WO2021185129A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2021185129A1
WO2021185129A1 PCT/CN2021/079891 CN2021079891W WO2021185129A1 WO 2021185129 A1 WO2021185129 A1 WO 2021185129A1 CN 2021079891 W CN2021079891 W CN 2021079891W WO 2021185129 A1 WO2021185129 A1 WO 2021185129A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
resource
electronic device
user equipment
price
Prior art date
Application number
PCT/CN2021/079891
Other languages
English (en)
French (fr)
Inventor
赵友平
董自庆
孙晨
田中
Original Assignee
索尼集团公司
赵友平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 赵友平 filed Critical 索尼集团公司
Priority to US17/795,873 priority Critical patent/US20230209456A1/en
Publication of WO2021185129A1 publication Critical patent/WO2021185129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/35Services specially adapted for particular environments, situations or purposes for the management of goods or merchandise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • This application relates to the field of wireless communication technology, in particular to spectrum management technology. More specifically, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • Spectrum management algorithms can be obtained based on various models such as game theory models, social networks, intelligent algorithms, etc. Different spectrum management algorithms may have different advantages.
  • an electronic device for wireless communication including: a processing circuit, configured to: based on the overall wireless resource requirements of the user equipment accessed by the base station in a predetermined area and the base station can provide The comparison between wireless resources determines the resource price of the base station; and sends the resource price of the base station to the base station, so that the user equipment determines whether to access the base station at least based on the resource price.
  • a method for wireless communication including: a comparison between the overall wireless resource requirements of user equipment accessed by a base station in a predetermined area and the wireless resources that the base station can provide, Determine the resource price of the base station; and send the resource price of the base station to the base station, so that the user equipment determines whether to access the base station at least based on the resource price.
  • an electronic device for wireless communication including: a processing circuit configured to: obtain the overall wireless resource requirements of the user equipment from the user equipment connected to the base station; Provide the spectrum management device with information comparing resource requirements and the wireless resources that the base station can provide; obtain from the spectrum management device the resource price of the base station determined by the spectrum management device based on the information and the resource price of other base stations determined by the spectrum management device; and The resource price information is provided to the user equipment that accesses the base station.
  • a method for wireless communication including: obtaining the overall wireless resource requirement of the user equipment from the user equipment connected to the base station; Provide the radio resource comparison information to the spectrum management device; obtain from the spectrum management device the resource price of the base station determined by the spectrum management device based on the information and the resource price of other base stations determined by the spectrum management device; and provide the resource price information to the receiver User equipment into the base station.
  • an electronic device for wireless communication including: a processing circuit configured to: obtain a first base station and a candidate base station from a first base station that a user equipment currently requests or accesses Information about the resource price of the centralized base station, where the user equipment can access the base station in the set of candidate base stations, and the resource price is determined based on the comparison of the overall wireless resource demand of the user equipment of the base station and the wireless resources that the base station can provide; And based at least on resource prices, determine the second base station to be accessed from the candidate base stations, where the resource price of the second base station is lower than the resource price of the first base station.
  • a method for wireless communication including: obtaining resource price information of a first base station and a base station in a set of candidate base stations from a first base station to which a user equipment currently requests access or access. , Where the user equipment can access the base station in the set of candidate base stations, and the resource price is determined based on the information of the comparison between the overall wireless resource demand of the user equipment of the base station and the wireless resources that the base station can provide; The selected base station centrally determines the second base station to be accessed, where the resource price of the second base station is lower than the resource price of the first base station.
  • the electronic device and method according to the above aspects of the present application can determine the resource price by considering the comparison between the wireless resource providing capability of each base station and the wireless resource demand of the user equipment for the base station, and provide the resource price to the base station, so that the user The equipment can dynamically select and access base stations with lower resource prices, increasing the total number of user equipment accessed in a given area, thereby improving spectrum utilization efficiency.
  • Computer program codes and computer program products for implementing the above-mentioned method for wireless communication and a computer on which the computer program codes for implementing the above-mentioned method for wireless communication are recorded are also provided Readable storage medium.
  • Figure 1 shows an example of a scenario where user equipment is unevenly distributed
  • Fig. 2 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Fig. 3 is a block diagram showing another functional module of an electronic device for wireless communication according to an embodiment of the present application
  • FIG. 4 is a diagram showing an example of a set of candidate base stations
  • Fig. 5 is a block diagram showing functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Fig. 6 is a block diagram showing functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 7 shows an example of the related information flow between the spectrum management apparatus, the base station and the user equipment
  • FIG. 8 shows another example of the related information flow between the spectrum management apparatus, the base station and the user equipment
  • Figure 9 shows a schematic diagram of a simulation example scenario
  • Figure 10 shows an example of dividing the simulation area into three parts
  • FIG. 11 is a diagram showing the comparison of the total access amount of user equipment in the case of using the solution of the present application and using the traditional solution;
  • Figure 12 shows a graph showing the performance comparison between a dynamic pricing plan and a static pricing plan
  • FIG. 13 shows a schematic diagram of an example of tiered pricing
  • Figure 14 shows a graph showing the influence of different tiered pricing stages on the total amount of user equipment access
  • Fig. 15 shows a flowchart of a method for wireless communication according to an embodiment of the present application
  • FIG. 16 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 17 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a server to which the technology of the present disclosure can be applied;
  • FIG. 19 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • 20 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 21 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied;
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 23 is a block diagram of an exemplary structure of a general personal computer in which the method and/or apparatus and/or system according to the embodiments of the present disclosure can be implemented.
  • Fig. 1 shows an example of a scenario in which user equipment (User Equipment, UE) is unevenly distributed.
  • UE User Equipment
  • some base stations Base Station, BS
  • BS Base Station
  • Some base stations have too few UE accesses, so the spectrum resources are not fully utilized.
  • this embodiment provides an electronic device 100 for spectrum resource management in wireless communication. It should be understood that although the scenario of FIG. 1 is described here, this embodiment is not limited to this, but can be applied to various spectrum management occasions.
  • FIG. 2 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes: a determining unit 101 configured to be based on a base station in a predetermined area The comparison between the overall radio resource requirements of the accessed UE and the radio resources that the base station can provide to determine the resource price of the base station; and the transceiver unit 102 is configured to send the resource price of the base station to the base station, so that the UE is based at least on the Resource price to determine whether to access the base station.
  • the electronic device 100 may be set on the side of the central management device or the spectrum management device or be communicatively connected to the central management device or the spectrum management device, for example. In addition, the electronic device 100 may also be set on the side of the core network.
  • the central management device or spectrum management device described in this article can be implemented as various functional entities, such as Spectrum Access System (SAS), Coexistence Manager (CxM), and Group Spectrum Coordinator , GSC) and so on.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a central management device or a spectrum management device itself, and may also include external devices such as a memory, a transceiver (not shown in the figure) and the like.
  • the memory can be used to store the programs and related data information that the central management device or the spectrum management device needs to perform to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, other central management devices or spectrum management devices, user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the spectrum management device sets a price for the spectrum resource of each base station, and performs spectrum management based on the price, so as to guide the UE to evenly access each base station.
  • the determining unit 101 determines the resource price of the base station based on the ratio of the overall wireless resource demand of the UE to the wireless resource supply of the base station, and determines the resource price to be positively correlated with the ratio. Specifically, when the ratio of the UE's overall wireless resource demand to the base station's wireless resource supply is larger, it indicates that the base station is more difficult to meet the UE's overall wireless resource demand, and it tends to let the UE not choose this base station for access but diverted to other The base station, therefore, determines its resource price to be a higher value.
  • the wireless resource requirements may include one or more of the following: spectrum requirements, delay requirements, reliability requirements, transmission rate requirements, and so on.
  • spectrum requirements may be used as an example for explanation, but it should be understood that this is not restrictive.
  • the determining unit 101 may determine that the resource price of a base station with a larger delay that can be provided is higher, so as to guide the UE to access a base station that provides a low-latency service.
  • the transceiver unit 102 is also configured to obtain one or more of the following information from the base station: overall radio resource demand information of the UE accessing the base station, resource supply information of the radio resources that the base station can provide, location information of the base station, Transmit power information. This information is used, for example, for the determining unit 101 to determine the resource price.
  • the determining unit 101 can determine the resource price of the base station according to the following formula (1).
  • p i is the determined resource price of BS-i
  • j is UE-j accessing BS-i
  • N is the total number of UEs accessing BS-i
  • D ij represents the ratio of UE-j to BS-i
  • the amount of spectrum demand It represents the overall wireless resource requirements of all UEs that access the base station BS-i
  • C i is the spectrum supply of the base station BS-i
  • k is a coefficient. in, It will change as the UE accesses BS-i or disconnects from BS-i, so that the resource price of BS-i changes dynamically.
  • the UE accessing the base station described herein may also include the UE requesting to access the base station, that is, the radio resource requirements of the UE requesting to access the base station may also be included in the overall radio resource requirements of the UE of the base station.
  • the determining unit 101 may also be configured to determine the resource price in various forms.
  • the resource price may be determined as a step function with respect to the ratio, that is, stepwise pricing is adopted. It can be understood that when the number of orders is larger, the pricing is more accurate, and better spectrum management performance may be obtained. For example, the total number of UEs that can be accessed is larger.
  • the determining unit 101 determines its resource price, and the transceiver unit 102 provides information about the resource price to each base station. This information may include the price of the base station itself or other base stations. The price of resources.
  • the base station provides the received resource price information to the UE it currently serves, so that the UE determines whether to access the base station or other base stations based at least on the resource price.
  • the electronic device 100 may further include an execution unit 103 configured to determine a candidate base station set of the base station for each base station, wherein a UE accessing the base station can access a base station among the candidate base stations.
  • the execution unit 103 may determine a base station whose coverage area overlaps with the coverage area of the base station and is capable of providing wireless resources as a base station in the set of candidate base stations.
  • a base station whose coverage area overlaps with its coverage area and has free spectrum resources can be used as its candidate base station.
  • Figure 4 shows a schematic diagram of a set of candidate base stations. Taking the reference base station BS-i as an example, FIG. 4 shows the base stations in the set of candidate base stations and the base stations in the set of non-selected base stations.
  • the transceiver unit 102 For each base station, the transceiver unit 102 provides the base station and the resource price of each base station in the set of candidate base stations to the base station. In this way, the base station provides these resource prices to its UE (which may be a UE that has already accessed or a UE that requests access). For example, the UE may choose to access a base station with a lower resource price. If the resource price of the current base station is the lowest, the UE can continue to access the current base station without switching. How the UE selects the base station to be accessed will be described in detail later. When providing resource prices, the transceiver unit 102 may also provide location information or identification information of the corresponding base station, so that the UE can identify the base station.
  • the determining unit 101 and the executing unit 103 may be configured to, when the change in the contrast between the overall wireless resource demand and the wireless resource supply for at least one base station reaches a predetermined degree, In response to the change in the comparison, spectrum management is performed dynamically, such as updating the resource price of the base station, updating the set of candidate base stations, and so on.
  • the predetermined degree may be predetermined by the determining unit 101 or the executing unit 103, which depends on, for example, the efficiency of the spectrum management required to be implemented, the signaling overhead, the expected computing load, and the like.
