WO2019001374A1 - 用于无线通信的电子设备和方法 - Google Patents

用于无线通信的电子设备和方法 Download PDF

Info

Publication number
WO2019001374A1
WO2019001374A1 PCT/CN2018/092540 CN2018092540W WO2019001374A1 WO 2019001374 A1 WO2019001374 A1 WO 2019001374A1 CN 2018092540 W CN2018092540 W CN 2018092540W WO 2019001374 A1 WO2019001374 A1 WO 2019001374A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
resource block
candidate resource
user equipment
communication group
Prior art date
Application number
PCT/CN2018/092540
Other languages
English (en)
French (fr)
Inventor
刘昊
徐平平
盛斌
张文博
呂本舜
Original Assignee
索尼公司
刘昊
徐平平
盛斌
张文博
呂本舜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 刘昊, 徐平平, 盛斌, 张文博, 呂本舜 filed Critical 索尼公司
Priority to US16/604,171 priority Critical patent/US20210136845A1/en
Priority to AU2018290504A priority patent/AU2018290504A1/en
Priority to EP18823516.2A priority patent/EP3648361A4/en
Priority to CA3068120A priority patent/CA3068120A1/en
Priority to CN201880020816.7A priority patent/CN110463052B/zh
Publication of WO2019001374A1 publication Critical patent/WO2019001374A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular to resource allocation for D2D (Device to Device) communications, and more particularly to electronic devices and methods for wireless communications.
  • D2D Device to Device
  • D2D communication is a communication method that directly communicates between user terminals without passing through a base station or other core network, and is one of the key technologies of 5G wireless communication.
  • D2D communication can be divided into inband D2D communication and outband D2D communication, as shown in FIG.
  • out-of-band D2D communication uses spectrum resources of unlicensed frequency bands, such as the spectrum of the ISM (Industrial Scientific Medical) frequency band; in-band D2D communication uses spectrum resources in the licensed frequency band, which has the advantage of being convenient for control.
  • In-band D2D communication can be further divided into D2D communication (Underlay D2D) in a multiplexing mode and D2D communication (Overlay D2D) in a dedicated mode.
  • the D2D communication in the multiplexing mode shares resources with other cellular users, thereby having higher spectrum utilization
  • the dedicated mode D2D communication uses resources allocated by the system exclusively for the system.
  • the D2D communication in the multiplexing mode can be further divided into D2D communication for multiplexing uplink resources and D2D communication for multiplexing downlink.
  • D2D users can provide higher data transmission rate, resource utilization, network capacity and energy efficiency by multiplexing the spectrum resources of cellular users.
  • D2D communication in the multiplexed mode produces more complex electromagnetic interference conditions.
  • an electronic device for wireless communication including: processing circuitry configured to: respectively acquire, for each candidate resource block, a state in which a D2D communication group does not perform D2D communication, correspondingly a first received signal measured by a cellular user equipment for a pilot symbol transmitted by a base station on a corresponding candidate resource block, and a state measured by a corresponding cellular user equipment for a pilot symbol in a state in which the D2D communication group performs D2D communication Receiving a signal; removing the influence of the first received signal from the second received signal as an interference signal received by the cellular user equipment from the D2D transmitting device of the D2D communication group; determining the resources available to the D2D communication group by using the interference minimization as an optimization target Block priority.
  • a method for wireless communication which: for each candidate resource block, separately acquires a measurement measured by a corresponding cellular user equipment in a state where the D2D communication group does not perform D2D communication. a first received signal of a pilot symbol transmitted by the base station on the corresponding candidate resource block, and a second received signal for the pilot symbol measured by the corresponding cellular user equipment in a state in which the D2D communication group performs D2D communication; The influence of the first received signal is removed from the received signal as an interference signal received by the cellular user equipment from the D2D transmitting device of the D2D communication group; and the resource block prioritization order available to the D2D communication group is determined with the interference minimization as an optimization target.
  • an electronic device for wireless communication comprising: a receiving unit configured to receive an instruction to perform temporary D2D communication from a base station; and a transmitting unit configured to transmit on the candidate resource block Pilot symbol.
  • a method for wireless communication comprising: receiving an instruction to perform temporary D2D communication from a base station; and a transmitting unit configured to transmit a pilot symbol on the candidate resource block.
  • the electronic device and method according to the present application obtains interference of the D2D communication to the cellular user equipment by comparing the difference between the received signals of the cellular user equipment for the pilot symbols in the case where the D2D communication is not performed and the D2D communication is performed, and thus can be based on The interference optimizes resource allocation for D2D communication and improves utilization efficiency of transmission resources.
  • Figure 1 shows a schematic diagram of the classification of D2D communication
  • FIG. 2 shows an example of a scenario in which D2D communication multiplexes cellular communication downlink resources
  • FIG. 3 is a schematic diagram showing a basic flow of resource allocation of a D2D user
  • FIG. 5 shows an example of an LTE downlink resource block structure
  • FIG. 6 shows a functional block diagram of an electronic device for wireless communication in accordance with one embodiment of the present application
  • FIG. 7 illustrates another functional block diagram of an electronic device for wireless communication in accordance with one embodiment of the present application.
  • FIG. 8 is a schematic diagram showing a pilot multiplexing manner of a plurality of D2D transmitting devices
  • Figure 9 shows an example of a resource linked list
  • FIG. 10 shows another example of a resource linked list
  • FIG. 11 is a schematic diagram showing the flow of information between a base station and a user equipment
  • FIG. 12 illustrates a functional block diagram of an electronic device for wireless communication in accordance with another embodiment of the present application.
  • Figure 13 illustrates a flow diagram of a method for wireless communication in accordance with one embodiment of the present application
  • FIG. 14 shows a flow chart of a method for wireless communication in accordance with another embodiment of the present application.
  • 15 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 16 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 17 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 19 is a block diagram of an exemplary structure of a general purpose personal computer in which methods and/or apparatus and/or systems in accordance with embodiments of the present invention may be implemented.
  • Fig. 2 shows an example of a scenario in which D2D communication multiplexes cellular communication downlink resources.
  • a scenario for D2D communication of a multiplexed downlink will be described.
  • this is not limitative, and the present technology can be suitably applied to other scenarios as well.
  • CUE denotes a Cellular User Equipment
  • TUE denotes a transmitting device of D2D communication
  • RUE denotes a receiving device of D2D communication
  • a broken line in the figure denotes interference of D2D communication to CUE
  • a solid line denotes a D2D link respectively.
  • the resource allocation of D2D users can set different optimization goals according to actual needs, such as maximizing system throughput, minimizing system interference, minimizing system power, maximizing spectrum utilization efficiency, and the like.
  • the D2D communication group is shown in a one-to-one manner in FIG. 2, it is not limited thereto, and the D2D communication group may also have a one-to-many form, that is, there are multiple RUEs, and the technology of the present application is also applicable. .
  • FIG. 3 shows a schematic diagram of a basic flow of resource allocation of a D2D user.
  • a D2D setup request is sent by the RUE to the base station (BS), and the BS sends a Channel Status Information (CSI) estimation message to the TUE and the RUE in response to the request, so that the TUE and the RUE allocate resource blocks for the BS (Resource Block) , RB) for CSI estimation.
  • the TUE sends the CSI measurement result to the BS, and the BS determines whether the measurement result can meet the requirement of the D2D communication, and if yes, allocates the corresponding RB to the TUE and the RUE.
  • the TUE and the RUE use the RB for D2D communication.
  • the BS may allocate a resource for the D2D user by using a random resource allocation method, that is, randomly allocate the resources of the cellular user to the D2D user for communication.
  • a random resource allocation method that is, randomly allocate the resources of the cellular user to the D2D user for communication.
  • the system performance improvement caused by this allocation method is limited, and the D2D user has a certain probability that it will be allocated to the resources of the cellular user equipment closer to itself, thereby generating large multiplexing interference and lowering the communication quality.
  • an electronic device and method for optimizing resource allocation of D2D is proposed.
  • FIG. 4 illustrates another example of a scenario in which D2D communication multiplexes cellular communication downlink resources.
  • 4 shows a cell of a cellular network, where the BS is a base station, and the cell has 9 UEs, of which 5 cellular user equipments are CUE1, CUE2, ..., CUE5, and 4 D2D user equipments (ie, 2 D2D communication group), TUE1, RUE1, TUE2, and RUE2, respectively.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the description herein will also take OFDMA as an example.
  • OFDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • the cellular user equipment directly communicates with the base station, TUE1 and RUE1 form a D2D communication group 1, and TUE2 and RUE2 form a D2D communication group 2.
  • the base station allocates orthogonality to each CUE by using, for example, LTE resource blocks (RBs).
  • RBs LTE resource blocks
  • the subcarriers are communicated, and the D2D communication group 1 and the D2D communication group 2 multiplex the downlink transmission resources allocated to the CUE, that is, when performing D2D communication, TUE1 and TUE2 adopt a method of multiplexing cellular user resource blocks in the downlink.
  • the data information is sent to RUE1 and RUE2, respectively.
  • FIG. 5 shows an example of an LTE downlink resource block structure in which each resource block includes a plurality of OFDM symbols in the time domain and a plurality of subcarriers in the frequency domain.
  • Each cell in Figure 5 represents a resource element (RE), which is the smallest available physical resource unit.
  • the black-filled resource unit is the location where the pilot symbol is located, and the blank resource unit is the location where the data symbol is located. .
  • pilot symbols are used to make measurements of channel conditions.
  • FIG. 6 shows a functional block diagram of an electronic device 100 for wireless communication, the electronic device 100 comprising: a first acquisition unit 101 configured for each candidate resource block, at D2D, in accordance with an embodiment of the present application.
  • the first receiving signal of the pilot symbol transmitted by the corresponding cellular user equipment for the base station on the corresponding candidate resource block is obtained in a state where the communication group is not in the D2D communication; the second acquiring unit 102 is configured to be in the D2D communication group.
  • the interference calculation unit 103 is configured to remove the influence of the first received signal from the second received signal, as the cellular user
  • the determining unit 104 is configured to determine the resource block prioritization available to the D2D communication group with the interference minimization as an optimization target.
  • the operations of the first obtaining unit 101 and the second obtaining unit 102 do not have a limitation of the order, and the order of the measurement of the first received signal and the measurement of the second received signal is also not limited. In other words, the sum may be measured first.
  • the first received signal is obtained, and the second received signal may also be measured and acquired first.
  • the first obtaining unit 101 and the second obtaining unit 102 may also be the same acquiring unit, and the distinction is made here for convenience and clarity of description.
  • the first obtaining unit 101, the second obtaining unit 102, the interference calculating unit 103 and the determining unit 104 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip.
  • the electronic device 100 may be, for example, located on the BS shown in FIG. 3 or communicably connected to the BS. Moreover, the various components of electronic device 100 may also be suitably distributed at different locations of the wireless communication network, which are not limiting.
  • the first acquisition unit 101 and the second acquisition unit 102 respectively acquire the absence of the D2D communication and the presence of the D2D communication, and the cellular communication device is allocated for The measurement result of the channel measurement performed by the candidate resource block of the cellular communication device, the difference between the two measurement results represents the interference generated by the D2D communication to the cellular user equipment.
  • the base station transmits a pilot symbol to the cellular user equipment CUE on the corresponding candidate resource block. For example, CSI estimation signaling is sent.
