WO2021185111A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2021185111A1
WO2021185111A1 PCT/CN2021/079616 CN2021079616W WO2021185111A1 WO 2021185111 A1 WO2021185111 A1 WO 2021185111A1 CN 2021079616 W CN2021079616 W CN 2021079616W WO 2021185111 A1 WO2021185111 A1 WO 2021185111A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
overloaded
base station
user equipment
neighboring
Prior art date
Application number
PCT/CN2021/079616
Other languages
English (en)
French (fr)
Inventor
周郑颐
王昭诚
葛宁
曹建飞
Original Assignee
索尼集团公司
周郑颐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 周郑颐 filed Critical 索尼集团公司
Priority to CN202180019957.9A priority Critical patent/CN115280837A/zh
Priority to US17/797,118 priority patent/US20220400431A1/en
Publication of WO2021185111A1 publication Critical patent/WO2021185111A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to user association and beam management in a multi-base station communication network. More specifically, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • Multi-base station communication networks need to consider User Association (UA) and Beam Management (BM).
  • User association solves the problem of association between users and base stations, that is, which base station serves each user
  • the beam management solves the problem of which beam the base station should use to serve the users associated with it.
  • UA and BM are coupled with each other.
  • BM should occur after UA, but in fact, the BM scheme will affect the performance of the system, and thus will adversely affect the results of UA. .
  • the service capabilities of various base stations may be uneven. Some base stations have higher transmission power or are equipped with more antennas, so they have stronger service capabilities, such as macro base stations; and some base stations have service capabilities. It is relatively weak, such as micro base stations.
  • the UA/BM scheme that adopts the maximum received power criterion or the maximum signal-to-interference-noise ratio criterion will cause the user equipment to tend to be associated with the base station with strong service capability, which will eventually cause the base station with strong service capability to be overloaded.
  • the base station with weak service capacity is under load.
  • FIG. 1 is a schematic diagram showing uneven network load caused by uneven base station service capabilities in the prior art.
  • an electronic device for wireless communication which includes a processing circuit configured to: in the case of determining that the electronic device is an overloaded electronic device whose load is greater than a predetermined threshold, based on the first A user equipment receives the first beam power of the first beam scanned for initial access of the user equipment from each of the at least one adjacent electronic equipment of the overloaded electronic equipment, and performs load balancing to determine the overloaded electronic equipment. Whether the device is to be associated with the first user device.
  • the electronic device can effectively improve system performance for user association and beam management in a multi-base station communication network and effectively reduce system overhead.
  • an electronic device for wireless communication which includes a processing circuit configured to: in the case where the base station has an overloaded base station whose load is greater than a predetermined threshold, measure from the overloaded base station The beam power of the beam scanned by each neighboring base station for the initial access of the electronic device received by each of the at least one neighboring base station is used for load balancing by the overloaded base station.
  • a method for wireless communication including: in the case of determining that the electronic device is an overloaded electronic device whose load is greater than a predetermined threshold, based on the The first beam power of the first beam scanned by each neighboring electronic device of a neighboring electronic device for the initial access of the user equipment is received, and load balancing is performed to determine whether the overloaded electronic device is to be associated with the first user .
  • a method for wireless communication including: in a case where a base station has an overloaded base station whose load is greater than a predetermined threshold, measuring each neighboring base station from at least one neighboring base station of the overloaded base station The beam power of the beam scanned for the initial access of the electronic device received by the base station is used for load balancing by the overloaded base station.
  • a computer program code and a computer program product for implementing the above method for wireless communication and a computer on which the computer program code for implementing the above method for wireless communication is recorded are also provided Readable storage medium.
  • FIG. 1 is a schematic diagram showing uneven network load caused by uneven base station service capabilities in the prior art
  • FIG. 2 is a schematic diagram showing load distribution through a cell area expansion (CRE) method
  • FIG. 3 is a schematic diagram showing load distribution by a method based on global user allocation (GUA);
  • Fig. 4 shows a block diagram of functional modules of an electronic device for wireless communication according to an embodiment of the present disclosure
  • FIG. 5 shows an example information flow related to uninstallation between an overloaded electronic device, a neighboring electronic device, a first user device, and a second user device according to an embodiment of the present disclosure
  • FIG. 6 is an exemplary diagram showing the performance of the CRE method, the GUA method, and the offloading strategy method according to an embodiment of the present disclosure for load balancing;
  • FIG. 7 shows an example information flow about denying access between an electronic device, a neighboring electronic device, and a first user equipment according to an embodiment of the present disclosure
  • FIG. 8 shows a block diagram of functional modules of an electronic device according to another embodiment of the present disclosure.
  • FIG. 9 shows a flowchart of a method for wireless communication according to an embodiment of the present disclosure.
  • FIG. 10 shows a flowchart of a method for wireless communication according to another embodiment of the present disclosure.
  • Fig. 11 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 12 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied;
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 15 is a block diagram showing an example structure of a personal computer that can be adopted in an embodiment of the present disclosure.
  • UA refers to which base station should each user be served by when facing multiple users, that is, to determine the user associated with the base station; while BM refers to the base station should select the most appropriate beam to serve its associated user.
  • UA/BM there are two types of more mainstream solutions in the prior art.
  • CRE Cell Range Extension
  • GUI Global User Allocation
  • the two methods are described below respectively.
  • O-TRP Overloaded-Transmission-Reception-Point
  • U-TRP Underloaded-Transmission-Reception-Point
  • the base station and TRP can refer to each other.
  • the main idea of the CRE method is to add a positive bias value to the access index of U-TRP when comparing the access index of O-TRP and U-TRP to the user equipment, so that the user is compared with the implementation of the CRE method. It was easier to choose U-TRP to initiate access before. Let’s take the access criterion of the maximum beam received power as an example. For convenience, here we consider the common coexistence of an O-TRP and J neighboring U-TRPs in the actual system, where J is a positive integer greater than or equal to 1.
  • the network is sometimes referred to as the system
  • the received power of the nth beam of the jth (1 ⁇ j ⁇ J) U-TRP is Then the CRE method can be expressed as:
  • Equation 1 j* and b* respectively represent the sequence number of the base station selected by the user equipment and the sequence number of the corresponding beam, and ⁇ CRE ( ⁇ CRE ⁇ 0) is the offset value defined when the CRE method is used. It should be noted that the choice of ⁇ CRE will affect the performance of the CRE method. If ⁇ CRE is set to a static constant value, the UA/BM results produced by the CRE method may be difficult to track the real-time changes of the base station load situation; another On the one hand, the dynamic setting method is relatively complicated in the determination of the bias value and the realization of the system. Without loss of generality, taking the static bias value setting as an example, the result of the CRE method is shown in Figure 2. Fig.
  • FIG. 2 is a schematic diagram showing load distribution by the CRE method.
  • the coverage area of U-TRP is equivalently expanded.
  • Some user equipments that would have chosen O-TRP are instead associated with U-TRP to balance the whole The effect of network load.
  • these user equipments that have changed the association results are often on the edge of O-TRP and U-TRP. Even if they are associated with U-TRP, they are easily interfered by O-TRP.
  • the received power of TRP is also relatively weak. Therefore, although the CRE method balances the network load, the improvement in system performance is relatively limited.
  • the GUA method considers the optimal division of all users in the system from a global perspective, without loss of generality, the following describes the GUA method based on maximizing the system and rate.
  • the sequence number 1 ⁇ j ⁇ J represents J U-TRPs.
  • Each user can only be controlled by one base station at the same time.
  • Service where J is a positive integer greater than or equal to 1.
  • the channel from the base station with the serial number j (0 ⁇ j ⁇ J) to the kth (1 ⁇ k ⁇ K) user is h j,k
  • the TRP with the serial number j (0 ⁇ j ⁇ J) has a transmit power ⁇ j .
  • the beamforming matrix used is W j
  • the corresponding associated user equipment set is
  • each base station adopts a beamforming method based on the Zero Forcing (ZF) criterion without loss of generality, and takes a certain associated user equipment of the i-th TRP (0 ⁇ i ⁇ J),
  • ZF Zero Forcing
  • Equation 2 is the noise power at the receiving end, Represents a collection The number of user devices in.
  • the sum rate of the entire system can be further expressed as:
  • Equation 4 The size of the collection And the influence of the beamforming vector W j , in other words, is affected by the result of UA/BM, so based on the index of system and rate, the GUA method can be expressed as:
  • represents a collection
  • represents an intersection
  • ⁇ 1 represents K user equipments, 1 ⁇ j 1 ⁇ J and 1 ⁇ j 2 ⁇ J.
  • the GUA method attempts to find a UA/BM solution that enables users to be optimally allocated to each base station, and the base station will configure the optimal beam to serve its associated users.
  • Constraint 1 and Constraint 2 require that the allocation of users is "not repetitive and not leaking.”
  • Constraint 3 on W j originates from the base station's transmit power constraint.
  • Fig. 3 is a schematic diagram showing load distribution by the GUA method. As shown in Figure 3, the load associated with each base station is relatively uniform.
  • CSI Channel State Information
  • the preliminary results of UA/BM and then obtain the CSI from each base station to each user on this basis, and then use the GUA method to re-optimize the preliminary results, and finally achieve the optimal UA/BM solution to improve system performance .
  • Huge computational complexity and CSI acquisition overhead have become the most important factors restricting the application of the GUA method.
  • the CRE method is relatively simple and easy to implement, but the improvement of system performance is limited; the GUA method improves the system performance significantly, but the computational complexity and system overhead are large.
  • this application proposes a new solution for realizing UA/BM.
  • FIG. 4 shows a block diagram of functional modules of an electronic device 400 for wireless communication according to an embodiment of the present disclosure.
  • the electronic device 400 includes an equalization unit 402, and the equalization unit 402 may be configured to When the device 400 is an overloaded electronic device whose load is greater than a predetermined threshold, scanning is performed based on the first user equipment received from each of the at least one neighboring electronic device of the overloaded electronic device for the user's initial access Perform load balancing of the first beam power of the first beam to determine whether the overloaded electronic device is to be associated with the first user equipment.
  • the equalization unit 402 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the electronic device 400 may be provided on the side of the base station or communicably connected to the base station, for example.
  • the electronic device 400 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 400 may work as a base station itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to perform to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the load is a user equipment associated with an electronic device.
  • the equalization unit 402 may be configured to determine whether the electronic device is an overloaded electronic device according to the number of user devices associated with the electronic device. That is, the equalization unit 402 may be configured to determine whether the electronic device is an overloaded electronic device according to the number of user devices within the service range of the electronic device. As an example, the equalization unit 402 may be configured to determine that the electronic device is an overloaded electronic device when the number of user devices associated with the electronic device is greater than a predetermined threshold, and when the number of user devices associated with the electronic device is less than or equal to In the case of a predetermined threshold, it is determined that the electronic device is an underloaded electronic device. As an example, an electronic device can switch between two states of overload and underload according to the number of its currently associated user equipment.
  • the predetermined threshold can be set according to actual needs, experience, and electronic device performance.
  • the balancing unit 402 may also determine whether the electronic device 400 is an overloaded electronic device according to the capabilities of the electronic device 400 (for example, the antenna, transmission power, etc.) of the electronic device.
  • the balancing unit 402 may also determine whether the electronic device 400 is an overloaded electronic device according to the resources of the electronic device 400 (for example, the frequency spectrum of the electronic device, etc.).
  • the electronic device 400 is an overloaded electronic device.
  • the electronic device 400 is sometimes referred to as an overload electronic device 400.
  • the overloaded electronic device 400 may be a device with relatively strong service capability, for example, it may be a macro base station in a heterogeneous network.
  • the neighboring electronic device may include an underloaded electronic device whose load is less than or equal to a predetermined threshold.
  • the underloaded electronic device may be, for example, a micro base station in a heterogeneous network. In a local heterogeneous network, the coverage of micro base stations is generally included in the coverage of neighboring macro base stations.
  • the nearby electronic device may also be other overloaded electronic devices.
  • the neighboring electronic devices of the overloaded electronic device 400 may include at least one of the following: all electronic devices covered within the coverage area of the overloaded electronic device 400; at least one within a predetermined range from the overloaded electronic device 400 Other electronic devices; all electronic devices covered by the coverage of at least one other electronic device mentioned above.
  • the balancing unit 402 may be configured to exchange load information with each neighboring electronic device.
  • the overloaded electronic device 400 and the neighboring electronic devices maintain each other's load status and other related information in the form of a load situation table.
  • the load situation table can be established as shown in Table 1 below:
  • the number of base stations in the system is J+1
  • K j (0 ⁇ j ⁇ J) represents the number of user equipment currently associated with the base station with sequence number j, where J is a positive integer greater than or equal to 1.
  • K j is greater than the predetermined threshold
  • the base station with sequence number j is determined to be in an overload state
  • K j is less than or equal to the predetermined threshold
  • the base station with sequence number j is determined to be in an underload state.
  • Determining whether the overloaded electronic device is to be associated with the first user equipment refers to determining, for example, whether the overloaded electronic device provides a service for the first user equipment. Load balancing is used for user association UA and beam management BM.
  • UA/BM can be considered to be executed and maintained by steps such as Initial Access (IA) and Beam Refinement (BR).
  • IA Initial Access
  • BR Beam Refinement
  • each base station will periodically perform beam scanning, that is, the base station will broadcast synchronization signals with each beam in turn according to a predetermined beam codebook (to reduce overhead, a wide beam is generally used at this time, usually The beam configured by the base station at this stage is called the access beam).
  • the user equipment measures the beam power of the neighboring base stations that are scanned by the user equipment for initial access.
  • both user equipment within the service range of the base station or user equipment not within the service range of the base station can measure the beam power of the access beam of the base station.
  • the electronic device 400 is based on the beam power of the access beam received by the first user equipment from each neighboring electronic device (in order to compare with the beam power received by other user equipment from other electronic devices hereinafter).
  • the beam power is called the first beam power to perform load balancing for user association and beam management.
  • Equation 4 in the GUA method described above can be written as the following form:
  • Equation 5 Indicates the sum rate of the current base station, Indicates the sum rate of the base station whose sequence number is i (1 ⁇ i ⁇ J).
  • Equation 5 Is the CSI between the current base station with sequence number 0 and its associated k-th user equipment, which can be obtained by configuring CSI-RS measurement; in Equation 5 middle It is the CSI between the k-th user equipment associated with the current base station with sequence number 0 and the base station with sequence number j that is not associated with the user equipment. It cannot be directly measured. Therefore, obtaining h j, k is the main source of system overhead .
