WO2017167082A1 - 电子设备和用于电子设备的方法、信息处理设备 - Google Patents

电子设备和用于电子设备的方法、信息处理设备 Download PDF

Info

Publication number
WO2017167082A1
WO2017167082A1 PCT/CN2017/077632 CN2017077632W WO2017167082A1 WO 2017167082 A1 WO2017167082 A1 WO 2017167082A1 CN 2017077632 W CN2017077632 W CN 2017077632W WO 2017167082 A1 WO2017167082 A1 WO 2017167082A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
cell
port
idle
time
Prior art date
Application number
PCT/CN2017/077632
Other languages
English (en)
French (fr)
Inventor
徐瑨
高程
刘思綦
孙晨
Original Assignee
索尼公司
徐瑨
高程
刘思綦
孙晨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 徐瑨, 高程, 刘思綦, 孙晨 filed Critical 索尼公司
Priority to EP17773112.2A priority Critical patent/EP3439392A4/en
Priority to US16/066,390 priority patent/US10951289B2/en
Priority to AU2017243530A priority patent/AU2017243530B2/en
Priority to KR1020187017673A priority patent/KR102369564B1/ko
Priority to CN201780005027.1A priority patent/CN108432320A/zh
Priority to CA3018265A priority patent/CA3018265A1/en
Publication of WO2017167082A1 publication Critical patent/WO2017167082A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular to three-dimensional multiple input multiple output (3D MIMO) techniques, and more particularly to using a Channel State Information-Reference Signal (CSI-RS).
  • 3D MIMO three-dimensional multiple input multiple output
  • CSI-RS Channel State Information-Reference Signal
  • adjacent cells use different channel state information reference signals (CSI-RS) configurations, and positions of time-frequency resources corresponding to CSI-RSs of neighboring cells are staggered from each other to avoid CSI-RS interference.
  • CSI-RS channel state information reference signals
  • Beamforming CSI-RS is different from non-coding CSI-RS.
  • the non-coded CSI-RS scheme uses all of the common CSI-RS ports for all user equipment.
  • the beamforming CSI-RS may allocate one or more CSI-RS ports for one user equipment (ie, UE-Specific, UE-specific beamforming) or beam (ie, Cell-Specific, cell-specific beamforming).
  • an electronic device comprising: a processing circuit configured to allow a cell to use a CSI-RS different from a self channel state information reference signal CSI-RS configuration of the one cell At least a part of time-frequency resources corresponding to the configured idle CSI-RS port is used for data transmission.
  • an information processing apparatus comprising: an antenna configured to receive, from a base station of a neighboring cell of a cell, information including port usage of a CSI-RS of the neighboring cell;
  • the processing circuit is configured to: determine, according to the information received by the antenna, the port usage of the CSI-RS of the neighboring cell, and determine, according to the usage of the port, the time-frequency resource corresponding to the idle CSI-RS port configured by each CSI-RS, and Allowing one cell to perform data transmission using at least a portion of the time-frequency resources corresponding to the idle CSI-RS ports of the CSI-RS configuration different from the one channel's own channel state information reference signal CSI-RS configuration.
  • an electronic device comprising processing circuitry configured to determine, based on a message received from a base station, a self CSI-RS configuration for use with the base station that the user equipment can use for data transmission Time-frequency resources corresponding to idle CSI-RS ports configured by different CSI-RSs; and generating messages including user equipment feedback.
  • an information processing apparatus comprising: an antenna configured to receive a message from a base station; and processing circuitry configured to determine, based on the message received by the antenna, that the user equipment is capable of using a time-frequency resource corresponding to an idle CSI-RS port of a CSI-RS configuration different from a self-CSI-RS configuration used by the base station for performing data transmission; and generating a message including user equipment feedback, wherein the antenna further It is configured to send the message including the feedback of the user equipment to the base station.
  • an electronic device comprising: a memory configured to store port usage of a CSI-RS of each cell; and processing circuitry configured to determine an adjacent neighbor for each cell Port usage of the CSI-RS of the cell.
  • a method for an electronic device comprising: allowing a cell to use an idle CSI-RS configuration different from a self-channel state information reference signal CSI-RS configuration of the one cell At least a part of the time-frequency resources corresponding to the CSI-RS port performs data transmission.
  • a method for an electronic device the package And determining, according to the message received from the base station, a time-frequency resource corresponding to an idle CSI-RS port of a CSI-RS configuration different from the CSI-RS configuration used by the base station, and generating the data transmission by the user equipment; and generating Contains messages from user device feedback.
  • a method for an electronic device comprising: storing a port usage condition of a CSI-RS of each cell; for each cell, determining a port of a CSI-RS of its neighboring cell Usage.
  • the idle resources of the CSI-RS can be fully utilized without causing significant CSI-RS interference. Improve resource utilization efficiency under the circumstances.
  • Figure 1a shows a schematic diagram of a CSI-RS configuration of a neighboring cell
  • FIG. 1b illustrates a schematic diagram of an example of data transmission using idle CSI-RS resources, in accordance with an embodiment of the present application
  • Figure 2 shows a schematic diagram of resource waste under the beamforming CSI-RS scheme
  • FIG. 3 illustrates a functional block diagram of an electronic device in accordance with an embodiment of the present application
  • FIG. 4 shows a functional block diagram of an electronic device in accordance with one embodiment of the present application.
  • FIG. 5 illustrates a functional block diagram of an electronic device in accordance with another embodiment of the present application
  • Figure 6 shows an example of the form of the indication message
  • Figure 7 shows another example of the form of the indication message
  • Figure 8 shows another example of the form of the indication message
  • Figure 9 shows another example of the form of the indication message
  • FIG. 10 is a block diagram showing the functional blocks of an information processing device according to an embodiment of the present application.
  • FIG. 11 shows a functional block diagram of an electronic device in accordance with one embodiment of the present application.
  • FIG. 12 is a block diagram showing the functional blocks of an information processing device according to an embodiment of the present application.
  • FIG. 13 is a block diagram showing functional blocks of an electronic device according to an embodiment of the present application.
  • Figure 14 shows a flow chart of a method for an electronic device in accordance with one embodiment of the present application
  • FIG. 15 shows a flow chart of a method for an electronic device in accordance with another embodiment of the present application.
  • FIG. 16 shows a flow chart of a method for an electronic device in accordance with yet another embodiment of the present application.
  • FIG. 17 shows an example of information flow between a base station and a user equipment and a base station
  • FIG. 18 shows another example of information flow between a base station and a user equipment and a base station
  • FIG. 19 shows another example of information flow between a base station and a user equipment and a base station
  • FIG. 20 shows an example of an information flow in a case where a central management device is provided
  • FIG. 21 shows another example of the flow of information in the case where the central management device is provided.
  • FIG. 22 shows another example of the flow of information in the case where the central management device is provided.
  • FIG. 23 is a diagram showing a schematic configuration of an eNB to which the technology of the present disclosure may be applied. a block diagram of an example
  • 24 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 25 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 26 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 27 is a block diagram of an exemplary structure of a general purpose personal computer in which a method and/or apparatus and/or system in accordance with an embodiment of the present invention may be implemented.
  • FIG. 1a shows a schematic diagram of time-frequency resource allocation of CSI-RS configurations of neighboring cell 1, cell 2 and cell 3.
  • the CSI-RS configuration may refer to the location of the time-frequency resource allocated for the CSI-RS.
  • the CSI-RS configuration of each cell includes 8 ports (represented by sequence numbers 0-7), and each port corresponds to one time-frequency resource unit, that is, each CSI-RS configuration in FIG. 1a corresponds to In 8 time-frequency resource units (Resource Element, RE),
  • the number on each RE represents the serial number of the corresponding CSI-RS port. It should be noted that the serial number here is only a representative number, not the actual port number.
  • each port of the CSI-RS configuration of the cell 1 corresponds to a gray-filled RE
  • each port of the CSI-RS configuration of the cell 2 corresponds to a RE filled with a black dot
  • each port of the CSI-RS configuration of the cell 3 corresponds to Horizontal line filled RE.
  • no information is sent on the RE corresponding to the CSI-RS configuration of other cells, and the corresponding box is filled with diagonal lines to indicate this.
