WO2016154923A1 - 波束信息获取方法、装置以及通信系统 - Google Patents

波束信息获取方法、装置以及通信系统 Download PDF

Info

Publication number
WO2016154923A1
WO2016154923A1 PCT/CN2015/075590 CN2015075590W WO2016154923A1 WO 2016154923 A1 WO2016154923 A1 WO 2016154923A1 CN 2015075590 W CN2015075590 W CN 2015075590W WO 2016154923 A1 WO2016154923 A1 WO 2016154923A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
base station
reference signal
user equipment
length
Prior art date
Application number
PCT/CN2015/075590
Other languages
English (en)
French (fr)
Inventor
宋磊
王昕�
Original Assignee
富士通株式会社
宋磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 宋磊, 王昕� filed Critical 富士通株式会社
Priority to CN201580077236.8A priority Critical patent/CN107409318A/zh
Priority to EP15886909.9A priority patent/EP3280168A1/en
Priority to PCT/CN2015/075590 priority patent/WO2016154923A1/zh
Priority to KR1020177029117A priority patent/KR20170128452A/ko
Priority to JP2017550715A priority patent/JP2018514994A/ja
Publication of WO2016154923A1 publication Critical patent/WO2016154923A1/zh
Priority to US15/703,563 priority patent/US20180006697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a beam information acquisition method, apparatus, and communication system in a MIMO (Multiple Input Multiple Output) system.
  • MIMO Multiple Input Multiple Output
  • Millimeter wave (mmWave) technology and massive MIMO technology are two candidate technologies for the research of the fifth generation of mobile communication technology in the future.
  • the combination of the two can provide a wider transmission bandwidth and more antennas for the system, thereby improving system performance. .
  • each physical antenna needs to be equipped with a set of RF chian, including amplifier, mixer, digital-to-analog converter and analog-to-digital converter. high.
  • Hybrid baseband and radio frequency precoding (beamforming) combines the advantages of baseband precoding and radio frequency precoding to perform precoding operations on baseband and radio, making it more suitable for large-scale MIMO systems and achieving system performance ( Flexibility) and an effective compromise of complexity.
  • TXRUs Transceiver Units
  • TXUs transmitting units
  • RXUs receiving units
  • the TXU takes the baseband signal of the base station AAS as an input and provides an output of the radio frequency transmission signal.
  • the output of the RF transmission is distributed to the antenna array through a Radio Distribution Network (RDN).
  • RDN Radio Distribution Network
  • Embodiments of the present invention provide a beam information acquisition method, apparatus, and communication system.
  • the user equipment is expected to feed back power information of the plurality of ports, and obtain beam weight information according to the power information of the multiple ports.
  • a beam information acquisition method for use in a base station having a planar antenna array; the planar antenna array comprising a plurality of antenna particles, the plurality of antenna particles being in a vertical direction Forming a plurality of columns and forming a plurality of rows in a horizontal direction; the beam information acquisition method includes:
  • K is less than M
  • M is the number of antennas in the same polarization direction of each column in the vertical direction
  • a beam information acquiring apparatus configured in a base station having a planar antenna array;
  • the planar antenna array includes a plurality of antenna particles, wherein the plurality of antenna particles are in a vertical direction Forming a plurality of columns and forming a plurality of rows in a horizontal direction;
  • the beam information acquiring means includes:
  • the first signal sending unit sends the first reference signal to the user equipment by using the K antenna particles; wherein K is less than M, and M is the number of antennas in the same polarization direction of each column in the vertical direction;
  • a first information receiving unit configured to receive a beam index fed back by the user equipment
  • a first vector determining unit determining a vector of length K according to the beam index
  • a vector estimating unit estimating a vector of length L according to a vector of length K, wherein K ⁇ L ⁇ M;
  • a second vector determining unit that determines a plurality of weighting vectors based on the vector of length L;
  • a second signal sending unit using the plurality of weight vectors to weight the second reference signal, and transmitting the weighted second reference signal to the user equipment;
  • the second information receiving unit receives feedback information about the plurality of transmitting antenna ports of the user equipment, and acquires beam weighting information according to the feedback information.
  • a beam information acquisition method which is applied to a user equipment, where the beam information acquisition method includes:
  • a beam information acquiring apparatus is provided in a user equipment, where the beam information acquiring apparatus includes:
  • a first signal receiving unit which receives a first reference signal sent by the base station on the K antenna particles, where K is less than M, and M is the number of antennas in the same polarization direction of each column in the vertical direction of the base station;
  • a channel estimation unit performing channel estimation according to the first reference signal
  • An index calculation unit calculates a beam index according to the result of the channel estimation
  • the first information sending unit feeds back the beam index to the base station
  • the second signal receiving unit receives the second reference signal that is weighted by the base station and is weighted by the weighting vector;
  • a power calculation unit configured to calculate, according to the second reference signal, a received power of multiple transmit antenna ports
  • a power comparison unit that compares the received power with a preset threshold to determine feedback information about multiple transmit antenna ports
  • the second information sending unit sends the feedback information to the base station.
  • a communication system comprising:
  • a base station having a planar antenna array; the planar antenna array including a plurality of antenna particles, the plurality of antenna particles forming a plurality of columns in a vertical direction and forming a plurality of rows in a horizontal direction; and the base station using K antenna particles toward Transmitting, by the user equipment, a first reference signal, and receiving a beam index fed back by the user equipment;
  • the beam index determines a vector of length K; estimates a vector having a length L greater than the vector of length K; determines a plurality of weight vectors based on the vector of length L; and uses the plurality of weight vector pairs
  • the reference signal is weighted, and the weighted second reference signal is sent to the user equipment; the feedback information about the multiple transmit antenna ports of the user equipment is received, and the beam weight information is obtained according to the feedback information;
  • M is the number of antennas in the same polarization direction of each column in the vertical direction of the base station, K is less than M, K ⁇ L ⁇ M;
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to perform a beam information acquisition method as described above in the base station.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a beam information acquisition method as described above in a base station.
  • a computer readable program wherein when the program is executed in a user equipment, the program causes a computer to perform a beam information acquisition method as described above in the user equipment .
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a beam information acquisition method as described above in a user equipment.
  • An advantageous effect of the embodiment of the present invention is that the base station first sends a reference signal on fewer ports, calculates a vector with a smaller length according to the feedback beam index, and estimates a vector with a larger length, and then sends the reference again according to the vector with a larger length.
  • the signal obtains power information about the plurality of transmit antenna ports fed back by the user equipment.
  • the base station can obtain beam weighting information relatively accurately, and is better applied to a large-scale MIMO system.
  • FIG. 1 is a schematic structural view of a planar antenna array of a co-polarized antenna configuration
  • FIG. 2 is a schematic structural diagram of a planar antenna array of a cross-polarized antenna configuration
  • 3 is a schematic diagram showing a connection relationship between M antenna particles of the same polarization direction and M TXRU TXRUs in each column of the TXRU virtualization model 1;
  • FIG. 4 is a schematic diagram showing a connection relationship between M antenna particles of the same polarization direction and M TXRU TXRUs in each column of the TXRU virtualization model 2;
  • FIG. 5 is a schematic diagram of a method for acquiring beam information according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a method for acquiring beam information according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a method for acquiring beam information according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of a beam information acquiring apparatus according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of a beam information acquiring apparatus according to Embodiment 5 of the present invention.
  • FIG. 11 is a schematic structural diagram of a user equipment according to Embodiment 5 of the present invention.
  • Figure 12 is a diagram showing the communication system of Embodiment 6 of the present invention.
  • FIG. 1 and FIG. 2 are schematic diagrams showing two planar antenna array structures according to an embodiment of the present invention
  • FIG. 1 is a schematic structural diagram of a planar antenna array configured by a co-polarized antenna
  • FIG. 2 is a planar antenna configured by a cross-polarized antenna.
  • M antenna elements of the same polarization direction also referred to as physical antenna particles
  • N columns are placed in the horizontal direction
  • M pairs of cross-polarized antenna pairs are placed in each column in the vertical direction
  • N columns of cross-polarized antenna pairs are placed in the horizontal direction. That is, there are M physical antenna particles in each polarization direction in a vertical column, and N physical antenna particles in each polarization direction on a horizontal line.
  • P represents the number of polarization dimensions
  • P 1 for the same polarization configuration, as shown in Figure 1
  • P 2 for the cross polarization Configuration, as shown in Figure 2.
  • Each of the M antenna particles in the same polarization direction is connected to M TXRU TXRUs, and the total number of TXRUs is M TXRU ⁇ N ⁇ P.
  • the overhead of the reference signal also increases.
  • multiple antenna particles in the vertical direction can be virtualized into one or more antenna ports.
  • the beam direction in the vertical direction is adjusted by weighting a plurality of physical antenna particles.
  • the weighting of the virtual antenna port is a precoding operation in the conventional sense.
  • TXRUs Transceiver Units
  • RAN1 discusses two kinds of TXRU virtualization models, one is a sub-array partition model, and the other is a fully-connected model.
  • Figure 3 and Figure 4 show the same polarization direction for each column in the two models. The connection relationship between M antenna particles and M TXRU TXRUs.
  • q is the signal vector at the antenna particle, ie the transmitted signal vector of the antenna, and x is the signal vector at the TXRU.
  • w can be a discrete Fourier transform (DFT) vector, such as
  • ⁇ etilt is the electronic downtilt angle in the vertical direction.
  • Each column of W can be a DFT vector, such as
  • ⁇ etilt is the electronic downtilt angle in the vertical direction.
  • N M represents the size of the DFT vector of length M.
  • n m ' denotes an index of the DFT vector selected by the m'th TXRU in the codebook.
  • each column antenna particle uses the same TXRU virtualization model, and the weight values of the columns are also the same. This weighting value applies to all bands on the same time symbol. This shows that if TXRU virtualized model 1 is used, only one beam transmission is supported at the same time; if TXRU virtualized model 2 is used, the transmission of M TXRU beams is supported at the same time.
  • planar antenna array and the TXRU virtualization model according to the embodiments of the present invention have been described above, but the present invention is not limited thereto.
  • An embodiment of the present invention provides a beam information acquiring method, which is applied to a base station having a planar antenna array; the planar antenna array includes a plurality of antenna particles, and the plurality of antenna particles form a plurality of columns in a vertical direction and Multiple lines are formed in the horizontal direction.
  • the embodiment of the present invention is described from the base station side.
  • FIG. 5 is a schematic diagram of a method for acquiring beam information according to an embodiment of the present invention. As shown in FIG. 5, the method includes:
  • Step 501 The base station sends, by using K antenna particles, a first reference signal to the user equipment, where K is less than M, and M is the number of antennas in the same polarization direction of each column in the vertical direction;
