元340可以根据以上参数中的一种或多种确定用户设备的能量消耗能力的变化。例如,用户设备的数据包越大、发送速率越大、时间间隔越短,对传输时延的要求越高,则用户设备能量消耗的越快。本公开对于预测单元340确定能量消耗能力的变化的方式不做限定。例如,预测单元340可以根据以上参数中的一种或多种确定消耗的能量随时间变化的曲线。
根据本公开的实施例,预测单元340可以根据用户设备的当前能量、能量收集能力的变化和能量消耗能力的变化来预测用户设备的能量变化曲线。进一步,电子设备300可以确定能量变化曲线的起始时间为当前时间,终止时间与起始时间的差为T0。也就是说,预测单元340可以预测从当前时间开始的未来的预定时间内的能量变化曲线。
图5是示出根据本公开的实施例的能量变化曲线的示意图。如图5所示,横轴表示时间,纵轴表示UE5的能量变化曲线,起始时间为0,终止时间为T0。
根据本公开的实施例,如图3所示,电子设备300还可以包括功率 确定单元350,用于根据预测单元340预测的能量变化曲线确定用户设备的发送功率。
根据本公开的实施例,功率确定单元350可以根据用户设备的能量变化曲线、以及用户设备的能量与发送功率之间的映射关系来确定用户设备的发送功率。这里,电子设备300可以通过通信单元330从用户设备接收用户设备的能量与发送功率之间的映射关系。这里,电子设备300覆盖范围内的每个用户设备都可以根据能量来调整发送功率,能量高时发送功率高,而能量低时发送功率低。
根据本公开的实施例,能量与发送功率之间的映射关系可以表示为能量点与发送功率之间的映射关系,例如(E1,P1),(E2,P2),(E3,P3),…。用户设备与电子设备300可以约定,当用户设备的实际能量与E1最为接近时,采用发送功率P1,当用户设备的实际能量与E2最为接近时,采用发送功率P2,当用户设备的实际能量与E3最为接近时,采用发送功率P3,…。可选地,能量与发送功率之间的映射关系也可以表示为能量范围与发送功率之间的映射关系,例如([0,E1),P1),([E1,E2),P2),([E2,E3),P3)。用户设备与电子设备300可以约定,当用户设备的实际能量小于E1时,采用发送功率P1,当用户设备的实际能量大于等于E1且小于E2时,采用发送功率P2,当用户设备的实际能量大于等于E2且小于E3时,采用发送功率P3…。
根据本公开的实施例,功率确定单元350可以根据用户设备的能量变化曲线确定用户设备的能量范围,从而根据能量范围以及用户设备的能量与发送功率之间的映射关系来确定用户设备的发送功率。如图5所示,UE5的能量范围为小于E2,因此在能量与发送功率之间的映射关系为([0,E1),P1),([E1,E2),P2),([E2,E3),P3)的情况下,在T1时刻之前,UE5的发送功率为P1;在T1-T2时刻,UE5的发送功率为P2;在T2-T3时刻,UE5的发送功率为P1;在T3-T4时刻,UE5的发送功率为P2;在T4-T0时刻,UE5的发送功率为P1。也就是说,功率确定单元350可以确定用户设备的发送功率为P1或P2。
根据本公开的实施例,候选中继设备确定单元310可以根据用户设备的发送功率确定用户设备的一个或多个候选中继设备。
根据本公开的实施例,候选中继设备确定单元310可以针对用户设备的一个或多个发送功率中的每个发送功率,确定针对该发送功率的一个或多个候选中继设备。也就是说,候选中继设备确定单元310可以针对 P1确定一个或多个候选中继设备,针对P2也确定一个或多个候选中继设备。
根据本公开的实施例,候选中继设备确定单元310可以根据用户设备的发送功率确定能够接收到用户设备发送的信息的中继设备,并将能够接收到用户设备发送的信息的中继设备确定为用户设备的候选中继设备。
图6是示出根据本公开的实施例的根据发送功率确定候选中继设备的过程的示意图。在图6中,假定UE3、UE4、UE7、UE1、UE2和UE6都可以作为中继设备。如图6所示,当UE5的发送功率为P1时,其发送范围如内侧的虚线圆形表示。也就是说,当UE5的发送功率为P1时,能够接收到UE5发送的信息的中继设备为UE3、UE4和UE7。因此,UE3、UE4和UE7为针对P1的候选中继设备。当UE5的发送功率为P2时,其发送范围如外侧的虚线圆形表示。由于发送功率P2大于发送功率P1,因此发送功率P2的发送范围大于发送功率P1的发送范围。也就是说,当UE5的发送功率为P2时,能够接收到UE5发送的信息的中继设备为UE3、UE4、UE7、UE1、UE2和UE6。因此,UE3、UE4、UE7、UE1、UE2和UE6为针对P2的候选中继设备。
根据本公开的实施例,排序单元320可以对针对每个发送功率的候选中继设备进行排序。例如,针对发送功率P1的候选中继设备UE3、UE4和UE7,排序单元320可以根据UE3、UE4和UE7的能量收集能力对UE3、UE4和UE7进行排序,以生成有序集合A1。针对发送功率P2的候选中继设备UE3、UE4、UE7、UE1、UE2和UE6,排序单元320可以根据UE3、UE4、UE7、UE1、UE2和UE6的能量收集能力对UE3、UE4、UE7、UE1、UE2和UE6进行排序,以生成有序集合A2。
如上所述,候选中继设备的能量收集能力可以表示在标准的与能量来源相关联的天气条件下,候选中继设备在单位时间内收集到的能量值Ec。进一步,候选中继设备的能量收集能力越强,排序单元320可以将该候选中继设备排得越靠前。排序单元320根据候选中继设备的能量收集能力对候选中继设备的排名可以表示为R Ec
根据本公开的实施例,排序单元320还可以根据候选中继设备的以下参数中的一种或多种对候选中继设备进行排序:候选中继设备与用户设备之间的距离、与候选中继设备的能量来源相关联的天气条件、候选中继设备的缓存大小、候选中继设备服务的用户设备的数目、候选中继设备与卫星设备之间的连接质量。
根据本公开的实施例,候选中继设备与用户设备之间的距离d越小,排序单元320可以将该候选中继设备排得越靠前。排序单元320根据候选中继设备与用户设备之间的距离对候选中继设备的排名可以表示为R d
根据本公开的实施例,与候选中继设备的能量来源相关联的天气条件可以表示在该天气条件下,标准能量收集设备在单位时间内收集到的能量值Ce。也就是说,Ce表征的是与和候选中继设备的能量来源相关联的该天气条件相关的能量收集能力,而与候选中继设备自身的能量收集能力无关。进一步,Ce的值越大,排序单元320可以将该候选中继设备排得越靠前。排序单元320根据与候选中继设备的能量来源相关联的天气条件对候选中继设备的排名可以表示为R Ce
根据本公开的实施例,候选中继设备的缓存大小B越大,排序单元320可以将该候选中继设备排得越靠前。排序单元320根据候选中继设备的缓存大小对候选中继设备的排名可以表示为R B
根据本公开的实施例,候选中继设备服务的用户设备的数目Na越小,排序单元320可以将该候选中继设备排得越靠前。排序单元320根据候选中继设备服务的用户设备的数目对候选中继设备的排名可以表示为R Na
根据本公开的实施例,候选中继设备与卫星设备之间的连接质量可以表示为在与卫星设备连接期间候选中继设备的平均接收功率的大小Pa。进一步,Pa越大,可以将该候选中继设备排得越靠前。排序单元320根据候选中继设备与卫星设备之间的连接质量对候选中继设备的排名可以表示为R Pa
根据本公开的实施例,排序单元320可以根据上述参数中的一种或多种分别对候选中继设备进行排序,然后再确定候选中继设备的最终排名Score如下:
Score=a 1×R d+a 2×R Ec+a 3×R Ce+a 4×R B+a 5×R Na+a 6×R Pa
其中,a 1、a 2、a 3、a 4、a 5、a 6分别表示R d、R Ec、R Ce、R B、R Na、R Pa在最终排名中所占的权重。
如上所述描述了排序单元320根据上述六种参数确定候选中继设备的最终排名的实施例,但是本公开不限于此。当排序单元320仅使用了部分参数时,可以在得到Score的上述公式中去掉没有使用的参数。
根据本公开的实施例,在排序单元320确定了候选中继设备的顺序 之后,可以得到有序集合,该有序集合中的候选中继设备按照排名从前到后的顺序排列。例如,在A1={UE3,UE4,UE7}的情况下,UE3的排名优于UE4的排名优于UE7的排名。
根据本公开的实施例,在排序单元320针对各个发送功率确定了有序集合之后,电子设备300可以通过通信单元330将各个有序集合发送至用户设备。进一步,电子设备300在发送有序集合的同时还可以发送该有序集合对应的发送功率。例如,电子设备300可以向用户设备发送如下信息(P1,A1),(P2,A2)。这样一来,用户设备可以确定有序集合与发送功率的对应关系,从而确定合适的有序集合并确定中继设备。
根据本公开的实施例,电子设备300还可以向用户设备发送各个候选中继设备的位置。
根据本公开的实施例,如图3所示,电子设备300还可以包括设置单元360。
如果候选中继设备确定单元310针对各个发送功率都确定不存在能够接收到用户设备发送的信息的中继设备。也就是说,针对各个发送功率,候选中继设备确定单元310都无法确定候选中继设备,则设置单元360可以将用户设备确定为中继设备。这样一来,用户设备可以作为中继设备为其他用户设备提供服务。
根据本公开的实施例,用户设备可以为刚加入网络的用户设备,或者为之前加入网络但是进入睡眠状态刚刚醒来的用户设备。也就是说,用户设备可以为之前未被分配中继设备的用户设备,从而电子设备300可以执行上述操作为用户设备确定候选中继设备。
图7是示出根据本公开的实施例的确定用户设备的中继设备的过程的信令流程图。在图7中,gNB可以由电子设备300来实现,UE可以为之前未被分配中继设备的用户设备。如图7所示,在步骤S701中,UE加入网络,或者从睡眠状态醒来,UE向gNB上报参数,包括但不限于用户设备的位置、用户设备的能量来源、用户设备的天线参数、用户设备的能量收集能力、用户设备的数据包的大小、用户设备的数据包的发送速率、用户设备的数据包的时间间隔、用户设备对传输时延的要求。接下来,在步骤S702中,gNB根据UE上报的参数预测UE的能量变化曲线,并根据能量变化曲线确定一个或多个发送功率。接下来,在步骤S703中,gNB针对每个发送功率,确定一个或多个候选中继设备,并生成候选中继设备 的有序集合。接下来,在步骤S704中,gNB向UE发送针对各个发送功率的候选中继设备的有序集合、各个候选中继设备的位置、各个候选中继设备的下一个更新时间的起始时间。在步骤S705中,UE根据实际的能量确定实际的发送功率,并根据实际的发送功率选择候选中继设备的有序集合。这里假定UE确定的候选中继设备的有序集合包括候选中继设备1和候选中继设备2,并且候选中继设备1的排名比候选中继设备2的排名靠前。在步骤S706中,UE在候选中继设备1的下一个更新时间的起始时间尝试与候选中继设备1进行连接。这里假定UE与候选中继设备1的连接失败。在步骤S707中,UE在候选中继设备2的下一个更新时间的起始时间尝试与候选中继设备2进行连接。这里假定UE1与候选中继设备2的连接成功。在步骤S708中,UE将候选中继设备2确定为中继设备,从而通过候选中继设备2执行与卫星设备之间的通信。如上所述,在gNB的协助下,UE能够合理地确定中继设备,从而节约能量和信令开销。