  • the CUE measures pilot symbols transmitted on the received corresponding candidate resource blocks to obtain a first received signal.
  • the first received signal can be expressed as follows:
  • the channel frequency response (CFR) on the RB m between the base station and the CUE k can be estimated by various channel estimation algorithms, and the estimation result is recorded as Is a pilot symbol transmitted from the base station, It is additive white Gaussian noise (AWGN). Note that in the formulas herein, the same symbols represent the same meaning unless otherwise stated, and are not described when repeated.
  • AWGN additive white Gaussian noise
  • the base station transmits pilot symbols, for example, CSI estimation signaling, to the cellular user equipment CUE and the D2D user RUE on the corresponding candidate resource blocks.
  • the second received signal for the pilot symbols measured by the CUE will include the wanted signal from the base station and the multiplexed interference from the TUE.
  • the second received signal can be expressed as follows:
  • the estimated value can be obtained by equation (1), representing the useful signal received by CUE k . It is a multiplexing interference generated by the D2D communication group multiplexing cellular user resources. For AWGN.
  • the interference calculation unit 103 removes the influence of the first signal from the second received signal, for example, subtracting the formula (2) from the formula (1), thereby obtaining information of interference of the D2D communication to the cellular user equipment.
  • the acquisition of the above-described interference information is performed for each candidate resource block, and then, the determining unit 104 may determine the priority order of the resource blocks available to the D2D communication group by minimizing the interference. For example, in the example of FIG. 4, group 1 when the D2D communication resource block multiplexing the CUE 2 RB 2, above the minimum of interference, can be preferentially RB 2 is a group D2D communication resource blocks are allocated.
  • the interference may be characterized by a difference in communication capacity of the cellular user equipment in a state where the D2D communication group is not D2D communication and in a state where D2D communication is performed.
  • the communication capacity is calculated based on the signal-to-noise ratio (SNR) of the cellular user equipment on the corresponding candidate resource block.
  • SNR signal-to-noise ratio
  • the SNR of CUE k on the mth resource block RB m can be calculated as follows:
  • W represents the bandwidth of the RB.
  • the communication capacity can be calculated based on the signal to interference and noise ratio (SINR) of the cellular user equipment on the corresponding candidate resource block.
  • SINR signal to interference and noise ratio
  • the capacity of CUE k on the mth resource block RB m can be calculated as:
  • the capacity difference of the cellular user equipment CUE k in the two states of not performing D2D communication and performing D2D communication is:
  • the determining unit 104 may sort the resource blocks according to the value of the foregoing capacity difference for each resource block, so that the resource block with the smallest interference to the cellular user equipment, that is, the smallest capacity difference is ranked first, and the D2D communication group is prioritized. Allocate the resource blocks that are sorted first. For example, if a D2D communication group requires 2 resource blocks, two resource blocks with the smallest difference in capacity can be allocated to the D2D communication group, and so on.
  • the communication capacity difference shown in the formula (7) can be separately calculated for the plurality of D2D communication groups, and the determining unit 104 is configured to follow the communication for each of the D2D communication groups, respectively.
  • the capacity difference sorts its available resource blocks. When the same available resource block is to be allocated to two or more D2D communication groups, the resource block is preferentially allocated to the D2D communication group having the smallest capacity difference.
  • the state in which the D2D communication is performed is a state in which D2D temporary communication is performed.
  • the electronic device 100 may further include a control unit 105 configured to control the base station to send D2D temporary communication signaling, to indicate that the D2D transmitting device sends pilot symbols at corresponding pilot positions of the candidate resource blocks.
  • the control unit 105 may instruct the multiple D2D transmitting devices to transmit pilot symbols on the candidate resource blocks in a multiplexed manner.
  • Figure 8 shows one way of this multiplexing.
  • TUE1 transmits pilot symbols on the seventh subcarrier of the first OFDM symbol on the mth resource block
  • TUE2 transmits a pilot on the first subcarrier of the first OFDM symbol of the resource block. Frequency symbols, and so on. It can be seen that in the example of the resource block shown in FIG. 8, one resource block can multiplex up to 8 TUEs. If the number of TUEs to be multiplexed exceeds 8, for example, it can be transmitted in a time division manner.
  • the electronic device 100 may further include a transceiver unit, such as for transmitting pilot symbols to the cellular user equipment and the D2D receiving device, and receiving the first received signal and the second receiving from the cellular user equipment. signal.
  • the transceiver unit can also be configured to transmit a D2D temporary communication command to the D2D transmitting device.
  • the transceiver unit can be implemented, for example, as an antenna and associated circuit elements, which can be implemented, for example, as a chip.
  • the above describes an example of resource block allocation for minimizing interference to cellular user equipments, but the optimization target is not limited thereto, for example, it is also possible to optimize D2D communication capacity while minimizing interference of cellular user equipment. aims.
  • the first obtaining unit 101 is further configured to acquire, as measured by the D2D receiving device of the D2D communication group, the measurement transmitted by the base station on the corresponding candidate resource block in a state in which the D2D communication group does not perform D2D communication.
  • the second obtaining unit 102 is further configured to acquire, according to the D2D communication group, the D2D communication device, the measured by the D2D receiving device a fourth received signal of the pilot symbol;
  • the computing unit 103 is further configured to remove the influence of the third received signal from the fourth received signal as a desired signal received by the D2D receiving device from the D2D transmitting device; wherein the determining unit 104 is When the resource block priority order available to the D2D communication group is determined with the interference minimization as the optimization target, the communication capacity of the D2D communication group is maximized.
  • the base station transmits pilot symbols to the RUEs of the corresponding CUEs and D2D communication groups on the respective candidate resource blocks, and the RUE measures the received pilot symbols to obtain a third. receive signal.
  • TUE does not participate in the measurement.
  • the third received signal measured by the RUE represents that if the D2D communication multiplexes the resource block of the corresponding cellular user equipment, the downlink transmission of the cellular user equipment will interfere with the D2D communication.
  • the third received signal can be expressed as:
  • a third reception signal i.e. a signal from a base station RUE received a pilot position in the resource block of the RB m
  • the CFR on the RB m between the representative base station and RUE 1 can be estimated by various channel estimation algorithms, and the estimation result is recorded as Is a pilot symbol transmitted from the base station, It is AWGN.
  • the TUE transmits a pilot symbol to the RUE at a corresponding pilot position in the candidate resource block
  • the fourth received signal received by the RUE includes a useful signal (with a pilot from the TUE).
  • the signal corresponding to the symbol) will also include downlink multiplexing interference generated by the BS to the RUE when the pilot symbol is transmitted to the cellular user equipment.
  • the fourth received signal can be expressed as:
  • RUE 1 Is a useful signal, It is AWGN.
  • the communication capacity of the D2D communication group can be calculated based on the signal to interference and noise ratio of the D2D receiving device on the corresponding candidate resource block.
  • the SINR of the RUE 1 on the mth resource block RB m is as shown in the following formula (10):
  • the capacity of RUE 1 on the mth resource block RB m can be calculated as:
  • the determining unit 104 can sort the candidate resource blocks as follows:
  • the denominator of the formula (12) is the capacity difference of the CUE k represented by the above formula (7). It will be appreciated, when the larger D m, the greater the capacity represents a resource block RB D2D communication and the smaller interference to the m respective cellular user equipment. Thus, resource blocks may be preferentially allocated to the RB m D2D communication group. Similarly, if a D2D communication group requires 2 resource blocks, two resource blocks with the largest D m value can be assigned to the D2D communication group, and so on.
  • a plurality of third received signals and a plurality of fourth received signals may be obtained for each candidate resource block, thereby obtaining multiple based on equation (10), respectively.
  • the SINRs of the RUEs further obtain the respective communication capacities of the plurality of RUEs based on Equation (11), and the candidate resource blocks may be sorted based on the sum of the communication capacities of the plurality of RUEs or the communication capacity mean.
  • the index D m shown in the formula (12) may be separately calculated for the plurality of D2D communication groups, and the determining unit 104 is configured to follow the indicators for each of the D2D communication groups, respectively.
  • D m sorts its available resource blocks. When the same available resource block is to be allocated to two or more D2D communication groups, the resource block is preferentially assigned to the D2D communication group having the largest indicator Dm .
  • the transceiving unit may be further configured to receive the third received signal and the fourth received signal from the D2D receiving device.
  • the operations of the first obtaining unit 101, the second obtaining unit 102, the calculating unit 103, the determining unit 104, and the control unit 105 are performed for all candidate resource blocks, and in other examples, the candidate resource blocks may be Determined by pre-screening to further improve the efficiency of resource allocation. For example, a resource block of a CUE that may generate less multiplexing interference for D2D communication may be determined by pre-screening as a candidate resource block.
  • the determining unit 104 may determine the candidate resource block by calculating a difference between a downlink transmission power of each cellular user equipment in the cell and a downlink transmission power of the D2D transmission device, and a resource corresponding to the cellular user equipment whose difference is greater than a predetermined threshold.
  • the block is determined to be a candidate resource block for D2D communication.
  • the downlink transmission power of the cellular user equipment and the downlink transmission power of the D2D transmission device are compared, and if the difference between the two is greater than a predetermined threshold, the location of the cellular user equipment and the location of the D2D receiving device are indicated. It may be far apart, so that the multiplexing interference generated when the D2D communication group multiplexes its resource blocks will be small. Therefore, the resource block corresponding to the cellular user equipment can be determined as a candidate resource block of D2D communication.
  • the difference between the downlink transmit power of the cellular user equipment and the downlink transmit power of the D2D transmit device described herein may refer to the absolute value of the subtraction between the two.
  • candidate resource blocks are determined separately for each D2D communication group. It should be understood that for different D2D communication groups, the determined cellular user equipments that meet the above conditions may be different, and therefore, the candidate resource blocks may also be different.
  • the candidate resource blocks determined for one D2D communication group are hereinafter referred to as resource list of the D2D communication group.
  • the cellular user equipment whose calculated transmission power difference is less than a predetermined threshold is shown in the dotted circle.
  • CUE 1 and CUE 4 within the circle of RUE 1 , CUE 2 , CUE 3 and CUE 5 are farther from RUE 1 than CUE 1 and CUE 4 if TUE 1 and RUE 1 use CUE 2 , CUE 3 and CUE If the resource blocks occupied by the 5 perform D2D communication, the generated multiplexing interference will be smaller than the multiplexing interference generated by multiplexing the resource blocks occupied by CUE 1 and CUE 4 .
  • FIGS. 9 and 10 a resource linked list as shown in FIGS. 9 and 10 can be established, wherein FIG. 9 is established for the D2D communication group 1, and FIG. 10 is established for the D2D communication group 2.
  • the resource blocks RB for CUE 2 share 1, RB 2 and RB. 7, occupied by a resource block RB. 3 CUE 3, resource blocks RB and RB. 4. 5 and CUE 5 occupied RB 10 for measurement operation, similarly, according to FIG. 10, the RB. 1 for the resource block occupied CUE 2, RB 2 and RB. 7, the resource block occupied by CUE 4. 6 and CUE 5 RB resource block RB occupied measurement operation 10
  • FIG. 10 the resource blocks occupied by CUE 2 , CUE 3, and CUE 5 are used as candidate resource blocks.
  • FIG. 11 shows a schematic diagram of information flow between a BS, a cellular mobile device, and a D2D device.
  • this information flow is only an example and is not limiting.
  • the BS transmits a CSI estimation message to the RUE and the CUE to measure channel state information