  • a cell When a cell uses a beamforming CSI-RS scheme, the cell does not always use all of the CSI-RS ports in the CSI-RS configuration. In other words, the time-frequency resources corresponding to some CSI-RS ports are idle, resulting in a serious waste of resources.
  • the number of active beams in one subframe is usually less than the number of configured beams, and when the configuration uses aperiodic CSI-RS, the waste of resources will be more serious.
  • a cell may be a macro cell and a small cell unless otherwise specified, and a cell is also referred to as a base station where appropriate.
  • a time-frequency resource corresponding to a CSI-RS port is simply referred to as a CSI-RS resource, a CSI-RS port, or a resource.
  • FIG. 2 shows a schematic diagram of resource waste under the beamforming CSI-RS scheme.
  • the base station 1, the base station 2, and the base station 3 use different CSI-RS configurations to avoid inter-cell CSI-RS interference.
  • one CSI-RS configuration includes eight CSI-RS ports, one beam is formed using two CSI-RS ports, a solid beam indicates that the beam is in a service state, that is, an active state, and a hollow beam indicates that the beam is in an idle state.
  • CSI-RS time-frequency resource units hereinafter also simply referred to as CSI-RS resources
  • the base station 1 If the base station 1 is to serve a large number of user equipments, it would be very meaningful to use the time-frequency resources of the CSI-RSs that are not used by the neighboring base stations for data transmission.
  • the techniques of the present application provide implementations that utilize idle CSI-RS resources for data transmission.
  • the base station 1 can utilize the idle time-frequency resources of its own CSI-RS in addition to the time-frequency resources of the CSI-RS that are not used by the neighboring base stations.
  • the base station utilizes the idle time-frequency resources of the CSI-RS configuration of the neighboring base station. It should be understood that this is not limiting, and it should not be understood that the present invention utilizes or does not utilize itself.
  • the CSI-RS configuration has any provisions or restrictions on the idle time-frequency resources.
  • neighboring cells may use the same CSI-RS configuration and mitigate or eliminate CSI by other technical means.
  • - RS interference does not affect the application of the technology of the present application. Since the cell to which the idle CSI-RS resource is to be used for data transmission is used, it is not important which CSI-RS resource is available for the cell, and the cell only needs to know the location of the idle CSI-RS resource. . Meanwhile, since the CSI-RS configuration has a fixed mode and has a limited number, the free CSI-RS resources can be identified in units of CSI-RS configurations.
  • FIG. 3 shows a functional block diagram of an electronic device 100 according to an embodiment of the present application, the electronic device 100 comprising: an enabling unit 101 configured to allow one cell to use a different CSI-RS configuration than the one cell. At least a part of the time-frequency resources corresponding to the idle CSI-RS ports configured by the CSI-RS are used for data transmission.
  • the one cell for which an operation is performed is also referred to as a home cell.
  • the electronic device 100 can be, for example, located on the base station side of the cell or communicatively coupled to the base station, and the coupling can be wired or wireless.
  • CSI-RS configuration different from the own CSI-RS configuration of the own cell (hereinafter also referred to as other CSI-RS configurations) can also be known.
  • the time-frequency resources corresponding to the idle CSI-RS ports configured by these other CSI-RSs can be used by the local cell for data transmission.
  • the local cell may use all idle CSI-RS resources for data transmission, or only some of them may be used, depending on actual needs or configurations.
  • the local cell can also use its own idle CSI-RS resources for data transmission.
  • the enabling unit 101 is configured to allow the own cell to perform data transmission using at least a portion of the time-frequency resources corresponding to the idle CSI-RS ports of all CSI-RS configurations.
  • the use of the idle CSI-RS resource by the cell is not limited to the above manner.
  • the permitting unit 101 may enable the cell to directly use the time-frequency resource described above.
  • the cell may be set that the cell performs data transmission using CSI-RS resources that it considers idle (or predetermined) (the idle CSI-RS resources described herein may include the CSI-RS allocation of the local cell)
  • the idle CSI-RS resources may or may not be included.
  • the use of the idle CSI-RS resources is adjusted or stopped according to the information. For example, in the case where a CSI-RS resource for data transmission is actually being used, the use of the time-frequency resource for data transmission will be stopped.
  • the electronic device 100 further includes: a determining unit 102 configured to determine a port usage condition of a CSI-RS of a neighboring cell of the current cell, and determine each CSI-RS based on the port usage condition.
  • the time-frequency resource corresponding to the configured idle CSI-RS port is not limited to the determining unit 102 .
  • the neighboring cell may be a cell that is within the interference range of the local cell, or the neighboring cell is a cell that is geographically adjacent to the cell.
  • the cell can theoretically use the time-frequency resources corresponding to any CSI-RS configuration of its own CSI-RS configuration for data transmission.
  • it is necessary to avoid interference with CSI-RS transmissions of these cells, that is, when only the CSI-RS ports of the CSI-RS configurations of these cells are used. Frequency resources for data transmission.
  • the number of types of CSI-RS configurations is limited. For example, in the case where each CSI-RS configuration includes 8 CSI-RS ports, there are five CSI-RS configurations.
  • the idle condition includes, for example, information of which CSI-RS ports in the CSI-RS configuration are in an idle state.
  • the time-frequency corresponding to the CSI-RS port of the CSI-RS configuration of the neighboring cell with the least CSI-RS idle port will be
  • the number of resources is the number of time-frequency resources corresponding to the idle CSI-RS port configured by the CSI-RS.
  • the minimum value is taken as the number of idle CSI-RS ports configured by the CSI-RS.
  • the determining unit 102 determines that the CSI-RS port 4-7 of cell 2 is idle, and the CSI-RS port 4-7 of cell 3 is idle, that is, cells 2 and 3 do not actually utilize their CSI-RS configuration.
  • the CSI-RS port 4-7 corresponds to the time-frequency resource transmission CSI-RS. Therefore, the cell 1 can use the time-frequency resources corresponding to the idle CSI-RS ports for data transmission. As shown in FIG. 1a as an example, in a case where a lot of user equipments to be served by the cell 1 are desired to use the time-frequency resources of the CSI-RSs that are not used by the neighboring cells for data transmission, the determining unit 102 determines that the CSI-RS port 4-7 of cell 2 is idle, and the CSI-RS port 4-7 of cell 3 is idle, that is, cells 2 and 3 do not actually utilize their CSI-RS configuration.
  • the CSI-RS port 4-7 corresponds to the time-frequency resource transmission CSI-RS. Therefore, the cell 1 can use the time
  • FIG. 1b instead of padding with slashes, these REs may be filled with a grid, indicating that cell 1 uses these idle CSI-RS resource elements for data transmission.
  • FIG. 1b is only an example, and similar operations may be performed for other cells.
  • only the OFDM subframe of the regular cyclic prefix (CP) is shown as an example in FIGS. 1a and 1b, but the present technique is equally applicable to the case of employing other types of OFDM subframes.
  • CP regular cyclic prefix
  • the determining unit 102 can be configured to obtain the usage of the CSI-RS port of the neighboring cell based on X2 signaling from the base station of the neighboring cell.
  • the X2 signaling may be an ENB CONFIGURATION UPDATE message including an information element indicating information on the usage status of each CSI-RS port in the CSI-RS configuration of the neighboring cell.
  • the information element may be included in the information element Served Cell Information of the ENB CONFIGURATION UPDATE message, for example by adding a new information element Antenna_ports_usage in the information element.
  • the information element may have the form of a bitmap, and the number of bits of the bitmap is determined according to the number of CSI-RS ports configured by the CSI-RS.
  • the bitmap can have 8 bits.
  • a bit of 0 of the bitmap may indicate that the corresponding CSI-RS port is not used, and a bit of 1 of the bitmap indicates that the corresponding CSI-RS port is being used.
  • the opposite definition can also be used.
  • the determining unit 102 can obtain the usage of the CSI-RS port of the neighboring cell based on the message from the central processing device.
  • a central processing device is set to collect the usage of the CSI-RS ports of the CSI-RS configuration of each cell, and provide the CSI-RS port usage of the CSI-RS configuration of its neighboring cells to each cell.
  • the central processing device can be communicatively coupled to the base stations of the respective cells by wire or wirelessly.
  • the central processing unit can for example be located on the core network side or on the server.