如上所述,根据本公开的实施例,电子设备300可以预测用户设备的能量变化曲线,并根据不同的发送功率生成不同的候选中继设备有序集合。这样一来,用户设备可以根据实际的发送功率选择候选中继设备的有序集合,并从中确定中继设备,从而节约信令开销和能量。由于候选中继设备的有序集合与候选中继设备的能量收集能力相关,因此用户设备能够选取能量较为充足的中继设备。进一步,用户设备可以根据能量的变化调整发送功率,从而保证有足够的能量发送数据。此外,在无法确定候选中继设备的情况下,电子设备300可以将用户设备设置为中继设备,从而可以为其周围的用户设备提供服务。
根据本公开的实施例,如图3所示,电子设备300还可以包括配置单元370,用于为每个中继设备配置更新时间、传输时间和第一个更新时间的起始时间。
根据本公开的实施例,每个中继设备都可以根据电子设备300的配置周期性进入更新时间和传输时间。在更新时间内,中继设备通过卫星设备与核心网建立连接,并且在传输时间内,中继设备与用户设备进行通信或者中继设备与卫星设备进行通信。
图8是示出根据本公开的实施例的中继设备的更新时间和传输时间的示意图。如图8所示,在时间轴上,中继设备周期性进入更新时间Tw和传输时间Tup。一个更新时间Tw和一个传输时间Tup的总和可以被称为一个周期。一般来说,中继设备的各个周期的长度相同,即所有的更新 时间Tw的长度相同,所有的传输时间Tup的长度相同。中继设备的各个周期的长度也可以有微小的差别,例如可以调整传输时间Tup的长度为Tup±Δt,其中Δt表示调整量。
根据本公开的实施例,在更新时间内,中继设备可以通过卫星设备与核心网建立连接。例如,中继设备可以通过设置在卫星设备上的基站设备与地面上的核心网建立连接,中继设备也可以通过卫星设备与地面上的基站设备建立连接,从而与地面上的核心网建立连接。在更新时间内,中继设备还可以与其服务的用户设备进行信令交互。此外,在更新时间内,刚被分配中继设备的用户设备也可以与该中继设备建立连接,或者更新了中继设备的用户设备也可以与更新后的中继设备建立连接。也就是说,在更新时间内,可以执行除了数据传输之外的所有传输。
根据本公开的实施例,配置单元370可以根据中继设备服务的用户设备的数目来确定更新时间的长度。具体地,中继设备服务的用户设备的数目越多,中继设备的更新时间的长度可以越长。
根据本公开的实施例,配置单元370可以根据各个卫星设备的星历来确定中继设备的各个更新时间的起始时间。例如,配置单元370可以确定各个更新时间的起始时间,以使得在各个更新时间内中继设备的上方存在能够服务的卫星设备。这样一来,在更新时间内,中继设备可以与卫星设备高质量地进行信息交互。进一步,电子设备300可以向中继设备发送任意一次更新时间的起始时间,从而中继设备可以根据任意一次更新时间的起始时间、更新时间的长度和传输时间的长度来确定各个更新时间的起始时间。这里的任意一次更新时间的起始时间可以包括当前时间之前的更新时间的起始时间和当前时间之后的更新时间的起始时间。优选地,电子设备300向中继设备发送的更新时间的起始时间可以为在当前时间之后的与当前时间距离最近的更新时间的起始时间,即从当前时间开始的下一次更新时间的起始时间。
根据本公开的实施例,配置单元370可以根据中继设备的能量消耗能力确定传输时间的长度。具体地,中继设备的能量消耗的越快,配置单元370可以将传输时间配置的越短。此外,配置单元370还可以根据各个卫星设备的星历来确定传输时间的长度。例如,配置单元370可以对传输时间的长度进行调整,以使得在下一次更新时间处中继设备的上方存在能够服务的卫星设备。
根据本公开的实施例,配置单元370可以为每个用作中继设备的用 户设备配置上述参数。进一步,在设置单元360将用户设备设置为中继设备的情况下,配置单元370也可以为用户设备配置上述参数。
根据本公开的实施例,在电子设备300向用户设备发送针对各个发送功率的候选中继设备的有序集合的情况下,电子设备300还可以向用户设备发送每个候选中继设备的下一个更新时间的起始时间。这样一来,用户设备可以在候选中继设备的下一个更新时间的起始时间尝试与该候选中继设备进行连接。
根据本公开的实施例,如图3所示,电子设备300还可以包括更新单元380,用于在每个中继设备的更新时间内,对中继设备进行更新。
根据本公开的实施例,在每个中继设备的更新时间内,电子设备300可以与中继设备建立连接。进一步,电子设备300可以通过通信单元330从中继设备接收中继设备的当前能量、中继设备的能量收集能力、中继设备服务的各个用户设备的当前能量、中继设备服务的各个用户设备的能量收集能力。
根据本公开的实施例,在每个中继设备的更新时间内,中继设备以及中继设备服务的所有用户设备都从睡眠模式醒来。进一步,中继设备可以向用户设备广播发送能量上报通知,从而各个用户设备向中继设备上报当前能量值和能量收集能力。这样一来,中继设备可以将各个用户设备的当前能量和能量收集能力、以及中继设备自身的当前能量和能量收集能力一并发送至电子设备300。
根据本公开的实施例,更新单元380可以根据从中继设备接收的信息对中继设备服务的用户设备进行分组、并确定各个用户设备组的目标中继设备。进一步,电子设备300可以通过通信单元330将用户设备的分组结果以及各个用户设备组的目标中继设备发送至中继设备(为便于区分,该中继设备也被称为源中继设备)。
根据本公开的实施例,更新单元380可以从源中继设备服务的满足中继设备的条件的用户设备、以及源中继设备中确定目标中继设备。这里,目标中继设备可以为一个,也可以为多个。在目标中继设备为多个的情况下,更新单元380还可以确定各个目标中继设备所服务的用户设备,即对所有的用户设备进行分组。
根据本公开的实施例,如图3所示,电子设备300还可以包括判断单元390,用于判断用户设备是否满足中继设备的条件,即判断用户设备 是否能够用作中继设备。进一步,判断单元390可以判断源中继设备服务的各个用户设备是否满足中继设备,从而使得更新单元380可以从源中继设备服务的满足中继设备的条件的用户设备、以及源中继设备中确定目标中继设备。
根据本公开的实施例,在用户设备满足以下条件中的一者或者多者的情况下,确定该用户设备满足中继设备的条件:1)用户设备与卫星设备之间的连接质量大于第一预定阈值;2)用户设备与预定数目的其他用户设备之间的连接质量大于第二预定阈值;3)用户设备的缓存大小大于第三预定阈值;4)用户设备在未来的一段时间内的剩余能量大于第四预定阈值。
根据本公开的实施例,由于中继设备需要在用户设备与卫星设备之间进行数据转发,因此作为中继设备的用户设备需要与卫星设备具有良好的连接质量。进一步,由于中继设备需要为用户设备提供服务,因此需要与其周围预定数目的其他用户设备具有良好的连接质量。此外,由于中继设备需要对来自用户设备的数据进行缓存,因此需要有足够的缓存空间。进一步,中继设备需要消耗大量的能量,因此需要在未来一段时间内能够有足够的能量。这里,未来的一段时间内可以指的是中继设备的传输时间,即中继设备的下一个更新时间到来之前的一段时间内。
根据本公开的实施例,判断单元390可以根据用户设备的当前能量值、根据用户设备的能量收集能力确定的在未来的一段时间内收集到的能量、发送数据所消耗的能量、接收数据所消耗的能量、用户设备自身的电路所消耗的能量来确定用户设备在未来的一段时间内的剩余能量。进一步,在该剩余能量大于第四预定阈值的情况下,判断单元390可以确定该用户设备满足上述条件4)。
具体地,用户设备在未来的一段时间内的剩余能量可以表示为下述公式:E 0+E g-N r×D r×α-N t×D t×β-E b。
其中,E 0表示用户设备的当前能量值,E g表示根据用户设备的能量收集能力确定的在未来的一段时间内收集到的能量,N r表示接收数据的平均次数,D r表示每次接收数据的平均数据量,α表示接收数据时每单位数据所消耗的能量值,N t表示发送数据的平均次数,D t表示每次发送数据的平均数据量,β表示发送数据时每单位数据所消耗的能量值,E b表示用户设备自身电路所消耗的平均能量,即不发送数据也不接收数据时所消耗的能量。
进一步,在E 0+E g-N r×D r×α-N t×D t×β-E b>E th。的情况下,判断单元390可以确定该用户设备满足上述条件4),其中E th表示第四预定阈值。
根据本公开的实施例,更新单元380可以从源中继设备服务的满足中继设备的条件的用户设备、以及源中继设备中确定目标中继设备。进一步,更新单元380可以根据各个用户设备在未来的一段时间内的剩余能量、源中继设备在未来的一段时间内的剩余能量来选择目标中继设备。例如,更新单元380可以根据公式E 0+E g-N r×D r×α-N t×D t×β-E b来计算各个用户设备和源中继设备在未来的一段时间内的剩余能量,从而选择剩余能量最大的设备作为目标中继设备。
根据本公开的实施例,在更新单元380确定剩余能量最大的设备仍然是源中继设备的情况下,更新单元380可以确定目标中继设备为源中继设备,并且用户设备无需分组,或者说用户设备被分成一组,所有的用户设备仍然由源中继设备服务。在这种情况下,电子设备300可以将无需改变分组以及目标中继设备也无需改变的结果发送至源中继设备,以使得源中继设备广播发送该信息至各个用户设备。
根据本公开的实施例,在更新单元380确定剩余能量最大的设备是一个用户设备的情况下,更新单元380可以确定目标中继设备为该用户设备,并且其他用户设备与源中继设备仍然被分成一组由该用户设备服务。在这种情况下,电子设备300可以将无需改变分组以及目标中继设备是该用户设备的结果发送至源中继设备,以使得源中继设备广播发送该信息至各个用户设备。之后,其他用户设备试图与目标中继设备进行连接,连接成功则由目标中继设备服务,连接失败则上报电子设备300,电子设备300可以为该用户设备确定候选中继设备的有序集合以用于该用户设备选择中继设备。