  • the CSI estimation message includes pilot symbols transmitted at pilot positions of candidate resource blocks, and pilot symbols on the corresponding candidate resource blocks by RUE and CUE
  • the measurement is performed, and the measured results, such as the first received signal and the second received signal, are reported to the BS.
  • the BS transmits a D2D temporary communication command to the TUE to instruct the D2D communication group to perform temporary D2D communication.
  • the temporary D2D communication is a TUE transmitting a pilot symbol on a corresponding candidate resource block to the RUE.
  • the BS transmits the CSI estimation message to the RUE and the CUE again, and the RUE and the CUE measure the received signal again in the presence of the temporary D2D communication and report the result of the measurement to the BS.
  • the BS After receiving the measurement result, the BS performs optimization index calculation in combination with the measurement result when the D2D temporary communication is not performed, for example, calculating the capacity difference of the CUE, the communication capacity of the D2D communication group for D2D communication, and the like.
  • the BS sorts the candidate resource blocks based on the calculated optimization indicators, and preferentially allocates the previous resource blocks for the D2D. In this way, the allocation optimization of the available resource blocks of the D2D communication can be realized, the interference to the cellular user equipment can be reduced, and/or the D2D communication capacity can be improved, thereby improving the system performance. Furthermore, the information flow of FIG. 11 can also be modified to perform the measurement in the state where the D2D temporary communication is performed first, that is, the flow in the block portion of FIG. 11 can be moved before the first "CSI estimation message".
  • a process of establishing a resource linked list may be included before the illustrated information flow starts, so that the flow shown in FIG. 11 is performed only for the candidate resource blocks in the resource linked list, further improving the D2D communication.
  • the efficiency of resource block allocation may be included before the illustrated information flow starts, so that the flow shown in FIG. 11 is performed only for the candidate resource blocks in the resource linked list, further improving the D2D communication.
  • the present embodiment provides an electronic device capable of obtaining a D2D communication pair cellular using a difference between received signals of a cellular user equipment for pilot symbols without performing D2D communication and performing D2D communication.
  • the interference of the user equipment so that the resource allocation to the D2D communication can be optimized based on the interference, and the utilization efficiency of the transmission resource is improved.
  • the electronic device can also obtain the communication capacity of the D2D device by utilizing the difference of the received signals of the D2D receiving device without performing D2D communication and performing D2D communication, so that optimization can be performed based on the communication capacity and the above interference.
  • the resource allocation for D2D communication improves the utilization efficiency of transmission resources.
  • FIG. 12 illustrates a functional block diagram of an electronic device 200 for wireless communication, the electronic device 200 including: a receiving unit 201 configured to receive an instruction to perform temporary D2D communication from a base station, in accordance with another embodiment of the present application; And a transmitting unit 202 configured to transmit pilot symbols on the candidate resource blocks.
  • the receiving unit 201 and the transmitting unit 202 can be implemented by an antenna and associated circuit elements, which can be implemented, for example, as a chip.
  • the electronic device 200 may be located on the terminal device side or communicably connected to the terminal device, but is not limited thereto.
  • the electronic device 200 can be located or communicably connected to any communication device side that can perform D2D communication.
  • the instructions to perform temporary D2D communication include instructing the D2D device to transmit pilot symbols at pilot locations of respective candidate resource blocks.
  • the pilot position is as shown in FIG. 5, for example.
  • transmitting unit 202 is configured to transmit pilot symbols on candidate resource blocks in a manner multiplexed with transmission units of other electronic devices.
  • the manner of multiplexing is as shown in FIG. 8, for example.
  • the electronic device 200 is capable of performing temporary D2D communication to transmit pilot symbols on candidate resource blocks.
  • the method includes: acquiring, for each candidate resource block, D2D communication in a D2D communication group.
  • the first received signal measured by the corresponding cellular user equipment for the pilot symbol transmitted by the base station on the corresponding candidate resource block, and the state measured by the corresponding cellular user equipment in the state of D2D communication performed by the D2D communication group a second received signal of the pilot symbol (S11); removing an influence of the first received signal from the second received signal as an interference signal received by the cellular user equipment from the D2D transmitting device of the D2D communication group (S12);
  • the resource block prioritization available to the D2D communication group is determined with the interference minimization as an optimization target (S15).
  • the interference may be characterized by a difference in communication capacity of the cellular user equipment in a state where the D2D communication group is not D2D communication and in a state where D2D communication is performed.
  • the communication capacity of the cellular user equipment in the state in which the D2D communication group is not D2D communication is calculated based on the signal to noise ratio of the cellular user equipment on the corresponding candidate resource block; the cellular user equipment performs D2D communication in the D2D communication group.
  • the communication capacity in the state is calculated based on the signal to interference and noise ratio of the cellular user equipment on the corresponding candidate resource block.
  • the state in which the D2D communication is performed in step S11 may be a state in which D2D temporary communication is performed. This can be achieved, for example, by the control base station transmitting D2D temporary communication signaling to instruct the D2D transmitting device to transmit pilot symbols at the corresponding pilot positions of the candidate resource blocks.
  • instructing the D2D transmitting device to transmit the pilot symbols at the respective pilot positions of the candidate resource blocks may include: instructing the plurality of D2D transmitting devices to transmit the pilot symbols on the candidate resource blocks in a multiplexed manner.
  • the foregoing method may further include the following steps: for each candidate resource block, respectively, the D2D receiving device of the D2D communication group is measured in a state where the D2D communication group is not D2D communication. a third received signal for the pilot symbol transmitted by the base station on the corresponding candidate resource block, and a fourth received signal for the pilot symbol measured by the D2D receiving device in a state where the D2D communication group performs D2D communication (S13); and removing the influence of the third received signal from the fourth received signal as a desired signal received by the D2D receiving device from the D2D transmitting device (S14).
  • step S15 when the resource block priority order available for the D2D communication group is determined with the interference minimization as the optimization target, the communication capacity of the D2D communication group is maximized.
  • the communication capacity of the D2D communication group can be calculated based on the signal to interference and noise ratio of the D2D receiving device on the corresponding candidate resource block.
  • the candidate resource block is determined by pre-screening.
  • the candidate resource block may be determined by calculating a difference between a downlink transmission power of each cellular user equipment in the cell and a downlink transmission power of the D2D transmission device, and determining a resource block corresponding to the cellular user equipment whose difference is greater than a predetermined threshold as D2D.
  • a candidate resource block for communication is performed for each candidate resource block, and in some examples, the candidate resource block is determined by pre-screening.
  • the candidate resource block may be determined by calculating a difference between a downlink transmission power of each cellular user equipment in the cell and a downlink transmission power of the D2D transmission device, and determining a resource block corresponding to the cellular user equipment whose difference is greater than a predetermined threshold as D2D.
  • a candidate resource block for communication may be determined by calculating a difference between a downlink transmission power of each cellular user equipment in the cell and a downlink transmission power of the D2D transmission device, and determining a resource block
  • FIG. 14 shows a flowchart of a method for wireless communication according to another embodiment of the present application, the method comprising: receiving an instruction for performing temporary D2D communication from a base station (S21); and transmitting a pilot on a candidate resource block Symbol (S22).
  • pilot symbols may be transmitted on candidate resource blocks in a manner multiplexed with other wireless communication devices in step S22.
  • the electronic device 100 can be applied to the base station side, and the electronic device 200 can be applied to the terminal device side.
  • a base station can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminals can operate as base stations by performing base station functions temporarily or semi-persistently.
  • the terminal device may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal (such as a car navigation device). ).
  • the terminal device can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 can be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • MIMO multiple input multiple output
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 15 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 15 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 16 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 15 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 16 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 16 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the functions of the transceiver unit described in the first embodiment can be implemented by the wireless communication interface 825 and the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 821 and controller 851.
  • the first acquisition unit 101, the second acquisition unit 102, the calculation unit 103, the determination unit 104, and the control unit 105 described with reference to FIGS. 6 and 7 may be implemented by the controller 821 and the controller 851.
  • the controller 821 and the controller 851 can perform ordering of the candidate resource blocks by performing functions of the first obtaining unit 101, the second obtaining unit 102, the calculating unit 103, and the determining unit 104, and control by executing the function of the control unit 105.
  • the base station transmits a D2D temporary communication command.
  • FIG. 17 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 17 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 17 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 17 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the receiving unit 201 and the transmitting unit 202 described in the second embodiment can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 18 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as a plurality of antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 18 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in FIG. 18 via feeders, which are partially shown as dashed lines in the figures. Battery 938 accumulates power supplied from the vehicle.
  • the receiving unit 201 and the transmitting unit 202 described in the second embodiment can be realized by the wireless communication interface 933. At least a portion of the functionality can also be implemented by processor 921.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 1900 shown in FIG. 19), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 1901 executes various processes in accordance with a program stored in a read only memory (ROM) 1902 or a program loaded from a storage portion 1908 to a random access memory (RAM) 1903.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1901 executes various processes and the like is also stored as needed.
  • the CPU 1901, the ROM 1902, and the RAM 1903 are connected to each other via a bus 1904.
  • Input/output interface 1905 is also coupled to bus 1904.
  • the following components are connected to the input/output interface 1905: an input portion 1906 (including a keyboard, a mouse, etc.), an output portion 1907 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 1908 (including a hard disk or the like), the communication portion 1909 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 1909 performs communication processing via a network such as the Internet.
  • the drive 1910 can also be connected to the input/output interface 1905 as needed.
  • a removable medium 1911 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1910 as needed, so that a computer program read therefrom is installed into the storage portion 1908 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1911.
  • such a storage medium is not limited to the removable medium 1911 shown in FIG. 19 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 1911 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be the ROM 1902, the hard disk included in the storage portion 1908, and the like, in which programs are stored, and distributed to the user together with the device containing them.