  • each base station separately counts and judges changes in its overall wireless resource requirements, and reports the changed comparison to the spectrum management device when the above-mentioned comparison reaches or exceeds a predetermined level. For example, when the amount of wireless resource supply of the base station remains unchanged, the base station can determine whether the change in the overall wireless resource demand of the UE exceeds a predetermined threshold, and if the determination is yes, report the changed overall wireless resource to the spectrum management device. Resource requirements.
  • the transceiver unit 102 obtains the information of the comparison change from at least one base station, where the information may be the comparison itself or the overall wireless resource demand after the change, which is not restrictive.
  • the determining unit 101 and the executing unit 103 perform, for example, the determination of the resource price and the determination of the candidate base station set.
  • the transceiver unit 102 then provides relevant resource price information to each base station.
  • each base station does not make a judgment, but reports the updated information of the changed overall wireless resource requirement to the spectrum management device.
  • the determining unit 101 determines whether the change of the contrast reaches a predetermined level based on the update information reported by at least one base station. In a case where the determination is yes, the determining unit 101 and the executing unit 103 perform the determination of the resource price and the determination of the candidate base station set. In this example, the determination of the degree of change of the contrast is performed by the spectrum management device.
  • the determining unit 101 updates the resource price of at least one base station in response to the change in comparison, the executing unit 103 re-determines the candidate base station set of each base station, and the transceiver unit 102 updates the resource based on the newly determined candidate base station set.
  • the price is provided to the relevant base station, where the UE re-determines the base station to be accessed based on the updated resource price.
  • the determining unit 101, the executing unit 103, and the transceiving unit 102 perform the above operations in an iterative manner until a predetermined condition is satisfied.
  • the predetermined condition may include, for example, one or more of the following: the number of iterations reaches a predetermined value, and the maximum value of the resource price update amount between two iterations is less than a predetermined threshold. As the number of iterations increases, the update amount of the resource price of the base station decreases. Therefore, the end of the iteration process can be controlled by the change of the update amount; and/or the end of the iteration process can be controlled by directly controlling the number of iterations .
  • the iteration may be performed based on an optimized foraging algorithm (Optimal Foraging Algorithm, OFA).
  • OFA is a swarm intelligence algorithm for solving the global optimization problem of animal foraging behavior based on the ecological theory of animal behavior-the optimal foraging theory.
  • the optimized foraging algorithm establishes a mathematical model by simulating animal foraging search, prey identification time, food area and foraging center location to solve the best foraging position of animals.
  • OFA can be implemented as follows.
  • the initial foraging position of each individual ie, foraging animal
  • the objective function value of each individual ie, the net energy obtained by the foraging animal
  • the net energy is the energy obtained by the animal foraging.
  • Subtract the energy consumed by the animal foraging sort all individuals according to the objective function value; randomly select an individual from all individuals as the reference sample; compare the objective function value of each individual with the reference sample, if the individual objective function If the value is lower than the reference sample, the individual looks for a new foraging position in the direction of the reference sample; if the individual's objective function value is higher than the reference sample, the individual looks for a new foraging position in the opposite direction of the reference sample.
  • the new foraging position is better than the previous position, that is, it is judged whether the objective function value of the individual in the new foraging position is higher than the objective function value of the previous position. If the judgment is yes, the new foraging position will be reserved for the next foraging, otherwise the new foraging position will be ignored and the previous foraging position will be used for the next foraging.
  • the optimized foraging algorithm uses the optimized foraging algorithm to search for the foraging position repeatedly, and record the best position obtained for each foraging during the search process.
  • the algorithm terminates for example, the number of iterations reaches the set value or the change of the objective function value is less than a predetermined degree
  • the recorded foraging position is the final optimal solution.
  • the foraging animal is the UE
  • the foraging location is the base station
  • the objective function value is the resource price of the base station.
  • the foraging animal searching for a foraging location with a higher objective function in the area is equivalent to the UE being in the area. Access to base stations with lower resource prices in the area.
  • OFA has also been adjusted to suit the application scenarios of this application.
  • the range for foraging animals to find the optimal position is the entire area.
  • the UE needs to first determine whether the base station can be accessed when searching for an accessible base station, and select among the accessible base stations. Choose base stations with lower resource prices.
  • the UE can determine whether the base station can be accessed by detecting the pilot signal strength of the base station in the set of candidate base stations.
  • the foraging animals in the OFA algorithm find the foraging spots with higher net energy obtained by the foraging animals, and then call other animals to go.
  • the spectrum manager notifies the UE of the resource price of each base station through the base station, and the UE chooses to access the base station with a lower resource price.
  • the OFA algorithm is executed jointly by the spectrum management apparatus and the UE.
  • OFA algorithm is only an example, and other group intelligence optimization algorithms can also be used to perform spectrum management based on resource prices.
  • the UE When the iteration is terminated, it is considered that the UE is guided to access a base station with more idle resources, so that the distribution of the UE is not too concentrated, which increases the total number of UEs accessed in a given area, and improves the efficiency of spectrum utilization.
  • the electronic device 100 determines the resource price by considering the comparison between the radio resource provision capability of each base station and the UE's radio resource demand for the base station, and performs spectrum management based on the resource price, so that the UE It can dynamically select base stations with lower resource prices to increase the total number of UEs accessed in a given area, thereby improving spectrum utilization efficiency.
  • FIG. 5 shows a block diagram of functional modules of an electronic device 200 for wireless communication according to another embodiment of the present application.
  • the electronic device 200 includes: an acquiring unit 201 configured to access a base station from The UE obtains the overall radio resource requirements of the UE; it is provided to the unit 202, and is configured to provide the spectrum management apparatus with information about the comparison between the UE’s overall radio resource requirements and the radio resources that the base station can provide, wherein the obtaining unit 201 is also configured In order to obtain from the spectrum management device the resource price of the base station determined by the spectrum management device based on the information and the resource price of other base stations determined by the spectrum management device, the providing unit 202 is further configured to provide resource price information to UEs accessing the base station.
  • the acquiring unit 201 and the providing unit 202 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the device shown in FIG. 5 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 200 may, for example, be installed on the base station side of the resource application system or be communicably connected to the base station (for example, an eNB or a gNB).
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as a base station itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the wireless resource requirements may include one or more of the following: spectrum requirements, delay requirements, reliability requirements, and transmission rate requirements.
  • the obtaining unit 201 obtains respective wireless resource requirements from each UE that accesses the base station to obtain the overall wireless resource requirements.
  • the providing unit 202 provides the spectrum management apparatus with information about the comparison between the overall wireless resource demand and the wireless resources that the base station can provide, so that the spectrum management apparatus can determine the resource price based on the information.
  • the providing unit 202 may provide one or more of the following to the spectrum management apparatus: the overall radio resource demand of the UE, the resource supply information of the radio resources that the base station can provide, the location information of the base station, and the transmission power information of the base station.
  • the specific description about the determination of the resource price has been given in the first embodiment, and will not be repeated here.
  • the UE accessing the base station may also include the UE that is requesting access to the base station, that is, the overall radio resource requirement includes the radio resource requirement of the UE that is requesting access to the base station.
  • the acquiring unit 201 acquires resource price information from the spectrum management device, for example, including resource prices of the base station itself and resource prices of other base stations.
  • the providing unit 202 provides the information to the UE, so that the UE reselects the base station to be accessed based on at least the information.
  • the providing unit 202 may provide resource price information to the UE in a broadcast manner. For a UE that is requesting access to a base station, it can request access to another base station based on the resource price information. For a UE that has already accessed a base station, it can disconnect from the current base station and access another base station.
  • other base stations may be base stations in a set of candidate base stations, where a UE that accesses the base station can access a base station in the set of candidate base stations.
  • the coverage area of the base station in the candidate base station set overlaps with the coverage area of the current base station, and the base station in the candidate base station set has idle spectrum resources.
  • the UE may select a base station whose resource price in the set of candidate base stations is lower than its own base station based on at least the resource price information. If the resource price of the current base station is already the lowest price, the UE will continue to access the current base station.
  • the providing unit 202 is configured to determine the change of the above comparison when a new UE requests to access the base station or access the base station or the connected UE disconnects from the base station, and provide updated comparison information to the spectrum management apparatus .
  • the providing unit 202 is configured to provide updated comparison information to the spectrum management apparatus when the comparison changes.
  • the providing unit 202 may provide updated comparison value information, and may also provide updated overall radio resource requirement information of the UE.
  • the spectrum management device determines whether to update the resource price of the base station based on the updated and compared information.
  • the providing unit 202 is configured to provide updated comparison information to the spectrum management apparatus when the change in the comparison reaches a predetermined degree.
  • the providing unit 202 may provide updated comparison value information, and may also provide updated overall radio resource requirement information of the UE.
  • the base station determines the degree of contrast change and decides whether to report the change to the spectrum management device.
  • the spectrum management device will update the resource price of the base station.
  • the resource price of a base station may affect the change of the UE's access state. For example, a UE currently accessing the base station or a UE requesting access to the base station may choose to access other base stations, or other UEs may choose to access other base stations. Choose to access the base station. Further, the resource price of the base station may be updated again, thus forming an iterative process. As described in the first embodiment, this iteration may end after a predetermined number of executions, or end when the maximum value of the update amount of the resource price of each base station is less than a predetermined threshold.
  • the electronic device 200 considers the resource price determined based on the comparison between the base station's radio resource providing capability and the UE's wireless resource demand for the base station, and assists in executing the spectrum based on the resource price.
  • Management enables UEs to dynamically select base stations with lower resource prices to increase the total number of UEs accessed in a given area, thereby improving spectrum utilization efficiency.
  • FIG. 6 shows a block diagram of functional modules of an electronic device 300 for wireless communication according to another embodiment of the present application.
  • the electronic device 300 includes: an acquiring unit 301 configured to request the current The first base station accessed or accessed obtains the resource price information of the first base station and the base station in the set of candidate base stations, where the UE can access the base station in the set of candidate base stations, and the resource price is based on the total radio resources of the UE of the base station The demand is determined by the comparison information of the wireless resources that the base station can provide; and the determining unit 302 is configured to determine the second base station to be accessed from the set of candidate base stations based at least on the resource price, where the resource price of the second base station Lower than the resource price of the first base station.
  • the acquisition unit 301 and the execution unit 302 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip or a processor, for example.
  • the processing circuit may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 6 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 300 may, for example, be provided on the UE side or be communicably connected to the UE.
  • the electronic device 300 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 300 may work as the UE itself, and may also include external devices such as a memory and a transceiver (not shown in the figure).
  • the memory can be used to store programs and related data information that the user equipment needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • wireless resource requirements may include one or more of the following: spectrum requirements, delay requirements, reliability requirements, transmission rate requirements, and so on.
  • the UE accesses a base station with a stronger pilot signal by comparing the strength of the pilot signal received from each base station, and the base station currently accessed by the UE is referred to as the first base station in the following.
  • the electronic device 300 may further include a providing unit configured to provide the UE's radio resource requirements to the first base station, so that the first base station can count the UE's overall radio resource requirements of the first base station. .
  • the first base station obtains information about the resource price of the base station from the spectrum management apparatus, and the obtaining unit 301 obtains the information from the first base station.
  • the obtaining unit 301 may obtain the resource price information through broadcasting.
  • the information includes, for example, the resource price information of the first base station and the base station in the set of candidate base stations.
