WO2017028664A1 - 用于无线通信的基站侧和用户设备侧的装置及方法 - Google Patents

用于无线通信的基站侧和用户设备侧的装置及方法 Download PDF

Info

Publication number
WO2017028664A1
WO2017028664A1 PCT/CN2016/091910 CN2016091910W WO2017028664A1 WO 2017028664 A1 WO2017028664 A1 WO 2017028664A1 CN 2016091910 W CN2016091910 W CN 2016091910W WO 2017028664 A1 WO2017028664 A1 WO 2017028664A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
user equipment
base station
sequence number
wireless communication
Prior art date
Application number
PCT/CN2016/091910
Other languages
English (en)
French (fr)
Inventor
陈晋辉
Original Assignee
索尼公司
陈晋辉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 陈晋辉 filed Critical 索尼公司
Priority to US15/742,941 priority Critical patent/US10659985B2/en
Publication of WO2017028664A1 publication Critical patent/WO2017028664A1/zh
Priority to US16/839,087 priority patent/US11277762B2/en
Priority to US17/691,128 priority patent/US11997524B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular, to a base station side apparatus and method for wireless communication that flexibly configure a reference signal, and a user equipment side apparatus and method for wireless communication.
  • the allocation of reference signals is continuous and fixed, that is, the reference signals of the respective user equipments are transmitted through a fixed number of antenna ports.
  • the antenna ports 15-18 simultaneously transmit reference signals, and the user equipment can measure, for example, a channel corresponding to 4 ports, and feed back channel state information to the base station.
  • the user equipment may only use part of the reference signal due to the large number of base station antennas. In this case, a more flexible reference signaling scheme is needed.
  • an apparatus for a base station side for wireless communication comprising: a determining unit configured to dynamically determine the user from a reference signal set available to a base station based on a transmission characteristic associated with the user equipment Reference signal to be used by the device; and generate a single
  • the element is configured to generate reference signal configuration information for the user equipment, the configuration information including an indication of a sequence number of a reference signal to be used by the user equipment, wherein the sequence number of the reference signal is associated with an antenna port number.
  • an apparatus for user equipment side for wireless communication comprising: a determining unit configured to determine the user equipment according to reference signal configuration information for the user equipment from a base station a sequence number of a reference signal to be used; and a transceiver unit configured to perform transceiving of the reference signal based on an antenna port associated with the sequence number of the reference signal.
  • a method for a base station side in a wireless communication system comprising: dynamically determining, according to a transmission characteristic related to a user equipment, a reference signal to be used by the user equipment from a reference signal set available to the base station And generating reference signal configuration information for the user equipment, the configuration information including an indication of a sequence number of a reference signal to be used by the user equipment, wherein the sequence number of the reference signal is associated with an antenna port number.
  • a method for user equipment side for wireless communication comprising: determining, according to reference signal configuration information for a user equipment from a base station, a reference signal to be used by the user equipment a sequence number; and transmitting and receiving a reference signal based on an antenna port associated with a sequence number of the reference signal.
  • a wireless communication system comprising a base station and a user equipment, wherein the base station comprises a base station side device in the wireless communication system, and the user equipment comprises a user equipment side in the wireless communication system s installation.
  • the reference signal to be used by the user equipment can be flexibly configured to adapt to the transmission characteristics of the user equipment. .
  • FIG. 1 is a diagram showing an example of a correspondence relationship between a cell-specific reference signal (CS-RS) and an antenna port in LTE;
  • CS-RS cell-specific reference signal
  • FIG. 2 is a block diagram showing the structure of a device on the base station side in a wireless communication system according to an embodiment of the present application
  • FIG. 3 shows an example of reference signal configuration information
  • FIG. 4 is a block diagram showing the structure of a device on the user equipment side in a wireless communication system according to an embodiment of the present application
  • FIG. 5 is a flowchart showing a method of a base station side in a wireless communication system according to an embodiment of the present application
  • FIG. 6 shows a flow chart of a method on the user equipment side in a wireless communication system in accordance with one embodiment of the present application
  • FIG. 7 is a diagram showing an example of information flow between a base station and a user equipment
  • FIG. 8 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 9 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 10 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 12 is a block diagram of an exemplary structure of a general purpose personal computer in which a method and/or apparatus and/or system in accordance with an embodiment of the present invention may be implemented.
  • the number of existing reference signals determines the use condition of the reference signal and then determines the antenna port to be used, in order to adapt to the application scenario of dynamically changing the reference signal configuration, it is desirable to improve the flexibility of the reference signal configuration.
  • it is only necessary to use part of the antenna port so it is necessary to distinguish different situations and avoid applying a single, complete reference signal configuration to save transmission as much as possible. Resource and signaling overhead.
  • the base station When the base station performs a series of processing on the dynamic size transport block from the MAC layer, such as CRC insertion, segmentation, channel coding, rate matching, physical layer hybrid ARQ, bit-level scrambling code, data modulation, etc. of the transport block,
  • the obtained modulation symbols are antenna mapped for transmission to the user equipment.
  • the modulation symbols are jointly processed and the results are mapped to different antenna ports.
  • the antenna port herein may correspond to a physical antenna unit (Antenna Element) and may have a more general meaning.
  • the antenna port can be considered to correspond to the transmission of the reference signal.
  • Reference signals typically contain known signals that are not subjected to signal processing such as modulation, such as channel estimation or coherent demodulation that can be used for data transmission of the corresponding antenna port.
  • the user equipment performs channel estimation based on downlink reference signals received from a particular antenna port and feeds back channel state information, such as channel quality related information, channel direction related information, to the base station. If the same reference signal is transmitted from multiple physical antenna units, these physical antenna units correspond to a single antenna port. Similarly, if two different reference signals are transmitted from the same set of physical antenna elements, they are also considered to correspond to two different antenna ports.
  • Figure 1 shows the correspondence between a cell-specific reference signal (CS-RS) and an antenna port in LTE
  • CS-RS cell-specific reference signal
  • FIG. 1 A diagram of an example of a relationship, the case of two antenna ports is shown on the left side and the case of four antenna ports is shown on the right side. It can be seen that each downlink antenna port transmits one CS-RS, and different CS-RSs use different resource elements for transmission. Therefore, the reference signal can be considered to correspond to the antenna port.
  • CS-RS channel state information reference signal
  • DMRS demodulation reference signal
  • An antenna port is defined such that a channel through which a symbol on an antenna port is transmitted can be pushed out from a channel through which other symbols on the same antenna port pass.
  • the reference signal or antenna port can also be considered to correspond to a channel or subchannel.
  • the configuration of the reference signal is equivalent to the configuration of the channel or subchannel to be used by the user equipment, and the flexibility to increase the configuration of the reference signal helps to configure the appropriate channel or subchannel for the user equipment.
  • an embodiment of the present application proposes a device 100 for a base station side for wireless communication as shown in FIG. 2, the device 100 comprising: a determining unit 101 configured to be based on a user equipment-related transmission characteristic, dynamically determining a reference signal to be used by the user equipment from a reference signal set available to the base station; and a generating unit 102 configured to generate reference signal configuration information for the user equipment, the configuration information including An indication of the sequence number of the reference signal to be used by the user equipment, wherein the sequence number of the reference signal is associated with the antenna port number.
  • Dynamic selection of the reference signal according to the transmission characteristics associated with the user equipment can be advantageously selected for transmission of the reference signal, which not only improves the flexibility of the reference signal configuration, but also facilitates To achieve interference coordination, transmission quality assurance and other purposes.
  • the transmission characteristics include at least one of a device parameter, a transmission requirement, a channel state, an interference condition, a geographic location, and the like of the user equipment.
  • the reference signal configuration information generated by the device 100 includes an indication of the sequence number of the reference signal to be used by the user equipment, the sequence number of which is associated with the sequence number of the antenna port.
  • the definition of the sequence number and the definition of such association may be predetermined and known to the base station and the user equipment.
  • the sequence number of the reference signal and the serial number of the antenna port have a corresponding relationship, for example, the reference signal number 1 corresponds to the antenna port 15, the reference signal number 2 corresponds to the antenna port 16, and the like. In this way, When the user equipment obtains the reference signal configuration information, the configuration information of the antenna port for which the reference signal is to be transmitted and received may be known.
  • the reference signal may be a downlink reference signal, for example, the reference signal is at least one of the following downlink reference signals: CSI-RS, downlink DMRS.
  • the determining unit 101 selects an appropriate downlink reference signal, for example, according to an uplink channel state of the user equipment, etc., wherein the uplink channel state can be estimated, for example, by receiving an uplink reference signal sent by the user equipment, and utilizing reciprocity of the uplink and downlink channels.
  • the generating unit 102 After the downlink transmission signal is obtained and the downlink reference signal is selected, the generating unit 102 generates corresponding reference signal configuration information according to the sequence number of the selected downlink reference signal, and the user equipment obtains the sequence number of the downlink reference signal after obtaining the reference signal configuration information, and is based on The corresponding downlink reference signal performs channel state measurement or channel estimation and the like.
  • the reference signal can be a beamformed reference signal, ie a beamformed reference signal.
  • the reference signals of different sequence numbers are sent to the user equipment through beams in different directions. Since the beam itself has directivity, the user equipment may not need to specifically feed back channel direction information when the channel state information feedback is needed (for example, a precoding matrix indication).
  • the base station can determine the channel direction of the base station to the user equipment based on the channel quality report on each beam.
  • the base station may transmit the beamforming reference signal in a predetermined plurality of directions, or may determine multiple directions that can cover the user equipment to transmit the beamforming reference signal based on the geographical location distribution of the currently connected user equipment.