根据本公开的实施例,更新单元380也可以结合剩余能量和其他参数来确定目标中继设备,其他参数包括但不限于用户设备与周围预定数目的用户设备之间的连接质量、用户设备的缓存大小。例如,更新单元380确定用户设备A与一部分其他用户设备的连接质量较好,并且缓存大小可以支持该部分用户设备的数据,且剩余能量较大,用户设备B与另一部分其他用户设备和源中继设备的连接质量较好,并且缓存大小可以支持该另一部分其他用户设备和源中继设备,且剩余能量也较大,则更新单元380可以将用户设备A确定为一部分其他用户设备的目标中继设备,将用户设 备B确定为另一部分其他用户设备和源中继设备的目标中继设备。也就是说,一部分其他用户设备被分为一组,另一部分其他用户设备和源中继设备被分为另一组。在这种情况下,电子设备300可以将上述分组结果以及各个组的目标中继设备发送至源中继设备,以使得源中继设备向不同的组多播发送该组的目标中继设备。之后,各个用户设备试图与各自的目标中继设备进行连接,连接成功则由目标中继设备服务,连接失败则上报电子设备300,电子设备300可以为该用户设备确定候选中继设备的有序集合以用于该用户设备选择中继设备。
根据本公开的实施例,更新单元380也可以从不属于源中继设备服务的用户设备的用户设备中确定目标中继设备。也就是说,更新单元380也可以将源中继设备和所有的用户设备都设置为由其他组的用户设备提供服务。例如,更新单元380可以根据公式E 0+E g-N r×D r×α-N t×D t×β-E b来计算各个用户设备和源中继设备在未来的一段时间内的剩余能量,并且计算来自其他组的一个或多个用户设备在未来的一段时间内的剩余能量,从而选择剩余能量最大的设备作为目标中继设备。
根据本公开的实施例,更新单元380还可以确定是否需要改变中继设备的传输时间。例如,更新单元380可以确定目标中继设备的传输时间是否与源中继设备的传输时间相同。如果不相同,则电子设备300可以将目标中继设备的传输时间也发送至源中继设备,以使得源中继设备转发至用户设备。进一步,在目标中继设备与源中继设备不同的情况下,电子设备300还可以将目标中继设备的下一个更新时间的开始时间发送至源中继设备,以使得源中继设备将该信息转发至用户设备。这样一来,用户设备可以在目标中继设备的下一个更新时间的开始时间尝试与目标中继设备建立连接。此外,电子设备300还可以将与各个能量来源相关联的天气条件发送至源中继设备,以使得源中继设备将该信息转发至用户设备。
图9是示出根据本公开的实施例的更新用户设备组和中继设备的过程的信令流程图。在图9中,gNB可以由电子设备300来实现,UE1和UE2通过中继设备执行与卫星设备之间的通信。如图9所示,在步骤S901中,在中继设备的更新时间开始时,中继设备、UE1和UE2醒来。在步骤S902中,中继设备连接至gNB。在步骤S903中,中继设备广播发送能量上报通知。在步骤S904中,UE1和UE2分别向中继设备上报当前能量和能量收集能力。在步骤S905中,中继设备将中继设备的当前能量和能量收集能力、UE1的当前能量和能量收集能力、UE2的当前能量和能量 收集能力发送至gNB。在步骤S906中,gNB根据接收到的信息更新用户设备组合目标中继设备。在步骤S907中,gNB将更新后的用户设备组合目标中继设备发送至中继设备。在步骤S908中,中继设备将更新后的用户设备组合目标中继设备广播或多播发送至用户设备。图9中的所有步骤都是在中继设备的更新时间内完成的。如图9所示,在中继设备的更新时间内,gNB可以对用户设备组和中继设备进行更新。
由此可见,根据本公开的实施例,中继设备可以周期性轮流进入更新时间和传输时间,在更新时间内由于与卫星设备具有较好的连接质量,因此可以与卫星设备和网络侧设备高质量地进行交互,在传输时间内中继设备可以与卫星设备或用户设备之间传输数据。进一步,在更新时间内,电子设备300可以根据各个设备的在未来一段时间内的剩余能量来更新目标中继设备和用户组,从而使得始终选择能量充足的设备作为中继设备,以更好地服务用户设备。此外,电子设备300还可以将与能量来源相关联的天气条件发送至中继设备,以使得各个用户设备都可以根据这样的信息来预测自己的能量,从而根据能量来改变发送功率,以节约能量。
<3.用户设备的配置示例>
图10是示出根据本公开的实施例的无线通信系统中的用户设备1000的结构的框图。如图10所示,用户设备1000可以包括通信单元1010、连接单元1020和中继设备确定单元1030。
这里,用户设备1000的各个单元都可以包括在处理电路中。需要说明的是,用户设备1000既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,用户设备1000可以通过通信单元1010从网络侧设备接收候选中继设备的有序集合,其中,候选中继设备的有序集合是根据一个或多个候选中继设备的能量收集能力对一个或多个候选中继设备进行排序生成的。这里,候选中继设备将收集的能量转换为电能以为候选中继设备供电。
根据本公开的实施例,连接单元1020可以按照候选中继设备的有序集合中的顺序,依次与候选中继设备的有序集合中的候选中继设备进行连接,直到与一个候选中继设备成功连接为止。
根据本公开的实施例,中继设备确定单元1030可以将成功连接的候选中继设备确定为中继设备。
根据本公开的实施例,用户设备1000可以通过通信单元1010利用中继设备确定单元1030确定的中继设备与卫星设备进行通信。
如上所述,根据本公开的实施例,用户设备1000可以利用中继设备与卫星设备进行通信,从而节约用户设备1000的能量。进一步,中继设备是从候选中继设备的有序集合中确定的,而候选中继设备的有序集合是根据候选中继设备的能量收集能力对候选中继设备进行排序生成的,因此可以确保选择的中继设备具有足够的能量。
根据本公开的实施例,用户设备1000通过通信单元1010从网络侧设备接收的候选中继设备的有序集合可以有多个,每个候选中继设备的有序集合对应用户设备1000的一个发送功率。也就是说,用户设备1000可以接收多个候选中继设备的有序集合以及每个有序集合对应的发送功率。
根据本公开的实施例,用户设备1000可以根据自身的实际能量来确定实际的发送功率。具体地,自身的实际能量越大,则用户设备1000的发送功率越大。这样一来,用户设备1000可以根据能量的大小来调整发送功率的大小,从而节约能耗。
根据本公开的实施例,如图10所示,用户设备1000还可以包括集合确定单元1040,用于根据用户设备的实际发送功率确定与实际发送功率对应的候选中继设备的有序集合。具体地,集合确定单元1040可以确定与实际发送功率最接近的且小于实际发送功率的发送功率,并将与该发送功率对应的候选中继设备的有序集合确定为与实际发送功率对应的候选中继设备的有序集合。例如,在图6所示的示例中,与P1对应的候选中继设备的有序集合为A1,与P2对应的候选中继设备的有序集合为A2,当用户设备1000的实际发送功率大于等于P1且小于P2时,集合确定单元1040可以确定有序集合A1;当用户设备1000的实际发送功率大于等于P2且小于P3(位于P2的外侧,未示出)时,集合确定单元1040可以确定有序集合A2。
根据本公开的实施例,用户设备1000还可以通过通信单元1010从网络侧设备接收每个候选中继设备的位置。
根据本公开的实施例,用户设备1000还可以通过通信单元1010从网络侧设备接收每个候选中继设备的下一个更新时间的起始时间。如前文 所述,每个候选中继设备周期性进入更新时间和传输时间,在更新时间内,候选中继设备通过卫星设备与核心网建立连接,并且在传输时间内,候选中继设备与用户设备进行通信或者候选中继设备与卫星设备进行通信。
根据本公开的实施例,连接单元1020可以按照候选中继设备的有序集合中的顺序,依次与候选中继设备的有序集合中的候选中继设备在该候选中继设备的下一个更新时间的起始时间处进行连接,直到与一个候选中继设备成功连接为止。
例如,在集合确定单元1040确定有序集合A1、且A1={UE3,UE4,UE7}的情况下,用户设备1000可以在UE3的下一个更新时间的起始时间处与UE3尝试进行连接。如果用户设备1000与UE3连接失败,则用户设备1000可以在UE4的下一个更新时间的起始时间处与UE4尝试进行连接。如果用户设备1000与UE4连接成功,则中继设备确定单元1030可以将UE4确定为用户设备1000的中继设备,而无需再与UE7进行连接。
根据本公开的实施例,如图10所示,用户设备1000还可以包括信息生成单元1050,用于生成各种信息。例如,用户设备1000可以在刚接入网络或者刚从睡眠状态中醒来的情况下,生成需要向网络侧设备上报的信息。信息可以包括以下参数中的一种或多种:用户设备的位置、用户设备的当前能量、用户设备的能量来源、用户设备的能量与发送功率之间的映射关系、用户设备的天线参数、用户设备的数据包的大小、用户设备的数据包的发送速率、用户设备的数据包的时间间隔、用户设备对传输时延的要求。这样一来,网络侧设备可以利用上述信息为用户设备1000确定候选中继设备的有序集合。
根据本公开的实施例,用户设备1000可以不从网络侧设备接收候选中继设备的有序集合,而是通过通信单元1010从网络侧设备接收表示将用户设备1000用作中继设备的信息。进一步,用户设备1000还可以通过通信单元1010从网络侧设备接收用户设备的更新时间、传输时间和第一个更新时间的起始时间。这里的第一个更新时间的起始时间优选地为从当前时间开始的下一个更新时间的起始时间。
根据本公开的实施例,如图10所示,用户设备1000还可以包括处理单元1060,用于根据网络侧设备发送的更新时间、传输时间和第一个更新时间的起始时间周期性进入更新时间和传输时间。这里,在更新时间内用户设备1000通过卫星设备与核心网建立连接,并且在传输时间内用户设备1000与其服务的其他用户设备进行通信或者用户设备1000与卫星 设备进行通信。
根据本公开的实施例,在用户设备1000已经确定了中继设备之后,用户设备1000可以在中继设备的每个更新时间开始时从睡眠状态醒来,并通过通信单元1010从中继设备接收能量上报通知。进一步,信息生成单元1050可以生成用户设备1000的当前能量和能量收集能力信息,从而使得用户设备1000通过通信单元1010向中继设备发送用户设备1000的当前能量和能量收集能力。
根据本公开的实施例,在用户设备1000已经确定了中继设备之后,用户设备1000还可以通过通信单元1010从中继设备接收目标中继设备。进一步,连接单元1020可以与目标中继设备进行连接,从而不再由原来的中继设备为用户设备1000服务,而是由目标中继设备为用户设备1000服务。
根据本公开的实施例,用户设备1000还可以通过通信单元1010从中继设备接收目标中继设备的下一个更新时间的开始时间,以使得用户设备1000可以在目标中继设备的下一个更新时间的开始时间尝试与该目标中继设备连接。如果用户设备1000与该目标中继设备连接不成功,用户设备1000可以将连接不成功的信息发送至网络侧设备,从而可以从网络侧设备接收候选中继设备的有序集合,再由中继设备确定单元1030重新确定中继设备。