  • the central processing unit may perform further processing on the usage of the CSI-RS port configured by the CSI-RS of each of the collected cells, for example, obtaining the time-frequency corresponding to the idle CSI-RS port of each CSI-RS configuration for one cell.
  • the confirmation order The element 102 can determine the time-frequency resource corresponding to the idle CSI-RS port of each CSI-RS configuration directly from the message from the central processing unit.
  • the central processing unit may further perform processing to obtain time-frequency resource information corresponding to the idle CSI-RS ports of other CSI-RS configurations (or respective CSI-RS configurations) that the cell can use for data transmission for one cell. And provide this information to the corresponding community.
  • the determining unit 102 can determine the time-frequency resources corresponding to the idle CSI-RS ports of the respective CSI-RS configurations that can be used for data transmission, directly from the message from the central processing unit.
  • the individual units in the electronic device 100 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as chips.
  • the electronic device 100 improves the resource utilization efficiency of the CSI-RS by enabling the cell to perform data transmission by using time-frequency resources corresponding to the idle CSI-RS ports configured by other CSI-RSs.
  • the permission unit 101 can perform an operation based on the determination result of the determination unit 102, and can also decide whether to continue the previous operation or make a corresponding change to the previous operation based on the determination result of the determination unit 102.
  • the enabling unit 101 allows the cell to use time-frequency resources corresponding to the idle CSI-RS ports of other CSI-RS configurations without making any determination.
  • the enabling unit 101 allows or prohibits the use of time-frequency resources corresponding to the idle CSI-RS ports of other CSI-RS configurations by the cell according to specific conditions, which will be described below with reference to FIG. 4.
  • the electronic device 200 further includes: a determining unit 201 configured to determine an idle CSI-RS Whether the time-frequency resource corresponding to the port satisfies the first predetermined condition; and if the first predetermined condition is met, the enabling unit 101 allows the current cell to perform data transmission using at least a part of the time-frequency resource corresponding to the idle CSI-RS port.
  • the various units in the electronic device 200 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the electronic device 200 is for example It may be located on the base station side of the cell or communicatively coupled to the base station in a wired or wireless manner.
  • the cell may be allowed to use only part or all of the idle CSI-RS resources for data transmission only when there are many idle CSI-RS resources.
  • the first predetermined condition is that the sum of the number of time-frequency resources corresponding to the idle CSI-RS ports that can be used by the local cell configured by at least a part of the CSI-RS exceeds a first predetermined threshold.
  • the first predetermined condition is that the sum of the number of time-frequency resources corresponding to all the idle CSI-RS ports of all the CSI-RS configurations of the own CSI-RS configuration of the own cell exceeds a first predetermined threshold, for example, The following formula indicates:
  • Th1 is a first predetermined threshold, where Th1 depends, for example, on the consumption of signaling bits, the data throughput increased by using idle CSI-RS resources to transmit data, and the desired Factors such as the highest data throughput increase ratio.
  • the CSI-RS configuration may include a CSI-RS configuration whose number of idle CSI-RS ports exceeds a predetermined value, referred to as an idle CSI-RS configuration.
  • the idle CSI-RS port that can be used by the own cell is defined as an idle CSI-RS port that is not configured by the own cell CSI-RS. Therefore, the idle CSI-RS configuration herein refers to a CSI-RS configuration that is not a local CSI-RS configuration that satisfies the above-described number of idle CSI-RS ports.
  • the first predetermined condition can be expressed by the following formula (2).
  • each idle CSI-RS configuration can be a fixed value of a time-frequency resource corresponding to an idle CSI-RS port used by the own cell, which is less than or equal to a predetermined value.
  • a predetermined value the sum of the above numbers is the product of the number of idle CSI-RS configurations and a fixed value.
  • the first predetermined condition can be expressed by the following formula (3).
  • C i represents the number of resources that can be utilized for the idle CSI-RS configuration i.
  • N is the number of idle CSI-RS configurations.
  • the determining unit 201 may be further configured to determine whether the time-frequency resource corresponding to the idle CSI-RS port satisfies the second predetermined condition, and if the second predetermined condition is satisfied, the permitting unit 101 prohibits the own cell from using the idle CSI- The time-frequency resource corresponding to the RS port performs data transmission.
  • the determining unit 201 may be configured to determine whether the time-frequency resource corresponding to the idle CSI-RS port satisfies the second predetermined condition during the data transmission of the time-frequency resource of the idle CSI-RS port by the local cell, and meets the requirement In the case of the second predetermined condition, the enabling unit 101 prohibits the local cell from using the time-frequency resource corresponding to the idle CSI-RS port for data transmission.
  • the second predetermined condition is that the sum of the number of time-frequency resources corresponding to the idle CSI-RS ports that can be used by the local cell configured by at least a part of the CSI-RS is lower than a second predetermined threshold.
  • the calculation method of the sum of the quantity of the time-frequency resources may be one of the various manners described above, and may be the same as or different from the calculation when the first predetermined condition is performed, which is not limiting. , but can be chosen depending on the actual application.
  • the second predetermined threshold depends, for example, on the consumption of signaling bits, the increased data throughput with idle CSI-RS resource transmission data, the desired minimum data throughput boost ratio, and the like.
  • the second predetermined threshold may be less than the first predetermined threshold.
  • the determining unit 102 may be further configured to periodically update the usage of the CSI-RS port of the CSI-RS configuration. This is because the usage of the CSI-RS port in each cell changes in real time, and periodically updating the usage status can more accurately obtain the idle state of the CSI-RS port. Thus, adjusting the time-frequency resources of the idle CSI-RS ports for data transmission accordingly will help to further mitigate interference with the transmission of CSI-RSs of neighboring cells.
  • the use of the respective CSI-RS ports of the neighboring cell for its CSI-RS configuration is not affected by the techniques of the present application, ie any CSI that the neighboring cell may use its CSI-RS configuration.
  • RS port regardless of whether the CSI-RS port is being used for data transmission by other cells.
  • the cell may be in a certain time range due to the processing delay. Current data transfer Interference is generated, but since the resource elements of the interfered data transmission occupy only a small portion, such interference is within an acceptable range. Then, after the local cell detects that the used CSI-RS resource is no longer idle, it may stop using the CSI-RS resource to transmit data or use the idle CSI-RS resources of other neighboring cells to continue to transmit data.
  • the utilization of idle CSI-RS resources can be optimized, and the utilization efficiency of CSI-RS resources can be improved.
  • FIG. 5 shows a functional block diagram of an electronic device 300 according to another embodiment of the present application.
  • the electronic device 300 further includes: a message generating unit 301 configured to generate An indication message for indicating a time-frequency resource corresponding to an available idle CSI-RS port to the user equipment of the local cell.
  • the electronic device 300 may further include any one of the determination unit 102 and the determination unit 201 described above.
  • the various units in the electronic device 300 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the electronic device 300 can be, for example, located on the base station side of the cell or communicatively coupled to the base station in a wired or wireless manner.
  • the indication message includes information of the number of time-frequency resources corresponding to the idle CSI-RS ports that the user equipment can use for each CSI-RS configuration. Since the understanding of the rules for the use of ports of the CSI-RS between the base station and the user equipment is consistent, for example, the user equipment knows which CSI-RS ports to use preferentially, for example, when the CSI-RS configuration is used in a fixed order, For example, when only 4 ports need to be used, port 0-3 can be used first. Therefore, after knowing the information about the number of time-frequency resources corresponding to the available idle CSI-RS ports, the user equipment can determine the location of the time-frequency resource unit to be used, thereby using these time-frequency resources for data transmission.
  • the time-frequency resource corresponding to the idle CSI-RS port that the user equipment can use may be all the idle CSI-RS resources, or may be only a part thereof, which may be determined, for example, by the determining unit 102 according to actual needs or predetermined requirements. .
  • the idleness that the user equipment can use can be determined in the same manner as when the judgment of the first predetermined condition is performed.
  • CSI-RS resources may be all the idle CSI-RS resources, or may be only a part thereof, which may be determined, for example, by the determining unit 102 according to actual needs or predetermined requirements. .
  • the idleness that the user equipment can use can be determined in the same manner as when the judgment of the first predetermined condition is performed.