  • the resource price of the base station is determined by the spectrum management apparatus based on the comparison between the overall wireless resource demand of the UE of the base station and the wireless resource supply of the base station, for example, it may be positively correlated with the comparison.
  • the determining unit 302 determines, based on the received resource price, a set of candidate base stations with a resource price lower than that of the first base station, and randomly determines a base station as the second base station among the selected base stations. If the resource price of the first base station is the lowest, the UE still continues to access the first base station.
  • the manner in which the UE selects the second base station may be a part of the optimized foraging algorithm, that is, the determining unit 302 determines the second base station based on the optimized foraging algorithm.
  • the determining unit 302 is further configured to determine the second base station based on the strength of the pilot signal of each base station. For example, the determining unit 302 determines a set of accessible base stations based on the UE by detecting the received pilot signal strength of each base station, and randomly determines a second base station in the set whose resource price is lower than that of the first base station Make access. Similarly, if the resource price of the first base station is the lowest, the UE continues to access the first base station.
  • the electronic device 300 selects the base station to be accessed through the resource price determined based on the comparison between the base station's radio resource providing capability and the UE's wireless resource demand for the base station, so that The UE can dynamically select base stations with lower resource prices to increase the total number of UEs accessed in a given area, thereby improving spectrum utilization efficiency.
  • FIG. 7 shows a schematic diagram of the information flow between the spectrum management apparatus, the base station, and the UE.
  • examples BS-i and BS-k of a spectrum management apparatus and two base stations and an example UE-j of one UE are shown. It should be understood that this is only exemplary.
  • UE-j decides to access the base station BS-i by detecting the pilot signal and sends an access request to it.
  • the base station BS-i reports relevant scene information to the spectrum management device, such as the location of the base station, transmit power, the overall wireless resource requirements of the UE, and the wireless resource supply of the base station.
  • the overall wireless resource requirements of the UE are obtained by accessing the base station and the base station through statistics. Obtained from the radio resource requirements of the UE requesting to access the base station.
  • another base station BS-k also reports related scene information to the spectrum management device.
  • Spectrum management apparatus determines based on the scene information received initial resource prices of each base station, the base station determines an alternative set S of each base station, e.g., BS-i alternate set of base stations designated as S I, noted that one alternative base station
  • the set can also include the base station itself, which is not restrictive.
  • the spectrum management apparatus notifies the base station BS-i S i and alternatives set of base stations in each base station an initial resource prices and other information to the base station BS-i.
  • the base station BS-i notifies the UE-j of these information.
  • UE-k There is a similar operation for the base station UE-k, which will not be repeated here.
  • UE-j S i selected from the price is lower than the original resource and BS-i may access the base station, and a random access to the selected base station, e.g. BS-k. It should be appreciated that, if the resource prices BS-i S i in the price of all resources under the base station, the UE-j continue to access the BS-i.
  • the UE-j sends an access request to BS-k. Due to changes in the access request status of UE-j and possible changes in the access status of other UEs, the overall radio resource requirements of the UE of BS-i and BS-k The overall wireless resource requirement of the UE may change. When the amount of change exceeds the threshold D th , the corresponding base station reports the updated overall wireless resource requirement to the spectrum management apparatus. As shown in Figure 7, the variation of the overall wireless resource requirement of the base station BS-i exceeds D th , the base station BS-i reports the updated overall wireless resource requirement to the spectrum management device; the variation of the overall wireless resource requirement of the base station BS-k If it does not exceed D th , the base station BS-k does not report.
  • the spectrum management device re-determines the resource price of the base station, such as base station BS-i, and determines whether the maximum update amount of the resource price of each base station is less than the threshold value V th , if it is less, terminate the iteration, otherwise determine the set of candidate base stations for each base station, and Provide the base station with information about the resource price of the base station.
  • the maximum update amount of the resource price of each base station is not less than the threshold V th
  • the spectrum management device notifies the base station BS-k of the base station BS-k and the resource price of each base station in the candidate base station set Sk. .
  • the spectrum management device can also notify the base station BS-i.
  • the base station BS-k notifies the UE-j of these information.
  • UE-j selected from S k resources and price is lower than BS-k can access the base station, and a random access to the base station selected.
  • the resource price of base station BS-k is lower than the resource price of all base stations in Sk , so UE-j will not access other base stations, but continue to access base station BS-k.
  • the base station repeatedly executes the judgment of whether the change of the overall wireless resource demand exceeds the threshold D th and the reporting of the updated overall wireless resource demand, and the spectrum management device repeatedly executes the update of the resource price and the judgment of whether the update amount is less than the threshold V th.
  • Fig. 8 shows another schematic diagram of the information flow between the spectrum management apparatus, the base station and the UE.
  • the difference between FIG. 8 and FIG. 7 is that the base station does not judge whether the variation of the overall wireless resource demand exceeds D th , but directly reports the updated overall wireless resource demand, and the spectrum management device makes the judgment.
  • the other parts are exactly the same as in Fig. 7 and will not be repeated here.
  • Figure 9 shows a schematic diagram of a simulation scenario.
  • the simulation scenario takes a densely populated central commercial street as an example.
  • the distribution of base stations obeys the Hard-Core Poisson Point Process.
  • Two types of base stations are used in the simulation scenario.
  • the triangle in the figure represents the first type of base station, and the five-pointed star represents the second type of base station.
  • the distance between any two base stations in the first type of base station is not less than 5m, and the base station coverage radius is 10m.
  • the distance between any two base stations in the second type of base station is not less than 7.5m, and the base station coverage radius is 20m.
  • the UE is represented by dots, and the UE obeys a random and uniform distribution but the distribution density is different.
  • the specific parameters of the system are configured as follows: simulation area, 100m ⁇ 100m; number of base stations, 140; number of UEs, 1400; number of base station channels are all 10; base station center frequency is 2GHz; bandwidth is 10MHz.
  • the solution provided in this application is compared with the traditional solution in which the UE accesses its neighboring base stations.
  • the resource supply of some base stations is less than the resource demand of the base station by the UE, causing many UEs to be unable to access the base station, and the resource supply of some base stations is greater than that of the UE to the base station.
  • the resource demand of the base station is wasteful.
  • the resource price is dynamically determined according to the resource supply of the base station and the UE's demand for resources.
  • the UE accesses the base station with a lower resource price based on the optimized foraging algorithm.
  • the spectrum is released and provided to UEs that cannot access the base station in the traditional solution, thereby increasing the total number of UE accesses.
  • the simulation scene is divided into three parts, namely area 1, area 2, and area 3, as shown in Figure 10.
  • the resource demand of the base station by the UE in area 1 is less than the resource supply of the base station
  • the resource price of the base station in area 1 is set as p 1
  • the resource demand of the UE in area 2 for the base station is roughly equal to the resource supply of the base station
  • the resource price of the base station in area 2 is set as p 2
  • the resource demand of the UE in the area 3 for the base station is greater than the resource supply of the base station
  • the resource price of the base station in area 3 is set as p 3 .
  • p 1 ⁇ p 2 ⁇ p 3 can be obtained.
  • the resource price in area 1 is lower than the resource price in area 2 (p 1 ⁇ p 2 )
  • some UEs in area 2 access the base station in area 1.
  • a part of the UEs in area 2 access to area 1, and the UEs in area 2 will have less resource requirements for the base station, and the resource price of the base station will decrease.
  • the resource price in area 3 is higher than the resource price in area 2 (p 2 ⁇ p 3 ).
  • Some UEs in area 3 access the base station in area 2, and the base station in area 3 will have some idle resources.
  • the idle resources in area 3 are provided to UEs that cannot access the base station due to lack of available spectrum resources.
  • FIG. 11 is a diagram showing the comparison of the total access amount of the UE in the case of using the solution of the present application and using the traditional solution. As shown in FIG. 11, using the resource price-based dynamic spectrum management method of the present application, the total amount of UE access is increased by nearly 30%.
  • the above-mentioned solution in this application is called a dynamic pricing solution.
  • static pricing can also be adopted. That is, after the UE accesses the base station for the first time, the spectrum management device determines the resource price according to the resource supply of the base station and the UE's overall demand for resources. The resource price of each base station remains unchanged.
  • Figure 12 shows a graph of the performance comparison of these two solutions.
  • Figure 12 shows the total number of UE connections, that is, the comparison of the total number of UE accesses. It can be seen that the dynamic pricing scheme has a more obvious effect on the total UE access than the static pricing scheme.
  • the resource price can be determined as a step-like function of the ratio of the overall wireless resource demand to the wireless resource supply, that is, a stepwise pricing scheme is adopted.
  • the following simulation will show the effect of the order of the tiered pricing on the total amount of UE access.
  • each base station has 10 channels that can be allocated to the UE, and the resource price can be determined for the base station according to the number of idle channels of each base station.
  • the 3-tier pricing scheme means that the base station determines three resource prices based on the number of idle channels of the base station: when the base station has 1 to 3 idle channels, the base station's resource price is p 1,1 , and the base station has 4 to 4 idle channels.
  • the resource price of the base station is p 1,2 ; when the number of idle channels of the base station is 8 to 10, the frequency spectrum price of the base station is p 1,3 .
  • the 10-tier pricing scheme means that 10 resource prices are determined for the base station according to the number of idle channels of the base station: when the base station has 1 idle channel, the resource price of the base station is p 2,1 , and when the base station has 2 idle channels , The resource price of the base station is p 2,2 ; when the number of idle channels of the base station is 3, the resource price of the base station is p 2,3 ; and so on.
  • the number of idle channels of the base station is not considered, which is equivalent to a uniform value of the resource price of the base station, for example, both are p 3 .
  • FIG. 13 shows a schematic diagram of an example of tiered pricing.
  • Fig. 14 shows a graph of the influence of different tiered pricing orders on the total amount of UE access. It can be seen that when the order of the step-by-step pricing is smaller than the total number of channels that can be allocated by the base station, the higher the order of the step-by-step pricing, the greater the total amount of UE access in the area. When the order of the tiered pricing is consistent with the number of channels that the base station can allocate, the total amount of UE access reaches the maximum. When the number of tiered pricing is greater than the total number of channels in the base station, the total amount of UE access does not change as the number of tiered pricing increases.
  • FIG. 15 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: the overall wireless resource requirements of the UE based on the access of the base station in the predetermined area and the wireless resources that the base station can provide In contrast, the resource price of the base station is determined (S11); and the resource price of the base station is sent to the base station, so that the UE determines whether to access the base station at least based on the resource price (S12).
  • This method can be executed on the side of the spectrum management device, for example.
  • the resource price of the base station may be determined based on the ratio of the overall wireless resource demand of the UE to the wireless resource supply of the base station, and the resource price is determined to be positively correlated with the ratio.
  • the resource price can be determined as a step-like function with respect to the ratio.
  • the above method may further include the following steps: obtaining one or more of the following information from the base station: overall wireless resource demand information of the UE accessing the base station; resource supply information of the wireless resources that the base station can provide; location information of the base station ; Transmit power information of the base station.
  • the above method may also include providing information about resource prices to each base station.
  • a candidate base station set of the base station can be determined for each base station, and resource prices of the base station and each base station in the candidate base station set can be provided to the base station, where a UE that accesses the base station can access the base station in the candidate base station set.
  • a base station whose coverage area overlaps the coverage area of the base station and is capable of providing wireless resources may be determined as a base station in a set of candidate base stations.