根据本公开的实施例,用户设备1000还可以通过通信单元1010从中继设备接收与用户设备1000的能量来源相关联的天气条件,从而用户设备1000可以利用该信息预测自身的能量变化,从而及时地调整发送功率。
如上所述,根据本公开的实施例的用户设备1000,可以利用中继设备与卫星设备进行通信,从而节约能量。此外,用户设备1000可以向网络侧设备上报信息以用于网络侧设备确定候选中继设备的有序集合。在中继设备改变的情况下,用户设备1000可以根据源中继设备的信息与目标中继设备进行连接,从而保证用户设备始终能够连接至能量较为充足的中继设备。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网络侧设备的电子设备300执行的无线通信方法。
图11是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备300执行的无线通信方法的流程图。
如图11所示,在步骤S1110中,确定用户设备的一个或多个候选中继设备。这里,候选中继设备将收集的能量转换为电能以为候选中继设备供电。
接下来,在步骤S1120中,根据一个或多个候选中继设备的能量收集能力对一个或多个候选中继设备进行排序,以生成候选中继设备的有序集合。
接下来,在步骤S1130中,将候选中继设备的有序集合发送至用户设备,以用于用户设备根据候选中继设备的有序集合确定中继设备并利用中继设备与卫星设备进行通信。
优选地,无线通信方法还包括:预测表示在未来的预定时间内用户设备的能量随时间变化的能量变化曲线;根据能量变化曲线确定用户设备的发送功率;以及根据用户设备的发送功率确定用户设备的一个或多个候选中继设备,并且用户设备将收集的能量转换为电能以为用户设备供电。
优选地,无线通信方法还包括:针对用户设备的一个或多个发送功率中的每个发送功率,确定针对该发送功率的一个或多个候选中继设备。
优选地,预测所述能量变化曲线包括:根据用户设备的当前能量、能量收集能力的变化和能量消耗能力的变化来预测能量变化曲线。
优选地,确定用户设备的能量收集能力的变化包括:根据以下参数中的一种或多种来确定用户设备的能量收集能力的变化:用户设备的位置、用户设备的能量来源、与用户设备的能量来源相关联的天气条件、用户设备的天线参数、用户设备的能量收集能力。
优选地,确定用户设备的能量消耗能力的变化包括:根据以下参数中的一种或多种来确定用户设备的能量消耗能力的变化:用户设备的数据包的大小、用户设备的数据包的发送速率、用户设备的数据包的时间间隔、用户设备对传输时延的要求。
优选地,确定所述用户设备的发送功率包括:根据用户设备的能量变化曲线、以及用户设备的能量与发送功率之间的映射关系来确定用户设备的发送功率。
优选地,根据用户设备的发送功率确定用户设备的一个或多个候选 中继设备包括:根据用户设备的发送功率确定能够接收到所述用户设备发送的信息的中继设备;以及将能够接收到用户设备发送的信息的中继设备确定为用户设备的候选中继设备。
优选地,无线通信方法还包括:在不存在能够接收到用户设备发送的信息的中继设备的情况下,将用户设备确定为中继设备。
优选地,对一个或多个候选中继设备进行排序包括:还根据所述一个或多个候选中继设备的以下参数中的一种或多种对一个或多个候选中继设备进行排序:候选中继设备与用户设备之间的距离、与候选中继设备的能量来源相关联的天气条件、候选中继设备的缓存大小、候选中继设备服务的用户设备的数目、候选中继设备与卫星设备之间的连接质量。
优选地,无线通信方法还包括:为每个中继设备设置更新时间、传输时间和第一个更新时间的起始时间,以使得中继设备周期性进入更新时间和传输时间,其中,在更新时间内中继设备通过卫星设备与核心网建立连接,并且在传输时间内中继设备与用户设备进行通信或者中继设备与卫星设备进行通信。
优选地,无线通信方法还包括:根据中继设备服务的用户设备的数目来确定更新时间的长度。
优选地,无线通信方法还包括:根据中继设备的能量消耗能力和各个卫星设备的星历来确定传输时间的长度。
优选地,无线通信方法还包括:将每个候选中继设备的下一个更新时间的起始时间发送至用户设备。
优选地,无线通信方法还包括:在每个中继设备的更新时间内,与中继设备建立连接;从中继设备接收中继设备的当前能量、中继设备的能量收集能力、中继设备服务的各个用户设备的当前能量、中继设备服务的各个用户设备的能量收集能力;根据从中继设备接收的信息对中继设备服务的用户设备进行分组、并确定各个用户设备组的目标中继设备;以及将用户设备的分组结果以及各个用户设备组的目标中继设备发送至中继设备。
优选地,对中继设备服务的用户设备进行分组、并确定各个用户设备组的目标中继设备包括:从中继设备服务的满足中继设备的条件的用户设备、以及中继设备中确定目标中继设备,并且在用户设备满足以下条件中的一者或者多者的情况下,确定用户设备满足中继设备的条件:用户设 备与卫星设备之间的连接质量大于第一预定阈值;用户设备与预定数目的其他用户设备之间的连接质量大于第二预定阈值;用户设备的缓存大小大于第三预定阈值;用户设备在未来的一段时间内的剩余能量大于第四预定阈值。
优选地,对中继设备服务的用户设备进行分组、并确定各个用户设备组的目标中继设备包括:从不属于中继设备服务的用户设备的用户设备中确定目标中继设备。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备300,因此前文中关于电子设备300的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的用户设备1000执行的无线通信方法。
图12是示出根据本公开的实施例的由无线通信系统中的用户设备1000执行的无线通信方法的流程图。
如图12所示,在步骤S1210中,从网络侧设备接收候选中继设备的有序集合,其中,候选中继设备的有序集合是根据一个或多个候选中继设备的能量收集能力对一个或多个候选中继设备进行排序生成的。进一步,候选中继设备将收集的能量转换为电能以为候选中继设备供电。
接下来,在步骤S1220中,按照候选中继设备的有序集合中的顺序,依次与候选中继设备的有序集合中的候选中继设备进行连接,直到与一个候选中继设备成功连接为止,将成功连接的候选中继设备确定为中继设备。
接下来,在步骤S1230中,利用中继设备与卫星设备进行通信。
优选地,无线通信方法还包括:从网络侧设备接收一个或多个候选中继设备的有序集合,每个候选中继设备的有序集合对应用户设备的一个发送功率;以及根据用户设备的实际发送功率确定与实际发送功率对应的候选中继设备的有序集合。
优选地,无线通信方法还包括:向网络侧设备发送以下参数中的一种或多种:用户设备的位置、用户设备的当前能量、用户设备的能量来源、用户设备的能量与发送功率之间的映射关系、用户设备的天线参数、用户设备的能量收集能力、用户设备的数据包的大小、用户设备的数据包的发送速率、用户设备的数据包的时间间隔、用户设备对传输时延的要求。
优选地,无线通信方法还包括:从网络侧设备接收每个候选中继设备的下一个更新时间的起始时间;以及按照候选中继设备的有序集合中的顺序,依次与候选中继设备的有序集合中的候选中继设备在该候选中继设备的下一个更新时间的起始时间处进行连接,直到与一个候选中继设备成功连接为止。每个候选中继设备周期性进入更新时间和传输时间,其中,在更新时间内候选中继设备通过卫星设备与核心网建立连接,并且在传输时间内候选中继设备与用户设备进行通信或者候选中继设备与卫星设备进行通信。
优选地,无线通信方法还包括:从网络侧设备接收表示将用户设备用作中继设备的信息;从网络侧设备接收用户设备的更新时间、传输时间和第一个更新时间的起始时间;以及周期性进入更新时间和传输时间,其中,在更新时间内用户设备通过卫星设备与核心网建立连接,并且在传输时间内用户设备与其服务的其他用户设备进行通信或者用户设备与卫星设备进行通信。
优选地,无线通信方法还包括:从中继设备接收能量上报通知;以及向中继设备发送用户设备的当前能量和能量收集能力。
优选地,无线通信方法还包括:从中继设备接收目标中继设备;以及与目标中继设备进行连接。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的用户设备1000,因此前文中关于用户设备1000的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
例如,网络侧设备可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和 数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
图13是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图。eNB 1300包括一个或多个天线1310以及基站设备1320。基站设备1320和每个天线1310可以经由RF线缆彼此连接。
天线1310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1320发送和接收无线信号。如图13所示,eNB1300可以包括多个天线1310。例如,多个天线1310可以与eNB 1300使用的多个频带兼容。虽然图13示出其中eNB 1300包括多个天线1310的示例,但是eNB 1300也可以包括单个天线1310。
基站设备1320包括控制器1321、存储器1322、网络接口1323以及无线通信接口1325。
控制器1321可以为例如CPU或DSP,并且操作基站设备1320的较高层的各种功能。例如,控制器1321根据由无线通信接口1325处理的信号中的数据来生成数据分组,并经由网络接口1323来传递所生成的分组。控制器1321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1322包括RAM和ROM,并且存储由控制器1321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1323为用于将基站设备1320连接至核心网1324的通信接口。控制器1321可以经由网络接口1323而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1300与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1323为无线通信接口,则与由无线通信接口1325使用的频带相比,网络接口1323可以使用较高频带用于无线通信。