  • Step 502 The base station receives a beam index fed back by the user equipment.
  • Step 503 The base station determines, according to the beam index, a vector of length K;
  • Step 504 the base station estimates a vector of length L according to the vector of length K; wherein L is greater than or equal to K and less than or equal to M;
  • Step 505 The base station determines multiple weight vectors based on the vector of length L;
  • Step 506 The base station uses the multiple weight vectors to weight the second reference signal, and sends the weighted second reference signal to the user equipment.
  • Step 507 The base station receives feedback information about multiple transmit antenna ports of the user equipment, and acquires beam weight information according to the feedback information.
  • M can be divisible by K.
  • the base station may send a first reference signal (RS, Reference Signal) on the K antenna particles by using orthogonal resources, and the K antenna particles may be K antenna particles continuously placed in the vertical direction, or may be fixed in the vertical direction. K antenna particles spaced apart. And receiving a beam index (also referred to as a beam number, etc.) that is fed back by the user equipment based on the first reference signal.
  • RS Reference Signal
  • the transmit antenna port refers to a virtual port formed by a planar antenna array on the base station side, and the base station can determine the number of antenna ports to be used by itself, and the maximum number of antenna ports is the total number of TXRUs, that is, M TXRU ⁇ N ⁇ P, for example, the base station can use M ports, and other numbers of ports can also be used.
  • the invention is not limited to this.
  • each of the transmit antenna ports may use one or more time-frequency resources to transmit the reference signal.
  • the present invention does not limit the number of ports and the number of time-frequency resources, and may be any number of ports and time-frequency resources.
  • the base station side and the user equipment side both store the same first codebook composed of antenna particle beamforming weights of length K.
  • the base station may determine the vector of length K according to the received beam index n fed back by the user equipment and the first codebook.
  • the base station side may further store a plurality of second codebooks. Wherein, in a plurality of the second codebooks, the length and/or the number of DFT vectors are partially or completely different.
  • the base station can estimate a vector b L of length L from the vector b K of length K , where K ⁇ L ⁇ M.
  • the length is K, the number of N 1 DFT codebook (first code book), the n 1 first codeword (i.e. vectors), for
  • the length is M, the number of N 1 DFT codebook (a second codebook), a first codeword is n 1,
  • a vector b L of length L can be estimated from the vector b K of length K.
  • the base station may select a plurality of weighting vectors for each second codebook according to b L and the plurality of second codebooks.
  • an M TXRU vector including b L and/or adjacent to b L may be selected as the weight vector; wherein, the M TXRU is the same polarization of each column in the vertical direction.
  • the N*M TXRU vectors including b L and/or adjacent to b L may also be selected as the weight vector; wherein N is the number of antenna particle columns of the two-dimensional planar array.
  • the vector adjacent to b L refers to a DFT vector adjacent to the same code book (for example, C L ).
  • the M TXRU weight vector adjacent thereto may be the DFT vector numbered 5, 6, 8, and 9 in the code book C L .
  • the length of the selected weight vector may be M or less than M.
  • the base station may weight the second reference signal using the plurality of weighting vectors based on the second TXRU virtualization model; wherein, in the second TXRU virtualization model, each transceiver unit is Connected to M antenna particles in a column in the vertical direction.
  • the base station can be weighted using the following TXRU model:
  • N is the number of antenna columns in the horizontal direction
  • Q is M TXRU
  • b L and / or M b L adjacent TXRU weighted vectors may be codebook vector b L C L take different values in the case where L, M may be arbitrary determined in step 505, a weighting vector TXRU .
  • the length of the weight vector it can be a DFT vector of length M. When the length is less than M (such as the length L 1 ), weighting can be achieved by zeroing (ML 1 ) weighting values.
  • the base station can also be weighted using the following TXRU model:
  • N is the number of antenna columns in the horizontal direction
  • Q is M TXRU
  • b L and / or b L adjacent to N * M TXRU weighted vectors may be taken codebook C L N * M TXRU a b L vectors in the case of different values of L, may be determined in step 505 Any N*M TXRU weighting vector.
  • the base station may further send the second reference signal by using S time-frequency resources (where 1 ⁇ S ⁇ N*M TXRU ); wherein, the M TXRU is M in the same polarization direction of each column in the vertical direction.
  • S time-frequency resources where 1 ⁇ S ⁇ N*M TXRU ; wherein, the M TXRU is M in the same polarization direction of each column in the vertical direction.
  • the feedback information may be represented by a bitmap.
  • the bitmap may include S bits (where 1 ⁇ S ⁇ N*M TXRU ), respectively corresponding to S time-frequency resources; wherein, for each bit value, 1 indicates that the corresponding port is The power of the signal sent by the user equipment to the base station is greater than or equal to a preset threshold, where 0 indicates that the power of the signal sent by the user equipment to the base station on the corresponding port is less than the preset threshold.
  • the direction of the signal transmission may be determined according to the feedback information. For example, on which ports a certain user equipment receives a strong signal, the beam weighting matrix can be appropriately adjusted, that is, the beam weighting information is determined.
  • the base station first transmits the reference signal on fewer ports, calculates a vector with a smaller length according to the feedback beam index, and estimates a vector with a larger length, and then retransmits the reference signal according to the vector with a larger length to obtain the reference signal. Power information about multiple transmit antenna ports fed back by the user equipment. Thereby, the base station can compare Accurately obtaining beam weighting information is better applied to large-scale MIMO systems.
  • the embodiment of the invention provides a beam information acquisition method, which is applied to a user equipment.
  • the following description will be made from the user equipment side, and the same contents as those in the first embodiment will not be described again.
  • FIG. 6 is a schematic diagram of a method for acquiring beam information according to an embodiment of the present invention. As shown in FIG. 6, the method includes:
  • Step 601 The user equipment receives a first reference signal sent by the base station on the K antenna particles, where K is less than M, where M is the number of antennas in the same polarization direction of each column in the vertical direction of the base station;
  • Step 602 The user equipment performs channel estimation according to the first reference signal.
  • Step 603 The user equipment calculates a beam index according to the result of the channel estimation.
  • Step 604 The user equipment feeds back the beam index to the base station.
  • Step 605 The user equipment receives a second reference signal that is weighted by the base station and is weighted by using a weight vector.
  • Step 606 The user equipment calculates, according to the second reference signal, a received power of multiple transmit antenna ports.
  • Step 607 The user equipment compares the received power with a preset threshold to determine feedback information about multiple transmit antenna ports.
  • Step 608 The user equipment sends the feedback information to the base station.
  • the user equipment side may further store the first codebook; in step 603, the user equipment may calculate the beam index n according to the result of the channel estimation based on the first codebook.
  • the user equipment may further receive the second reference signal on S time-frequency resources (where 1 ⁇ S ⁇ N*M TXRU ); wherein, the M TXRU is the same for each column in the vertical direction of the base station The number of transceiver units to which M antenna particles are connected in the polarization direction.
  • the user equipment may calculate the received power of each of the plurality of transmit antenna ports for each resource u.
  • the feedback information may be represented by a bitmap, where the bitmap includes S bits, which respectively correspond to S time-frequency resources.
  • step 607 the user equipment sets, for each port of the multiple transmit antenna ports, the corresponding information of the bitmap, if the received power is greater than or equal to the preset threshold. 1; in a case where the received power is less than the preset threshold, the corresponding information of the bitmap is set to zero.
  • the user equipment receives the reference signal sent by the base station on a small port and feeds back the beam. And indexing, and then receiving a reference signal weighted by the base station and using the weighting vector, generating power information about the plurality of transmitting antenna ports according to the reference signal, and feeding back to the base station.
  • the base station can obtain beam weighting information relatively accurately, and is better applied to a large-scale MIMO system.
  • the embodiment of the present invention provides a method for acquiring beam information.
  • the descriptions of the first and second embodiments are made from the base station side and the user equipment side, and the same content as the first embodiment and the second embodiment will not be described again.
  • FIG. 7 is a schematic diagram of a method for acquiring beam information according to an embodiment of the present invention. As shown in FIG. 7, the method may include two stages: a first stage is used for initial beam information selection, and a second stage is used for beam information selection again. . As described in FIG. 7, the method includes:
  • the first stage is a first stage
  • Step 701 The base station sends, by using K antenna particles, a first reference signal to the user equipment, where K is less than M, and M is the number of antennas in the same polarization direction of each column in the vertical direction;
  • Step 702 After receiving the first reference signal, the user equipment performs channel estimation according to the first reference signal.
  • Step 703 The user equipment calculates a beam index according to the result of the channel estimation.
  • Step 704 The user equipment feeds back the beam index to the base station.
  • Step 705 After receiving the beam index fed back by the user equipment, the base station determines a vector of length K according to the beam index.
  • the reference signal can reduce the resources occupied when transmitting the reference signal by using the K port whose length is smaller than M; and the accurate beam direction can be included in the coverage of the DFT vector with the length K of the feedback.
  • Step 706 the base station estimates a vector of length L according to a vector of length K; wherein, K ⁇ L ⁇ M;
  • Step 707 The base station determines multiple weight vectors based on the vector of length L;
  • Step 708 The base station uses the multiple weight vectors to weight the second reference signal, and sends the weighted second reference signal to the user equipment.
  • Step 709 After receiving the second reference signal, the user equipment calculates, according to the second reference signal, a received power of multiple transmit antenna ports.
  • Step 710 The user equipment compares the received power with a preset threshold to determine feedback information about multiple transmit antenna ports.
  • Step 711 The user equipment sends the feedback information to the base station.
  • Step 712 After receiving the feedback information, the base station determines beam weighting information according to the feedback information.
  • the base station estimates a vector with a larger length according to a vector with a smaller length, and then retransmits the reference signal according to the vector with a larger length, and obtains power information about multiple transmit antenna ports fed back by the user equipment. Thereby, the base station can obtain beam weighting information relatively accurately.
  • the base station first transmits the reference signal on fewer ports, calculates a vector with a smaller length according to the feedback beam index, and estimates a vector with a larger length, and then retransmits the reference signal according to the vector with a larger length to obtain the reference signal. Power information about multiple transmit antenna ports fed back by the user equipment. Thereby, the base station can obtain beam weighting information relatively accurately, and is better applied to a large-scale MIMO system.
  • An embodiment of the present invention provides a beam information acquiring apparatus, which is configured in a base station having a planar antenna array.
  • the planar antenna array includes a plurality of antenna particles, and the plurality of antenna particles form a plurality of columns in a vertical direction and in a horizontal direction. Multiple lines are formed on it.
  • FIG. 8 is a schematic diagram of a beam information acquiring apparatus according to an embodiment of the present invention. As shown in FIG. 8, the beam information acquiring apparatus 800 includes:
  • the first signal sending unit 801 sends the first reference signal to the user equipment by using the K antenna particles; wherein K is less than M, and M is the number of antennas in the same polarization direction of each column in the vertical direction;
  • the first information receiving unit 802 receives the beam index fed back by the user equipment
  • the first vector determining unit 803 determines a vector of length K according to the beam index
  • the vector estimating unit 804 estimates a vector of length L according to the vector of length K, where K ⁇ L ⁇ M;
  • the second signal sending unit 806 performs weighting on the second reference signal by using the plurality of weighting vectors, and sends the weighted second reference signal to the user equipment;
  • the second information receiving unit 807 receives feedback information about the plurality of transmitting antenna ports of the user equipment, and acquires beam weighting information according to the feedback information.
  • the M can be divisible by K.
  • the beam information acquiring apparatus 800 may further include:
  • the storage unit 808 stores the first codebook and the plurality of second codebooks; wherein, in the plurality of the second codebooks, the length and/or the number of DFT vectors may be partially or completely different.
  • the first vector determining unit 803 determines the vector of length K according to the received beam index n fed back by the user equipment and the first codebook;
  • the second vector determining unit 805 selects a plurality of weighting vectors for each second codebook according to the vector of length L and the plurality of second codebooks.
  • the second vector determining unit 805 selects N*M TXRU vectors as the weighting vector; wherein the weighting vector includes the length L a vector, and/or, the weight vector is adjacent to the vector of length L; N is a positive integer, and M TXRU is the number of transceiver units connected by M antenna particles in the same polarization direction of each column in the vertical direction.
  • the second signal sending unit 806 may use the multiple weighting vectors to weight the second reference signal based on the second TXRU virtualization model; wherein, the second TXRU is virtualized In the model, each transceiver unit is connected to M antenna particles.
  • the second signal sending unit 806 may send the second reference signal (where 1 ⁇ S ⁇ N*M TXRU ) by using S time-frequency resources; where N is a positive integer, and M TXRU is The number of transceiver units to which M antenna particles are connected in the same polarization direction for each column in the vertical direction.
  • the feedback information received by the second information receiving unit 807 may be represented by a bitmap.
  • the bitmap may include S bits, respectively corresponding to S time-frequency resources;
  • 1 indicates that the power of the signal sent by the user equipment to the base station on the corresponding port is greater than or equal to a preset threshold, where 0 indicates that the user equipment receives the corresponding port.
  • the power of the signal sent by the base station is less than the preset threshold.
  • the embodiment of the present invention further provides a base station configured with the beam information acquiring apparatus 800 as described above.
  • FIG. 9 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • base station 900 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the base station 900 can implement the beam information acquiring method as described in Embodiment 1.
  • Central processor 200 It may be configured to implement the function of the beam information acquisition device 800; that is, the central processing unit 200 may be configured to perform control of: transmitting a first reference signal to the user equipment using K antenna particles; receiving a beam index fed back by the user equipment; Determining a vector of length K according to the beam index; estimating a vector of length L according to the vector of length K; determining a plurality of weighting vectors based on the vector of length L; using the plurality of weighting vector pairs The second reference signal is weighted, and the weighted second reference signal is sent to the user equipment; the feedback information about the multiple transmit antenna ports of the user equipment is received, and the beam weight information is obtained according to the feedback information.
  • the base station 900 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It should be noted that the base station 900 does not have to include all of the components shown in FIG. 9; in addition, the base station 900 may also include components not shown in FIG. 9, and reference may be made to the prior art.
  • the base station first transmits the reference signal on fewer ports, calculates a vector with a smaller length according to the feedback beam index, and estimates a vector with a larger length, and then retransmits the reference signal according to the vector with a larger length to obtain the reference signal. Power information about multiple ports fed back by the user equipment. Thereby, the base station can obtain beam weighting information relatively accurately, and is better applied to a large-scale MIMO system.
  • the embodiment of the invention provides a beam information acquiring device, which is configured in a user equipment.
  • FIG. 10 is a schematic diagram of a beam information acquiring apparatus according to an embodiment of the present invention. As shown in FIG. 10, the beam information acquiring apparatus 1000 includes:
  • the first signal receiving unit 1001 receives a first reference signal sent by the base station on the K antenna particles, where K is less than M, and M is the number of antennas in the same polarization direction of each column in the vertical direction of the base station;
  • the channel estimation unit 1002 performs channel estimation according to the first reference signal.
  • the index calculation unit 1003 calculates a beam index according to the result of the channel estimation
  • the first information sending unit 1004 feeds back the beam index to the base station
  • the second signal receiving unit 1005 receives the second reference signal that is weighted by the base station and is weighted by the weighting vector;
  • the power calculation unit 1006 calculates the received power of the multiple transmit antenna ports according to the second reference signal
  • the power comparison unit 1007 compares the received power with a preset threshold to determine feedback information about multiple transmit antenna ports
  • the second information transmitting unit 1008 transmits the feedback information to the base station.
  • the beam information acquiring apparatus 1000 may further include:
  • the storage unit 1009 stores the first codebook
  • the index calculation unit 1003 is further configured to: calculate, according to the result of the channel estimation, the beam index n based on the first codebook.
  • the second signal receiving unit 1005 is further configured to: receive the second reference signal on the S time-frequency resources; where, 1 ⁇ S ⁇ N*M TXRU , where N is a positive integer, M
  • the TXRU is the number of transceiver units connected by M antenna particles in the same polarization direction of each column in the vertical direction in the base station.
  • the power calculation unit 1006 is further configured to: for each resource u, calculate a received power of each of the multiple transmit antenna ports.
  • the feedback information may be represented by a bitmap, and the bitmap may include S bits, which respectively correspond to S time-frequency resources.
  • the power comparison unit 1007 is further configured to, if the received power is greater than or equal to the preset threshold, set the corresponding information of the bitmap to 1 for each time-frequency resource; When the received power is less than the preset threshold, the corresponding information of the bitmap is set to zero.
  • the embodiment of the present invention further provides a user equipment, which is configured with the beam information acquiring apparatus 1000 as described above.
  • FIG. 11 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 1100 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the functionality of the beam information acquisition device 1000 can be integrated into the central processor 100.
  • the central processing unit 100 may be configured to: receive a first reference signal sent by the base station on the K antenna particles; perform channel estimation according to the first reference signal; calculate a beam index according to the result of the channel estimation; Transmitting the beam index to the base station; receiving a second reference signal that is weighted by the base station and using weighting vectors; and calculating, according to the second reference signal, receiving power of multiple transmitting antenna ports; A threshold is set for comparison to determine feedback information for a plurality of transmit antenna ports; the feedback information is sent to the base station.
  • the beam information acquiring apparatus 1000 may be configured separately from the central processing unit 100.
  • the beam information acquiring apparatus 1000 may be configured as a chip connected to the central processing unit 100 through the center.
  • the control of the processor implements the functions of the beam information acquisition device 1000.
  • the user equipment 1100 may further include: a communication module 110, an input unit 120, an audio processing unit 130, a memory 140, a camera 150, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1100 does not have to include all the components shown in FIG. 11, and the above components are not required; in addition, the user equipment 1100 may further include components not shown in FIG. There are technologies.
  • the user equipment receives the reference signal sent by the base station on the fewer ports and feeds back the beam index, and then receives the reference signal weighted by the base station and uses the weighting vector, and generates, according to the reference signal, the multiple transmit antenna ports.
  • the power information is fed back to the base station.
  • the base station can obtain beam weighting information relatively accurately, and is better applied to a large-scale MIMO system.
  • FIG. 12 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the communication system 1200 includes: a base station 1201 and a user equipment 1202;
  • the base station 1201 has a planar antenna array;
  • the planar antenna array includes a plurality of antenna particles, the plurality of antenna particles forming a plurality of columns in a vertical direction and forming a plurality of rows in a horizontal direction;
  • the base station 1201 sends a first reference signal to the user equipment by using the K antenna particles, receives a beam index fed back by the user equipment, determines a vector of length K according to the beam index, and estimates the vector according to the length K. a vector having a length L; determining a plurality of weight vectors based on the vector of length L; weighting the second reference signal using the plurality of weight vectors, and transmitting the weighted second reference signal to the user Receiving feedback information about the plurality of transmitting antenna ports of the user equipment, and acquiring beam weighting information according to the feedback information;
  • the user equipment 1202 receives the first reference signal sent by the base station on the K antenna particles; performs channel estimation according to the first reference signal; calculates a beam index according to the result of the channel estimation; and feeds back the beam index to the a base station; receiving, by the base station, a second reference signal weighted by using a weight vector; calculating a received power of the plurality of transmit antenna ports according to the second reference signal; comparing the received power with a preset threshold to obtain Feedback information about a plurality of transmit antenna ports; transmitting the feedback information to the base station;
  • An embodiment of the present invention provides a computer readable program, wherein when the program is executed in a base station, The program causes the computer to perform the beam information acquisition method as described in Embodiment 1 in the base station.
  • An embodiment of the present invention provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a beam information acquisition method as described in Embodiment 1 in a base station.
  • An embodiment of the present invention provides a computer readable program, wherein when the program is executed in a user equipment, the program causes a computer to execute a beam information acquisition method as described in Embodiment 2 in the user equipment.
  • An embodiment of the present invention provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a beam information acquisition method as described in Embodiment 2 in a user equipment.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)

Abstract

一种波束信息获取方法、装置以及通信系统。所述波束信息获取方法包括:使用K个天线粒子向用户设备发送第一参考信号;接收所述用户设备反馈的波束索引;根据所述波束索引确定长度为K的向量;根据所述长度为K的向量估计出长度为L的向量;基于所述长度为L的向量确定多个加权向量;并将加权后的第二参考信号发送给所述用户设备;接收所述用户设备的关于多个发送天线端口的反馈信息,并根据所述反馈信息获取波束加权信息。由此,基站能够比较准确地获得波束加权信息,更好地应用于大规模MIMO系统中。

Description

波束信息获取方法、装置以及通信系统 技术领域
本发明实施例涉及通信技术领域,特别涉及一种大规模多输入多输出(MIMO,Multiple Input Multiple Output)系统中波束信息获取方法、装置以及通信系统。
背景技术
毫米波(mmWave)技术和大规模MIMO技术是未来第五代移动通信技术研究的两个候选技术,二者联用可以为系统提供更宽的传输带宽及更多的天线数,进而提升系统性能。
然而,天线数目和子载波数目的增多将会使得基带预编码技术难以实现。一方面是处理复杂度较高,每个子载波上均需进行大维度的矩阵相乘计算,系统复杂度随着天线数和带宽增加而显著增大。另一方面,若实现灵活的基带预编码技术,每个物理天线均需配置一套射频链(RF chian),包括放大器、混频器、数模转换器和模数转换器等,系统造价较高。
若将预编码技术放到射频单元上去做,每个符号执行一次大维度矩阵运算,将大大降低系统复杂度,但是系统性能也会相应下降。混合基带和射频的预编码(波束成型)由于综合了基带预编码和射频预编码的优点,可以在基带和射频上共同执行预编码操作,更加适合于大规模MIMO系统的应用,达到系统性能(灵活性)和复杂度的有效折衷。
在当前3GPP RAN4的自适应天线系统(AAS,Adaptive Antenna System)研究中,定义了收发单元(TXRU,Transceiver Units)包括多个发送单元(TXU)和接收单元(RXU)。TXU将基站AAS的基带信号作为输入,提供射频发送信号的输出。射频发送的输出通过一个无线分配网络(RDN,Radio Distribution Network)分配到天线阵列上。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是,发明人发现,目前仅对虚拟化模型进行了定义,并不存在如何获得波束加权信息(例如TXRU虚拟化加权矩阵)的方案,不能更好地应用于大规模MIMO系统中。
本发明实施例提供一种波束信息获取方法、装置以及通信系统。期望用户设备反馈多个端口的功率信息,根据该多个端口的功率信息获得波束加权信息。
根据本发明实施例的第一个方面,提供一种波束信息获取方法,应用于具有平面天线阵列的基站中;所述平面天线阵列包括多个天线粒子,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行;所述波束信息获取方法包括:
使用K个天线粒子向用户设备发送第一参考信号;其中K小于M,M为垂直方向的每列同一极化方向上的天线数;
接收所述用户设备反馈的波束索引;
根据所述波束索引确定长度为K的向量;
根据所述长度为K的向量估计出长度为L的向量,其中,K≤L≤M;
基于所述长度为L的向量确定多个加权向量;
使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;
接收所述用户设备的关于多个发送天线端口的反馈信息,并根据所述反馈信息获取波束加权信息。
根据本发明实施例的第二个方面,提供一种波束信息获取装置,配置于具有平面天线阵列的基站中;所述平面天线阵列包括多个天线粒子,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行;所述波束信息获取装置包括:
第一信号发送单元,使用K个天线粒子向用户设备发送第一参考信号;其中K小于M,M为垂直方向的每列同一极化方向上的天线数;
第一信息接收单元,接收所述用户设备反馈的波束索引;
第一向量确定单元,根据所述波束索引确定长度为K的向量;
向量估计单元,根据长度为K的向量估计出长度为L的向量,其中,K≤L≤M;
第二向量确定单元,基于所述长度为L的向量确定多个加权向量;
第二信号发送单元,使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;
第二信息接收单元,接收所述用户设备的关于多个发送天线端口的反馈信息,并根据所述反馈信息获取波束加权信息。
根据本发明实施例的第三个方面,提供一种波束信息获取方法,应用于用户设备中,所述波束信息获取方法包括:
接收基站在K个天线粒子上发送的第一参考信号,其中K小于M,M为所述基站中垂直方向的每列同一极化方向上的天线数;
根据所述第一参考信号进行信道估计;
根据所述信道估计的结果计算波束索引;
将所述波束索引反馈给所述基站;
接收所述基站发送的使用加权向量加权后的第二参考信号;
根据所述第二参考信号计算多个发送天线端口的接收功率;
将所述接收功率与预设阈值进行比较以确定关于多个发送天线端口的反馈信息;
将所述反馈信息发送给所述基站。
根据本发明实施例的第四个方面,提供一种波束信息获取装置,配置于用户设备中,所述波束信息获取装置包括:
第一信号接收单元,接收基站在K个天线粒子上发送的第一参考信号,其中K小于M,M为所述基站中垂直方向的每列同一极化方向上的天线数;
信道估计单元,根据所述第一参考信号进行信道估计;
索引计算单元,根据所述信道估计的结果计算波束索引;
第一信息发送单元,将所述波束索引反馈给所述基站;
第二信号接收单元,接收所述基站发送的使用加权向量加权后的第二参考信号;
功率计算单元,根据所述第二参考信号计算多个发送天线端口的接收功率;
功率比较单元,将所述接收功率与预设阈值进行比较以确定关于多个发送天线端口的反馈信息;
第二信息发送单元,将所述反馈信息发送给所述基站。
根据本发明实施例的第五个方面,提供一种通信系统,所述通信系统包括:
基站,具有平面天线阵列;所述平面天线阵列包括多个天线粒子,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行;以及所述基站使用K个天线粒子向用户设备发送第一参考信号;接收所述用户设备反馈的波束索引;根据所述 波束索引确定长度为K的向量;根据所述长度为K的向量估计出长度大为L的向量;基于所述长度为L的向量确定多个加权向量;使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;接收所述用户设备的关于多个发送天线端口的反馈信息,并根据所述反馈信息获取波束加权信息;其中,M为所述基站中垂直方向的每列同一极化方向上的天线数,K小于M,K≤L≤M;
用户设备,接收所述基站在K个天线粒子上发送的第一参考信号;根据所述第一参考信号进行信道估计;根据所述信道估计的结果计算波束索引;将所述波束索引反馈给所述基站;接收所述基站发送的使用加权向量加权后的第二参考信号;根据所述第二参考信号计算多个发送天线端口的接收功率;将所述接收功率与预设阈值进行比较以确定关于多个发送天线端口的反馈信息;将所述反馈信息发送给所述基站。
根据本发明实施例的又一个方面,提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行如上所述的波束信息获取方法。
根据本发明实施例的又一个方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行如上所述的波束信息获取方法。
根据本发明实施例的又一个方面,提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得计算机在所述用户设备中执行如上所述的波束信息获取方法。
根据本发明实施例的又一个方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在用户设备中执行如上所述的波束信息获取方法。
本发明实施例的有益效果在于,基站先在较少端口上发送参考信号,根据反馈的波束索引计算长度较小的向量并估计出长度较大的向量,然后根据长度较大的向量再次发送参考信号,获得用户设备反馈的关于多个发送天线端口的功率信息。由此,基站能够比较准确地获得波束加权信息,更好地应用于大规模MIMO系统中。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的 特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘制的,而只是为了示出本发明的原理。为了便于示出和描述本发明的一些部分,附图中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是同极化天线配置的平面天线阵列的一结构示意图;
图2是交叉极化天线配置的平面天线阵列的一结构示意图;
图3是TXRU虚拟化模型1中每一列同一极化方向的M个天线粒子与MTXRU个TXRU的连接关系的示意图;
图4是TXRU虚拟化模型2中每一列同一极化方向的M个天线粒子与MTXRU个TXRU的连接关系的示意图;
图5是本发明实施例1的波束信息获取方法的一示意图;
图6是本发明实施例2的波束信息获取方法的一示意图;
图7是本发明实施例3的波束信息获取方法的一示意图;
图8是本发明实施例4的波束信息获取装置的一示意图;
图9是本发明实施例4的基站的一构成示意图;
图10是本发明实施例5的波束信息获取装置的一示意图;
图11是本发明实施例5的用户设备的一构成示意图;
图12是本发明实施例6的通信系统的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原 则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
图1和图2给出本发明实施例相关的两种平面天线阵列结构的示意图,图1是同极化天线配置的平面天线阵列的一结构示意图,图2是交叉极化天线配置的平面天线阵列的一结构示意图。
如图1所示,在垂直方向上每列放置M个同一个极化方向的天线粒子(也可称为物理天线粒子),在水平方向上共放置N列。如图2所示,在垂直方向上每列放置M个交叉极化天线对,水平方向上共放置N列交叉极化天线对。即,垂直一列上每个极化方向有M个物理天线粒子,水平一行上每个极化方向有N个物理天线粒子。
这两种天线配置可以表示为(M,N,P),其中P表示极化维度的数量,P=1时为同极化配置,即如图1所示;P=2时为交叉极化配置,即如图2所示。其中每列同一极化方向的M个天线粒子连接MTXRU个TXRU,总的TXRU数量为MTXRU×N×P。
在上述平面天线阵列系统中,随着天线数目的增加,参考信号的开销也随之增大。为发挥垂直方向的波束调节功能,同时控制天线端口数目,可将垂直方向的多根天线粒子虚拟成一个或者多个天线端口。在一个虚拟天线端口内,通过对多个物理天线粒子进行加权来调整垂直方向的波束方向。与物理天线粒子加权相对应,虚拟天线端口的加权即为传统意义上的预编码操作。
在当前3GPP RAN1的全维度MIMO(Full dimension MIMO)研究中,讨论了收发单元(TXRU,Transceiver Units)与物理天线粒子的连接关系。其中,图1和2中每列同一极化方向的M个天线粒子连接MTXRU个TXRU,总的TXRU数量为MTXRU×N×P。
此外,RAN1讨论了两种TXRU的虚拟化模型,一种模型是子阵列划分模型,另一种是全连接模型,图3和图4分别给出了两种模型中每一列同一极化方向的M个天线粒子与MTXRU个TXRU的连接关系。
在这两种TXRU虚拟化模型中,q为天线粒子处的信号向量,即天线的发送信号向量,x为TXRU处的信号向量。
对TXRU虚拟化模型1,每个TXRU连接K个天线粒子,K=M/MTXRU,w为每个TXRU对数据流的加权,且MTXRU个TXRU均使用相同加权,即虚拟化模型可以表示为
Figure PCTCN2015075590-appb-000001
其中
Figure PCTCN2015075590-appb-000002
为克罗内克(kronecker)积操作,w可以是离散傅里叶 变换(DFT,Discrete Fourier Transform)向量,如
Figure PCTCN2015075590-appb-000003
其中θetilt为垂直方向的电子下倾角。
对TXRU虚拟化模型2,每个TXRU均与M个天线粒子相连,W为MTXRU个TXRU对信号x的加权,即虚拟化模型可以表示为q=Wx。W的每一列可以是一个DFT向量,如
Figure PCTCN2015075590-appb-000004
其中θetilt为垂直方向的电子下倾角。或者,
Figure PCTCN2015075590-appb-000005
其中,NM表示长度为M的DFT向量的尺寸。nm'表示第m'个TXRU选取的DFT向量在该码书中的索引。
值得注意的是,在图1和2所示的两种天线配置中,各列天线粒子使用相同的TXRU虚拟化模型,且各列的加权值也相同。该加权值对同一时间符号上的所有频带均适用。这说明,若使用TXRU虚拟化模型1,同一时刻仅支持一个波束的传输;若使用TXRU虚拟化模型2,同一时刻共支持MTXRU个波束的传输。
以上对于本发明实施例涉及的平面天线阵列以及TXRU虚拟化模型进行了说明,但本发明不限于此。以下对于本发明实施例进行详细说明。以下讨论均是针对P=1,即同极化配置情况进行的,因而P被省略掉。针对交叉进行配置,只需对相应端口数目进行调整,此处不再赘述。
实施例1
本发明实施例提供一种波束信息获取方法,应用于具有平面天线阵列的基站中;所述平面天线阵列包括多个天线粒子,所述多个天线粒子在垂直方向上形成多列以及 在水平方向上形成多行。本发明实施例从基站侧进行说明。
图5是本发明实施例的波束信息获取方法的一示意图,如图5所示,所述方法包括:
步骤501,基站使用K个天线粒子向用户设备发送第一参考信号;其中K小于M,M为垂直方向的每列同一极化方向上的天线数;
步骤502,基站接收所述用户设备反馈的波束索引;
步骤503,基站根据所述波束索引确定长度为K的向量;
步骤504,基站根据所述长度为K的向量估计出长度为L的向量;其中L大于或等于K且小于或等于M;
步骤505,基站基于所述长度为L的向量确定多个加权向量;
步骤506,基站使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;
步骤507,基站接收所述用户设备的关于多个发送天线端口的反馈信息,并根据所述反馈信息获取波束加权信息。
在本实施例中,M可以被K整除。基站可以在K个天线粒子上使用正交资源发送第一参考信号(RS,Reference Signal),该K个天线粒子可以是垂直方向上连续放置的K个天线粒子,也可以是垂直方向上具有固定间隔的K个天线粒子。并且可以接收到用户设备基于所述第一参考信号而反馈的波束索引(也可以称为波束编号等)。
在本实施例中,发送天线端口是指基站侧的平面天线阵列所形成的虚拟端口,基站可以自行决定使用的天线端口个数,最大天线端口数为总的TXRU数量,即MTXRU×N×P,例如基站可以使用M个端口,也可以使用其它数量的端口。但本发明并不限于此。
此外,每个发送天线端口可以使用一个或多个时频资源发送参考信号,本发明并不对端口数目以及时频资源的数目进行限制,可以是任意的端口数和时频资源数。
在本实施例中,基站侧和用户设备侧均存储相同的,由长度为K的天线粒子波束成型权值组成的第一码本。在步骤503中,基站可以根据接收到的所述用户设备反馈的波束索引n以及所述第一码本确定所述长度为K的向量。
在本实施例中,基站侧还可以存储有多个第二码本。其中,在多个所述第二码本中,DFT向量的长度和/或个数部分或全部不相同。基站可以根据所述长度为K的向 量bK估计出长度为L的向量bL,其中K≤L≤M。
例如,对于长度为K,个数为N1的DFT码书(第一码书),第n1个码字(即向量)为,
Figure PCTCN2015075590-appb-000006
对于长度为M,个数为N1的DFT码书(第二码书),第n1个码字为,
Figure PCTCN2015075590-appb-000007
可以看到,这个两个码字的前K个元素是相同的,区别是形成的波束宽度不同,长度为K的DFT向量比长度为M的DFT向量形成的波束主瓣更宽一些。由此,在步骤504中,根据所述长度为K的向量bK可以估计出长度为L的向量bL
在步骤505中,基站可以根据bL以及所述多个第二码本,分别为每个第二码本选择多个加权向量。
具体地,对于每个所述第二码本,可以选择包含bL和/或与bL相邻的MTXRU个向量作为所述加权向量;其中,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。也可以选择包含bL和/或与bL相邻的N*MTXRU个向量作为所述加权向量;其中,N为二维平面阵列的天线粒子列数。
其中,与bL相邻的向量是指在同一码书(例如CL)中,编号与其相邻的DFT向量。例如bL的编号为7,则当MTXRU为4时,与其相邻的MTXRU个加权向量可以是该码书CL中编号为5,6,8,9的DFT向量。
在本实施例中,选择出的加权向量的长度既可以为M,也可以小于M。
在步骤506中,基站可以基于第二TXRU虚拟化模型,使用所述多个加权向量对所述第二参考信号进行加权;其中,在所述第二TXRU虚拟化模型中,每个收发单元均与垂直方向上某一列的M个天线粒子连接。
即,基站可以使用如下TXRU模型进行加权:
Figure PCTCN2015075590-appb-000008
W=[b1 … bQ]∈CM×Q
其中,N为水平方向的天线列数,Q即MTXRU;bq(q=1,…,Q)为来自步骤505 中确定的加权向量,既可以是L固定情况下码书CL中包含bL和/或与bL相邻的MTXRU个加权向量,也可以是码书CL在L取不同值情况下的bL向量,还可以是步骤505中确定的任意MTXRU个加权向量。关于加权向量的长度,既可以是长度为M的DFT向量,当长度小于M时(如长度为L1),可以通过将(M-L1)个加权值置零来实现加权。
基站也可以使用如下TXRU模型进行加权:
Figure PCTCN2015075590-appb-000009
Wn=[bn1 … bnQ]∈CM×Q
其中,N为水平方向的天线列数,Q即MTXRU;bnq(q=1,…,Q)为来自步骤505中确定的加权向量,既可以表示L固定情况下码书CL中包含bL和/或与bL相邻的N*MTXRU个加权向量,也可以是码书CL在L取不同值情况下的N*MTXRU个bL向量,还可以是步骤505中确定的任意N*MTXRU个加权向量。
在步骤506中,基站还可以使用S个时频资源(其中1≤S≤N*MTXRU)发送所述第二参考信号;其中,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。
在本实施例中,所述反馈信息可以采用位图表示。具体地,所述位图可以包括S个比特(其中1≤S≤N*MTXRU),分别对应S个时频资源;其中,对于每个比特的取值,1表示在相应端口上所述用户设备接收到所述基站发送的信号的功率大于或等于预设阈值,0表示在相应端口上所述用户设备接收到所述基站发送的信号的功率小于所述预设阈值。
在本实施例中,基站获得反馈信息之后,可以根据该反馈信息判断信号发送的方向。例如某一用户设备在哪些端口上接收到的信号较强,由此可以适当调整波束加权矩阵,即确定波束加权信息。
由上述实施例可知,基站先在较少端口上发送参考信号,根据反馈的波束索引计算长度较小的向量并估计出长度较大的向量,然后根据长度较大的向量再次发送参考信号,获得用户设备反馈的关于多个发送天线端口的功率信息。由此,基站能够比较 准确地获得波束加权信息,更好地应用于大规模MIMO系统中。
实施例2
本发明实施例提供一种波束信息获取方法,应用于用户设备中。以下从用户设备侧来进行说明,与实施例1相同的内容不再赘述。
图6是本发明实施例的波束信息获取方法的一示意图,如图6所示,所述方法包括:
步骤601,用户设备接收基站在K个天线粒子上发送的第一参考信号,其中K小于M,M为所述基站中垂直方向的每列同一极化方向上的天线数;
步骤602,用户设备根据所述第一参考信号进行信道估计;
步骤603,用户设备根据所述信道估计的结果计算波束索引;
步骤604,用户设备将所述波束索引反馈给所述基站;
步骤605,用户设备接收所述基站发送的使用加权向量加权后的第二参考信号;
步骤606,用户设备根据所述第二参考信号计算多个发送天线端口的接收功率;
步骤607,用户设备将所述接收功率与预设阈值进行比较,以确定关于多个发送天线端口的反馈信息;
步骤608,用户设备将所述反馈信息发送给所述基站。
在本实施例中,用户设备侧还可以存储第一码本;在步骤603中,用户设备可以基于所述第一码本,根据所述信道估计的结果计算所述波束索引n。
在步骤605中,用户设备还可以在S个时频资源(其中1≤S≤N*MTXRU)上接收所述第二参考信号;其中,MTXRU为所述基站中垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。在步骤606中,用户设备可以对于每一个资源u,计算所述多个发送天线端口中每个端口的接收功率。
在本实施例中,所述反馈信息可以采用位图表示,所述位图包括S个比特,分别对应S个时频资源。
其中,在步骤607中,用户设备对于所述多个发送天线端口中的每一端口,在所述接收功率大于或等于所述预设阈值的情况下,将所述位图的相应信息置为1;在所述接收功率小于所述预设阈值的情况下,将所述位图的相应信息置为0。
由上述实施例可知,用户设备接收基站在较少端口上发送的参考信号并反馈波束 索引,然后接收基站发送的使用加权向量加权后的参考信号,根据该参考信号生成关于多个发送天线端口的功率信息并反馈给基站。由此,基站能够比较准确地获得波束加权信息,更好地应用于大规模MIMO系统中。
实施例3
本发明实施例提供一种波束信息获取方法,在实施例1和2的基础上,从基站侧和用户设备侧来进行说明,与实施例1和2相同的内容不再赘述。
图7是本发明实施例的波束信息获取方法的一示意图,如图7所示,所述方法可以包括两个阶段:第一阶段用于初始波束信息选择,第二阶段用于再次波束信息选择。如图7所述,所述方法包括:
第一阶段:
步骤701,基站使用K个天线粒子向用户设备发送第一参考信号;其中K小于M,M为垂直方向的每列同一极化方向上的天线数;
步骤702,用户设备接收所述第一参考信号后,根据所述第一参考信号进行信道估计;
步骤703,用户设备根据所述信道估计的结果计算波束索引;
步骤704,用户设备将所述波束索引反馈给所述基站;
步骤705,基站接收所述用户设备反馈的波束索引后,根据所述波束索引确定长度为K的向量。
在第一阶段中,参考信号通过使用长度小于M的K端口,可以降低发送参考信号时占用的资源;并且在反馈的长度为K的DFT向量的覆盖范围内,可以包含精确的波束方向。
第二阶段:
步骤706,基站根据长度为K的向量估计出长度为L的向量;其中,K≤L≤M;
步骤707,基站基于所述长度为L的向量确定多个加权向量;
步骤708,基站使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;
步骤709,用户设备接收所述第二参考信号后,根据所述第二参考信号计算多个发送天线端口的接收功率;
步骤710,用户设备将所述接收功率与预设阈值进行比较,以确定关于多个发送天线端口的反馈信息;
步骤711,用户设备将所述反馈信息发送给所述基站;
步骤712,基站接收所述反馈信息后,根据所述反馈信息确定波束加权信息。
在第二阶段中,基站根据长度较小的向量估计出长度较大的向量,然后根据长度较大的向量再次发送参考信号,获得用户设备反馈的关于多个发送天线端口的功率信息。由此,基站能够比较准确地获得波束加权信息。
由上述实施例可知,基站先在较少端口上发送参考信号,根据反馈的波束索引计算长度较小的向量并估计出长度较大的向量,然后根据长度较大的向量再次发送参考信号,获得用户设备反馈的关于多个发送天线端口的功率信息。由此,基站能够比较准确地获得波束加权信息,更好地应用于大规模MIMO系统中。
实施例4
本发明实施例提供一种波束信息获取装置,配置于具有平面天线阵列的基站中;所述平面天线阵列包括多个天线粒子,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行。
图8是本发明实施例的波束信息获取装置的一示意图,如图8所示,所述波束信息获取装置800包括:
第一信号发送单元801,使用K个天线粒子向用户设备发送第一参考信号;其中K小于M,M为垂直方向的每列同一极化方向上的天线数;
第一信息接收单元802,接收所述用户设备反馈的波束索引;
第一向量确定单元803,根据所述波束索引确定长度为K的向量;
向量估计单元804,根据所述长度为K的向量估计出长度为L的向量,其中,K≤L≤M;
第二向量确定单元805,基于所述长度为L的向量确定多个加权向量;
第二信号发送单元806,使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;
第二信息接收单元807,接收所述用户设备的关于多个发送天线端口的反馈信息,并根据所述反馈信息获取波束加权信息。
在本实施例中,所述M可以被K整除。
如图8所示,所述波束信息获取装置800还可以包括:
存储单元808,存储第一码本以及多个第二码本;其中,在多个所述第二码本中,DFT向量的长度和/或个数可以部分或全部不相同。
所述第一向量确定单元803根据接收到的所述用户设备反馈的波束索引n以及所述第一码本确定所述长度为K的向量;以及
所述第二向量确定单元805根据所述长度为L的向量以及所述多个第二码本,分别为每个第二码本选择多个加权向量。
在本实施例中,对于每个所述第二码本,所述第二向量确定单元805选择N*MTXRU个向量作为所述加权向量;其中,所述加权向量包含所述长度为L的向量,和/或,所述加权向量与所述长度为L的向量相邻;N为正整数,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。
在本实施例中,所述第二信号发送单元806可以基于第二TXRU虚拟化模型,使用所述多个加权向量对所述第二参考信号进行加权;其中,在所述第二TXRU虚拟化模型中,每个收发单元均与M个天线粒子连接。
在本实施例中,所述第二信号发送单元806可以使用S个时频资源发送所述第二参考信号(其中1≤S≤N*MTXRU);其中,N为正整数,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。
在本实施例中,所述第二信息接收单元807接收的所述反馈信息可以采用位图表示。其中,所述位图可以包括S个比特,分别对应S个时频资源;
对于每个比特的取值,具体地,1表示在相应端口上所述用户设备接收到所述基站发送的信号的功率大于或等于预设阈值,0表示在相应端口上所述用户设备接收到所述基站发送的信号的功率小于所述预设阈值。
本发明实施例还提供一种基站,该基站配置有如上所述的波束信息获取装置800。
图9是本发明实施例的基站的一构成示意图。如图9所示,基站900可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,基站900可以实现如实施例1所述的波束信息获取方法。中央处理器200 可以被配置为实现波束信息获取装置800的功能;即中央处理器200可以被配置为进行如下控制:使用K个天线粒子向用户设备发送第一参考信号;接收所述用户设备反馈的波束索引;根据所述波束索引确定长度为K的向量;根据所述长度为K的向量估计出长度为L的向量;基于所述长度为L的向量确定多个加权向量;使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;接收所述用户设备的关于多个发送天线端口的反馈信息,并根据所述反馈信息获取波束加权信息。
此外,如图9所示,基站900还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站900也并不是必须要包括图9中所示的所有部件;此外,基站900还可以包括图9中没有示出的部件,可以参考现有技术。
由上述实施例可知,基站先在较少端口上发送参考信号,根据反馈的波束索引计算长度较小的向量并估计出长度较大的向量,然后根据长度较大的向量再次发送参考信号,获得用户设备反馈的关于多个端口的功率信息。由此,基站能够比较准确地获得波束加权信息,更好地应用于大规模MIMO系统中。
实施例5
本发明实施例提供一种波束信息获取装置,配置于用户设备中。
图10是本发明实施例的波束信息获取装置的一示意图,如图10所示,所述波束信息获取装置1000包括:
第一信号接收单元1001,接收基站在K个天线粒子上发送的第一参考信号,其中K小于M,M为所述基站中垂直方向的每列同一极化方向上的天线数;
信道估计单元1002,根据所述第一参考信号进行信道估计;
索引计算单元1003,根据所述信道估计的结果计算波束索引;
第一信息发送单元1004,将所述波束索引反馈给所述基站;
第二信号接收单元1005,接收所述基站发送的使用加权向量加权后的第二参考信号;
功率计算单元1006,根据所述第二参考信号计算多个发送天线端口的接收功率;
功率比较单元1007,将所述接收功率与预设阈值进行比较以确定关于多个发送天线端口的反馈信息;
第二信息发送单元1008,将所述反馈信息发送给所述基站。
如图10所示,所述波束信息获取装置1000还可以包括:
存储单元1009,存储第一码本;
所述索引计算单元1003还用于:基于所述第一码本,根据所述信道估计的结果计算所述波束索引n。
在本实施例中,所述第二信号接收单元1005还用于:在S个时频资源上接收所述第二参考信号;其中,1≤S≤N*MTXRU,N为正整数,MTXRU为所述基站中垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。
在本实施例中,所述功率计算单元1006还用于:对于每一个资源u,计算所述多个发送天线端口中每个端口的接收功率。
在本实施例中,所述反馈信息可以采用位图表示,所述位图可以包括S个比特,分别对应S个时频资源。
其中,对于每一时频资源,所述功率比较单元1007还用于:在所述接收功率大于或等于所述预设阈值的情况下,将所述位图的相应信息置为1;在所述接收功率小于所述预设阈值的情况下,将所述位图的相应信息置为0。
本发明实施例还提供一种用户设备,配置有如上所述的波束信息获取装置1000。
图11是本发明实施例的用户设备的一示意图。如图11所示,该用户设备1100可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,波束信息获取装置1000的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为:接收基站在K个天线粒子上发送的第一参考信号;根据所述第一参考信号进行信道估计;根据所述信道估计的结果计算波束索引;将所述波束索引反馈给所述基站;接收所述基站发送的使用加权向量加权后的第二参考信号;根据所述第二参考信号计算多个发送天线端口的接收功率;将所述接收功率与预设阈值进行比较以确定关于多个发送天线端口的反馈信息;将所述反馈信息发送给所述基站。
在另一个实施方式中,波束信息获取装置1000可以与中央处理器100分开配置,例如可以将波束信息获取装置1000配置为与中央处理器100连接的芯片,通过中央 处理器的控制来实现波束信息获取装置1000的功能。
如图11所示,该用户设备1100还可以包括:通信模块110、输入单元120、音频处理单元130、存储器140、照相机150、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1100也并不是必须要包括图11中所示的所有部件,上述部件并不是必需的;此外,用户设备1100还可以包括图11中没有示出的部件,可以参考现有技术。
由上述实施例可知,用户设备接收基站在较少端口上发送的参考信号并反馈波束索引,然后接收基站发送的使用加权向量加权后的参考信号,根据该参考信号生成关于多个发送天线端口的功率信息并反馈给基站。由此,基站能够比较准确地获得波束加权信息,更好地应用于大规模MIMO系统中。
实施例6
本发明实施例还提供一种通信系统,与实施例1至5相同的内容不再赘述。图12是本发明实施例的通信系统的一示意图,如图12所示,所述通信系统1200包括:基站1201和用户设备1202;
其中,基站1201具有平面天线阵列;所述平面天线阵列包括多个天线粒子,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行;
所述基站1201使用K个天线粒子向用户设备发送第一参考信号;接收所述用户设备反馈的波束索引;根据所述波束索引确定长度为K的向量;根据所述长度为K的向量估计出长度大为L的向量;基于所述长度为L的向量确定多个加权向量;使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;接收所述用户设备的关于多个发送天线端口的反馈信息,并根据所述反馈信息获取波束加权信息;
用户设备1202接收所述基站在K个天线粒子上发送的第一参考信号;根据所述第一参考信号进行信道估计;根据所述信道估计的结果计算波束索引;将所述波束索引反馈给所述基站;接收所述基站发送的使用加权向量加权后的第二参考信号;根据所述第二参考信号计算多个发送天线端口的接收功率;将所述接收功率与预设阈值进行比较以获得关于多个发送天线端口的反馈信息;将所述反馈信息发送给所述基站;
本发明实施例提供一种计算机可读程序,其中当在基站中执行所述程序时,所述 程序使得计算机在所述基站中执行如实施例1所述的波束信息获取方法。
本发明实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行如实施例1所述的波束信息获取方法。
本发明实施例提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得计算机在所述用户设备中执行如实施例2所述的波束信息获取方法。
本发明实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在用户设备中执行如实施例2所述的波束信息获取方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (17)

  1. 一种波束信息获取装置,配置于具有平面天线阵列的基站中;所述平面天线阵列包括多个天线粒子,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行;所述波束信息获取装置包括:
    第一信号发送单元,使用K个天线粒子向用户设备发送第一参考信号;其中K小于M,M为垂直方向的每列同一极化方向上的天线数;
    第一信息接收单元,接收所述用户设备反馈的波束索引;
    第一向量确定单元,根据所述波束索引确定长度为K的向量;
    向量估计单元,根据所述长度为K的向量估计出长度为L的向量,其中,K≤L≤M;
    第二向量确定单元,基于所述长度为L的向量确定多个加权向量;
    第二信号发送单元,使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;
    第二信息接收单元,接收所述用户设备的关于多个发送天线端口的反馈信息,以根据所述反馈信息确定波束加权信息。
  2. 根据权利要求1所述的波束信息获取装置,其中,所述M被K整除。
  3. 根据权利要求1所述的波束信息获取装置,其中,所述波束信息获取装置还包括:
    存储单元,存储第一码本以及多个第二码本;
    所述第一向量确定单元根据接收到的所述用户设备反馈的波束索引n以及所述第一码本确定所述长度为K的向量;以及
    所述第二向量确定单元根据所述长度为L的向量以及所述多个第二码本,分别为每个第二码本选择多个加权向量。
  4. 根据权利要求3所述的波束信息获取装置,其中,对于每个所述第二码本,所述第二向量确定单元选择N*MTXRU个向量作为所述加权向量;
    其中,所述加权向量包含所述长度为L的向量,和/或,所述加权向量与所述长度为L的向量相邻;N为正整数,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。
  5. 根据权利要求3所述的波束信息获取装置,其中,在多个所述第二码本中,离散傅里叶变换向量的长度和/或个数部分或全部不相同。
  6. 根据权利要求1所述的波束信息获取装置,其中,所述第二信号发送单元基于第二TXRU虚拟化模型,使用所述多个加权向量对所述第二参考信号进行加权;
    其中,在所述第二TXRU虚拟化模型中,每个收发单元均与M个天线粒子连接。
  7. 根据权利要求6所述的波束信息获取装置,其中,所述第二信号发送单元使用S个资源发送所述第二参考信号;
    其中,1≤S≤N*MTXRU,N为正整数,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。
  8. 根据权利要求1所述的波束信息获取装置,其中,所述第二信息接收单元接收的所述反馈信息采用位图表示。
  9. 根据权利要求8所述的波束信息获取装置,其中,所述位图包括S个比特,分别对应S个资源;1≤S≤N*MTXRU,N为正整数,MTXRU为垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。
  10. 根据权利要求9所述的波束信息获取装置,其中,对于所述比特的取值,1表示在相应端口上所述用户设备接收到所述基站发送的信号的功率大于或等于预设阈值,0表示在相应端口上所述用户设备接收到所述基站发送的信号的功率小于所述预设阈值。
  11. 一种波束信息获取装置,配置于用户设备中,所述波束信息获取装置包括:
    第一信号接收单元,接收基站在K个天线粒子上发送的第一参考信号,其中K小于M,M为所述基站中垂直方向的每列同一极化方向上的天线数;
    信道估计单元,根据所述第一参考信号进行信道估计;
    索引计算单元,根据所述信道估计的结果计算波束索引;
    第一信息发送单元,将所述波束索引反馈给所述基站;
    第二信号接收单元,接收所述基站发送的使用加权向量加权后的第二参考信号;
    功率计算单元,根据所述第二参考信号计算多个发送天线端口的接收功率;
    功率比较单元,将所述接收功率与预设阈值进行比较以得到关于多个发送天线端口的反馈信息;
    第二信息发送单元,将所述反馈信息发送给所述基站。
  12. 根据权利要求11所述的波束信息获取装置,其中,所述波束信息获取装置还包括:
    存储单元,存储向量个数较小的第一码本;
    所述索引计算单元还用于:基于所述第一码本,根据所述信道估计的结果计算所述波束索引n。
  13. 根据权利要求11所述的波束信息获取装置,其中,所述第二信号接收单元还用于:在S个资源上接收所述第二参考信号;
    其中,1≤S≤N*MTXRU,N为正整数,MTXRU为所述基站中垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。
  14. 根据权利要求13所述的波束信息获取装置,其中,所述功率计算单元还用于:对于每一个资源u,计算所述多个发送天线端口中每个端口的接收功率。
  15. 根据权利要求11所述的波束信息获取装置,其中,所述反馈信息采用位图表示,所述位图包括S个比特,分别对应S个资源;
    其中,1≤S≤N*MTXRU,N为正整数,MTXRU为所述基站中垂直方向的每列同一极化方向上M个天线粒子连接的收发单元数目。
  16. 根据权利要求15所述的波束信息获取装置,其中,所述功率比较单元还用于:对于每一所述资源,
    在所述接收功率大于或等于所述预设阈值的情况下,将所述位图的相应信息置为1;在所述接收功率小于所述预设阈值的情况下,将所述位图的相应信息置为0。
  17. 一种通信系统,所述通信系统包括:
    基站,具有平面天线阵列;所述平面天线阵列包括多个天线粒子,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行;以及所述基站使用K个天线粒子向用户设备发送第一参考信号;接收所述用户设备反馈的波束索引;根据所述波束索引确定长度为K的向量;根据所述长度为K的向量估计出长度大为L的向量;基于所述长度为L的向量确定多个加权向量;使用所述多个加权向量对第二参考信号进行加权,并将加权后的第二参考信号发送给所述用户设备;接收所述用户设备的关于多个发送天线端口的反馈信息,并根据所述反馈信息获取波束加权信息;其中,M为所述基站中垂直方向的每列同一极化方向上的天线数,K小于M,K≤L≤M;
    用户设备,接收所述基站在K个天线粒子上发送的第一参考信号;根据所述第 一参考信号进行信道估计;根据所述信道估计的结果计算波束索引;将所述波束索引反馈给所述基站;接收所述基站发送的使用加权向量加权后的第二参考信号;根据所述第二参考信号计算多个发送天线端口的接收功率;将所述接收功率与预设阈值进行比较以确定关于多个发送天线端口的反馈信息;将所述反馈信息发送给所述基站。
PCT/CN2015/075590 2015-03-31 2015-03-31 波束信息获取方法、装置以及通信系统 WO2016154923A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580077236.8A CN107409318A (zh) 2015-03-31 2015-03-31 波束信息获取方法、装置以及通信系统
EP15886909.9A EP3280168A1 (en) 2015-03-31 2015-03-31 Method, device and communication system for obtaining beam information
PCT/CN2015/075590 WO2016154923A1 (zh) 2015-03-31 2015-03-31 波束信息获取方法、装置以及通信系统
KR1020177029117A KR20170128452A (ko) 2015-03-31 2015-03-31 빔 정보를 취득하는 방법, 장치 및 통신 시스템
JP2017550715A JP2018514994A (ja) 2015-03-31 2015-03-31 ビーム情報取得方法、装置及び通信システム
US15/703,563 US20180006697A1 (en) 2015-03-31 2017-09-13 Beam Information Acquisition Method and Apparatus and Communications System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075590 WO2016154923A1 (zh) 2015-03-31 2015-03-31 波束信息获取方法、装置以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/703,563 Continuation US20180006697A1 (en) 2015-03-31 2017-09-13 Beam Information Acquisition Method and Apparatus and Communications System

Publications (1)

Publication Number Publication Date
WO2016154923A1 true WO2016154923A1 (zh) 2016-10-06

Family

ID=57006449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075590 WO2016154923A1 (zh) 2015-03-31 2015-03-31 波束信息获取方法、装置以及通信系统

Country Status (6)

Country Link
US (1) US20180006697A1 (zh)
EP (1) EP3280168A1 (zh)
JP (1) JP2018514994A (zh)
KR (1) KR20170128452A (zh)
CN (1) CN107409318A (zh)
WO (1) WO2016154923A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
CN108632836B (zh) 2017-03-17 2019-12-03 维沃移动通信有限公司 波束信息获取方法和上报方法、网络侧设备及终端
EP3783806B1 (en) * 2018-04-18 2024-08-21 Nokia Shanghai Bell Co., Ltd. Method and device for virtual port mapping for massive mimo
CN113328769B (zh) * 2020-02-28 2022-09-02 上海华为技术有限公司 数据处理方法及其设备
CN114520678B (zh) * 2020-11-19 2023-08-01 中国移动通信集团设计院有限公司 广播波束的发送方法和装置、电子设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100579A1 (en) * 2011-12-27 2013-07-04 Samsung Electronics Co., Ltd. Channel state information feedback apparatus and method in wireless communication system operating in fdd mode
WO2014168319A1 (en) * 2013-04-08 2014-10-16 Lg Electronics Inc. Method and apparatus for providing control information for fractional beamforming in a wireless communication system
CN104184537A (zh) * 2013-05-21 2014-12-03 上海朗帛通信技术有限公司 一种移动通信系统中的信道信息反馈方法和装置
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置
CN104335501A (zh) * 2012-05-17 2015-02-04 高通股份有限公司 用于高阶mimo 的码本和反馈设计
CN104348763A (zh) * 2013-07-23 2015-02-11 华为技术有限公司 一种用于大规模天线的信道测量方法和用户终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101922597B1 (ko) * 2011-12-27 2019-02-21 삼성전자주식회사 Fdd 모드로 동작하는 거대 mimo 시스템에서 채널상태정보 기준신호를 전송하고 수신하기 위한 송수신 장치 및 방법
KR102105338B1 (ko) * 2013-03-08 2020-04-28 삼성전자 주식회사 다중 안테나 시스템의 송수신 장치 및 방법
EP2975780B1 (en) * 2013-03-11 2020-07-08 LG Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
CN103475401B (zh) * 2013-09-18 2017-02-01 北京北方烽火科技有限公司 一种下行波束赋形方法与装置
JP6416869B2 (ja) * 2014-02-21 2018-10-31 株式会社Nttドコモ 無線通信制御方法および無線通信システム
JP2015185953A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ ビーム選択方法、基地局、およびユーザ装置
US9893789B2 (en) * 2014-04-10 2018-02-13 Lg Electronics Inc. Method of transmitting a reference signal in a wireless communication system and apparatus therefor
US9654264B2 (en) * 2014-05-08 2017-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Beam forming using a dual polarized antenna arrangement
US10673512B2 (en) * 2015-09-16 2020-06-02 Telefonaktiebolaget Lm Ericsson (Publ) Precoding over a beam subset

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100579A1 (en) * 2011-12-27 2013-07-04 Samsung Electronics Co., Ltd. Channel state information feedback apparatus and method in wireless communication system operating in fdd mode
CN104335501A (zh) * 2012-05-17 2015-02-04 高通股份有限公司 用于高阶mimo 的码本和反馈设计
WO2014168319A1 (en) * 2013-04-08 2014-10-16 Lg Electronics Inc. Method and apparatus for providing control information for fractional beamforming in a wireless communication system
CN104184537A (zh) * 2013-05-21 2014-12-03 上海朗帛通信技术有限公司 一种移动通信系统中的信道信息反馈方法和装置
CN104348763A (zh) * 2013-07-23 2015-02-11 华为技术有限公司 一种用于大规模天线的信道测量方法和用户终端
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT; ET AL.: "Radio Frequency (RF) Requirement Background for Active Antenna System (AAS) Base Station (BS) (Release 12", 3GPP TR 37.842 VL.0.0, 30 September 2014 (2014-09-30), pages 1 - 29, XP055483911 *

Also Published As

Publication number Publication date
CN107409318A (zh) 2017-11-28
JP2018514994A (ja) 2018-06-07
US20180006697A1 (en) 2018-01-04
EP3280168A1 (en) 2018-02-07
KR20170128452A (ko) 2017-11-22

Similar Documents

Publication Publication Date Title
Chen Hybrid beamforming with discrete phase shifters for millimeter-wave massive MIMO systems
US10581165B2 (en) Beamforming using an antenna array
US20160204842A1 (en) Information Feedback Method, Codebook Determination Method, UE and Base Station
WO2016154923A1 (zh) 波束信息获取方法、装置以及通信系统
JP7413544B2 (ja) チャネル相反性に基づくプリコーディングマトリックスの構成方法および装置
CN110581724B (zh) 信道状态信息反馈方法、预编码矩阵确定方法及装置
WO2019144801A1 (zh) 一种信道估计方法和装置
WO2019047827A9 (zh) 一种指示及确定预编码矩阵的方法和设备
US11799526B2 (en) Method and apparatus for transmitting a CSI report containing coefficients
WO2015147814A1 (en) Radio frequency beamforming basis function feedback
JP6556244B2 (ja) コードブック確定方法及び装置
KR102266761B1 (ko) 빔형성 방법 및 디바이스
WO2021160122A1 (zh) 信道状态信息反馈方法、装置、终端、网络侧和存储介质
CN105246086B (zh) 一种确定天线角度的方法和设备
WO2016065557A1 (zh) 码书确定方法、装置以及通信系统
CN108075811A (zh) 用于混合预编码的方法以及通信设备
US20210234574A1 (en) Frequency time domain channel hardening and overhead reduction
WO2016183803A1 (zh) 天线阵列的信道信息反馈方法与装置
CN107872259B (zh) 一种码本生成方法和通信设备
CN105991172A (zh) 天线阵列的虚拟化模型选择方法、装置以及通信系统
CN108123741A (zh) 基于重叠子阵列(osa)的波束赋形方法和设备
WO2023160247A1 (zh) 下行传输的方法及装置
WO2017107697A1 (zh) 下行信道重构方法以及装置
WO2022267367A1 (zh) 信道矩阵处理方法、设备及存储介质
KR20180080768A (ko) 복수의 무선 신호들을 컴바이닝하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886909

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015886909

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017550715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177029117

Country of ref document: KR

Kind code of ref document: A