  • the format of the indication message can take many forms. 6 to 9 show an example of the form of the indication message. 6 shows an example of a more complete indication message, wherein the indication message includes whether the respective CSI-RS configuration has bitmap information of an available idle CSI-RS port, ie, the first X bits in the figure. A corresponding bit of the bitmap of 0 indicates that the idle CSI-RS of the corresponding CSI-RS configuration is unavailable or has no idle CSI-RS. Further, after the X bits, the number of time-frequency resources corresponding to the available idle CSI-RS ports of each CSI-RS configuration is represented by Y bits, respectively. The corresponding number of 0s may be made to indicate that the idle CSI-RS configured for the corresponding CSI-RS is unavailable or has no idle CSI-RS.
  • the number of bits of the bitmap is determined by the total number of CSI-RS configurations. For example, in the case of a total of five CSI-RS configurations, the bit number X of the bitmap is 5.
  • the value of Y is determined by the maximum number of resources allowed. For example, in the case where the CSI-RS configuration includes 8 ports, a value of Y of at most 3 is sufficient to indicate various quantity cases.
  • Fig. 7 shows a simplified form in which the preceding X bits are omitted.
  • the arrangement order of the CSI-RS configuration is agreed in advance, in other words, the user equipment knows which CSI-RS configuration the first Y bit corresponds to, and which CSI corresponds to the second Y bit. RS configuration, and so on.
  • the number of available CSI-RS resources can be set to 0 (that is, the corresponding Y bits are all set to 0).
  • Figure 8 shows another simplified form in which there is only one Y bit after the X bit.
  • the number of time-frequency resources corresponding to the idle CSI-RS ports of the respective CSI-RS configurations that the user equipment can use is the same. Therefore, only one Y bit is needed to represent this amount of information.
  • the X bits are still used to indicate whether each CSI-RS configuration has bitmap information of an available CSI-RS port that can be used.
  • FIG. 9 shows a further simplified form of FIG. 8 in which only bitmap information indicating whether or not each CSI-RS configuration has an available free CSI-RS port is included.
  • the number of resources of each CSI-RS configuration to be used by the user equipment can be specified in advance, that is, the number is fixed for each CSI-RS configuration. For different CSI-RS configurations, the fixed number can be the same or different. Therefore, it is only necessary to inform the user equipment which CSI-RS configured idle resources are available, without the need to indicate a specific number of information bits.
  • the CSI-RS configuration (which may include the CSI-RS configuration adopted by the local cell or the CSI-RS configuration adopted by the local cell) may use a predetermined fixed number of CSI-RS resources for data transmission. This fixed number may be the same or different for each CSI-RS configuration. Alternatively, a Y bit is used to indicate the number of resources to be used for a predetermined number of CSI-RS configurations (same for all configurations).
  • the message generating unit 301 is further configured to generate a prohibition message for indicating to the user equipment of one cell that the use of the time-frequency resource corresponding to the idle CSI-RS port is prohibited.
  • the barring message has the same form as the above-described indication message, except that the individual bits of the bitmap are set to indicate that there are no available resources available for each CSI-RS configuration, and/or bits that will represent the number of resources Both are set to 0.
  • the inhibit message may be generated as a 1-bit instruction. That is, after receiving the instruction, the user equipment is informed that the idle CSI-RS resource is prohibited from being used. This method can effectively reduce the signaling overhead.
  • FIG. 10 shows a functional block diagram of an information processing device 400 in accordance with one embodiment of the present application.
  • the information processing device 400 can be, for example, a base station or a part of a base station.
  • the transceiver unit 401 can be implemented, for example, using an antenna or a communication interface.
  • the determining unit 402, the enabling unit 403, and the determining unit 404 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the information processing device 400 includes a transceiving unit 401, a determining unit 402, and an enabling unit 403.
  • the transceiver unit 401 may be configured to receive, from a base station of a neighboring cell of a cell, information of a port usage situation of a CSI-RS of the neighboring cell, where the neighboring cell is a cell within an interference range of the local cell.
  • the determining unit 402 is configured to determine a port usage condition of the CSI-RS of the neighboring cell based on the received information, and determine a time-frequency resource corresponding to the idle CSI-RS port of each CSI-RS configuration based on the port usage situation
  • the enabling unit 403 is configured to allow one cell to perform data transmission using at least a portion of the time-frequency resources corresponding to the idle CSI-RS ports of the CSI-RS configuration different from the CSI-RS configuration.
  • the determining unit 402 in this embodiment has a similar function to the determining unit 102, And the permitting unit 403 has a function similar to that of the permitting unit 101, and thus the related details are omitted in the description of the embodiment.
  • the information processing device 400 may further include: a determining unit 404 configured to determine whether the time-frequency resource corresponding to the idle CSI-RS port satisfies the first predetermined condition; and if the first predetermined condition is satisfied, allow The unit 403 allows the local cell to perform data transmission using at least a portion of the time-frequency resources corresponding to the idle CSI-RS port.
  • the judging unit 404 has a function similar to that of the judging unit 201, and the description will not be repeated here.
  • the transceiving unit 401 is further configured to transmit information including port usage of the CSI-RS of the own cell to the base station of the neighboring cell. That is, the base stations of the neighboring cells exchange information about the port usage of the CSI-RS by, for example, X2 signaling.
  • the information is included in the information element Served Cell Information of the ENB CONFIGURATION UPDATE message. The specific configuration of the information can be referred to the first embodiment, and is not repeated here.
  • the transceiving unit 401 can be configured to receive information from a central management device that includes port usage of CSI-RSs of neighboring cells of the cell.
  • the interaction of the information is not directly performed between the base stations of the neighboring cells, but the information is centrally managed and provided by the central management device.
  • the transceiver unit 401 may be configured to receive information of a time-frequency resource corresponding to an idle CSI-RS port of another CSI-RS configuration different from a CSI-RS configuration of the current cell, such as a time-frequency, from the central management apparatus.
  • the function of the determining unit 402 will be performed by the central management device, and the determination result of the determining unit 402 is provided to the own cell.
  • the information processing device 400 may include a transceiving unit 401, an enabling unit 403, and a judging unit 404.
  • the information processing device 400 may include only the transceiving unit 401 and the allowing unit 403.
  • the transceiving unit 401 can be configured to receive an idle CSI-RS port of each CSI-RS configuration that can be used by the own cell from the central management device.
  • the function of the determining unit 402 and the function of the determining unit 404 will be performed by the central management device, and the final determined result is provided to the own cell.
  • the information processing device 400 may include a transceiving unit 401 and an enabling unit 403.
  • the transceiver unit 401 is further configured to set to the user of the local cell.
  • the indication message indicating the time-frequency resource corresponding to the idle CSI-RS port that can be used is sent.
  • the sending and receiving unit 401 may further send, to the user equipment of the local cell, a prohibition message indicating that the time-frequency resource corresponding to the idle CSI-RS port is prohibited, wherein the prohibition message may be an indication message of a specific value, or may be a dedicated prohibition message. As described in the third embodiment.
  • the information processing device can enable the local cell to use other CSI-RS configured idle CSI-RS resources for data transmission, thereby improving the utilization efficiency of the CSI-RS resources.
  • FIG. 11 shows a functional block diagram of an electronic device 500 according to an embodiment of the present application, the electronic device 500 comprising: a determining unit 501 configured to determine, based on a message received from a base station, that a user equipment can be used for data transmission. a time-frequency resource corresponding to an idle CSI-RS port of a different CSI-RS configuration configured by the base station used by the base station; and a feedback generating unit 502 configured to generate a message including feedback of the user equipment.
  • the individual units in the electronic device 500 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as chips.
  • the electronic device 500 can be, for example, located on the user equipment side of the cell or communicatively coupled to the user equipment in a wired or wireless manner.
  • the message received from the base station is, for example, an indication message including the information of the number of time-frequency resources corresponding to the idle CSI-RS port that the user equipment can use for each CSI-RS configuration described above. It should be understood that the received message is not limited thereto as long as it contains information of time-frequency resources corresponding to idle CSI-RS ports that the user equipment can use for data transmission.
  • the received message may also be a forbidden message, in which case the user equipment is prohibited from using idle, in the case where the determined number of time-frequency resources is 0 (in a broad sense also belongs to one of the forbidden messages).
  • the time-frequency resource corresponding to the CSI-RS port performs data transmission.