无线通信接口1325支持任何蜂窝通信方案(诸如长期演进(LTE) 和LTE-先进),并且经由天线1310来提供到位于eNB 1300的小区中的终端的无线连接。无线通信接口1325通常可以包括例如基带(BB)处理器1326和RF电路1327。BB处理器1326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1321,BB处理器1326可以具有上述逻辑功能的一部分或全部。BB处理器1326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1326的功能改变。该模块可以为插入到基站设备1320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1327可以包括例如混频器、滤波器和放大器,并且经由天线1310来传送和接收无线信号。
如图13所示,无线通信接口1325可以包括多个BB处理器1326。例如,多个BB处理器1326可以与eNB 1300使用的多个频带兼容。如图13所示,无线通信接口1325可以包括多个RF电路1327。例如,多个RF电路1327可以与多个天线元件兼容。虽然图13示出其中无线通信接口1325包括多个BB处理器1326和多个RF电路1327的示例,但是无线通信接口1325也可以包括单个BB处理器1326或单个RF电路1327。
图14是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图。eNB 1430包括一个或多个天线1440、基站设备1450和RRH 1460。RRH 1460和每个天线1440可以经由RF线缆而彼此连接。基站设备1450和RRH 1460可以经由诸如光纤线缆的高速线路而彼此连接。
天线1440中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1460发送和接收无线信号。如图14所示,eNB 1430可以包括多个天线1440。例如,多个天线1440可以与eNB 1430使用的多个频带兼容。虽然图14示出其中eNB1430包括多个天线1440的示例,但是eNB 1430也可以包括单个天线1440。
基站设备1450包括控制器1451、存储器1452、网络接口1453、无线通信接口1455以及连接接口1457。控制器1451、存储器1452和网络接口1453与参照图13描述的控制器1321、存储器1322和网络接口1323相同。
无线通信接口1455支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH1460和天线1440来提供到位于与RRH 1460对应的扇区中 的终端的无线通信。无线通信接口1455通常可以包括例如BB处理器1456。除了BB处理器1456经由连接接口1457连接到RRH 1460的RF电路1464之外,BB处理器1456与参照图13描述的BB处理器1326相同。如图14所示,无线通信接口1455可以包括多个BB处理器1456。例如,多个BB处理器1456可以与eNB 1430使用的多个频带兼容。虽然图14示出其中无线通信接口1455包括多个BB处理器1456的示例,但是无线通信接口1455也可以包括单个BB处理器1456。
连接接口1457为用于将基站设备1450(无线通信接口1455)连接至RRH 1460的接口。连接接口1457还可以为用于将基站设备1450(无线通信接口1455)连接至RRH 1460的上述高速线路中的通信的通信模块。
RRH 1460包括连接接口1461和无线通信接口1463。
连接接口1461为用于将RRH 1460(无线通信接口1463)连接至基站设备1450的接口。连接接口1461还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1463经由天线1440来传送和接收无线信号。无线通信接口1463通常可以包括例如RF电路1464。RF电路1464可以包括例如混频器、滤波器和放大器,并且经由天线1440来传送和接收无线信号。如图14所示,无线通信接口1463可以包括多个RF电路1464。例如,多个RF电路1464可以支持多个天线元件。虽然图14示出其中无线通信接口1463包括多个RF电路1464的示例,但是无线通信接口1463也可以包括单个RF电路1464。
在图13和图14所示的eNB 1300和eNB 1430中,通过使用图3所描述的候选中继设备确定单元310、排序单元320、预测单元340、功率确定单元350、设置单元360、配置单元370、更新单元380和判断单元390可以由控制器1321和/或控制器1451实现,并且通过使用图3所描述的通信单元330可以由无线通信接口1325以及无线通信接口1455和/或无线通信接口1463实现。功能的至少一部分也可以由控制器1321和控制器1451实现。例如,控制器1321和/或控制器1451可以通过执行相应的存储器中存储的指令而执行确定候选中继设备、对候选中继设备进行排序、预测能量变化曲线、确定发送功率、将用户设备设置为中继设备、为中继设备配置更新时间、传输时间和第一个更新时间的起始时间、更新用户设备组和中继设备、判断用户设备是否能够用作中继设备的功能。
图15是示出可以应用本公开的技术的智能电话1500的示意性配置的示例的框图。智能电话1500包括处理器1501、存储器1502、存储装置1503、外部连接接口1504、摄像装置1506、传感器1507、麦克风1508、输入装置1509、显示装置1510、扬声器1511、无线通信接口1512、一个或多个天线开关1515、一个或多个天线1516、总线1517、电池1518以及辅助控制器1519。
处理器1501可以为例如CPU或片上系统(SoC),并且控制智能电话1500的应用层和另外层的功能。存储器1502包括RAM和ROM,并且存储数据和由处理器1501执行的程序。存储装置1503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1500的接口。
摄像装置1506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1508将输入到智能电话1500的声音转换为音频信号。输入装置1509包括例如被配置为检测显示装置1510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1500的输出图像。扬声器1511将从智能电话1500输出的音频信号转换为声音。
无线通信接口1512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1512通常可以包括例如BB处理器1513和RF电路1514。BB处理器1513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1514可以包括例如混频器、滤波器和放大器,并且经由天线1516来传送和接收无线信号。无线通信接口1512可以为其上集成有BB处理器1513和RF电路1514的一个芯片模块。如图15所示,无线通信接口1512可以包括多个BB处理器1513和多个RF电路1514。虽然图15示出其中无线通信接口1512包括多个BB处理器1513和多个RF电路1514的示例,但是无线通信接口1512也可以包括单个BB处理器1513或单个RF电路1514。
此外,除了蜂窝通信方案之外,无线通信接口1512可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域 网(LAN)方案。在此情况下,无线通信接口1512可以包括针对每种无线通信方案的BB处理器1513和RF电路1514。
天线开关1515中的每一个在包括在无线通信接口1512中的多个电路(例如用于不同的无线通信方案的电路)之间重选天线1516的连接目的地。
天线1516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1512传送和接收无线信号。如图15所示,智能电话1500可以包括多个天线1516。虽然图15示出其中智能电话1500包括多个天线1516的示例,但是智能电话1500也可以包括单个天线1516。
此外,智能电话1500可以包括针对每种无线通信方案的天线1516。在此情况下,天线开关1515可以从智能电话1500的配置中省略。
总线1517将处理器1501、存储器1502、存储装置1503、外部连接接口1504、摄像装置1506、传感器1507、麦克风1508、输入装置1509、显示装置1510、扬声器1511、无线通信接口1512以及辅助控制器1519彼此连接。电池1518经由馈线向图15所示的智能电话1500的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1519例如在睡眠模式下操作智能电话1500的最小必需功能。
在图15所示的智能电话1500中,通过使用图10所描述的连接单元1020、中继设备确定单元1030、集合确定单元1040、信息生成单元1050和处理单元1060可以由处理器1501或辅助控制器1519实现,并且通过使用图10所描述的通信单元1010可以由无线通信接口1512实现。功能的至少一部分也可以由处理器1501或辅助控制器1519实现。例如,处理器1501或辅助控制器1519可以通过执行存储器1502或存储装置1503中存储的指令而执行与中继设备执行连接、确定中继设备、选取候选中继设备的有序集合、生成信息、周期性进入更新时间和传输时间的功能。
图16是示出可以应用本公开的技术的汽车导航设备1620的示意性配置的示例的框图。汽车导航设备1620包括处理器1621、存储器1622、全球定位系统(GPS)模块1624、传感器1625、数据接口1626、内容播放器1627、存储介质接口1628、输入装置1629、显示装置1630、扬声器1631、无线通信接口1633、一个或多个天线开关1636、一个或多个天线1637以及电池1638。
处理器1621可以为例如CPU或SoC,并且控制汽车导航设备1620的导航功能和另外的功能。存储器1622包括RAM和ROM,并且存储数据和由处理器1621执行的程序。