  • the above method further includes: in a case where the change of the contrast for the at least one base station reaches a predetermined degree, dynamically performing spectrum management in response to the change of the contrast.
  • the resource price of at least one base station may be updated in response to a change in comparison and the candidate base station set may be re-determined, and the updated resource price may be provided to the relevant base station based on the re-determined candidate base station set, where the UE is based on the updated resource
  • the price is used to re-determine the base station to be accessed, and the above-mentioned resource price and candidate base station set update and provision are performed in an iterative manner until the predetermined conditions are met.
  • the predetermined condition includes one or more of the following: the number of iterations reaches a predetermined value, and the maximum value of the resource price update amount between two iterations is less than a predetermined threshold.
  • iterations can be performed based on an optimized foraging algorithm.
  • the information of the comparison change can be obtained from at least one base station. In another example, it may be determined whether the change of the comparison reaches a predetermined level based on update information reported by at least one base station, and the update information includes updated information about overall radio resource requirements.
  • wireless resource requirements may include one or more of the following: spectrum requirements, delay requirements, reliability requirements, and transmission rate requirements.
  • Figure 16 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • Information on the comparison between resource requirements and wireless resources that the base station can provide is provided to the spectrum management device (S22); the resource price of the base station determined by the spectrum management device based on the information and the resources of other base stations determined by the spectrum management device are obtained from the spectrum management device Price (S23); and provide the resource price information to the UE that accesses the base station (S24).
  • This method can be executed on the base station side, for example.
  • other base stations are base stations in a set of candidate base stations, where a UE accessing the base station can access a base station in the set of candidate base stations.
  • the resource price information may be provided to the user equipment in a broadcast manner.
  • the above method also includes: when a new UE requests to access the base station or access the base station or the user equipment that has already been connected disconnects from the base station, determining the change of the comparison, and providing updated comparison information to the spectrum management apparatus.
  • the spectrum management apparatus may be provided with updated information of the overall radio resource requirements of the UE.
  • Figure 17 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • This method can be executed on the UE side, for example.
  • the resource price information can be obtained through broadcasting.
  • step S32 some base stations whose resource prices are lower than the resource prices of the first base station may be determined in the set of candidate base stations, and a base station may be randomly determined as the second base station among some base stations.
  • the second base station may be determined based on an optimized foraging algorithm.
  • the second base station may also be determined based on the strength of the pilot signal of each base station.
  • the resource price of the first base station is the lowest, it is determined to continue to access the first base station.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 100 may be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the electronic device 100 may be a control module (such as an integrated circuit module including a single chip, and a card or a blade inserted into a slot of a blade server) installed on a server.
  • the electronic device 200 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a different place from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-persistently performing base station functions.
  • the electronic device 300 may be implemented as various user equipment.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a server 700 to which the technology of the present disclosure can be applied.
  • the server 700 includes a processor 701, a memory 702, a storage device 703, a network interface 704, and a bus 706.
  • the processor 701 may be, for example, a central processing unit (CPU) or a digital signal processor (DSP), and controls the functions of the server 700.
  • the memory 702 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 701.
  • the storage device 703 may include a storage medium, such as a semiconductor memory and a hard disk.
  • the network interface 704 is a communication interface for connecting the server 700 to the communication network 705.
  • the communication network 705 may be a core network such as an evolved packet core network (EPC) or a packet data network (PDN) such as the Internet.
  • EPC evolved packet core network
  • PDN packet data network
  • the bus 706 connects the processor 701, the memory 702, the storage device 703, and the network interface 704 to each other.
  • the bus 706 may include two or more buses (such as a high-speed bus and a low-speed bus) each having a different speed.
  • the determining unit 101, the transceiving unit 102, the executing unit 103, and the like described with reference to FIGS. 1 and 2 may be implemented by the processor 701.
  • the processor 701 may determine the resource price of each base station by executing the functions of the determining unit 101, the transceiving unit 102, and the executing unit 103, and perform spectrum management based on the resource price.
  • FIG. 19 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 19 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from multiple baseband processors to generate a bundled packet, and deliver the generated bundled packet. The controller 821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • layers such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 19 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the acquiring unit 201, the providing unit 202, and the transceiver of the electronic device 200 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 may obtain information about the resource price of the base station by executing the functions of the obtaining unit 201 and the providing unit 202 and provide the spectrum management apparatus with information about the comparison between the UE's overall wireless resource demand and the base station's wireless resource supply. .
  • FIG. 20 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 20 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 19.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 19 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 20 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 20 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the acquiring unit 201, the providing unit 202, and the transceiver of the electronic device 200 may be implemented by a wireless communication interface 855 and/or a wireless communication interface 863. At least a part of the functions may also be implemented by the controller 851.
  • the controller 851 may obtain information about the resource price of the base station by executing the functions of the obtaining unit 201 and the providing unit 202 and provide the spectrum management apparatus with information about the comparison between the UE's overall wireless resource demand and the base station's wireless resource supply. .