  • the feedback generation unit 502 is to generate a message containing feedback from the user device.
  • User equipment feedback includes, for example, one of acceptance and rejection.
  • 1-bit signaling open_close_response can be defined for user equipment feedback, such as 1 for acceptance, 0 for rejection, or the opposite definition.
  • the user equipment feedback accepts the use of the time-frequency resource, and the user equipment feedback rejection indicates that the time-frequency resource is not used.
  • the received information is a forbidden message
  • the user equipment feedback accepts that the user does not use the time-frequency resource, and the user equipment returns a rejection indicating that the time-frequency resource is not used, for example, the user equipment has used the time-frequency resource to transmit data.
  • the rejection of the message rejection means that the user equipment will continue to use the above-mentioned time-frequency resources.
  • the electronic device 500 can enable the user equipment to implement the utilization of time-frequency resources corresponding to the idle CSI-RS port, and improve the utilization efficiency of the CSI-RS resource.
  • the information processing device 600 includes a transceiving unit 601 configured to receive a message from a base station, and a determining unit 602 configured to be based on the The received message determines a time-frequency resource corresponding to the idle CSI-RS port of the CSI-RS configuration different from the CSI-RS configuration used by the base station, and the feedback generating unit 603 is configured to be used by the user equipment to perform data transmission.
  • a message containing user equipment feedback is generated, wherein the transceiver unit 601 is further configured to send the message including the user equipment feedback to the base station.
  • the information processing device 600 can be, for example, a user device or a part of a user device.
  • the transceiver unit 601 can be implemented, for example, using an antenna or a communication interface.
  • the determination unit 602 and the feedback generation unit 603 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the determination unit 602 in the present embodiment has a function similar to the determination unit 501, and the feedback generation unit 603 has a function similar to that of the feedback generation unit 502, and thus the related details are omitted in the description of the present embodiment.
  • FIG. 13 illustrates a functional block diagram of an electronic device 700 including a storage unit 701 configured to store port usage of CSI-RSs of respective cells, and a determining unit 702, in accordance with an embodiment of the present application, Configured for each cell, indeed Determine the port usage of the CSI-RS of its neighboring cell.
  • the neighboring cell may be a cell within the interference range of the cell or a cell geographically adjacent to the cell.
  • the electronic device 700 can be, for example, part of a central processing unit or a central processing unit.
  • the central processing unit can be implemented, for example, on the core network side or as an entity such as a server.
  • the storage unit 701 can be implemented, for example, using a memory including, for example, various volatile memories and nonvolatile memories.
  • the determining unit 702 can also perform further processing, for example, for each cell, determining an idle CSI-RS port corresponding to a CSI-RS configuration different from the cell's own CSI-RS configuration based on its port usage. Time-frequency resources.
  • the function of the determining unit 702 is the same as that of the determining unit 102 and will not be repeated here.
  • the electronic device 700 may further include: a generating unit 703 configured to generate an idle CSI including a CSI-RS configuration different from the cell's own CSI-RS configuration.
  • the generating operation of the generating unit 703 is based on a certain condition.
  • the electronic device 700 may further include: a determining unit 704 configured to determine, for each cell, the determined CSI-RS configuration different from the CSI-RS configuration of the cell. Whether the idle condition of the CSI-RS port satisfies the first predetermined condition, and the above message is generated if the first predetermined condition is satisfied.
  • the generating unit 703 can directly generate a message containing information of idle CSI-RS resources that the corresponding cell can use.
  • the determining unit 704 may be further configured to: determine, for each cell, whether the determined idle condition of the CSI-RS configuration different from the CSI-RS configuration of the cell satisfies a second predetermined condition, and meets the second predetermined condition In the case of a condition, a prohibition message is generated, and the prohibition message indicates that the cell is prohibited from using the idle CSI-RS port for data transmission.
  • the determination regarding the second predetermined condition may be performed during data transmission by the cell using the idle CSI-RS port, or may be performed in the case where the cell does not use the idle CSI-RS port for data transmission.
  • the electronic device 700 may further include: a transceiver unit 705 configured to receive, from the base station, a port usage of a CSI-RS of the corresponding cell.
  • the transceiver unit 705 can be implemented, for example, using an antenna or a communication interface such as a transceiver, the determining unit 702,
  • the generating unit 703 and the determining unit 704 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the transceiver unit 705 can also be configured to send the port usage of the CSI-RS of the neighboring cell or the message generated by the sending unit 703 to the base station of the corresponding cell.
  • the details of the first predetermined condition, the second predetermined condition, and the content and format of the message have been given in the foregoing, and are not repeated here. However, it should be understood that these are not limiting and are merely examples given for ease of understanding.
  • the transceiving unit 705 is further configured to send a barring message to the base station of the corresponding cell, the barring message indicating that the cell is prohibited from using the idle CSI-RS port for data transmission.
  • the prohibition message can be, for example, 1-bit signaling.
  • the electronic device 700 can only collect and provide the port usage of the CSI-RS of each cell, and can further process the port usage to obtain the information of the idle CSI-RS resources that the corresponding cell can use. It is provided to the base station of the cell.
  • the electronic device 700 can assist the cell to use the idle CSI-RS resource for data transmission, thereby improving the utilization efficiency of the CSI-RS resource.
  • FIG. 14 shows a flow chart of a method for an electronic device according to an embodiment of the present application, the method comprising: allowing a cell to use a different CSI than a self channel state information reference signal CSI-RS configuration of the one cell. At least a part of the time-frequency resource corresponding to the idle CSI-RS port configured by the RS performs data transmission (S11).
  • the method may further include: determining a port usage of a CSI-RS of a neighboring cell of the one cell, and determining an idle CSI of each CSI-RS configuration based on the port usage situation.
  • Time-frequency resource corresponding to the RS port S12.
  • step S12 is shown in FIG. 14 before step S11, it is not limited thereto, and step S12 may be located after step S11.
  • step S14 may be further performed: determining whether the time-frequency resource corresponding to the idle CSI-RS port satisfies the first predetermined condition. If the first predetermined condition is satisfied (YES), the process proceeds to step S11. And then performing step S17: generating an indication message for indicating to the user equipment of the one cell, the time-frequency resource corresponding to the available idle CSI-RS port. Feedback from the user equipment is received in step S18, and when the feedback is accepted, the user equipment will use the idle CSI-RS resources for data transmission.
  • the method determines in step S20 whether the time-frequency resource corresponding to the idle CSI-RS port satisfies the second predetermined condition, and if the second predetermined condition is not met, the process proceeds to step S20 to periodically update the CSI of the CSI-RS configuration. - Usage of the RS port. If the second predetermined condition is satisfied, the process proceeds to step S16: the one cell is prohibited from using the time-frequency resource corresponding to the idle CSI-RS port for data transmission. Next, proceeding to S19: generating a prohibition message for indicating to the user equipment of the one cell that the time-frequency resource corresponding to the idle CSI-RS port is prohibited from being used. Furthermore, although not shown in the figure, after step S19, a step of receiving feedback from the user equipment may also be included.
  • step S15 may be further performed to determine whether the time-frequency resource corresponding to the idle CSI-RS port satisfies the second predetermined condition. If the second predetermined condition is satisfied, the process proceeds to steps S16 and S19. If the second predetermined condition is not satisfied, the process may proceed to step S13: periodically update the usage of the CSI-RS port of the CSI-RS configuration, and the process of step S13 is the same as the process of step S20.
  • the determination of step S15 may be skipped and the process returns directly to step S13.
  • the first predetermined condition in step S14 is at least a portion of the CSI-RS
  • the sum of the number of time-frequency resources corresponding to the configured idle CSI-RS ports that can be used by the one cell exceeds a first predetermined threshold.
  • the second predetermined condition in step S15 is that the sum of the number of time-frequency resources corresponding to the idle CSI-RS ports that can be used by the one cell configured by at least a part of the CSI-RS is lower than a second predetermined threshold.
  • the CSI-RS configuration includes a CSI-RS configuration whose number of idle CSI-RS ports exceeds a predetermined value, referred to as an idle CSI-RS configuration.
  • the number of time-frequency resources corresponding to each of the idle CSI-RS configurations that can be used by the one cell is less than or equal to a fixed value of the predetermined value. In this case, the sum of the numbers is the product of the number of idle CSI-RS configurations and a fixed value.