GPS模块1624使用从GPS卫星接收的GPS信号来测量汽车导航设备1620的位置(诸如纬度、经度和高度)。传感器1625可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1626经由未示出的终端而连接到例如车载网络1641,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1627再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1628中。输入装置1629包括例如被配置为检测显示装置1630的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1630包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1631输出导航功能的声音或再现的内容。
无线通信接口1633支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1633通常可以包括例如BB处理器1634和RF电路1635。BB处理器1634可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1635可以包括例如混频器、滤波器和放大器,并且经由天线1637来传送和接收无线信号。无线通信接口1633还可以为其上集成有BB处理器1634和RF电路1635的一个芯片模块。如图16所示,无线通信接口1633可以包括多个BB处理器1634和多个RF电路1635。虽然图16示出其中无线通信接口1633包括多个BB处理器1634和多个RF电路1635的示例,但是无线通信接口1633也可以包括单个BB处理器1634或单个RF电路1635。
此外,除了蜂窝通信方案之外,无线通信接口1633可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1633可以包括BB处理器1634和RF电路1635。
天线开关1636中的每一个在包括在无线通信接口1633中的多个电路(诸如用于不同的无线通信方案的电路)之间重选天线1637的连接目的地。
天线1637中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1633传送和接收无线信号。如图16所示,汽车导航设备1620可以包括多个天线1637。虽然图16示出其中汽车导航设备1620包括多个天线1637的示例,但是汽车导航设备1620也可以包括单个天线1637。
此外,汽车导航设备1620可以包括针对每种无线通信方案的天线1637。在此情况下,天线开关1636可以从汽车导航设备1620的配置中省略。
电池1638经由馈线向图16所示的汽车导航设备1620的各个块提供电力,馈线在图中被部分地示为虚线。电池1638累积从车辆提供的电力。
在图16示出的汽车导航设备1620中,通过使用图10所描述的连接单元1020、中继设备确定单元1030、集合确定单元1040、信息生成单元1050和处理单元1060可以由处理器1621实现,并且通过使用图10所描述的通信单元1010可以由无线通信接口1633实现。功能的至少一部分也可以由处理器1621实现。例如,处理器1621可以通过执行存储器1622中存储的指令而执行与中继设备执行连接、确定中继设备、选取候选中继设备的有序集合、生成信息、周期性进入更新时间和传输时间的功能。
本公开的技术也可以被实现为包括汽车导航设备1620、车载网络1641以及车辆模块1642中的一个或多个块的车载系统(或车辆)1640。车辆模块1642生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1641。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间 序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (45)

  1. 一种电子设备,包括处理电路,被配置为:
    确定用户设备的一个或多个候选中继设备;
    根据所述一个或多个候选中继设备的能量收集能力对所述一个或多个候选中继设备进行排序,以生成候选中继设备的有序集合;以及
    将所述候选中继设备的有序集合发送至所述用户设备,以用于所述用户设备根据所述候选中继设备的有序集合确定中继设备并利用所述中继设备与卫星设备进行通信,
    其中,所述候选中继设备将收集的能量转换为电能以为所述候选中继设备供电。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    预测表示在未来的预定时间内所述用户设备的能量随时间变化的能量变化曲线;
    根据所述能量变化曲线确定所述用户设备的发送功率;以及
    根据所述用户设备的发送功率确定所述用户设备的一个或多个候选中继设备,并且
    其中,所述用户设备将收集的能量转换为电能以为所述用户设备供电。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    针对所述用户设备的一个或多个发送功率中的每个发送功率,确定针对所述发送功率的一个或多个候选中继设备。
  4. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    根据所述用户设备的当前能量、能量收集能力的变化和能量消耗能力的变化来预测所述能量变化曲线。
  5. 根据权利要求4所述的电子设备,其中,所述处理电路还被配置为根据以下参数中的一种或多种来确定所述用户设备的能量收集能力的 变化:所述用户设备的位置、所述用户设备的能量来源、与所述用户设备的能量来源相关联的天气条件、所述用户设备的天线参数、用户设备的能量收集能力;以及/或者
    所述处理电路还被配置为根据以下参数中的一种或多种来确定所述用户设备的能量消耗能力的变化:所述用户设备的数据包的大小、所述用户设备的数据包的发送速率、所述用户设备的数据包的时间间隔、所述用户设备对传输时延的要求。
  6. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    根据所述用户设备的能量变化曲线、以及所述用户设备的能量与发送功率之间的映射关系来确定所述用户设备的发送功率。
  7. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    根据所述用户设备的发送功率确定能够接收到所述用户设备发送的信息的中继设备;以及
    将能够接收到所述用户设备发送的信息的中继设备确定为所述用户设备的候选中继设备。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路还被配置为:
    在不存在能够接收到所述用户设备发送的信息的中继设备的情况下,将所述用户设备确定为中继设备。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    还根据所述一个或多个候选中继设备的以下参数中的一种或多种对所述一个或多个候选中继设备进行排序:所述候选中继设备与所述用户设备之间的距离、与所述候选中继设备的能量来源相关联的天气条件、所述候选中继设备的缓存大小、所述候选中继设备服务的用户设备的数目、所述候选中继设备与卫星设备之间的连接质量。
  10. 根据权利要求7所述的电子设备,其中,所述处理电路还被配置为:
    为每个中继设备设置更新时间、传输时间和第一个更新时间的起始时 间,以使得所述中继设备周期性进入所述更新时间和传输时间,其中,在所述更新时间内所述中继设备通过所述卫星设备与核心网建立连接,并且在所述传输时间内所述中继设备与所述用户设备进行通信或者所述中继设备与所述卫星设备进行通信。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    根据所述中继设备服务的用户设备的数目来确定所述更新时间的长度;以及/或者
    根据所述中继设备的能量消耗能力和各个卫星设备的星历来确定所述传输时间的长度。
  12. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    还将每个候选中继设备的下一个更新时间的起始时间发送至所述用户设备。
  13. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    在每个中继设备的更新时间内,与所述中继设备建立连接;
    从所述中继设备接收所述中继设备的当前能量、所述中继设备的能量收集能力、所述中继设备服务的各个用户设备的当前能量、所述中继设备服务的各个用户设备的能量收集能力;
    根据从所述中继设备接收的信息对所述中继设备服务的用户设备进行分组、并确定各个用户设备组的目标中继设备;以及
    将所述用户设备的分组结果以及各个用户设备组的目标中继设备发送至所述中继设备。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    从所述中继设备服务的满足中继设备的条件的用户设备、以及所述中继设备中确定所述目标中继设备,并且
    其中,在用户设备满足以下条件中的一者或者多者的情况下,确定所述用户设备满足中继设备的条件:
    所述用户设备与卫星设备之间的连接质量大于第一预定阈值;
    所述用户设备与预定数目的其他用户设备之间的连接质量大于第二预定阈值;
    所述用户设备的缓存大小大于第三预定阈值;
    所述用户设备在未来的一段时间内的剩余能量大于第四预定阈值。
  15. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    从不属于所述中继设备服务的用户设备的用户设备中确定所述目标中继设备。
  16. 一种用户设备,包括处理电路,被配置为:
    从网络侧设备接收候选中继设备的有序集合,其中,所述候选中继设备的有序集合是根据一个或多个候选中继设备的能量收集能力对所述一个或多个候选中继设备进行排序生成的;
    按照所述候选中继设备的有序集合中的顺序,依次与所述候选中继设备的有序集合中的候选中继设备进行连接,直到与一个候选中继设备成功连接为止,将成功连接的候选中继设备确定为中继设备;以及
    利用所述中继设备与卫星设备进行通信,
    其中,所述候选中继设备将收集的能量转换为电能以为所述候选中继设备供电。
  17. 根据权利要求16所述的用户设备,其中,所述处理电路还被配置为:
    从所述网络侧设备接收一个或多个候选中继设备的有序集合,每个候选中继设备的有序集合对应所述用户设备的一个发送功率;以及
    根据所述用户设备的实际发送功率确定与所述实际发送功率对应的候选中继设备的有序集合。
  18. 根据权利要求16所述的用户设备,其中,所述处理电路还被配置为:
    向所述网络侧设备发送以下参数中的一种或多种:所述用户设备的位置、所述用户设备的当前能量、所述用户设备的能量来源、所述用户设备的能量与发送功率之间的映射关系、所述用户设备的天线参数、用户设备 的能量收集能力、所述用户设备的数据包的大小、所述用户设备的数据包的发送速率、所述用户设备的数据包的时间间隔、所述用户设备对传输时延的要求。
  19. 根据权利要求16所述的用户设备,其中,所述处理电路还被配置为:
    从所述网络侧设备接收每个候选中继设备的下一个更新时间的起始时间;以及
    按照所述候选中继设备的有序集合中的顺序,依次与所述候选中继设备的有序集合中的候选中继设备在所述候选中继设备的下一个更新时间的起始时间处进行连接,直到与一个候选中继设备成功连接为止,并且
    其中,每个候选中继设备周期性进入更新时间和传输时间,其中,在所述更新时间内所述候选中继设备通过卫星设备与核心网建立连接,并且在所述传输时间内所述候选中继设备与用户设备进行通信或者所述候选中继设备与卫星设备进行通信。
  20. 根据权利要求16所述的用户设备,其中,所述处理电路还被配置为:
    从所述网络侧设备接收表示将所述用户设备用作中继设备的信息;
    从所述网络侧设备接收所述用户设备的更新时间、传输时间和第一个更新时间的起始时间;以及
    周期性进入更新时间和传输时间,其中,在所述更新时间内所述用户设备通过卫星设备与核心网建立连接,并且在所述传输时间内所述用户设备与其服务的其他用户设备进行通信或者所述用户设备与卫星设备进行通信。
  21. 根据权利要求16所述的用户设备,其中,所述处理电路还被配置为:
    从所述中继设备接收能量上报通知;以及
    向所述中继设备发送所述用户设备的当前能量和能量收集能力。
  22. 根据权利要求21所述的用户设备,其中,所述处理电路还被配置为:
    从所述中继设备接收目标中继设备;以及
    与所述目标中继设备进行连接。
  23. 一种由电子设备执行的无线通信方法,包括:
    确定用户设备的一个或多个候选中继设备;
    根据所述一个或多个候选中继设备的能量收集能力对所述一个或多个候选中继设备进行排序,以生成候选中继设备的有序集合;以及
    将所述候选中继设备的有序集合发送至所述用户设备,以用于所述用户设备根据所述候选中继设备的有序集合确定中继设备并利用所述中继设备与卫星设备进行通信,
    其中,所述候选中继设备将收集的能量转换为电能以为所述候选中继设备供电。
  24. 根据权利要求23所述的无线通信方法,其中,所述无线通信方法还包括:
    预测表示在未来的预定时间内所述用户设备的能量随时间变化的能量变化曲线;
    根据所述能量变化曲线确定所述用户设备的发送功率;以及
    根据所述用户设备的发送功率确定所述用户设备的一个或多个候选中继设备,并且
    其中,所述用户设备将收集的能量转换为电能以为所述用户设备供电。
  25. 根据权利要求24所述的无线通信方法,其中,所述无线通信方法还包括:
    针对所述用户设备的一个或多个发送功率中的每个发送功率,确定针对所述发送功率的一个或多个候选中继设备。
  26. 根据权利要求24所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述用户设备的当前能量、能量收集能力的变化和能量消耗能力的变化来预测所述能量变化曲线。
  27. 根据权利要求26所述的无线通信方法,其中,所述无线通信方法还包括根据以下参数中的一种或多种来确定所述用户设备的能量收集能力的变化:所述用户设备的位置、所述用户设备的能量来源、与所述用 户设备的能量来源相关联的天气条件、所述用户设备的天线参数、用户设备的能量收集能力;以及/或者
    所述无线通信方法还包括根据以下参数中的一种或多种来确定所述用户设备的能量消耗能力的变化:所述用户设备的数据包的大小、所述用户设备的数据包的发送速率、所述用户设备的数据包的时间间隔、所述用户设备对传输时延的要求。
  28. 根据权利要求24所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述用户设备的能量变化曲线、以及所述用户设备的能量与发送功率之间的映射关系来确定所述用户设备的发送功率。
  29. 根据权利要求24所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述用户设备的发送功率确定能够接收到所述用户设备发送的信息的中继设备;以及
    将能够接收到所述用户设备发送的信息的中继设备确定为所述用户设备的候选中继设备。
  30. 根据权利要求29所述的无线通信方法,其中,所述无线通信方法还包括:
    在不存在能够接收到所述用户设备发送的信息的中继设备的情况下,将所述用户设备确定为中继设备。
  31. 根据权利要求23所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述一个或多个候选中继设备的以下参数中的一种或多种对所述一个或多个候选中继设备进行排序:所述候选中继设备与所述用户设备之间的距离、与所述候选中继设备的能量来源相关联的天气条件、所述候选中继设备的缓存大小、所述候选中继设备服务的用户设备的数目、所述候选中继设备与卫星设备之间的连接质量。
  32. 根据权利要求29所述的无线通信方法,其中,所述无线通信方法还包括:
    为每个中继设备设置更新时间、传输时间和第一个更新时间的起始时间,以使得所述中继设备周期性进入所述更新时间和传输时间,其中,在 所述更新时间内所述中继设备通过所述卫星设备与核心网建立连接,并且在所述传输时间内所述中继设备与所述用户设备进行通信或者所述中继设备与所述卫星设备进行通信。
  33. 根据权利要求32所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述中继设备服务的用户设备的数目来确定所述更新时间的长度;以及/或者
    根据所述中继设备的能量消耗能力和各个卫星设备的星历来确定所述传输时间的长度。
  34. 根据权利要求32所述的无线通信方法,其中,所述无线通信方法还包括:
    将每个候选中继设备的下一个更新时间的起始时间发送至所述用户设备。
  35. 根据权利要求32所述的无线通信方法,其中,所述无线通信方法还包括:
    在每个中继设备的更新时间内,与所述中继设备建立连接;
    从所述中继设备接收所述中继设备的当前能量、所述中继设备的能量收集能力、所述中继设备服务的各个用户设备的当前能量、所述中继设备服务的各个用户设备的能量收集能力;
    根据从所述中继设备接收的信息对所述中继设备服务的用户设备进行分组、并确定各个用户设备组的目标中继设备;以及
    将所述用户设备的分组结果以及各个用户设备组的目标中继设备发送至所述中继设备。
  36. 根据权利要求35所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述中继设备服务的满足中继设备的条件的用户设备、以及所述中继设备中确定所述目标中继设备,并且
    其中,在用户设备满足以下条件中的一者或者多者的情况下,确定所述用户设备满足中继设备的条件:
    所述用户设备与卫星设备之间的连接质量大于第一预定阈值;
    所述用户设备与预定数目的其他用户设备之间的连接质量大于第二预定阈值;
    所述用户设备的缓存大小大于第三预定阈值;
    所述用户设备在未来的一段时间的剩余能量大于第四预定阈值。
  37. 根据权利要求35所述的无线通信方法,其中,所述无线通信方法还包括:
    从不属于所述中继设备服务的用户设备的用户设备中确定所述目标中继设备。
  38. 一种由用户设备执行的无线通信方法,包括:
    从网络侧设备接收候选中继设备的有序集合,其中,所述候选中继设备的有序集合是根据一个或多个候选中继设备的能量收集能力对所述一个或多个候选中继设备进行排序生成的;
    按照所述候选中继设备的有序集合中的顺序,依次与所述候选中继设备的有序集合中的候选中继设备进行连接,直到与一个候选中继设备成功连接为止,将成功连接的候选中继设备确定为中继设备;以及
    利用所述中继设备与卫星设备进行通信,
    其中,所述候选中继设备将收集的能量转换为电能以为所述候选中继设备供电。
  39. 根据权利要求38所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述网络侧设备接收一个或多个候选中继设备的有序集合,每个候选中继设备的有序集合对应所述用户设备的一个发送功率;以及
    根据所述用户设备的实际发送功率确定与所述实际发送功率对应的候选中继设备的有序集合。
  40. 根据权利要求38所述的无线通信方法,其中,所述无线通信方法还包括:
    向所述网络侧设备发送以下参数中的一种或多种:所述用户设备的位置、所述用户设备的当前能量、所述用户设备的能量来源、所述用户设备的能量与发送功率之间的映射关系、所述用户设备的天线参数、用户设备的能量收集能力、所述用户设备的数据包的大小、所述用户设备的数据包 的发送速率、所述用户设备的数据包的时间间隔、所述用户设备对传输时延的要求。
  41. 根据权利要求38所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述网络侧设备接收每个候选中继设备的下一个更新时间的起始时间;以及
    按照所述候选中继设备的有序集合中的顺序,依次与所述候选中继设备的有序集合中的候选中继设备在所述候选中继设备的下一个更新时间的起始时间处进行连接,直到与一个候选中继设备成功连接为止,并且
    其中,每个候选中继设备周期性进入更新时间和传输时间,其中,在所述更新时间内所述候选中继设备通过卫星设备与核心网建立连接,并且在所述传输时间内所述候选中继设备与用户设备进行通信或者所述候选中继设备与卫星设备进行通信。
  42. 根据权利要求38所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述网络侧设备接收表示将所述用户设备用作中继设备的信息;
    从所述网络侧设备接收所述用户设备的更新时间、传输时间和第一个更新时间的起始时间;以及