  • the first beam power obtained by measuring the access beam of the neighboring electronic device by the first user equipment is load-balanced without additional configuration of reference signals (that is, no additional configuration of reference signals is required). Additional overhead is required to obtain the channel state information between each neighboring electronic device and the first user equipment, so system overhead can be saved, and user association and beam management in a multi-base station communication network can be effectively realized.
  • the first user equipment is a user equipment associated with an overloaded electronic device
  • the equalization unit 402 may be configured to also obtain data from the overloaded electronic device and at least one neighboring electronic device based on the second user equipment associated with each neighboring electronic device.
  • the second beam power of the second beam that is received by the electronic device that is not associated with the second user equipment in the device and is used for the initial access of the user equipment and scanned for the second beam is load balanced.
  • the first user equipment is a user equipment associated with the overloaded electronic device means that the first user equipment is within the service range of the overloaded electronic device and is a user equipment that has been serviced by the overloaded electronic device.
  • the second user equipment associated with each neighboring electronic device refers to that the second user equipment is within the service range of the neighboring electronic device, and is a user equipment that has been served by the neighboring electronic device.
  • the J base stations represented by the sequence number 1 ⁇ i ⁇ J in the above-described GUA method may be equivalent to at least one neighboring electronic device adjacent to the electronic device 400 in the embodiment of the present disclosure, and users respectively associated with the aforementioned J base stations
  • the device may be equivalent to the second user device associated with the neighboring electronic device in the embodiment of the present disclosure.
  • the second user equipment is based on the second user equipment associated with each neighboring electronic device from the second user equipment that is not associated with the second user equipment.
  • the beam power is load balanced without the need for additional overhead to obtain channel state information from an electronic device that is not associated with the second user equipment to the second user equipment. Therefore, the system overhead can be further saved, and the implementation can be more effective.
  • User association and beam management in a multi-base station communication network is based on the second user equipment associated with each neighboring electronic device from the second user equipment that is not associated with the second user equipment.
  • the equalization unit 402 may be configured to offload at least part of users associated with the overloaded electronic device from the overloaded electronic device based on the first beam power corresponding to the overloaded electronic device and the second beam power corresponding to each neighboring electronic device equipment.
  • uninstalling at least part of the user equipment associated with the overloaded electronic device from the overloaded electronic device refers to that the overloaded electronic device terminates providing services for the at least part of the user equipment.
  • each base station will scan with multiple beams, that is, the overloaded electronic device 400 and the neighboring electronic devices will scan with multiple beams respectively.
  • the first beam power is a weighted average of the beam received power of each first beam
  • the second beam power is a weighted average of the beam received power of the second beam corresponding to each neighboring electronic device.
  • weighted average those skilled in the art can also think of other correlations between the power of the first beam and the received power of each first beam, and can also think of the power of the second beam and the beam of each second beam. Other correlation methods between received power will not be repeated here.
  • the first beam power is the average value of the beam received power of each first beam
  • the second beam power is the average value of the beam received power of the second beam corresponding to each neighboring electronic device as an example.
  • the user equipment selects a base station and the corresponding beam to initiate random access according to certain criteria (for example, the maximum received power criterion or the maximum signal-to-interference-noise ratio criterion). If the access is successful , The associated base station and user equipment will perform BR, and finally determine the beam used for the service (usually a narrow beam at this time). So far, the UA/BM can be considered to have been initially resolved, that is, the preliminary result of the UA/BM is obtained. In the embodiment according to the present disclosure, it is assumed that the overloaded electronic device 400 has obtained the preliminary result of the aforementioned UA/BM.
  • certain criteria for example, the maximum received power criterion or the maximum signal-to-interference-noise ratio criterion.
  • the channel from the electronic device with serial number i (0 ⁇ i ⁇ J) to the kth (1 ⁇ k ⁇ K) user equipment is hi ,k
  • the channel from the electronic device with serial number i (0 ⁇ i ⁇ J) The configuration beam number is B i
  • the transmit power is ⁇ i
  • the beamforming matrix used is W i
  • the corresponding associated user set is
  • a neighboring electronic device adjacent to the electronic device 400 is represented by a serial number 1 ⁇ i ⁇ J.
  • the performance of the system is described by taking the sum rate of the system as an example.
  • the performance of the system can also be evaluated by indicators such as the throughput of the system or the maximum rate of VIP users.
  • the sum rate C of the system including the electronic device 400 and the neighboring electronic device adjacent to the electronic device 400 can be simplified as:
  • C 0 represents the sum rate of the electronic device 400
  • P represents the beam power of the access beam
  • sequence number n represents the sequence number of the access beam of each electronic device.
  • middle represents the first beam power corresponding to the overloaded electronic device 400, that is, represents the first access beam received by the first user equipment corresponding to the overloaded electronic device 400 from the neighboring electronic device with serial number j adjacent to the overloaded electronic device 400 Beam power.
  • the equalization unit 402 may be configured to calculate the performance of the overloaded electronic device 400 after at least part of the user equipment is unloaded from the overloaded electronic device 400. In the case where the performance is improved relative to the performance of the overloaded electronic device 400 before the uninstallation, And determine at least part of the user equipment.
  • the above-mentioned performance includes the sum rate of the overloaded electronic device 400.
  • Equation 7 can be used to express the sum rate change of the overloaded electronic device 400 after the user equipment is uninstalled from the overloaded electronic device 400 :
  • Equation 7 Represents a collection of associated users corresponding to the overloaded electronic device 400
  • the user equipment with the serial number k 0 is removed from the overloaded electronic device 400, that is, the user equipment with the serial number k 0 is uninstalled from the overloaded electronic device 400.
  • Equation 7 Represents the sum rate of the overloaded electronic device 400 after the user equipment with the serial number k 0 is unloaded from the overloaded electronic device 400, and It represents the sum rate of the overloaded electronic device 400 before the user equipment with the serial number k 0 is unloaded from the overloaded electronic device 400.
  • the sum rate change amount of the system including the overloaded electronic device 400 and the aforementioned at least one adjacent electronic device is estimated as ⁇ C 0 (k 0 ).
  • the sequence number k 0 that makes ⁇ C 0 (k 0 ) in Equation 7 positive (that is, the sum rate change amount of the overloaded electronic device 400 is positive) can be calculated to determine at least the above Part of the user equipment (that is, the user equipment with the sequence number k 0).
  • Equation 7 a low-complexity algorithm is used to locally optimize the system performance (for example, the sum rate of the system). Compared with the global optimization method of Equation 5 in the GUA method, this local optimization method can greatly reduce the computational complexity of the system. In addition, compared to the CRE method, the system performance can be effectively improved (for example, the overloaded electronic device 400 And rate).
  • the sequence number that makes ⁇ C 0 (k 0 ) in Equation 7 positive and ⁇ C 0 (k 0 ) the largest can be calculated
  • the optimization method can be represented by Equation 8 below.
  • Equation 8 It represents the strike ⁇ C 0 (k 0) maximum k 0. In Equation 8, will ⁇ C 0 (k 0) is positive and is referred to as the maximum k 0
  • the equalization unit 402 may be configured to continuously perform the uninstallation until the performance of the overloaded electronic device 400 after the uninstallation is not improved compared to the performance of the overloaded electronic device 400 before the uninstallation is performed.
  • the uninstallation can be repeated, so as to continuously uninstall multiple user equipments and continuously increase the sum rate of the overloaded electronic device 400 until the sum rate of the overloaded electronic device 400 Stop when the change amount becomes negative.
  • the sum rate C of the system including the electronic device 400 and the neighboring electronic devices adjacent to the electronic device 400 can also be expressed as:
  • C 0 represents the sum rate of the electronic device 400 (see Equation 6)
  • C i represents the sum rate of the neighboring electronic devices of the sequence number i (1 ⁇ i ⁇ J)
  • P represents the beam power of the access beam
  • the serial number n is used to represent the serial number of the access beam of each electronic device.
  • middle represents the first The beam power of the n-th access beam received by a user from an electronic device with a sequence number of j (1 ⁇ i ⁇ J, j ⁇ i), mean means averaging.
  • middle represents the second beam power corresponding to the neighboring electronic device with serial number i, that is, the second user device corresponding to the neighboring electronic device with serial number i is from the overloaded electronic device 400 and at least one neighboring electronic device with the second user
  • the second beam power received by an electronic device that is not associated with the device ie, the electronic device that overloads the electronic device 400 and at least one of the neighboring electronic devices other than the neighboring electronic device with the sequence number i).
  • the equalization unit 402 may be configured to calculate the overloaded electronic device 400 and the at least one adjacent electronic device after the at least part of the user equipment is unloaded from the overloaded electronic device 400 and associated with the selected adjacent electronic device among the at least one adjacent electronic device.
  • the performance of the electronic device is improved relative to the performance of the overloaded electronic device 400 and the aforementioned at least one neighboring electronic device before uninstalling, at least part of the user equipment and the selected neighboring electronic device are determined.
  • the above-mentioned performance includes the sum rate of the overloaded electronic device 400 and the sum rate of the neighboring electronic devices.
  • the performance of the system can also be evaluated by the throughput of the system, or the maximum rate of VIP users, and so on. In the following, the performance and rate are still taken as an example for description.
  • Equation 10 can be used to represent the sum rate change of the neighboring electronic device with serial number i after uninstalling the user device with serial number k 0 from the overloaded electronic device 400 and associating the uninstalled user device with the neighboring electronic device with serial number i :
  • Equation 10 Indicates that the user equipment with sequence number k 0 is added to the associated user set corresponding to the neighboring electronic device with sequence number i That is , the user equipment with serial number k 0 is associated with the neighboring electronic device with serial number i (the neighboring electronic device with serial number i provides services for the user equipment with serial number k 0).
  • Equation 8 Represents the sum rate of the neighboring electronic device with serial number i after associating the user device with serial number k 0 and the neighboring electronic device with serial number i, and Represents the sum rate of the neighboring electronic device with serial number i before associating the user device with serial number k 0 with the neighboring electronic device with serial number i.
  • the sequence number i and sequence number k 0 that make ⁇ C(i, k 0 ) in Equation 11 positive can be calculated to determine that at least some of the above-mentioned user equipment (that is, have sequence numbers) k 0 user equipment) and the selected neighboring electronic device (ie, the neighboring electronic device with serial number i).
  • Equation 11 a low-complexity algorithm is used to locally optimize the system performance (for example, the sum rate of the system). Compared with the global optimization method of Equation 5 in the GUA method, this local optimization method can greatly reduce the computational complexity of the system. In addition, compared to the CRE method, it can effectively improve the performance of the system (for example, increase the sum rate of the system). ).
  • the sequence number i that makes ⁇ C(i, k 0 ) in Equation 11 positive and ⁇ C(i, k 0 ) the largest can be calculated by calculating *And serial number Make sure that at least some of the above-mentioned user equipment (ie, have serial numbers)
  • the optimization method can be expressed by the following equation 12.
  • Equation 12 Indicates that the obtaining ⁇ C (i, k 0) and the maximum i k 0. In Equation 12, will ⁇ C (i, k 0) is positive and the largest referred to as i and k 0 and i *
  • the equalization unit 402 may be configured to continuously perform uninstallation until the performance of the overloaded electronic device 400 and the aforementioned at least one neighboring electronic device after the uninstallation is compared to the performance of the overloaded electronic device 400 and the aforementioned at least one neighboring electronic device before the uninstallation is performed. Performance has not improved so far.
  • the unloading may be repeatedly performed, so as to achieve the effect of continuously unloading multiple user devices and continuously increasing the system and rate until the system's sum rate change amount is negative.
  • the equalization unit 402 may be configured to notify the aforementioned at least part of the user equipment to be uninstalled from the overloaded electronic device 400 and to provide the aforementioned at least part of the user equipment with the information of the selected neighboring electronic device. In this way, at least part of the user equipment described above is uninstalled from the overloaded electronic device 400, and can try to associate with the selected neighboring electronic device.
  • the balancing unit 402 may be configured to notify the aforementioned at least one neighboring electronic device to perform load balancing, and each neighboring electronic device notifies the second user equipment associated with the neighboring electronic device to measure the second beam power.
  • each neighboring electronic device transmits the corresponding second beam power to the overload electronic device 400 through the information exchange interface between the base stations.
  • the equalization unit 402 may be configured to receive, from each neighboring electronic device, the second beam power reported by the second user equipment associated with the neighboring electronic device to the neighboring electronic device.
  • the second user equipment associated with each neighboring electronic device reports the measured second beam power to the neighboring electronic device, and the neighboring electronic device transmits the second beam power to the overloaded electronic device 400.
  • FIG. 5 shows an example information flow related to uninstallation among an overloaded electronic device 400, a neighboring electronic device, a first user device, and a second user device according to an embodiment of the present disclosure.
  • the overloaded electronic device 400 initiates an uninstallation operation, notifies the neighboring electronic device that the uninstallation operation is to be performed, and notifies the access of the neighboring electronic device in the first user equipment measurement system associated with the overloaded electronic device 400 The first beam power of the beam; (2) After receiving the uninstall notification, the neighboring electronic device notifies its associated second user equipment so that the second user equipment can measure the power of the electronic equipment in the system other than that of the neighboring electronic device.
  • the second beam power of the access beam (3) the first user equipment reports the measured first beam power to the overload electronic device 400, and the second user equipment reports the measured second beam power to the second user
  • the neighboring electronic device associated with the device (4)
  • the neighboring electronic device transmits the second beam power reported by the second user device associated with it to the overload electronic device 400;
  • the overload electronic device 400 is based on (3) and ( After the information in 4) determines the user equipment to be uninstalled and the neighboring electronic device to be associated with the user equipment to be uninstalled, notify the user equipment to be uninstalled to uninstall from the overloaded electronic device 400 and notify the neighboring electronic device to be associated; 6)
  • the user equipment to be uninstalled is uninstalled from the overloaded electronic device 400 and attempts to associate with the neighboring electronic device to be associated.
  • an OS Offloading Strategy, offloading strategy
  • FIG. 6 is an example diagram showing the performance of the CRE method, the GUA method, and the OS method according to an embodiment of the present disclosure for load balancing.
  • FIG. 6 shows the system and rate (bps/Hz) obtained when the CRE method, the GUA method, and the OS method according to the embodiment of the present disclosure perform load balancing.