  • the reference signal may also be an uplink reference signal, for example, the reference signal is an uplink reference signal of at least one of the following: a sounding reference signal SRS, an uplink DMRS.
  • the determining unit 101 may select an appropriate uplink reference signal according to the geographic location of the user equipment, the interference situation, and the like, and the generating unit 102 generates corresponding reference signal configuration information according to the sequence number of the selected uplink reference signal, where the user equipment obtains the After the reference signal configuration information, the sequence number of the uplink reference signal is obtained and the corresponding uplink reference signal is transmitted.
  • the determining unit 101 can determine a reference signal to be used by the user equipment for a specific user equipment served by the base station.
  • the reference signal is user device specific and can be dynamically changed.
  • this example can select an appropriate reference signal configuration according to the specific conditions of each user equipment to improve the performance of channel estimation, and the user equipment does not need to monitor all reference signals to reduce computation, power consumption and the like.
  • a base station transmits a CSI-RS to all user equipments through antenna ports 15 to 22, and the user equipment also measures 8 antennas. All CSI-RSs on the port and perform corresponding channel state feedback.
  • the base station may instruct the first user equipment to measure only the CSI-RS transmitted by the antenna ports 15 to 18, indicating the second user.
  • the device only measures the CSI-RS transmitted by the antenna ports 19 to 22, so that the measurement workload of the first and second user equipments is halved compared to the conventional user equipment.
  • the user equipment-specific reference signals may be configured only for some of the user equipments, and the traditional manner is still adopted for other user equipments.
  • the user equipment may be, for example, according to whether The reference signal configuration information is received to determine its own measurement object, and the reference signal on the fixed plurality of antenna ports is still measured without receiving the reference signal configuration information.
  • the base station since the reference signal configuration is user-specific, the base station preferably informs the user equipment of its reference signal configuration information through dedicated signaling (eg, RRC signaling), thereby ensuring that each user equipment promptly indicates the indication, Accurate reception.
  • the determining unit 101 can also determine the same reference signal for all user equipments served by (a certain cell of the base station), for example selecting a part of the predetermined reference signal set for all user equipments.
  • the user equipment served in one cell of each base station uses the same set of antenna ports to transmit reference signals, and the adjacent base stations can use different sets of antenna ports to transmit reference signals, thereby realizing Reference signal / antenna port coordination.
  • the reference signal can also be dynamically changed.
  • the first base station and the adjacent second base station can exchange respective antenna port utilization conditions through X2 signaling between the base stations, thereby avoiding overlapping antenna ports to reduce interference, for example, through inter-base station coordination, the first base station only
  • the CSI-RS is transmitted to the user equipment it serves by using the antenna ports 15 to 18, and the second base station transmits the CSI-RS to the user equipment it serves by using only the antenna ports 19 to 22.
  • LAA Licensed-Assisted-Access
  • unlicensed bands of cellular networks such as TV bands, WiFi bands, etc.
  • the licensed bands are different, they are not Pre-determined according to certain rules among the base stations, each base station has the opportunity to utilize resources on the unlicensed frequency band. If neighboring base stations use the unlicensed frequency band to transmit reference signals on the same fixed antenna port, it is likely that they will This causes a lot of interference. In this case, this example will greatly improve the efficiency of the use of unlicensed bands.
  • the reference signal is cell-specific, and the preferred base station notifies the respective user equipment of the configuration information about the reference signal by broadcast signaling (for example, system information broadcast), thereby improving the efficiency of the indication.
  • the determining unit 101 may be further configured to determine, for other user equipment served by the base station, an uplink reference signal to be used by the user equipment. That is, the determining unit 101 takes into account the uplink reference signal that has been allocated to other user equipments served by the base station when determining the uplink reference signal to be used by the user equipment, for example, to avoid or mitigate the user equipment as much as possible. Interference between each other or for other purposes.
  • the determining unit 101 is configured to determine, for the user equipment served by the other base stations, an uplink reference signal to be used by the user equipment served by the base station.
  • the user equipment of the different base stations may use the same uplink reference signal. Therefore, when the determining unit 101 selects the uplink reference signal to be used by the user equipment served by the base station, the user equipment used by the other base station may also use the uplink. Reference signals are taken into account to, for example, avoid or mitigate mutual interference between user equipments between cells or for other purposes.
  • the generating unit 102 may generate a bitmap based on the sequence number of the reference signal to be used by the user equipment, where each bit represents whether the corresponding reference signal is to be used. For example, when there are 8 available reference signals (or antenna ports), an 8-bit bitmap can be used to construct the reference signal configuration information. Illustratively, when the sequence number of the reference signal to be used is 0, 5, 6, or 7, the generated bit bitmap is 11100001. Of course, the generation of the bit bitmap is not limited thereto, and other configurations may be employed, such as using 0 for using the corresponding reference signal and 1 for not using the corresponding reference signal.
  • the bit bitmap to notify the configuration of the reference signal, the signaling overhead of equal length in various configurations can be realized, especially in the case where the number of reference signals is large, the signaling overhead can be effectively reduced.
  • the apparatus 100 may further include a dividing unit 103 configured to divide all available reference signals into a plurality of subsets.
  • the determining unit 101 may select at least a part of the reference signals in at least one subset for each user equipment.
  • the reference signal configuration information includes: a sequence number of the subset of the selected reference signal; a sequence number of the selected reference signal in the subset, as shown in FIG. Since the division into a plurality of subsets, the number of reference signals in each subset is small compared to all available reference signals as one set, and therefore, the sequence number of the reference signal can be expressed in a relatively simple manner.
  • the sequence number of the reference signal can be represented by the above-described bit bitmap. This example is especially useful in systems where large-scale antennas (such as Massive MIMO) are deployed on the network side, thereby greatly reducing the configuration complexity of the antenna port/reference signal.
  • each downlink reference signal can be used by the user equipment to measure one channel or subchannel, ie, There may be 2 N channels or subchannels for the user equipment.
  • the 2 N downlink reference signals are divided into 2 M subsets, and the relationship between M and N satisfies 0 ⁇ M ⁇ N.
  • the length of the reference signal configuration information is M+2 N /2 M bits, wherein the first M bits indicate the sequence number of the reference signal subset, and the last 2 N /2 M is a bit bitmap and each bit is 0 or 1 to indicate whether the corresponding downlink reference signal is used.
  • the decimal number of the subset number of the downlink reference signal selected by the base station is m. Selecting several reference signals in the subset m and representing them by a bit string b l of length 2 N /2 M (the decimal value corresponding to the bit string is 1), the base station will represent a decimal value as l+2 (NM).
  • the downlink reference signal configuration of m is notified to the user equipment. That is, the user equipment needs to perform measurement of the channel ⁇ b l ⁇ a reference signal based on the values for m and b l, where 1
  • ⁇ B l ⁇ user equipment to identify a reference signal corresponding to 2 N from the predefined downlink reference signals based on the reference signal configuration information, and based on these channel measurement ⁇ b l ⁇ a reference signal.
  • the user equipment reports the measurement result to the base station, the base station selects ⁇ b l ⁇ a reference signal corresponding to a channel for data transmission channel according to user equipment reports, or partly or wholly using ⁇ b l ⁇ a reference signal
  • the corresponding subchannels constitute one channel for data transmission.
  • each subset includes 16 downlink reference signals, and each user equipment is allocated to use within a certain subset.
  • Reference signal, and the number and serial number are not fixed.
  • the reference signal configuration information is 000011 (corresponding to the subset 3) + 0000010100100001 (corresponding to the reference signals 0, 5 in the subset) , 8, 10), occupying a total of 22 bits.
  • the reference signal configuration information includes the subset number and the bit map of the reference signal
  • it may also include only the bit bitmap of the reference signal.
  • the number of subsets may be considered as 1. There is no subset division, so there is no need to notify the subset number.
  • each of the reference signal configuration information includes a reference signal in a subset.
  • the plurality of reference signal configuration information can be notified to the user equipment, for example, in multiple times.
  • the apparatus 100 may further include: a notification unit 104 configured to notify the user equipment of the reference signal configuration information.
  • notification unit 104 is configured to communicate via higher layer signaling.
  • the higher layer signaling is RRC signaling.
  • the device 100 improves the flexibility of the reference signal configuration by dynamically determining the reference signal to be used for the user equipment.
  • the apparatus 200 includes a determining unit 201 configured to be based on a reference from the base station for the user equipment. Signal configuration information to determine a sequence number of a reference signal to be used by the user equipment; and a transceiving unit 202 configured to perform transceiving of the reference signal based on an antenna port associated with a sequence number of the reference signal.
  • the sequence number of the reference signal corresponds to the sequence number of the antenna port
  • the determining unit 201 can determine the sequence number of the antenna port based on the sequence number of the reference signal according to the correspondence.
  • the user equipment performs channel state measurement according to the received reference signal.
  • the transceiver unit 202 can report the measurement result to the base station, so that the base station selects a channel for data transmission for the user equipment.
  • downlink reference signals include, but are not limited to, CSI-RS, downlink DMRS.
  • the reference signal may also be an uplink reference signal such as an SRS, an uplink DMRS, etc., in which case the user equipment transmits the determined reference signal through the transceiver unit 202.
  • an uplink reference signal such as an SRS, an uplink DMRS, etc.
  • the transceiving unit 202 is further configured to receive reference signal configuration information through higher layer signaling.
  • the higher layer signaling is, for example, RRC signaling.
  • the reference signal configuration information may include a bitmap of bits generated based on the sequence number of the reference signal to be used by the user equipment, where each bit represents whether the corresponding reference signal is to be used. The generation of the bit bitmap is described in detail in the first embodiment and will not be repeated here.
  • the available reference signals are divided into a plurality of subsets, and the reference signal configuration information represents at least a portion of the reference signals in at least one subset.
  • the reference signal configuration information may include: a sequence number of the subset in which the selected reference signal is located; a sequence number of the selected reference signal in the subset.
