WO2016065557A1 - 码书确定方法、装置以及通信系统 - Google Patents

码书确定方法、装置以及通信系统 Download PDF

Info

Publication number
WO2016065557A1
WO2016065557A1 PCT/CN2014/089801 CN2014089801W WO2016065557A1 WO 2016065557 A1 WO2016065557 A1 WO 2016065557A1 CN 2014089801 W CN2014089801 W CN 2014089801W WO 2016065557 A1 WO2016065557 A1 WO 2016065557A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
codebook
particles
virtual
radio frequency
Prior art date
Application number
PCT/CN2014/089801
Other languages
English (en)
French (fr)
Inventor
宋磊
王昕�
梁毅
Original Assignee
富士通株式会社
宋磊
王昕�
梁毅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 宋磊, 王昕�, 梁毅 filed Critical 富士通株式会社
Priority to CN201480082045.6A priority Critical patent/CN106716862A/zh
Priority to PCT/CN2014/089801 priority patent/WO2016065557A1/zh
Publication of WO2016065557A1 publication Critical patent/WO2016065557A1/zh
Priority to US15/499,184 priority patent/US20170230091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a codebook determining method, apparatus, and communication system.
  • millimeter wave (mmWave) technology as one of the candidate technologies, can be combined with large-scale multiple input-output (MIMO) technology to provide wider transmission.
  • MIMO multiple input-output
  • Bandwidth and more antennas which in turn improve system performance.
  • an increase in the number of antennas and the number of subcarriers will make baseband precoding techniques difficult to implement.
  • the processing complexity is high, and large-dimensional matrix multiplication calculation is required on each subcarrier.
  • the system complexity increases significantly with the increase of the number of antennas and the bandwidth.
  • each physical antenna needs to be equipped with a set of RF chian, including amplifier, mixer, digital-to-analog converter and analog-to-digital converter. high.
  • baseband precoding can select the optimal precoding codebook on each subcarrier.
  • the inventor has found that in the case of a multi-user device, different user equipments can also select different pre-encoded codebooks, and the pre-encoding codebook used on the radio frequency on the entire symbol is the same, that is, cannot be realized. Adaptive precoding of the carrier and user dimensions, and thus performance degradation.
  • Precoding (beamforming) that combines baseband and radio frequency combines the advantages of baseband precoding and radio frequency precoding to perform precoding operations on baseband and radio, making it more suitable for large-scale MIMO and millimeter-wave systems. , an effective compromise between system performance (including flexibility) and complexity.
  • Embodiments of the present invention provide a codebook determining method, apparatus, and communication system. By determining for RF pre- The coded codebook and the codebook for baseband precoding can be adapted to the application of large-scale MIMO systems to achieve an effective compromise between system performance and complexity.
  • the codebook determination method includes:
  • a first codebook for radio frequency precoding based on the number of antenna particles and/or the number of radio frequency chains in the planar antenna array; wherein antenna particles of the same polarization direction in one column of antennas in the vertical direction form one or a plurality of virtual antenna ports, the one or more virtual antenna ports being connected to a plurality of radio frequency chains;
  • a second codebook for baseband precoding is determined based on the number of antenna particles and/or the number of radio frequency chains in the planar antenna array.
  • a codebook determining apparatus applied to a planar antenna array including a plurality of antenna particles, the plurality of antenna particles forming a plurality of columns in a vertical direction and being formed in a horizontal direction
  • the plurality of lines the code book determining device comprises:
  • a first determining unit configured to determine, according to the number of antenna particles and/or the number of radio frequency chains in the planar antenna array, a first codebook for radio frequency precoding; wherein, in a vertical direction, a column of antennas has the same polarization direction
  • the antenna particles form one or more virtual antenna ports, and the one or more virtual antenna ports are connected to a plurality of radio frequency chains;
  • the second determining unit determines a second codebook for baseband precoding based on the number of antenna particles and/or the number of radio frequency chains in the planar antenna array.
  • a communication system comprising:
  • a base station having a planar antenna array including a plurality of antenna particles, wherein the plurality of antenna particles form a plurality of columns in a vertical direction and a plurality of rows in a horizontal direction; wherein antenna elements of the same polarization direction in a column of antennas in a vertical direction Forming one or more virtual antenna ports, the one or more virtual antenna ports being connected to a plurality of radio frequency chains;
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to execute a codebook determining method as described above in the base station.
  • a storage medium storing a computer readable program
  • the computer readable program causes a computer to perform a codebook determination method as described above in a base station.
  • the beneficial effects of the embodiments of the present invention are that hybrid precoding of baseband and radio frequency can be performed by determining a first codebook for radio frequency precoding and a second codebook for baseband precoding, which is suitable for a large-scale MIMO system. Application and achieve an effective compromise between system performance and complexity.
  • FIG. 1 is a schematic structural view of a planar antenna array of a co-polarized antenna configuration
  • FIG. 2 is a schematic structural diagram of a planar antenna array of a cross-polarized antenna configuration
  • FIG. 3 is a schematic flow chart of a method for determining a codebook according to an embodiment of the present invention
  • FIG. 4 is a schematic flow chart of determining, by a base station, codewords of a first codebook and a second codebook according to the present invention
  • FIG. 5 is a schematic flow chart of determining, by a user equipment, a codeword of a first codebook and a second codebook according to the present invention
  • FIG. 6 is a schematic diagram of a connection between a radio frequency chain and a physical antenna particle according to an embodiment of the present invention
  • FIG. 7 is another schematic diagram of connecting a radio frequency chain and a physical antenna particle according to an embodiment of the present invention.
  • FIG. 8 is another schematic diagram of a radio frequency chain and a physical antenna particle connection according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a codebook determining apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another structure of a codebook determining apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • Figure 12 is a block diagram showing a configuration of a communication system according to an embodiment of the present invention.
  • FIG. 1 and FIG. 2 are schematic diagrams showing the structure of a planar antenna array related to two embodiments of the present invention.
  • FIG. 1 is a schematic structural diagram of a planar antenna array configured by a co-polarized antenna
  • FIG. 2 is a planar antenna array configured by a cross-polarized antenna. A schematic diagram of the structure.
  • M antenna elements of the same polarization direction also referred to as physical antenna particles
  • N columns are placed in the horizontal direction
  • M pairs of cross-polarized antenna pairs are placed in each column in the vertical direction
  • N columns of cross-polarized antenna pairs are placed in the horizontal direction. That is, there are M physical antenna particles in each polarization direction in a vertical column, and N physical antenna particles in each polarization direction on a horizontal line.
  • the overhead of the reference signal also increases.
  • multiple antenna particles in the vertical direction can be virtualized into one or more antenna ports.
  • the beam direction in the vertical direction is adjusted by weighting a plurality of physical antenna particles.
  • the weighting of the virtual antenna port is a precoding operation in the conventional sense.
  • planar antenna array according to the present invention has been described above, but the present invention is not limited thereto. The invention is described in detail below.
  • Embodiments of the present invention provide a codebook determining method, which is applied to a planar antenna array including a plurality of physical antenna particles, wherein the plurality of physical antenna particles form a plurality of columns in a vertical direction and a plurality of rows in a horizontal direction.
  • the codebook determining method can be applied to the base station side or the user equipment side; the codebook can be determined offline, and the generated codebook can be stored on the base station side and/or the user equipment side.
  • FIG. 3 is a schematic flowchart of a codebook determining method according to an embodiment of the present invention. As shown in FIG. 3, the determining method includes:
  • Step 301 Determine a first codebook for radio frequency precoding based on the number of antenna particles and/or the number of radio frequency chains in the planar antenna array.
  • the physical antenna particles in the same polarization direction in a column of antennas in the vertical direction form one or more virtual antenna ports, and the one or more virtual antenna ports are connected to multiple radio frequency chains;
  • Step 302 Determine a second codebook for baseband precoding based on the number of antenna particles in the planar antenna array and/or the number of the radio frequency chains.
  • each polarization direction in a column in the vertical direction of the planar antenna array has The number M of antenna particles, and/or the number Q of radio frequency chains, may be pre-generated to generate a first codebook for radio frequency precoding.
  • a second codebook for baseband precoding is generated in advance based on the number N of antenna particles and/or the number Q of the radio frequency chains in each polarization direction on a row in the horizontal direction of the planar antenna array.
  • factors such as the number of data streams Ns supported by the baseband and/or the precoding codebook of the actual antenna port may also be considered.
  • each virtual antenna port may correspond to multiple beams, and the product of the number of virtual antenna ports and the number of beams corresponding to each of the virtual antenna ports is constant. That is, the case where a plurality of Q values may be included in the same code book (the first code book and/or the second code book), and/or a case where a plurality of l values may be included. Regarding the specific meanings of Q and 1, reference can be made to Examples 2 and 3 which will be described later.
  • the first code book and the second code book may be pre-generated on the base station side and then sent to the user equipment side; or may be generated in advance on the base station side and the user equipment side respectively (for example, the base station is user equipment configuration information,
  • the first code book and the second code book are generated by the user equipment by itself, and may be pre-generated by the third-party device and then sent to the base station and the user equipment.
  • the present invention is not limited to which device specifically determines to generate the first code book and the second code book. Thereby, the base station side and the user equipment side can store the first code book and the second code book in advance.
  • the codebook of the actual antenna port (which may be referred to as a third codebook) may be a conventional LTE codebook for port precoding.
  • the radio frequency and baseband precoding operations can be jointly performed by the first code book, the second code book, and the third code book.
  • the specific codeword when communication is performed between the base station and the user equipment, the specific codeword may be determined by the base station, or the specific codeword may be determined by the user equipment and fed back to the base station.
  • FIG. 4 is a schematic flow chart of determining a codeword of a first codebook and a second codebook by a base station according to the present invention. As shown in FIG. 4, the determination of the codeword includes:
  • Step 401 The user equipment sends a signal to the base station based on the estimated channel information.
  • the user equipment may send a signal form such as a reference signal (eg, SRS, Sounding Reference Signal, etc.) or data information to the base station; however, the present invention is not limited thereto.
  • a reference signal eg, SRS, Sounding Reference Signal, etc.
  • Step 402 The base station determines, according to the signal sent by the user equipment, a codeword index in the first code book and the second code book.
  • the base station side can jointly determine the codeword index of the used first code book and the second code book according to the measured signal arrival direction of the user equipment side and the arrival angle of the simultaneously scheduled user equipment. How to determine the codeword index can refer to related technologies.
  • one or more beams may be transmitted at each virtual antenna port; for the second codebook, the transmission beams may be selected from a plurality of beams supported by one or more virtual antenna ports.
  • Step 403 The base station sends the codeword index of the first codebook and the second codebook to the user equipment.
  • FIG. 5 is a schematic flowchart of determining a codeword of a first codebook and a second codebook by a user equipment according to the present invention. As shown in FIG. 5, the determination of the codeword includes:
  • Step 501 The user equipment performs channel estimation.
  • Step 502 Calculate, according to the estimated channel information, a codeword index in the first code book and the second code book.
  • the user equipment can calculate the codeword index according to a certain calculation criterion, and how to determine the codeword index can refer to related technologies.
  • Step 503 The user equipment sends the codeword index of the first codebook and the second codebook to the base station.
  • the first code book and the second code book may be determined in advance, and the first code book and the second code book are pre-stored in the base station and the user equipment.
  • the specific codeword index may be determined by the base station or the user equipment, and then the precoding matrix for the radio frequency and the precoding matrix for the baseband are determined; finally, the precoding matrix of the actual antenna port is determined.
  • FIGS. 4 and 5 only schematically show how to determine a specific codeword, but the present invention is not limited thereto, and reference may be made to the related art as to how to specifically determine a codeword.
  • hybrid precoding of baseband and radio frequency can be performed, which is suitable for large-scale MIMO system applications and achieves system performance.
  • the physical antenna particles of the same polarization direction in one column of antennas in the vertical direction are virtually formed into one virtual antenna port.
  • the one virtual antenna port is connected to the Q radio frequency chains. That is, it is assumed that all physical antenna particles of the same polarization direction in one column of antennas in the vertical direction are virtually formed into one antenna port, and each virtual antenna port is connected to Q RF chains.
  • each RF chain can be connected to all physical antenna particles of a virtual antenna port.
  • FIG. 6 is a schematic diagram showing the connection of an RF chain and a physical antenna particle according to an embodiment of the present invention. As shown in FIG. 6, one RFchain can be connected to M physical antenna particles.
  • FIG. 7 is another schematic diagram showing the connection of an RF chain and a physical antenna particle according to an embodiment of the present invention, showing a specific connection relationship between a radio frequency chain and an antenna particle.
  • the first codebook can be determined using the following formula (1):
  • W RF represents the first codebook
  • C represents a complex set
  • N is the number of physical antenna particles in each polarization direction on a row in the horizontal direction of the planar antenna array
  • M is the plane
  • each virtual antenna port can support Q beams simultaneously by connecting Q RF chains.
  • b 1 , b 2 , ..., b Q may be orthogonal to each other; or b 1 , b 2 , ..., b Q correspond to adjacent beams.
  • the selection of X may have various considerations.
  • b 1 , b 2 , . . . , b Q are orthogonal to each other, so that a W RF codeword can be used to cover a larger range of beams. And can support multi-user MIMO at the same time.
  • b 1 , b 2 , . . . , b Q are adjacent beams, which can support slow change of the frequency domain beam direction.
  • the second codebook may be determined using the following formula (2):
  • W BB represents the second codebook
  • R represents a real number set
  • matrix B represents a precoding matrix of the actual antenna port
  • Ns is a number of data stream streams supported by the baseband
  • E q, n represents only the qth row
  • matrix A can have another expression, namely
  • e q is a unit vector of Q ⁇ 1
  • the qth element is 1, and all other elements are zero.
  • the matrix A is used for selecting a radio frequency beam, that is, one beam is selected for transmission among a Q beam supported by one virtual antenna port, and E q,n represents that only the element of the qth row and the nth column is 1 and the other elements are all 0 matrix.
  • the matrix B is a precoding matrix of the actual antenna port, and can re-use the 2 antenna, 4 antenna, 8 antenna precoding codebook of the LTE system, etc.; it can represent a single code book or a double code book.
  • Ns is the number of streams of data streams supported by the baseband.
  • the scheme under the configuration of the cross-polarized antenna is similar to the scheme of the same-polarized antenna configuration, except that all the physical antenna particles in the same polarization direction of one column of antennas in the vertical direction are virtualized into one antenna port, and the total number of virtual antenna ports is 2N.
  • the dimensions of W RF and W BB and their sub-matrices change.
  • the first codebook is determined using the following formula (3):
  • W RF represents the first codebook
  • C represents a complex set
  • N is the number of physical antenna particles in each polarization direction on a row in the horizontal direction of the planar antenna array
  • M is the plane
  • the second codebook is determined using the following formula (4):
  • W BB represents the second codebook
  • R represents a real number set
  • matrix B represents a precoding matrix of the actual antenna port
  • Ns is a number of data stream streams supported by the baseband
  • E q, n represents only the qth row
  • the physical antenna particles in the same polarization direction in one column of antennas in the vertical direction are virtualized into a plurality of virtual antenna ports.
  • the plurality of virtual antenna ports are connected to Q radio frequency chains.
  • FIG. 8 is a schematic diagram showing the connection of an RF chain and a physical antenna particle according to an embodiment of the present invention, showing that when M The case when it can be divisible by Q.
  • one RFchain can be connected to a plurality of physical antenna particles, and each RF chain can connect only a part of physical antenna particles.
  • the first codebook can be determined using the following formula (5):
  • W RF represents the first codebook
  • C represents a complex set
  • N is the number of physical antenna particles in each polarization direction on a row in the horizontal direction of the planar antenna array
  • M is the plane The number of physical antenna particles in each polarization direction in a column in the vertical direction of the antenna array
  • N T is the codebook size of the DFT vector.
  • the first codebook can be determined using the following formula (7):
  • W RF represents the first codebook
  • C represents a complex set
  • N is the number of physical antenna particles in each polarization direction on a row in the horizontal direction of the planar antenna array
  • M is the plane The number of physical antenna particles in each polarization direction in a column in the vertical direction of the antenna array
  • DFT vectors mentioned in the above description can all be designed according to the channel conditions; the invention does not limit this.
  • the first codebook of the radio frequency precoding and the second codebook of the baseband precoding can only contain the codeword when the specific value is taken, that is, the number of virtual antenna ports in the same polarization direction in the vertical direction is fixed.
  • the code word at the time It is also possible to include a codeword when a plurality of different values or all values are taken.
  • Embodiments of the present invention further explain the case of a multi-user device on the basis of Embodiments 1 to 3.
  • different virtual antenna ports may be used to support different user equipments in the case of multi-user equipment.
  • the virtual antenna ports may be grouped, and the plurality of user equipments are supported by the grouped virtual antenna ports.
  • the following is an example of a practical example.
  • the co-polarized planar antenna array shown in FIG. 1 it is assumed that there are 160 physical antenna particles divided into 10 rows and 16 columns, and 10 physical antenna particles of each column are virtualized into one virtual antenna port, and each virtual antenna is used.
  • the port is connected to Q RF chains, and the 16 virtual antenna ports are divided into U groups to support user equipment. Where U is the number of groups of groups.
  • Table 1 shows the number of UEs that can be supported under different antenna grouping methods and the number of downtilt angles that can be supported.
  • the different antenna grouping methods and the number of connected RF chains can affect the multi-purpose User MIMO (MU-MIMO) support.
  • MU-MIMO multi-purpose User MIMO
  • each group has only two virtual antenna ports, which support two user equipments.
  • the downtilt angles of the two users are the same, but the horizontal angles are different.
  • the 8 sets of antennas support a total of 16 user equipments, and the downtilt angles of the user equipments supported by each set of antennas can be different.
  • the 16 antenna ports are divided into two groups, the downtilt angles of the eight user equipments supported by each group are the same, and the horizontal angles are different.
  • the two groups can support two downtilt angles.
  • the virtual antenna ports may be grouped according to a downtilt distribution of a plurality of user equipments. For example, in the case of a multi-user device, if the jointly scheduled user equipment has multiple downtilt distributions, a scheme with a large U value may be considered; and when the downtilt angle of the user equipment is relatively concentrated, a smaller U value scheme may be selected. .
  • the virtual antenna ports may be grouped according to the number of downtilt angles of the plurality of user equipments.
  • the value of U can be determined directly by the number of downtilt angles of the UE.
  • the embodiment of the invention provides a method for determining the number of virtual antenna ports, which is applied to the user equipment side.
  • This embodiment can be used in combination with Embodiment 2 or 3, or can be used alone.
  • the initial value of K can be set to a smaller K 0 , K 0 can be 2, 4, 5 , 8 , 10 , etc., and K 0 can be divisible by M; in addition, the value of M/K 0 does not exceed vertical
  • the number of RF chains connected to the antenna elements in the same polarization direction that is, the number of RF chains connected to the antenna elements in the same polarization direction in the vertical direction determines the maximum number of antenna ports that can be virtualized.
  • the base station side sends a reference signal according to the value of K 0 .
  • the number of antenna ports in the vertical direction is M/K 0
  • the base station side transmits an M/K 0 -port reference signal (such as CSI-RS, Channel State Information Reference Signal).
  • the channel between the M/K 0 ports estimated by the UE side and all antennas at the receiving end is Its dimension is Where N R is the number of antennas on the user equipment side.
  • the process is as follows,
  • ⁇ etilt is the electronic downtilt angle used in the weighted design.
  • ⁇ etilt can be written as among them Is the codebook size of the DFT vector, where n is the specifically used codeword index.
  • the user equipment can obtain channel information when a column of antenna particles in the same polarization direction in the vertical direction is virtualized into different antenna ports, and calculate an antenna port precoding matrix under different port numbers to estimate system performance. Then, the optimal number of antenna ports and corresponding antenna port precoding index (PMI, Precoding Matrix Indication), channel quality indication (CQI, Channel Quality Indication), and RI (Rank Indication) are determined.
  • PMI Precoding Matrix Indication
  • CQI Channel Quality Indication
  • RI Rank Indication
  • the user equipment can determine the number of antenna ports virtualized by a column of antenna particles in the same polarization direction in the vertical direction and feed it back to the base station side.
  • An embodiment of the present invention provides a codebook determining apparatus applied to a planar antenna array including a plurality of antenna particles, wherein the plurality of antenna particles form a plurality of columns in a vertical direction and a plurality of rows in a horizontal direction.
  • This embodiment corresponds to the codebook determination method in Embodiments 1 to 4, and the same content will not be described again.
  • FIG. 9 is a schematic diagram of a structure of a codebook determining apparatus according to an embodiment of the present invention. As shown in FIG. 9, the codebook is determined.
  • the device 900 includes: a first determining unit 901 and a second determining unit 902;
  • the first determining unit 901 is based on the number of antenna particles in each polarization direction on a row in the horizontal direction of the planar antenna array, and each polarization direction in a column in the vertical direction of the planar antenna array has Determining, by the number of antenna particles and the number of radio frequency chains, a first codebook for radio frequency precoding; wherein antenna particles of the same polarization direction in a column of antennas in the vertical direction form one or more virtual antenna ports, One or more virtual antenna ports are connected to a plurality of radio frequency chains;
  • the second determining unit 902 is based on the number of antenna particles in each polarization direction on a row in the horizontal direction in the planar antenna array, the number of the radio frequency chains, the number of data streams supported by the baseband, and the actual antenna.
  • the codebook of the port determines the second codebook for baseband precoding.
  • the antenna particles of the same polarization direction in a column of antennas in the vertical direction form a virtual antenna port, and the one virtual antenna port is connected to the Q radio frequency chains;
  • the first determining unit 901 determines the first codebook using the following formula (1):
  • W RF represents the first codebook
  • C represents a complex set
  • N is the number of antenna particles in each polarization direction on a row in the horizontal direction of the planar antenna array
  • M is the planar antenna The number of antenna particles per polarization direction in a column in the vertical direction of the array
  • b q is a discrete Fourier transform vector
  • q 1, 2, ... Q.
  • the second determining unit 902 determines the second codebook using the following formula (2):
  • W BB represents the second codebook
  • R represents a real number set
  • matrix B represents a precoding matrix of the actual antenna port
  • Ns is a number of data stream streams supported by the baseband
  • E q, n represents only the qth row
  • the first determining unit 901 uses the following Equation (3) determines the first code book:
  • W RF represents the first codebook
  • C represents a complex set
  • N is the number of antenna particles in each polarization direction on a row in the horizontal direction of the planar antenna array
  • M is the plane
  • the second determining unit 902 determines the second codebook using the following formula (4):
  • W BB represents the second codebook
  • R represents a real number set
  • matrix B represents a precoding matrix of the actual antenna port
  • Ns is a number of data stream streams supported by the baseband
  • E q, n represents only the qth row
  • antenna particles of the same polarization direction in a column of antennas in the vertical direction form T virtual antenna ports, and the T virtual antenna ports are connected to Q radio frequency chains;
  • the first determining unit 901 determines the first codebook using the following formula (5):
  • W RF represents the first codebook
  • C represents a complex set
  • N is the number of antenna particles in each polarization direction on a row in the horizontal direction of the planar antenna array
  • M is the planar antenna The number of antenna particles per polarization direction in a column in the vertical direction of the array
  • the second determining unit 902 determines the second codebook using the following formula (6):
  • W BB represents the second codebook
  • matrix B represents a precoding matrix of the actual antenna port
  • Ns is a number of data stream streams supported by the baseband
  • e q is Unit vector
  • the qth element is 1, and the other elements are all zero.
  • the first determining unit 901 determines the first codebook using the following formula (7):
  • W RF represents the first codebook
  • C represents a complex set
  • N is the number of antenna particles in each polarization direction on a row in the horizontal direction of the planar antenna array
  • M is the planar antenna The number of antenna particles per polarization direction in a column in the vertical direction of the array
  • the second determining unit 902 determines the second codebook using the following formula (8):
  • W BB represents the second codebook
  • matrix B represents a precoding matrix of the actual antenna port
  • Ns is a number of data stream streams supported by the baseband
  • e q is Unit vector
  • the qth element is 1, and the other elements are all zero.
  • the codebook determining apparatus 900 may be configured in a base station, may be configured in a user equipment, or may be configured in a third-party device of the communication system. Through the codebook determining apparatus 900, the base station and the user equipment can be caused to store the first codebook and the second codebook in advance.
  • the following is an example in which the codebook determining apparatus 900 is disposed in the base station as an example.
  • FIG. 10 is another schematic diagram of a codebook determining apparatus according to an embodiment of the present invention.
  • the codebook determining apparatus 1000 includes: a first determining unit 901 and a second determining unit 902; as described above.
  • the codebook determining apparatus 1000 may further include: a grouping unit 1003, grouping the virtual antenna ports, and supporting a plurality of user equipments by using the grouped virtual antenna ports.
  • the grouping unit 1003 may group the virtual antenna ports according to a downtilt distribution of the plurality of user equipments; or may group the virtual antenna ports according to the number of downtilt angles of the plurality of user equipments.
  • the embodiment further provides a base station configured with the codebook determining apparatus 900 or 1000 as described above.
  • FIG. 11 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • base station 1100 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processor 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200 to receive various information transmitted by the user equipment and to transmit the request information to the user equipment.
  • the central processing unit 200 may be configured to perform control such that the codebook determination method as described in Embodiments 1 to 4 is implemented.
  • the base station 1100 may further include: a transceiver 220, an antenna 230, and the like; wherein the antenna 230 may be configured as a planar antenna array as shown in FIG. 1 or 2. It should be noted that the base station 1100 does not have to include all the components shown in FIG. 8; in addition, the base station 1100 may further include FIG. For components not shown, reference may be made to the prior art.
  • FIG. 12 is a schematic diagram of a configuration of a communication system according to an embodiment of the present invention.
  • the communication system 1200 includes a base station 1201 and a user equipment 1202.
  • the base station 1201 is configured with the codebook determining apparatus 900 or 1000 as described in the fifth embodiment.
  • the base station 1201 can perform the codebook determining method as described in the embodiments 1 to 4.
  • the base station 1201 has a planar antenna array including a plurality of antenna particles, the plurality of antenna particles forming a plurality of columns in a vertical direction and forming a plurality of rows in a horizontal direction; wherein, the same is true in one column of antennas in the vertical direction
  • the antenna particles of the polarization direction form one or more virtual antenna ports, and the one or more virtual antenna ports are connected to a plurality of radio frequency chains;
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a base station, the program causes a computer to execute the codebook determining method described in Embodiments 1 to 4 in the base station.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to execute the codebook determining method described in Embodiments 1 to 4 in a base station.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more micro-combinations combined with DSP communication Processor or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例提供一种码书确定方法、装置以及通信系统。所述码书确定方法包括:基于天线粒子的个数和/或射频链的个数确定用于射频预编码的第一码书;其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;基于天线粒子的个数和/或射频链的个数确定用于基带预编码的第二码书。通过本发明实施例,可以进行基带和射频的混合预编码,适合于大规模MIMO系统的应用,并达到系统性能和复杂度的有效折衷。

Description

码书确定方法、装置以及通信系统 技术领域
本发明涉及一种通信技术领域,特别涉及一种码书确定方法、装置以及通信系统。
背景技术
在未来第五代移动通信技术研究中,毫米波(mmWave)技术作为候选技术之一,可以和大规模多输入输出(MIMO,Multiple-Input Multiple-Output)技术联用,以提供更宽的传输带宽及更多的天线数,进而提升系统性能。然而,天线数目和子载波数目的增多将会使得基带预编码技术难以实现。一方面是处理复杂度较高,每个子载波上均需进行大维度的矩阵相乘计算,系统复杂度随着天线数和带宽增加而显著增大。另一方面,若实现灵活的基带预编码技术,每个物理天线均需配置一套射频链(RF chian),包括放大器、混频器、数模转换器和模数转换器等,系统造价较高。
若将预编码技术放到射频单元上去做,每个符号执行一次大维度矩阵运算,将大大降低系统复杂度。同时,较少的RF chain即可实现射频预编码操作。但是系统性能也会相应下降,如基带预编码在每个子载波上均可以选择最优的预编码(precoding)码书(codebook)。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,在多用户设备的情况下,不同用户设备也可以选择不同的预编码码书,而射频上的预编码操作在整个符号上采用的预编码码书都是相同的,即不能实现载波维度和用户维度的自适应预编码,因而性能会降低。
将基带和射频混合起来的预编码(波束成型)由于综合了基带预编码和射频预编码的优点,可以在基带和射频上共同执行预编码操作,更加适合于大规模MIMO和毫米波系统的应用,达到系统性能(包括灵活性)和复杂度的有效折衷。
本发明实施例提供一种码书确定方法、装置以及通信系统。通过确定用于射频预 编码的码书以及用于基带预编码的码书,可以适合于大规模MIMO系统的应用,达到系统性能和复杂度的有效折衷。
根据本发明实施例的第一个方面,提供一种码书确定方法,应用于包括多个天线粒子的平面天线阵列,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行,所述码书确定方法包括:
基于所述平面天线阵列中天线粒子的个数和/或射频链的个数确定用于射频预编码的第一码书;其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;
基于所述平面天线阵列中天线粒子的个数和/或射频链的个数确定用于基带预编码的第二码书。
根据本发明实施例的第二个方面,提供一种码书确定装置,应用于包括多个天线粒子的平面天线阵列,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行,所述码书确定装置包括:
第一确定单元,基于所述平面天线阵列中天线粒子的个数和/或射频链的个数确定用于射频预编码的第一码书;其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;
第二确定单元,基于所述平面天线阵列中天线粒子的个数和/或射频链的个数确定用于基带预编码的第二码书。
根据本发明实施例的第三个方面,提供一种通信系统,所述通信系统包括:
基站,具有包括多个天线粒子的平面天线阵列,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行;其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;
所述基站基于所述平面天线阵列中天线粒子的个数和/或射频链的个数确定用于射频预编码的第一码书;以及基于所述平面天线阵列中天线粒子的个数和/或射频链的个数确定用于基带预编码的第二码书。
根据本发明实施例的又一个方面,提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行如上所述的码书确定方法。
根据本发明实施例的又一个方面,提供一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算机在基站中执行如上所述的码书确定方法。
本发明实施例的有益效果在于,通过确定用于射频预编码的第一码书以及用于基带预编码的第二码书,可以进行基带和射频的混合预编码,适合于大规模MIMO系统的应用,并达到系统性能和复杂度的有效折衷。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘制的,而只是为了示出本发明的原理。为了便于示出和描述本发明的一些部分,附图中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是同极化天线配置的平面天线阵列的一结构示意图;
图2是交叉极化天线配置的平面天线阵列的一结构示意图;
图3是本发明实施例的码书确定方法的一流程示意图;
图4是本发明的由基站确定第一码书和第二码书的码字的一流程示意图;
图5是本发明的由用户设备确定第一码书和第二码书的码字的一流程示意图;
图6是本发明实施例的射频链与物理天线粒子连接的一示意图;
图7是本发明实施例的射频链与物理天线粒子连接的另一示意图;
图8是本发明实施例的射频链与物理天线粒子连接的另一示意图;
图9是本发明实施例的码书确定装置的一构成示意图;
图10是本发明实施例的码书确定装置的另一构成示意图;
图11是本发明实施例的基站的一构成示意图;
图12是本发明实施例的通信系统的一构成示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
图1和图2给出两种本发明实施例相关的平面天线阵列结构示意图,图1是同极化天线配置的平面天线阵列的一结构示意图,图2是交叉极化天线配置的平面天线阵列的一结构示意图。
如图1所示,在垂直方向上每列放置M个同一个极化方向的天线粒子(也可称为物理天线粒子),在水平方向上共放置N列。如图2所示,在垂直方向上每列放置M个交叉极化天线对,水平方向上共放置N列交叉极化天线对。即,垂直一列上每个极化方向有M个物理天线粒子,水平一行上每个极化方向有N个物理天线粒子。
在上述平面天线阵列系统中,随着天线数目的增加,参考信号的开销也随之增大。为发挥垂直方向的波束调节功能,同时控制天线端口数目,可将垂直方向的多根天线粒子虚拟成一个或者多个天线端口。在一个虚拟天线端口内,通过对多个物理天线粒子进行加权来调整垂直方向的波束方向。与物理天线粒子加权相对应,虚拟天线端口的加权即为传统意义上的预编码操作。
以上对于本发明涉及的平面天线阵列进行了说明,但本发明不限于此。以下对于本发明进行详细说明。
实施例1
本发明实施例提供一种码书确定方法,应用于包括多个物理天线粒子的平面天线阵列,所述多个物理天线粒子在垂直方向上形成多列以及在水平方向上形成多行。该码书确定方法可以应用于基站侧,也可以应用于用户设备侧;码书的确定可以是离线进行的,生成的码书可以存储在基站侧和/或用户设备侧。
图3是本发明实施例的码书确定方法的一流程示意图,如图3所示,所述确定方法包括:
步骤301,基于所述平面天线阵列中天线粒子的个数和/或射频链的个数,确定用于射频预编码的第一码书。其中,垂直方向上一列天线中同一极化方向的物理天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;
步骤302,基于所述平面天线阵列中天线粒子的个数和/或所述射频链的个数,确定用于基带预编码的第二码书。
在本实施例中,例如根据平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数N,所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数M,和/或射频链的个数Q,可以预先生成用于射频预编码的第一码书。例如根据平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数N和/或所述射频链的个数Q,预先生成用于基带预编码的第二码书。此外,在确定第二码书时,还可以考虑如下因素:基带所支持的数据流流数Ns,和/或实际天线端口的预编码码书。
在本实施例中,每个虚拟天线端口可以对应多个波束,所述虚拟天线端口的数目和每个所述虚拟天线端口所对应的波束的数目的乘积是一定的。即:同一码书(第一码书和/或第二码书)中可包含多个Q取值的情况,和/或可以包括多个l取值的情况。关于Q和l的具体含义可以参考后述的实施例2和3。
在本实施例中,第一码书和第二码书可以在基站侧预先生成,然后发送给用户设备侧;也可以在基站侧和用户设备侧分别预先生成(例如基站为用户设备配置信息,告知配置的天线端口数等,由用户设备自己生成该第一码书和第二码书);还可以是由第三方设备预先生成,然后发送给基站和用户设备。对于由哪种设备具体确定生成第一码书和第二码书,本发明并不进行限制。由此,基站侧和用户设备侧可以预先存储第一码书和第二码书。
在本实施例中,实际天线端口的码书(可以称为第三码书)可以是传统的LTE码书,用于进行端口预编码。通过第一码书、第二码书以及第三码书,可以共同进行射频和基带的预编码操作。
在本实施例中,在基站和用户设备之间进行通信时,可以由基站确定具体的码字(codeword),也可以由用户设备确定具体的码字并反馈给基站。
图4是本发明的由基站确定第一码书和第二码书的码字的一流程示意图,如图4所示,码字的确定包括:
步骤401,用户设备基于估计到的信道信息,向基站发送信号;
例如,用户设备可以向基站发送参考信号(例如SRS,Sounding Reference Signal等)或数据信息等信号形式;但本发明不限于此。
步骤402,基站根据用户设备发送的信号确定第一码书和第二码书中的码字索引;
例如,基站侧可根据测得的用户设备侧的信号到达角方向,以及同时调度的用户设备的到达角情况共同确定使用的第一码书和第二码书的码字索引。具体如何确定码字索引可以参考相关技术。
其中,对于第一码书,可以在每个虚拟天线端口发送一个或多个波束;对于第二码书,可以从一个或多个虚拟天线端口所支持的多个波束中选择传输波束。
步骤403,基站将第一码书和第二码书的码字索引发送给用户设备。
图5是本发明的由用户设备确定第一码书和第二码书的码字的一流程示意图,如图5所示,码字的确定包括:
步骤501,用户设备进行信道估计;
步骤502,根据估计到的信道信息计算使用第一码书和第二码书中的码字索引;
其中,用户设备可以根据一定的计算准则计算出码字索引,具体如何确定码字索引可以参考相关技术。
步骤503,用户设备将第一码书和第二码书的码字索引发送给基站。
在本实施例中,可以预先确定第一码书和第二码书,并将第一码书和第二码书预先存储在基站和用户设备。在进行通信时,可以由基站或者用户设备确定具体的码字索引,然后确定用于射频的预编码矩阵和用于基带的预编码矩阵;最后确定出实际天线端口的预编码矩阵。
值得注意的是,图4和5仅示意性示出了如何确定具体的码字,但本发明不限于此,关于具体如何确定码字还可以参考相关技术。
由此,通过确定用于射频预编码的第一码书以及用于基带预编码的第二码书,可以进行基带和射频的混合预编码,适合于大规模MIMO系统的应用,并达到系统性能和复杂度的有效折衷。
实施例2
本发明实施例在实施例1的基础上,对于垂直方向上一列天线中同一极化方向的物理天线粒子虚拟成一个虚拟天线端口的情况进行说明。其中所述一个虚拟天线端口与Q个射频链连接。即,假设垂直方向的一列天线中同一极化方向的所有物理天线粒子虚拟成一个天线端口,且每个虚拟天线端口与Q个RF chain相连。
在本实施例中,每个RF chain可以与某一虚拟天线端口的所有物理天线粒子均相连。图6是本发明实施例的RF chain与物理天线粒子连接的一示意图,如图6所示,某一个RFchain可以与M个物理天线粒子均连接。
图7是本发明实施例的RF chain与物理天线粒子连接的另一示意图,示出了射频链与天线粒子的具体连接关系。其中bi,j(i=1,2,…,Q;j=1,2,…,M)表示射频预编码的加权系数。
在所述平面天线阵列为同极化天线配置的情况下,可以使用如下公式(1)确定所述第一码书:
Figure PCTCN2014089801-appb-000001
X=[b1 … bQ]∈CM×Q
bq=[bq,1,bq,2,…,bq,M]T(q=1,2,…,Q)  (1)
其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的物理天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的物理天线粒子的个数,bq为离散傅里叶变换(DFT,Discrete Fourier Transform)向量,q=1,2,……Q。
即,bq(q=1,2,...,Q)为DFT向量,其维度是M×1。即射频单元上,每个虚拟天线端口由于连接了Q个RF chain可以同时支持Q个波束。其中,b1,b2,……,bQ之间可以相互正交;或者b1,b2,……,bQ对应相邻的波束。
在本实施例中,X的选取可以有多种考虑,例如,b1,b2,...,bQ相互正交,这样可以使用一个WRF的码字来覆盖较大范围的波束,并且同时可以支持多用户MIMO。再例如,b1,b2,...,bQ为相邻的波束,可以支持频域波束方向的慢变。
在本实施例中,在所述平面天线阵列为同极化天线配置的情况下,可以使用如下公式(2)确定所述第二码书:
Figure PCTCN2014089801-appb-000002
A=(Eq,1 … Eq,N)T,Eq,n∈RQ×N  (2)
其中,WBB表示所述第二码书,R表示实数集合,矩阵B表示所述实际天线端口的预编码矩阵,Ns为基带所支持的数据流流数,Eq,n表示只有第q行第n列的元素为1而其他元素为0的矩阵,n=1,2,……N。
此外,矩阵A还可以有另外一种表述,即
Figure PCTCN2014089801-appb-000003
其中eq为Q×1的单位向量,第q个元素为1,其它元素均为零。
在本实施例中,矩阵A用于射频波束的选择,即在一个虚拟天线端口所支持的Q个波束中选择出一个波束进行传输,Eq,n代表只有第q行第n列的元素为1而其它元素均为0的矩阵。矩阵B为实际天线端口的预编码矩阵,可以重用LTE系统的2天线、4天线、8天线预编码码书等;既可以代表单码书,也可以代表双码书。Ns是基带所支持的数据流流数。
此外,在交叉极化天线配置下的方案与同极化天线配置的方案类似,只是垂直方向的一列天线中同一极化方向的所有物理天线粒子虚拟成一个天线端口后,虚拟天线端口总数为2N,WRF和WBB及其子矩阵的维度发生变化。
具体地,在所述平面天线阵列为交叉极化天线配置的情况下,使用如下公式(3)确定所述第一码书:
Figure PCTCN2014089801-appb-000004
X=[b1 … bQ]∈CM×Q  (3)
其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的物理天线粒子的个数,M为所述平面天线阵列中 垂直方向的一列上每个极化方向所具有的物理天线粒子的个数,bq为离散傅里叶变换向量,q=1,2,……Q。
在所述平面天线阵列为交叉极化天线配置的情况下,使用如下公式(4)确定所述第二码书:
Figure PCTCN2014089801-appb-000005
A=(Eq,1 … Eq,2N)T,Eq,n∈RQ×2N  (4)
其中,WBB表示所述第二码书,R表示实数集合,矩阵B表示所述实际天线端口的预编码矩阵,Ns为基带所支持的数据流流数,Eq,n表示只有第q行第n列的元素为1而其他元素为0的矩阵,n=1,2,……2N。
在本实施例中,射频预编码的第一码书和基带预编码的第二码书既可以只包含RF链个数取特定值时的码字,如Q=2或Q=4等,也可以同时包含RF链个数取多个不同值时或全部可能值时的码字,此时Q=1,2,3......;Q的最大取值为系统为垂直方向上同一极化方向的一列天线粒子实际配置的RF链个数。
值得注意的是,上述公式(1)至(4)仅示意性示出了第一码书和第二码书的确定情况,但本发明不限于此。
由上述实施例可知,通过确定用于射频预编码的第一码书以及用于基带预编码的第二码书,可以进行基带和射频的混合预编码,适合于大规模MIMO系统的应用,并达到系统性能和复杂度的有效折衷。
实施例3
本发明实施例在实施例1的基础上,对于垂直方向上一列天线中同一极化方向的物理天线粒子虚拟成多个虚拟天线端口的情况进行说明。其中所述多个虚拟天线端口与Q个射频链连接。
在天线端口虚拟化中,若垂直方向一列天线的同一极化方向的所有物理天线粒子虚拟成Q个天线端口,也是需要Q个RF chain的。为了方便说明,假设虚拟的天线端口数目为T(T=1,2,……,Q),且T可以被Q整除,因此Q个RF chain可以平均分配给T个虚拟天线端口;但本发明不限于此。
图8是本发明实施例的RF chain与物理天线粒子连接的一示意图,示出了当M 可以被Q整除时的情况。如图8所示,某一个RFchain可以与多个物理天线粒子连接,每个RF chain可以只连接部分物理天线粒子。
在本实施例中,垂直方向上一列天线中同一极化方向的物理天线粒子形成T=Q/l(l=1,2,……Q)个虚拟天线端口,所述T个虚拟天线端口与Q个射频链连接;
在所述平面天线阵列为同极化天线配置的情况下,可以使用如下公式(5)确定所述第一码书:
Figure PCTCN2014089801-appb-000006
Figure PCTCN2014089801-appb-000007
Figure PCTCN2014089801-appb-000008
其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的物理天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的物理天线粒子的个数;
此时,每个虚拟天线端口对应M/T个物理天线粒子且连接l个射频链,l=Q/T,pi(i=1,2,...,l)是维度为
Figure PCTCN2014089801-appb-000009
的DFT向量。
当l=1,即T=Q时,
Figure PCTCN2014089801-appb-000010
p是维度为
Figure PCTCN2014089801-appb-000011
的DFT向量,NT为该DFT向量的码书尺寸。此时每个虚拟天线端口只连接1个RF chain,支持一个射频波束。
当l=Q,即T=1时,X=[b1 … bQ]∈CM×Q即为实施例2中的方案。
对于WBB
Figure PCTCN2014089801-appb-000012
Figure PCTCN2014089801-appb-000013
其中eq
Figure PCTCN2014089801-appb-000014
的单位向量,第q个元素为1,其它元素均为零。
在所述平面天线阵列为交叉极化天线配置的情况下,可以使用如下公式(7)确定所述第一码书:
Figure PCTCN2014089801-appb-000015
Figure PCTCN2014089801-appb-000016
Figure PCTCN2014089801-appb-000017
l=1,2,……Q。其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的物理天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的物理天线粒子的个数;
当T=Q/l时,每个虚拟天线端口对应M/T个物理天线粒子且连接l个射频链,pi为离散傅里叶变换向量,i=1,2,……l。
对于WBB
Figure PCTCN2014089801-appb-000018
Figure PCTCN2014089801-appb-000019
其中eq
Figure PCTCN2014089801-appb-000020
的单位向量,第q个元素为1,其它元素均为零。
值得注意的是,在以上描述中提到的DFT向量,均可以根据信道情况设计合适的尺寸;本发明并不对此进行限制。
由上述实施例可知,射频预编码的第一码书和基带预编码的第二码书既可以只包含l取特定值时的码字,即垂直方向上同一极化方向虚拟的天线端口数固定时的码字。也可以同时包含l取多个不同值或所有取值时的码字。
由上述实施例可知,射频预编码的第一码书和基带预编码的第二码书既可以只包含RF链个数取特定值时的码字,如Q=2或Q=4等,也可以同时包含RF链个数取多个不同值时或全部可能值时的码字,此时Q=1,2,3......;Q的最大取值为系统为垂直 方向上同一极化方向的一列天线粒子实际配置的RF链个数。
值得注意的是,上述公式(5)至(8)仅示意性示出了第一码书和第二码书的确定情况,但本发明不限于此。
由上述实施例可知,通过确定用于射频预编码的第一码书以及用于基带预编码的第二码书,可以进行基带和射频的混合预编码,适合于大规模MIMO系统的应用,并达到系统性能和复杂度的有效折衷。
实施例4
本发明实施例在实施例1至3的基础上,对于多用户设备的情况进行进一步说明。在本实施例中,可以在多用户设备的情况下,可以使用不同的虚拟天线端口来支持不同的用户设备。
在本实施例中,可以对所述虚拟天线端口进行分组,并使用分组后的所述虚拟天线端口支持多个用户设备。以下以一个实际例子为例进行说明。
例如对于图1所示的同极化平面天线阵列,假设共有160个物理天线粒子,分为10行和16列,每列的10个物理天线粒子虚拟成1个虚拟天线端口,每个虚拟天线端口连接Q个RF chain,16个虚拟天线端口分成U组来支持用户设备。其中,U为分组的组数。
表1给出了不同的天线分组方法下可以支持的UE个数及可支持的下倾角个数。
表1
U 每组的天线端口数 Q 支持的UE个数 支持的下倾角个数
1 16 1 16 1
2 8 1 16 2
4 4 1 16 4
8 2 1 16 8
16 1 1 10 10
1 16 2 32 2
2 8 2 32 4
由上表1可以看出,不同的天线分组方法及连接的RF chain数目可以影响对多用 户MIMO(MU-MIMO)的支持情况。例如16个天线端口分为8组时,每组只有两个虚拟天线端口,支持两个用户设备,这两个用户的下倾角是相同的,但水平角是不同的。8组天线共支持16个用户设备,且每组天线支持的用户设备的下倾角是可以不同的。而16个天线端口分为2组时,每组支持的8个用户设备的下倾角是相同的,水平角是不同的,两组共可以支持2种下倾角。
在本实施例中,可以根据多个用户设备的下倾角分布对所述虚拟天线端口进行分组。例如,在多用户设备的情况下,若联合调度的用户设备具有多种下倾角分布,可以考虑使用U值较大的方案;而用户设备的下倾角相对集中时,可选择U值较小方案。
或者,可以根据多个用户设备的下倾角个数对所述虚拟天线端口进行分组。可以直接通过UE的下倾角个数确定U的取值。
由上述实施例可知,通过确定用于射频预编码的第一码书以及用于基带预编码的第二码书,可以进行基带和射频的混合预编码,适合于大规模MIMO系统的应用,并达到系统性能和复杂度的有效折衷。此外,通过对虚拟天线端口进行分组,可以使用不同的虚拟天线端口来支持不同的用户设备。
实施例5
本发明实施例提供一种虚拟天线端口数确定方法,应用于用户设备侧。本实施例既可以和实施例2或3联用,也可以单独使用。
在本实施例中,假设垂直方向上同一极化方向有M个天线粒子,可虚拟成一个或多个逻辑天线端口。水平方向上同一极化方向有N个天线粒子。此外,假设垂直方向上同一极化方向的K个天线粒子可以虚拟成一个逻辑天线端口。
首先,可以将K的初始值设为较小的K0,K0可以是2,4,5,8,10等,且K0可以被M整除;此外,M/K0的值不超过垂直方向同一极化方向天线粒子连接的RF chain个数,即垂直方向同一极化方向天线粒子连接的RF chain个数决定了其可以虚拟化的最大天线端口数目。基站侧根据K0的取值来发送参考信号,如同极化天线配置下,垂直方向的天线端口数为M/K0,则基站侧发送M/K0-端口参考信号(如CSI-RS,Channel State Information Reference Signal)。
假设UE侧估计到的该M/K0个端口与接收端所有天线间的信道为
Figure PCTCN2014089801-appb-000021
其维度为
Figure PCTCN2014089801-appb-000022
其中NR为用户设备侧的天线数。通过此估计到的信道信息,用户设备侧可以将该M/K0个端口转化成垂直方向上每个极化方向虚拟成的M/iK0(i=1,2,…,M/K0)个天线端口,每个天线端口包含iK0个天线粒子的信道信息。该处理过程如下式所示,
Figure PCTCN2014089801-appb-000023
Figure PCTCN2014089801-appb-000024
Figure PCTCN2014089801-appb-000025
Figure PCTCN2014089801-appb-000026
其中dV为垂直方向相邻天线粒子之间的距离,θetilt为加权设计中使用的电子下倾角,当垂直加权使用DFT向量时,θetilt可以写为
Figure PCTCN2014089801-appb-000027
其中
Figure PCTCN2014089801-appb-000028
为DFT向量的码书尺寸,n为具体使用的码字索引。
通过该处理,用户设备可以获得垂直方向上同一极化方向的一列天线粒子虚拟成不同的天线端口的数目时的信道信息,并在不同端口数目情况下计算天线端口预编码矩阵,估计系统性能。进而确定最优的天线端口数目及相应的天线端口预编码索引(PMI,Precoding Matrix Indication)、信道质量指示(CQI,Channel Quality Indication)及秩指示(RI,Rank Indication)等。
由此,用户设备可以确定垂直方向上同一极化方向的一列天线粒子虚拟成的天线端口的数目并将其反馈给基站侧。
实施例6
本发明实施例提供一种码书确定装置,应用于包括多个天线粒子的平面天线阵列,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行。本实施例对应于实施例1至4中的码书确定方法,相同的内容不再赘述。
图9是本发明实施例的码书确定装置的一构成示意图,如图9所示,该码书确定 装置900包括:第一确定单元901和第二确定单元902;
其中,第一确定单元901基于平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数以及射频链的个数,确定用于射频预编码的第一码书;其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;
第二确定单元902基于所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,所述射频链的个数、基带所支持的数据流流数以及实际天线端口的码书,确定用于基带预编码的第二码书。
在一个实施方式中,垂直方向上一列天线中同一极化方向的天线粒子形成一个虚拟天线端口,所述一个虚拟天线端口与Q个射频链连接;
在所述平面天线阵列为同极化天线配置的情况下,第一确定单元901使用如下公式(1)确定所述第一码书:
Figure PCTCN2014089801-appb-000029
X=[b1 … bQ]∈CM×Q  (1)
其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数,bq为离散傅里叶变换向量,q=1,2,……Q。
在所述平面天线阵列为同极化天线配置的情况下,第二确定单元902使用如下公式(2)确定所述第二码书:
Figure PCTCN2014089801-appb-000030
A=(Eq,1 … Eq,N)T,Eq,n∈RQ×N  (2)
其中,WBB表示所述第二码书,R表示实数集合,矩阵B表示所述实际天线端口的预编码矩阵,Ns为基带所支持的数据流流数,Eq,n表示只有第q行第n列的元素为1而其他元素为0的矩阵,n=1,2,……N。
在所述平面天线阵列为交叉极化天线配置的情况下,第一确定单元901使用如下 公式(3)确定所述第一码书:
Figure PCTCN2014089801-appb-000031
X=[b1 … bQ]∈CM×Q  (3)
其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向上的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数,bq为离散傅里叶变换向量,q=1,2,……Q。
在所述平面天线阵列为交叉极化天线配置的情况下,第二确定单元902使用如下公式(4)确定所述第二码书:
Figure PCTCN2014089801-appb-000032
A=(Eq,1 … Eq,2N)T,Eq,n∈RQ×2N  (4)
其中,WBB表示所述第二码书,R表示实数集合,矩阵B表示所述实际天线端口的预编码矩阵,Ns为基带所支持的数据流流数,Eq,n表示只有第q行第n列的元素为1而其他元素为0的矩阵,n=1,2,……2N。
在另一个实施方式中,垂直方向上一列天线中同一极化方向的天线粒子形成T个虚拟天线端口,所述T个虚拟天线端口与Q个射频链连接;
在所述平面天线阵列为同极化天线配置的情况下,第一确定单元901使用如下公式(5)确定所述第一码书:
Figure PCTCN2014089801-appb-000033
Figure PCTCN2014089801-appb-000034
Figure PCTCN2014089801-appb-000035
其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数;
T=Q/l时,每个虚拟天线端口对应M/T个天线粒子且连接l个射频链,l=1,2,……Q, pi为离散傅里叶变换向量,i=1,2,……l。
在所述平面天线阵列为同极化天线配置的情况下,第二确定单元902使用如下公式(6)确定所述第二码书:
Figure PCTCN2014089801-appb-000036
Figure PCTCN2014089801-appb-000037
其中,WBB表示所述第二码书,矩阵B表示所述实际天线端口的预编码矩阵,Ns为基带所支持的数据流流数,eq
Figure PCTCN2014089801-appb-000038
的单位向量,第q个元素为1,其它元素均为零。
在所述平面天线阵列为交叉极化天线配置的情况下,第一确定单元901使用如下公式(7)确定所述第一码书:
Figure PCTCN2014089801-appb-000039
Figure PCTCN2014089801-appb-000040
Figure PCTCN2014089801-appb-000041
其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数;
T=Q/l时,每个虚拟天线端口对应M/T个天线粒子且连接l个射频链,l=1,2,……Q,pi为离散傅里叶变换向量,i=1,2,……l。
在所述平面天线阵列为交叉极化天线配置的情况下,第二确定单元902使用如下公式(8)确定所述第二码书:
Figure PCTCN2014089801-appb-000042
Figure PCTCN2014089801-appb-000043
其中,WBB表示所述第二码书,矩阵B表示所述实际天线端口的预编码矩阵,Ns为基带所支持的数据流流数,eq
Figure PCTCN2014089801-appb-000044
的单位向量,第q个元素为1,其它元素均为零。
在本实施例中,码书确定装置900可以配置于基站,也可以配置于用户设备,还可以配置于通信系统的第三方设备。通过码书确定装置900,可以使得基站和用户设备预先存储第一码书和第二码书。以下以码书确定装置900配置于基站为例,进行进一步说明。
图10是本发明实施例的码书确定装置的另一构成示意图,如图10所示,该码书确定装置1000包括:第一确定单元901和第二确定单元902;如上所述。
如图10所示,该码书确定装置1000还可以包括:分组单元1003,对所述虚拟天线端口进行分组,并使用分组后的所述虚拟天线端口支持多个用户设备。
其中,所述分组单元1003可以根据多个用户设备的下倾角分布对所述虚拟天线端口进行分组;或者可以根据多个用户设备的下倾角个数对所述虚拟天线端口进行分组。
本实施例还提供一种基站,配置有如上所述的码书确定装置900或1000。
图11是本发明实施例的基站的一构成示意图。如图11所示,基站1100可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序,以接收该用户设备发送的各种信息、并且向用户设备发送请求信息。
在本实施例中,中央处理器200可以被配置为进行如下控制:实现如实施例1至4中所述的码书确定方法。
此外,如图11所示,基站1100还可以包括:收发机220和天线230等;其中,上述天线230可以被配置为如图1或2所示的平面天线阵列。值得注意的是,基站1100也并不是必须要包括图8中所示的所有部件;此外,基站1100还可以包括图8 中没有示出的部件,可以参考现有技术。
由上述实施例可知,通过确定用于射频预编码的第一码书以及用于基带预编码的第二码书,可以进行基带和射频的混合预编码,适合于大规模MIMO系统的应用,并达到系统性能和复杂度的有效折衷。
实施例7
本发明实施例提供一种通信系统,图12是本发明实施例的通信系统的一构成示意图。如图12所示,该通信系统1200包括基站1201以及用户设备1202。
其中,基站1201中配置有如实施例5所述的码书确定装置900或1000。基站1201可以执行如实施例1至4所述的码书确定方法。
在本实施例中,基站1201具有包括多个天线粒子的平面天线阵列,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行;其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;
本发明实施例还提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行实施例1至4所述的码书确定方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行实施例1至4所述的的码书确定方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处 理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (18)

  1. 一种码书确定方法,应用于包括多个天线粒子的平面天线阵列,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行,所述码书确定方法包括:
    基于所述平面天线阵列中天线粒子的个数和/或射频链的个数,确定用于射频预编码的第一码书;其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;
    基于所述平面天线阵列中天线粒子的个数和/或所述射频链的个数,确定用于基带预编码的第二码书。
  2. 根据权利要求1所述的码书确定方法,其中,每个所述虚拟天线端口对应多个波束,所述虚拟天线端口的数目和每个所述虚拟天线端口所对应的波束的数目的乘积是一定的。
  3. 根据权利要求1所述的码书确定方法,其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个虚拟天线端口,所述一个虚拟天线端口与Q个射频链连接;
    在所述平面天线阵列为同极化天线配置的情况下,使用如下公式(1)确定所述第一码书:
    Figure PCTCN2014089801-appb-100001
    X=[b1 … bQ]∈CM×Q    (1)
    其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数,bq为离散傅里叶变换向量,q=1,2,……Q;
    使用如下公式(2)确定所述第二码书:
    Figure PCTCN2014089801-appb-100002
    A=(Eq,1 … Eq,N)T,Eq,n∈RQ×N    (2)
    其中,WBB表示所述第二码书,R表示实数集合,矩阵B表示所述实际天线端口 的预编码矩阵,NS为基带所支持的数据流流数,Eq,n表示只有第q行第n列的元素为1而其他元素为0的矩阵,n=1,2,……N。
  4. 根据权利要求3所述的码书确定方法,其中,b1,b1,……,bQ之间相互正交;或者b1,b1,……,bQ对应相邻的波束。
  5. 根据权利要求1所述的码书确定方法,其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个虚拟天线端口,所述一个虚拟天线端口与Q个射频链连接;
    在所述平面天线阵列为交叉极化天线配置的情况下,使用如下公式(3)确定所述第一码书:
    Figure PCTCN2014089801-appb-100003
    X=[b1 … bQ]∈CM×Q    (3)
    其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数,bq为离散傅里叶变换向量,q=1,2,……Q;
    使用如下公式(4)确定所述第二码书:
    Figure PCTCN2014089801-appb-100004
    A=(Eq,1 … Eq,N)T,Eq,n∈RQ×2N    (4)
    其中,WBB表示所述第二码书,R表示实数集合,矩阵B表示所述实际天线端口的预编码矩阵,NS为基带所支持的数据流流数,Eq,n表示只有第q行第n列的元素为1而其他元素为0的矩阵,n=1,2,……N。
  6. 根据权利要求1所述的码书确定方法,其中,垂直方向上一列天线中同一极化方向的天线粒子形成T=Q/l个虚拟天线端口,所述T个虚拟天线端口与Q个射频链连接;
    在所述平面天线阵列为同极化天线配置的情况下,使用如下公式(5)确定所述第一码书:
    Figure PCTCN2014089801-appb-100005
    Figure PCTCN2014089801-appb-100006
    其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数;每个虚拟天线端口对应M/T个天线粒子且连接l个射频链,l=1,2,……Q,pi为离散傅里叶变换向量,i=1,2,……l;
    使用如下公式(6)确定所述第二码书:
    Figure PCTCN2014089801-appb-100007
    Figure PCTCN2014089801-appb-100008
    其中,WBB表示所述第二码书,矩阵B表示所述实际天线端口的预编码矩阵,NS为基带所支持的数据流流数,eq
    Figure PCTCN2014089801-appb-100009
    的单位向量,第q个元素为1,其它元素均为零。
  7. 根据权利要求1所述的码书确定方法,其中,垂直方向上一列天线中同一极化方向的天线粒子形成T=Q/l个虚拟天线端口,所述T个虚拟天线端口与Q个射频链连接;
    在所述平面天线阵列为交叉极化天线配置的情况下,使用如下公式(7)确定所述第一码书:
    Figure PCTCN2014089801-appb-100010
    Figure PCTCN2014089801-appb-100011
    其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数;每个虚拟天线端口对应M/T个天线粒子且连接l个射频链,l=1,2,……Q,pi为离散傅里叶变换向量,i=1,2,……l;
    使用如下公式(8)确定所述第二码书:
    Figure PCTCN2014089801-appb-100012
    Figure PCTCN2014089801-appb-100013
    其中,WBB表示所述第二码书,矩阵B表示所述实际天线端口的预编码矩阵,NS为基带所支持的数据流流数,eq
    Figure PCTCN2014089801-appb-100014
    的单位向量,第q个元素为1,其它元素均为零。
  8. 根据权利要求1所述的码书确定方法,其中,所述方法还包括:
    对所述虚拟天线端口进行分组,并使用分组后的所述虚拟天线端口支持多个用户设备。
  9. 根据权利要求8所述的码书确定方法,其中,所述方法还包括:
    根据多个用户设备的下倾角分布对所述虚拟天线端口进行分组;或者根据多个用户设备的下倾角个数对所述虚拟天线端口进行分组。
  10. 一种码书确定装置,应用于包括多个天线粒子的平面天线阵列,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行,所述码书确定装置包括:
    第一确定单元,基于所述平面天线阵列中天线粒子的个数和/或射频链的个数确定用于射频预编码的第一码书;其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;
    第二确定单元,基于所述平面天线阵列中天线粒子的个数和/或所述射频链的个数确定用于基带预编码的第二码书。
  11. 根据权利要求10所述的码书确定装置,其中,每个所述虚拟天线端口对应多个波束,所述虚拟天线端口的数目和每个所述虚拟天线端口所对应的波束的数目的乘积是一定的。
  12. 根据权利要求10所述的码书确定装置,其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个虚拟天线端口,所述一个虚拟天线端口与Q个射频链连接;
    在所述平面天线阵列为同极化天线配置的情况下,使用如下公式(1)确定所述第一码书:
    Figure PCTCN2014089801-appb-100015
    X=[b1 … bQ]∈CM×Q    (1)
    其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数,bq为离散傅里叶变换向量,q=1,2,……Q;
    使用如下公式(2)确定所述第二码书:
    Figure PCTCN2014089801-appb-100016
    A=(Eq,1 … Eq,N)T,Eq,n∈RQ×N    (2)
    其中,WBB表示所述第二码书,R表示实数集合,矩阵B表示所述实际天线端口的预编码矩阵,NS为基带所支持的数据流流数,Eq,n表示只有第q行第n列的元素为1而其他元素为0的矩阵,n=1,2,……N。
  13. 根据权利要求10所述的码书确定装置,其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个虚拟天线端口,所述一个虚拟天线端口与Q个射频链连接;
    在所述平面天线阵列为交叉极化天线配置的情况下,使用如下公式(3)确定所述第一码书:
    Figure PCTCN2014089801-appb-100017
    X=[b1 … bQ]∈CM×Q    (3)
    其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向上的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂 直方向的一列上每个极化方向所具有的天线粒子的个数,bq为离散傅里叶变换向量,q=1,2,……Q;
    使用如下公式(4)确定所述第二码书:
    Figure PCTCN2014089801-appb-100018
    A=(Eq,1 … Eq,N)T,Eq,n∈RQ×2N    (4)
    其中,WBB表示所述第二码书,R表示实数集合,矩阵B表示所述实际天线端口的预编码矩阵,NS为基带所支持的数据流流数,Eq,n表示只有第q行第n列的元素为1而其他元素为0的矩阵,n=1,2,……N。
  14. 根据权利要求10所述的码书确定装置,其中,垂直方向上一列天线中同一极化方向的天线粒子形成T=Q/l个虚拟天线端口,所述T个虚拟天线端口与Q个射频链连接;
    在所述平面天线阵列为同极化天线配置的情况下,使用如下公式(5)确定所述第一码书:
    Figure PCTCN2014089801-appb-100019
    Figure PCTCN2014089801-appb-100020
    其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数;每个虚拟天线端口对应M/T个天线粒子且连接l个射频链,l=1,2,……Q,pi为离散傅里叶变换向量,i=1,2,……l;
    使用如下公式(6)确定所述第二码书:
    Figure PCTCN2014089801-appb-100021
    Figure PCTCN2014089801-appb-100022
    其中,WBB表示所述第二码书,矩阵B表示所述实际天线端口的预编码矩阵,NS为基带所支持的数据流流数,eq
    Figure PCTCN2014089801-appb-100023
    的单位向量,第q个元素为1,其它元素均为零。
  15. 根据权利要求10所述的码书确定装置,其中,垂直方向上一列天线中同一极化方向的天线粒子形成T=Q/l个虚拟天线端口,所述T个虚拟天线端口与Q个射频链连接;
    在所述平面天线阵列为交叉极化天线配置的情况下,使用如下公式(7)确定所述第一码书:
    Figure PCTCN2014089801-appb-100024
    Figure PCTCN2014089801-appb-100025
    其中,WRF表示所述第一码书,C表示复数集合,N为所述平面天线阵列中水平方向的一行上每个极化方向所具有的天线粒子的个数,M为所述平面天线阵列中垂直方向的一列上每个极化方向所具有的天线粒子的个数;每个虚拟天线端口对应M/T个天线粒子且连接l个射频链,l=1,2,……Q,pi为离散傅里叶变换向量,i=1,2,……l;
    使用如下公式(8)确定所述第二码书:
    Figure PCTCN2014089801-appb-100026
    Figure PCTCN2014089801-appb-100027
    其中,WBB表示所述第二码书,矩阵B表示所述实际天线端口的预编码矩阵,NS为基带所支持的数据流流数,eq
    Figure PCTCN2014089801-appb-100028
    的单位向量,第q个元素为1,其它元素均为零。
  16. 根据权利要求10所述的码书确定装置,其中,所述装置还包括:
    分组单元,对所述虚拟天线端口进行分组,并使用分组后的所述虚拟天线端口支 持多个用户设备。
  17. 根据权利要求16所述的码书确定装置,其中,所述分组单元根据多个用户设备的下倾角分布对所述虚拟天线端口进行分组;或者根据多个用户设备的下倾角个数对所述虚拟天线端口进行分组。
  18. 一种通信系统,所述通信系统包括:
    基站,具有包括多个天线粒子的平面天线阵列,所述多个天线粒子在垂直方向上形成多列以及在水平方向上形成多行;其中,垂直方向上一列天线中同一极化方向的天线粒子形成一个或多个虚拟天线端口,所述一个或多个虚拟天线端口与多个射频链连接;
    所述基站基于所述平面天线阵列中天线粒子的个数和/或射频链的个数确定用于射频预编码的第一码书;以及基于所述平面天线阵列中天线粒子的个数和/或所述射频链的个数确定用于基带预编码的第二码书。
PCT/CN2014/089801 2014-10-29 2014-10-29 码书确定方法、装置以及通信系统 WO2016065557A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480082045.6A CN106716862A (zh) 2014-10-29 2014-10-29 码书确定方法、装置以及通信系统
PCT/CN2014/089801 WO2016065557A1 (zh) 2014-10-29 2014-10-29 码书确定方法、装置以及通信系统
US15/499,184 US20170230091A1 (en) 2014-10-29 2017-04-27 Method and apparatus for determining codebook and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089801 WO2016065557A1 (zh) 2014-10-29 2014-10-29 码书确定方法、装置以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/499,184 Continuation US20170230091A1 (en) 2014-10-29 2017-04-27 Method and apparatus for determining codebook and communication system

Publications (1)

Publication Number Publication Date
WO2016065557A1 true WO2016065557A1 (zh) 2016-05-06

Family

ID=55856377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089801 WO2016065557A1 (zh) 2014-10-29 2014-10-29 码书确定方法、装置以及通信系统

Country Status (3)

Country Link
US (1) US20170230091A1 (zh)
CN (1) CN106716862A (zh)
WO (1) WO2016065557A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127781A1 (en) * 2017-01-09 2018-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid-srs combination signaling
CN113851827A (zh) * 2021-10-11 2021-12-28 鹏城实验室 一种低剖面天线结构及天线码本生成方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10320450B2 (en) * 2017-09-06 2019-06-11 Telefonaktiebolaget Lm Ericsson (Publ) Antenna arrangement for two polarizations
US11528062B2 (en) * 2018-04-18 2022-12-13 Nokia Shanghai Bell Co., Ltd Method and device for virtual port mapping for massive MIMO
US20190356362A1 (en) * 2018-05-15 2019-11-21 Speedlink Technology Inc. Mimo transceiver array for multi-band millimeter-wave 5g communication
US11616563B2 (en) 2020-04-06 2023-03-28 Samsung Electronics Co., Ltd. Systems and methods for updating beamforming codebooks for angle-of-arrival estimation using compressive sensing in wireless communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867461A (zh) * 2010-04-30 2010-10-20 中兴通讯股份有限公司 信道信息获取方法及装置、码本构造方法
CN103152140A (zh) * 2013-03-05 2013-06-12 东南大学 一种基于直积码书的三维多用户mimo有限反馈方法
CN103718474A (zh) * 2011-07-28 2014-04-09 三星电子株式会社 在无线通信系统中组合基带和射频波束控制的装置和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120030919A (ko) * 2010-09-20 2012-03-29 엘지전자 주식회사 무선 통신 시스템에서 캐리어 집성 방법 및 장치
KR101878211B1 (ko) * 2011-09-19 2018-07-16 삼성전자주식회사 무선 통신 시스템에서 다중 빔포밍 송수신기를 운용하기 위한 장치 및 방법
CN103378882B (zh) * 2012-04-16 2018-04-27 中兴通讯股份有限公司 一种大规模天线系统控制信号发送方法及装置
KR20130127347A (ko) * 2012-05-10 2013-11-22 삼성전자주식회사 아날로그 및 디지털 하이브리드 빔포밍을 통한 통신 방법 및 장치
US20170005712A1 (en) * 2014-01-22 2017-01-05 Nec Corporation Method and apparatus for channel measurement and feedback
EP3143704B1 (en) * 2014-05-15 2019-06-19 LG Electronics Inc. Method and apparatus for calculating feedback information for 3d mimo in wireless communication system
CN105706373B (zh) * 2014-05-30 2020-04-03 华为技术有限公司 一种报告信道状态信息csi的方法、装置和基站天线
KR102194930B1 (ko) * 2014-06-26 2020-12-24 엘지전자 주식회사 무선 통신 시스템에서 고주파 대역 통신을 위한 프리코딩 행렬 인덱스 보고 방법 및 이를 위한 장치
CN105471484B (zh) * 2014-09-12 2020-12-25 索尼公司 无线通信设备和无线通信方法
EP3185454B1 (en) * 2014-10-10 2019-08-07 Huawei Technologies Co., Ltd. Precoded information acquisition device, method and system
CN108352870B (zh) * 2015-11-04 2021-07-27 瑞典爱立信有限公司 对从天线阵列的传输进行预编码的方法和发送无线电节点

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867461A (zh) * 2010-04-30 2010-10-20 中兴通讯股份有限公司 信道信息获取方法及装置、码本构造方法
CN103718474A (zh) * 2011-07-28 2014-04-09 三星电子株式会社 在无线通信系统中组合基带和射频波束控制的装置和方法
CN103152140A (zh) * 2013-03-05 2013-06-12 东南大学 一种基于直积码书的三维多用户mimo有限反馈方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127781A1 (en) * 2017-01-09 2018-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid-srs combination signaling
US11310010B2 (en) 2017-01-09 2022-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid-SRS combination signaling
CN113851827A (zh) * 2021-10-11 2021-12-28 鹏城实验室 一种低剖面天线结构及天线码本生成方法
CN113851827B (zh) * 2021-10-11 2023-04-25 鹏城实验室 一种低剖面天线结构及天线码本生成方法

Also Published As

Publication number Publication date
CN106716862A (zh) 2017-05-24
US20170230091A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
CN114285447B (zh) 信道状态信息的反馈、确定方法及装置
CN109004964B (zh) 用于确定无线通信网络中的预编码器参数的方法和设备
CN107888246B (zh) 基于码本的信道状态信息反馈方法及设备
CN111342912B (zh) 一种信道测量方法和通信装置
WO2016065557A1 (zh) 码书确定方法、装置以及通信系统
CN111342873B (zh) 一种信道测量方法和通信装置
WO2015101109A1 (zh) 一种信道状态信息测量、参考信号的发送方法和装置
CN112311431B (zh) 一种空频合并系数的指示方法及装置
CN107078773A (zh) 使ue能够确定预编码器码本的网络节点、用户设备及其方法
WO2018082701A1 (zh) 信道信息量化反馈的方法和装置、电子设备、存储介质
CN111342913B (zh) 一种信道测量方法和通信装置
CN111800172B (zh) 一种通信方法及装置
CN106160938B (zh) 一种信道信息的获取方法和装置
CN115053465A (zh) 一种信息传输方法及装置
WO2016154923A1 (zh) 波束信息获取方法、装置以及通信系统
CN105991172A (zh) 天线阵列的虚拟化模型选择方法、装置以及通信系统
WO2016183803A1 (zh) 天线阵列的信道信息反馈方法与装置
CN111865376B (zh) 一种通信方法及装置
WO2017107671A1 (zh) 信道信息的发送、接收方法及装置、终端和基站
WO2017005086A1 (zh) 一种预编码方法及装置
CN112054824A (zh) 一种信道测量方法和通信装置
CN111435850A (zh) 用于构建预编码向量的向量指示方法和通信装置
M. Elmagzoub On the MMSE‐based multiuser millimeter wave MIMO hybrid precoding design
WO2017167157A1 (zh) 信道信息的处理方法及装置
CN111756416B (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904679

Country of ref document: EP

Kind code of ref document: A1