  • the GUA method has the highest system and rate, but as mentioned above, the GUA method has huge overhead and high computational complexity in obtaining CSI; the CRE method causes uneven system load, which seriously affects the system and The rate, especially when the number of user equipment is large, the system and rate are lower; the system and rate of the OS method according to the embodiments of the present disclosure are higher than the system and rate of the CRE method, and, as mentioned above, the OS Compared with the GUA method, the method significantly reduces the computational complexity and reduces the system overhead, so it is easier to be applied in the actual system, thus achieving a compromise between performance and achievable.
  • the first user equipment is the user equipment that initiates the initial access to the overloaded electronic device 400
  • the equalization unit 402 may be configured to be used for the user equipment initial access based on the first user equipment received from the overloaded electronic device 400.
  • the third beam power of the scanned third beam is load balanced.
  • each base station will periodically perform beam scanning, that is, the base station will broadcast synchronization signals with each beam in turn according to a predetermined beam codebook.
  • the user equipment measures the beam power of the neighboring base stations that are scanned by the user equipment for initial access.
  • the overloaded electronic device 400 is based on the first beam power received from the neighboring electronic device by the first user device and the first beam power received from the overloaded electronic device 400.
  • Three-wavelength power is used for load balancing without the need for additional configuration of reference signals (that is, no additional overhead), so system overhead can be greatly saved, thereby effectively realizing user association and beam management of newly-connected user equipment.
  • the equalization unit 402 may be configured to determine whether to allow the first user equipment to access the overloaded electronic device 400 based on the power of the first beam and the third beam. Accessing the overloaded electronic device 400 by the first user equipment means that the overloaded electronic device 400 provides a service for the first user equipment.
  • the first beam power is a weighted average of the beam received power of each first beam
  • the third beam power is a weighted average of the beam received power of each third beam.
  • the first beam power being the average value of the beam received power of each first beam
  • the third beam power being the average value of the beam receiving power of each third beam as an example.
  • those skilled in the art can also think of other correlations between the power of the first beam and the received power of each first beam, as well as the power of the third beam and the beam of each third beam. Other correlation methods between received power will not be repeated here.
  • the sequence number 1 ⁇ j ⁇ J is used to represent the neighboring electronic devices adjacent to the electronic device 400
  • the sequence number is The number of configurable beams of an electronic device with j (0 ⁇ j ⁇ J) is B j .
  • the equalization unit 402 may be configured to calculate the optimal electronic device to be associated with the first user equipment and the optimal beam of the optimal electronic device based on the first beam power and the third beam power, and when determining that the electronic device 400 is overloaded In the case that the electronic device is not the optimal electronic device, the first user device is denied access to the overloaded electronic device 400 and the information about the optimal electronic device and the optimal beam is notified to the first user device.
  • This processing can be expressed by, for example, Equation 13 below.
  • Equation 13 P represents the beam power of the access beam, and the sequence number n represents the sequence number of the access beam of each electronic device.
  • the electronic device with the sequence number j (0 ⁇ j ⁇ J), 1 ⁇ n ⁇ B j , Represents the beam power of the nth access beam received by the first user equipment (denoted as the user with sequence number k) from the electronic device with sequence number j (j ⁇ i, 0 ⁇ i ⁇ J), 0 ⁇ i ⁇ J , 1 ⁇ m ⁇ B m , mean means averaging.
  • i* and m* respectively. More specifically, i* is the calculated sequence number of the optimal electronic device to be associated with the first user equipment, and m* is the calculated optimal beam of the optimal electronic device.
  • the equalization unit 402 may be configured to insert an identifier indicating whether the load of the electronic device 400 is greater than a predetermined threshold in the third beam.
  • the electronic device 400 may add 1-bit indication information to the synchronization information sent in the beam scanning phase to indicate whether the electronic device 400 is overloaded. In this way, the first user equipment trying to access the electronic device 400 can know the load status of the electronic device 400.
  • the equalization unit 402 may be configured to receive information about the first beam power from the first user equipment.
  • FIG. 7 shows an example information flow about denying access between the electronic device 400, the neighboring electronic device, and the first user equipment according to an embodiment of the present disclosure.
  • the electronic device 400 sends an identification indicating whether its load is greater than a predetermined threshold during the beam scanning stage; (2) the first user equipment initiates random access to the electronic device 400, and the first user equipment is in accordance with the foregoing When the identifier learns that the electronic device 400 is overloaded, it reports the first beam power of the access beam of the neighboring electronic device to the electronic device 400; (3) The electronic device 400 informs the first user equipment of the request during the random access response phase Information about the optimal electronic device and optimal beam to access; (4) If the optimal electronic device is not the electronic device 400 (that is, the access request sent by the first user equipment to the electronic device 400 is rejected), then the first user equipment Try to initiate access to the optimal beam of the optimal electronic device (in FIG. 7, it is assumed that the optimal electronic device is the neighboring electronic device shown).
  • the above embodiment describes the embodiment on the base station side, and the following describes the embodiment on the UE side.
  • FIG. 8 shows a block diagram of functional modules of an electronic device 500 according to another embodiment of the present disclosure.
  • the electronic device 500 includes a processing unit 502, and the processing unit 502 may be configured to measure each neighboring base station from at least one neighboring base station of the overloaded base station when the base station is an overloaded base station whose load is greater than a predetermined threshold.
  • the beam power of the beam scanned for the initial access of the electronic device received by the base station is used for load balancing by the overloaded base station.
  • the processing unit 502 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the electronic device 500 may be provided on the user equipment side or communicably connected to the user equipment, for example.
  • the electronic device 500 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 500 may work as a user device itself, and may also include external devices such as a memory, a transceiver (not shown in the figure) and the like.
  • the memory can be used to store programs and related data information that the user equipment needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • a predetermined threshold can be set according to actual needs.
  • the overloaded base station may be a device with relatively strong service capability, for example, it may be a macro base station in a heterogeneous network.
  • the neighboring base stations may include underloaded base stations whose load is less than or equal to a predetermined threshold, and the underloaded base stations may be, for example, micro base stations in a heterogeneous network.
  • the coverage of micro base stations is generally included in the coverage of neighboring macro base stations.
  • neighboring base stations may also be other overloaded base stations.
  • the neighboring electronic equipment of an overloaded base station may include at least one of the following: all base stations covered within the coverage of the overloaded base station; at least one other base station within a predetermined range from the overloaded base station; All base stations covered within the coverage area of the base station.
  • each base station will periodically perform beam scanning, that is, the base station will broadcast synchronization signals with each beam in turn according to a predetermined beam codebook.
  • the electronic device measures the beam power of the adjacent base station adjacent to it for the beam scanned by the electronic device for initial access.
  • the electronic device 500 measures the beam power of the access beam received from the neighboring base station of the overloaded base station for the overloaded base station to perform load balancing, thereby eliminating the need for the overloaded base station to configure additional reference signals. (That is, no additional overhead is required) to obtain the channel state information between each neighboring base station and the electronic device 500, so the system overhead can be greatly saved.
  • the electronic device 500 is an electronic device associated with an overloaded base station, and the processing unit 502 may be configured to report information about beam power to the overloaded base station when receiving a load balancing notification from the overloaded base station.
  • the electronic device 500 being an electronic device associated with an overloaded base station means that the electronic device 500 is an electronic device within the service range of the overloaded base station, that is, the electronic device 500 is served by the overloaded base station.
  • the processing unit 502 may be configured to disassociate from the overloaded base station after receiving a notification from the overloaded base station to be offloaded from the overloaded base station.
  • disassociating from the overloaded base station means that the electronic device 500 is no longer provided by the overloaded base station.
  • the processing unit 502 may be configured to associate with the neighboring base station to be accessed after receiving information about the neighboring base station to be accessed selected from at least one neighboring base station from the overloaded base station.
  • the processing of the overloaded base station selecting the neighboring base station to be accessed by the electronic device 500 from at least one neighboring base station please refer to the description of Equation 12 in the electronic device 400 (hereinafter, sometimes referred to as the base station 400) according to the embodiment of the present disclosure. .
  • the electronic device 500 may be an electronic device that initiates initial access to the base station, and the processing unit 502 may be configured to, in the case of judging that the base station is an overloaded base station based on a message indicating whether the load of the base station is greater than a predetermined threshold
  • the base station reports information about beam power.
  • the base station 400 can insert an identifier indicating whether the load of the base station 400 is greater than a predetermined threshold in the third beam.
  • the electronic device 500 that initiates initial access to the base station reports to the overloaded base station the beam power information of the access beams received from each neighboring base station under the condition that the base station is judged to be an overloaded base station based on the above identification.
  • the processing unit 502 may be configured to receive a message from the overloaded base station whether it is allowed to access the overloaded base station.
  • the processing unit 502 may be configured to, after receiving a notification of denying access from an overloaded base station and information of a neighboring base station recommended for access selected from the above-mentioned at least one neighboring base station, try to access and the recommended access In the case of successful access, the neighboring base station is associated with the recommended neighboring base station.
  • the processing unit 502 may be configured to receive a message indicating whether the load of the base station is greater than a predetermined threshold from the beam scanned by the base station for initial access.
  • the beam power is a weighted average of the beam received power corresponding to each beam.
  • Fig. 9 shows a flowchart of a method S900 for wireless communication according to an embodiment of the present disclosure.
  • the method S900 starts at step S902.
  • step S904 in the case where it is determined that the electronic device is an overloaded electronic device whose load is greater than a predetermined threshold, based on the data received by the first user equipment from each of the at least one neighboring electronic device of the overloaded electronic device.
  • the first beam power of the first beam scanned by the user equipment for initial access is load balanced to determine whether the overloaded electronic device is to be associated with the first user.
  • the method S900 ends in step S906.
  • the method S900 can be executed on the base station side.
  • This method may be executed by the electronic device 400 described in the first embodiment, for specific details, please refer to the description of the corresponding position above, which will not be repeated here.
  • FIG. 10 shows a flowchart of a method S1000 for wireless communication according to another embodiment of the present disclosure.
  • the method S1000 starts at step S1002.
  • step S1004 in the case where the base station is an overloaded base station whose load is greater than a predetermined threshold, measure the beam value received from each of the at least one neighboring base station of the overloaded base station for the initial access of the electronic device. Beam power for load balancing of overloaded base stations.
  • the method S1000 ends in step S1006.
  • the method S1000 may be executed on the UE side.
  • This method may be executed by the electronic device 500 described in the first embodiment, for specific details, please refer to the description of the corresponding position above, which will not be repeated here.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 400 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a different place from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-persistently performing base station functions.
  • the electronic device 500 may be implemented as various user equipment.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 11 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 11 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher level of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from multiple baseband processors to generate a bundled packet, and deliver the generated bundled packet. The controller 821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • layers such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiver of the electronic device 400 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 may perform user association and beam management by executing the function of the equalization unit 402 described above with reference to FIG. 1.
  • FIG. 12 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 12 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 11.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 11 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 12 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiver of the electronic device 400 may be implemented by a wireless communication interface 855. At least a part of the functions may also be implemented by the controller 851.
  • the controller 851 may perform user association and beam management by executing the function of the equalization unit 402 described above with reference to FIG. 1.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium, such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smart phone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 13, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 13 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include a plurality of antennas 916.
  • FIG. 13 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connect.
  • the battery 918 supplies power to each block of the smart phone 900 shown in FIG. 13 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the transceiver of the electronic device 500 may be implemented by the wireless communication interface 912. At least part of the function may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may perform user association by executing the function of the processing unit 502 described above with reference to FIG. 8.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function of the car navigation device 920 and other functions.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the car navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 14 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 14 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 14 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the transceiver of the electronic device 500 may be implemented by the wireless communication interface 912. At least part of the function may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may perform user association by executing the function of the processing unit 502 described above with reference to FIG. 8.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present invention can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • a computer with a dedicated hardware structure (such as the general-purpose computer 1500 shown in FIG. 15) is installed from a storage medium or a network to the program constituting the software, and the computer is installed with various programs. When, it can perform various functions and so on.
  • a central processing unit (CPU) 1501 performs various processes in accordance with a program stored in a read only memory (ROM) 1502 or a program loaded from a storage part 1508 to a random access memory (RAM) 1503.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1501 executes various processing and the like is also stored as needed.
  • the CPU 1501, ROM 1502, and RAM 1503 are connected to each other via a bus 1504.
  • the input/output interface 1505 is also connected to the bus 1504.
  • the following components are connected to the input/output interface 1505: input part 1506 (including keyboard, mouse, etc.), output part 1507 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.), Storage part 1508 (including hard disk, etc.), communication part 1509 (including network interface card such as LAN card, modem, etc.).
  • the communication section 1509 performs communication processing via a network such as the Internet.
  • the driver 1510 can also be connected to the input/output interface 1505 according to needs.
  • Removable media 1511 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are installed on the drive 1510 as needed, so that the computer programs read out therefrom are installed into the storage portion 1508 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1511.
  • this storage medium is not limited to the removable medium 1511 shown in FIG. 15 in which the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 1511 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1502, a hard disk included in the storage portion 1508, etc., in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present invention.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but do not necessarily need to be performed in chronological order. Some steps can be performed in parallel or independently of each other.
  • This technology can also be implemented as follows.
  • An electronic device for wireless communication including:
  • the processing circuit is configured as:
  • the electronic device is an overloaded electronic device whose load is greater than a predetermined threshold, based on the information received by the first user equipment from each of the at least one neighboring electronic device of the overloaded electronic device for the user
  • the first beam power of the first beam scanned by the device for initial access is load balanced to determine whether the overloaded electronic device is to be associated with the first user equipment.
  • the first user equipment is a user equipment associated with the overloaded electronic equipment
  • the processing circuit is configured to further collect information from the overloaded electronic device and the electronic device that is not associated with the second user device among the at least one neighboring electronic device based on a second user device associated with each neighboring electronic device.
  • the load balancing is performed on the second beam power of the second beam that is received by the device and used for scanning the user equipment for initial access.
  • Supplement 3 The electronic device according to Supplement 2, wherein the processing circuit is configured to be based on the first beam power corresponding to the overloaded electronic device and the first beam power corresponding to each adjacent electronic device Two beam powers, unloading at least part of the user equipment associated with the overloaded electronic device from the overloaded electronic device.