  • FIG. 21 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smart phone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 21, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 21 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include a plurality of antennas 916.
  • FIG. 21 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connect.
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 21 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the acquiring unit 301 and the transceiver of the electronic device 300 may be implemented by a wireless communication interface 912. At least part of the function may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may access a base station with a lower resource price based on the resource price by executing the functions of the acquiring unit 301 and the determining unit 302.
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function of the car navigation device 920 and other functions.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the car navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 22 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 22 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 22 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the acquiring unit 301 and the transceiver of the electronic device 300 may be implemented by a wireless communication interface 933. At least part of the functions may also be implemented by the processor 921.
  • the processor 921 may access a base station with a lower resource price based on the resource price by executing the functions of the acquiring unit 301 and the determining unit 302.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the in-vehicle network 941.
  • the present disclosure also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present disclosure can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • a computer with a dedicated hardware structure (for example, a general-purpose computer 2300 shown in FIG. 23) is installed from a storage medium or a network to the program constituting the software, and the computer is installed with various programs. When, it can perform various functions and so on.
  • a central processing unit (CPU) 2301 performs various processes in accordance with a program stored in a read only memory (ROM) 2302 or a program loaded from a storage portion 2308 to a random access memory (RAM) 2303.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2301 executes various processes and the like is also stored as needed.
  • the CPU 2301, the ROM 2302, and the RAM 2303 are connected to each other via a bus 2304.
  • the input/output interface 2305 is also connected to the bus 2304.
  • the following components are connected to the input/output interface 2305: input part 2306 (including keyboard, mouse, etc.), output part 2307 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.), Storage part 2308 (including hard disk, etc.), communication part 2309 (including network interface card such as LAN card, modem, etc.).
  • the communication section 2309 performs communication processing via a network such as the Internet.
  • the driver 2310 can also be connected to the input/output interface 2305 according to needs.
  • Removable media 2311 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are installed on the drive 2310 as needed, so that the computer programs read from them are installed into the storage portion 2308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 2311.
  • this storage medium is not limited to the removable medium 2311 shown in FIG. 23 that stores the program and is distributed separately from the device to provide the program to the user.
  • removable media 2311 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2302, a hard disk included in the storage portion 2308, etc., in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but do not necessarily need to be performed in chronological order. Some steps can be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Computer Security & Cryptography (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Finance (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用于无线通信的电子设备、方法和计算机可读存储介质,电子设备包括:处理电路,被配置为:基于预定区域中的基站的接入的用户设备的总体无线资源需求与基站能够提供的无线资源之间的对比,确定基站的资源价格;以及向基站发送基站的资源价格,以使得用户设备至少基于资源价格确定是否要接入基站。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2020年3月17日提交中国专利局、申请号为202010188245.7、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及频谱管理技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
随着无线技术的快速发展,用户设备的数量不断增加,导致频谱资源越来越稀缺,如何利用有限的频谱资源满足海量连接需求成为迫在眉睫的问题。目前提出了各种方案来解决该问题,例如建立高度密集的蜂窝小区、采用超大规模天线阵列等,这些方法需要建造新的基站或者对已有基站进行改造,建设成本高,并且系统容量仍受限于基站的频谱资源。
此外,还可以采用各种频谱管理方法来提高频谱利用效率。频谱管理算法可以基于各种模型比如博弈论模型、社交网络、智能算法等获得,不同的频谱管理算法可能具有不同的优势。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图确定本公开的关键或重要部分,也不是意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包 括:处理电路,被配置为:基于预定区域中的基站的接入的用户设备的总体无线资源需求与基站能够提供的无线资源之间的对比,确定基站的资源价格;以及向基站发送基站的资源价格,以使得用户设备至少基于资源价格确定是否接入基站。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:基于预定区域中的基站的接入的用户设备的总体无线资源需求与基站能够提供的无线资源之间的对比,确定基站的资源价格;以及向基站发送基站的资源价格,以使得用户设备至少基于资源价格确定是否接入基站。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:从接入基站的用户设备获取用户设备的总体无线资源需求;将用户设备的总体无线资源需求和基站能够提供的无线资源的对比的信息提供给频谱管理装置;从频谱管理装置获取频谱管理装置基于该信息确定的基站的资源价格以及频谱管理装置确定的其他基站的资源价格;以及将资源价格的信息提供给接入基站的用户设备。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:从接入基站的用户设备获取用户设备的总体无线资源需求;将用户设备的总体无线资源需求和基站能够提供的无线资源的对比的信息提供给频谱管理装置;从频谱管理装置获取频谱管理装置基于该信息确定的基站的资源价格以及频谱管理装置确定的其他基站的资源价格;以及将资源价格的信息提供给接入基站的用户设备。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:从用户设备当前请求接入或接入的第一基站获取第一基站以及备选基站集中的基站的资源价格的信息,其中,用户设备能够接入备选基站集中的基站,资源价格是基于基站的用户设备的总体无线资源需求和基站能够提供的无线资源的对比的信息确定的;以及至少基于资源价格,从备选基站集中确定要接入的第二基站,其中,所述第二基站的资源价格低于第一基站的资源价格。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:从用户设备当前请求接入或接入的第一基站获取第一基站以及备选基站集中的基站的资源价格的信息,其中,用户设备能够接入备选基站集中 的基站,资源价格是基于基站的用户设备的总体无线资源需求和基站能够提供的无线资源的对比的信息确定的;以及至少基于资源价格,从备选基站集中确定要接入的第二基站,其中,所述第二基站的资源价格低于第一基站的资源价格。
根据本申请的上述方面的电子设备和方法能够通过考虑各个基站的无线资源提供能力与用户设备对该基站的无线资源需求之间的对比确定资源价格,并将该资源价格提供给基站,使得用户设备能够动态选择接入到资源价格较低的基站,提高给定区域内接入的用户设备的总量,从而提高频谱利用效率。
依据本公开的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本公开的优选实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本公开的以上和其它优点和特征,下面结合附图对本公开的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本公开的典型示例,而不应看作是对本公开的范围的限定。在附图中:
图1示出了用户设备分布不均匀的场景的一个示例;
图2是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图3是示出了根据本申请的一个实施例的用于无线通信的电子设备的另一个功能模块框图;
图4是示出了备选基站集的一个示例的图;
图5是示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图6是示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图7示出了频谱管理装置、基站与用户设备之间的相关的信息流程的一个示例;
图8示出了频谱管理装置、基站与用户设备之间的相关的信息流程的另一个示例;
图9示出了一个仿真示例的场景的示意图;
图10示出了将仿真区域划分为三部分的一个示例;
图11示出了在使用本申请的方案与使用传统方案的情况下,用户设备的接入总量的对比的图;
图12示出了动态定价方案与静态定价方案的性能对比的曲线图;
图13示出了分阶定价的示例的示意图;
图14示出了不同分阶定价的阶数对用户设备接入总量的影响的曲线图;
图15示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图16示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图17示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图18是示出可以应用本公开内容的技术的服务器的示意性配置的示例的框图;
图19是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图20是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图21是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图22是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图23是其中可以实现根据本公开的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
在一些人口密集度较高的区域内,有些基站的频谱紧缺而有些基站的空闲频谱得不到利用。图1示出了用户设备(User Equipment,UE)分布不均匀的场景的一个示例。例如,在一些繁华的商业街或人流量较大的区域,由于UE分布不均匀,导致有些基站(Base Station,BS)的UE接入量过多,最终没有可用频道而不能再建立连接,同时,有些基站的UE接入量过少,从而频谱资源未得到充分利用。UE接入需求量较大的基站,会造成基站频谱紧缺,而UE接入需求量小的基站,则会造成基站的频谱浪费。为了更有效地利用频谱资源,本实施例提供了一种电子设备100,用于无线通信中的频谱资源管理。应该理解,虽然这里描述了图1的场景,但是本实施例并不限于此,而是可以应用于各种频谱管理的场合。
图2示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图2所示,电子设备100包括:确定单元101,被配置为基于预定区域中的基站的接入的UE的总体无线资源需求与基站能够提供的无线资源之间的对比,确定基站的资源价格;以及收发单元102,被配置为向基站发送基站的资源价格,以使得UE至少基于该资源价格来确定是否接入基站。