  • the number of time-frequency resources corresponding to the CSI-RS port of the CSI-RS configuration of the neighboring cell having the smallest CSI-RS idle port may be used as the The number of time-frequency resources corresponding to the idle CSI-RS port configured by the CSI-RS.
  • the indication message generated in step S17 includes information of the number of time-frequency resources corresponding to the idle CSI-RS ports that can be used by the user equipment in each CSI-RS configuration.
  • the number of time-frequency resources corresponding to the idle CSI-RS ports of the respective CSI-RS configurations that can be used by the user equipment can be set to be the same.
  • the indication message includes bitmap information indicating whether each CSI-RS configuration has an available CSI-RS port that can be used.
  • the corresponding number is 0 or the corresponding bit of the bitmap is 0, indicating that the idle CSI-RS of the corresponding CSI-RS configuration is unavailable.
  • the prohibition message generated in step S19 may be an indication message having a specific value, or may be a 1-bit instruction.
  • the usage of the CSI-RS port of the neighboring cell may be obtained according to X2 signaling of the base station from the neighboring cell in steps S13 and S20.
  • the X2 signaling is, for example, an ENB CONFIGURATION UPDATE message including an information element indicating information on the usage status of each CSI-RS port in the CSI-RS configuration of the neighboring cell.
  • the information unit has, for example, a bitmap format, and the number of bits of the bitmap is determined according to the number of CSI-RS ports configured by the CSI-RS. For example, one bit of the bitmap is 0, indicating that the corresponding CSI-RS port is not used, and the bitmap is A bit of 1 indicates that the corresponding CSI-RS port is being used.
  • This information unit can be included in ENB CONFIGURATION
  • the information unit of the UPDATE message is in the Served Cell Information.
  • the usage of the CSI-RS port can also be updated by receiving information from the central management device.
  • the method may further include the step of receiving information including port usage of the CSI-RS. And, the method may further comprise the step of transmitting an indication message or a prohibition message to the user equipment.
  • FIG. 15 shows a flowchart of a method for an electronic device according to another embodiment of the present application, the method comprising: determining, based on a message received from a base station, a user equipment that is usable by the user equipment for data transmission
  • the own CSI-RS configures a time-frequency resource corresponding to the idle CSI-RS port of the different CSI-RS configuration (S21); and generates a message including the feedback of the user equipment (S22).
  • the user equipment feedback includes one of acceptance and rejection.
  • the user equipment is prohibited from using the time-frequency resource corresponding to the idle CSI-RS port for data transmission.
  • the method may further include: step S23, receiving a message from the base station; and step S24, transmitting a message including the feedback of the user equipment to the base station.
  • 16 shows a flowchart of a method for an electronic device according to still another embodiment of the present application, the method including: storing port usage of a CSI-RS of each cell (S31); and determining, for each cell, Port usage of the CSI-RS of its neighboring cell (S32).
  • the method may further include step S33: receiving, from the base station, the port usage of the CSI-RS of the corresponding cell.
  • the method may further include the step S34: determining, according to the port usage, a time-frequency resource corresponding to the CSI-RS port of the CSI-RS configuration different from the CSI-RS configuration of the one cell.
  • Step S37 and step S38 may be performed, where step S37 is to generate a message including information of a time-frequency resource corresponding to an idle CSI-RS port of a CSI-RS configuration different from the self-CSI-RS configuration of the one cell, and the step S38 is to send the generated message to the base station of the corresponding cell.
  • the port usage condition determined in step S32 can also be transmitted in step S38.
  • the above method may further include step S35: determining, for each cell, the determined and The CSI-RS of the cell configures whether the idle condition of the CSI-RS port of the different CSI-RS configuration satisfies the first predetermined condition. If the first predetermined condition is satisfied (Yes), it proceeds to step S37 to generate the message. If the first predetermined condition is not satisfied (No), proceeding to step S36: for each cell, it is determined whether the determined idle condition of the CSI-RS configuration different from the CSI-RS configuration of the cell satisfies the second predetermined condition. If the second predetermined condition is satisfied (Yes), proceeding to step S39: generating a prohibition message indicating that the corresponding cell is prohibited from using the idle CSI-RS port for data transmission.
  • step S32 If the second predetermined condition is not satisfied (No), the process returns to step S32 to continue updating the port usage of the CSI-RS of the neighboring cell. It should be understood that only the determination of the first predetermined condition may be performed, and when the first predetermined condition is not satisfied, the process returns to step S32, or only the determination of the second predetermined condition is made.
  • the base station may include any one of the electronic device 100-300 or the information processing device 400 described above, and the user device may include any one of the electronic device 500 or the information processing device 600 described above. It should be understood that these information flows are for illustrative purposes only and are not limiting.
  • FIG. 17 shows an example of information flow between a base station and a User Equipment (UE) and a base station.
  • the base station of the cell that uses the idle CSI-RS resource for data transmission is used as the base station 1
  • the neighboring base station of the base station 1 is the base station of the cell that is within the interference range of the cell 1. Note that although one neighboring base station is shown in FIG. 17, the number of adjacent base stations is not necessarily one, but there may be more than one, and here is only an example.
  • the neighboring base station sends a beamforming CSI-RS to each user equipment, and after the user equipment performs measurement, the CSI feedback is sent to the neighboring base station, so that the neighboring base station can obtain the port usage of the CSI-RS. . Subsequently, the neighboring base station provides the port usage status to the base station 1.
  • the port usage of the CSI-RS is transmitted by the X2 signaling ENB CONFIGURATION UPDATE in FIG. 17. Specifically, for example, a new information element Antenna_ports may be added to the information element Served Cell Information of the ENB CONFIGURATION UPDATE message as described above.
  • the information unit Antenna_ports-usage may for example have the form of a bitmap.
  • the base station 1 After receiving the ENB CONFIGURATION UPDATE, the base station 1 is facing the phase. The neighboring base station should send an ENB CONFIGURATION UPDATE ACKNOWLEDGE to acknowledge receipt of the message.
  • the base station 1 processes the received port usage of the CSI-RS from the (multiple) neighboring base stations, for example, obtains the number of free ports of the CSI-RS configured for each CSI-RS, and determines the CSI-RS. Whether the idle condition of the port satisfies the first predetermined condition. If the first predetermined condition is met, the indication message Allowed_Reresource indicating the idle CSI-RS resource that can be used by the user equipment of the base station 1 is sent, and the indication message is equivalent to the message of opening the idle CSI-RS resource.
  • the first predetermined condition and the indication message please refer to the previous details.
  • the user equipment of the base station 1 After receiving the indication message, the user equipment of the base station 1 sends a user equipment feedback Open_close_response to the base station 1 to inform the base station 1 that it accepts or rejects the indication indicated by the indication message. For example, when Open_close_response is 1, it accepts opening, and when Open_close_response is 0, it means to refuse to open.
  • FIG. 18 shows an example of information flow between a base station and a User Equipment (UE) and a base station during base station 1 using idle CSI-RS resources for data transmission.
  • UE User Equipment
  • FIG. 17 it is added whether the idle condition of the CSI-RS port from the neighboring base station satisfies the second predetermined condition during the data transmission by the base station 1 using the idle CSI-RS resource.
  • the user equipment is provided with an indication message Allowed_Reresource of the idle CSI-RS resources that it can use, so that the user equipment can continue to use the currently idle CSI-RS resources for data transmission. Similarly, the user equipment also sends user equipment feedback to the base station 1.
  • FIG. 19 shows another example of information flow between a base station and a User Equipment (UE) and a base station during base station 1 using idle CSI-RS resources for data transmission.
  • the second predetermined condition is met, and the base station 1 transmits a prohibition message to the user equipment to prohibit the user equipment from using the idle CSI-RS resource for data transmission.
  • the user equipment also sends user equipment feedback to the base station 1.
  • FIGS. 17-19 illustrate an example of an information flow of a base station acquiring information about idle CSI-RS resources through a central management device. It should be noted that the flow at the base station and its user equipment side can be the same as that in FIGS. 17-19, and therefore, only the same portions as those in the case of FIG. 17 are shown in the drawing. However, the case of Figs. 18 and 19 is equally applicable to the information exchange portion of the base station of Figs. 20-22 and its user equipment side.