  • Supplement 4 The electronic device according to Supplement 3, wherein the first beam power is a weighted average of the beam received power of each first beam, and the second beam power is a weighted average of the power of each neighboring electron beam.
  • the weighted average of the received beam power of the second beam corresponding to the device.
  • Supplement 5 The electronic device according to Supplement 3 or 4, wherein the processing circuit is configured to calculate that the at least part of the user equipment is unloaded from the overloaded electronic device and associated with the at least one neighboring electronic device The performance of the overloaded electronic device and the at least one neighboring electronic device after the selected neighboring electronic device in In the case of performance improvement, the at least part of the user equipment and the selected neighboring electronic equipment are determined.
  • Supplement 6 The electronic device according to Supplement 5, wherein the processing circuit is configured to continuously perform the offloading until the performance of the overloaded electronic device and the at least one neighboring electronic device are comparable after the offloading is performed.
  • the performance of the overloaded electronic device and the at least one neighboring electronic device is not improved compared to that before the uninstallation.
  • Supplement 7 The electronic device according to Supplement 5 or 6, wherein the performance includes the sum rate of the overloaded electronic device and the sum rate of the neighboring electronic device.
  • Supplement 8 The electronic device according to any one of Supplements 5 to 7, wherein the processing circuit is configured to notify the at least part of the user equipment to unload from the overloaded electronic device and send it to the at least part of the user The device provides information of the selected neighboring electronic device.
  • the processing circuit is configured to receive, from each neighboring electronic device, the second beam power reported to the neighboring electronic device by a second user equipment associated with the neighboring electronic device.
  • the processing circuit is configured to notify the at least one neighboring electronic device to perform the load balancing, and
  • Each neighboring electronic device notifies a second user equipment associated with the neighboring electronic device to measure the second beam power.
  • the first user equipment is the user equipment that initiates initial access to the overloaded electronic device, and
  • the processing circuit is configured to perform the load balancing further based on the third beam power of the third beam scanned by the user equipment for initial access received by the first user equipment from the overloaded electronic device.
  • the processing circuit is configured to determine whether to allow the first user equipment to access the overloaded electronic device based on the first beam power and the third beam power.
  • the first beam power is a weighted average of beam received power of each first beam
  • the third beam power is a weighted average of beam received power of each third beam.
  • the processing circuit is configured to calculate an optimal electronic device to be associated with the first user equipment and an optimal beam of the optimal electronic device based on the first beam power and the third beam power, and In the case of determining that the overloaded electronic device is not the optimal electronic device, deny the first user equipment to access the overloaded electronic device and notify the first user equipment of the optimal electronic device and the optimal electronic device. Information about the optimal beam.
  • the processing circuit is configured to insert an identifier indicating whether the load of the electronic device is greater than the predetermined threshold value in the third beam.
  • Supplement 16 The electronic device according to any one of Supplements 11 to 15, wherein:
  • the processing circuit is configured to receive information about the first beam power from the first user equipment.
  • the processing circuit is configured to exchange load information with each neighboring electronic device.
  • the neighboring electronic devices include underloaded electronic devices whose load is less than or equal to the predetermined threshold.
  • An electronic device for wireless communication including:
  • the processing circuit is configured as:
  • the base station has an overloaded base station whose load is greater than a predetermined threshold, measuring the beam power of the beam scanned for the initial access of the electronic device received from each of the at least one neighboring base station of the overloaded base station, For the overloaded base station to perform load balancing.
  • the electronic device is an electronic device associated with the overloaded base station, and
  • the processing circuit is configured to report the information about the beam power to the overloaded base station when receiving a notification to perform the load balancing from the overloaded base station.
  • Supplement 21 The electronic device according to Supplement 20, wherein,
  • the processing circuit is configured to disassociate from the overloaded base station after receiving a notification from the overloaded base station to be offloaded from the overloaded base station.
  • the processing circuit is configured to associate with the neighboring base station to be accessed after receiving information about the neighboring base station to be accessed selected from the at least one neighboring base station from the overloaded base station.
  • the electronic device is an electronic device that initiates initial access to the base station, and
  • the processing circuit is configured to report information about the beam power to the overloaded base station in the case of determining that the base station is the overloaded base station based on a message indicating whether the load of the base station is greater than the predetermined threshold .
  • the processing circuit is configured to receive a message from the overloaded base station whether to allow access to the overloaded base station.
  • the processing circuit is configured to, after receiving from the overloaded base station a notification of denial of access and information about the neighboring base station to be accessed selected from the at least one neighboring base station, communicate with the to be accessed Neighboring base stations are associated.
  • Supplement 26 The electronic device according to any one of Supplements 23 to 25, wherein:
  • the processing circuit is configured to receive a message indicating whether the load of the base station is greater than the predetermined threshold from the beam scanned by the base station for initial access.
  • Supplement 27 The electronic device according to any one of Supplements 19 to 26, wherein the beam power is a weighted average of beam received power corresponding to each beam.
  • Attachment 28 A method for wireless communication, including:
  • the electronic device is an overloaded electronic device whose load is greater than a predetermined threshold, based on the first user equipment received from each of the at least one neighboring electronic device of the overloaded electronic device for the user equipment initial
  • the first beam power of the first beam that is accessed and scanned is load balanced to determine whether the overloaded electronic device is to be associated with the first user.
  • a method for wireless communication including:
  • the base station has an overloaded base station whose load is greater than a predetermined threshold, measuring the beam power of the beam scanned for the initial access of the electronic device received from each of the at least one neighboring base station of the overloaded base station, For the overloaded base station to perform load balancing.
  • Supplement 30 A computer-readable storage medium having computer-executable instructions stored thereon, and when the computer-executable instructions are executed, execute the wireless communication according to any one of Supplements 28 to 29 Methods.

Abstract