  • the base station may separately generate reference signal configuration information for the reference signals in each subset and transmit to the user equipment multiple times. Accordingly, the transceiving unit 202 receives the reference signal configuration information a plurality of times to obtain complete reference signal configuration information, and the determining unit 201 determines the sequence number of the reference signal to be used by the user equipment based on the complete reference signal configuration information.
  • the device 200 can dynamically select the reference signal to be used by determining the reference signal to be used before transmitting and receiving the reference signal, thereby improving flexibility.
  • embodiments of the base station side and user equipment side devices in a wireless communication system may be implemented partially or completely using hardware and/or firmware, while the methods discussed below may be implemented entirely by computer executable programs, although These methods may also employ hardware and/or firmware of the devices on the base station side and the user equipment side in the wireless communication system.
  • FIG. 5 shows a flow chart of a method at the base station side in a wireless communication system according to an embodiment of the present application, the method comprising: dynamically determining the reference signal set available from a base station based on a transmission characteristic associated with the user equipment a reference signal to be used by the user equipment (S12); and reference signal configuration information for the user equipment (S13), the configuration information including an indication of the sequence number of the reference signal to be used by the user equipment, wherein the sequence number of the reference signal Associated with the antenna port number.
  • the transmission characteristic includes at least one of a device parameter, a transmission requirement, a channel state, an interference condition, and a geographical location of the user equipment.
  • the reference signal may be a downlink reference signal of at least one of: a channel state information reference signal CSI-RS, and a downlink demodulation reference signal DMRS.
  • the reference signal can also be a beam shaped reference signal.
  • the reference signal may be an uplink reference signal of at least one of: a sounding reference signal SRS, and an uplink demodulation reference signal DMRS.
  • a reference signal to be used by the user equipment may be determined for each user equipment served by the base station. Alternatively, the same reference signal is determined for all user equipments served by the base station in step S12. As another example, in step S12, a reference signal to be used by the user equipment is determined for other user equipment served by the base station. As still another example, in step S12, the reference signal to be used by the user equipment served by the base station is determined for the user equipment served by the other base stations.
  • a bitmap may be generated based on the sequence number of the reference signal to be used by the user equipment, where each bit represents whether the corresponding reference signal is to be used.
  • the above method may further include step S11: There are available reference signals divided into multiple subsets. At least part of the reference signals in at least one subset may be selected for each user equipment in step S12.
  • the reference signal configuration information generated in step S13 includes: a sequence number of a subset of the selected reference signal; a sequence number of the selected reference signal in the subset. The sequence number of the reference signal selected in the subset may be represented by a bit bitmap.
  • the above method may further include step S14: notifying the user equipment of the reference signal configuration information.
  • the notification may be performed by using high layer signaling, which may be RRC signaling.
  • FIG. 6 shows a flowchart of a method for a user equipment side for wireless communication according to an embodiment of the present application, including: determining, according to reference signal configuration information for a user equipment from a base station, that the user equipment is to be used.
  • the reference signal may be at least one of a downlink reference signal, such as a CSI-RS and a downlink DMRS, and the user equipment performs channel state measurement according to the received reference signal.
  • the reference signal may also be an uplink reference signal such as an SRS and an uplink DMRS, and the user equipment transmits a reference signal based on an antenna port associated with the sequence number of the reference signal.
  • the reference signal configuration information may be received by receiving higher layer signaling such as RRC signaling.
  • the reference signal configuration information includes a bitmap of bits generated based on the sequence number of the reference signal to be used by the user equipment, where each bit represents whether the corresponding reference signal is to be used.
  • All available reference signals may be divided into a plurality of subsets, the reference signal configuration information representing at least a portion of the reference signals in at least one subset.
  • the reference signal configuration information may include: a sequence number of the subset of the selected reference signal; a sequence number of the selected reference signal in the subset.
  • the base station may generate multiple reference signal configuration information, and the user equipment receives the reference signal configuration information one by one, and determines the reference to be used based on all received reference signal configuration information. The serial number of the signal.
  • FIG. 7 shows an example of information flow between a base station and a user equipment.
  • the base station first dynamically determines a reference signal to be used by the user equipment from the available reference signal set according to a transmission characteristic related to the user equipment, and generates reference signal configuration information, including a reference signal to be used by the user equipment.
  • the indication of the serial number, the sequence number of the reference signal is associated with the serial number of the antenna port (for example, corresponding).
  • the base station notifies the user equipment of the generated reference signal configuration information.
  • the user equipment determines the user according to the received reference signal configuration information.
  • the sequence number of the reference signal to be used by the device based on the sequence number, the sequence number of the antenna port associated with it can be obtained, thereby transmitting and receiving the reference signal based on the corresponding antenna port.
  • the user equipment performs measurement of the channel state of the corresponding channel; in the case of the uplink reference signal, the user equipment transmits the selected uplink reference signal.
  • a communication system including a base station and a user equipment, wherein the base station includes the device 100, and the user equipment includes the device 200 is also disclosed.
  • a base station can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB Base Transceiver Station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of terminals can operate as base stations by performing base station functions temporarily or semi-persistently.
  • the user equipment can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal (such as a car navigation device). ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 8 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • Figure 8 shows The eNB 800 includes an example of multiple antennas 810, but the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 8 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 9 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 8 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 9 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 9 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the notification unit 104 described by using FIG. 2 can be implemented by the wireless communication interface 825 and the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 821 and controller 851.
  • the controller 821 and the controller 851 can perform flexible configuration of the reference signal by performing functions of the determining unit 101, the generating unit 102, and the dividing unit 103.
  • FIG. 10 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • Input device The 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 10 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 10 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Electricity Pool 918 provides power to various blocks of smart phone 900 shown in FIG. 10 via feeders, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the transceiver unit 202 described by using FIG. 4 can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can perform determination of the serial number of the reference signal by performing the function of the determining unit 201.
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF Circuitry 935 can include, for example, mixers, filters, and amplifiers, and transmits and receives wireless signals via antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 11 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 11 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in FIG. 11 via feeders, which are shown partially as dashed lines in the figures. Battery 938 accumulates power supplied from the vehicle.
  • the transceiving unit 202 described by using FIG. 4 can be implemented by the wireless communication interface 933. At least a portion of the functionality can also be implemented by processor 921.
  • the processor 921 can perform determination of the serial number of the reference signal by performing the function of the determining unit 201.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the determining unit, the generating unit, the dividing unit, and the like in the foregoing apparatus may be implemented by one or more processors, for example, the notification unit, the transceiver unit, etc. may be Implementation of circuit components such as antennas, filters, modems, and codecs.
  • the present invention also provides an electronic device (1) comprising: a circuit configured to dynamically determine, from a reference signal set available to a base station, a user equipment to use based on a transmission characteristic associated with the user equipment a reference signal; and generating reference signal configuration information for the user equipment, the configuration information including an indication of a sequence number of a reference signal to be used by the user equipment, wherein the sequence number of the reference signal is associated with an antenna port number.
  • the present invention also provides an electronic device (2), comprising: a circuit configured to: determine a sequence number of a reference signal to be used by the user equipment according to reference signal configuration information for the user equipment from the base station; And transceiving the reference signal based on the antenna port associated with the sequence number of the reference signal.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 1200 shown in FIG. 12), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 1201 executes various processes in accordance with a program stored in a read only memory (ROM) 1202 or a program loaded from a storage portion 1208 to a random access memory (RAM) 1203.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1201 executes various processes and the like is also stored as needed.
  • the CPU 1201, the ROM 1202, and the RAM 1203 are connected to each other via a bus 1204.
  • Input/output interface 1205 is also coupled to bus 1204.
  • the following components are connected to the input/output interface 1205: an input portion 1206 (including a keyboard, a mouse, etc.), an output portion 1207 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 1208 (including a hard disk or the like), the communication portion 1209 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 1209 performs communication processing via a network such as the Internet.
  • the driver 1210 can also be connected to the input/output interface 1205 as needed.
  • a removable medium 1211 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1210 as needed, so that the computer program read therefrom is installed into the storage portion 1208 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1211.
  • such a storage medium is not limited to the removable medium 1211 shown in FIG. 12 in which a program is stored and distributed separately from the device to provide a program to a user.
  • the removable medium 1211 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1202, a hard disk included in the storage portion 1208, or the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了用于无线通信的基站侧和用户设备侧的装置及方法,该用于无线通信的基站侧的装置包括:确定单元,被配置为基于与用户设备相关的传输特性,从基站可用的参考信号集合中动态确定该用户设备要使用的参考信号;以及生成单元,被配置为生成用于该用户设备的参考信号配置信息,该配置信息包含对该用户设备要使用的参考信号的序号的指示,其中,参考信号的序号与天线端口序号相关联。