电子设备100例如可以设置在中央管理装置或频谱管理装置侧或者可通信地连接到中央管理装置或频谱管理装置,此外,电子设备100还可以设置在核心网侧。本文所述的中央管理装置或频谱管理装置可以实现为各种功能实体,例如频谱接入系统(Spectrum Access System,SAS)、共存管理器(Coesxitence Manager,CxM)、组频谱协调器(Group Spectrum Coordinator,GSC)等。
还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为中央管理装置或频谱管理装置本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储中央管理装置或频谱管理装置实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他中央管理装置或频谱管理装置、用户设备等等)间的通信,这里不具体限制收发器的实现形式。
在本实施例中,频谱管理装置为每个基站的频谱资源进行定价,并基于该定价进行频谱管理,以引导UE均匀地接入各个基站。
在一个示例中,确定单元101基于UE的总体无线资源需求与基站的无线资源供给的比值来确定基站的资源价格,并且将该资源价格确定为与比值正相关。具体地,当UE的总体无线资源需求与基站的无线资源供给的比值越大时,表明该基站越难以满足UE的总体无线资源需求,倾向于让UE不要选择该基站接入而是分流到其他基站,因此将其资源价格确定为较高的值。
例如,无线资源需求可以包括如下中的一个或多个:频谱需求,时延要求,可靠性要求,传输速率要求等。在以下的描述中可能会以频谱需求作为示例进行解释,但是应该理解这并不是限制性的。例如,对于时延要求而言,确定单元101可以将能够提供的时延较大的基站的资源 价格确定为较高,从而引导UE接入提供低时延服务的基站。
收发单元102还被配置为从基站获取如下信息中的一项或多项:接入基站的UE的总体无线资源需求信息,基站能够提供的无线资源的资源供给信息,基站的位置信息,基站的发射功率信息。这些信息例如用于确定单元101进行资源价格的确定。
在无线资源需求包括频谱需求的情况下,例如,确定单元101可以按下式(1)来确定基站的资源价格。
Figure PCTCN2021079891-appb-000001
其中,p i为所确定的BS-i的资源价格,j为接入BS-i的UE-j,N为接入BS-i的UE的总数,D ij表示UE-j对BS-i的频谱需求的量,
Figure PCTCN2021079891-appb-000002
表示接入基站BS-i的所有UE的总体无线资源需求,C i为基站BS-i的频谱供给量,k是一个系数。其中,
Figure PCTCN2021079891-appb-000003
会随着UE接入BS-i或者断开与BS-i的连接而变化,从而使得BS-i的资源价格动态地发生改变。
此外,这里所述的接入基站的UE还可以包括请求接入基站的UE,即,还可以将请求接入基站的UE的无线资源需求计入该基站的UE的总体无线资源需求中。
除了上述公式之外,确定单元101还可以被配置为以各种形式确定资源价格,例如,可以将资源价格确定为关于比值的阶梯状函数,即采用分阶定价。可以理解,当阶数越多时,定价越准确,可能获得更好的频谱管理性能,例如能够接入的UE的总数量越多。
针对频谱管理装置管理的预定区域内的每一个基站,确定单元101确定其资源价格,收发单元102向每一个基站提供有关资源价格的信息,这些信息可以包括基站自身的价格,还可以包括其他基站的资源价格。基站将收到的资源价格的信息提供给其当前服务的UE,以使得UE至少 基于该资源价格来确定是否要接入基站或者是否要接入其他基站。
如图3所示,电子设备100还可以包括执行单元103,被配置为针对每一个基站确定该基站的备选基站集,其中,接入该基站的UE能够接入备选基站中的基站。在一个示例中,执行单元103可以将覆盖范围与所述基站的覆盖范围存在交叠并且具有无线资源提供能力的基站确定为所述备选基站集中的基站。换言之,针对一个基站,覆盖范围与其覆盖范围有交叠并且有空闲频谱资源的基站可以作为其备选基站。图4示出了备选基站集的一个示意图。以参考基站BS-i为例,图4示出了其备选基站集中的基站和非备选基站集中的基站。
针对每一个基站,收发单元102将该基站以及其备选基站集中的各个基站的资源价格提供给该基站。这样,该基站将这些资源价格提供给其UE(可以是已经接入的UE或者请求接入的UE),例如,UE可以选择接入到资源价格较低的基站。如果当前基站的资源价格最低,则UE可以继续接入当前基站而不进行切换。关于UE如何选择要接入的基站,在后文中将详细描述。在提供资源价格时,收发单元102还可以提供相应基站的位置信息或标识信息,以使得UE能够识别该基站。
由于可能发生新UE的加入、已接入的UE断开连接、UE基于资源价格在不同基站间进行切换等情况,接入各个基站的UE会发生改变,其总体无线资源需求相应地发生改变,从而总体无线资源需求与基站的无线资源供给之间的对比发生变化,进而引起基站的资源价格的改变。相应地,UE可以基于改变后的资源价格再次进行接入基站的选择,又引起了对比的变化,进而引起资源价格的改变。该过程可以迭代执行,以获得优化的频谱管理方案。
为了减小信令开销和提高效率,例如,确定单元101和执行单元103可以被配置为在针对至少一个基站的总体无线资源需求与无线资源供给之间的对比的变化达到预定程度的情况下,响应于该对比的变化来动态执行频谱管理,例如更新基站的资源价格、更新备选基站集等。其中,预定程度可以由确定单元101或执行单元103预先确定,其取决于例如所要求实现的频谱管理的效率、信令开销、期望的运算负荷等。
在一个示例中,由各个基站分别对其总体无线资源需求的变化进行统计和判断,并且在上述对比达到或超过预定程度的情况下向频谱管理 装置上报变化后的对比。例如,在基站的无线资源供给的量不变的情况下,基站可以判断UE的总体无线资源需求的变化是否超过预定阈值,并在判断为是的情况下向频谱管理装置上报改变后的总体无线资源需求。
相应地,收发单元102从至少一个基站获取对比的变化的信息,其中,该信息可以为对比本身,也可以为变化后的总体无线资源需求,这并不是限制性的。确定单元101和执行单元103响应于接收到该信息,执行例如资源价格的确定和备选基站集的确定。收发单元102随后将相关的资源价格的信息提供给各个基站。
在另一个示例中,各个基站不进行判断,而是将变化后的总体无线资源需求的更新信息上报给频谱管理装置。确定单元101基于至少一个基站上报的更新信息来确定对比的变化是否达到预定程度。在判断为是的情况下,确定单元101和执行单元103执行资源价格的确定和备选基站集的确定。在该示例中,对比的变化程度的判断是由频谱管理装置来执行的。
如前所述,确定单元101响应于对比的变化来更新至少一个基站的资源价格,执行单元103重新确定各个基站的备选基站集,收发单元102基于重新确定的备选基站集将更新的资源价格提供给相关基站,其中,UE基于更新的资源价格来重新确定要接入的基站。确定单元101、执行单元103和收发单元102以迭代的方式执行上述操作,直到满足预定条件为止。
预定条件例如可以包括如下中的一个或多个:迭代次数达到预定值,两次迭代之间的资源价格更新量的最大值小于预定阈值。随着迭代次数的增加,基站的资源价格的更新量减小,因此,可以通过该更新量的变化来控制迭代过程的结束;以及/或者,可以通过直接控制迭代的次数来控制迭代过程的结束。
示例性地,可以基于优化觅食算法(Optimal Foraging Algorithm,OFA)来执行迭代。OFA是基于动物行为生态理论——最佳觅食理论提出的一种用于求解动物觅食行为的全局优化问题的群智能算法。优化觅食算法通过模拟动物觅食搜索、猎物识别时间、食物地域和觅食中心位置来建立数学模型,求解动物最佳觅食位置。
例如,OFA可以如下实现。在约束空间随机生成每个个体(即,觅食动物)的初始觅食位置,然后计算每个个体的目标函数值(即,觅食动物获取的净能量,净能量为动物觅食获得的能量减去动物因觅食消耗的能量),根据目标函数值对所有个体排序;在所有个体中随机选择一个个体作为参考样本;将每个个体的目标函数值与参考样本比较,若个体的目标函数值低于参考样本,则该个体向参考样本的方向寻找新的觅食位置;若个体的目标函数值高于参考样本,则该个体向参考样本相反的方向寻找新的觅食位置。这样,目标函数值较高的个体召集目标函数值较低的个体移动到新的觅食位置,因此个体倾向于由获取净能量低的觅食位置迁移到获取净能量高的觅食位置。
判断新的觅食位置的目标函数值是否优于前一个位置,即判断个体在新的觅食位置的目标函数值是否高于在前一个位置的目标函数值。如果判断为是,则保留新的觅食位置用于下一次觅食,否则将忽略新的觅食位置,并将前一个觅食位置用于下一次觅食。
重复上述步骤,用优化觅食算法反复搜索觅食位置,在搜索过程中记录每次觅食所获得的最佳位置。当算法终止(例如,迭代次数达到设定值或者目标函数值的变化小于预定程度)时,记录的觅食位置为最终最优解。
当将OFA应用于本实施例时,觅食动物为UE,觅食位置为基站,目标函数值为基站的资源价格,觅食动物在区域内寻找目标函数更高的觅食位置相当于UE在区域内接入到资源价格更低的基站。
此外,还对OFA进行了一些适应于本申请的应用场景的调整。例如,在OFA中觅食动物寻找最优位置的范围为整个区域,而在本申请中UE在寻找可接入的基站时需要先判断该基站是否能接入,并在可接入的基站中选择资源价格较低的基站。例如,UE可以通过检测备选基站集中的基站的导频信号强度来判断该基站是否能接入。另一方面,OFA算法中觅食动物寻找到觅食动物获取的净能量较高的觅食点后,召集其他动物前往。在应用于本申请时,频谱管理器通过基站将各基站的资源价格通告给UE,UE选择接入到资源价格较低的基站。
可以看出,在本实施例中,OFA算法由频谱管理装置和UE共同执行。
应该理解,OFA算法仅是一个示例,也可以采用其他群智能优化算法来基于资源价格进行频谱管理。
当迭代终止时,认为UE被引导接入空闲资源较多的基站,从而使得UE的分布不会过于集中,增加了给定区域内接入的UE的总量,提高了频谱利用效率。
综上所述,根据本实施例的电子设备100通过考虑各个基站的无线资源提供能力与UE对该基站的无线资源需求之间的对比确定资源价格,并基于该资源价格进行频谱管理,使得UE能够动态选择接入到资源价格较低的基站,提高给定区域内接入的UE的总量,从而提高频谱利用效率。
<第二实施例>
图5示出了根据本申请的另一个实施例的用于无线通信的电子设备200的功能模块框图,如图5所示,该电子设备200包括:获取单元201,被配置为从接入基站的UE获取UE的总体无线资源需求;提供给单元202,被配置为将UE的总体无线资源需求与基站能够提供的无线资源的对比的信息提供给频谱管理装置,其中,获取单元201还被配置为从频谱管理装置获取频谱管理装置基于该信息确定的基站的资源价格以及频谱管理装置确定的其他基站的资源价格,提供单元202还被配置为将资源价格的信息提供给接入基站的UE。
类似地,获取单元201和提供单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图5中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在资源应用系统的基站侧或者可通信地连接到基站(例如,eNB或gNB)。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他基站等等)间的通信,这里不具体限制收发器的实 现形式。
其中,与第一实施例类似地,无线资源需求可以包括如下中的一个或多个:频谱需求,时延要求,可靠性要求,传输速率要求。
获取单元201从接入基站的各个UE获取各自的无线资源需求以获得总体无线资源需求。提供单元202将总体无线资源需求与基站能够提供的无线资源的对比的信息提供给频谱管理装置,以使得频谱管理装置能够基于该信息确定资源价格。例如,提供单元202可以将如下中的一项或多项提供给频谱管理装置:UE的总体无线资源需求,基站能够提供的无线资源的资源供给信息,基站的位置信息,基站的发射功率信息。有关资源价格的确定的具体描述在第一实施例中已经给出,在此不再重复。
这里,接入基站的UE也可以包括正请求接入基站的UE,即总体无线资源需求包括正请求接入基站的UE的无线资源需求。
此外,获取单元201从频谱管理装置获取资源价格的信息,例如包括基站自身的资源价格以及其他基站的资源价格的信息。提供单元202将这些信息提供给UE,以使得UE至少基于这些信息进行要接入的基站的重新选择。例如,提供单元202可以通过广播的方式向UE提供资源价格的信息。对于正请求接入基站的UE而言,其可以根据资源价格的信息转而请求接入另一个基站。对于已经接入基站的UE而言,其可以断开与当前基站的连接而接入到另一个基站。
例如,其他基站可以为备选基站集中的基站,其中,接入本基站的UE能够接入备选基站集中的基站。例如,备选基站集中的基站的覆盖范围与本基站的覆盖范围有交叠,且备选基站集中的基站有空闲频谱资源。换言之,UE可以至少基于资源价格的信息选择接入备选基站集中的资源价格低于本基站的基站。如果当前基站的资源价格已经为最低价格,则UE将继续接入当前的基站。
可以理解,当UE接入到资源价格较低的其他某个基站(称为新基站)时,原基站和新基站的总体无线资源需求发生改变,即,原基站和新基站的总体无线资源需求与无线资源供给之间的对比发生改变。提供单元202被配置为在有新的UE请求接入基站或接入基站或者已接入的UE断开与基站的连接时,确定上述对比的改变,并且向频谱管理装置提 供更新的对比的信息。
在一个示例中,提供单元202被配置为在对比发生改变时,向频谱管理装置提供更新的对比的信息。例如,提供单元202可以提供更新的对比的值的信息,也可以提供UE的更新的总体无线资源需求的信息。在该示例中,由频谱管理装置基于更新的对比的信息来确定是否更新本基站的资源价格。
在另一个示例中,提供单元202被配置为在对比的改变达到预定程度时,向频谱管理装置提供更新的对比的信息。类似地,提供单元202可以提供更新的对比的值的信息,也可以提供UE的更新的总体无线资源需求的信息。在该示例中,由基站来判断对比的变化程度并决定是否需要将改变上报给频谱管理装置。当提供单元202将更新的对比的信息提供给频谱管理装置时,频谱管理装置将更新本基站的资源价格。
当基站的资源价格发生改变时,进而可能会影响UE的接入状态的变化,例如,当前接入该基站的UE或正请求接入该基站的UE可能选择接入其他基站,或者其他UE可能选择接入该基站。进一步地,基站的资源价格可能会再一次更新,从而形成了迭代过程。如第一实施例中所述,该迭代可以在执行预定次数后结束,或者在各个基站的资源价格的更新量的最大值小于预定阈值时结束。
综上所述,根据本实施例的电子设备200通过考虑基于基站的无线资源提供能力与UE对该基站的无线资源需求之间的对比而确定的资源价格,并辅助执行基于该资源价格的频谱管理,使得UE能够动态选择接入到资源价格较低的基站,提高给定区域内接入的UE的总量,从而提高频谱利用效率。
<第三实施例>
图6示出了根据本申请的另一个实施例的用于无线通信的电子设备300的功能模块框图,如图6所示,该电子设备300包括:获取单元301,被配置为从UE当前请求接入或接入的第一基站获取第一基站以及备选基站集中的基站的资源价格的信息,其中,UE能够接入备选基站集中的基站,资源价格是基于基站的UE的总体无线资源需求和基站能够提供的无线资源的对比的信息确定的;以及确定单元302,被配置为至少基于 资源价格,从备选基站集中确定要接入的第二基站,其中,第二基站的资源价格低于第一基站的资源价格。
其中,获取单元301和执行单元302可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图6中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备300例如可以设置在UE侧或者可通信地连接到UE。这里,还应指出,电子设备300可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备300可以工作为UE本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
应该注意,本申请中的第一、第二等术语仅是为了区分的需要,而不代表任何顺序的含义。
类似地,无线资源需求可以包括如下中的一个或多个:频谱需求,时延要求,可靠性要求,传输速率要求等。
对于UE而言,初始时,UE例如通过比较从各个基站接收到的导频信号的强度,接入导频信号较强的基站,在下文中将UE当前接入的基站称为第一基站。
虽然图6中未示出,但是电子设备300还可以包括提供单元,被配置为将UE的无线资源需求提供给第一基站,以使得第一基站能够统计UE对第一基站的总体无线资源需求。
第一基站从频谱管理装置获得有关基站的资源价格的信息,获取单元301从第一基站获取这些信息,例如,获取单元301可以通过广播获取资源价格的信息。
这些信息中例如包括第一基站以及备选基站集中的基站的资源价格的信息。基站的资源价格是由频谱管理装置基于该基站的UE的总体无线资源需求和该基站的无线资源供给的对比来确定的,例如可以与该对比成正相关。
在一个示例中,确定单元302基于接收到的资源价格,在备选基站集中确定资源价格低于第一基站的资源价格的部分基站,并在该部分基站中随机确定一个基站作为第二基站。如果第一基站的资源价格最低,则UE仍继续接入第一基站。这里,如前所述,UE选择第二基站的方式可以为优化觅食算法的一部分,即,确定单元302基于优化觅食算法来确定第二基站。
在另一个示例中,确定单元302还被配置为基于各个基站的导频信号的强度来进行第二基站的确定。例如,确定单元302基于UE通过检测接收到的各个基站的导频信号的强度来确定可以接入的基站的集合,并随机确定该集合中资源价格低于第一基站的资源价格的第二基站进行接入。类似地,如果第一基站的资源价格最低,则UE仍继续接入第一基站。
综上所述,根据本实施例的电子设备300通过根据基于基站的无线资源提供能力与UE对该基站的无线资源需求之间的对比而确定的资源价格,来选择要接入的基站,使得UE能够动态选择接入到资源价格较低的基站,提高给定区域内接入的UE的总量,从而提高频谱利用效率。
为了便于理解,图7示出了频谱管理装置、基站和UE之间的信息流程的一个示意图。在图7的示例中,示出了频谱管理装置和两个基站的示例BS-i和BS-k以及一个UE的示例UE-j。应该理解,这仅是示例性的。首先,UE-j通过检测导频信号决定接入基站BS-i并向其发送接入请求。基站BS-i向频谱管理装置上报相关的场景信息,例如基站位置、发射功率、UE的总体无线资源需求、基站的无线资源供给等,其中,UE的总体无线资源需求是通过统计接入基站和请求接入基站的UE的无线资源需求而获得的。类似地,另一个基站BS-k也向频谱管理装置上报相关的场景信息。频谱管理装置基于接收到的场景信息确定各个基站的初始资源价格,确定各个基站的备选基站集S,例如,BS-i的备选基站集记作S i,注意,一个基站的备选基站集也可以包括该基站本身,这都不是限制性的。
接下来,频谱管理装置向基站BS-i通知基站BS-i以及备选基站集S i中各个基站的初始资源价格等信息。基站BS-i将这些信息通知给UE-j。对于基站UE-k有类似的操作,在此不再重复。UE-j从S i中选择初始资源价格低于BS-i且可以接入的基站,并随机接入到一个选出的基站,例 如BS-k。应该理解,如果BS-i的资源价格在S i中所有基站的资源价格之下,则UE-j继续接入到BS-i。
UE-j向BS-k发送接入请求,由于UE-j的接入请求状态的变化以及可能存在的其他UE的接入状态的变化,BS-i的UE的总体无线资源需求和BS-k的UE的总体无线资源需求可能会发生变化,当该变化量超过阈值D th时,相应的基站向频谱管理装置上报更新的总体无线资源需求。如图7所示,基站BS-i的总体无线资源需求的变化量超过D th,基站BS-i向频谱管理装置上报更新的总体无线资源需求;基站BS-k的总体无线资源需求的变化量不超过D th,基站BS-k不进行上报。
频谱管理装置重新确定基站比如基站BS-i的资源价格,并判断各个基站的资源价格的最大更新量是否小于阈值V th,如果小于,则终止迭代,否则确定各基站的备选基站集,并向基站提供有关基站的资源价格的信息。在图7的示例中,各个基站的资源价格的最大更新量不小于阈值V th,频谱管理装置向基站BS-k通知基站BS-k以及备选基站集S k中各个基站的资源价格等信息。类似地,频谱管理装置也可以向基站BS-i进行通知。基站BS-k将这些信息通知给UE-j。UE-j从S k中选择资源价格低于BS-k且可以接入的基站,并随机接入到一个选出的基站。在图7的示例中,基站BS-k的资源价格低于S k中所有基站的资源价格,因此UE-j不会接入到其他基站,而是继续接入基站BS-k。
接下来,基站重复执行总体无线资源需求的改变量是否超过阈值D th的判断以及更新的总体无线资源需求的上报,频谱管理装置重复执行资源价格的更新以及更新量是否小于阈值V th的判断。
图8示出了频谱管理装置、基站和UE之间的信息流程的另一个示意图。图8与图7的区别在于基站不进行总体无线资源需求的变化量是否超过D th的判断,而是直接上报更新的总体无线资源需求,由频谱管理装置来进行判断。其他部分与图7完全相同,在此不再重复。
进一步地,将通过一个仿真示例来说明本申请的基于资源价格的动态频谱管理的优点。
图9示出了仿真场景的示意图,该仿真场景以人口密集的中心商业街为例,基站分布服从硬核泊松点过程(Hard-Core Poisson Point Process)。仿真场景中采用两种类型的基站,图中三角形表示第一类基站, 五角星表示第二类基站。第一类基站中任意两个基站之间的距离不小于5m,基站覆盖半径为10m。第二类基站中任意两个基站之间的距离不小于7.5m,基站覆盖半径为20m。UE用点表示,UE服从随机均匀分布但分布密度不同。60%的UE随机分布在中心1/4的区域(X:25~75m,Y:25~75m)中,剩余40%的UE随机分布在四周区域。系统的具体参数配置如下:仿真区域,100m×100m;基站数,140个;UE数,1400个;基站信道数均为10;基站中心频率均为2GHz;带宽为10MHz。
在仿真中,将本申请提供的方案与UE接入与其邻近的基站的传统方案相比较。在传统方案中,由于UE在空间分布的不均匀性,导致有些基站的资源供给量小于UE对基站的资源需求量,造成很多UE无法接入到基站,而有些基站资源供给量大于UE对基站的资源需求量,造成基站频谱浪费。在本申请中,根据基站的资源供给量与UE对资源的需求量动态确定资源价格,UE基于优化觅食算法接入到资源价格较低的基站,为资源需求量大于资源供给量的基站空出频谱,提供给在传统方案中不能接入基站的UE使用,从而增加了UE总的接入数量。
假设将仿真场景分为三个部分,分别为区域1、区域2、区域3,如图10所示。假设区域1内UE对基站的资源需求量小于基站的资源供给量,将区域1中的基站的资源价格定为p 1;区域2内UE对基站的资源需求量与基站的资源供给量大致相等,将区域2中的基站的资源价格定为p 2;区域3内UE对基站的资源需求量大于基站的资源供给量,将区域3中的基站的资源价格定为p 3。由式(1)计算可得p 1<p 2<p 3
由于区域1的资源价格低于区域2的资源价格(p 1<p 2),所以区域2中的一些UE接入到区域1中的基站。一部分区域2中的UE接入到区域1中,则区域2中的UE对基站的资源需求量将减小,基站的资源价格下降。区域3的资源价格高于区域2的资源价格(p 2<p 3),区域3中的一部分UE接入到区域2中的基站,区域3中基站的将有一些空闲资源。区域3中的空闲资源提供给由于缺乏可用频谱资源而不能接入基站的UE使用。
图11示出了在使用本申请的方案与使用传统方案的情况下,UE的接入总量的对比的图。如图11所示,采用本申请的基于资源价格的动态频谱管理方法,UE的接入总量提高了接近30%。
本申请的上述方案称为动态定价方案,此外,还可以采用静态定价,即,UE首次接入基站后,频谱管理装置根据基站的资源供给量、UE对资源的总体需求量确定资源价格,之后每个基站的资源价格均保持不变。图12示出了这两种方案的性能对比的曲线图。在图12中示出了UE连接的总数量,即UE接入总量的对比。可以看出,动态定价方案比静态定价方案对UE接入总量的提高效果更明显。
此外,如前所述,可以将资源价格确定为关于总体无线资源需求与无线资源供给的比值的阶梯状函数,即,采用分阶定价的方案。下面将通过仿真来示出分阶定价的阶数对UE接入总量的影响。
在本仿真中,各个基站均有10个信道可以分配给UE,可以根据各基站的空闲信道数为基站确定资源价格。例如,3阶定价方案表示根据基站的空闲信道数为基站确定3种资源价格:基站的空闲信道为1~3条时,基站的资源价格为p 1,1,;基站的空闲信道为4~7条时,基站的资源价格为p 1,2;基站的空闲信道为8~10条时,基站的频谱价格为p 1,3。类似地,10阶定价方案表示根据基站的空闲信道数为基站确定10种资源价格:基站的空闲信道为1条时,基站的资源价格为p 2,1,;基站的空闲信道为2条时,基站的资源价格为p 2,2;基站的空闲信道数为3时,基站的资源价格为p 2,3;依次类推。传统方案中不考虑基站的空闲信道数,相当于基站的资源价格为均一值,例如都为p 3。图13示出了分阶定价的示例的示意图。
图14示出了不同分阶定价的阶数对UE接入总量的影响的曲线图。可以看出,在分阶定价的阶数小于基站可分配信道总数时,分阶定价的阶数越高,区域内UE的接入总量越大。当分阶定价的阶数与基站可分配信道数一致时,UE的接入总量达到最大。当分阶定价的阶数大于基站总的信道数时,UE的接入总量并不随着分阶定价阶数的增加而变化。
注意,上述仿真示例仅是为了方便理解,并不对本申请构成限制。
<第四实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述 用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图15示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:基于预定区域中的基站的接入的UE的总体无线资源需求与基站能够提供的无线资源之间的对比,确定基站的资源价格(S11);以及向基站发送基站的资源价格,以使得UE至少基于资源价格确定是否接入基站(S12)。该方法例如可以在频谱管理装置侧执行。
在步骤S11中,可以基于UE的总体无线资源需求与基站的无线资源供给的比值来确定基站的资源价格,并将资源价格确定为与比值成正相关。例如,可以将资源价格确定为关于比值的阶梯状函数。
此外,上述方法还可以包括如下步骤:从基站获取以下信息中的一项或多项:接入基站的UE的总体无线资源需求信息;基站能够提供的无线资源的资源供给信息;基站的位置信息;基站的发射功率信息。
上述方法还可以包括向每一个基站提供有关资源价格的信息。例如,可以针对每一个基站确定该基站的备选基站集,并将基站以及备选基站集中的各个基站的资源价格提供给基站,其中,接入基站的UE能够接入备选基站集中的基站。例如,可以将覆盖范围与基站的覆盖范围存在交叠且具有无线资源提供能力的基站确定为备选基站集中的基站。
上述方法还包括:在针对至少一个基站的对比的变化达到预定程度的情况下,响应于该对比的变化来动态执行频谱管理。
例如,可以响应于对比的变化来更新至少一个基站的资源价格并重新确定备选基站集,以及基于重新确定的备选基站集将更新的资源价格提供给相关基站,其中,UE基于更新的资源价格来重新确定要接入的基站,以迭代的方式执行上述资源价格和备选基站集的更新和提供,直到满足预定条件为止。例如,预定条件包括如下中的一个或多个:迭代次数达到预定值,两次迭代之间的资源价格更新量的最大值小于预定阈值。例如可以基于优化觅食算法来执行迭代。
在一个示例中,可以从至少一个基站获取对比的变化的信息。在另 一个示例中,可以基于至少一个基站上报的更新信息来确定对比的变化是否达到预定程度,更新信息包括更新的总体无线资源需求的信息。
例如,无线资源需求可以包括如下中的一个多个:频谱需求,时延要求,可靠性要求,传输速率需求。
图16示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:从接入基站的UE获取UE的总体无线资源需求(S21);将UE的总体无线资源需求和基站能够提供的无线资源的对比的信息提供给频谱管理装置(S22);从频谱管理装置获取频谱管理装置基于所述信息确定的基站的资源价格以及频谱管理装置确定的其他基站的资源价格(S23);以及将资源价格的信息提供给接入基站的UE(S24)。该方法例如可以在基站侧执行。
例如,其他基站为备选基站集中的基站,其中,接入所述基站的UE能够接入备选基站集中的基站。
在步骤S24中可以通过广播的方式向所述用户设备提供所述资源价格的信息。
上述方法还包括:在有新的UE请求接入基站或接入基站或者已接入的用户设备断开与基站的连接时,确定对比的改变,并且向频谱管理装置提供更新的对比的信息。或者,还可以仅在对比的改变达到预定程度时,向频谱管理装置提供更新的对比的信息。
例如,可以向频谱管理装置提供UE的更新的总体无线资源需求的信息。
图17示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:从UE当前请求接入或接入的第一基站获取第一基站以及备选基站集中的基站的资源价格的信息(S31),其中,UE能够接入备选基站集中的基站,资源价格是基于基站的UE的总体无线资源需求和基站能够提供的无线资源的对比的信息确定的;以及至少基于资源价格,从备选基站集中确定要接入的第二基站(S32),其中,第二基站的资源价格低于第一基站的资源价格。该方法例如可以在UE侧执行。
例如,在步骤S31中,可以通过广播获取资源价格的信息。
在步骤S32中,可以在备选基站集中确定资源价格低于第一基站的 资源价格的部分基站,并在部分基站中随机确定一个基站作为第二基站。例如,可以基于优化觅食算法来确定第二基站。此外,在步骤S32中还可以基于各个基站的导频信号的强度来进行第二基站的确定。此外,在第一基站的资源价格最低的情况下,确定继续接入第一基站。
注意,上述各个方法可以结合或单独使用,其细节在第一至第三实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
例如,电子设备100可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。电子设备100可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
例如,电子设备200可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,电子设备300可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于服务器的应用示例]
图18是示出可以应用本公开内容的技术的服务器700的示意性配置的示例的框图。服务器700包括处理器701、存储器702、存储装置703、网络接口704以及总线706。
处理器701可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器700的功能。存储器702包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器701执行的程序。存储装置703可以包括存储介质,诸如半导体存储器和硬盘。
网络接口704为用于将服务器700连接到通信网络705的通信接口。通信网络705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线706将处理器701、存储器702、存储装置703和网络接口704彼此连接。总线706可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
在图18所示的服务器700中,参照图1和2所描述的确定单元101、收发单元102、执行单元103等可以由处理器701实现。例如,处理器701可以通过执行确定单元101、收发单元102、执行单元103的功能来确定各个基站的资源价格并基于该资源价格执行频谱管理。
[关于基站的应用示例]
(第一应用示例)
图19是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图19所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图19示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图19所示,无线通信接口825可以包括多个BB处理器826。例 如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图19所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图19示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图19所示的eNB 800中,电子设备200的获取单元201、提供单元202、收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行获取单元201、提供单元202的功能来获取基站的资源价格的信息以及向频谱管理装置提供关于UE的总体无线资源需求与基站的无线资源供给之间的对比的信息。
(第二应用示例)
图20是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图20所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图20示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图19描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图19描述的BB处理器826相同。如图20所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB 处理器856可以与eNB 830使用的多个频带兼容。虽然图20示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图20所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图20示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图20所示的eNB 830中,电子设备200的获取单元201、提供单元202、收发器可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行获取单元201、提供单元202的功能来获取基站的资源价格的信息以及向频谱管理装置提供关于UE的总体无线资源需求与基站的无线资源供给之间的对比的信息。
[关于用户设备的应用示例]
(第一应用示例)
图21是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制 器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图21所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图21示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图21所示,智能电话900可以包括多个天线916。虽然图21示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图21所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图21所示的智能电话900中,电子设备300的获取单元301、收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行获取单元301和确定单元302的功能来基于资源价格接入资源价格较低的基站。
(第二应用示例)