  • the base station on the left represents the various base stations managed by the central management device, which includes the base station 1.
  • the base station 1 acquires the usage status of the CSI-RS port from the central management apparatus, and obtains the idle CSI-RS resources of the respective CSI-RS configurations according to the usage status, and determines whether the first predetermined condition is satisfied. In case the first predetermined condition is met, the user equipment is instructed to use the idle CSI-RS resource for data transmission.
  • the usage status of the CSI-RS port is further processed by the central management apparatus to obtain idle CSI-RS resources of respective CSI-RS configurations, and the related information is provided to the base station 1.
  • the base station 1 judges whether or not the first predetermined condition is satisfied. In case the first predetermined condition is met, the user equipment is instructed to use the idle CSI-RS resource for data transmission.
  • the central management apparatus further processes the idle CSI-RS resources configured for the respective CSI-RSs, for example, whether or not the first predetermined condition is satisfied, thereby obtaining an idle CSI-RS that the base station 1 can use. Resources and provide them to base station 1. In this case, the base station 1 does not need to perform any processing, and can directly instruct the user equipment to use these CSI-RS resources for data transmission.
  • the description of the present technology is equally applicable to the case of using Cell-Specific Beamforming CSI-RS, UE-Specific Beamforming CSI-RS, aperiodic beamforming CSI-RS, or any combination thereof.
  • electronic device 700 can be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the electronic device 700 may be a control module mounted on a server (such as an integrated circuit module including a single wafer, and a card or blade inserted into a slot of the blade server).
  • the above mentioned base stations can be implemented as any type of evolved Node B (eNB), such as macro eNBs and small eNBs.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station may include: a body (also referred to as a base station device) configured to control wireless communication; One or more remote wireless headends (RRHs) that are placed in a different location than the main body.
  • RRHs remote wireless headends
  • various types of user equipments to be described below can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 23 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is wireless The communication interface, then the network interface 823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 23 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiving unit 401 described with reference to FIG. 10 can be implemented by the wireless communication interface 825. At least a portion of the functionality can also be implemented by controller 821.
  • the controller 821 can perform determination and notification of idle CSI-RS resources that can be used for data transmission by performing functions of the permitting units 101 and 403, the determining units 102 and 402, the determining units 201 and 404, and the message generating unit 301.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 24 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 24 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 24 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 24 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiving unit 401 described with reference to FIG. 10 can be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 851.
  • the controller 851 can perform determination and notification of idle CSI-RS resources that can be used for data transmission by performing functions of the permitting units 101 and 403, the determining units 102 and 402, the determining units 201 and 404, and the message generating unit 301.
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 And RF circuit 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 25 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 25 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 25 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the transceiver unit 601 described with reference to FIG. This can be implemented by the wireless communication interface 912.
  • At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can implement data transmission using idle CSI-RS resources or prohibition of the data transmission by performing functions of the determining unit 501 or 602, the feedback generating unit 502, or 603.
  • FIG. 26 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and is via an antenna 937. Transmit and receive wireless signals.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 26 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 26 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in FIG. 26 via feeders, which are shown partially as dashed lines in the figures. Battery 938 accumulates power supplied from the vehicle.
  • the transceiving unit 601 described with reference to FIG. 12 can be implemented by the wireless communication interface 933. At least a portion of the functionality can also be implemented by processor 921.
  • the processor 921 can implement data transmission using idle CSI-RS resources or prohibition of the data transmission by performing functions of the determining unit 501 or 602, the feedback generating unit 502, or 603.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • Vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and fault information), and The generated data is output to the in-vehicle network 941.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 2700 shown in FIG. 27), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 2701 executes various processes in accordance with a program stored in a read only memory (ROM) 2702 or a program loaded from a storage portion 2708 to a random access memory (RAM) 2703.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2701 executes various processes and the like is also stored as needed.
  • the CPU 2701, the ROM 2702, and the RAM 2703 are connected to each other via a bus 2704.
  • Input/output interface 2705 is also coupled to bus 2704.
  • the following components are connected to the input/output interface 2705: an input portion 2706 (including a keyboard, a mouse, etc.), an output portion 2707 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 2708 (including a hard disk or the like), the communication portion 2709 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 2709 performs communication processing via a network such as the Internet.