Description

用于无线通信的基站侧和用户设备侧的装置及方法
本申请要求于2015年8月14日提交中国专利局、申请号为201510502495.2、发明名称为“用于无线通信的基站侧和用户设备侧的装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及对参考信号进行灵活配置的用于无线通信的基站侧的装置及方法、以及用于无线通信的用户设备侧的装置及方法。
背景技术
在现有3GPP中,参考信号的分配是连续的且固定的,即各个用户设备的参考信号通过固定的若干个天线端口发送。比如,天线端口数为4时,天线端口15-18同时发送参考信号,用户设备例如可以测量对应于4端口的信道,并且将信道状态信息反馈给基站。在大规模天线系统中,由于基站天线数量较多,用户设备可能只使用部分参考信号。在这种情况下,需要更为灵活的参考信号通知方案。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的基站侧的装置,包括:确定单元,被配置为基于与用户设备相关的传输特性,从基站可用的参考信号集合中动态确定该用户设备要使用的参考信号;以及生成单 元,被配置为生成用于该用户设备的参考信号配置信息,该配置信息包含对该用户设备要使用的参考信号的序号的指示,其中,参考信号的序号与天线端口序号相关联。
根据本申请的另一个方面,提供了一种用于无线通信的用户设备侧的装置,包括:确定单元,被配置为根据来自基站的用于该用户设备的参考信号配置信息来确定该用户设备要使用的参考信号的序号;以及收发单元,被配置为基于与参考信号的序号相关联的天线端口进行参考信号的收发。
根据本申请的一个方面,提供了一种无线通信系统中的基站侧的方法,包括:基于与用户设备相关的传输特性,从基站可用的参考信号集合中动态确定该用户设备要使用的参考信号;以及生成用于该用户设备的参考信号配置信息,该配置信息包含对该用户设备要使用的参考信号的序号的指示,其中,参考信号的序号与天线端口序号相关联。
根据本申请的另一个方面,提供了一种用于无线通信的用户设备侧的方法,包括:根据来自基站的用于该用户设备的参考信号配置信息来确定该用户设备要使用的参考信号的序号;以及基于与参考信号的序号相关联的天线端口进行参考信号的收发。
根据本申请的另一个方面,还提供了一种无线通信系统,包括基站和用户设备,其中,基站包括上述无线通信系统中的基站侧的装置,用户设备包括上述无线通信系统中的用户设备侧的装置。
依据本发明的其它方面,还提供了用于实现上述无线通信系统中的基站侧和用户设备侧的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述无线通信系统中的基站侧和用户设备侧的方法的计算机程序代码的计算机可读存储介质。
在本申请的实施例中,通过动态确定用户设备要使用的参考信号并生成相应的参考信号配置信息,可以灵活地配置用户设备要使用的参考信号,以使其与用户设备的传输特性相适应。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的上述以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了LTE中小区专用参考信号(CS-RS)与天线端口的对应关系的示例的图;
图2示出了根据本申请的一个实施例的无线通信系统中的基站侧的装置的结构框图;
图3示出了参考信号配置信息的一个示例;
图4示出了根据本申请的一个实施例的无线通信系统中的用户设备侧的装置的结构框图;
图5示出了根据本申请的一个实施例的无线通信系统中的基站侧的方法的流程图;
图6示出了根据本申请的一个实施例的无线通信系统中的用户设备侧的方法的流程图;
图7示出了基站与用户设备之间的信息流程的示例的图;
图8是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图9是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图10是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图11是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图12是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和 简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
如前所述,由于现有参考信号的使用数量决定了参考信号的使用状况进而决定了要使用的天线端口,为了适应动态改变参考信号配置的应用场景,期望提高参考信号配置的灵活性。尤其在大规模天线系统的情况下,对于一个用户设备而言,可能仅需要使用部分天线端口,因此需要对不同的情况进行区分而避免应用单一的、完整的参考信号配置,以尽可能节省传输资源和信令开销。
当基站对来自MAC层的动态大小的传输块进行了一系列的处理比如逐传输块的CRC插入、分段、信道编码、速率匹配和物理层混合ARQ、比特级扰码、数据调制等后,将所获得的调制符号进行天线映射以发送到用户设备。在天线映射的过程中,对调制符号进行联合处理并将结果映射到不同的天线端口。应该注意,本文中的天线端口可以与物理天线单元(Antenna Element)相对应,也可以具有更一般的含义。例如,对于下行链路,天线端口可以被看作与参考信号的传输相对应。参考信号(有时也称为导频),通常包含未经过调制等信号处理的已知信号,例如可以用于相应天线端口的数据传输的信道估计或相干解调等。在一个示例中,用户设备基于从特定天线端口接收到的下行参考信号进行信道估计并向基站反馈信道状态信息,例如信道质量有关的信息、信道方向有关的信息。如果从多个物理天线单元发送同一参考信号,则这些物理天线单元对应于单个天线端口。类似地,如果两个不同的参考信号从同一组物理天线单元发送,它们也被认为对应于两个不同的天线端口。
图1示出了LTE中小区专用参考信号(CS-RS)与天线端口的对应 关系的示例的图,左侧示出了两个天线端口的情况,右侧示出了4个天线端口的情况。可以看出,每一个下行天线端口传输一个CS-RS,不同的CS-RS使用不同的资源单元(resource element)进行传输。因此,可以认为参考信号与天线端口是对应的。
应该理解,这里虽然以CS-RS为例进行了说明,但是其他参考信号比如信道状态信息参考信号(CSI-RS)、解调参考信号(DMRS)等具有类似的对应关系。
更一般地,还可以认为在并且仅在两个接收信号是从同一天线端口发出的情况下,这两个接收信号被认为经历了相同的整体信道。天线端口被定义为使得天线端口上的符号通过其传递的信道可以从同一天线端口上的其他符号通过其传递的信道推出。在这种情况下,还可以认为参考信号或天线端口与信道或子信道相对应。
因此,对参考信号的配置相当于对用户设备要使用的信道或子信道的配置,提高参考信号的配置的灵活性有助于为用户设备配置适当的信道或子信道。
为了提高参考信号配置的灵活性,本申请的一个实施例提出了结构框图如图2所示的用于无线通信的基站侧的装置100,该装置100包括:确定单元101,被配置为基于与用户设备相关的传输特性,从基站可用的参考信号集合中动态确定该用户设备要使用的参考信号;以及生成单元102,被配置为生成用于该用户设备的参考信号配置信息,该配置信息包含对该用户设备要使用的参考信号的序号的指示,其中,参考信号的序号与天线端口序号相关联。
根据与用户设备相关的传输特性进行参考信号的动态选择,例如可以有利地选择适当的信道、即适当的天线端口来进行参考信号的传输,不仅可以提高参考信号配置的灵活性,还可以有利于实现干扰协调、传输质量保证等目的。在一个示例中,传输特性包括用户设备的设备参数、传输要求、信道状态、干扰情况、地理位置等中的至少一个。
装置100所生成的参考信号配置信息包含对用户设备要使用的参考信号的序号的指示,该参考信号的序号与天线端口的序号相关联。序号的定义和这种关联关系的定义可以是预先确定的,为基站和用户设备所共知。例如,参考信号的序号和天线端口的序号具有对应关系,比如参考信号序号1对应天线端口15,参考信号序号2对应天线端口16等。这样, 当用户设备获得参考信号配置信息时,可以获知要进行参考信号的收发的天线端口的配置信息。
上述参考信号可以为下行参考信号,例如,参考信号为如下至少之一的下行参考信号:CSI-RS、下行DMRS。确定单元101例如根据用户设备的上行信道状态等选择适当的下行参考信号,其中,上行信道状态例如可以通过接收用户设备发送的上行参考信号估计得到,并利用上下行信道的互易性(reciprocity)来获知下行的传输特性并选择下行参考信号,生成单元102根据所选择的下行参考信号的序号生成相应的参考信号配置信息,用户设备在获得该参考信号配置信息之后获得下行参考信号的序号并基于相应的下行参考信号进行信道状态的测量或信道估计等。在一个示例中,参考信号可以为波束赋形(beamformed)参考信号,即经过波束赋形处理的参考信号。在这个示例下,不同序号的参考信号通过不同方向的波束发送到用户设备,由于波束本身具有方向性,用户设备在需要进行信道状态信息反馈时可以无需专门反馈信道方向信息(例如预编码矩阵指示PMI),而仅报告一个(例如质量最好的)或多个波束(例如质量排名前n位的,n可以由基站的高层信令配置)上的波束赋形参考信号对应的信道质量信息(例如CQIBeam1,CQIBeam2,…,CQIBeamn)。相应地,基站基于各个波束上的信道质量报告即可判断基站到用户设备的信道方向情况。其中,基站可以在预定的多个方向上传输波束赋形参考信号,也可以基于当前连接的用户设备的地理位置分布确定能够覆盖这些用户设备的多个方向以传输波束赋形参考信号。
上述参考信号也可以为上行参考信号,例如,参考信号为如下至少之一的上行参考信号:探测参考信号SRS、上行DMRS。类似地,确定单元101例如可以根据用户设备的地理位置、干扰情况等选择适当的上行参考信号,生成单元102根据所选择的上行参考信号的序号生成相应的参考信号配置信息,用户设备在获得该参考信号配置信息之后获得上行参考信号的序号并发送相应的上行参考信号。
确定单元101可以针对基站所服务的特定用户设备来确定该用户设备要使用的参考信号。换言之,参考信号是特定于用户设备的并且可以动态改变。此示例例如能够根据各个用户设备的具体情况来选择合适的参考信号配置从而提高信道估计的性能、用户设备也无需监测所有参考信号而减少运算、能耗等开销。具体地,例如当前的LTE系统中基站通过天线端口15至22向所有用户设备发送CSI-RS,用户设备也将测量8个天线 端口上的所有CSI-RS,并进行相应的信道状态反馈。基于本公开的示例,在已获知第一用户设备及第二用户设备相关的传输特性的情况下,基站可以指示第一用户设备仅测量天线端口15~18发送的CSI-RS,指示第二用户设备仅测量天线端口19~22发送的CSI-RS,从而第一及第二用户设备的测量工作量相较于传统用户设备减半。需注意的是,基站服务多个用户设备的情况下,可以仅针对其中部分用户设备配置用户设备特定的参考信号,而对于其他用户设备仍采用传统的方式,相应地,用户设备可以例如根据是否接收到参考信号配置信息来确定自己的测量对象,在未收到参考信号配置信息的情况下,仍对固定的多个天线端口上的参考信号进行测量。在此示例中,由于参考信号配置是用户特定的,因此优选地,基站通过专用信令(例如RRC信令)向用户设备通知其参考信号配置信息,从而保证各个用户设备对该指示的及时、准确的接收。
此外,确定单元101还可以针对基站(的某个小区)所服务的所有用户设备确定相同的参考信号,例如从预定的参考信号集合中选择一部分用于所有用户设备。换言之,每一个基站的一个小区内所服务的用户设备使用相同的一组天线端口来发送参考信号,而相邻的基站可以使用不同的另一组天线端口来发送参考信号,从而实现基站之间的参考信号/天线端口协调。类似地,参考信号也可以动态改变。具体地,例如第一基站与相邻的第二基站可以通过基站间的X2信令交互各自的天线端口利用情况,从而避免重叠的天线端口以降低干扰,比如经过基站间协调,第一基站仅利用天线端口15~18发送CSI-RS至其服务的用户设备,第二基站仅利用天线端口19~22发送CSI-RS至其服务的用户设备。本示例尤其适用于LAA(Licensed-Assisted-Access)等涉及使用未授权频段资源的应用场景中,对于蜂窝网络的非授权频段(例如电视频段、WiFi频段等),和授权频段不同,其没有被预先的按照一定规则在各个基站间进行划分,各个基站皆有机会利用未授权频段上的资源,那么若相邻的基站利用未授权频段在相同的固定天线端口上发送参考信号很可能会对彼此造成很大的干扰,此种情况下,本示例将大大提升对未授权频段的使用效率。此外,在此示例中,参考信号是小区特定的,优选的基站通过广播信令(例如系统信息广播)通知各个用户设备关于参考信号的配置信息,从而提升指示的效率。
在一个示例中,确定单元101还可以被配置为针对基站所服务的其他用户设备确定该用户设备要使用的上行参考信号。即,确定单元101在确定该用户设备要使用的上行参考信号时,将已经分配给基站所服务的其他用户设备使用的上行参考信号考虑在内,以例如尽量避免或减轻用户设备 间的相互干扰或实现其他目的。
或者,确定单元101被配置为针对其他基站所服务的用户设备确定本基站所服务的该用户设备要使用的上行参考信号。由于不同的基站的用户设备可能使用相同的上行参考信号,因此,确定单元101在为本基站服务的用户设备选择要使用的上行参考信号时,也可以将其他基站所服务的用户设备使用的上行参考信号考虑在内,以例如避免或减轻小区间用户设备之间的相互干扰或实现其他目的。
作为一个示例,生成单元102可以基于用户设备要使用的参考信号的序号生成比特位图(bitmap),其中的每一位代表相应的参考信号是否要被使用。例如,当共有8个可用参考信号(或天线端口)时,可以采用8位的比特位图来构成参考信号配置信息。示例性地,当要使用的参考信号的序号为0、5、6、7时,所生成的比特位图为11100001。当然,比特位图的生成并不限于此,可以采用其他的配置,比如用0表示使用相应的参考信号而用1表示不使用相应的参考信号。
通过使用比特位图来通知参考信号的配置,可以实现各种配置情况下的等长的信令开销,尤其在参考信号数量较多的情况下,可以有效地减小信令开销。
如图2中的虚线框所示,装置100还可以包括:划分单元103,被配置为将所有可用的参考信号划分为多个子集。确定单元101可以分别为每一个用户设备选择至少一个子集中的至少部分参考信号。
参考信号配置信息包括:所选择的参考信号所在子集的序号;该子集中所选择的参考信号的序号,如图3所示。由于划分为多个子集,与所有可用的参考信号作为一个集合相比,每个子集中的参考信号的数量较少,因此,参考信号的序号可以用较为简单的方式表示。例如,参考信号的序号可以采用上述比特位图的方式表示。本示例尤其适用于网络侧部署有大规模天线(例如Massive MIMO)的系统中,从而大幅降低天线端口/参考信号的配置复杂度。
以下行参考信号为例,假设多天线基站有2N个可用的下行参考信号(即2N个天线端口),每个下行参考信号可被用户设备用来测量一个信道或子信道,即,对用户设备而言可能存在2N个信道或子信道。这2N个下行参考信号被分为2M个子集,M与N的关系满足0≤M<N。当采用比特位图来表示子集内所选择的参考信号的序号时,参考信号配置信息的长度为 M+2N/2M比特,其中前M比特指示参考信号子集的序号,后2N/2M为比特比特位图且每个比特为0或1,用于表示相应的下行参考信号是否被使用。
假设基站选择的下行参考信号的子集序号的十进制表示为m。在子集m中选择若干个参考信号并以长度为2N/2M的比特串bl表示(该比特串对应的十进制值为l),则基站将一个十进制表示为l+2(N-M)m的下行参考信号配置通知给用户设备。即,用户设备需要基于m与bl的值对‖bl1个参考信号进行信道测量,其中‖bl1表示比特串bl中1的个数。用户设备根据该参考信号配置信息从预定义的2N个下行参考信号中找出所对应的‖bl1个参考信号,并基于这‖bl1个参考信号进行信道测量。用户设备将测量结果报告给基站,基站根据用户设备的报告选择‖bl1个参考信号所对应的信道中的一个信道进行数据传输,或者部分或全部使用‖bl1个参考信号所对应的子信道组成一个信道进行数据传输。