Abstract

本公开提供了用于无线通信的电子设备和方法,该电子设备包括:处理电路,被配置为:针对每一候选资源块,分别获取在D2D通信组未进行D2D通信的状态下,相应蜂窝用户设备所测量的针对基站在相应候选资源块上发送的导频符号的第一接收信号,以及在D2D通信组进行D2D通信的状态下,相应蜂窝用户设备所测量的针对导频符号的第二接收信号;从第二接收信号中去除第一接收信号的影响,作为蜂窝用户设备从D2D通信组的D2D发射设备接收到的干扰信号;以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序。 (图6)

Description

用于无线通信的电子设备和方法
本申请要求于2017年6月30日提交中国专利局、申请号为201710523258.3、发明名称为“用于无线通信的电子设备和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及D2D(Device to Device)通信的资源分配,更具体地涉及用于无线通信的电子设备和方法。
背景技术
D2D通信是一种用户终端之间直接通信而不通过基站或其他核心网络的一种通信方式,是5G无线通信的关键技术之一。根据D2D所使用的频带,D2D通信可分为带内(In band)D2D通信和带外(Out band)D2D通信,如图1所示。其中,带外D2D通信使用了非授权频段的频谱资源,例如ISM(Industrial Scientific Medical)频段的频谱;带内D2D通信使用了授权频段内的频谱资源,其优点在于便于进行控制。带内D2D通信又可分为复用模式的D2D通信(Underlay D2D)与专用模式的D2D通信(Overlay D2D)。其中,复用模式的D2D通信与其他蜂窝用户共享资源,从而具有更高的频谱利用率,专用模式的D2D通信使用系统专门为其分配的资源。复用模式的D2D通信又可分为复用上行链路资源的D2D通信与复用下行链路的D2D通信。
与传统的蜂窝网络相比,D2D用户通过复用蜂窝用户的频谱资源可以提供更高的数据传输速率、资源利用率、网络容量及能量效率。然而,复用模式下的D2D通信会产生更复杂的电磁干扰状况。
发明内容
在下文中给出了关于本申请的简要概述,以便提供关于本申请的某些方面的基本理解。应当理解,这个概述并不是关于本申请的穷举性概 述。它并不是意图确定本申请的关键或重要部分,也不是意图限定本申请的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:针对每一候选资源块,分别获取在D2D通信组未进行D2D通信的状态下,相应蜂窝用户设备所测量的针对基站在相应候选资源块上发送的导频符号的第一接收信号,以及在D2D通信组进行D2D通信的状态下,相应蜂窝用户设备所测量的针对导频符号的第二接收信号;从第二接收信号中去除第一接收信号的影响,作为蜂窝用户设备从D2D通信组的D2D发射设备接收到的干扰信号;以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:针对每一候选资源块,分别获取在D2D通信组未进行D2D通信的状态下,相应蜂窝用户设备所测量的针对基站在相应候选资源块上发送的导频符号的第一接收信号,以及在D2D通信组进行D2D通信的状态下,相应蜂窝用户设备所测量的针对导频符号的第二接收信号;从第二接收信号中去除第一接收信号的影响,作为蜂窝用户设备从D2D通信组的D2D发射设备接收到的干扰信号;以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:接收单元,被配置为从基站接收进行临时D2D通信的指令;以及发送单元,被配置为在候选资源块上发送导频符号。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:从基站接收进行临时D2D通信的指令;以及发送单元,被配置为在候选资源块上发送导频符号。
依据本申请的其它方面,还提供了用于实现上述方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述方法的计算机程序代码的计算机可读存储介质。
根据本申请的电子设备和方法通过比较在不执行D2D通信以及执行D2D通信的情况下蜂窝用户设备针对导频符号的接收信号之间的差异来获得D2D通信对蜂窝用户设备的干扰,从而可以基于该干扰来优化对 D2D通信的资源分配,提高传输资源的利用效率。
通过以下结合附图对本申请的优选实施例的详细说明,本申请的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了D2D通信的分类的示意图;
图2示出了D2D通信复用蜂窝通信下行链路资源的场景的一个示例;
图3示出了D2D用户的资源分配的基本流程的示意图;
图4示出了D2D通信复用蜂窝通信下行链路资源的场景的另一个示例;
图5示出了LTE下行链路资源块结构的一个示例;
图6示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图7示出了根据本申请的一个实施例的用于无线通信的电子设备的另一个功能模块框图;
图8示出了多个D2D发射设备的导频复用方式的示意图;
图9示出了资源链表的一个示例;
图10示出了资源链表的另一个示例;
图11示出了基站与用户设备之间的信息流程的示意图;
图12示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图13示出了根据本申请的一个实施例的用于无线通信的方法的流 程图;
图14示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图15是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图16是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图17是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图18是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图19是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图2示出了D2D通信复用蜂窝通信下行链路资源的场景的一个示 例。在下文中,将针对复用下行链路的D2D通信的场景进行描述。但是,应该理解,这并不是限制性的,本技术也可以适当地应用于其他场景。
在图2中CUE表示蜂窝用户设备(Cellular User Equipment),TUE表示D2D通信的发射设备,RUE表示D2D通信的接收设备,图中的虚线表示D2D通信对CUE的干扰,实线分别表示D2D链路和蜂窝用户设备的下行链路。D2D用户的资源分配可以根据实际需要来设定不同的优化目标、比如最大化系统的吞吐量、最小化系统的干扰、最小化系统的功率、最大化频谱利用效率等。应该理解,虽然图2中示出了D2D通信组为一对一的方式,但是并不限于此,D2D通信组还可以具有一对多的形式,即存在多个RUE,本申请的技术同样适用。
图3示出了D2D用户的资源分配的基本流程的示意图。首先,由RUE向基站(BS)发出D2D建立请求,BS响应于该请求向TUE和RUE发送信道状态信息(Channel Status Information,CSI)估计消息以使得TUE和RUE针对BS分配的资源块(Resource Block,RB)进行CSI估计。随后,TUE将CSI测量结果发送给BS,BS判断该测量结果是否能够满足D2D通信的要求,如果满足,则将相应的RB分配给TUE和RUE。TUE和RUE使用该RB进行D2D通信。
其中,BS可以采用随机资源分配法来为D2D用户分配资源,即,将蜂窝用户的资源随机分配给D2D用户进行通信。但是,这种分配方式带来的系统性能的提升有限,并且D2D用户有一定概率会分配到距离自身较近的蜂窝用户设备的资源,而产生较大的复用干扰,降低通信质量。在下文的实施例中,提出了一种对D2D的资源分配进行优化的电子设备和方法。
为了便于描述,图4示出了D2D通信复用蜂窝通信下行链路资源的场景的另一个示例。图4示出了蜂窝网络的一个小区,其中BS为基站,小区有9个UE,其中5个蜂窝用户设备,分别为CUE1、CUE2、……、CUE5,4个D2D用户设备(即,2个D2D通信组),分别为TUE1、RUE1、TUE2和RUE2。由于正交频分多址(OFDMA)为常用的空口接口,因此本文中的描述也将以OFDMA为例来进行。但是应该理解,本申请的技术也可以应用于其它采用正交接入的空口技术,比如时分多址(TDMA)、频分多址(FDMA)和码分多址(CDMA)等。
在图4中,蜂窝用户设备与基站直接通信,TUE1和RUE1组成D2D通信组1,TUE2和RUE2组成D2D通信组2,基站例如采用LTE的资源块(RB)的方式给每个CUE分配正交的子载波进行通信,D2D通信组1和D2D通信组2复用分配给CUE的下行传输资源,即,在进行D2D通信时,TUE1和TUE2采用复用蜂窝用户资源块的方式,在下行链路上分别发送数据信息至RUE1和RUE2。
图5示出了LTE下行链路资源块结构的一个示例,其中,每个资源块在时域上包括多个OFDM符号,在频域上包括多个子载波。图5中的每个小格代表一个资源单元(resource element,RE),是最小的可用物理资源单位,黑色填充的资源单元为导频符号所在的位置,空白的资源单元为数据符号所在的位置。在本实施例中,导频符号用于进行信道状态的测量。
图6示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,该电子设备100包括:第一获取单元101,被配置为针对每一候选资源块,在D2D通信组未进行D2D通信的状态下,获取相应蜂窝用户设备所测量的针对基站在相应候选资源块上发送的导频符号的第一接收信号;第二获取单元102,被配置为在D2D通信组进行D2D通信的状态下,获取相应蜂窝用户设备所测量的针对导频符号的第二接收信号;干扰计算单元103,被配置为从第二接收信号中去除第一接收信号的影响,作为蜂窝用户设备从D2D通信组的D2D发射设备接收到的干扰信号;以及确定单元104,被配置为以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序。注意,第一获取单元101和第二获取单元102的操作不存在先后顺序的限制,第一接收信号的测量和第二接收信号的测量的先后顺序也是不受限制的,换言之,可以先测量和获取第一接收信号,也可以先测量和获取第二接收信号。另外,第一获取单元101和第二获取单元102也可以是同一个获取单元,这里对其进行区分仅是为了描述的方便和清楚。
其中,第一获取单元101、第二获取单元102、干扰计算单元103和确定单元104可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。电子设备100例如可以位于图3中所示的BS上,或者可通信地连接到BS。此外,电子设备100的各个部件也可以适当地分布在无线通信网络的不同位置处,这均不是限制性的。
为了计算D2D通信组使用相同资源块的蜂窝用户设备的干扰,首先由第一获取单元101和第二获取单元102分别获取不存在D2D通信和存在D2D通信两种情况下,蜂窝通信设备针对分配给该蜂窝通信设备的候选资源块所进行的信道测量的测量结果,这两个测量结果的差异即代表了D2D通信对蜂窝用户设备产生的干扰。
具体地,在D2D通信组未进行D2D通信、即TUE和RUE处于开机状态并且和基站保持联系但是没有进行D2D通信的情况下,基站在相应的候选资源块上向蜂窝用户设备CUE发送导频符号,例如发送CSI估计信令。相应地,CUE测量所接收的相应的候选资源块上发送的导频符号以获得第一接收信号。
以CUE k在第m个资源块RB m上的导频符号的接收信号为例,第一接收信号可以表示如下:
Figure PCTCN2018092540-appb-000001
其中,
Figure PCTCN2018092540-appb-000002