图22是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图22所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图22示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接 收无线信号。如图22所示,汽车导航设备920可以包括多个天线937。虽然图22示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图22所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图22示出的汽车导航设备920中,电子设备300的获取单元301和收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行获取单元301和确定单元302的功能来基于资源价格接入资源价格较低的基站。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本公开的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本公开还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本公开的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图23所示的通用计算机2300)安装构成该 软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图23中,中央处理单元(CPU)2301根据只读存储器(ROM)2302中存储的程序或从存储部分2308加载到随机存取存储器(RAM)2303的程序执行各种处理。在RAM 2303中,也根据需要存储当CPU 2301执行各种处理等等时所需的数据。CPU 2301、ROM 2302和RAM 2303经由总线2304彼此连接。输入/输出接口2305也连接到总线2304。
下述部件连接到输入/输出接口2305:输入部分2306(包括键盘、鼠标等等)、输出部分2307(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2308(包括硬盘等)、通信部分2309(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2309经由网络比如因特网执行通信处理。根据需要,驱动器2310也可连接到输入/输出接口2305。可移除介质2311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2310上,使得从中读出的计算机程序根据需要被安装到存储部分2308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2311安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图23所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2311。可移除介质2311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2302、存储部分2308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本公开的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (32)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    基于预定区域中的基站的接入的用户设备的总体无线资源需求与所述基站能够提供的无线资源之间的对比,确定所述基站的资源价格;以及
    向所述基站发送所述基站的所述资源价格,以使得所述用户设备至少基于所述资源价格确定是否接入所述基站。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为基于所述用户设备的总体无线资源需求与所述基站的无线资源供给的比值来确定所述基站的资源价格,并且所述处理电路被配置为将所述资源价格确定为与所述比值成正相关。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为将所述资源价格确定为关于所述比值的阶梯状函数。
  4. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为从所述基站获取以下信息中的一项或多项:接入所述基站的所述用户设备的总体无线资源需求信息;所述基站能够提供的无线资源的资源供给信息;所述基站的位置信息;所述基站的发射功率信息。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为针对每一个基站确定该基站的备选基站集,并将所述基站以及所述备选基站集中的各个基站的资源价格提供给所述基站,其中,接入所述基站的用户设备能够接入所述备选基站集中的基站。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路被配置为将覆盖范围与所述基站的覆盖范围存在交叠且具有无线资源提供能力的基站确定为所述备选基站集中的基站。
  7. 根据权利要求5所述的电子设备,其中,所述处理电路还被配置在针对至少一个基站的所述对比的变化达到预定程度的情况下,响应于所述对比的变化来动态执行频谱管理。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路被配置为响应于所述对比的变化来更新所述至少一个基站的资源价格并重新确定所述备选基站集,以及基于重新确定的备选基站集将更新的资源价格提供给相关基站,其中,所述用户设备基于更新的资源价格来重新确定要接入的基站,
    其中,所述处理电路被配置为以迭代的方式执行所述资源价格和所述备选基站集的更新和提供,直到满足预定条件为止。
  9. 根据权利要求8所述的电子设备,其中,所述预定条件包括如下中的一个或多个:迭代次数达到预定值,两次迭代之间的资源价格更新量的最大值小于预定阈值。
  10. 根据权利要求7所述的电子设备,其中,所述处理电路被配置为从所述至少一个基站获取所述对比的变化的信息。
  11. 根据权利要求7所述的电子设备,其中,所述处理电路被配置为基于所述至少一个基站上报的更新信息来确定所述对比的变化是否达到预定程度,所述更新信息包括更新的总体无线资源需求的信息。
  12. 根据权利要求8所述的电子设备,其中,所述处理电路被配置为基于优化觅食算法来执行所述迭代。
  13. 根据权利要求1所述的电子设备,其中,所述无线资源需求包括如下中的一个多个:频谱需求,时延要求,可靠性要求,传输速率需求。
  14. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    从接入基站的用户设备获取所述用户设备的总体无线资源需求;
    将所述用户设备的总体无线资源需求和所述基站能够提供的无线资源的对比的信息提供给频谱管理装置;
    从所述频谱管理装置获取所述频谱管理装置基于所述信息确定的所述基站的资源价格以及所述频谱管理装置确定的其他基站的资源价格;以及
    将所述资源价格的信息提供给接入所述基站的用户设备。
  15. 根据权利要求14所述的电子设备,其中,所述其他基站为备选基站集中的基站,其中,接入所述基站的所述用户设备能够接入所述备选基站集中的基站。
  16. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为通过广播的方式向所述用户设备提供所述资源价格的信息。
  17. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为在有新的用户设备请求接入所述基站或接入基站或者已接入的用户设备断开与所述基站的连接时,确定所述对比的改变,并且向所述频谱管理装置提供更新的对比的信息。
  18. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为在所述对比的改变达到预定程度时,向所述频谱管理装置提供更新的对比的信息。
  19. 根据权利要求17所述的电子设备,其中,所述处理电路被配置为向所述频谱管理装置提供所述用户设备的更新的总体无线资源需求的信息。
  20. 根据权利要求14所述的电子设备,其中,所述无线资源需求包括如下中的一个多个:频谱需求,时延要求,可靠性要求,传输速率需求。
  21. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    从用户设备当前请求接入或接入的第一基站获取所述第一基站以及备选基站集中的基站的资源价格的信息,其中,所述用户设备能够接入所述备选基站集中的基站,所述资源价格是基于基站的用户设备的总体无线资源需求和所述基站能够提供的无线资源的对比的信息确定的;以及
    至少基于所述资源价格,从所述备选基站集中确定要接入的第二基站,其中,所述第二基站的资源价格低于所述第一基站的资源价格。
  22. 根据权利要求21所述的电子设备,其中,所述处理电路被配置为通过广播获取所述资源价格的信息。
  23. 根据权利要求21所述的电子设备,其中,所述处理电路还被配 置为基于各个基站的导频信号的强度来进行所述第二基站的确定。
  24. 根据权利要求21所述的电子设备,其中,所述处理电路被配置为在所述备选基站集中确定资源价格低于所述第一基站的资源价格的部分基站,并在所述部分基站中随机确定一个基站作为所述第二基站。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路被配置为在所述第一基站的资源价格最低的情况下,确定继续接入所述第一基站。
  26. 根据权利要求21所述的电子设备,其中,所述处理电路被配置为基于优化觅食算法来确定所述第二基站。
  27. 根据权利要求21所述的电子设备,其中,所述处理电路还被配置为将所述用户设备的无线资源需求提供给所述第一基站。
  28. 根据权利要求21所述的电子设备,其中,所述无线资源需求包括如下中的一个多个:频谱需求,时延要求,可靠性要求,传输速率需求。
  29. 一种用于无线通信的方法,包括:
    基于预定区域中的基站的接入的用户设备的总体无线资源需求与所述基站能够提供的无线资源之间的对比,确定所述基站的资源价格;以及
    向所述基站发送所述基站的所述资源价格,以使得所述用户设备至少基于所述资源价格确定是否接入所述基站。
  30. 一种用于无线通信的方法,包括:
    从接入基站的用户设备获取所述用户设备的总体无线资源需求;
    将所述用户设备的总体无线资源需求和所述基站能够提供的无线资源的对比的信息提供给频谱管理装置;
    从所述频谱管理装置获取所述频谱管理装置基于所述信息确定的所述基站的资源价格以及所述频谱管理装置确定的其他基站的资源价格;以及
    将所述资源价格的信息提供给接入所述基站的用户设备。
  31. 一种用于无线通信的方法,包括:
    从用户设备当前接入的第一基站获取所述第一基站以及备选基站集中的基站的资源价格的信息,其中,所述用户设备能够接入所述备选基站集中的基站,所述资源价格是基于基站的用户设备的总体无线资源需求和所述基站能够提供的无线资源的对比的信息确定的;以及
    至少基于所述资源价格,从所述备选基站集中确定要接入的第二基站,其中,所述第二基站的资源价格低于所述第一基站的资源价格。
  32. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求29至权利要求31中任意一项所述的用于无线通信的方法。
PCT/CN2021/079891 2020-03-17 2021-03-10 用于无线通信的电子设备和方法、计算机可读存储介质 WO2021185129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/795,873 US20230209456A1 (en) 2020-03-17 2021-03-10 Electronic device and method for wireless communication, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010188245.7 2020-03-17
CN202010188245.7A CN113411861A (zh) 2020-03-17 2020-03-17 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021185129A1 true WO2021185129A1 (zh) 2021-09-23

Family

ID=77677157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079891 WO2021185129A1 (zh) 2020-03-17 2021-03-10 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (3)

Country Link
US (1) US20230209456A1 (zh)
CN (1) CN113411861A (zh)
WO (1) WO2021185129A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100184480A1 (en) * 2005-03-31 2010-07-22 Alcatel-Lucent USA. Inc. Power load balancing in cellular networks
CN106954234A (zh) * 2017-04-24 2017-07-14 东南大学 一种超密集异构网络中的用户连接和虚拟资源分配方法
CN107409329A (zh) * 2015-01-12 2017-11-28 华为技术有限公司 第一和第二网络节点及其方法
CN107509220A (zh) * 2017-07-04 2017-12-22 东华大学 一种基于历史强化学习的车联网负载均衡接入方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100184480A1 (en) * 2005-03-31 2010-07-22 Alcatel-Lucent USA. Inc. Power load balancing in cellular networks
CN107409329A (zh) * 2015-01-12 2017-11-28 华为技术有限公司 第一和第二网络节点及其方法
CN106954234A (zh) * 2017-04-24 2017-07-14 东南大学 一种超密集异构网络中的用户连接和虚拟资源分配方法
CN107509220A (zh) * 2017-07-04 2017-12-22 东华大学 一种基于历史强化学习的车联网负载均衡接入方法

Also Published As

Publication number Publication date
CN113411861A (zh) 2021-09-17
US20230209456A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
WO2018171580A1 (zh) 用于无线通信的电子装置以及无线通信方法
JP7066410B2 (ja) 無線通信のユーザー機器側用と基地局側用の装置と方法
JP6038348B2 (ja) デバイス間通信のためのリソース割当方法、装置及びプログラム
JP6492328B2 (ja) 通信制御装置、通信制御方法、無線通信装置、無線通信方法及び無線通信システム
US10425943B2 (en) Apparatus and method in wireless communications system
CN105338534B (zh) 无线通信系统中的装置和方法
JP6428620B2 (ja) 通信制御装置、通信制御方法、無線通信システム及び端末装置
US10681774B2 (en) Electronic device and communication method
JP2020516087A (ja) 無線通信システムにおける電子機器、及び方法
EP4207875A1 (en) Electronic device for sleep and wake-up of base station, and method and storage medium
US10674515B2 (en) User equipment and base station in wireless communications system, and wireless communications method
US20200008077A1 (en) Apparatus for frequency band allocation
WO2021185129A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021254211A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11095405B2 (en) Electronic device and method for wireless communication
WO2023185562A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2024083034A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021185111A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2024012319A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023284586A1 (zh) 用于无线通信的管理电子设备、成员电子设备以及方法
US20240121771A1 (en) Scheduling electronic device and member electronic device for wireless communication, and method
WO2021134614A1 (zh) 通信方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770889

Country of ref document: EP

Kind code of ref document: A1