一种用于无线通信的电子设备、方法和计算机可读存储介质,其中,用于无线通信的电子设备包括处理电路,处理电路被配置为:在判断电子设备为其负载大于预定阈值的过载电子设备的情况下,基于第一用户设备从过载电子设备的至少一个邻近电子设备中的每个邻近电子设备接收到的用于用户设备初始接入而扫描的第一波束的第一波束功率,进行负载均衡,以确定过载电子设备是否要与第一用户设备相关联。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2020年3月16日提交中国专利局、申请号为202010181823.4、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,具体地涉及多基站通信网络中的用户关联和波束管理。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
多基站通信网络需要考虑用户关联(User Association,UA)与波束管理(Beam Management,BM),用户关联解决的是用户和基站之间的关联问题,即每一个用户到底该由哪个基站来服务的问题;波束管理解决的是基站该用哪一个波束对与其关联的用户进行服务的问题。在5G之前的移动通信系统中,一般认为只有UA的问题而没有BM的问题。但在5G时代,UA和BM两者之间相互耦合,直观上看来,BM应当发生在UA之后,但实际上BM的方案会影响到系统的性能指标,因而也会反过来影响UA的结果。
实际系统中可能存在各个基站服务能力参差不齐的情况,有的基站具有更高的发射功率或者配备了更多的天线,因而具有更强的服务能力,如宏基站;而有的基站服务能力则相对较弱,如微基站。在这种情况下,例如采用最大接收功率准则或者最大信干噪比准则的UA/BM方案会导致用户设备都趋向于与服务能力强的基站相关联,最终造成服务能力强的基站过载、而服务能力弱的基站欠载。图1是示出现有技术中的由于基站服务能力参差不齐导致网络负载不均的示意图。如图1所示,与服务能力强的基站相关联的用户设备较多而导致服务能力强的基站过载,而与服务能力弱的基站相关联的用户设备较少而导致服务能力弱的基站欠载。这种整个通信网络负载不均的状态会降低系统效率,同时带来严重的性能损失。然而,现有技术中的能够保证系统性能的方法会增大系统开销。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本公开的一个方面,提供了一种用于无线通信的电子设备,其包括处理电路,处理电路被配置为:在判断电子设备为其负载大于预定阈值的过载电子设备的情况下,基于第一用户设备从过载电子设备的至少一个邻近电子设备中的每个邻近电子设备接收到的用于用户设备初始接入而扫描的第一波束的第一波束功率,进行负载均衡,以确定过载电子设备是否要与第一用户设备相关联。
根据本公开实施例的电子设备能够有效地提升多基站通信网络中用于用户关联和波束管理的系统性能以及有效降低系统开销。
根据本公开的另一个方面,提供了一种用于无线通信的电子设备,其包括处理电路,处理电路被配置为:在基站为其负载大于预定阈值的过载基站的情况下,测量从过载基站的至少一个邻近基站中的每个邻近基站接收到的用于电子设备初始接入而扫描的波束的波束功率,以供过载基站进行负载均衡。
根据本公开的另一个方面,提供了一种用于无线通信的方法,包括:在判断电子设备为其负载大于预定阈值的过载电子设备的情况下,基于第一用户设备从过载电子设备的至少一个邻近电子设备中的每个邻近电子设备接收到的用于用户设备初始接入而扫描的第一波束的第一波束功率,进行负载均衡,以确定过载电子设备是否要与第一用户相关联。
根据本公开的另一个方面,提供了一种用于无线通信的方法,包括:在基站为其负载大于预定阈值的过载基站的情况下,测量从过载基站的至少一个邻近基站中的每个邻近基站接收到的用于电子设备初始接入而扫描的波束的波束功率,以供过载基站进行负载均衡。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方 法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是示出现有技术中的由于基站服务能力参差不齐导致网络负载不均的示意图;
图2是示出了通过小区区域拓展(CRE)方法进行的负载分配的示意图;
图3是示出了通过基于全局用户分配(GUA)方法进行的负载分配的示意图;
图4示出了根据本公开的一个实施例的用于无线通信的电子设备的功能模块框图;
图5示出了根据本公开的实施例的过载电子设备、邻近电子设备、第一用户设备以及第二用户设备之间的有关卸载的示例信息流程;
图6是示出CRE方法、GUA方法以及根据本公开实施例的卸载策略方法进行负载均衡的性能的示例图;
图7示出了根据本公开的实施例的电子设备、邻近电子设备、以及第一用户设备之间的有关拒绝接入的示例信息流程;
图8示出了根据本公开的另一个实施例的电子设备的功能模块框图;
图9示出了根据本公开的一个实施例的用于无线通信的方法的流程图;
图10示出了根据本公开的另一个实施例的用于无线通信的方法的流程图;
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配 置的第一示例的框图;
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图13是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图14是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图15是示出作为本公开实施例中可采用的个人计算机的示例结构的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步骤,而省略了与本公开关系不大的其它细节。
如上所述,UA指的是当面临多个用户时,每一个用户到底应该由哪个基站来服务,即确定基站关联的用户;而BM指的是基站应当选择最恰当的波束来服务与其关联的用户。
针对UA/BM,现有技术中,有两类较为主流的解决方案。一种是基于小区区域拓展(Cell Range Extension,CRE)的方法,另一种是基于全局用户分配(Global User Allocation,GUA)的方法。下面分别对这两种方法进行阐述。为方便叙述,以下将因服务能力较强而倾向于过载的基站称为O-TRP(Overloaded-Transmission-Reception-Point),将因服务能力 较弱而倾向于欠载的基站称为U-TRP(Underloaded-Transmission-Reception-Point)。在无特殊说明时,基站和TRP可以相互指代。
CRE方法的主要思路是在对比O-TRP和U-TRP的对用户设备的接入指标时,为U-TRP的接入指标增加一个正向的偏置值,使得用户相比于执行CRE方法之前更容易选择U-TRP发起接入。不妨以最大波束接收功率的接入准则为例,为方便起见,这里考虑实际系统中较为常见的一个O-TRP与邻近J个U-TRP共存的情况,其中J为大于等于1的正整数,记O-TRP的基站序号为0,同时记网络(在下文中,有时将网络称为系统)中的第k个用户关于O-TRP的第m个波束的接收功率为
Figure PCTCN2021079616-appb-000001
关于第j(1≤j≤J)个U-TRP的第n个波束的接收功率为
Figure PCTCN2021079616-appb-000002
则CRE方法可以表示为:
Figure PCTCN2021079616-appb-000003
在等式1中,j*和b*分别表示用户设备所选择的基站的序号以及对应的波束的序号,γ CRECRE≥0)是CRE方法使用时定义的偏置值。需要注意的是,γ CRE的选择会影响CRE方法的性能,如果γ CRE被设定为一个静态的常数值,则CRE方法产生的UA/BM结果可能难以跟踪基站负载情况的实时变化;另一方面,动态设定方式在偏置值确定以及系统实现上又相对复杂。不失一般性,以静态的偏置值设定为例,CRE方法的结果如图2所示。图2是示出了通过CRE方法进行的负载分配的示意图。如图2所示,通过设置偏置值γ CRE,U-TRP的覆盖区域等效地得到了扩展,一些原本会选择O-TRP的用户设备转而关联了U-TRP,从而起到均衡整个网络负载的效果。但需要注意的是,这些改变了关联结果的用户设备往往都处在O-TRP和U-TRP的边缘,即便其关联了U-TRP,也很容易受到O-TRP的干扰,而且从U-TRP的收到的功率也相对较弱,因而CRE方法尽管均衡了网络负载,但对系统性能的提升却相对有限。
GUA方法考虑站在全局的角度对系统内的所有用户进行最优划分,不失一般性,下面基于最大化系统和速率的方式对GUA方法进行说明。
假设系统中共有K个单天线用户设备和J+1个TRP,基站的序号j=0表示O-TRP,序号1≤j≤J表示J个U-TRP,每一个用户只能同时被一个基站服务,其中,J为大于等于1的正整数。记序号为j(0≤j≤J)的基站到第k(1≤k≤K)个用户的信道为h j,k,序号为j(0≤j≤J)的TRP的发射功率为ρ j、所使用的波束赋形矩阵为W j、对应的关联用户设备集合为
Figure PCTCN2021079616-appb-000004
为便于说明,设各个基站不失一般性地采用基于迫零(Zero Forcing,ZF)准则的波束赋形方法,取序号为第i(0≤i≤J)的TRP的某一关联用户设备,设其用户设备的序号为k,即
Figure PCTCN2021079616-appb-000005
该用户设备的速率可以表示为:
Figure PCTCN2021079616-appb-000006
在等式2中,σ 2是接收端的噪声功率,
Figure PCTCN2021079616-appb-000007
表示集合
Figure PCTCN2021079616-appb-000008
中的用户设备的数量。
则序号为第i(0≤i≤J)的TRP的和速率可以表示为:
Figure PCTCN2021079616-appb-000009
整个系统的和速率可以进一步表示为:
Figure PCTCN2021079616-appb-000010
由等式4可见,
Figure PCTCN2021079616-appb-000011
的大小受集合
Figure PCTCN2021079616-appb-000012
以及波束赋形向量W j的影响,换言之,受到UA/BM结果的影响,因而基于系统和速率这个指标,GUA方法可以表示为:
Figure PCTCN2021079616-appb-000013
约束条件
Figure PCTCN2021079616-appb-000014
Figure PCTCN2021079616-appb-000015
Figure PCTCN2021079616-appb-000016
在上述约束条件中,∪表示合集,∩表示交集,{1,…,K}表示K个用户设备,1≤j 1≤J且1≤j 2≤J。
也就是说,GUA方法试图找到一种UA/BM方案,使得用户能够被最优地分配到各个基站,同时基站会配置最优的波束来对其关联的用户进行服务。注意到上述优化问题(即,约束条件)中,关于
Figure PCTCN2021079616-appb-000017
的约束1和约束2是要求对用户的分配“不重不漏”,关于W j的约束3源自于基站的发射功率约束。图3是示出了通过GUA方法进行的负载分配的示意图。如图3所示,与各基站相关联的负载比较均匀。
然而,从GUA方法的建模过程不难看出,GUA方法的求解较为复杂,具有很高的计算复杂度。另一方面,在计算系统和速率时,需要掌 握大量的信道状态信息(Channel State Information,CSI)(即,等式4中的h j,k)。即,GUA方法需要系统内每一个基站到每一个用户的CSI,获取此等规模的CSI会带来巨大的测量和反馈开销。更为重要的是,获取精确CSI需要基站对完成初始接入的用户配置CSI参考信号(CSI-Reference Signal,CSI-RS),这意味着在实际应用GUA方法时,需要先用传统方法获得一个UA/BM的初步结果,然后在此基础上获取每一个基站到每一个用户的CSI,之后利用GUA方法对该初步结果进行再优化,最终实现最优的UA/BM方案,以此提升系统性能。巨大的计算复杂度和CSI获取开销成为了制约GUA方法应用的最主要因素。
由以上描述可知,CRE方法相对简单易行,但对系统性能的提升有限;GUA方法对系统性能的提升明显,但计算复杂度和系统开销大。
针对现有技术中的上述问题,本申请提出了实现UA/BM的新方案。
下面结合附图详细说明根据本公开的实施例。
图4示出了根据本公开的一个实施例的用于无线通信的电子设备400的功能模块框图,如图4所示,电子设备400包括均衡单元402,均衡单元402可以被配置为在判断电子设备400为其负载大于预定阈值的过载电子设备的情况下,基于第一用户设备从过载电子设备的至少一个邻近电子设备中的每个邻近电子设备接收到的用于用户设备初始接入而扫描的第一波束的第一波束功率,进行负载均衡,以确定过载电子设备是否要与第一用户设备相关联。
其中,均衡单元402可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
电子设备400例如可以设置在基站侧或者可通信地连接到基站。这里,还应指出,电子设备400可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备400可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站 实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
作为示例,负载是与电子设备相关联的用户设备。作为示例,均衡单元402可以被配置为根据与电子设备相关联的用户设备的数量,确定电子设备是否为过载电子设备。即,均衡单元402可以被配置为根据在电子设备的服务范围内的用户设备的数量,确定电子设备是否为过载电子设备。作为示例,均衡单元402可以被配置为在与电子设备相关联的用户设备的数量大于预定阈值的情况下,确定电子设备为过载电子设备,而在与电子设备相关联的用户设备的数量小于等于预定阈值的情况下,确定电子设备为欠载电子设备。作为示例,电子设备可以根据其当前关联用户设备的数量,在过载和欠载两个状态之间进行转换。
作为示例,可以根据实际需要、经验、以及电子设备性能等设置预定阈值。
作为示例,除了基于负载之外,均衡单元402还可以根据电子设备400的能力(例如,电子设备的天线、发射功率等),确定电子设备400是否为过载电子设备。
作为示例,除了基于负载之外,均衡单元402还可以根据电子设备400的资源(例如,电子设备的频谱等),确定电子设备400是否为过载电子设备。
在下文中,主要讨论电子设备400为过载电子设备的情况。为了方便描述,有时也将电子设备400称为过载电子设备400。
作为示例,过载电子设备400可以是服务能力比较强的设备,例如可以是异构网络中的宏基站。
作为示例,邻近电子设备可以包括其负载小于等于预定阈值的欠载电子设备,欠载电子设备例如可以是异构网络中的微基站。在局部的异构网络里,微基站的覆盖范围一般包含在邻近的宏基站覆盖范围内。作为示例,邻近电子设备也可以是其他过载电子设备。
作为示例,过载电子设备400(例如宏基站)的邻近电子设备可以包括以下中的至少一个:过载电子设备400的覆盖范围内所涵盖的所有电 子设备;距离过载电子设备400预定范围内的至少一个其他电子设备;上述至少一个其他电子设备的覆盖范围内所涵盖的所有电子设备。
作为示例,均衡单元402可以被配置为与每个邻近电子设备交互负载信息。作为示例,过载电子设备400和邻近电子设备之间以负载情况表的形式维护彼此的负载状态等相关信息。
负载情况表可以以如下表1的方式建立:
Figure PCTCN2021079616-appb-000018
表1
在表1中,系统中的基站个数为J+1,K j(0≤j≤J)表示序号为j的基站当前关联的用户设备的数量,其中,J为大于等于1的正整数。在K j大于上述预定阈值的情况下,确定序号为j的基站为过载状态,而在K j小于等于上述预定阈值的情况下,确定序号为j的基站为欠载状态。
确定过载电子设备是否要与第一用户设备相关联,指的是确定例如过载电子设备是否为第一用户设备提供服务。负载均衡用于进行用户关联UA和波束管理BM。
在实际系统中,UA/BM可以认为是由初始接入(Initial Access,IA)、波束细化(Beam Refinement,BR)等步骤来执行和维护的。为了支持新用户设备的初始接入,各个基站会周期性地进行波束扫描,即基站会根据预定好的波束码本轮流用各个波束广播同步信号(为降低开销,此时一般使用宽波束,通常将基站在这个阶段配置的波束称为接入波束)。 在初始接入阶段,用户设备会测量与其相邻的邻近基站的用于用户设备初始接入而扫描的波束的波束功率。本领域技术人员可以理解,无论是在基站服务范围内的用户设备还是不在基站服务范围内的用户设备都能测量基站的接入波束的波束功率。
在根据本公开的实施例中,电子设备400基于第一用户设备从每个邻近电子设备接收到的接入波束的波束功率(为了与下文中的其他用户设备从别的电子设备接收的波束功率相区分,该波束功率被称为第一波束功率),来进行负载均衡以进行用户关联和波束管理。
以上描述的GUA方法中的序号i=0的基站(在下文中简称为当前基站)可以等效于本公开实施例中的电子设备400,与i=0的基站相关联的用户设备可以等效于本公开实施例中的第一用户设备。
可以将以上描述的GUA方法中的等式4写为以下形式:
Figure PCTCN2021079616-appb-000019
在等式5中,
Figure PCTCN2021079616-appb-000020
表示当前基站的和速率,
Figure PCTCN2021079616-appb-000021
表示序号为i(1≤i≤J)的基站的和速率。
在GUA方法中,等式5中的
Figure PCTCN2021079616-appb-000022
是序号为0的当前基站与其所关联的第k个用户设备之间的CSI,可以通过配置CSI-RS测量得到;等式5中
Figure PCTCN2021079616-appb-000023
中的
Figure PCTCN2021079616-appb-000024
是与序号为0的当前基站关联的第k个用户设备和不与该用户设备关联的序号为j的基站之间的CSI,无法直接测量得到,因此获取h j,k是系统开销的主要来源。
然而,在根据本公开实施例的电子设备400中,通过第一用户设备对邻近电子设备的接入波束进行测量所获得的第一波束功率进行负载均衡,而不需要额外配置参考信号(即不需要额外的开销)来获得每个邻近电子设备到第一用户设备之间的信道状态信息,因此能节约系统开销,从而能够有效地实现多基站通信网络中的用户关联和波束管理。
作为示例,第一用户设备是与过载电子设备相关联的用户设备,以及均衡单元402可以被配置为还基于与每个邻近电子设备相关联的第二用户设备从过载电子设备和至少一个邻近电子设备中的与第二用户设备不相关联的电子设备接收到的用于用户设备初始接入而扫描的第二波束的第二波束功率,进行负载均衡。
作为示例,第一用户设备是与过载电子设备相关联的用户设备指的是第一用户设备在过载电子设备的服务范围内,是已经由过载电子设备提供服务的用户设备。与每个邻近电子设备相关联的第二用户设备指的是第二用户设备在该邻近电子设备的服务范围内,是已经由该邻近电子设备提供服务的用户设备。
以上描述的GUA方法中的序号1≤i≤J表示的J个基站可以等效于本公开实施例中的与电子设备400邻近的至少一个邻近电子设备,与上述J个基站分别相关联的用户设备可以等效于本公开实施例中的与邻近电子设备相关联的第二用户设备。在GUA方法中,在等式5的
Figure PCTCN2021079616-appb-000025
中,
Figure PCTCN2021079616-appb-000026
是序号 为i的基站和与其所关联的第k个用户设备之间的CSI,可以通过配置CSI-RS测量得到;
Figure PCTCN2021079616-appb-000027
是与序号为i的基站关联的第k个用户设备和不与该用户设备关联的序号为j的基站之间的CSI,无法直接测量得到,因此获取上述h j,k也是系统开销的主要来源。
然而,在根据本公开实施例的电子设备400中,通过基于与每个邻近电子设备相关联的第二用户设备从与第二用户设备不相关联的电子设备接收到的接入波束的第二波束功率进行负载均衡,而不需要额外的开销来获得与第二用户设备不相关联的电子设备到第二用户设备之间的信道状态信息,因此能进一步节约系统开销,从而能够更有效地实现多基站通信网络中的用户关联和波束管理。
作为示例,均衡单元402可以被配置为基于与过载电子设备对应的第一波束功率和与每个邻近电子设备对应的第二波束功率,从过载电子设备卸载与过载电子设备相关联的至少部分用户设备。
作为示例,从过载电子设备卸载与过载电子设备相关联的至少部分用户设备指的是过载电子设备终止为该至少部分用户设备提供服务。
在初始接入阶段,每个基站会以多个波束进行扫描,即,过载电子设备400和邻近电子设备分别会以多个波束进行扫描。
作为示例,第一波束功率为每个第一波束的波束接收功率的加权平均值,以及第二波束功率为与每个邻近电子设备对应的第二波束的波束接收功率的加权平均值。除了加权平均之外,本领域技术人员还可以想到第一波束功率与每个第一波束的波束接收功率之间的其他关联方式,以及还可以想到第二波束功率与每个第二波束的波束接收功率之间的其他关联方式,这里不再累述。
在下文中,以第一波束功率为每个第一波束的波束接收功率的平均值、以及第二波束功率为与每个邻近电子设备对应的第二波束的波束接收功率的平均值为例进行描述。
在实际系统中,在初始接入阶段,用户设备根据一定的准则(例如,采用最大接收功率准则或者是最大信干噪比准则)选择一个基站及相应的波束发起随机接入,如果接入成功,则相互关联的基站和用户设备会进行 BR,最后确定用于服务的波束(此时一般是窄波束),至此,UA/BM可以认为已初步解决,即得到UA/BM的初步结果。在根据本公开的实施例中,假设过载电子设备400已经获得上述UA/BM的初步结果。
在根据本公开的实施例中,与上文使用的符号标记类似,假设系统中共有K个单天线用户和J+1个电子设备。记序号为i(0≤i≤J)的电子设备到第k(1≤k≤K)个用户设备的信道为h i,k,序号为i(0≤i≤J)的电子设备的可配置波束数为B i、发射功率为ρ i、所使用的波束赋形矩阵为W i、对应的关联用户集合为
Figure PCTCN2021079616-appb-000028
为了方便描述,用序号i=0表示电子设备400,以及用序号1≤i≤J表示与电子设备400邻近的邻近电子设备。
在下文中,对于包括电子设备400和与电子设备400邻近的邻近电子设备的系统(通信网络),以系统的和速率为例来描述系统的性能。然而,本领域技术人员可以理解,还可以以系统的吞吐量、或者还可以使VIP用户的速率最大等等指标来评估系统的性能。
在根据本公开的实施例中,可以将包括电子设备400和与电子设备400邻近的邻近电子设备的系统的和速率C简化为:
Figure PCTCN2021079616-appb-000029
在等式6中,C 0表示电子设备400的和速率,P表示接入波束的波束功率,用序号n表示每个电子设备的接入波束的序号,对于序号为i=0的电子设备400而言,1≤n≤B 0
Figure PCTCN2021079616-appb-000030
表示第
Figure PCTCN2021079616-appb-000031
个用户从序号为j(j≠0)的电子设备接收到的第n接入个波束的波束功率,mean表示求平均。
在等式6中,
Figure PCTCN2021079616-appb-000032
中的
Figure PCTCN2021079616-appb-000033
Figure PCTCN2021079616-appb-000034
表示与过载电子设备400对应的第一波束功率,即表示与 过载电子设备400对应的第一用户设备从与过载电子设备400邻近的序号为j的邻近电子设备接收到的接入波束的第一波束功率。
作为示例,均衡单元402可以被配置为计算将至少部分用户设备从过载电子设备400卸载之后、过载电子设备400的性能,在使得性能相对于进行卸载之前过载电子设备400的性能提升的情况下,以及确定至少部分用户设备。
作为示例,上述性能包括过载电子设备400的和速率。
如果从过载电子设备400中卸载一个用户设备,记被卸载的用户设备的序号为k 0,则可以用等式7表示从过载电子设备400卸载该用户设备之后、过载电子设备400的和速率变化:
Figure PCTCN2021079616-appb-000035
在等式7中,
Figure PCTCN2021079616-appb-000036
表示从与过载电子设备400对应的关联用户集合
Figure PCTCN2021079616-appb-000037
中去除序号为k 0的用户设备,即从过载电子设备400卸载序号为k 0的用户设备。在等式7中,
Figure PCTCN2021079616-appb-000038
表示过载电子设备400的、从过载电子设备400卸载序号为k 0的用户设备之后的和速率,以及
Figure PCTCN2021079616-appb-000039
表示过载电子设 备400的、从过载电子设备400卸载序号为k 0的用户设备之前的和速率。
在根据本公开的实施例中,将从过载电子设备400卸载序号为k 0的用户设备之后、包括过载电子设备400和上述至少一个邻近电子设备的系统的和速率改变量估算为ΔC 0(k 0)。
在根据本公开的实施例中,可以通过计算使得等式7中的ΔC 0(k 0)为正(即,使过载电子设备400的和速率改变量为正)的序号k 0,确定至少上述部分用户设备(即,具有序号k 0的用户设备)。
如上所述,在等式7中,采用低复杂度的算法来对系统性能(例如,系统的和速率)进行局部优化。该局部优化的方式相比于GUA方法中的等式5的全局优化的方式可以大大降低系统的计算复杂度,此外,相比于CRE方法可以有效提升系统的性能(例如,提升过载电子设备400的和速率)。
作为示例,可以通过计算使得等式7中的ΔC 0(k 0)为正且ΔC 0(k 0)最大(即,使过载电子设备400的和速率改变量为正并且改变量最大)的序号
Figure PCTCN2021079616-appb-000040
确定至少上述部分用户设备(即,具有序号
Figure PCTCN2021079616-appb-000041
的用户设备),该最优化方式可以用以下等式8表示。
Figure PCTCN2021079616-appb-000042
在等式8中,
Figure PCTCN2021079616-appb-000043
表示求取使ΔC 0(k 0)最大的k 0。在等式8中,将使ΔC 0(k 0)为正且为最大的k 0记为
Figure PCTCN2021079616-appb-000044
需要说明的是,如果和速率改变量为负,即ΔC 0(k 0)≤0,则无需从过载电子设备400卸载用户设备。
作为示例,均衡单元402可以被配置为连续地进行卸载,直到进行卸载之后过载电子设备400的性能相比于进行卸载之前过载电子设备400的性能没有提升为止。
作为示例,当从过载电子设备400卸载完一个用户设备之后,可以重复执行卸载,从而达到连续卸载多个用户设备并持续提升过载电子设备400的和速率的效果,直到过载电子设备400的和速率改变量为负时停止。
在根据本公开的另一实施例中,还可以将包括电子设备400和与电子设备400邻近的邻近电子设备的系统的和速率C表示为:
Figure PCTCN2021079616-appb-000045
在等式9中,C 0表示电子设备400的和速率(参见等式6),C i表示序号i(1≤i≤J)的邻近电子设备的和速率,P表示接入波束的波束功率,用序号n表示每个电子设备的接入波束的序号,对于序号为i(0≤i≤J)的电子设备而言,1≤n≤B i
Figure PCTCN2021079616-appb-000046
中的
Figure PCTCN2021079616-appb-000047
表示第
Figure PCTCN2021079616-appb-000048
个用户从序号为j(1≤i≤J,j≠i)的电子设备接收到的第n接入个波束的波束功率,mean表示求平均。
在等式9中,
Figure PCTCN2021079616-appb-000049
中的
Figure PCTCN2021079616-appb-000050
Figure PCTCN2021079616-appb-000051
表示与序号为i的邻近电子设备对应的第二波束功率,即表示与序号为i的邻近电子设备对应的第二用户设备从与过载电子设备 400和至少一个邻近电子设备中的与第二用户设备不相关联的电子设备(即,过载电子设备400和至少一个邻近电子设备中的、除了序号为i的邻近电子设备之外的电子设备)接收到的第二波束功率。
作为示例,均衡单元402可以被配置为计算将至少部分用户设备从过载电子设备400卸载并且关联到上述至少一个邻近电子设备中的所选择的邻近电子设备之后、过载电子设备400和上述至少一个邻近电子设备的性能,在使得性能相对于进行卸载之前过载电子设备400和上述至少一个邻近电子设备的性能提升的情况下,确定至少部分用户设备和所选择的邻近电子设备。
作为示例,上述性能包括过载电子设备400的和速率以及邻近电子设备的和速率。如在上文中所述,对于包括电子设备400和与电子设备400邻近的邻近电子设备的系统,还可以以系统的吞吐量、或者还可以使VIP用户的速率最大等等来评估系统的性能。在下文中,仍然以性能为和速率为例来进行描述。
可以用等式10表示从过载电子设备400卸载序号为k 0的用户设备以及将所卸载的该用户设备与序号为i的邻近电子设备相关联之后、序号为i的邻近电子设备的和速率变化:
Figure PCTCN2021079616-appb-000052
在等式10中,
Figure PCTCN2021079616-appb-000053
表示将序号为k 0的用户设备添加到序号为 i的邻近电子设备对应的关联用户集合
Figure PCTCN2021079616-appb-000054
即将序号为k 0的用户设备与序号为i的邻近电子设备相关联(由序号为i的邻近电子设备为序号为k 0的用户设备提供服务)。在等式8中,
Figure PCTCN2021079616-appb-000055
表示序号为i的邻近电子设备的、将序号为k 0的用户设备与序号为i的邻近电子设备相关联之后的和速率,以及
Figure PCTCN2021079616-appb-000056
表示序号为i的邻近电子设备的、将序号为k 0的用户设备与序号为i的邻近电子设备相关联之前的和速率。
将从过载电子设备400卸载序号为k 0的用户设备以及将所卸载的该用户设备与序号为i的邻近电子设备相关联之后、包括过载电子设备400和上述至少一个邻近电子设备的系统的和速率改变量估算为:
ΔC(i,k 0)≈ΔC 0(k 0)+ΔC i(k 0)(等式11)
可以通过计算使得等式11中的ΔC(i,k 0)为正(即,使系统的和速率改变量为正)的序号i和序号k 0,确定至少上述部分用户设备(即,具有序号k 0的用户设备)和所选择的邻近电子设备(即,具有序号i的邻近电子设备)。
如上所述,在等式11中,采用低复杂度的算法来对系统性能(例如,系统的和速率)进行局部优化。该局部优化的方式相比于GUA方法中的等式5的全局优化的方式可以大大降低系统的计算复杂度,此外,相 比于CRE方法可以有效提升系统的性能(例如,提升系统的和速率)。
作为示例,可以通过计算使得等式11中的ΔC(i,k 0)为正且ΔC(i,k 0)最大(即,使系统的和速率改变量为正并且改变量最大)的序号i*和序号
Figure PCTCN2021079616-appb-000057
确定至少上述部分用户设备(即,具有序号
Figure PCTCN2021079616-appb-000058
的用户设备)和所选择的邻近电子设备(即,具有序号i*的邻近电子设备),该最优化方式可以用以下等式12表示。
Figure PCTCN2021079616-appb-000059
在等式12中,
Figure PCTCN2021079616-appb-000060
表示求取使ΔC(i,k 0)最大的i和k 0。在等式12中,将使ΔC(i,k 0)为正且为最大的i和k 0记为i*和
Figure PCTCN2021079616-appb-000061
需要说明的是,如果和速率改变量为负,即ΔC(i,k 0)≤0,则无需从过载电子设备400卸载用户设备。
作为示例,均衡单元402可以被配置为连续地进行卸载,直到进行卸载之后过载电子设备400和上述至少一个邻近电子设备的性能相比于进行卸载之前过载电子设备400和上述至少一个邻近电子设备的性能没有提升为止。
作为示例,当从过载电子设备400卸载完一个用户设备之后,可以重复执行卸载,从而达到连续卸载多个用户设备并持续提升系统和速率的效果,直到系统的和速率改变量为负时停止。
作为示例,均衡单元402可以被配置为通知上述至少部分用户设备从过载电子设备400卸载并且向上述至少部分用户设备提供所述所选择的邻近电子设备的信息。这样,上述至少部分用户设备从过载电子设备400卸载,并且可以尝试与所选择的邻近电子设备相关联。
作为示例,均衡单元402可以被配置为向上述至少一个邻近电子设备通知进行负载均衡,以及每个邻近电子设备通知与该邻近电子设备相关 联的第二用户设备测量第二波束功率。作为示例,每个邻近电子设备通过基站之间的信息交互接口将与其对应的第二波束功率传送给过载电子设备400。
作为示例,均衡单元402可以被配置为从每个邻近电子设备接收由与该邻近电子设备相关联的第二用户设备向该邻近电子设备上报的第二波束功率。作为示例,与每个邻近电子设备相关联的第二用户设备向该邻近电子设备上报所测量的第二波束功率,并且邻近电子设备将第二波束功率传送给过载电子设备400。
图5示出了根据本公开的实施例的过载电子设备400、邻近电子设备、第一用户设备以及第二用户设备之间的有关卸载的示例信息流程。
如图5所示,(1)过载电子设备400发起卸载操作,向邻近电子设备通知要进行卸载操作,以及通知与过载电子设备400关联的第一用户设备测量系统内的邻近电子设备的接入波束的第一波束功率;(2)邻近电子设备在收到卸载通知后,通知其关联的第二用户设备,让第二用户设备测量系统中的除了该邻近电子设备的之外的电子设备的接入波束的第二波束功率,(3)第一用户设备将所测量的第一波束功率上报给过载电子设备400,以及第二用户设备将所测量的第二波束功率上报给与第二用户设备相关联的邻近电子设备;(4)邻近电子设备将与其相关联的第二用户设备上报的第二波束功率传送给过载电子设备400;(5)过载电子设备400在基于(3)和(4)的信息确定了要卸载的用户设备和该要卸载的用户设备将要关联的邻近电子设备之后,向要卸载的用户设备通知从过载电子设备400卸载以及通知其要关联的邻近电子设备;(6)要卸载的用户设备从过载电子设备400卸载以及尝试与要关联的邻近电子设备相关联。
在下文中将示出根据本公开实施例的过载电子设备400进行负载均衡的性能的图。为了方便描述,将根据本公开的实施例的过载电子设备400进行负载均衡的方法称为OS(Offloading Strategy,卸载策略)方法。
图6是示出CRE方法、GUA方法以及根据本公开实施例的OS方法进行负载均衡的性能的示例图。
作为示例,在图6中,示出了CRE方法、GUA方法以及根据本公开实施例的OS方法进行负载均衡时得到的系统和速率(bps/Hz)。如图6所示,GUA方法的系统和速率最高,但是如上文中提到的,GUA方法在 获取CSI方面具有巨大开销以及计算复杂度很高;CRE方法造成系统负载不均,从而严重影响系统和速率,尤其是当用户设备数较大的时候,系统和速率更低;根据本公开实施例的OS方法的系统和速率比CRE方法的系统和速率得到提高,并且,如上文中提到的,OS方法相比于GUA方法显著降低了计算复杂度并且降低系统开销,因此更容易在实际系统中获得应用,因此达到了性能与可实现之间的折中。
在上文中,描述了针对已经接入过载电子设备400的第一用户设备,过载电子设备400所进行的负载均衡的处理。
下文中要描述针对向过载电子设备400发起初始接入的用户设备,过载电子设备400所进行的负载均衡的处理。
作为示例,第一用户设备是向过载电子设备400发起初始接入的用户设备,以及均衡单元402可以被配置为还基于第一用户设备从过载电子设备400接收到的用于用户设备初始接入而扫描的第三波束的第三波束功率,进行负载均衡。
在上文中提及,为了支持新用户设备的初始接入,各个基站会周期性地进行波束扫描,即基站会根据预定好的波束码本轮流用各个波束广播同步信号。在初始接入阶段,用户设备会测量与其相邻的邻近基站的用于用户设备初始接入而扫描的波束的波束功率。
对于向过载电子设备400发起初始接入的第一用户设备,根据本公开实施例的过载电子设备400基于第一用户设备从邻近电子设备接收的第一波束功率和从过载电子设备400接收的第三波速功率来进行负载均衡,而不需要额外配置参考信号(即不需要额外的开销),因此能大大节约系统开销,从而有效地实现新入网用户设备的用户关联和波束管理。
作为示例,均衡单元402可以被配置为基于第一波束和第三波束功率,判断是否允许第一用户设备接入过载电子设备400。第一用户设备接入过载电子设备400指的是由过载电子设备400为第一用户设备提供服务。
作为示例,第一波束功率为每个第一波束的波束接收功率的加权平均值,以及第三波束功率为每个第三波束的波束接收功率的加权平均值。
在下文中,以第一波束功率为每个第一波束的波束接收功率的平均 值、以及以第三波束功率为每个第三波束的波束接收功率的平均值为例进行描述。除了加权平均之外,本领域技术人员还可以想到第一波束功率与每个第一波束的波束接收功率之间的其他关联方式,以及还可以想到第三波束功率与每个第三波束的波束接收功率之间的其他关联方式,这里不再累述。
与上文使用的符号标记类似,假设系统中共有J+1个基站,用序号j=0表示电子设备400,以及用序号1≤j≤J表示与电子设备400邻近的邻近电子设备,序号为j(0≤j≤J)的电子设备的可配置波束数为B j
作为示例,均衡单元402可以被配置为基于第一波束功率和第三波束功率计算要与第一用户设备关联的最优电子设备和最优电子设备的最优波束,并且在判断过载电子设备400不是最优电子设备的情况下,拒绝第一用户设备接入过载电子设备400以及向第一用户设备告知有关最优电子设备和最优波束的信息。该处理可以例如由以下等式13表示。
Figure PCTCN2021079616-appb-000062
在等式13中,P表示接入波束的波束功率,用序号n表示每个电子设备的接入波束的序号,对于序号为j(0≤j≤J)的电子设备而言,1≤n≤B j
Figure PCTCN2021079616-appb-000063
表示第一用户设备(记为序号为k的用户)从序号为j(j≠i,0≤i≤J)的电子设备接收到的第n接入个波束的波束功率,0≤i≤J,1≤m≤B m,mean表示求平均。
在等式13中,当1≤j≤J时,
Figure PCTCN2021079616-appb-000064
表示第一用户设备从每个邻近电子设备接收到的第一波束功率,当j=0时,
Figure PCTCN2021079616-appb-000065
表示第一用户设备从过载电子设备400接收到的第三波束功率。
Figure PCTCN2021079616-appb-000066
表示求取使
Figure PCTCN2021079616-appb-000067
达到最大值时的i和m的取值。在等式 13中,将使
Figure PCTCN2021079616-appb-000068
达到最大值的i和m分别记为i*和m*。更具体地,i*是所计算出的要与第一用户设备关联的最优电子设备的序号,m*是所计算出的最优电子设备的最优波束。
需要说明的是,尽管等式13中包括第一波束功率和第三波束功率,但是可以令等式13中的i仅取值为0(i=0表示电子设备400),并且将分子上的
Figure PCTCN2021079616-appb-000069
分别用第一用户设备从与序号为i=0的电子设备400最邻近的邻近电子设备接收的对应波束的波束功率代替,其中,B 0是电子设备400的可配置波束数。也就是说,电子设备400可以仅仅基于第一波束功率来进行负载均衡(例如,判断是否允许第一用户设备接入)。
作为示例,均衡单元402可以被配置为在第三波束中插入指示电子设备400的负载是否大于预定阈值的标识。作为示例,电子设备400可以在波束扫描阶段发送的同步信息中加入1比特指示信息,以指示电子设备400是否过载。这样,能够让试图接入电子设备400的第一用户设备了解电子设备400的负载状态。
作为示例,均衡单元402可以被配置为从第一用户设备接收有关第一波束功率的信息。
图7示出了根据本公开的实施例的电子设备400、邻近电子设备、以及第一用户设备之间的有关拒绝接入的示例信息流程。
如图7所示,(1)电子设备400在波束扫描阶段发送指示其负载是否大于预定阈值的标识;(2)第一用户设备向电子设备400发起随机接入,第一用户设备在根据上述标识了解到电子设备400过载的情况下,向电子设备400上报邻近电子设备的接入波束的第一波束功率;(3)电子设备400在随机接入的回复阶段向第一用户设备告知其要接入的最优电子设备和 最优波束的信息;(4)如果最优电子设备不是电子设备400(即第一用户设备向电子设备400发出的接入请求被拒绝),则第一用户设备尝试向最优电子设备(在图7中,假设最优电子设备为所示的邻近电子设备)的最优波束发起接入。
以上实施例描述的是在基站侧的实施例,接下来描述在UE侧的实施例。
图8示出了根据本公开的另一个实施例的电子设备500的功能模块框图。如图8所示,电子设备500包括处理单元502,处理单元502可以被配置为在基站为其负载大于预定阈值的过载基站的情况下,测量从过载基站的至少一个邻近基站中的每个邻近基站接收到的用于电子设备初始接入而扫描的波束的波束功率,以供过载基站进行负载均衡。
其中,处理单元502可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
电子设备500例如可以设置在用户设备侧或者可通信地连接到用户设备。这里,还应指出,电子设备500可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备500可以工作为用户设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
作为示例,可以根据实际需要设置预定阈值。
作为示例,过载基站可以是服务能力比较强的设备,例如可以是异构网络中的宏基站。
作为示例,邻近基站可以包括其负载小于等于预定阈值的欠载基站,欠载基站例如可以是异构网络中的微基站。在局部的异构网络里,微基站的覆盖范围一般包含在邻近的宏基站覆盖范围内。作为示例,邻近基站也可以是其他过载基站。
作为示例,过载基站(例如宏基站)的邻近电子设备可以包括以下中的至少一个:过载基站的覆盖范围内所涵盖的所有基站;距离过载基站预定范围内的至少一个其他基站;上述至少一个其他基站的覆盖范围内所 涵盖的所有基站。
在上文中提到,为了支持新用户设备的初始接入,各个基站会周期性地进行波束扫描,即基站会根据预定好的波束码本轮流用各个波束广播同步信号。在初始接入阶段,电子设备会测量与其相邻的邻近基站的用于电子设备初始接入而扫描的波束的波束功率。本领域技术人员可以理解,无论是在基站服务范围内的电子设备还是不在基站服务范围内的用电子设备都能测量基站的用于电子设备初始接入而扫描的波束(接入波束)的波束功率。
如在描述GUA方法时结合等式5所讨论的,在GUA方法中,
Figure PCTCN2021079616-appb-000070
Figure PCTCN2021079616-appb-000071
是与当前基站关联的用户设备和未与该用户设备关联的基站之间的CSI,无法直接测量得到,因此获取h j,k是系统开销的主要来源。而在根据本公开实施例的电子设备500中,电子设备500通过测量从过载基站的邻近基站接收到的接入波束的波束功率以供过载基站进行负载均衡,从而不需要过载基站额外配置参考信号(即不需要额外的开销)来获得每个邻近基站到电子设备500之间的信道状态信息,因此能大大节约系统开销。
作为示例,电子设备500是与过载基站相关联的电子设备,以及处理单元502可以被配置为在从过载基站接收到进行负载均衡的通知时,向过载基站上报有关波束功率的信息。
作为示例,电子设备500是与过载基站相关联的电子设备指的是电子设备500是在过载基站的服务范围内的电子设备,即由过载基站为电子设备500提供服务。
作为示例,处理单元502可以被配置为在从过载基站接收到要从过载基站卸载的通知之后,与过载基站去除关联。作为示例,与过载基站去除关联指的是不再由过载基站为电子设备500提供服务。
作为示例,处理单元502可以被配置为在从过载基站接收到有关从至少一个邻近基站中选出的要接入的邻近基站的信息之后,与要接入的邻 近基站相关联。
过载基站从至少一个邻近基站中选出电子设备500要接入的邻近基站的处理可以参见根据本公开实施例的电子设备400(在下文中,有时也称为基站400)中有关等式12的描述。
电子设备500、过载基站以及邻近基站之间的有关卸载的示例信息流程可以参见图5示出的示例信息流程。
作为示例,电子设备500可以是向基站发起初始接入的电子设备,以及处理单元502可以被配置为在基于指示基站的负载是否大于预定阈值的消息而判断基站是过载基站的情况下,向过载基站上报有关波束功率的信息。
在上文中本描述根据公开实施例的基站400中提及,基站400可以在第三波束中插入指示基站400的负载是否大于预定阈值的标识。
作为示例,向基站发起初始接入的电子设备500在通过上述标识判断基站是过载基站的情况下,向过载基站上报其从每个邻近基站接收到的接入波束的波束功率的信息。
作为示例,处理单元502可以被配置为从过载基站接收是否被允许接入过载基站的消息。
作为示例,处理单元502可以被配置为在从过载基站接收到拒绝接入的通知以及从上述至少一个邻近基站中选出的推荐接入的邻近基站的信息之后,尝试接入与该推荐接入的邻近基站,进而在成功接入的情况下与该推荐接入的邻近基站相关联。
过载基站从上述至少一个邻近基站中选出电子设备500要接入的邻近基站的处理可以参见根据本公开实施例的基站400中有关等式13的描述。
电子设备500、过载基站以及邻近基站之间的有关拒绝接入的示例信息流程可以参见图7示出的示例信息流程。
作为示例,处理单元502可以被配置为从基站在用于初始接入而扫描的波束接收指示基站的负载是否大于预定阈值的消息。
作为示例,波束功率为与每个波束对应的波束接收功率的加权平均值。
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图9示出了根据本公开的一个实施例的用于无线通信的方法S900的流程图。方法S900在步骤S902开始。在步骤S904中,在判断电子设备为其负载大于预定阈值的过载电子设备的情况下,基于第一用户设备从过载电子设备的至少一个邻近电子设备中的每个邻近电子设备接收到的用于用户设备初始接入而扫描的第一波束的第一波束功率,进行负载均衡,以确定过载电子设备是否要与第一用户相关联。方法S900在步骤S906结束。该方法S900可以在基站侧执行。
该方法例如可以通过第一实施例中所描述的电子设备400来执行,其具体细节可参见以上相应位置的描述,在此不再重复。
图10示出了根据本公开的另一个实施例的用于无线通信的方法S1000的流程图。方法S1000在步骤S1002开始。在步骤S1004中,在基站为其负载大于预定阈值的过载基站的情况下,测量从过载基站的至少一个邻近基站中的每个邻近基站接收到的用于电子设备初始接入而扫描的波束的波束功率,以供过载基站进行负载均衡。方法S1000在步骤S1006结束。该方法S1000可以在UE侧执行。
该方法例如可以通过第一实施例中所描述的电子设备500来执行,其具体细节可参见以上相应位置的描述,在此不再重复。
注意,上述各个方法可以结合或单独使用。
本公开内容的技术能够应用于各种产品。
例如,电子设备400可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB 和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,电子设备500可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图11所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图11示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较 高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图11所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图11所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图11示出其中无线通信接口825包括 多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图11所示的eNB 800中,电子设备400的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行上述参照图1描述的均衡单元402的功能来进行用户关联和波束管理。
(第二应用示例)
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图12所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图12示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图11描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图11描述的BB处理器826相同。如图12所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图12示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图12所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图12示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图12所示的eNB 830中,电子设备400的收发器可以由无线通信接口855实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行上述参照图1描述的均衡单元402的功能来进行用户关联和波束管理。
[关于用户设备的应用示例]
(第一应用示例)
图13是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸 如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图13所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图13示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收 无线信号。如图13所示,智能电话900可以包括多个天线916。虽然图13示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图13所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图13所示的智能电话900中,电子设备500的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行上述参照图8描述的处理单元502的功能来进行用户关联。
(第二应用示例)
图14是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图14所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图14示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图14所示,汽车导航设备920可以包括多个天线937。虽然图14示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图14所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图14示出的汽车导航设备920中,电子设备500的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行上述参照图8描述的处理单元502的功能来进行用户关联。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图15所示的通用计算机1500)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图15中,中央处理单元(CPU)1501根据只读存储器(ROM)1502中存储的程序或从存储部分1508加载到随机存取存储器(RAM)1503的程序执行各种处理。在RAM 1503中,也根据需要存储当CPU 1501执行各种处理等等时所需的数据。CPU 1501、ROM 1502和RAM 1503经由总线1504彼此连接。输入/输出接口1505也连接到总线1504。
下述部件连接到输入/输出接口1505:输入部分1506(包括键盘、 鼠标等等)、输出部分1507(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1508(包括硬盘等)、通信部分1509(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1509经由网络比如因特网执行通信处理。根据需要,驱动器1510也可连接到输入/输出接口1505。可移除介质1511比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1510上,使得从中读出的计算机程序根据需要被安装到存储部分1508中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1511安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图15所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1511。可移除介质1511的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1502、存储部分1508中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求 及其等效含义来限定。
本技术还可以如下实现。
附记1.一种用于无线通信的电子设备,包括:
处理电路,被配置为:
在判断所述电子设备为其负载大于预定阈值的过载电子设备的情况下,基于第一用户设备从所述过载电子设备的至少一个邻近电子设备中的每个邻近电子设备接收到的用于用户设备初始接入而扫描的第一波束的第一波束功率,进行负载均衡,以确定所述过载电子设备是否要与所述第一用户设备相关联。
附记2.根据附记1所述的电子设备,其中,
所述第一用户设备是与所述过载电子设备相关联的用户设备,以及
所述处理电路被配置为还基于与每个邻近电子设备相关联的第二用户设备从所述过载电子设备和所述至少一个邻近电子设备中的与所述第二用户设备不相关联的电子设备接收到的用于用户设备初始接入而扫描的第二波束的第二波束功率,进行所述负载均衡。
附记3.根据附记2所述的电子设备,其中,所述处理电路被配置为基于与所述过载电子设备对应的所述第一波束功率和与每个邻近电子设备对应的所述第二波束功率,从所述过载电子设备卸载与所述过载电子设备相关联的至少部分用户设备。
附记4.根据附记3所述的电子设备,其中,所述第一波束功率为每个第一波束的波束接收功率的加权平均值,以及所述第二波束功率为与每个邻近电子设备对应的第二波束的波束接收功率的加权平均值。
附记5.根据附记3或4所述的电子设备,其中,所述处理电路被配置为计算将所述至少部分用户设备从所述过载电子设备卸载并且关联到所述至少一个邻近电子设备中的所选择的邻近电子设备之后、所述过载电子设备和所述至少一个邻近电子设备的性能,在使得所述性能相对于进行卸载之前所述过载电子设备和所述至少一个邻近电子设备的性能提升的情况下,确定所述至少部分用户设备和所述所选择的邻近电子设备。
附记6.根据附记5所述的电子设备,其中,所述处理电路被配置为连续地进行所述卸载,直到进行卸载之后所述过载电子设备和所述至少 一个邻近电子设备的性能相比于进行卸载之前所述过载电子设备和所述至少一个邻近电子设备的性能没有提升为止。
附记7.根据附记5或6所述的电子设备,其中,所述性能包括所述过载电子设备的和速率以及所述邻近电子设备的和速率。
附记8.根据附记5至7中任一项所述的电子设备,其中,所述处理电路被配置为通知所述至少部分用户设备从所述过载电子设备卸载并且向所述至少部分用户设备提供所述所选择的邻近电子设备的信息。
附记9.根据附记2至8中任一项所述的电子设备,其中,
所述处理电路被配置为从每个邻近电子设备接收由与该邻近电子设备相关联的第二用户设备向该邻近电子设备上报的所述第二波束功率。
附记10.根据附记9所述的电子设备,其中,
所述处理电路被配置为向所述至少一个邻近电子设备通知进行所述负载均衡,以及
每个邻近电子设备通知与该邻近电子设备相关联的第二用户设备测量所述第二波束功率。
附记11.根据附记1所述的电子设备,其中,
所述第一用户设备是向所述过载电子设备发起初始接入的用户设备,以及
所述处理电路被配置为还基于所述第一用户设备从所述过载电子设备接收到的用于用户设备初始接入而扫描的第三波束的第三波束功率,进行所述负载均衡。
附记12.根据附记11所述的电子设备,其中,
所述处理电路被配置为基于所述第一波束功率和所述第三波束功率,判断是否允许所述第一用户设备接入所述过载电子设备。
附记13.根据附记12所述的电子设备,其中,
所述第一波束功率为每个第一波束的波束接收功率的加权平均值,以及所述第三波束功率为每个第三波束的波束接收功率的加权平均值。
附记14.根据附记12或13所述的电子设备,其中,
所述处理电路被配置为基于所述第一波束功率和所述第三波束功率计算要与所述第一用户设备关联的最优电子设备和所述最优电子设备的最优波束,并且在判断所述过载电子设备不是所述最优电子设备的情况下,拒绝所述第一用户设备接入所述过载电子设备以及向所述第一用户设备告知有关所述最优电子设备和所述最优波束的信息。
附记15.根据附记11至14中任一项所述的电子设备,其中,
所述处理电路被配置为在所述第三波束中插入指示所述电子设备的负载是否大于所述预定阈值的标识。
附记16.根据附记11至15中任一项所述的电子设备,其中,
所述处理电路被配置为从所述第一用户设备接收有关所述第一波束功率的信息。