是第一接收信号、即CUE k在第m个资源块RB m中的导频位置上接收到的来自基站的信号,
Figure PCTCN2018092540-appb-000003
为基站与CUE k间在RB m上的信道频域响应(Channel Frequency Response,CFR),可通过各种信道估计算法估算出,其估算结果记为
Figure PCTCN2018092540-appb-000004
是发送自基站的导频符号,
Figure PCTCN2018092540-appb-000005
是加性高斯白噪声(AWGN)。注意,在本文的公式中,如无特殊说明,则相同的符号代表相同的含义,在重复出现的时候不在予以说明。
此外,在D2D通信组进行D2D通信的情况下,基站在相应的候选资源块上向蜂窝用户设备CUE以及D2D用户RUE发送导频符号,例如发送CSI估计信令。此时,CUE测量的针对导频符号的第二接收信号将包括来自基站的有用信号以及来自TUE的复用干扰。
仍以D2D通信组1复用蜂窝用户设备CUE k的资源块RB m的情形为例,第二接收信号可以表示如下:
Figure PCTCN2018092540-appb-000006
其中,
Figure PCTCN2018092540-appb-000007
为D2D通信组1的TUE 1与CUE k之间在第m个资源块RB m上的CFR,
Figure PCTCN2018092540-appb-000008
为TUE 1要传输至CUE k的已知的导频符号。其中,
Figure PCTCN2018092540-appb-000009
的估计值可由公式(1)得到,代表CUE k接收到的有用信号。
Figure PCTCN2018092540-appb-000010
是因D2D通信组复用蜂窝用户资源而产生的复用干扰。
Figure PCTCN2018092540-appb-000011
为AWGN。
干扰计算单元103从第二接收信号中去除第一信号的影响,例如将公式(2)与公式(1)相减,即可获得D2D通信对蜂窝用户设备的干扰的信息。针对各个候选资源块来进行上述干扰信息的获取,接着,确定单元104可以通过使得该干扰最小化来确定D2D通信组可用的资源块的优先顺序。例如,在图4的示例中,当D2D通信组1复用CUE 2的资源块RB 2时,上述干扰最小,则可以优先为D2D通信组1分配资源块RB 2
在一个示例中,可以以蜂窝用户设备在D2D通信组未进行D2D通信的状态下以及进行D2D通信的状态下的通信容量差表征所述干扰。例如,在D2D通信组未进行D2D通信的状态下,通信容量基于蜂窝用户设备在相应候选资源块上的信噪比(SNR)来计算。例如,CUE k在第m个资源块RB m上的SNR可计算如下:
Figure PCTCN2018092540-appb-000012
其中,
Figure PCTCN2018092540-appb-000013
代表CUE k接收到的有用信号的功率,
Figure PCTCN2018092540-appb-000014
Figure PCTCN2018092540-appb-000015
的功率。CUE k在第m个资源块RB m上的容量可表示为:
Figure PCTCN2018092540-appb-000016
其中,W表示RB的带宽。
在D2D通信组进行D2D通信的状态下,存在D2D通信对蜂窝用户设备的干扰,通信容量可基于该蜂窝用户设备在相应候选资源块上的信干噪比(SINR)计算。例如,如下计算CUE k在第m个资源块RB m上的SINR:
Figure PCTCN2018092540-appb-000017
其中,
Figure PCTCN2018092540-appb-000018
Figure PCTCN2018092540-appb-000019
的功率。相应地,CUE k在第m个资源块RB m上的容量可计算为:
Figure PCTCN2018092540-appb-000020
因此,不执行D2D通信和执行D2D通信两种状态下蜂窝用户设备CUE k的容量差为:
Figure PCTCN2018092540-appb-000021
确定单元104可以根据针对各个资源块的上述容量差的值来对资源块进行排序,以使得对蜂窝用户设备的干扰最小、即容量差最小的资源块排序最靠前,并且优先为D2D通信组分配排序靠前的资源块。例如,如果D2D通信组需要2个资源块,则可以将容量差最小的两个资源块分配给该D2D通信组,以此类推。
此外,在为多个D2D通信组分配资源的情况下,可以针对多个D2D通信组分别计算公式(7)所示的通信容量差,并且确定单元104被配置针对每个D2D通信组分别按照通信容量差对其可用资源块进行排序。在同一可用资源块要被分配给两个或多个D2D通信组时,优先将该资源块分配给容量差最小的D2D通信组。
如前所述,以上虽然先描述了不进行D2D通信的状态、后描述了进行D2D通信的状态,但是这并不是限制性的,也可以先执行进行D2D通信的状态下的测量、再执行不进行D2D通信的状态下的测量。
在一个示例中,上述进行D2D通信的状态为进行D2D临时通信的状态。例如,如图7所示,电子设备100还可以包括控制单元105,被配置为控制基站发送D2D临时通信信令,用于指示D2D发射设备在候选资源块相应的导频位置发送导频符号。
其中,控制单元105可以指示多个D2D发射设备以复用的方式在候选资源块上发送导频符号。图8示出了该复用的一种方式。在图8的示 例中,TUE1在第m个资源块上第一个OFDM符号的第7个子载波上发送导频符号,TUE2在该资源块的第一个OFDM符号的第1个子载波上发送导频符号,等等。可以看出,在图8所示的资源块的示例中,一个资源块最多可以复用8个TUE。如果要复用的TUE的数目超过8个,例如可以采用时分的方式进行发送。
虽然图6和图7中未示出,但是电子设备100还可以包括收发单元,例如用于向蜂窝用户设备和D2D接收设备发送导频符号以及从蜂窝用户设备接收第一接收信号和第二接收信号。收发单元还可以被配置为向D2D发射设备发送D2D临时通信指令。收发单元例如可以实现为天线以及相关的电路元件,天线和电路元件例如可以实现为芯片。
以上描述了以最小化对蜂窝用户设备的干扰为优化目标进行资源块分配的示例,但是优化目标并不限于此,例如还可以以D2D通信容量最大化同时蜂窝用户设备所受干扰最小化为优化目标。
在这样的示例中,第一获取单元101还被配置为在D2D通信组未进行D2D通信的状态下,获取D2D通信组的D2D接收设备上所测量的针对基站在相应候选资源块上发送的导频符号的第三接收信号,例如作为该D2D接收设备受基站干扰的干扰信号;第二获取单元102还被配置为在D2D通信组进行D2D通信的状态下,获取该D2D接收设备所测量的针对导频符号的第四接收信号;计算单元103还被配置为从第四接收信号中去除第三接收信号的影响,作为D2D接收设备从D2D发射设备接收到的期望信号;其中,确定单元104在以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序时,同时考虑D2D通信组的通信容量最大化。
例如,在D2D通信组未进行D2D通信的状态下,基站在各个候选资源块上向相应的CUE和D2D通信组的RUE发送导频符号,RUE对接收到的导频符号进行测量以获得第三接收信号。注意,TUE不参与测量。由于D2D通信组未进行D2D通信,因此RUE所测量的第三接收信号代表了若D2D通信复用相应蜂窝用户设备的资源块时,该蜂窝用户设备的下行传输将对D2D通信产生的干扰。以RUE 1在第m个资源块RB m上的导频符号的接收信号为例,第三接收信号可表示为:
Figure PCTCN2018092540-appb-000022
其中,
Figure PCTCN2018092540-appb-000023
为第三接收信号、即RUE 1在资源块RB m中的导频位置上接收到的来自基站的信号,
Figure PCTCN2018092540-appb-000024
代表基站与RUE 1间在RB m上的CFR,可通过各种信道估计算法估算出来,其估算结果记为
Figure PCTCN2018092540-appb-000025
是发送自基站的导频符号,
Figure PCTCN2018092540-appb-000026
是AWGN。
在D2D通信组进行D2D通信的状态下,例如TUE在候选资源块中相应的导频位置处向RUE发送导频符号,RUE所接收的第四接收信号除了包括来自TUE的有用信号(与导频符号对应的信号)外还将包括BS向蜂窝用户设备发送导频符号时对RUE产生的下行复用干扰。仍以RUE 1在第m个资源块RB m上的导频符号的接收信号为例,第四接收信号可表示为:
Figure PCTCN2018092540-appb-000027
其中,
Figure PCTCN2018092540-appb-000028
代表TUE 1和RUE 1在资源块RB m上的CFR,
Figure PCTCN2018092540-appb-000029
代表TUE 1要发送至RUE 1的导频符号,相应地,
Figure PCTCN2018092540-appb-000030
可以由公式(8)估计得到,代表BS与CUE k之间的下行传输产生的干扰,对于RUE 1而言,
Figure PCTCN2018092540-appb-000031
是有用信号,
Figure PCTCN2018092540-appb-000032
是AWGN。
例如,D2D通信组的通信容量可以基于D2D接收设备在相应候选资源块上的信干噪比计算。仍以RUE 1复用CUE k的资源块RB m为例,RUE 1在第m个资源块RB m上的SINR如下式(10)所示:
Figure PCTCN2018092540-appb-000033
其中,
Figure PCTCN2018092540-appb-000034
Figure PCTCN2018092540-appb-000035
的估计值,
Figure PCTCN2018092540-appb-000036
Figure PCTCN2018092540-appb-000037
的功率。相应地,RUE 1在第m个资源块RB m上的容量可计算为:
Figure PCTCN2018092540-appb-000038
例如,确定单元104可以按下式对候选资源块进行排序:
Figure PCTCN2018092540-appb-000039
其中,公式(12)的分母为前文公式(7)所表示的CUE k的容量差。可以理解,当D m越大时,代表资源块RB m上D2D通信的容量越大并且对相应蜂窝用户设备的干扰越小。因此,可以优先将资源块RB m分配给该D2D通信组。类似地,如果D2D通信组需要2个资源块,则可以将D m值最大的两个资源块分配给该D2D通信组,以此类推。
在D2D通信组中存在多个RUE的情况下,针对该D2D通信组,针对每个候选资源块可以获得多个第三接收信号和多个第四接收信号,从而基于式(10)分别获得多个RUE的SINR进而基于式(11)获得多个RUE各自的通信容量,此时可以基于多个RUE的通信容量之和或通信容量均值对候选资源块进行排序。
此外,在为多个D2D通信组分配资源的情况下,可以针对多个D2D通信组分别计算公式(12)所示的指标D m,并且确定单元104被配置针对每个D2D通信组分别按照指标D m对其可用资源块进行排序。在同一可用资源块要被分配给两个或多个D2D通信组时,优先将该资源块分配给指标D m最大的D2D通信组。
在该示例中,收发单元还可以被配置为从D2D接收设备接收第三接收信号和第四接收信号。
类似地,以上虽然先描述了不进行D2D通信的状态、后描述了进行D2D通信的状态,但是这并不是限制性的,也可以先执行进行D2D通信的状态下的测量、再执行不进行D2D通信的状态下的测量。
在以上的描述中,针对所有的候选资源块执行第一获取单元101、第二获取单元102、计算单元103、确定单元104和控制单元105的操作,在其他的示例中,候选资源块可以是经过预筛选确定的,以进一步提高资源分配的效率。例如,可以通过预筛选确定可能对D2D通信产生较少的复用干扰的CUE的资源块作为候选资源块。