    周期性进入更新时间和传输时间,其中,在所述更新时间内所述用户设备通过卫星设备与核心网建立连接,并且在所述传输时间内所述用户设备与其服务的其他用户设备进行通信或者所述用户设备与卫星设备进行通信。
  43. 根据权利要求38所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述中继设备接收能量上报通知;以及
    向所述中继设备发送所述用户设备的当前能量和能量收集能力。
  44. 根据权利要求43所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述中继设备接收目标中继设备;以及
    与所述目标中继设备进行连接。
  45. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求23-44中任一项所述的无线通信方法。
PCT/CN2022/109820 2021-08-10 2022-08-03 电子设备、用户设备、无线通信方法和存储介质 WO2023016301A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280053057.0A CN117837215A (zh) 2021-08-10 2022-08-03 电子设备、用户设备、无线通信方法和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110913959.4A CN115707058A (zh) 2021-08-10 2021-08-10 电子设备、用户设备、无线通信方法和存储介质
CN202110913959.4 2021-08-10

Publications (1)

Publication Number Publication Date
WO2023016301A1 true WO2023016301A1 (zh) 2023-02-16

Family

ID=85179506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109820 WO2023016301A1 (zh) 2021-08-10 2022-08-03 电子设备、用户设备、无线通信方法和存储介质

Country Status (2)

Country Link
CN (2) CN115707058A (zh)
WO (1) WO2023016301A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116261181A (zh) * 2023-05-15 2023-06-13 华安中云股份有限公司 基于卫星信号的数据传输方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238685A (zh) * 2010-05-06 2011-11-09 华为技术有限公司 无线中继网络的中继节点选择与功率分配的方法和设备
US20130094430A1 (en) * 2011-10-14 2013-04-18 Bluetick, Inc. System And Method To Monitor And Control Remote Sensors And Equipment
CN105744625A (zh) * 2014-12-12 2016-07-06 索尼公司 用于无线通信的装置和方法
CN106304164A (zh) * 2016-08-12 2017-01-04 梁广俊 一种基于能量采集协作通信系统的联合资源分配方法
CN106454990A (zh) * 2016-12-12 2017-02-22 广西师范大学 一种考虑能量传输的中继选择方法
CN111448740A (zh) * 2017-12-08 2020-07-24 施耐德电气美国股份有限公司 由具有集成开关模块的环境能源供电的无线建筑传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238685A (zh) * 2010-05-06 2011-11-09 华为技术有限公司 无线中继网络的中继节点选择与功率分配的方法和设备
US20130094430A1 (en) * 2011-10-14 2013-04-18 Bluetick, Inc. System And Method To Monitor And Control Remote Sensors And Equipment
CN105744625A (zh) * 2014-12-12 2016-07-06 索尼公司 用于无线通信的装置和方法
CN106304164A (zh) * 2016-08-12 2017-01-04 梁广俊 一种基于能量采集协作通信系统的联合资源分配方法
CN106454990A (zh) * 2016-12-12 2017-02-22 广西师范大学 一种考虑能量传输的中继选择方法
CN111448740A (zh) * 2017-12-08 2020-07-24 施耐德电气美国股份有限公司 由具有集成开关模块的环境能源供电的无线建筑传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG, MIN; DUAN, XIANGYANG; HU, LIUJUN: "Challenges, Innovations and Perspectives Towards 6G", ZTE TECHNOLOGY JOURNAL, ZTE CORPORATION, CN, vol. 26, no. 3, 24 June 2020 (2020-06-24), CN , pages 61 - 70, XP009543330, ISSN: 1009-6868 *
SONY: "IoT Features in Rel-18", 3GPP DRAFT; RWS-210302, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. TSG RAN, no. Electronic Meeting; 20210628 - 20210702, 7 June 2021 (2021-06-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052025856 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116261181A (zh) * 2023-05-15 2023-06-13 华安中云股份有限公司 基于卫星信号的数据传输方法、装置、设备及存储介质
CN116261181B (zh) * 2023-05-15 2023-08-01 华安中云股份有限公司 基于卫星信号的数据传输方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115707058A (zh) 2023-02-17
CN117837215A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
EP3606164A1 (en) Electronic apparatus for wireless communication and wireless communication method
KR102352471B1 (ko) 무선 통신 전자 디바이스 및 방법
JP2021119719A (ja) 端末装置、無線通信装置、無線通信方法及びコンピュータプログラム
JP6859590B2 (ja) 通信装置および通信方法
KR20190039101A (ko) 네트워크 제어 단말기 및 네트워크 노드에 사용되는 전자 디바이스 및 방법
TWI796393B (zh) 通訊裝置及通訊方法
US9832701B2 (en) Radio communication apparatus, radio communication method, communication control apparatus, and communication control method to switch operation mode based on failure of handover
US20230134248A1 (en) Electronic equipment, user equipment, wireless communication method, and storage medium
WO2015040942A1 (ja) 通信制御装置及び通信制御方法
JPWO2015052973A1 (ja) 通信制御装置、通信制御方法、無線通信装置、無線通信方法及び無線通信システム
CN109155959A (zh) 电子装置、信息处理设备和信息处理方法
WO2023016301A1 (zh) 电子设备、用户设备、无线通信方法和存储介质
WO2019242536A1 (zh) 用于卫星通信的用户设备
US20230328643A1 (en) Electronic device, method and storage medium for sleep and wake-up of base station
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20220286214A1 (en) Electronic device, wireless communication method and computer-readable storage medium
CN111684857B (zh) 电子设备、用户设备、无线通信方法和存储介质
US20230284146A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
WO2023131141A1 (zh) 人工智能模型的管理和分发
WO2021185129A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN116998179A (zh) 用户设备、电子设备、无线通信方法和存储介质
CN117413617A (zh) 基站、电子设备、通信方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE