WO2017107671A1 - 信道信息的发送、接收方法及装置、终端和基站 - Google Patents

信道信息的发送、接收方法及装置、终端和基站 Download PDF

Info

Publication number
WO2017107671A1
WO2017107671A1 PCT/CN2016/104073 CN2016104073W WO2017107671A1 WO 2017107671 A1 WO2017107671 A1 WO 2017107671A1 CN 2016104073 W CN2016104073 W CN 2016104073W WO 2017107671 A1 WO2017107671 A1 WO 2017107671A1
Authority
WO
WIPO (PCT)
Prior art keywords
codeword
channel information
pmi
codebook
codewords
Prior art date
Application number
PCT/CN2016/104073
Other languages
English (en)
French (fr)
Inventor
蔡剑兴
陈艺戬
李儒岳
吴昊
鲁照华
肖华华
李永
王瑜新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017107671A1 publication Critical patent/WO2017107671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present invention relates to the field of communications, and in particular to a method and device for transmitting and receiving channel information, a terminal, and a base station.
  • a transmitting end and a receiving end use a plurality of antennas in a spatial multiplexing manner to obtain a higher rate.
  • an enhanced technology is that the receiving end feeds back channel information to the transmitting end, and the transmitting end uses some transmitting precoding techniques according to the obtained channel information, which greatly improves the transmission performance.
  • channel feature vector information is used for precoding directly; for multi-user MIMO, more accurate channel information is needed.
  • LTE Long Term Evolution
  • the feedback of channel information is mainly based on a simple single codebook feedback method, and the performance of MIMO transmit precoding technology depends more on the accuracy of codebook feedback.
  • codebook The following briefly describes the basic principles of quantized feedback of channel information based on codebook:
  • the eigenvector space of the channel matrix is quantized to form the codebook space
  • the transmitter and the receiver jointly save or generate the codebook in real time (same as the transceiver).
  • the receiving end is based on certain criteria. Select a codeword that best matches the channel
  • the codeword sequence number i is fed back to the transmitting end.
  • the code word number is called a PMI (Precoding Matrix Indicator).
  • the transmitting end finds the corresponding precoding codeword according to the serial number i Thereby obtaining channel information,
  • the feature vector information of the channel is indicated.
  • the codebook corresponding to multiple Ranks may be divided into multiple Ranks to quantize the precoding matrix formed by the channel feature vectors under the Rank.
  • the code word when Rank is N will have N columns. So, the codebook It can be divided into multiple subcodebooks according to the difference of Rank, as shown in Table 1.
  • the codewords to be stored when Rank>1 are in the form of a matrix, wherein the codebook in the LTE protocol is the feedback method of the codebook quantization used.
  • the precoding codebook and the channel information quantization codebook in LTE are used. The meaning is the same.
  • a vector can also be viewed as a matrix of dimension 1.
  • the quantization efficiency of the codebook design largely determines the performance of the MIMO precoding technique. Therefore, there is a codebook design that is very compatible with the channel, which is very helpful for improving the performance of the system.
  • Models, for example, the models in the 8Tx codebook in LTE match the dual-polarized channel characteristics as follows:
  • N ⁇ 0,1 ⁇ N ⁇ 0,1 ⁇ , where m is the index of the PMI.
  • the embodiments of the present invention provide a method and a device for transmitting and receiving channel information, a terminal, and a base station, so as to at least solve the problem of poor codebook performance in the LTE system in the related art.
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , and ⁇ are complex numbers
  • b i is a vector
  • i 0, 1, 2.
  • the model of the i-th group codeword when the RI is 7, the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • the N t is determined according to a codebook parameter and/or an antenna port number configured by the base station; the m is determined according to a codebook parameter configured by the base station and/or an antenna port number; the m row zero element The location is determined according to the codebook parameter and/or the number of antenna ports configured by the base station; wherein the codebook parameter includes first dimension indication information N1 and/or second dimension indication information N2; the number of antenna ports includes a first dimension The number of antenna ports and/or the number of second-dimensional antenna ports; the N1 includes the number of antennas in a single polarization direction in the first dimension, and the N2 includes the number of antennas in a single polarization direction in the second dimension.
  • the above W (r) has a matrix of the following model: Where i 1 , i 2 ,..., i r are integers,
  • the precoding matrix is W (r) and W (r) is a N t ⁇ r matrix, where W (r) has m rows of zero elements, m is a positive integer less than N t , and N t is a positive integer.
  • a channel information sending apparatus including: an obtaining module configured to acquire channel information; and a determining module configured to determine a location from a pre-saved codebook space according to the channel information.
  • a channel indicator matching RI and a precoding matrix indicator PMI a channel indicator matching RI and a precoding matrix indicator PMI
  • the codebook space includes a precoding matrix of W (r) and W (r) is a N t ⁇ r matrix, where W (r) has m rows of zero elements, and m is a positive integer less than N t , N t is a positive integer.
  • a terminal including the above apparatus.
  • a base station including the above apparatus.
  • RI rank Indicator
  • the effect is that a codebook that is a code
  • FIG. 1 is a schematic diagram of a layer mapping relationship in a related art
  • FIG. 2 is a flowchart 1 of a method for transmitting channel information according to an embodiment of the present invention
  • FIG. 3 is a second flowchart of a method for transmitting channel information according to an embodiment of the present invention.
  • FIG. 4 is a third flowchart of a method for transmitting channel information according to an embodiment of the present invention.
  • FIG. 5 is a flowchart 1 of a method for receiving channel information according to an embodiment of the present invention.
  • FIG. 6 is a second flowchart of a method for receiving channel information according to an embodiment of the present invention.
  • FIG. 7 is a third flowchart of a method for receiving channel information according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram 1 of a device for transmitting channel information according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram 2 of a device for transmitting channel information according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram 3 of a device for transmitting channel information according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram 1 of a device for receiving channel information according to an embodiment of the present invention.
  • FIG. 12 is a second structural block diagram of a device for receiving channel information according to an embodiment of the present invention.
  • FIG. 13 is a structural block diagram 3 of a device for receiving channel information according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an antenna topology using a dual-polarized 16 antenna in accordance with a preferred embodiment of the present invention.
  • 15 is a schematic diagram of an antenna topology employing a dual-polarized 12 antenna in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a flowchart 1 of a method for transmitting channel information according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 acquiring channel information
  • Step S204 determining, according to the channel information, a rank index matching the channel information from a pre-stored codebook space.
  • the i-th set of codewords is the column exchange form of the jth set of codewords, and the influence of the column exchange on the layer mapping is considered by designing the codewords.
  • the codeword is obtained by combining the characteristics of the layer mapping with the characteristics of the column, so that the codeword which is more matched with the channel can be obtained when matching with the channel, and the related technology is solved.
  • the problem of poor codebook performance in the LTE system improves the performance of the codebook.
  • the codewords when RI>1 are in the form of a matrix, so that the columns in the codeword can be exchanged.
  • the vector can also be regarded as a matrix of dimension 1, and one of the related technologies.
  • the codeword corresponding to the RI has only one representation. Therefore, when the channel is matched, only one representation of the codeword can be matched with the channel.
  • Another type of codeword can be obtained, that is, the codeword has multiple representations. When the channel is matched, the codewords of multiple representations can be matched with the codeword, thereby obtaining a match with the channel. Codeword.
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , and ⁇ are complex numbers
  • b i is a vector
  • i 0, 1, 2.
  • the model of the i-th group codeword when the RI is 7, the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • FIG. 3 is a second flowchart of a method for transmitting channel information according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 acquiring channel information
  • Step S304 determining, according to the channel information, a rank indicator RI and a precoding matrix indicator PMI that match the channel information from a pre-stored codebook space;
  • the influence of the exchange of the columns on the layer mapping is considered when designing the codeword, that is, by considering the relationship between the codeword stream and the layer mapping in the LIE, the codeword is obtained by combining the characteristics of the layer mapping with the characteristics of the column, so that When the channel is matched, the codeword matching the channel can be obtained, which solves the problem that the codebook performance in the LTE system is not good in the related art, thereby improving the performance of the codebook.
  • the codewords when RI>1 are in the form of a matrix, so that the columns in the codeword can be exchanged.
  • the vector can also be regarded as a matrix of dimension 1, and one of the related technologies.
  • the codeword corresponding to the RI has only one representation. Therefore, when the channel is matched, only one representation of the codeword can be matched with the channel.
  • Another type of codeword can be obtained, that is, the codeword has multiple representations. When the channel is matched, the codewords of multiple representations can be matched with the codeword, thereby obtaining a match with the channel. Codeword.
  • FIG. 4 is a flowchart 3 of a method for transmitting channel information according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 acquiring channel information
  • Step S404 determining, according to the channel information, a rank indicator RI and a precoding matrix indicator PMI that match the channel information from a pre-stored codebook space;
  • the designed precoding matrix includes m rows of zero elements, that is, the precoding matrix already defined in the LTE system in the prior art can be directly expanded into the precoding matrix of the above design, thereby making the design pre-
  • the number of codewords included in the coding matrix does not increase or increase greatly.
  • the feedback overhead of the codebook is saved.
  • the system obtains better MIMO performance, thereby solving the problem of poor codebook performance in the LTE system in the related art.
  • the foregoing N t is determined according to a codebook parameter and/or an antenna port number configured by the base station; the foregoing m is determined according to a codebook parameter and/or an antenna port number configured by the base station; and the location of the m-line zero element is configured according to a base station.
  • the codebook parameter and/or the number of antenna ports are determined; wherein the codebook parameter includes first dimension indication information N1 and/or second dimension indication information N2; the number of antenna ports includes the number of first dimension antenna ports and/or the number The number of two-dimensional antenna ports; the N1 includes the number of antennas in a single polarization direction in the first dimension, and the N2 includes the number of antennas in a single polarization direction in the second dimension.
  • the W (r) has a matrix of the following model: Where i 1 , i 2 ,..., i r are integers,
  • FIG. 5 is a flowchart 1 of a method for receiving channel information according to an embodiment of the present invention. As shown in FIG. 5, the process includes the following steps:
  • Step S502 receiving a rank indicator RI and a precoding matrix indicator PMI sent by the terminal;
  • Step S504 searching for a codeword corresponding to the RI and the PMI from a pre-stored codebook space according to the RI and the PMI;
  • the i-th set of codewords is the column exchange form of the jth set of codewords, and the influence of the column exchange on the layer mapping is considered by designing the codewords.
  • the codeword is obtained by combining the characteristics of the layer mapping with the characteristics of the column, so that the codeword which is more matched with the channel can be obtained when matching with the channel, and the related technology is solved.
  • the problem of poor codebook performance in the LTE system improves the performance of the codebook.
  • the codewords when RI>1 are in the form of a matrix, so that the columns in the codeword can be exchanged.
  • the vector can also be regarded as a matrix of dimension 1, and one of the related technologies.
  • the codeword corresponding to the RI has only one representation. Therefore, when the channel is matched, only one representation of the codeword can be matched with the channel.
  • Another type of codeword can be obtained, that is, the codeword has multiple representations. When the channel is matched, the codewords of multiple representations can be matched with the codeword, thereby obtaining a match with the channel. Codeword.
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , and ⁇ are complex numbers
  • b i is a vector
  • i 0, 1, 2.
  • the model of the i-th group codeword when the RI is 7, the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • FIG. 6 is a second flowchart of a method for receiving channel information according to an embodiment of the present invention. As shown in FIG. 6, the process includes the following steps:
  • Step S602 receiving a rank indicator RI and a precoding matrix indicator PMI sent by the terminal;
  • Step S604 searching for a codeword corresponding to the RI and the PMI from a pre-stored codebook space according to the RI and the PMI;
  • the influence of the exchange of the columns on the layer mapping is considered when designing the codeword, that is, by considering the relationship between the codeword stream and the layer mapping in the LIE, the codeword is obtained by combining the characteristics of the layer mapping with the characteristics of the column, so that When the channel is matched, the codeword matching the channel can be obtained, which solves the problem that the codebook performance in the LTE system is not good in the related art, thereby improving the performance of the codebook.
  • the codewords when RI>1 are in the form of a matrix, so that the columns in the codeword can be exchanged.
  • the vector can also be regarded as a matrix of dimension 1, and one of the related technologies.
  • the codeword corresponding to the RI has only one representation. Therefore, when the channel is matched, only one representation of the codeword can be matched with the channel.
  • the codeword after the column of the codeword is exchanged, , can get another form of codeword, that is, the codeword has multiple performances
  • the form, when matching the channel can be matched by the code words of various representations, thereby obtaining a codeword that more closely matches the channel.
  • FIG. 7 is a flowchart 3 of a method for receiving channel information according to an embodiment of the present invention. As shown in FIG. 7, the process includes the following steps:
  • Step S702 receiving a rank indicator RI and a precoding matrix indicator PMI sent by the terminal;
  • Step S704 searching for a codeword corresponding to the RI and the PMI from a pre-stored codebook space according to the RI and the PMI;
  • the designed precoding matrix includes m rows of zero elements, that is, the precoding matrix already defined in the LTE system in the prior art can be directly expanded into the precoding matrix of the above design, thereby making the design pre-
  • the number of codewords included in the coding matrix does not increase or is not greatly increased.
  • the precoding matrix which has been defined in the related art saves the feedback overhead of the codebook.
  • the system obtains better MIMO performance, thereby solving the problem of poor codebook performance in the LTE system in the related art.
  • the foregoing N t is determined according to a codebook parameter and/or an antenna port number configured by the base station; the foregoing m is determined according to a codebook parameter and/or an antenna port number configured by the base station; and the location of the m-line zero element is configured according to a base station.
  • the codebook parameter and/or the number of antenna ports are determined; wherein the codebook parameter includes first dimension indication information N1 and/or second dimension indication information N2; the number of antenna ports includes the number of first dimension antenna ports and/or the number The number of two-dimensional antenna ports; the N1 includes the number of antennas in a single polarization direction in the first dimension, and the N2 includes the number of antennas in a single polarization direction in the second dimension.
  • the W (r) has a matrix of the following model: Where i 1 , i 2 ,..., i r are integers,
  • FIG. 8 is a block diagram showing a structure of a device for transmitting channel information according to an embodiment of the present invention. As shown in FIG. 8, the device includes:
  • the obtaining module 82 is configured to acquire channel information
  • the determining module 84 is connected to the obtaining module 82, and configured to determine, according to the channel information, a rank indicator RI and a precoding matrix indicator PMI that match the channel information from a pre-stored codebook space;
  • the i-th set of codewords is a column exchange form of the jth set of codewords, and the influence of the exchange of the columns on the layer mapping is considered by the designed codewords. That is, the relationship between the codeword stream and the layer mapping in LIE is considered, and the codeword is obtained by combining the characteristics of the layer mapping with the characteristics of the column, so that the codeword which is more matched with the channel can be obtained when matching with the channel, and the related art is solved.
  • the problem of poor codebook performance in the LTE system improves the performance of the codebook.
  • the codewords when RI>1 are in the form of a matrix, so that the columns in the codeword can be exchanged.
  • the vector can also be regarded as a matrix of dimension 1, and one of the related technologies.
  • the codeword corresponding to the RI has only one representation. Therefore, when the channel is matched, only one representation of the codeword can be matched with the channel.
  • Another type of codeword can be obtained, that is, the codeword has multiple representations. When the channel is matched, the codewords of multiple representations can be matched with the codeword, thereby obtaining a match with the channel. Codeword.
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , and ⁇ are complex numbers
  • b i is a vector
  • i 0, 1, 2.
  • the model of the i-th group codeword when the RI is 7, the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • FIG. 9 is a block diagram showing the structure of a device for transmitting channel information according to an embodiment of the present invention. As shown in FIG. 9, the device includes:
  • the obtaining module 92 is configured to acquire channel information.
  • the determining module 94 is connected to the obtaining module 92, and is configured to save from the pre-saved codebook space according to the channel information. Determining a rank indicator RI and a precoding matrix indicator PMI that match the channel information;
  • the designed codeword is used to consider the influence of the column exchange on the layer mapping, that is, considering the relationship between the codeword stream and the layer mapping in the LIE, and adopting the characteristics of the layer mapping combined with the characteristics of the column to obtain the codeword,
  • the codeword matching the channel can be obtained, which solves the problem that the codebook performance in the LTE system is not good in the related art, thereby improving the performance of the codebook.
  • the codewords when RI>1 are in the form of a matrix, so that the columns in the codeword can be exchanged.
  • the vector can also be regarded as a matrix of dimension 1, and one of the related technologies.
  • the codeword corresponding to the RI has only one representation. Therefore, when the channel is matched, only one representation of the codeword can be matched with the channel.
  • Another type of codeword can be obtained, that is, the codeword has multiple representations. When the channel is matched, the codewords of multiple representations can be matched with the codeword, thereby obtaining a match with the channel. Codeword.
  • FIG. 10 is a structural block diagram 3 of a device for transmitting channel information according to an embodiment of the present invention. As shown in FIG. 10, the device includes:
  • the obtaining module 1002 is configured to acquire channel information.
  • the determining module 1004 is connected to the obtaining module 1002, and configured to determine, according to the channel information, a rank indicator RI and a precoding matrix indicator PMI that match the channel information from a pre-stored codebook space;
  • the precoding matrix is W (r) and W (r) is a N t ⁇ r matrix, where W (r) has m rows of zero elements, m is a positive integer less than N t , and N t is a positive integer.
  • the precoding matrix is designed to include m rows of zero elements, that is, the precoding matrix already defined in the prior art LTE system can be directly expanded into the precoding matrix of the above design, thereby precoding the design.
  • the number of codewords included in the matrix does not increase or increase greatly.
  • the precoding matrix which has been defined in the related art saves the feedback overhead of the codebook, and further The system obtains better MIMO performance, thereby solving the problem of poor codebook performance in the LTE system in the related art.
  • the foregoing N t is determined according to a codebook parameter and/or an antenna port number configured by the base station; the foregoing m is determined according to a codebook parameter and/or an antenna port number configured by the base station; and the location of the m-line zero element is configured according to a base station.
  • the codebook parameter and/or the number of antenna ports are determined; wherein the codebook parameter includes first dimension indication information N1 and/or second dimension indication information N2; the number of antenna ports includes the number of first dimension antenna ports and/or the number The number of two-dimensional antenna ports; the N1 includes the number of antennas in a single polarization direction in the first dimension, and the N2 includes the number of antennas in a single polarization direction in the second dimension.
  • the W (r) has a matrix of the following model: Where i 1 , i 2 ,..., i r are integers,
  • Also provided in the present embodiment is a terminal comprising the apparatus described above with respect to Figures 8, 9, and 10.
  • the terminal includes, but is not limited to, a data card, a mobile phone, a notebook computer, a personal computer, a tablet computer, a personal digital assistant, a Bluetooth, and the like, and a relay and a remote terminal.
  • Various wireless communication devices such as devices and wireless access points.
  • FIG. 11 is a block diagram showing the structure of a device for receiving channel information according to an embodiment of the present invention. As shown in FIG. 11, the device includes:
  • the receiving module 1102 is configured to receive a rank indicator RI and a precoding matrix indicator PMI sent by the terminal;
  • the searching module 1104 is connected to the receiving module 1102, and is configured to search for a codeword corresponding to the RI and the PMI from a pre-stored codebook space according to the RI and the PMI;
  • the i-th set of codewords is a column exchange form of the jth set of codewords, and the influence of the exchange of the columns on the layer mapping is considered by the designed codewords. That is, by considering the relationship between the codeword stream and the layer mapping in the LIE, the codeword obtained by combining the characteristics of the layer map is used to obtain a codeword which is more matched with the channel when the channel is matched, and the related technology is solved.
  • the problem of poor codebook performance in the LTE system improves the performance of the codebook.
  • the codewords when RI>1 are in the form of a matrix, so that the columns in the codeword can be exchanged.
  • the vector can also be regarded as a matrix of dimension 1, and one of the related technologies.
  • the codeword corresponding to the RI has only one representation. Therefore, when the channel is matched, only one representation of the codeword can be matched with the channel.
  • Another type of codeword can be obtained, that is, the codeword has multiple representations, and when the channel is matched, the codewords of multiple representations can be matched with the codeword, and the codeword can be obtained.
  • the channel has a more matching codeword.
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , and ⁇ are complex numbers
  • b i is a vector
  • i 0, 1, 2.
  • the model of the i-th group codeword when the RI is 7, the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • the model of the i-th group codeword is:
  • the model of the jth group codeword is:
  • the model of the jth group codeword is:
  • ⁇ , ⁇ , ⁇ , ⁇ are complex numbers
  • FIG. 12 is a structural block diagram 2 of a device for receiving channel information according to an embodiment of the present invention. As shown in FIG. 12, the device includes:
  • the receiving module 1202 is configured to receive a rank indicator RI and a precoding matrix indicator PMI sent by the terminal;
  • the searching module 1204 is connected to the receiving module 1202, and configured to search for a codeword corresponding to the RI and the PMI from a pre-stored codebook space according to the RI and the PMI;
  • the influence of the column exchange on the layer mapping is considered when designing the codeword, that is, considering the relationship between the codeword stream and the layer mapping in the LIE, and adopting the characteristics of the layer mapping combined with the codeword obtained by the feature of the column,
  • a codeword that is more matched with the channel can be obtained, which solves the problem of poor codebook performance in the LTE system in the related art, thereby improving the performance of the codebook.
  • the codewords when RI>1 are in the form of a matrix, so that the columns in the codeword can be exchanged, and need to be explained.
  • the vector can also be regarded as a matrix with a dimension of 1, and the codeword corresponding to one RI in the related art has only one representation. Therefore, when matching the channel, only one representation can be used.
  • the codeword is matched with the channel, but in this embodiment, after the column of the codeword is exchanged, another codeword of the representation form can be obtained, that is, the codeword has multiple representations, and when the channel is matched, The codewords of the various representations can be matched to them, and a codeword that more closely matches the channel can be obtained.
  • FIG. 13 is a structural block diagram 3 of a device for receiving channel information according to an embodiment of the present invention. As shown in FIG. 13, the device includes:
  • the receiving module 1302 is configured to receive the rank indicator RI and the precoding matrix indicator PMI sent by the terminal;
  • the searching module 1304 is connected to the receiving module 1302, and is configured to search for a codeword corresponding to the RI and the PMI from a pre-stored codebook space according to the RI and the PMI;
  • the precoding matrix is designed to include m rows of zero elements, that is, the precoding matrix already defined in the prior art LTE system can be directly expanded into the precoding matrix of the above design, thereby precoding the design.
  • the number of codewords included in the matrix does not increase or increase greatly.
  • the precoding matrix which has been defined in the related art saves the feedback overhead of the codebook, and further The system obtains better MIMO performance, thereby solving the problem of poor codebook performance in the LTE system in the related art.
  • the foregoing N t is determined according to a codebook parameter and/or an antenna port number configured by the base station; the foregoing m is determined according to a codebook parameter and/or an antenna port number configured by the base station; and the location of the m-line zero element is configured according to a base station.
  • the codebook parameter and/or the number of antenna ports are determined; wherein the codebook parameter includes first dimension indication information N1 and/or second dimension indication information N2; the number of antenna ports includes the number of first dimension antenna ports and/or the number The number of two-dimensional antenna ports; the N1 includes the number of antennas in a single polarization direction in the first dimension, and the N2 includes the number of antennas in a single polarization direction in the second dimension.
  • a base station comprising the apparatus described above with respect to FIG. 11, FIG. 12 or FIG.
  • the foregoing base stations include, but are not limited to, various wireless communication devices such as a macro base station, a micro base station, and a wireless access point.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • a storage medium such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • module may implement a combination of software and/or hardware of a predetermined function.
  • apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • MIMO multiple-input multiple-output
  • the transmitting end and the receiving end jointly store a precoding codebook, and the receiving end according to the channel estimation result, from the precoding codebook
  • the sequence number of the codeword is fed back to the transmitting end, and the transmitting end precodes the symbol block sent to the receiving end according to the codeword found by the sequence number.
  • p is the number of antenna ports
  • Codebook-Config is a signaling for configuring a codebook type.
  • the five parameters N 1 , N 2 , O 1 , O 2 and Codebook-Config are configured through higher layer signaling.
  • i 1,1 and i 1,2 are the first PMIs representing the PMIs of the first dimension and the second dimension, respectively.
  • p is the number of antenna ports
  • Codebook-Config is signaling for configuring the codebook type.
  • the five parameters N 1 , N 2 , O 1 , O 2 and Codebook-Config are configured through higher layer signaling.
  • i 1,1 and i 1,2 are the first PMIs representing the PMIs of the first dimension and the second dimension, respectively.
  • p is the number of antenna ports
  • Codebook-Config is signaling for configuring the codebook type.
  • the five parameters N 1 , N 2 , O 1 , O 2 and Codebook-Config are configured through higher layer signaling.
  • i 1,1 and i 1,2 are the first PMIs representing the PMIs of the first dimension and the second dimension, respectively.
  • MIMO multiple-input multiple-output
  • the transmitting end and the receiving end jointly store a precoding codebook, and the receiving end according to the channel estimation result, from the precoding codebook
  • the sequence number of the codeword is fed back to the transmitting end, and the transmitting end precodes the symbol block sent to the receiving end according to the codeword found by the sequence number.
  • Codebook-Config is signaling for configuring the codebook type.
  • the five parameters N 1 , N 2 , O 1 , O 2 and Codebook-Config are configured through higher layer signaling.
  • i 1,1 and i 1,2 are the first PMI, representing the PMI of the first dimension and the second dimension, respectively, and i 2 is the second PMI.
  • m is the index of the PMI.
  • m is the index of the PMI.
  • MIMO multiple-input multiple-output
  • the transmitting end and the receiving end jointly store a precoding codebook, and the receiving end according to the channel estimation result, from the precoding codebook
  • the sequence number of the codeword is fed back to the transmitting end, and the transmitting end finds the codeword according to the sequence number, and pre-codes the symbol block sent to the receiving end.
  • the number of antennas or antenna ports supported by the LTE system has reached 12 and 16, and dual-polarized antennas have been adopted.
  • the antenna is placed as shown in FIG.
  • the sequence numbers ⁇ 15, 16, ..., 30 ⁇ in Fig. 14 represent the numbers of the antenna ports.
  • the codebook of the 16-antenna system is extended by the 8-antenna codebook defined in the current LTE protocol, and then according to the determined number of antenna ports, it can be determined that there are 8 rows of zero elements in the pre-coding matrix.
  • b k is a vector of 8 ⁇ 1
  • ⁇ k is a complex number
  • k 1, 2, ..., i r .
  • It may be a precoding matrix of 8 antenna rank r defined in the LTE system.
  • MIMO multiple-input multiple-output
  • the transmitting end and the receiving end jointly store a precoding codebook, and the receiving end according to the channel estimation result, from the precoding codebook
  • the sequence number of the codeword is fed back to the transmitting end, and the transmitting end precodes the symbol block sent to the receiving end according to the codeword found by the sequence number.
  • the number of antennas or antenna ports supported by the LTE system has reached 12 and 16, and dual-polarized antennas have been adopted.
  • the sequence numbers ⁇ 15, 16, ..., 26 ⁇ in Fig. 15 represent the numbers of the antenna ports.
  • b k is a 6 ⁇ 1 vector
  • ⁇ k is a complex number
  • k 1, 2, ..., i r .
  • It may be a precoding matrix of 8 antenna rank r defined in the LTE system.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供了一种信道信息的发送、接收方法及装置、终端和基站,其中,信道信息的发送方法包括:获取信道信息;依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。通过本发明,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。

Description

信道信息的发送、接收方法及装置、终端和基站 技术领域
本发明涉及通信领域,具体而言,涉及一种信道信息的发送、接收方法及装置、终端和基站。
背景技术
无线通信系统中,发送端和接收端采用空间复用的方式使用多根天线来获取更高的速率。相对于一般的空间复用方法,一种增强的技术是接收端反馈信道信息给发送端,发送端根据获得的信道信息使用一些发射预编码技术,极大的提高传输性能。对于单用户多输入多输出(Multi-input Multi-output,简称MIMO)中,直接使用信道特征矢量信息进行预编码;对于多用户MIMO中,需要比较准确的信道信息。
在长期演进(Long Term Evolution,简称LTE)计划中,信道信息的反馈主要是利用较简单的单一码本的反馈方法,而MIMO的发射预编码技术的性能更依赖于其中码本反馈的准确度。以下简单描述基于码本的信道信息量化反馈的基本原理:
假设有限反馈信道容量为B bps/Hz,那么可用的码字的个数为N=2B个。信道矩阵的特征矢量空间经过量化构成码本空间
Figure PCTCN2016104073-appb-000001
发射端与接收端共同保存或实时产生此码本(收发端相同)。根据接收端获得的信道矩阵H,接收端根据一定准则从
Figure PCTCN2016104073-appb-000002
中选择一个与信道最匹配的码字
Figure PCTCN2016104073-appb-000003
并将码字序号i反馈回发射端。这里,码字序号称为PMI(Precoding Matrix Indicator,预编码矩阵指示符)。发射端根据此序号i找到相应的预编码码字
Figure PCTCN2016104073-appb-000004
从而获得信道信息,
Figure PCTCN2016104073-appb-000005
表示了信道的特征矢量信息。
一般来说
Figure PCTCN2016104073-appb-000006
可以被划分为多个Rank(秩)对应的码本,每个Rank下会对应多个码字来量化该Rank下信道特征矢量构成的预编码矩阵。一般来说Rank为N时的码字都会有N列。所以,码本
Figure PCTCN2016104073-appb-000007
可按Rank的不同分为多个子码本,如表1所示。
表1
Figure PCTCN2016104073-appb-000008
Figure PCTCN2016104073-appb-000009
其中,在Rank>1时需要存储的码字都为矩阵形式,其中LTE协议中的码本就是采用的这种码本量化的反馈方法,实际上LTE中预编码码本和信道信息量化码本含义是一样的。在本申请中,为了统一起见,矢量也可以看成一个维度为1的矩阵。
码本的设计的量化效率很大程度上决定了MIMO预编码技术的性能。因此有一个与信道非常匹配的码本设计是非常有助于系统性能的提升的,越匹配信道特征的码本性能就越好,因此一般码本中的码字都有着与信道特征十分匹配的模型,例如,LTE中8Tx码本中的模型就很匹配双极化的信道特征,如下:
Rank1码字模型:
Figure PCTCN2016104073-appb-000010
Rank2码字模型:
Figure PCTCN2016104073-appb-000011
Rank3码字模型:
Figure PCTCN2016104073-appb-000012
Rank4码字模型:
Figure PCTCN2016104073-appb-000013
Rank5码字模型:
Figure PCTCN2016104073-appb-000014
Rank6码字模型:
Figure PCTCN2016104073-appb-000015
Rank7码字模型:
Figure PCTCN2016104073-appb-000016
Rank8码字模型:
Figure PCTCN2016104073-appb-000017
其中,
Figure PCTCN2016104073-appb-000018
n∈{0,1},m为PMI的索引。
在相关技术的LTE协议中,为了降低复杂度,最大支持两个码字流(Codeword,CW)同时传输,具体的层映射关系如图1所示,该层映射适应各种天线配置。
上述码字模型中,对每一层(秩)而言,其所对应的码字是固定不变的,因而,其与信道的匹配度保持不变,即相关技术中的码字模型的列排列比较简单,并不能获得最佳的MIMO性能。
另外,当RI=5,6,7,8时,当前LTE系统设计出来的码本比较复杂,对每一个RI=5,6,7,8的码本而言,码本中都含有比较多的码字个数,因此导致码本反馈开销比较大,并且系统的性能并没有获得最佳的MIMO性能。
针对相关技术中LTE系统中的码本性能不佳的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种信道信息的发送、接收方法及装置、终端和基站,以至少解决相关技术中LTE系统中的码本性能不佳的问题。
根据本发明的一个实施例,提供了一种信道信息的发送方法,包括:获取信道信息;依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符(Rank Indicator,简称RI)和预编码矩阵指示符PMI;将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
在本发明实施例中,当RI为3时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000019
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000020
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为4时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000021
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000022
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为5时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000023
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000024
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为6时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000025
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000026
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000027
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000028
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为7时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000029
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000030
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000031
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000032
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
在本发明实施例中,当RI为8时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000033
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000034
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000035
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000036
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
根据本发明的一个实施例,提供了一种信道信息的发送方法,包括:获取信道信息;依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩 阵指示符PMI;将所述RI和所述PMI发送给基站;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
Figure PCTCN2016104073-appb-000037
或者,
Figure PCTCN2016104073-appb-000038
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
根据本发明的一个实施例,提供了一种信道信息的发送方法,包括:获取信道信息;依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;将所述RI和所述PMI发送给基站;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
在本发明实施例中,所述Nt根据基站配置的码本参数和/或天线端口数目确定;所述m根据基站配置的码本参数和/或天线端口数目确定;所述m行零元素的位置根据基站配置的码本参数和/或天线端口数目确定;其中,所述码本参数包括第一维度指示信息N1和/或第二维度指示信息N2;所述天线端口数目包括第一维度天线端口数目和/或第二维度天线端口数目;所述N1包括第一维度上单个极化方向的天线数目,所述N2包括第二维度上单个极化方向的天线数目。
在本发明实施例中,上述W(r)具有以下模型的矩阵:
Figure PCTCN2016104073-appb-000039
其中i1,i2,…,ir为整数,
Figure PCTCN2016104073-appb-000040
为复数,bk为Nt/2×1的向量,所述bk中包含m/2个零元素,k=1,2,…,ir,Nt为正整数,m为小于Nt的正偶数。
根据本发明的一个实施例,提供了一种信道信息的接收方法,包括:接收终端发送的秩指示符RI和预编码矩阵指示符PMI;根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;依据所述码字获取信道信息;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
根据本发明的一个实施例,提供了一种信道信息的接收方法,包括:接收终端发送的秩指示符RI和预编码矩阵指示符PMI;根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;依据所述码字获取信道信息;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
Figure PCTCN2016104073-appb-000041
或者,
Figure PCTCN2016104073-appb-000042
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
根据本发明的一个实施例,提供了一种信道信息的接收方法,包括:接收终端发送的秩指示符RI和预编码矩阵指示符PMI;根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;依据所述码字获取信道信息;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
根据本发明的一个实施例,提供了一种信道信息的发送装置,包括:获取模块,设置为获取信道信息;确定模块,设置为依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;发送模块,设置为将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
根据本发明的一个实施例,提供了一种信道信息的发送装置,包括:获取模块,设置为获取信道信息;确定模块,设置为依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;发送模块,设置为将所述RI和所述PMI发送给基站;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
Figure PCTCN2016104073-appb-000043
或者,
Figure PCTCN2016104073-appb-000044
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
根据本发明的一个实施例,提供了一种信道信息的发送装置,包括:获取模块,设置为获取信道信息;确定模块,设置为依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;发送模块,设置为将所述RI和所述PMI发送给基站;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
根据本发明的一个实施例,提供了一种终端,包括上述装置。
根据本发明的一个实施例,提供了一种信道信息的接收装置,包括:接收模块,设置为 接收终端发送的秩指示符RI和预编码矩阵指示符PMI;查找模块,设置为根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;获取模块,设置为依据所述码字获取信道信息;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
根据本发明的一个实施例,提供了一种信道信息的接收装置,包括:接收模块,设置为接收终端发送的秩指示符RI和预编码矩阵指示符PMI;查找模块,设置为根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;获取模块,设置为依据所述码字获取信道信息;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
Figure PCTCN2016104073-appb-000045
或者,
Figure PCTCN2016104073-appb-000046
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
根据本发明的一个实施例,提供了一种信道信息的接收装置,包括:接收模块,设置为接收终端发送的秩指示符RI和预编码矩阵指示符PMI;查找模块,设置为根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;获取模块,设置为依据所述码字获取信道信息;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
据本发明的一个实施例,提供了一种基站,包括上述装置。
本发明的实施例还提供了一种存储介质,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:获取信道信息;依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符(Rank Indicator,简称RI)和预编码矩阵指示符PMI;将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
通过本发明,采用获取信道信息;依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i,即采用RI=r对应的N组码字中,第i组码字为第j组码字的列交换形式的方式,通过在设计码字时考虑了列的交换对层映射的影响使得在与信道进行匹配时能够得到与该信道更加匹配的码本,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中层映射关系示意图;
图2是根据本发明实施例的信道信息的发送方法的流程图一;
图3是根据本发明实施例的信道信息的发送方法的流程图二;
图4是根据本发明实施例的信道信息的发送方法的流程图三;
图5是根据本发明实施例的信道信息的接收方法的流程图一;
图6是根据本发明实施例的信道信息的接收方法的流程图二;
图7是根据本发明实施例的信道信息的接收方法的流程图三;
图8是根据本发明实施例的信道信息的发送装置的结构框图一;
图9是根据本发明实施例的信道信息的发送装置的结构框图二;
图10是根据本发明实施例的信道信息的发送装置的结构框图三;
图11是根据本发明实施例的信道信息的接收装置的结构框图一;
图12是根据本发明实施例的信道信息的接收装置的结构框图二;
图13是根据本发明实施例的信道信息的接收装置的结构框图三;
图14是根据本发明优选实施例的采用双极化16天线的一种天线拓扑示意图;
图15是根据本发明优选实施例的采用双极化12天线的一种天线拓扑示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种信道信息的发送方法,图2是根据本发明实施例的信道信息的发送方法的流程图一,如图2所示,该流程包括如下步骤:
步骤S202,获取信道信息;
步骤S204,依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指 示符RI和预编码矩阵指示符PMI;
步骤S206,将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
通过上述步骤,采用RI=r对应的N组码字中,第i组码字为第j组码字的列交换形式的方式,通过在设计码字时考虑了列的交换对层映射的影响,即通过考虑LIE中码字流与层映射的关系,通过层映射的特点结合列的特征得到码字,使得在与信道进行匹配时能够得到与该信道更加匹配的码字,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。
进一步地,在RI>1时的码字都为矩阵形式,因而可以对码字中的列进行交换,需要说明的是,矢量也可以看成一个维度为1的矩阵,而相关技术中的一个RI对应的码字只有一种表现形式,因而,在对信道进行匹配时,也只能将一种表现形式的码字与信道进行匹配,但在本实施例中,对码字的列交换后,可以得到另一种表现形式的码字,即该码字存在多种表现形式,在对信道进行匹配时,可以由多种表现形式的码字与其进行匹配,进而能够得到与该信道更加匹配的码字。
在本发明实施例中,当RI为3时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000047
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000048
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为4时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000049
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000050
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为5时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000051
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000052
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为6时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000053
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000054
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000055
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000056
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为7时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000057
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000058
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000059
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000060
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
在本发明实施例中,当RI为8时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000061
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000062
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000063
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000064
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
在本实施例中提供了一种信道信息的发送方法,图3是根据本发明实施例的信道信息的发送方法的流程图二,如图3所示,该流程包括如下步骤:
步骤S302,获取信道信息;
步骤S304,依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
步骤S306,将所述RI和所述PMI发送给基站;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
Figure PCTCN2016104073-appb-000065
或者,
Figure PCTCN2016104073-appb-000066
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
通过上述步骤,采用在设计码字时考虑了列的交换对层映射的影响,即通过考虑LIE中码字流与层映射的关系,通过层映射的特点结合列的特征得到码字,使得在与信道进行匹配时能够得到与该信道更加匹配的码字,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。
进一步地,在RI>1时的码字都为矩阵形式,因而可以对码字中的列进行交换,需要说明的是,矢量也可以看成一个维度为1的矩阵,而相关技术中的一个RI对应的码字只有一种表现形式,因而,在对信道进行匹配时,也只能将一种表现形式的码字与信道进行匹配,但在本实施例中,对码字的列交换后,可以得到另一种表现形式的码字,即该码字存在多种表现形式,在对信道进行匹配时,可以由多种表现形式的码字与其进行匹配,进而能够得到与该信道更加匹配的码字。
在本实施例中提供了一种信道信息的发送方法,图4是根据本发明实施例的信道信息的发送方法的流程图三,如图4所示,该流程包括如下步骤:
步骤S402,获取信道信息;
步骤S404,依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
步骤S406,将所述RI和所述PMI发送给基站;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
通过上述步骤,采用设计的预编码矩阵中包含m行零元素,即可以通过将现有技术中LTE系统中已经定义的预编码矩阵直接扩充为上述设计的预编码矩阵,进而使得该设计的预编码矩阵包含的码字个数不会增加或者不会大幅度增加,与相关技术中将已经定义的预编码矩阵通过一些复杂的数学运算获取的码本相比,节省了码本的反馈开销,进而使得系统获得较佳的MIMO性能,进而解决了相关技术中LTE系统中的码本性能不佳的问题。
需要说明的是,上述Nt根据基站配置的码本参数和/或天线端口数目确定;上述m根据基站配置的码本参数和/或天线端口数目确定;上述m行零元素的位置根据基站配置的码本参数和/或天线端口数目确定;其中,上述码本参数包括第一维度指示信息N1和/或第二维度指示信息N2;上述天线端口数目包括第一维度天线端口数目和/或第二维度天线端口数目;所述N1包括第一维度上单个极化方向的天线数目,所述N2包括第二维度上单个极化方向的天线数目。
需要说明的是,所述W(r)具有以下模型的矩阵:
Figure PCTCN2016104073-appb-000067
其中i1,i2,…,ir为整数,
Figure PCTCN2016104073-appb-000068
为复数,bk为Nt/2×1的向量,所述bk中包含m/2个零元素,k=1,2,…,ir,Nt为正整数,m为小于Nt的正偶数。
在本实施例中提供了一种信道信息的接收方法,图5是根据本发明实施例的信道信息的接收方法的流程图一,如图5所示,该流程包括如下步骤:
步骤S502,接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
步骤S504,根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
步骤S506,依据所述码字获取信道信息;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
通过上述步骤,采用RI=r对应的N组码字中,第i组码字为第j组码字的列交换形式的方式,通过在设计码字时考虑了列的交换对层映射的影响,即通过考虑LIE中码字流与层映射的关系,通过层映射的特点结合列的特征得到码字,使得在与信道进行匹配时能够得到与该信道更加匹配的码字,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。
进一步地,在RI>1时的码字都为矩阵形式,因而可以对码字中的列进行交换,需要说明的是,矢量也可以看成一个维度为1的矩阵,而相关技术中的一个RI对应的码字只有一种表现形式,因而,在对信道进行匹配时,也只能将一种表现形式的码字与信道进行匹配,但在本实施例中,对码字的列交换后,可以得到另一种表现形式的码字,即该码字存在多种表现形式,在对信道进行匹配时,可以由多种表现形式的码字与其进行匹配,进而能够得到与该信道更加匹配的码字。
在本发明实施例中,当RI为3时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000069
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000070
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为4时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000071
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000072
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为5时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000073
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000074
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为6时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000075
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000076
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000077
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000078
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为7时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000079
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000080
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000081
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000082
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
在本发明实施例中,当RI为8时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000083
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000084
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000085
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000086
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
在本实施例中提供了一种信道信息的接收方法,图6是根据本发明实施例的信道信息的接收方法的流程图二,如图6所示,该流程包括如下步骤:
步骤S602,接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
步骤S604,根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
步骤S606,依据所述码字获取信道信息;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
Figure PCTCN2016104073-appb-000087
或者,
Figure PCTCN2016104073-appb-000088
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
通过上述步骤,采用在设计码字时考虑了列的交换对层映射的影响,即通过考虑LIE中码字流与层映射的关系,通过层映射的特点结合列的特征得到码字,使得在与信道进行匹配时能够得到与该信道更加匹配的码字,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。
进一步地,在RI>1时的码字都为矩阵形式,因而可以对码字中的列进行交换,需要说明的是,矢量也可以看成一个维度为1的矩阵,而相关技术中的一个RI对应的码字只有一种表现形式,因而,在对信道进行匹配时,也只能将一种表现形式的码字与信道进行匹配,但在本实施例中,对码字的列交换后,可以得到另一种表现形式的码字,即该码字存在多种表现 形式,在对信道进行匹配时,可以由多种表现形式的码字与其进行匹配,进而能够得到与该信道更加匹配的码字。
本实施例中提供了一种信道信息的接收方法,图7是根据本发明实施例的信道信息的接收方法的流程图三,如图7所示,该流程包括如下步骤:
步骤S702,接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
步骤S704,根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
步骤S706,依据所述码字获取信道信息;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
通过上述步骤,采用设计的预编码矩阵中包含m行零元素,即可以通过将现有技术中LTE系统中已经定义的预编码矩阵直接扩充为上述设计的预编码矩阵,进而使得该设计的预编码矩阵包含的码字个数不会增加或者不会大幅增加,与相关技术中将已经定义的预编码矩阵通过一些复杂的数学运算获取的码本相比,节省了码本的反馈开销,进而使得系统获得较佳的MIMO性能,进而解决了相关技术中LTE系统中的码本性能不佳的问题。
需要说明的是,上述Nt根据基站配置的码本参数和/或天线端口数目确定;上述m根据基站配置的码本参数和/或天线端口数目确定;上述m行零元素的位置根据基站配置的码本参数和/或天线端口数目确定;其中,上述码本参数包括第一维度指示信息N1和/或第二维度指示信息N2;上述天线端口数目包括第一维度天线端口数目和/或第二维度天线端口数目;所述N1包括第一维度上单个极化方向的天线数目,所述N2包括第二维度上单个极化方向的天线数目。
需要说明的是,所述W(r)具有以下模型的矩阵:
Figure PCTCN2016104073-appb-000089
其中i1,i2,…,ir为整数,
Figure PCTCN2016104073-appb-000090
为复数,bk为Nt/2×1的向量,所述bk中包含m/2个零元素,k=1,2,…,ir,Nt为正整数,m为小于Nt的正偶数。
在本实施例中提供了一种信道信息的发送装置,图8是根据本发明实施例的信道信息的发送装置的结构框图一,如图8所示,该装置包括:
获取模块82,设置为获取信道信息;
确定模块84,与获取模块82连接,设置为依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
发送模块86,与确定模块84连接,设置为将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
通过上述装置,采用RI=r对应的N组码字中,第i组码字为第j组码字的列交换形式的方式,通过设计的码字考虑了列的交换对层映射的影响,即考虑了LIE中码字流与层映射的关系,通过层映射的特点结合列的特征得到码字,使得在与信道进行匹配时能够得到与该信道更加匹配的码字,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。
进一步地,在RI>1时的码字都为矩阵形式,因而可以对码字中的列进行交换,需要说明的是,矢量也可以看成一个维度为1的矩阵,而相关技术中的一个RI对应的码字只有一种表现形式,因而,在对信道进行匹配时,也只能将一种表现形式的码字与信道进行匹配,但在本实施例中,对码字的列交换后,可以得到另一种表现形式的码字,即该码字存在多种表现形式,在对信道进行匹配时,可以由多种表现形式的码字与其进行匹配,进而能够得到与该信道更加匹配的码字。
在本发明实施例中,当RI为3时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000091
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000092
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为4时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000093
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000094
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为5时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000095
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000096
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为6时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000097
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000098
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000099
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000100
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为7时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000101
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000102
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000103
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000104
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
在本发明实施例中,当RI为8时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000105
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000106
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000107
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000108
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
在本实施例中提供了一种信道信息的发送装置,图9是根据本发明实施例的信道信息的发送装置的结构框图二,如图9所示,该装置包括:
获取模块92,设置为获取信道信息;
确定模块94,与上述获取模块92连接,设置为依据所述信道信息从预先保存的码本空间 中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
发送模块96,与上述确定模块94连接,设置为将所述RI和所述PMI发送给基站;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
Figure PCTCN2016104073-appb-000109
或者,
Figure PCTCN2016104073-appb-000110
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
通过上述装置,采用设计的码字考虑了列的交换对层映射的影响,即考虑了LIE中码字流与层映射的关系,采用层映射的特点结合列的特征得到的码字,使得在与信道进行匹配时能够得到与该信道更加匹配的码字,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。
进一步地,在RI>1时的码字都为矩阵形式,因而可以对码字中的列进行交换,需要说明的是,矢量也可以看成一个维度为1的矩阵,而相关技术中的一个RI对应的码字只有一种表现形式,因而,在对信道进行匹配时,也只能将一种表现形式的码字与信道进行匹配,但在本实施例中,对码字的列交换后,可以得到另一种表现形式的码字,即该码字存在多种表现形式,在对信道进行匹配时,可以由多种表现形式的码字与其进行匹配,进而能够得到与该信道更加匹配的码字。
在本实施例中提供了一种信道信息的发送装置,图10是根据本发明实施例的信道信息的发送装置的结构框图三,如图10所示,该装置包括:
获取模块1002,设置为获取信道信息;
确定模块1004,与上述获取模块1002连接,设置为依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
发送模块1006,与上述确定模块1004连接,设置为将所述RI和所述PMI发送给基站;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
上述装置,采用设计的预编码矩阵中包含m行零元素,即可以通过将现有技术中LTE系统中已经定义的预编码矩阵直接扩充为上述设计的预编码矩阵,进而使得该设计的预编码矩阵包含的码字个数不会增加或者不会大幅度增加,与相关技术中将已经定义的预编码矩阵通过一些复杂的数学运算获取的码本相比,节省了码本的反馈开销,进而使得系统获得较佳的MIMO性能,进而解决了相关技术中LTE系统中的码本性能不佳的问题。
需要说明的是,上述Nt根据基站配置的码本参数和/或天线端口数目确定;上述m根据基 站配置的码本参数和/或天线端口数目确定;上述m行零元素的位置根据基站配置的码本参数和/或天线端口数目确定;其中,上述码本参数包括第一维度指示信息N1和/或第二维度指示信息N2;上述天线端口数目包括第一维度天线端口数目和/或第二维度天线端口数目;所述N1包括第一维度上单个极化方向的天线数目,所述N2包括第二维度上单个极化方向的天线数目。
需要说明的是,所述W(r)具有以下模型的矩阵:
Figure PCTCN2016104073-appb-000111
其中i1,i2,…,ir为整数,
Figure PCTCN2016104073-appb-000112
为复数,bk为Nt/2×1的向量,所述bk中包含m/2个零元素,k=1,2,…,ir,Nt为正整数,m为小于Nt的正偶数。
在本实施例中还提供了一种终端,包括上述图8、图9和图10所述的装置。
需要说明的是,在本发明实施例中,所述的终端包括但不限于:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙等各种终端以及中继、拉远设备、无线接入点等各种无线通信设备。
在本实施例中提供了一种信道信息的接收装置,图11是根据本发明实施例的信道信息的接收装置的结构框图一,如图11所示,该装置包括:
接收模块1102,设置为接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
查找模块1104,与上述接收模块1102连接,设置为根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
获取模块1106,与上述查找模块1104连接,设置为依据所述码字获取信道信息;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
通过上述装置,采用RI=r对应的N组码字中,第i组码字为第j组码字的列交换形式的方式,通过设计的码字考虑了列的交换对层映射的影响,即通过考虑LIE中码字流与层映射的关系,采用层映射的特点结合列的特征得到的码字,使得在与信道进行匹配时能够得到与该信道更加匹配的码字,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。
进一步地,在RI>1时的码字都为矩阵形式,因而可以对码字中的列进行交换,需要说明的是,矢量也可以看成一个维度为1的矩阵,而相关技术中的一个RI对应的码字只有一种表现形式,因而,在对信道进行匹配时,也只能将一种表现形式的码字与信道进行匹配,但在本实施例中,对码字的列交换后,可以得到另一种表现形式的码字,即该码字存在多种表现形式,在对信道进行匹配时,可以由多种表现形式的码字与其进行匹配,进而能够得到与该 信道更加匹配的码字。
在本发明实施例中,当RI为3时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000113
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000114
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为4时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000115
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000116
其中,α、β为复数,bi为矢量,i=0,1。
在本发明实施例中,当RI为5时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000117
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000118
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为6时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000119
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000120
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000121
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000122
其中,α、β、γ为复数,bi为矢量,i=0,1,2。
在本发明实施例中,当RI为7时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000123
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000124
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000125
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000126
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
在本发明实施例中,当RI为8时,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000127
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000128
或者,所述第i组码字的模型为:
Figure PCTCN2016104073-appb-000129
所述第j组码字的模型为:
Figure PCTCN2016104073-appb-000130
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
在本实施例中提供了一种信道信息的接收装置,图12是根据本发明实施例的信道信息的接收装置的结构框图二,如图12所示,该装置包括:
接收模块1202,设置为接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
查找模块1204,与上述接收模块1202连接,设置为根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
获取模块1206,与上述查找模块1204连接,设置为依据所述码字获取信道信息;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
Figure PCTCN2016104073-appb-000131
或者,
Figure PCTCN2016104073-appb-000132
其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
通过上述装置,采用在设计的码字时考虑了列的交换对层映射的影响,即考虑LIE中码字流与层映射的关系,采用层映射的特点结合列的特征得到的码字,使得在与信道进行匹配时能够得到与该信道更加匹配的码字,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。
进一步地,在RI>1时的码字都为矩阵形式,因而可以对码字中的列进行交换,需要说明 的是,矢量也可以看成一个维度为1的矩阵,而相关技术中的一个RI对应的码字只有一种表现形式,因而,在对信道进行匹配时,也只能将一种表现形式的码字与信道进行匹配,但在本实施例中,对码字的列交换后,可以得到另一种表现形式的码字,即该码字存在多种表现形式,在对信道进行匹配时,可以由多种表现形式的码字与其进行匹配,进而能够得到与该信道更加匹配的码字。
在本实施例中提供了一种信道信息的接收装置,图13是根据本发明实施例的信道信息的接收装置的结构框图三,如图13所示,该装置包括:
接收模块1302,设置为接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
查找模块1304,与上述接收模块1302连接,设置为根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
获取模块1306,与上述查找模块1304连接,设置为依据所述码字获取信道信息;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
上述装置,采用设计的预编码矩阵中包含m行零元素,即可以通过将现有技术中LTE系统中已经定义的预编码矩阵直接扩充为上述设计的预编码矩阵,进而使得该设计的预编码矩阵包含的码字个数不会增加或者不会大幅度增加,与相关技术中将已经定义的预编码矩阵通过一些复杂的数学运算获取的码本相比,节省了码本的反馈开销,进而使得系统获得较佳的MIMO性能,进而解决了相关技术中LTE系统中的码本性能不佳的问题。
需要说明的是,上述Nt根据基站配置的码本参数和/或天线端口数目确定;上述m根据基站配置的码本参数和/或天线端口数目确定;上述m行零元素的位置根据基站配置的码本参数和/或天线端口数目确定;其中,上述码本参数包括第一维度指示信息N1和/或第二维度指示信息N2;上述天线端口数目包括第一维度天线端口数目和/或第二维度天线端口数目;所述N1包括第一维度上单个极化方向的天线数目,所述N2包括第二维度上单个极化方向的天线数目。
需要说明的是,所述W(r)具有以下模型的矩阵:
Figure PCTCN2016104073-appb-000133
其中i1,i2,…,ir为整数,
Figure PCTCN2016104073-appb-000134
为复数,bk为Nt/2×1的向量,所述bk中包含m/2个零元素,k=1,2,…,ir,Nt为正整数,m为小于Nt的正偶数。
在本实施例中还提供了一种基站,包括上述图11、图12或图13所述的装置。
上述基站包括但不限于:宏基站、微基站、无线接入点等各种无线通信设备。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方 法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
上述装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
为了更好的理解本发明,以下结合优选的实施例对本发明作进一步解释。
优选实施例1
对于8天线或大于8天线的多输入多输出(MIMO)系统,包括发射端和接收端,发射端与接收端共同保存预编码码本,接收端根据信道估计结果,从所述预编码码本中选择一码字后,将该码字的序号反馈回发射端,发射端根据该序号找到的该码字,对发送到接收端的符号块进行预编码。
比如对于一个8天线系统,其保存的RI=7码本可以为表2所述形式。其中:p为天线端口的个数,Ni(i=1,2)分别为第一维度和第二维度上的单个极化方向的天线端口的数目且满足p=2N1N2,Oi(i=1,2)代表第一维度和第二维度上的过采样因子,典型的参数配置为(N1,N2,O1,O2)=(2,2,4,4),或者(N1,N2,O1,O2)=(2,2,8,8)。码本-配置(Codebook-Config)为用于配置码本类型的信令。N1,N2,O1,O2和Codebook-Config这五个参数通过高层信令配置。i1,1和i1,2为第一PMI,分别代表第一维度和第二维度的PMI。
表2
Figure PCTCN2016104073-appb-000135
Figure PCTCN2016104073-appb-000136
其中,l,l',l”,l”'m,m',m”,m”'表示索引,可以根据上述表格中给出的参数N1,N2,O1,O2,i1,1,i1,2等来确定,比如l=i1,1,l’=i1,1+O1等,
Figure PCTCN2016104073-appb-000137
Figure PCTCN2016104073-appb-000138
n∈{0,1},m为PMI的索引。
比如对于一个12天线系统,其保存的RI=7码本可以为表3所述形式。其中:p为天线端口的个数,Ni(i=1,2)分别为第一维度和第二维度上的单个极化方向的天线端口的数目且满足p=2N1N2,Oi(i=1,2)代表第一维度和第二维度上的过采样因子,典型的参数配置为(N1,N2,O1,O2)=(2,3,8,4),或者(N1,N2,O1,O2)=(2,3,8,8),或者(N1,N2,O1,O2)=(3,2,8,4),或者(N1,N2,O1,O2)=(3,2,4,4)。Codebook-Config为用于配置码本类型的信令。N1,N2,O1,O2和Codebook-Config这五个参数通过高层信令配置。i1,1和i1,2为第一PMI,分别代表第一维度和第二维度的PMI。
表3
Figure PCTCN2016104073-appb-000139
其中,l,l',l”,l”'m,m',m”,m”'表示索引,可以根据上述表格中给出的参数N1,N2,O1,O2,i1,1,i1,2等来确定,比如l=i1,1,l’=i1,1+O1等,
Figure PCTCN2016104073-appb-000140
Figure PCTCN2016104073-appb-000141
n∈{0,1},m为PMI的索引。
比如对于一个16天线系统,其保存的RI=7码本可以为表4所述形式。其中:p为天线端口的个数,Ni(i=1,2)分别为第一维度和第二维度上的单个极化方向的天线端口的数目且 满足p=2N1N2,Oi(i=1,2)代表第一维度和第二维度上的过采样因子,典型的参数配置为(N1,N2,O1,O2)=(2,4,8,8),或者(N1,N2,O1,O2)=(2,4,8,4),或者(N1,N2,O1,O2)=(4,2,8,4),或者(N1,N2,O1,O2)=(4,2,4,4)。Codebook-Config为用于配置码本类型的信令。N1,N2,O1,O2和Codebook-Config这五个参数通过高层信令配置。i1,1和i1,2为第一PMI,分别代表第一维度和第二维度的PMI。
表4
Figure PCTCN2016104073-appb-000142
其中,l,l',l”,l”'m,m',m”,m”'表示索引,可以根据上述表格中给出的参数N1,N2,O1,O2,i1,1,i1,2等 来确定,比如l=i1,1,l’=i1,1+O1等,
Figure PCTCN2016104073-appb-000143
Figure PCTCN2016104073-appb-000144
n∈{0,1},m为PMI的索引。
优选实施例2
对于8天线或大于8天线的多输入多输出(MIMO)系统,包括发射端和接收端,发射端与接收端共同保存预编码码本,接收端根据信道估计结果,从所述预编码码本中选择一码字后,将该码字的序号反馈回发射端,发射端根据该序号找到的该码字,对发送到接收端的符号块进行预编码。
比如对于一个8天线系统,其保存的Codebook-Config=1且RI=3码本可以为表5所述形式。
表5
Figure PCTCN2016104073-appb-000145
其中:p为天线端口的个数,Ni(i=1,2)分别为第一维度和第二维度上的单个极化方向的天线端口的数目且满足p=2N1N2,Oi(i=1,2)代表第一维度和第二维度上的过采样因子,典型的参数配置为(N1,N2,O1,O2)=(2,2,4,4),或者(N1,N2,O1,O2)=(2,2,8,8)。 Codebook-Config为用于配置码本类型的信令。N1,N2,O1,O2和Codebook-Config这五个参数通过高层信令配置。i1,1和i1,2为第一PMI,分别代表第一维度和第二维度的PMI,i2为第二PMI。l,l',m,m'表示索引,可以根据上述表格中给出的参数N1,N2,O1,O2,i1,1,i1,2等来确定,比如l=i1,1,l’=i1,1+O1等,
Figure PCTCN2016104073-appb-000146
m为PMI的索引。
其保存的Codebook-Config=1且RI=4码本可以为表6所述形式:
表6
Figure PCTCN2016104073-appb-000147
其中,l,l',m,m'表示索引,可以根据上述表格中给出的参数N1,N2,O1,O2,i1,1,i1,2等来确定,比如l=i1,1,l’=i1,1+O1等,
Figure PCTCN2016104073-appb-000148
Figure PCTCN2016104073-appb-000149
m为PMI的索引。
其保存的RI=5码本可以为表7所述形式:
表7
Figure PCTCN2016104073-appb-000150
其中,l,l',l”,m,m',m”表示索引,可以根据上述表格中给出的参数N1,N2,O1,O2,i1,1,i1,2等来确定,比如l=i1,1,l’=i1,1+O1等,
Figure PCTCN2016104073-appb-000151
Figure PCTCN2016104073-appb-000152
m为PMI的索引。
其保存的RI=6码本可以为表8所述形式:
表8
Figure PCTCN2016104073-appb-000153
其中,l,l',l”,m,m',m”表示索引,可以根据上述表格中给出的参数N1,N2,O1,O2,i1,1,i1,2等来确定,比如l=i1,1,l’=i1,1+O1等,
Figure PCTCN2016104073-appb-000154
Figure PCTCN2016104073-appb-000155
m为PMI的索引。
其保存的RI=7码本可以为表9所述形式:
表9
Figure PCTCN2016104073-appb-000156
其中,l,l',l”,l”'m,m',m”,m”'表示索引,可以根据上述表格中给出的参数N1,N2,O1,O2,i1,1,i1,2等来确定,比如l=i1,1,l’=i1,1+O1等,
Figure PCTCN2016104073-appb-000157
Figure PCTCN2016104073-appb-000158
n∈{0,1},m为PMI的索引。
其保存的RI=8码本可以为表10所述形式:
表10
Figure PCTCN2016104073-appb-000159
其中,l,l',l”,l”'m,m',m”,m”'表示索引,可以根据上述表格中给出的参数N1,N2,O1,O2,i1,1,i1,2等来确定,比如l=i1,1,l’=i1,1+O1等,
Figure PCTCN2016104073-appb-000160
Figure PCTCN2016104073-appb-000161
n∈{0,1},m为PMI的索引。
优选实施例3
对于8天线或大于8天线的多输入多输出(MIMO)系统,包括发射端和接收端,发射端与接收端共同保存预编码码本,接收端根据信道估计结果,从所述预编码码本中选择一码字后,将该码字的序号反馈回发射端,发射端根据该序号找到该码字,对发送到接收端的符号块进行预编码。
在最新的LTE系统演进中,LTE系统支持的天线数目或者天线端口数目达到了12和16个,并且采用了双极化天线。当基站RRC信令配置为N1=4,N2=2时,由此可以确定天线端口数目为Nt=2N1N2=16,其中,Ni(i=1,2)分别为第一维度和第二维度上的单个极化方向的天线数目,在这种配置下,其天线的摆放结构如图14所示。图14中的序号{15,16,…,30} 代表天线端口的编号。
本优选实施例中,这个16天线系统的码本是由当前LTE协议中定义的8天线码本扩展得来,那么根据所确定天线端口数目,可确定预编码矩阵中有8行零元素。当RI=r时,其保存的预编码矩阵为以下模型的矩阵:
Figure PCTCN2016104073-appb-000162
其中,bk为8×1的向量,αk为复数,k=1,2,…,ir。当基站通过RRC信令或者默认的方式通知终端选取天线编号为{15,16,19,20,23,24,27,28}这8根天线作预编码时,则预编码矩阵中的第3,4,7,8,11,12,15,16这8行全为零元素,构成的预编码矩阵具有以下形式:
Figure PCTCN2016104073-appb-000163
并且,由矩阵W(r)中的非零行构成的矩阵
Figure PCTCN2016104073-appb-000164
Figure PCTCN2016104073-appb-000165
Figure PCTCN2016104073-appb-000166
可以是LTE系统中定义的8天线秩为r的预编码矩阵。
优选实施例4
对于8天线或大于8天线的多输入多输出(MIMO)系统,包括发射端和接收端,发射端与接收端共同保存预编码码本,接收端根据信道估计结果,从所述预编码码本中选择一码字后,将该码字的序号反馈回发射端,发射端根据该序号找到的该码字,对发送到接收端的符号块进行预编码。
在最新的LTE系统演进中,LTE系统支持的天线数目或者天线端口数目达到了12和16个,并且采用了双极化天线。当基站无线资源控制(Radio Resource Control,简称RRC)信令配置为N1=3,N2=2时,由此可以确定天线端口数目为Nt=2N1N2=12,Ni(i=1,2)分别为第一维度和第二维度上的单个极化方向的天线的数目;在这种配置下,其天线的摆放结构如图15所示。图15中的的序号{15,16,…,26}代表天线端口的编号。
当这个12天线系统的码本是由当前LTE协议中定义的8天线码本扩展得来,那么根据确定的天线端口数目,可确定预编码矩阵中有4行零元素。当RI=r时,其保存的预编码矩阵为以下模型的矩阵:
Figure PCTCN2016104073-appb-000167
其中bk为6×1的向量,αk为复数,k=1,2,…,ir。当基站通过RRC信令或者默认的方式通知终端选取天线编号为{15,16,19,20,21,22,25,26}这8根天线作预编码时,则预编码矩阵中的第3,4,9,10这4行全为零元素,构成的预编码矩阵具有以下形式:
Figure PCTCN2016104073-appb-000168
并且,由矩阵W(r)中的非零行构成的矩阵
Figure PCTCN2016104073-appb-000169
Figure PCTCN2016104073-appb-000170
Figure PCTCN2016104073-appb-000171
可以是LTE系统中定义的8天线秩为r的预编码矩阵。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取信道信息;
S2,依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
S3,将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,采用获取信道信息;依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i,即采用RI=r对应的N组码字中,第i组码字为第j组码字的列交换形式的方式,通过在设计码字时考虑了列的交换对层映射的影响使得在与信道进行匹配时能够得到与该信道更加匹配的码本,解决了相关技术中LTE系统中的码本性能不佳的问题,进而提高了码本的性能。

Claims (22)

  1. 一种信道信息的发送方法,包括:
    获取信道信息;
    依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
    将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
  2. 根据权利要求1所述的方法,其中,当RI为3时,
    所述第i组码字的模型为
    Figure PCTCN2016104073-appb-100001
    所述第j组码字的模型为:
    Figure PCTCN2016104073-appb-100002
    其中,α、β为复数,bi为矢量,i=0,1。
  3. 根据权利要求1所述的方法,其中,当RI为4时,
    所述第i组码字的模型为:
    Figure PCTCN2016104073-appb-100003
    所述第j组码字的模型为:
    Figure PCTCN2016104073-appb-100004
    其中,α、β为复数,bi为矢量,i=0,1。
  4. 根据权利要求1所述的方法,其中,当RI为5时,
    所述第i组码字的模型为:
    Figure PCTCN2016104073-appb-100005
    所述第j组码字的模型为:
    Figure PCTCN2016104073-appb-100006
    其中,α、β、γ为复数,bi为矢量,i=0,1,2。
  5. 根据权利要求1所述的方法,其中,当RI为6时,
    所述第i组码字的模型为:
    Figure PCTCN2016104073-appb-100007
    所述第j组码字的模型为:
    Figure PCTCN2016104073-appb-100008
    或者,
    所述第i组码字的模型为:
    Figure PCTCN2016104073-appb-100009
    所述第j组码字的模型为:
    Figure PCTCN2016104073-appb-100010
    其中,α、β、γ为复数,bi为矢量,i=0,1,2。
  6. 根据权利要求1所述的方法,其中,当RI为7时,
    所述第i组码字的模型为:
    Figure PCTCN2016104073-appb-100011
    所述第j组码字的模型为:
    Figure PCTCN2016104073-appb-100012
    或者,
    所述第i组码字的模型为:
    Figure PCTCN2016104073-appb-100013
    所述第j组码字的模型为:
    Figure PCTCN2016104073-appb-100014
    其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
  7. 根据权利要求1所述的方法,其中,当RI为8时,
    所述第i组码字的模型为:
    Figure PCTCN2016104073-appb-100015
    所述第j组码字的模型为:
    或者,
    所述第i组码字的模型为:
    Figure PCTCN2016104073-appb-100017
    所述第j组码字的模型为:
    Figure PCTCN2016104073-appb-100018
    其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
  8. 一种信道信息的发送方法,包括:
    获取信道信息;
    依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
    将所述RI和所述PMI发送给基站;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
    Figure PCTCN2016104073-appb-100019
    或者,
    Figure PCTCN2016104073-appb-100020
    其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
  9. 一种信道信息的发送方法,包括:
    获取信道信息;
    依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
    将所述RI和所述PMI发送给基站;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
  10. 根据权利要求9所述的方法,其中,所述Nt根据基站配置的码本参数和/或天线端口数目确定;所述m根据基站配置的码本参数和/或天线端口数目确定;所述m行零元素的位置根据基站配置的码本参数和/或天线端口数目确定;其中,所述码本参数包括第一维度指示信息N1和/或第二维度指示信息N2;所述天线端口数目包括第一维度天线端口数目和/或第二维度天线端口数目;所述N1包括第一维度上单个极化方向的天线数目,所述N2包括第二维度上单个极化方向的天线数目。
  11. 根据权利要求9或10所述的方法,其中,所述W(r)具有以下模型的矩阵:
    Figure PCTCN2016104073-appb-100021
    其中i1,i2,…,ir为整数,
    Figure PCTCN2016104073-appb-100022
    为复数,bk为Nt/2×1的向量,所述bk中包含m/2个零元素,k=1,2,…,ir,Nt为正整数,m为小于Nt的正偶数。
  12. 一种信道信息的接收方法,包括:
    接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
    根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
    依据所述码字获取信道信息;
    其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
  13. 一种信道信息的接收方法,包括:
    接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
    根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
    依据所述码字获取信道信息;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
    Figure PCTCN2016104073-appb-100023
    或者,
    Figure PCTCN2016104073-appb-100024
    其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
  14. 一种信道信息的接收方法,包括:
    接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
    根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
    依据所述码字获取信道信息;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
  15. 一种信道信息的发送装置,包括:
    获取模块,设置为获取信道信息;
    确定模块,设置为依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
    发送模块,设置为将所述RI和所述PMI发送给基站;其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
  16. 一种信道信息的发送装置,包括:
    获取模块,设置为获取信道信息;
    确定模块,设置为依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
    发送模块,设置为将所述RI和所述PMI发送给基站;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
    Figure PCTCN2016104073-appb-100025
    或者,
    Figure PCTCN2016104073-appb-100026
    其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
  17. 一种信道信息的发送装置,包括:
    获取模块,设置为获取信道信息;
    确定模块,设置为依据所述信道信息从预先保存的码本空间中确定与所述信道信息匹配的秩指示符RI和预编码矩阵指示符PMI;
    发送模块,设置为将所述RI和所述PMI发送给基站;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素, m为小于Nt的正整数,Nt为正整数。
  18. 一种信道信息的接收装置,包括:
    接收模块,设置为接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
    查找模块,设置为根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
    获取模块,设置为依据所述码字获取信道信息;
    其中,当所述RI=r,r=3、4……8,所述RI=r对应的码本包括N组码字,N为整数,且N>=2,其中,N组码字中第i组码字为对N组码字中第j组码字中的列进行交换得到的码字,i=1、2……N,j=1、2……N,j不等于i。
  19. 一种信道信息的接收装置,包括:
    接收模块,设置为接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
    查找模块,设置为根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
    获取模块,设置为依据所述码字获取信道信息;其中,当所述RI=7,所述码本空间中包括1个或者多个以下模型的码字:
    Figure PCTCN2016104073-appb-100027
    或者,
    Figure PCTCN2016104073-appb-100028
    其中,α、β、γ、θ为复数,bi为矢量,i=0,1,2,3。
  20. 一种信道信息的接收装置,包括:
    接收模块,设置为接收终端发送的秩指示符RI和预编码矩阵指示符PMI;
    查找模块,设置为根据所述RI和所述PMI从预先保存的码本空间中查找与所述RI和所述PMI对应的码字;
    获取模块,设置为依据所述码字获取信道信息;其中,当RI=r,r=1,2,…,8时,所述码本空间包含的预编码矩阵为W(r),W(r)为Nt×r矩阵,其中W(r)有m行零元素,m为小于Nt的正整数,Nt为正整数。
  21. 一种终端,包括权利要求15、16或17所述的装置。
  22. 一种基站,包括权利要求18、19或20所述的装置。
PCT/CN2016/104073 2015-12-23 2016-10-31 信道信息的发送、接收方法及装置、终端和基站 WO2017107671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510979938.7A CN106911373A (zh) 2015-12-23 2015-12-23 信道信息的发送、接收方法及装置、终端和基站
CN201510979938.7 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017107671A1 true WO2017107671A1 (zh) 2017-06-29

Family

ID=59088951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104073 WO2017107671A1 (zh) 2015-12-23 2016-10-31 信道信息的发送、接收方法及装置、终端和基站

Country Status (2)

Country Link
CN (1) CN106911373A (zh)
WO (1) WO2017107671A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288708A1 (en) * 2017-06-16 2021-09-16 Apple Inc. Channel state information concatenation and antenna port measurement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787667B (zh) * 2017-11-12 2020-06-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN109787668B (zh) 2017-11-15 2023-10-20 华为技术有限公司 通信方法、通信装置和系统
CN118264284A (zh) * 2022-12-28 2024-06-28 中兴通讯股份有限公司 一种信道信息的反馈方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013953A (zh) * 2010-08-16 2011-04-13 中兴通讯股份有限公司 信道信息的发送方法、终端、基站及lte-a系统
CN102237955A (zh) * 2010-05-07 2011-11-09 电信科学技术研究院 一种信道状态信息上报方法及其装置
CN103458522A (zh) * 2012-05-31 2013-12-18 富士通株式会社 一种多点协作传输系统中传输点集合的选择方法和装置
US20140162670A1 (en) * 2010-08-16 2014-06-12 Samsung Electronics Co., Ltd. Codebook for eight transmit antennas and multiple input multiple output communication system using the codebook
CN104092517A (zh) * 2014-07-30 2014-10-08 北京北方烽火科技有限公司 多天线系统中的信道信息上报、下行数据传输方法和装置
CN104247289A (zh) * 2012-02-23 2014-12-24 韩国电子通信研究院 大规模天线系统中的多输入和多输出通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237955A (zh) * 2010-05-07 2011-11-09 电信科学技术研究院 一种信道状态信息上报方法及其装置
CN102013953A (zh) * 2010-08-16 2011-04-13 中兴通讯股份有限公司 信道信息的发送方法、终端、基站及lte-a系统
US20140162670A1 (en) * 2010-08-16 2014-06-12 Samsung Electronics Co., Ltd. Codebook for eight transmit antennas and multiple input multiple output communication system using the codebook
CN104247289A (zh) * 2012-02-23 2014-12-24 韩国电子通信研究院 大规模天线系统中的多输入和多输出通信方法
CN103458522A (zh) * 2012-05-31 2013-12-18 富士通株式会社 一种多点协作传输系统中传输点集合的选择方法和装置
CN104092517A (zh) * 2014-07-30 2014-10-08 北京北方烽火科技有限公司 多天线系统中的信道信息上报、下行数据传输方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288708A1 (en) * 2017-06-16 2021-09-16 Apple Inc. Channel state information concatenation and antenna port measurement
US11848736B2 (en) * 2017-06-16 2023-12-19 Apple Inc. Channel state information concatenation and antenna port measurement

Also Published As

Publication number Publication date
CN106911373A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
CN107078773B (zh) 使ue能够确定预编码器码本的网络节点、用户设备及其方法
CN107733493B (zh) 用于确定预编码矩阵的方法和装置
CN111342873B (zh) 一种信道测量方法和通信装置
CN101917365B (zh) 一种码本的配置方法、装置和系统
KR102027075B1 (ko) 프리코딩 정보 송신 및 피드백 방법 및 장치
CN106953672B (zh) 一种多天线系统中信道信息反馈的方法及终端
WO2017076323A1 (zh) Csi的反馈、码本配置信令的配置方法及装置
CN107113643B (zh) 一种资源选择的方法及装置和一种电子设备
CN113630162A (zh) 用于操作mimo测量参考信号和反馈的方法和装置
CN105991238A (zh) 信道状态信息的测量和反馈方法及发送端和接收端
CN108631837B (zh) 信息的传输方法和设备
WO2017050084A1 (zh) 信息通知方法及信道状态信息进程的执行方法
CN105531944A (zh) 用于码本子采样的方法
WO2017107671A1 (zh) 信道信息的发送、接收方法及装置、终端和基站
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
CN102237975A (zh) 发送预编码矩阵索引及进行预编码的方法和装置
CN115053465B (zh) 一种信息传输方法及装置
WO2017167161A1 (zh) 一种实现信道状态信息反馈的方法、装置及计算机存储介质
CN106160938B (zh) 一种信道信息的获取方法和装置
WO2017152750A1 (zh) 一种反馈信息的传输方法和装置
WO2014039056A1 (en) Codebook construction using csi feedback for evolving deployment scenarios
CN111342913A (zh) 一种信道测量方法和通信装置
CN106559111B (zh) 获取码本的方法、装置及系统
WO2017076330A1 (zh) 码书限制信令的发送、信道信息的量化反馈方法及装置
CN111585627A (zh) 一种无线通信中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877482

Country of ref document: EP

Kind code of ref document: A1