附记17.根据附记1至16中任一项所述的电子设备,其中,
所述处理电路被配置为与每个邻近电子设备交互负载信息。
附记18.根据附记1至17中任一项所述的电子设备,其中,
所述邻近电子设备包括其负载小于等于所述预定阈值的欠载电子设备。
附记19.一种用于无线通信的电子设备,包括:
处理电路,被配置为:
在基站为其负载大于预定阈值的过载基站的情况下,测量从所述过载基站的至少一个邻近基站中的每个邻近基站接收到的用于电子设备初始接入而扫描的波束的波束功率,以供所述过载基站进行负载均衡。
附记20.根据附记19所述的电子设备,其中,
所述电子设备是与所述过载基站相关联的电子设备,以及
所述处理电路被配置为在从所述过载基站接收到进行所述负载均衡的通知时,向所述过载基站上报有关所述波束功率的信息。
附记21.根据附记20所述的电子设备,其中,
所述处理电路被配置为在从所述过载基站接收到要从所述过载基站卸载的通知之后,与所述过载基站去除关联。
附记22.根据附记21所述的电子设备,其中,
所述处理电路被配置为在从所述过载基站接收到有关从所述至少一个邻近基站中选出的要接入的邻近基站的信息之后,与所述要接入的邻近基站相关联。
附记23.根据附记19所述的电子设备,其中,
所述电子设备是向所述基站发起初始接入的电子设备,以及
所述处理电路被配置为在基于指示所述基站的负载是否大于所述预定阈值的消息而判断所述基站是所述过载基站的情况下,向所述过载基站上报有关所述波束功率的信息。
附记24.根据附记23所述的电子设备,其中,
所述处理电路被配置为从所述过载基站接收是否被允许接入所述过载基站的消息。
附记25.根据附记24所述的电子设备,其中,
所述处理电路被配置为在从所述过载基站接收到拒绝接入的通知以及有关从所述至少一个邻近基站中选出的要接入的邻近基站的信息之后,与所述要接入的邻近基站相关联。
附记26.根据附记23至25中任一项所述的电子设备,其中,
所述处理电路被配置为从所述基站在用于初始接入而扫描的波束接收指示所述基站的负载是否大于所述预定阈值的消息。
附记27.根据附记19至26中任一项所述的电子设备,其中,所述波束功率为与每个波束对应的波束接收功率的加权平均值。
附记28.一种用于无线通信的方法,包括:
在判断电子设备为其负载大于预定阈值的过载电子设备的情况下,基于第一用户设备从所述过载电子设备的至少一个邻近电子设备中的每个邻近电子设备接收到的用于用户设备初始接入而扫描的第一波束的第一波束功率,进行负载均衡,以确定所述过载电子设备是否要与所述第一用户相关联。
附记29.一种用于无线通信的方法,包括:
在基站为其负载大于预定阈值的过载基站的情况下,测量从所述过载基站的至少一个邻近基站中的每个邻近基站接收到的用于电子设备初始接入而扫描的波束的波束功率,以供所述过载基站进行负载均衡。
附记30.一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据附记28至29中任意一项所述的用于无线通信的方法。

Claims (30)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    在判断所述电子设备为其负载大于预定阈值的过载电子设备的情况下,基于第一用户设备从所述过载电子设备的至少一个邻近电子设备中的每个邻近电子设备接收到的用于用户设备初始接入而扫描的第一波束的第一波束功率,进行负载均衡,以确定所述过载电子设备是否要与所述第一用户设备相关联。
  2. 根据权利要求1所述的电子设备,其中,
    所述第一用户设备是与所述过载电子设备相关联的用户设备,以及
    所述处理电路被配置为还基于与每个邻近电子设备相关联的第二用户设备从所述过载电子设备和所述至少一个邻近电子设备中的与所述第二用户设备不相关联的电子设备接收到的用于用户设备初始接入而扫描的第二波束的第二波束功率,进行所述负载均衡。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为基于与所述过载电子设备对应的所述第一波束功率和与每个邻近电子设备对应的所述第二波束功率,从所述过载电子设备卸载与所述过载电子设备相关联的至少部分用户设备。
  4. 根据权利要求3所述的电子设备,其中,所述第一波束功率为每个第一波束的波束接收功率的加权平均值,以及所述第二波束功率为与每个邻近电子设备对应的第二波束的波束接收功率的加权平均值。
  5. 根据权利要求3或4所述的电子设备,其中,所述处理电路被配置为计算将所述至少部分用户设备从所述过载电子设备卸载并且关联到所述至少一个邻近电子设备中的所选择的邻近电子设备之后、所述过载电子设备和所述至少一个邻近电子设备的性能,在使得所述性能相对于进行卸载之前所述过载电子设备和所述至少一个邻近电子设备的性能提升的情况下,确定所述至少部分用户设备和所述所选择的邻近电子设备。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路被配置为连续地进行所述卸载,直到进行卸载之后所述过载电子设备和所述至少 一个邻近电子设备的性能相比于进行卸载之前所述过载电子设备和所述至少一个邻近电子设备的性能没有提升为止。
  7. 根据权利要求5或6所述的电子设备,其中,所述性能包括所述过载电子设备的和速率以及所述邻近电子设备的和速率。
  8. 根据权利要求5至7中任一项所述的电子设备,其中,所述处理电路被配置为通知所述至少部分用户设备从所述过载电子设备卸载并且向所述至少部分用户设备提供所述所选择的邻近电子设备的信息。
  9. 根据权利要求2至8中任一项所述的电子设备,其中,
    所述处理电路被配置为从每个邻近电子设备接收由与该邻近电子设备相关联的第二用户设备向该邻近电子设备上报的所述第二波束功率。
  10. 根据权利要求9所述的电子设备,其中,
    所述处理电路被配置为向所述至少一个邻近电子设备通知进行所述负载均衡,以及
    每个邻近电子设备通知与该邻近电子设备相关联的第二用户设备测量所述第二波束功率。
  11. 根据权利要求1所述的电子设备,其中,
    所述第一用户设备是向所述过载电子设备发起初始接入的用户设备,以及
    所述处理电路被配置为还基于所述第一用户设备从所述过载电子设备接收到的用于用户设备初始接入而扫描的第三波束的第三波束功率,进行所述负载均衡。
  12. 根据权利要求11所述的电子设备,其中,
    所述处理电路被配置为基于所述第一波束功率和所述第三波束功率,判断是否允许所述第一用户设备接入所述过载电子设备。
  13. 根据权利要求12所述的电子设备,其中,
    所述第一波束功率为每个第一波束的波束接收功率的加权平均值,以及所述第三波束功率为每个第三波束的波束接收功率的加权平均值。
  14. 根据权利要求12或13所述的电子设备,其中,
    所述处理电路被配置为基于所述第一波束功率和所述第三波束功率计算要与所述第一用户设备关联的最优电子设备和所述最优电子设备的最优波束,并且在判断所述过载电子设备不是所述最优电子设备的情况下,拒绝所述第一用户设备接入所述过载电子设备以及向所述第一用户设备告知有关所述最优电子设备和所述最优波束的信息。
  15. 根据权利要求11至14中任一项所述的电子设备,其中,
    所述处理电路被配置为在所述第三波束中插入指示所述电子设备的负载是否大于所述预定阈值的标识。
  16. 根据权利要求11至15中任一项所述的电子设备,其中,
    所述处理电路被配置为从所述第一用户设备接收有关所述第一波束功率的信息。
  17. 根据权利要求1至16中任一项所述的电子设备,其中,
    所述处理电路被配置为与每个邻近电子设备交互负载信息。
  18. 根据权利要求1至17中任一项所述的电子设备,其中,
    所述邻近电子设备包括其负载小于等于所述预定阈值的欠载电子设备。
  19. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    在基站为其负载大于预定阈值的过载基站的情况下,测量从所述过载基站的至少一个邻近基站中的每个邻近基站接收到的用于电子设备初始接入而扫描的波束的波束功率,以供所述过载基站进行负载均衡。
  20. 根据权利要求19所述的电子设备,其中,
    所述电子设备是与所述过载基站相关联的电子设备,以及
    所述处理电路被配置为在从所述过载基站接收到进行所述负载均衡的通知时,向所述过载基站上报有关所述波束功率的信息。
  21. 根据权利要求20所述的电子设备,其中,
    所述处理电路被配置为在从所述过载基站接收到要从所述过载基站卸载的通知之后,与所述过载基站去除关联。
  22. 根据权利要求21所述的电子设备,其中,
    所述处理电路被配置为在从所述过载基站接收到有关从所述至少一个邻近基站中选出的要接入的邻近基站的信息之后,与所述要接入的邻近基站相关联。
  23. 根据权利要求19所述的电子设备,其中,
    所述电子设备是向所述基站发起初始接入的电子设备,以及
    所述处理电路被配置为在基于指示所述基站的负载是否大于所述预定阈值的消息而判断所述基站是所述过载基站的情况下,向所述过载基站上报有关所述波束功率的信息。
  24. 根据权利要求23所述的电子设备,其中,
    所述处理电路被配置为从所述过载基站接收是否被允许接入所述过载基站的消息。
  25. 根据权利要求24所述的电子设备,其中,
    所述处理电路被配置为在从所述过载基站接收到拒绝接入的通知以及有关从所述至少一个邻近基站中选出的要接入的邻近基站的信息之后,与所述要接入的邻近基站相关联。
  26. 根据权利要求23至25中任一项所述的电子设备,其中,
    所述处理电路被配置为从所述基站在用于初始接入而扫描的波束接收指示所述基站的负载是否大于所述预定阈值的消息。
  27. 根据权利要求19至26中任一项所述的电子设备,其中,所述波束功率为与每个波束对应的波束接收功率的加权平均值。
  28. 一种用于无线通信的方法,包括:
    在判断电子设备为其负载大于预定阈值的过载电子设备的情况下,基于第一用户设备从所述过载电子设备的至少一个邻近电子设备中的每个邻近电子设备接收到的用于用户设备初始接入而扫描的第一波束的第一波束功率,进行负载均衡,以确定所述过载电子设备是否要与所述第一用户相关联。
  29. 一种用于无线通信的方法,包括:
    在基站为其负载大于预定阈值的过载基站的情况下,测量从所述过载基站的至少一个邻近基站中的每个邻近基站接收到的用于电子设备初始接入而扫描的波束的波束功率,以供所述过载基站进行负载均衡。
  30. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求28至29中任意一项所述的用于无线通信的方法。
PCT/CN2021/079616 2020-03-16 2021-03-09 用于无线通信的电子设备和方法、计算机可读存储介质 WO2021185111A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180019957.9A CN115280837A (zh) 2020-03-16 2021-03-09 用于无线通信的电子设备和方法、计算机可读存储介质
US17/797,118 US20220400431A1 (en) 2020-03-16 2021-03-09 Electronic device and method for wireless communication, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010181823.4 2020-03-16
CN202010181823.4A CN113411839A (zh) 2020-03-16 2020-03-16 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021185111A1 true WO2021185111A1 (zh) 2021-09-23

Family

ID=77676389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079616 WO2021185111A1 (zh) 2020-03-16 2021-03-09 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (3)

Country Link
US (1) US20220400431A1 (zh)
CN (2) CN113411839A (zh)
WO (1) WO2021185111A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024278A (zh) * 2016-11-04 2018-05-11 电信科学技术研究院 一种移动性管理方法、用户终端和网络侧设备
CN108781397A (zh) * 2016-04-14 2018-11-09 英特尔公司 用于在大规模多输入多输出(mimo)系统中执行切换的设备和方法
US20190349827A1 (en) * 2013-10-18 2019-11-14 At&T Mobility Ii Llc Cell user occupancy indicator to enhance intelligent traffic steering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349827A1 (en) * 2013-10-18 2019-11-14 At&T Mobility Ii Llc Cell user occupancy indicator to enhance intelligent traffic steering
CN108781397A (zh) * 2016-04-14 2018-11-09 英特尔公司 用于在大规模多输入多输出(mimo)系统中执行切换的设备和方法
CN108024278A (zh) * 2016-11-04 2018-05-11 电信科学技术研究院 一种移动性管理方法、用户终端和网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Load Balancing in NR", 3GPP DRAFT; R2-1906869 - LOAD BALANCING IN NR, vol. RAN WG2, 2 May 2019 (2019-05-02), Reno, USA, pages 1 - 6, XP051711168 *

Also Published As

Publication number Publication date
US20220400431A1 (en) 2022-12-15
CN113411839A (zh) 2021-09-17
CN115280837A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US20220408298A1 (en) Electronic device and method for wireless communications
US11456795B2 (en) Electronic device and method for measuring a beam quality of a currently serving beam based on a prediction window when the detected beam quality is within a particular range
WO2020052491A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11757510B2 (en) Electronic devices and communication methods
US10630363B2 (en) Electronic device in wireless communication system, and wireless communication method
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
US20210258957A1 (en) Electronic device, user equipment and wireless communication method in wireless communication system
US20230102698A1 (en) Network device, user equipment, wireless communication method and storage medium
US11711133B2 (en) Electronic device, wireless communication method and computer readable storage medium related to transmission configuration indication (TCI) state
JP2018510527A (ja) 無線通信のユーザー機器側用と基地局側用の装置と方法
WO2020020025A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
WO2019001374A1 (zh) 用于无线通信的电子设备和方法
US10862598B2 (en) Electronic device and method in radio communication system
US10820337B2 (en) Device in wireless communication system, and wireless communication method
US20230199584A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US20220338023A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2017167082A1 (zh) 电子设备和用于电子设备的方法、信息处理设备
WO2021185111A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230208476A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
US11095405B2 (en) Electronic device and method for wireless communication
KR102438410B1 (ko) 네트워크 제어 단말 및 네트워크 노드를 위한 전자 디바이스 및 방법
WO2023185562A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230209456A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2023134570A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023143216A1 (zh) 用户设备、电子设备、无线通信方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771735

Country of ref document: EP

Kind code of ref document: A1