例如,当N=10且M=6时,即共有1024个可用下行参考信号并划分为64个子集时,每个子集包括16个下行参考信号,每个用户设备被分配使用某个子集内的参考信号,且数量与序号不固定。例如,当基站期望用户设备测量子集3中的参考信号0、5、8、10时,参考信号配置信息为000011(对应于子集3)+0000010100100001(对应于子集中的参考信号0、5、8、10),共占用22比特。
以上虽然给出了参考信号配置信息包括子集序号和参考信号的比特位图两部分的示例,但是也可以仅包括参考信号的比特位图,在这种情况下,可认为子集的数目为1、即无子集划分,从而无需通知子集序号。此外,还可以仅发送子集序号,在这种情况下,设置为用户设备使用某一子集中的全部参考信号。
当确定单元102所选择的参考信号位于多个子集中时,例如可以生成多条参考信号配置信息,其中,每一条参考信号配置信息包括一个子集中的参考信号。多条参考信号配置信息例如可以分多次通知给用户设备。
如图2中的另一个虚线框所示,装置100还可以包括:通知单元104,被配置为将参考信号配置信息通知给用户设备。在一个示例中,通知单元104被配置为通过高层信令来进行通知。例如,该高层信令为RRC信令。
综上所述,装置100通过为用户设备动态确定要使用的参考信号,提高了参考信号配置的灵活性。
<第二实施例>
图4示出了根据本申请的一个实施例的用于无线通信的用户设备侧的装置200的结构框图,装置200包括:确定单元201,被配置为根据来自基站的用于该用户设备的参考信号配置信息来确定该用户设备要使用的参考信号的序号;以及收发单元202,被配置为基于与参考信号的序号相关联的天线端口进行参考信号的收发。
在一个示例中,参考信号的序号与天线端口的序号是对应的,确定单元201可以根据该对应关系来基于参考信号的序号确定天线端口的序号。
在参考信号为下行参考信号的情况下,用户设备根据所接收的参考信号来进行信道状态的测量。例如,收发单元202可以将测量结果上报给基站,以使得基站为用户设备选择进行数据传输的信道。下行参考信号的示例包括但不限于:CSI-RS,下行DMRS。
此外,参考信号还可以为上行参考信号比如SRS、上行DMRS等,在这种情况下,用户设备通过收发单元202进行所确定的参考信号的发送。
在一个示例中,收发单元202还被配置为通过高层信令来接收参考信号配置信息。高层信令例如为RRC信令。
参考信号配置信息可以包括基于用户设备要使用的参考信号的序号生成的比特位图,其中的每一位代表相应的参考信号是否要被使用。比特位图的生成在第一实施例中进行了详细描述,在此不再重复。
在一个示例中,可用的参考信号划分为多个子集,参考信号配置信息表示至少一个子集中的至少部分参考信号。在这种情况下,参考信号配置信息可以包括:所选择的参考信号所在的子集的序号;该子集中所选择的参考信号的序号。当所选择的参考信号位于多个子集中时,基站可以分别针对每一个子集中的参考信号生成参考信号配置信息,并且分多次向用户设备发送。相应地,收发单元202多次接收参考信号配置信息以获得完整的参考信号配置信息,并且确定单元201基于完整的参考信号配置信息来确定用户设备要使用的参考信号的序号。
有关参考信号配置信息的具体示例在第一实施例中进行了详细描述,在此不再重复。
综上所述,装置200通过在进行参考信号的收发之前确定要使用的参考信号,可以动态地选择要使用的参考信号,提高了灵活性。
<第三实施例>
在上文的实施方式中描述无线通信系统中的基站侧和用户设备侧的装置的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述无线通信系统中的基站侧和用户设备侧的装置的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,无线通信系统中的基站侧和用户设备侧的装置的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用无线通信系统中的基站侧和用户设备侧的装置的硬件和/或固件。
图5示出了根据本申请的一个实施例的无线通信系统中的基站侧的方法的流程图,该方法包括:基于与用户设备相关的传输特性,从基站可用的参考信号集合中动态确定该用户设备要使用的参考信号(S12);以及生成用于该用户设备的参考信号配置信息(S13),配置信息包含对该用户设备要使用的参考信号的序号的指示,其中,参考信号的序号与天线端口序号相关联。
其中,传输特性包括该用户设备的设备参数、传输要求、信道状态、干扰情况、地理位置中的至少一个。
例如,参考信号可以为如下至少之一的下行参考信号:信道状态信息参考信号CSI-RS,下行解调参考信号DMRS。参考信号还可以为波束赋形参考信号。作为另一个示例,参考信号可以为如下至少之一的上行参考信号:探测参考信号SRS,上行解调参考信号DMRS。
在步骤S12中,可以针对基站所服务的每一个用户设备确定该用户设备要使用的参考信号。或者,在步骤S12中针对基站所服务的所有用户设备确定相同的参考信号。作为另一个示例,在步骤S12中,针对基站所服务的其他用户设备确定该用户设备要使用的参考信号。作为又一个示例,在步骤S12中,针对其他基站所服务的用户设备确定本基站所服务的该用户设备要使用的参考信号。
在步骤S13中,可以基于该用户设备要使用的参考信号的序号生成比特位图,其中的每一位代表相应的参考信号是否要被使用。
此外,如图5中的虚线框所示,上述方法还可以包括步骤S11:将所 有可用的参考信号划分为多个子集。在步骤S12中可以分别为每一个用户设备选择至少一个子集中的至少部分参考信号。在步骤S13中生成的参考信号配置信息包括:所选择的参考信号所在子集的序号;该子集中所选择的参考信号的序号。其中,子集中所选择的参考信号的序号可以用比特位图表示。当选择的参考信号位于多个子集中时,可以生成多条参考信号配置信息,并且分多次逐条通知用户设备。
如图5中的另一个虚线框所示,上述方法还可以包括步骤S14:将参考信号配置信息通知给用户设备。例如,可以通过高层信令来进行通知,高层信令可以为RRC信令。
图6示出了根据本申请的一个实施例的用于无线通信的用户设备侧的方法的流程图,包括:根据来自基站的用于该用户设备的参考信号配置信息来确定该用户设备要使用的参考信号的序号(S21);以及基于与参考信号的序号相关联的天线端口进行参考信号的收发(S22)。
其中,参考信号可以为下行参考信号比如CSI-RS和下行DMRS的至少之一,用户设备根据所接收的参考信号进行信道状态的测量。参考信号也可以为上行参考信号比如SRS和上行DMRS,用户设备基于与参考信号的序号相关联的天线端口发送参考信号。
可以通过接收高层信令比如RRC信令来接收参考信号配置信息。在一个示例中,参考信号配置信息包括基于用户设备要使用的参考信号的序号生成的比特位图,其中的每一位代表相应的参考信号是否要被使用。
所有可用的参考信号可以被划分为多个子集,参考信号配置信息表示至少一个子集中的至少部分参考信号。在这种情况下,参考信号配置信息可以包括:所选择的参考信号所在子集的序号;该子集中所选择的参考信号的序号。当选择的参考信号位于多个子集中时,基站可以生成多条参考信号配置信息,用户设备分多次逐条接收这些参考信号配置信息,并基于所接收的所有参考信号配置信息来确定要使用的参考信号的序号。
为了便于理解,图7示出了基站和用户设备间的信息流程的示例。如图7所示,基站首先根据与用户设备有关的传输特性,从可用的参考信号集合中动态确定用户设备要使用的参考信号并生成参考信号配置信息,其中包括对用户设备要使用的参考信号的序号的指示,参考信号的序号与天线端口的序号相关联(例如,相对应)。然后,基站将生成的参考信号配置信息通知给用户设备。用户设备根据接收的参考信号配置信息确定用户 设备要使用的参考信号的序号,基于该序号可以获得与其相关联的天线端口的序号,从而基于相应的天线端口进行参考信号的收发。例如,在下行参考信号的情况下,用户设备进行相应信道的信道状态的测量;在上行参考信号的情况下,用户设备发送所选择的上行参考信号。
注意,上述各个方法可以结合或单独使用,其细节在第一和第二实施例中已经进行了详细描述,在此不再重复。
此外,在以上的描述中,还公开了一种通信系统,包括基站和用户设备,其中基站包括装置100,用户设备包括装置200。
本公开内容的技术能够应用于各种产品。例如,基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图8是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图8所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图8示出其中 eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图8所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图8所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图8示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图9是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图9所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图9示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图8描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图8描述的BB处理器826相同。如图9所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图9示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图9所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图9示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图8和图9所示的eNB 800和eNB 830中,通过使用图2所描述的通知单元104可以由无线通信接口825以及无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器821和控制器851实现。例如,控制器821和控制器851可以通过执行确定单元101、生成单元102、划分单元103的功能来执行参考信号的灵活配置。
[关于用户设备的应用示例]
(第一应用示例)
图10是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置 909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图10所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图10示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图10所示,智能电话900可以包括多个天线916。虽然图10示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电 池918经由馈线向图10所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图10所示的智能电话900中,通过使用图4所描述的收发单元202可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行确定单元201的功能来执行参考信号的序号的确定。
(第二应用示例)
图11是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF 电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图11所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图11示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图11所示,汽车导航设备920可以包括多个天线937。虽然图11示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图11所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图11示出的汽车导航设备920中,通过使用图4所描述的收发单元202可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行确定单元201的功能来执行参考信号的序号的确定。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是, 对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
本领域的技术人员可以理解,上文所述的装置中的例如确定单元、生成单元、划分单元等,可以由一个或更多个处理器来实现,而例如通知单元、收发单元等,可以由天线、滤波器、调制解调器及编解码器等电路元器件实现。
因此,本发明还提出了一种电子设备(1),包括:一种电路,被配置为:基于与用户设备相关的传输特性,从基站可用的参考信号集合中动态确定该用户设备要使用的参考信号;以及生成用于该用户设备的参考信号配置信息,该配置信息包含对该用户设备要使用的参考信号的序号的指示,其中,参考信号的序号与天线端口序号相关联。
本发明还提出了一种电子设备(2),包括:一种电路,被配置为:根据来自基站的用于该用户设备的参考信号配置信息来确定该用户设备要使用的参考信号的序号;以及基于与参考信号的序号相关联的天线端口进行参考信号的收发。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图12所示的通用计算机1200)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图12中,中央处理单元(CPU)1201根据只读存储器(ROM)1202中存储的程序或从存储部分1208加载到随机存取存储器(RAM)1203的程序执行各种处理。在RAM 1203中,也根据需要存储当CPU 1201执行各种处理等等时所需的数据。CPU 1201、ROM 1202和RAM 1203经由总线1204彼此连接。输入/输出接口1205也连接到总线1204。
下述部件连接到输入/输出接口1205:输入部分1206(包括键盘、鼠标等等)、输出部分1207(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1208(包括硬盘等)、通信部分1209(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1209经由网络比如因特网执行通信处理。根据需要,驱动器1210也可连接到输入/输出接口1205。可移除介质1211比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1210上,使得从中读出的计算机程序根据需要被安装到存储部分1208中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1211安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图12所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1211。可移除介质1211的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1202、存储部分1208中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (26)