例如,确定单元104可以通过以下方式来确定候选资源块:计算小区内每一个蜂窝用户设备的下行发送功率与D2D发射设备的下行发送功率之差,将差大于预定阈值的蜂窝用户设备对应的资源块确定为D2D通 信的候选资源块。
具体地,针对每一个D2D通信组,比较蜂窝用户设备的下行发送功率和D2D发射设备的下行发送功率,如果二者之差大于预定阈值,则说明该蜂窝用户设备的位置与D2D接收设备的位置可能相距较远,从而在D2D通信组复用其资源块时产生的复用干扰会较小。因此,可以将该蜂窝用户设备对应的资源块确定为D2D通信的候选资源块。注意,这里所述的蜂窝用户设备的下行发送功率和D2D发射设备的下行发送功率之差可以指的是二者相减的绝对值。
以这种方式,为各个D2D通信组分别确定候选资源块。应该理解,针对不同的D2D通信组,所确定的符合上述条件的蜂窝用户设备可能是不同的,因此,候选资源块也可能是不同的。在下文中将针对一个D2D通信组确定的候选资源块称为该D2D通信组的资源链表。
以图4所示的场景为例,所计算的发送功率的差小于预定阈值的蜂窝用户设备如虚线圈内所示。在RUE 1的圈内有CUE 1和CUE 4,与CUE 1和CUE 4相比,CUE 2、CUE 3和CUE 5距离RUE 1更远,如果TUE 1和RUE 1使用CUE 2、CUE 3和CUE 5所占的资源块进行D2D通信,则产生的复用干扰会比复用CUE 1和CUE 4所占的资源块产生的复用干扰更小。
如果将CUE 2、CUE 3和CUE 5所占的资源块作为候选资源块,则仅针对这些候选资源块进行上述测量、计算和排序操作。示例性地,可以建立如图9和10所示的资源链表,其中,图9是针对D2D通信组1建立的,图10是针对D2D通信组2建立的。根据图9,将针对CUE 2所占的资源块RB 1、RB 2和RB 7、CUE 3所占的资源块RB 3、RB 4和RB 5和CUE 5所占的资源块RB 10进行测量等操作,类似地,根据图10,将针对CUE 2所占的资源块RB 1、RB 2和RB 7、CUE 4所占的资源块RB 6和CUE 5所占的资源块RB 10进行测量等操作,有关各个操作的具体描述已经在上文中给出,在此不再重复。
可以看出,通过筛选资源块来确定候选资源块,可以有效地减少要测量和计算的资源块的数量,减轻信令和计算负荷,提高资源块分配效率。
为了便于理解,图11示出了BS、蜂窝移动设备和D2D设备之间的信息流程的一种示意图。但是,应该理解,该信息流程仅是示例,并不 是限制性的。
首先,BS向RUE和CUE发送CSI估计消息以测量信道状态信息,该CSI估计消息包括在候选资源块的导频位置上发送的导频符号,RUE和CUE对相应候选资源块上的导频符号进行测量,并将测量的结果、例如第一接收信号和第二接收信号报告给BS。
随后,BS向TUE发送D2D临时通信指令,以指示D2D通信组进行临时D2D通信。例如,该临时D2D通信为TUE向RUE发送相应候选资源块上的导频符号。此时,BS再次向RUE和CUE发送CSI估计消息,RUE和CUE在存在临时D2D通信的情况下再次对接收到的信号进行测量并将测量的结果上报BS。
BS接收到测量结果后结合未进行D2D临时通信时的测量结果进行优化指标计算,例如计算CUE的容量差、D2D通信组进行D2D通信的通信容量等。
BS基于计算的优化指标来对候选资源块进行排序,并优先为D2D分配排序在前的资源块。这样,可以实现对D2D通信可用资源块的分配优化,降低对蜂窝用户设备的干扰以及/或者提高D2D通信容量,从而提高系统性能。此外,图11的信息流程还可以修改为先执行D2D临时通信的状态下的测量,即,可以将图11中方框部分中的流程移到第一个“CSI估计消息”之前。
虽然图11中未示出,但是在图示的信息流程开始之前还可以包括建立资源链表的过程,从而仅针对资源链表中的候选资源块来执行图11所示的流程,进一步提高针对D2D通信的资源块分配的效率。
综上所述,本实施例提供了一种电子设备,其能够利用在不执行D2D通信以及执行D2D通信的情况下蜂窝用户设备针对导频符号的接收信号之间的差异来获得D2D通信对蜂窝用户设备的干扰,从而可以基于该干扰来优化对D2D通信的资源分配,提高传输资源的利用效率。此外,进一步地,该电子设备还可以利用在不执行D2D通信以及执行D2D通信的情况下D2D接收设备的接收信号的差异来获得D2D设备的通信容量,从而可以基于该通信容量和上述干扰来优化对D2D通信的资源分配,提高传输资源的利用效率。
<第二实施例>
图12示出了根据本申请的另一个实施例的用于无线通信的电子设备200的功能模块框图,该电子设备200包括:接收单元201,被配置为从基站接收进行临时D2D通信的指令;以及发送单元202,被配置为在候选资源块上发送导频符号。
例如,接收单元201和发送单元202可以由天线及相关的电路元件来实现,天线和电路元件例如可以实现为芯片。电子设备200可以位于终端设备侧或可通信地连接到终端设备,但是并不限于此。电子设备200可以位于或可通信地连接到任何可进行D2D通信的通信设备侧。
进行临时D2D通信的指令例如包括指示D2D设备在相应的候选资源块的导频位置上发送导频符号。导频位置例如如图5所示。
在一个示例中,发送单元202被配置为以与其他电子设备的发送单元复用的方式在候选资源块上发送导频符号。复用的方式例如如图8所示。
根据本实施例的电子设备200能够进行临时D2D通信以在候选资源块上发送导频符号。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图13示出了根据本申请的一个实施例的用于无线通信的方法的流程图,如图13所示,该方法包括:针对每一候选资源块,分别获取在D2D通信组未进行D2D通信的状态下,相应蜂窝用户设备所测量的针对基站在相应候选资源块上发送的导频符号的第一接收信号,以及在D2D 通信组进行D2D通信的状态下,相应蜂窝用户设备所测量的针对所述导频符号的第二接收信号(S11);从第二接收信号中去除第一接收信号的影响,作为蜂窝用户设备从D2D通信组的D2D发射设备接收到的干扰信号(S12);以及以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序(S15)。
例如,在步骤S15中,可以以蜂窝用户设备在D2D通信组未进行D2D通信的状态下以及进行D2D通信的状态下的通信容量差表征所述干扰。在一个示例中,蜂窝用户设备在D2D通信组未进行D2D通信的状态下的通信容量基于该蜂窝用户设备在相应候选资源块上的信噪比计算;蜂窝用户设备在D2D通信组进行D2D通信的状态下的通信容量基于该蜂窝用户设备在相应候选资源块上的信干噪比计算。
在步骤S11中进行D2D通信的状态可以为进行D2D临时通信的状态。这例如可以通过控制基站发送D2D临时通信信令,用以指示D2D发射设备在候选资源块相应的导频位置发送导频符号来实现。示例性地,指示D2D发射设备在候选资源块相应的导频位置发送导频符号可以包括:指示多个D2D发射设备以复用的方式在候选资源块上发送导频符号。
此外,如图13中的虚线框所示,上述方法还可以包括如下步骤:针对每一候选资源块,分别获取在D2D通信组未进行D2D通信的状态下,D2D通信组的D2D接收设备所测量的针对基站在相应候选资源块上发送的导频符号的第三接收信号,以及在D2D通信组进行D2D通信的状态下,该D2D接收设备所测量的针对所述导频符号的第四接收信号(S13);以及从第四接收信号中去除第三接收信号的影响,作为D2D接收设备从D2D发射设备接收到的期望信号(S14)。其中,在步骤S15中以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序时,同时考虑D2D通信组的通信容量最大化。
例如,D2D通信组的通信容量可以基于D2D接收设备在相应候选资源块上的信干噪比计算。
上述方法针对每一个候选资源块执行,在一些示例中,候选资源块是经过预筛选确定的。例如,可以通过以下方式确定候选资源块:计算小区内每一个蜂窝用户设备的下行发送功率与D2D发射设备的下行发送功率之差,将差大于预定阈值的蜂窝用户设备对应的资源块确定为D2D 通信的候选资源块。
图14示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:从基站接收进行临时D2D通信的指令(S21);以及在候选资源块上发送导频符号(S22)。
例如,在步骤S22中可以以与其他无线通信设备复用的方式在候选资源块上发送导频符号。
注意,上述各个方法可以结合或单独使用,其细节在第一至第二实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。例如,电子设备100可以应用于基站侧,电子设备200可以应用于终端设备侧。基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,终端设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
下面分别给出基站和终端设备的应用示例,但是,应该理解,这些应用示例均是非限制性的。
[关于基站的应用示例]
(第一应用示例)
图15是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基 站设备820和每个天线810可以经由RF线缆彼此连接。天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图15所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图15示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被 配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图15所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图15所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图15示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图16是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图16所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图16示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图15描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图15描述的BB处理器826相同。如图16所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图16示出其中无 线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图16所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图16示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图15和图16所示的eNB 800和eNB 830中,第一实施例中所述的收发单元的功能可以由无线通信接口825以及无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器821和控制器851实现。参照图6和图7所描述的第一获取单元101、第二获取单元102、计算单元103、确定单元104和控制单元105可以由控制器821和控制器851实现。例如,控制器821和控制器851可以通过执行第一获取单元101、第二获取单元102、计算单元103和确定单元104的功能来进行候选资源块的排序,通过执行控制单元105的功能来控制基站发送D2D临时通信指令。
[关于终端设备的应用示例]
(第一应用示例)