  1. 一种用于无线通信的基站侧的装置,包括:
    确定单元,被配置为基于与用户设备相关的传输特性,从所述基站可用的参考信号集合中动态确定该用户设备要使用的参考信号;以及
    生成单元,被配置为生成用于该用户设备的参考信号配置信息,所述配置信息包含对该用户设备要使用的参考信号的序号的指示,
    其中,所述参考信号的序号与天线端口序号相关联。
  2. 根据权利要求1所述的装置,其中,所述生成单元基于该用户设备要使用的参考信号的序号生成比特位图,其中的每一位代表相应的参考信号是否要被使用。
  3. 根据权利要求1所述的装置,其中,所述确定单元被配置为针对基站所服务的特定用户设备确定该用户设备要使用的参考信号。
  4. 根据权利要求1所述的装置,其中,所述确定单元被配置为针对基站所服务的所有用户设备确定相同的参考信号。
  5. 根据权利要求1所述的装置,其中,所述确定单元被配置为针对基站所服务的其他用户设备确定该用户设备要使用的上行参考信号。
  6. 根据权利要求1所述的装置,其中,所述确定单元被配置为针对其他基站所服务的用户设备确定本基站所服务的该用户设备要使用的上行参考信号。
  7. 根据权利要求1所述的装置,还包括:
    划分单元,被配置为将所有可用的参考信号划分为多个子集。
  8. 根据权利要求7所述的装置,其中,所述确定单元被配置为分别为每一个用户设备选择至少一个子集中的至少部分参考信号。
  9. 根据权利要求8所述的装置,其中,所述参考信号配置信息包括:所选择的参考信号所在子集的序号;该子集中所选择的参考信号的序号。
  10. 根据权利要求1~9中任一项所述的装置,其中,所述基站侧的装置工作为所述基站,还包括:
    通知单元,被配置为将所述参考信号配置信息通知给所述用户设备。
  11. 根据权利要求10所述的装置,其中,所述通知单元被配置为通过高层信令来进行所述通知。
  12. 根据权利要求11所述的装置,其中,所述高层信令为RRC信令。
  13. 根据权利要求1所述的装置,其中,所述参考信号为如下至少之一的下行参考信号:信道状态信息参考信号CSI-RS,下行解调参考信号DMRS。
  14. 根据权利要求13所述的装置,其中,所述参考信号为波束赋形参考信号。
  15. 根据权利要求1所述的装置,其中,所述参考信号为如下至少之一的上行参考信号:探测参考信号SRS,上行解调参考信号DMRS。
  16. 根据权利要求1所述的装置,其中,所述传输特性包括该用户设备的设备参数、传输要求、信道状态、干扰情况、地理位置中的至少一个。
  17. 一种用于无线通信的用户设备侧的装置,包括:
    确定单元,被配置为根据来自基站的用于该用户设备的参考信号配置信息来确定该用户设备要使用的参考信号的序号;以及
    收发单元,被配置为基于与所述参考信号的序号相关联的天线端口进行参考信号的收发。
  18. 根据权利要求17所述的装置,其中,所述参考信号配置信息包括基于所述用户设备要使用的参考信号的序号生成的比特位图,其中的每一位代表相应的参考信号是否要被使用。
  19. 根据权利要求17所述的装置,其中,所述参考信号为下行参考信号,所述用户设备根据所接收的参考信号进行信道状态的测量。
  20. 根据权利要求17所述的装置,其中,所述参考信号为上行参考信号,所述用户设备基于与所述参考信号的序号相关联的天线端口发送参考信号。
  21. 根据权利要求17所述的装置,其中,所述收发单元还被配置为通过高层信令来接收所述参考信号配置信息。
  22. 根据权利要求21所述的装置,其中,所述高层信令为RRC信令。
  23. 根据权利要求17所述的装置,其中,所有可用的参考信号被划分为多个子集,所述参考信号配置信息表示至少一个子集中的至少部分参考信号。
  24. 根据权利要求23所述的装置,其中,所述参考信号配置信息包括:所选择的参考信号所在子集的序号;该子集中所选择的参考信号的序号。
  25. 一种用于无线通信的基站侧的方法,包括:
    基于与用户设备相关的传输特性,从所述基站可用的参考信号集合中动态确定该用户设备要使用的参考信号;以及
    生成用于该用户设备的参考信号配置信息,所述配置信息包含对该用户设备要使用的参考信号的序号的指示,
    其中,所述参考信号的序号与天线端口序号相关联。
  26. 一种用于无线通信的用户设备侧的方法,包括:
    根据来自基站的用于该用户设备的参考信号配置信息来确定该用户设备要使用的参考信号的序号;以及
    基于与所述参考信号的序号相关联的天线端口进行参考信号的收发。
PCT/CN2016/091910 2015-08-14 2016-07-27 用于无线通信的基站侧和用户设备侧的装置及方法 WO2017028664A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/742,941 US10659985B2 (en) 2015-08-14 2016-07-27 Base station side device and method for wireless communication, and user side device and method for wireless communication
US16/839,087 US11277762B2 (en) 2015-08-14 2020-04-03 Base station side device and method for wireless communication, and user side device and method for wireless communication
US17/691,128 US11997524B2 (en) 2015-08-14 2022-03-10 Base station side device and method for wireless communication, and user side device and method for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510502495.2A CN106470096B (zh) 2015-08-14 2015-08-14 用于无线通信的基站侧和用户设备侧的装置及方法
CN201510502495.2 2015-08-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/742,941 A-371-Of-International US10659985B2 (en) 2015-08-14 2016-07-27 Base station side device and method for wireless communication, and user side device and method for wireless communication
US16/839,087 Division US11277762B2 (en) 2015-08-14 2020-04-03 Base station side device and method for wireless communication, and user side device and method for wireless communication

Publications (1)

Publication Number Publication Date
WO2017028664A1 true WO2017028664A1 (zh) 2017-02-23

Family

ID=58050453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091910 WO2017028664A1 (zh) 2015-08-14 2016-07-27 用于无线通信的基站侧和用户设备侧的装置及方法

Country Status (3)

Country Link
US (3) US10659985B2 (zh)
CN (1) CN106470096B (zh)
WO (1) WO2017028664A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019104703A1 (zh) * 2017-12-01 2019-06-06 南通朗恒通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN113169780A (zh) * 2018-11-28 2021-07-23 索尼集团公司 电子设备、通信方法和存储介质

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
CN107872253B (zh) * 2016-09-27 2021-06-08 华为技术有限公司 波束跟踪方法、设备及系统
CN108540995B (zh) * 2017-03-03 2020-10-02 维沃软件技术有限公司 一种信道状态检测方法、网络设备及用户设备
CN110268638B (zh) * 2017-03-30 2023-01-20 上海朗帛通信技术有限公司 一种用户设备、基站中的被用于多天线传输的方法和装置
CN108667496B (zh) * 2017-03-31 2021-10-26 大唐移动通信设备有限公司 一种获取、反馈发送波束信息的方法及装置
CN111446995A (zh) * 2017-04-18 2020-07-24 上海朗帛通信技术有限公司 一种用于多天线传输的用户设备、基站中的方法和装置
CN108809585B (zh) * 2017-05-05 2024-03-29 华为技术有限公司 一种信息传输方法和装置
CN109327847A (zh) * 2017-08-01 2019-02-12 夏普株式会社 基站、用户设备和相关方法
CN109413669B (zh) * 2017-08-16 2020-07-28 维沃移动通信有限公司 网络配置参数的有效取值确定方法、相关设备和系统
CN109802801B (zh) * 2017-11-17 2021-12-14 华为技术有限公司 发送和接收信号的方法、装置和系统
CN109803362B (zh) * 2017-11-17 2022-04-12 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
CN110248368B (zh) * 2018-03-08 2023-09-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN109314628B (zh) * 2018-09-13 2021-07-02 北京小米移动软件有限公司 Rs集合的配置方法、装置、设备及存储介质
CN115104263A (zh) * 2020-01-23 2022-09-23 华为技术有限公司 通信方法和通信装置
US11700152B2 (en) * 2020-02-06 2023-07-11 Qualcomm Incorporated Sounding for radio-frequency (RF) sensing
US11784768B2 (en) * 2020-05-19 2023-10-10 Lg Electronics Inc. Method and apparatus for transmitting and receiving uplink signal in wireless communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056220A (zh) * 2009-10-28 2011-05-11 华为技术有限公司 实现信道测量的方法及装置
CN102149124A (zh) * 2011-04-22 2011-08-10 电信科学技术研究院 一种多点协作传输下的干扰测量方法及设备
CN103220068A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信道状态信息处理方法、装置及系统
US20130201942A1 (en) * 2012-02-07 2013-08-08 Samsung Electronics Co. Ltd. Data transmission method and apparatus in network supporting coordinated transmission
CN103391576A (zh) * 2012-05-11 2013-11-13 华为技术有限公司 参考信号接收功率的上报方法和设备

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158814B2 (en) * 2004-06-10 2007-01-02 Interdigital Technology Corporation Method and system for utilizing smart antennas establishing a backhaul network
US8547954B2 (en) * 2008-08-28 2013-10-01 Qualcomm Incorporated Methods and apparatus of adapting number of advertised transmit antenna ports
PL2342837T3 (pl) * 2008-11-04 2016-09-30 Asymetryczny protokół sterowania wiązką
US8274951B2 (en) * 2009-03-17 2012-09-25 Samsung Electronics Co., Ltd. System and method for dynamic cell selection and resource mapping for CoMP joint transmission
WO2010128824A2 (ko) * 2009-05-08 2010-11-11 한국전자통신연구원 Wpan 디바이스의 동작 방법
CN102474849B (zh) * 2009-07-17 2015-06-10 松下电器(美国)知识产权公司 无线通信终端装置及无线通信方法
KR101678435B1 (ko) * 2009-07-17 2016-12-06 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 하향링크 신호를 수신하는 방법 및 이를 위한 장치
EP3541109B1 (en) * 2009-10-30 2020-07-29 Sun Patent Trust Wireless communication apparatus and reference signal generating method
US8811907B2 (en) * 2009-11-04 2014-08-19 Nec Corporation Control method of radio communication system, radio communication system, and radio communication apparatus
US9531514B2 (en) * 2009-12-03 2016-12-27 Qualcomm Incorporated Sounding reference signal enhancements for wireless communication
US8824384B2 (en) * 2009-12-14 2014-09-02 Samsung Electronics Co., Ltd. Systems and methods for transmitting channel quality information in wireless communication systems
KR101790505B1 (ko) * 2010-06-01 2017-11-21 주식회사 골드피크이노베이션즈 서브프레임 구성에 따른 채널상태정보-기준신호 할당 장치 및 방법
CN102377532B (zh) * 2010-08-16 2014-08-27 上海贝尔股份有限公司 非周期性的信息传输调度的处理方法及设备
CN102624495B (zh) * 2011-01-30 2016-03-30 华为技术有限公司 无线通信系统中参考信号配置信息的处理方法及基站、终端
JP5801093B2 (ja) * 2011-04-27 2015-10-28 シャープ株式会社 基地局、端末、通信システムおよび通信方法
US9445299B2 (en) * 2011-04-29 2016-09-13 Intel Corporation System and method of rank adaptation in MIMO communication system
CN107465491B (zh) * 2011-06-27 2021-02-12 华为技术有限公司 确定控制信道资源的方法和用户设备
KR101901434B1 (ko) * 2011-09-23 2018-09-27 삼성전자 주식회사 협력 통신 시스템을 위한 피드백 송수신 방법 및 장치
EP2761927A4 (en) * 2011-09-30 2015-08-12 Intel Corp METHODS OF SIMULTANEOUSLY TRANSPORTING INTERNET TRAFFIC ON MULTIPLE WIRELESS NETWORKS
CN103843389A (zh) * 2011-10-03 2014-06-04 富士通株式会社 无线通信系统、基站、移动站和无线通信方法
KR101603457B1 (ko) * 2011-12-06 2016-03-14 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
US20150023199A1 (en) * 2012-03-16 2015-01-22 Hitachi, Ltd. Wireless communication method and wireless communication system
CN103313404B (zh) * 2012-03-16 2017-06-13 华为技术有限公司 一种控制信道资源传输方法、用户设备及基站
JP6073073B2 (ja) * 2012-05-10 2017-02-01 シャープ株式会社 端末装置、基地局装置および通信方法
JP6081080B2 (ja) * 2012-05-10 2017-02-15 株式会社Nttドコモ 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP2013236289A (ja) * 2012-05-10 2013-11-21 Sharp Corp 端末、基地局、通信方法および集積回路
US9419761B2 (en) * 2012-05-15 2016-08-16 Lg Electronics Inc. Method for receiving downlink data, method for transmitting downlink data to user equipment, and base station
KR20150020529A (ko) * 2012-05-18 2015-02-26 엘지전자 주식회사 하향링크 신호를 전송 또는 수신하기 위한 방법 및 이를 위한 장치
KR101647868B1 (ko) * 2012-06-11 2016-08-11 주식회사 케이티 상향링크 채널과, 상향링크 채널에 연계된 상향링크 사운딩 참조신호 전송방법 및 그 단말
JP2014030100A (ja) * 2012-07-31 2014-02-13 Sony Corp 情報処理装置、通信システム、情報処理方法およびプログラム
US9106386B2 (en) * 2012-08-03 2015-08-11 Intel Corporation Reference signal configuration for coordinated multipoint
US9924381B2 (en) * 2012-08-13 2018-03-20 Telefonaktiebolaget Lm Ericsson (Publ) Enhancing uplink measurements for positioning by adaptively using multi-antenna systems
CN103634037B (zh) * 2012-08-28 2020-01-14 中兴通讯股份有限公司 波束成形方法及装置
CN103634074B (zh) * 2012-08-29 2018-04-10 中兴通讯股份有限公司 下行数据的速率匹配方法及装置
US9801171B2 (en) * 2012-10-02 2017-10-24 Industry-University Cooperation Foundation Hanyang University Transmission method and reception method of downlink signal and channel, terminal thereof, and base station thereof
KR101987232B1 (ko) * 2012-11-02 2019-09-30 주식회사 팬택 다중 안테나 시스템에서 참조 신호의 전송장치 및 방법
CN103840907B (zh) * 2012-11-20 2018-06-05 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
KR101998856B1 (ko) * 2013-01-28 2019-07-11 삼성전자주식회사 무선통신시스템에서의 송/수신 장치 및 방법
US9755716B2 (en) * 2013-03-07 2017-09-05 Nec Corporation Codebook construction
KR20160013871A (ko) * 2013-05-30 2016-02-05 엘지전자 주식회사 대규모 mimo 시스템을 위한 참조 신호 확장
US9398554B2 (en) * 2013-05-31 2016-07-19 Electronics & Telecommunications Research Institute Method for network synchronization acquisition in wireless networks
KR102295820B1 (ko) * 2013-06-19 2021-08-31 엘지전자 주식회사 무선 통신 시스템에서 간섭 제거를 위한 방법 및 이를 위한 장치
JP6286032B2 (ja) * 2013-07-09 2018-02-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル状態報告のための方法及びそのための装置
EP3021498B1 (en) * 2013-07-12 2019-09-04 LG Electronics Inc. Method and apparatus for transreceiving signal in wireless communication system
US20140006611A1 (en) 2013-07-17 2014-01-02 Paul Andrew Perez Method and System for Using Timestamps and Algorithms Across Email and Social Networks to Identify Optimal Delivery Times for an Electronic Personal Message
WO2015034311A1 (ko) * 2013-09-05 2015-03-12 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
RU2627739C1 (ru) * 2013-09-11 2017-08-11 Хуавей Текнолоджиз Ко., Лтд. Способ конфигурации опорного сигнала информации о состоянии канала и базовая станция
CN104519514B (zh) * 2013-10-08 2019-12-06 中兴通讯股份有限公司 一种减小节点间干扰的方法、节点和系统
WO2015076712A1 (en) * 2013-11-20 2015-05-28 Telefonaktiebolaget L M Ericsson (Publ) Dynamic dm-rs sequence selection by pql indicator
US10063357B2 (en) * 2013-12-19 2018-08-28 Lg Electronics Inc. Method for supporting reference signal transmission in multiple antenna-supporting wireless communication system, and apparatus therefor
CN105850210A (zh) * 2014-01-28 2016-08-10 富士通株式会社 波束选择方法、装置和通信系统
WO2015115991A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Network assisted interference mitigation
EP3107229B1 (en) * 2014-02-13 2021-06-16 LG Electronics Inc. Method and apparatus for transmitting sounding reference signal in wireless access system supporting machine type communication
US9955487B2 (en) * 2014-03-28 2018-04-24 Samsung Electronics Co., Ltd. Method and apparatus for receiving downlink data in wireless communication system
US10051610B2 (en) * 2014-05-09 2018-08-14 Samsung Electronics Co., Ltd. Schemes related to resource allocation, discovery and signaling in D2D systems
KR102258289B1 (ko) * 2014-05-22 2021-05-31 삼성전자 주식회사 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 채널 피드백의 생성 및 전송 방법 및 장치
WO2015176301A1 (zh) * 2014-05-23 2015-11-26 华为技术有限公司 序列生成的方法和用于序列生成的终端、基站
EP3148095B1 (en) * 2014-06-17 2020-06-24 Huawei Technologies Co. Ltd. Data transmission method and apparatus
WO2016021944A1 (ko) * 2014-08-08 2016-02-11 엘지전자 주식회사 무선 통신 시스템에서의 간섭 제거 방법 및 단말
WO2016052924A1 (ko) * 2014-09-29 2016-04-07 엘지전자 주식회사 탐색 신호에 기반하여 측정을 수행하는 방법 및 단말
CN107113787B (zh) * 2014-11-07 2021-03-02 松下电器(美国)知识产权公司 用于未许可载波上的发送的改进的资源分派
WO2016076504A1 (ko) * 2014-11-13 2016-05-19 엘지전자 주식회사 무선 통신 시스템에서 피드백 정보를 송수신하는 방법 및 이를 위한 장치
EP3225070A1 (en) * 2014-11-26 2017-10-04 IDAC Holdings, Inc. Initial access in high frequency wireless systems
US10020860B2 (en) * 2014-12-02 2018-07-10 Samsung Electronics Co., Ltd. Downlink signaling for partially precoded CSI-RS and CSI feedback
WO2016106620A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 一种天线对准方法和系统
US20180020441A1 (en) * 2015-01-25 2018-01-18 Titus Lo Collaborative transmission by mobile devices
EP3048853B1 (en) * 2015-01-26 2021-05-26 ASUSTek Computer Inc. Method and apparatus for handling transmission in a wireless communication system
EP4145757A1 (en) * 2015-01-28 2023-03-08 Interdigital Patent Holdings, Inc. Triggering aperiodic sounding reference signals
CN105991175B (zh) * 2015-01-29 2019-02-05 电信科学技术研究院 一种导频信号的发送、接收处理方法及装置
US10511427B2 (en) * 2015-01-30 2019-12-17 Qualcomm Incorporated Uplink control channel for acknowledging increased number of downlink component carriers
EP3252983A4 (en) * 2015-01-30 2018-10-03 Electronics and Telecommunications Research Institute Method and apparatus for transmitting downlink reference signal, and method and apparatus for transmitting control information in multi-cell collaborative communication system
US20160233938A1 (en) * 2015-02-06 2016-08-11 Nokia Solutions And Networks Oy Multiple Restrictions For CSI Reporting
CN107409021B (zh) * 2015-02-06 2020-12-22 三星电子株式会社 控制上行链路控制信息传输的终端、基站和方法
EP3273717A4 (en) * 2015-03-16 2018-11-14 NTT DoCoMo, Inc. User device, base station, and communication method
KR102524587B1 (ko) * 2015-03-27 2023-04-21 삼성전자주식회사 대규모 안테나 시스템에서 자원 할당 장치 및 방법
CN106160821B (zh) * 2015-03-31 2019-11-19 电信科学技术研究院 一种信道状态信息反馈、获取方法及装置
WO2016154923A1 (zh) * 2015-03-31 2016-10-06 富士通株式会社 波束信息获取方法、装置以及通信系统
US10256963B2 (en) * 2015-04-10 2019-04-09 Technology In Ariscale, Llc Method and apparatus for transmitting and receiving channel state information reference signal in full dimension MIMO wireless communication system
EP3282627B1 (en) * 2015-04-10 2020-07-08 LG Electronics Inc. Method and device for controlling transmission of sounding reference signal in wireless access system supporting machine type communication
EP3284291B1 (en) * 2015-04-13 2018-09-26 Telefonaktiebolaget LM Ericsson (publ) Power control in a wireless network
US10368363B2 (en) * 2015-04-16 2019-07-30 Lg Electronics Inc. Uplink data transmission method in wireless communication system and device therefor
US10602484B2 (en) * 2015-04-17 2020-03-24 Lg Electronics Inc. Transmitting or receiving evolved multicast and broadcast signals in wireless communication
CN107534865A (zh) * 2015-04-29 2018-01-02 瑞典爱立信有限公司 用于无线网络中的网络间测量的方法和设备
WO2016174774A1 (ja) * 2015-04-30 2016-11-03 三菱電機株式会社 送信局、制御局、受信局、データ伝送システムおよびデータ伝送方法
CN107534986B (zh) * 2015-05-14 2020-12-25 华为技术有限公司 终端、基站,以及探测参考信号的配置和传输方法
CN107637121B (zh) * 2015-05-15 2021-04-06 三星电子株式会社 用于在移动通信系统中发送或接收调度请求的方法和装置
WO2016200230A1 (en) * 2015-06-11 2016-12-15 Lg Electronics Inc. Method and apparatus for transmitting system information for celluar internet-of-things in wireless communication system
EP3734896B1 (en) * 2015-06-17 2022-06-08 LG Electronics Inc. Method for channel state report using aperiodic channel state information-reference signal and apparatus therefor
CN107710850B (zh) * 2015-06-25 2020-06-26 华为技术有限公司 上行数据传输的方法和装置
US10869297B2 (en) * 2015-07-03 2020-12-15 Lg Electronics Inc. Method for transmitting signal between terminals, and apparatus for same
US9794921B2 (en) * 2015-07-14 2017-10-17 Motorola Mobility Llc Method and apparatus for reducing latency of LTE uplink transmissions
US9717079B2 (en) * 2015-07-14 2017-07-25 Motorola Mobility Llc Method and apparatus for selecting a resource assignment
CN107925986B (zh) * 2015-07-20 2022-04-15 Lg 电子株式会社 无线通信系统中用于设备对设备通信的资源分配方法及其装置
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
CN106559162B (zh) * 2015-09-24 2020-03-06 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
EP3843289B1 (en) * 2016-05-11 2022-09-28 Sony Group Corporation Distributed control in wireless systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056220A (zh) * 2009-10-28 2011-05-11 华为技术有限公司 实现信道测量的方法及装置
CN102149124A (zh) * 2011-04-22 2011-08-10 电信科学技术研究院 一种多点协作传输下的干扰测量方法及设备
CN103220068A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信道状态信息处理方法、装置及系统
US20130201942A1 (en) * 2012-02-07 2013-08-08 Samsung Electronics Co. Ltd. Data transmission method and apparatus in network supporting coordinated transmission
CN103391576A (zh) * 2012-05-11 2013-11-13 华为技术有限公司 参考信号接收功率的上报方法和设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019104703A1 (zh) * 2017-12-01 2019-06-06 南通朗恒通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN111108697A (zh) * 2017-12-01 2020-05-05 南通朗恒通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN113169780A (zh) * 2018-11-28 2021-07-23 索尼集团公司 电子设备、通信方法和存储介质

Also Published As

Publication number Publication date
CN106470096A (zh) 2017-03-01
US11997524B2 (en) 2024-05-28
US11277762B2 (en) 2022-03-15
US10659985B2 (en) 2020-05-19
US20220201529A1 (en) 2022-06-23
US20200236576A1 (en) 2020-07-23
US20190007854A1 (en) 2019-01-03
CN106470096B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
US11997524B2 (en) Base station side device and method for wireless communication, and user side device and method for wireless communication
US11991542B2 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US11424808B2 (en) Electronic device, method and medium for wireless communication
US10630363B2 (en) Electronic device in wireless communication system, and wireless communication method
EP3890203A1 (en) Electronic device, communication method and storage medium
US10651911B2 (en) Wireless communication device and wireless communication method
US11528647B2 (en) Device and method for measuring a channel state
US10194333B2 (en) Terminal apparatus, base station, and program
US20230102698A1 (en) Network device, user equipment, wireless communication method and storage medium
WO2019205997A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2019096239A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US10911119B2 (en) Wireless communication device and method
JP7314945B2 (ja) 通信装置、通信方法及び記録媒体
US20240188128A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2020207384A1 (zh) 基站设备、通信方法和存储介质
CN110603823B (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2018223982A1 (zh) 无线通信系统中的装置和方法
US10951289B2 (en) Electronic device, method applied to electronic device, and data processing device for reusing idle CSI-RS ports of an adjacent cell
US20210399865A1 (en) Electronic device and method used for wireless communication, and computer-readable storage medium
US10862561B2 (en) Electronic device and method for network control terminal and network node
WO2023030242A1 (zh) 电子设备、通信方法和计算机程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836528

Country of ref document: EP

Kind code of ref document: A1