图17是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置 903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图17所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图17示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种 无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图17所示,智能电话900可以包括多个天线916。虽然图17示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图17所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图17所示的智能电话900中,在第二实施例中所描述的接收单元201和发送单元202可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。
(第二应用示例)
图18是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图18所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图18示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接 收无线信号。如图18所示,汽车导航设备920可以包括多个天线937。虽然图18示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图18所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图18示出的汽车导航设备920中,在第二实施例中所描述的接收单元201和发送单元202可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图19所示的通用计算机1900)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图19中,中央处理单元(CPU)1901根据只读存储器(ROM)1902中存储的程序或从存储部分1908加载到随机存取存储器(RAM)1903的程序执行各种处理。在RAM 1903中,也根据需要存储当CPU1901执行各种处理等等时所需的数据。CPU 1901、ROM 1902和RAM1903经由总线1904彼此连接。输入/输出接口1905也连接到总线1904。
下述部件连接到输入/输出接口1905:输入部分1906(包括键盘、鼠标等等)、输出部分1907(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1908(包括硬盘等)、通信部分1909(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1909经由网络比如因特网执行通信处理。根据需要,驱动器1910也可连接到输入/输出接口1905。可移除介质1911比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1910上,使得从中读出的计算机程序根据需要被安装到存储部分1908中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1911安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图19所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1911。可移除介质1911的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1902、存储部分1908中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外, 在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (18)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:针对每一候选资源块,
    分别获取在D2D通信组未进行D2D通信的状态下,相应蜂窝用户设备所测量的针对基站在相应候选资源块上发送的导频符号的第一接收信号,以及在D2D通信组进行D2D通信的状态下,所述相应蜂窝用户设备所测量的针对所述导频符号的第二接收信号;
    从所述第二接收信号中去除所述第一接收信号的影响,作为所述蜂窝用户设备从D2D通信组的D2D发射设备接收到的干扰信号;
    以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为,针对每一候选资源块:
    分别获取在所述D2D通信组未进行D2D通信的状态下,所述D2D通信组的D2D接收设备所测量的针对基站在相应候选资源块上发送的导频符号的第三接收信号,以及在所述D2D通信组进行D2D通信的状态下,该D2D接收设备所测量的针对所述导频符号的第四接收信号;以及
    从所述第四接收信号中去除所述第三接收信号的影响,作为所述D2D接收设备从D2D发射设备接收到的期望信号,
    其中,在以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序时,同时考虑所述D2D通信组的通信容量最大化。
  3. 如权利要求1所述的电子设备,其中,以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序包括:
    以所述蜂窝用户设备在D2D通信组未进行D2D通信的状态下以及进行D2D通信的状态下的通信容量差表征所述干扰。
  4. 如权利要求3所述的电子设备,其中,所述蜂窝用户设备在D2D通信组未进行D2D通信的状态下的通信容量基于该蜂窝用户设备在相应候选资源块上的信噪比计算;所述蜂窝用户设备在D2D通信组进行D2D通信的状态下的通信容量基于该蜂窝用户设备在相应候选资源块上的信干噪比计算。
  5. 根据权利要求1所述的电子设备,其中,所述进行D2D通信的状态,为进行D2D临时通信的状态。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路被配置为:
    控制基站发送D2D临时通信信令,用以指示D2D发射设备在候选资源块相应的导频位置发送导频符号。
  7. 根据权利要求6所述的电子设备,其中,指示D2D发射设备在候选资源块相应的导频位置发送导频符号包括:指示多个D2D发射设备以复用的方式在候选资源块上发送导频符号。
  8. 如权利要求2所述的电子设备,其中,所述D2D通信组的通信容量基于所述D2D接收设备在相应候选资源块上的信干噪比计算。
  9. 根据权利要求2所述的电子设备,其中,所述候选资源块是经过预筛选确定的。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为通过以下方式确定候选资源块:
    计算小区内每一个蜂窝用户设备的下行发送功率与D2D发射设备的下行发送功率之差,
    将所述差大于预定阈值的蜂窝用户设备对应的资源块确定为D2D通 信的所述候选资源块。
  11. 一种用于无线通信的电子设备,包括:
    接收单元,被配置为从基站接收进行临时D2D通信的指令;以及
    发送单元,被配置为在候选资源块上发送导频符号。
  12. 根据权利要求11所述的电子设备,其中,以与其他电子设备的发送单元复用的方式在候选资源块上发送导频符号。
  13. 一种用于无线通信的方法,包括:针对每一候选资源块:
    分别获取在D2D通信组未进行D2D通信的状态下,相应蜂窝用户设备所测量的针对基站在相应候选资源块上发送的导频符号的第一接收信号,以及在D2D通信组进行D2D通信的状态下,所述相应蜂窝用户设备所测量的针对所述导频符号的第二接收信号;
    从所述第二接收信号中去除所述第一接收信号的影响,作为所述蜂窝用户设备从D2D通信组的D2D发射设备接收到的干扰信号;
    以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序。
  14. 如权利要求13所述的方法,其中,以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序包括:
    以所述蜂窝用户设备在D2D通信组未进行D2D通信的状态下以及进行D2D通信的状态下的通信容量差表征所述干扰。
  15. 根据权利要求13所述的方法,其中,针对每一候选资源块,
    分别获取在所述D2D通信组未进行D2D通信的状态下,所述D2D通信组的D2D接收设备测量的针对基站在相应候选资源块上发送的导频符号的第三接收信号,以及在所述D2D通信组进行D2D通信的状态下,该D2D接收设备测量的针对所述导频符号的第四接收信号;以及
    从所述第四接收信号中去除所述第三接收信号的影响,作为所述D2D接收设备从D2D发射设备接收到的期望信号;
    其中,在以干扰最小化为优化目标确定D2D通信组可用的资源块优先顺序的同时,同时考虑所述D2D通信组的通信容量最大化。
  16. 根据权利要求13-15之一所述的方法,其中,通过以下方式确定候选资源块:
    计算小区内每一个蜂窝用户设备的下行发送功率与D2D发射设备的下行发送功率之差,
    将所述差大于预定阈值的蜂窝用户设备对应的资源块确定为D2D通信的所述候选资源块。
  17. 一种用于无线通信的方法,包括:
    从基站接收进行临时D2D通信的指令;以及
    在候选资源块上发送导频符号。
  18. 根据权利要求17所述的电子设备,其中,以与其他无线通信设备复用的方式在候选资源块上发送导频符号。
PCT/CN2018/092540 2017-06-30 2018-06-25 用于无线通信的电子设备和方法 WO2019001374A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/604,171 US20210136845A1 (en) 2017-06-30 2018-06-25 Electronic device and method for wireless communications
AU2018290504A AU2018290504A1 (en) 2017-06-30 2018-06-25 Electronic device and method for wireless communications
EP18823516.2A EP3648361A4 (en) 2017-06-30 2018-06-25 ELECTRONIC DEVICE AND METHOD FOR WIRELESS COMMUNICATIONS
CA3068120A CA3068120A1 (en) 2017-06-30 2018-06-25 Electronic device and method for wireless communications
CN201880020816.7A CN110463052B (zh) 2017-06-30 2018-06-25 用于无线通信的电子设备和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710523258.3A CN109219145A (zh) 2017-06-30 2017-06-30 用于无线通信的电子设备和方法
CN201710523258.3 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019001374A1 true WO2019001374A1 (zh) 2019-01-03

Family

ID=64740392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092540 WO2019001374A1 (zh) 2017-06-30 2018-06-25 用于无线通信的电子设备和方法

Country Status (6)

Country Link
US (1) US20210136845A1 (zh)
EP (1) EP3648361A4 (zh)
CN (2) CN109219145A (zh)
AU (1) AU2018290504A1 (zh)
CA (1) CA3068120A1 (zh)
WO (1) WO2019001374A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853751A (zh) * 2019-07-11 2021-12-28 索尼集团公司 电子设备、分布式单元设备、无线通信方法和存储介质
CN116367332A (zh) * 2023-05-31 2023-06-30 华信咨询设计研究院有限公司 一种5g系统下基于分级控制的d2d资源分配方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209698A1 (ko) * 2019-04-12 2020-10-15 엘지전자 주식회사 Nr v2x 그룹캐스트 통신에서 sci를 전송하는 방법 및 장치
US11490360B2 (en) 2019-04-18 2022-11-01 Huawei Technologies Co., Ltd. Systems and methods for multiple redundant transmissions for user equipment cooperation
US20230011379A1 (en) * 2021-07-06 2023-01-12 Rockwell Collins, Inc. Infrastructureless 5g

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345568A (zh) * 2007-07-09 2009-01-14 大唐移动通信设备有限公司 透明中继站的信号转发方法及信号转发装置
CN101924575A (zh) * 2009-06-15 2010-12-22 大唐移动通信设备有限公司 回程链路上公共导频的发送及信道解调方法、系统和设备
US20110019635A1 (en) * 2008-04-16 2011-01-27 Sung Ho Park Method for transmitting and receiving data using pilot structure
CN102413477A (zh) * 2010-09-20 2012-04-11 大唐移动通信设备有限公司 一种小区间干扰协调的模拟方法及设备
US20170126348A1 (en) * 2015-10-30 2017-05-04 Motorola Mobility Llc Apparatus and method for generating and using a pilot signal
CN107371261A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 资源优先级的确定方法、处理装置及系统、ue
WO2018045490A1 (zh) * 2016-09-06 2018-03-15 华为技术有限公司 一种发送导频符号的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647810B2 (en) * 2009-03-17 2017-05-09 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions
US9084241B2 (en) * 2012-05-21 2015-07-14 Qualcomm Incorporated Methods and apparatus for determining available resources for D2D communications
CN103702346A (zh) * 2012-09-27 2014-04-02 中兴通讯股份有限公司 一种设备到设备用户设备间信道状态测量的方法及设备
CN103874048A (zh) * 2012-12-14 2014-06-18 中兴通讯股份有限公司 设备到设备之间的调度信息的传输方法及装置
CN105191190B (zh) * 2013-03-08 2018-02-13 Lg电子株式会社 在无线通信系统中利用多个载波发送/接收信号的方法及其装置
KR102221297B1 (ko) * 2013-08-16 2021-03-02 엘지전자 주식회사 장치 대 장치 통신에서 신호 전송 방법 및 이를 위한 장치
EP3138317B1 (en) * 2014-04-30 2020-06-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. A user equipment, a network node and methods therein for enabling device-to-device (d2d) communication in a radio communications network
WO2016006903A1 (ko) * 2014-07-07 2016-01-14 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 신호 송신 방법 및 이를 위한 장치
CN106303911B (zh) * 2015-05-29 2020-09-01 北京智谷睿拓技术服务有限公司 干扰测量方法及干扰测量装置
CN106455083A (zh) * 2015-08-13 2017-02-22 中兴通讯股份有限公司 一种d2d通信资源复用选择的方法及基站、终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345568A (zh) * 2007-07-09 2009-01-14 大唐移动通信设备有限公司 透明中继站的信号转发方法及信号转发装置
US20110019635A1 (en) * 2008-04-16 2011-01-27 Sung Ho Park Method for transmitting and receiving data using pilot structure
CN101924575A (zh) * 2009-06-15 2010-12-22 大唐移动通信设备有限公司 回程链路上公共导频的发送及信道解调方法、系统和设备
CN102413477A (zh) * 2010-09-20 2012-04-11 大唐移动通信设备有限公司 一种小区间干扰协调的模拟方法及设备
US20170126348A1 (en) * 2015-10-30 2017-05-04 Motorola Mobility Llc Apparatus and method for generating and using a pilot signal
CN107371261A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 资源优先级的确定方法、处理装置及系统、ue
WO2018045490A1 (zh) * 2016-09-06 2018-03-15 华为技术有限公司 一种发送导频符号的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3648361A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853751A (zh) * 2019-07-11 2021-12-28 索尼集团公司 电子设备、分布式单元设备、无线通信方法和存储介质
CN116367332A (zh) * 2023-05-31 2023-06-30 华信咨询设计研究院有限公司 一种5g系统下基于分级控制的d2d资源分配方法
CN116367332B (zh) * 2023-05-31 2023-09-15 华信咨询设计研究院有限公司 一种5g系统下基于分级控制的d2d资源分配方法

Also Published As

Publication number Publication date
CN110463052B (zh) 2021-09-28
CN109219145A (zh) 2019-01-15
EP3648361A4 (en) 2020-10-21
EP3648361A1 (en) 2020-05-06
AU2018290504A1 (en) 2020-02-06
CN110463052A (zh) 2019-11-15
CA3068120A1 (en) 2019-01-03
US20210136845A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US20220110151A1 (en) Base station-side and user equipment-side apparatuses and methods, and wireless communication system
US10687217B2 (en) Spectrum management apparatus and method, apparatus and method for base station side and user device side
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
TWI710255B (zh) 無線通訊系統中的電子設備、用戶設備和無線通訊方法
WO2019001374A1 (zh) 用于无线通信的电子设备和方法
WO2019096239A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US10958401B2 (en) Electronic device and user equipment in wireless communication system and wireless communication method
US20220038913A1 (en) Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side
JP7131549B2 (ja) 無線通信システムにおける電子機器、及び方法
EP3567965A1 (en) Terminal device, base station device, method and recording medium
EP3214779A1 (en) Communication control device, wireless communication device, communication control method, wireless communication method and program
EP3487248A1 (en) Wireless communication device and wireless communication method
US11095405B2 (en) Electronic device and method for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3068120

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018823516

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018823516

Country of ref document: EP

Effective date: 20200130

ENP Entry into the national phase

Ref document number: 2018290504

Country of ref document: AU

Date of ref document: 20180625

Kind code of ref document: A