  • the driver 2710 can also be connected to the input/output interface 2705 as needed.
  • a removable medium 2711 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 2710 as needed, so that the computer program read therefrom is installed into the storage portion 2708 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 2711.
  • such a storage medium is not limited to the removable medium 2711 shown in FIG. 27 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 2711 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2702, a hard disk included in the storage portion 2708, and the like, in which programs are stored, and distributed to the user together with the device containing them.

Abstract

本公开提供了电子设备、用于电子设备的方法和信息处理设备。电子设备,包括:处理电路,该处理电路被配置为:允许一个小区使用与所述一个小区的自身信道状态信息参考信号CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。 (图1b)

Description

电子设备和用于电子设备的方法、信息处理设备
本申请要求于2016年4月1日提交中国专利局、申请号为201610204474.7、发明名称为“电子设备和用于电子设备的方法、信息处理设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及三维多输入多输出(3D MIMO)技术,更具体地涉及使用波束赋形信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)技术的电子设备和用于电子设备的方法以及信息处理设备。
背景技术
通常,相邻的小区使用不同的信道状态信息参考信号(CSI-RS)配置,相邻小区的CSI-RS所对应的时频资源的位置相互错开,来避免CSI-RS干扰。
在3D MIMO技术下,一到多个天线端口被赋予不同的权值在3维方向上产生波束,称为波束赋形。波束赋形CSI-RS不同于非编码的CSI-RS。非编码的CSI-RS方案为所有用户设备使用共同的全部CSI-RS端口。而波束赋形CSI-RS可以为一个用户设备(即,UE-Specific,UE专用波束赋形)或者波束(即,Cell-Specific,小区专用波束赋形)分配一到多个CSI-RS端口。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种电子设备,包括:处理电路,该处理电路被配置为:允许一个小区使用与该一个小区的自身信道状态信息参考信号CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。
根据本申请的另一个方面,提供了一种信息处理设备,包括:天线,被配置为从一个小区的相邻小区的基站接收包含该相邻小区的CSI-RS的端口使用情况的信息;以及处理电路,被配置为:基于天线接收的信息确定相邻小区的CSI-RS的端口使用情况,并基于该端口使用情况确定各个CSI-RS配置的空闲CSI-RS端口对应的时频资源,以及允许一个小区使用与该一个小区的自身信道状态信息参考信号CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。
根据本申请的另一个方面,提供了一种电子设备,包括处理电路,被配置为:基于从基站接收的消息确定用户设备能够用来进行数据传输的与所述基站使用的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源;以及生成包含用户设备反馈的消息。
根据本申请的另一个方面,还提供了一种信息处理设备,包括:天线,被配置为从基站接收消息;处理电路,被配置为:基于所述天线接收的所述消息确定用户设备能够用来进行数据传输的与所述基站使用的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源;以及生成包含用户设备反馈的消息,其中,所述天线还被配置为向所述基站发送所述包含用户设备反馈的消息。
根据本申请的另一个方面,还提供了一种电子设备,包括:存储器,被配置为存储各个小区的CSI-RS的端口使用情况;处理电路,被配置为针对每一个小区,确定其相邻小区的CSI-RS的端口使用情况。
根据本申请的另一个方面,还提供了一种用于电子设备的方法,包括:允许一个小区使用与该一个小区的自身信道状态信息参考信号CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。
根据本申请的另一个方面,还提供了一种用于电子设备的方法,包 括:基于从基站接收的消息确定用户设备能够用来进行数据传输的与所述基站使用的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源;以及生成包含用户设备反馈的消息。
根据本申请的另一个方面,还提供了一种用于电子设备的方法,包括:存储各个小区的CSI-RS的端口使用情况;针对每一个小区,确定其相邻小区的CSI-RS的端口使用情况。
依据本发明的其它方面,还提供了用于实现上述用于电子设备的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于电子设备的方法的计算机程序代码的计算机可读存储介质。
在本申请的实施例中,通过利用其他CSI-RS配置的空闲CSI-RS端口对应的时频资源进行数据传输,可以充分利用CSI-RS的闲置资源,在不引起显著的CSI-RS干扰的情况下提高资源利用效率。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的上述以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1a示出了相邻小区的CSI-RS配置的示意图;
图1b示出了根据本申请的实施例的利用空闲CSI-RS资源进行数据传输的示例的示意图;
图2示出了波束赋形CSI-RS方案下的资源浪费的一个示意图;
图3示出了根据本申请的一个实施例的电子设备的功能模块框图;
图4示出了根据本申请的一个实施例的电子设备的功能模块框图;
图5示出了根据本申请的另一个实施例的电子设备的功能模块框图;
图6示出了指示消息的形式的一个示例;
图7示出了指示消息的形式的另一个示例;
图8示出了指示消息的形式的另一个示例;
图9示出了指示消息的形式的另一个示例;
图10示出了根据本申请的一个实施例的信息处理设备的功能模块框图;
图11示出了根据本申请的一个实施例的电子设备的功能模块框图;
图12示出了根据本申请的一个实施例的信息处理设备的功能模块框图;
图13示出了根据本申请的一个实施例的电子设备的功能模块框图;
图14示出了根据本申请的一个实施例的用于电子设备的方法的流程图;
图15示出了根据本申请的另一个实施例的用于电子设备的方法的流程图;
图16示出了根据本申请的又一个实施例的用于电子设备的方法的流程图;
图17示出了基站与用户设备以及基站之间的信息流程的一个示例;
图18示出了基站与用户设备以及基站之间的信息流程的另一个示例;
图19示出了基站与用户设备以及基站之间的信息流程的另一个示例;
图20示出了设置有中央管理装置的情况下的信息流程的一个示例;
图21示出了设置有中央管理装置的情况下的信息流程的另一个示例;
图22示出了设置有中央管理装置的情况下的信息流程的另一个示例;
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第 一示例的框图;
图24是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图25是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图26是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图27是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1a示出了相邻的小区1、小区2和小区3的CSI-RS配置的时频资源分配的示意图。在本文中,CSI-RS配置可以指为CSI-RS所分配的时频资源的位置。在图1a中,每个小区的CSI-RS配置包括8个端口(用序号0-7表示),每一个端口对应于一个时频资源单元,即,图1a中的每个CSI-RS配置对应于8个时频资源单元(Resource Element,RE), 每个RE上的数字代表对应的CSI-RS端口的序号。应该注意,这里的序号只是代表性的数字,并不是实际的端口号,例如在实际的8端口CSI-RS配置中,使用的端口为15-22。具体地,小区1的CSI-RS配置的各个端口对应于灰色填充的RE,小区2的CSI-RS配置的各个端口对应于黑点填充的RE,小区3的CSI-RS配置的各个端口对应于横线填充的RE。对于每一个小区而言,在其他小区的CSI-RS配置对应的RE上不发送任何信息,图中用斜线填充相应的框来表示这一点。
当小区使用波束赋形CSI-RS方案时,小区并不会一直使用CSI-RS配置中的所有的CSI-RS端口。换言之,某些CSI-RS端口对应的时频资源被闲置,从而造成了资源的严重浪费。以Cell-Specific波束赋形为例,在一个子帧内活跃波束的数量通常少于配置的波束数量,而当配置使用的是非周期CSI-RS时,资源的浪费将更加严重。注意,在本说明书中,如无特别说明,小区可以是宏小区和小小区,并且在适当情况下,小区也被称为基站。此外,在本说明书中,CSI-RS端口对应的时频资源被简称为CSI-RS资源、CSI-RS端口或者资源。
图2示出了波束赋形CSI-RS方案下的资源浪费的一个示意图。其中,基站1、基站2和基站3使用不同的CSI-RS配置来避免小区间CSI-RS干扰。假设一个CSI-RS配置包括8个CSI-RS端口,一个波束使用2个CSI-RS端口形成,实心波束表示波束处于服务状态、即激活状态,空心波束表示波束处于空闲状态。例如,基站2中有2个波束处于激活状态,2个波束处于空闲状态,因此有4个CSI-RS时频资源单元(以下也简称为CSI-RS资源)未被使用。类似地,基站3中有4个CSI-RS资源未被使用。在一个基站有多个相邻基站的情况下,资源浪费现象将会更加严重。
如果基站1要服务的用户设备很多,使用相邻基站未使用的CSI-RS的时频资源用来进行数据传输将非常有意义。本申请的技术提供了利用空闲CSI-RS资源来进行数据传输的实现。
此外,除了相邻基站未使用的CSI-RS的时频资源之外,基站1也可以利用其自身的CSI-RS的空闲时频资源。但是,在下文中将主要讨论基站利用相邻基站的CSI-RS配置的空闲的时频资源的情形,应该理解,这并不是限制性的,不能理解为本发明对利用或者不利用自身的 CSI-RS配置的空闲时频资源作出了任何规定或者限制。
另一方面,虽然在图2的示例中,相邻小区(或基站)使用不同的CSI-RS配置,但是相邻小区也可以使用相同的CSI-RS配置并通过其他技术手段来减轻或消除CSI-RS干扰,而这并不影响本申请的技术的应用。由于对于要利用空闲CSI-RS资源进行数据传输的小区而言,要利用的是哪一个小区空闲的CSI-RS资源并不重要,该小区只需要获知该空闲的CSI-RS资源的位置即可。同时,由于CSI-RS配置是有固定模式并且有有限的数量,因此,可以以CSI-RS配置为单位识别空闲的CSI-RS资源。
图3示出了根据本申请的一个实施例的电子设备100的功能模块框图,该电子设备100包括:允许单元101,被配置为允许一个小区使用与该一个小区的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。在下文中,也将针对其执行操作的“所述一个小区”称为本小区。
该电子设备100例如可以位于小区的基站侧,或者与基站通信地耦接,该耦接可以是有线的或者无线的。
由于对于一个小区而言,其使用的CSI-RS配置是已知的,因此,与本小区的自身CSI-RS配置不同的CSI-RS配置(以下也称为其他CSI-RS配置)也是能够获知的,而这些其他CSI-RS配置的空闲的CSI-RS端口对应的时频资源可以由本小区用来进行数据传输。其中,本小区可以使用所有的空闲的CSI-RS资源来进行数据传输,也可以仅使用其中的一部分,取决于实际的需要或配置。
此外,如前所述,本小区也可以使用自身的空闲CSI-RS资源进行数据传输。在这种情况下,允许单元101被配置为允许本小区使用所有CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。
另一方面,小区对空闲的CSI-RS资源的使用并不限于以上方式,例如,允许单元101可以使得小区直接使用上述时频资源。换言之,可以设置为:小区使用其认为空闲(或者预先规定)的CSI-RS资源进行数据传输(这里所述的空闲的CSI-RS资源可以包括本小区的CSI-RS配 置的空闲CSI-RS资源,也可以不包括)。随后,在获得了实际的关于CSI-RS空闲资源的信息后,根据该信息来调整或停止其对空闲的CSI-RS资源的使用。例如,在用于进行数据传输的CSI-RS资源实际上正被使用的情况下,将停止使用该时频资源来进行数据传输。
在一个示例中,实际的关于CSI-RS空闲资源的信息来自于相邻小区。如图3中的虚线框所示,电子设备100还包括:确定单元102,被配置为确定本小区的相邻小区的CSI-RS的端口使用情况,并基于该端口使用情况确定各个CSI-RS配置的空闲CSI-RS端口对应的时频资源。
其中,相邻小区可以为处于本小区的干扰范围内的小区,或者,相邻小区为本小区在地理位置上相邻的小区。对于一个小区而言,如果其干扰范围内没有任何其他小区,则理论上该小区可以使用不同于其自身CSI-RS配置的任何CSI-RS配置对应的时频资源进行数据传输。但是,由于其干扰范围内通常总是有其他小区的,因此,需要避免对这些小区的CSI-RS传输的干扰,即,仅使用这些小区的CSI-RS配置的空闲CSI-RS端口对应的时频资源进行数据传输。
在无线通信系统中,CSI-RS配置的种类数是有限的,例如,在每一个CSI-RS配置包括8个CSI-RS端口的情况下,共有5种CSI-RS配置。而在为各个小区分配CSI-RS配置时,一般尽量为相邻小区分配不同的CSI-RS配置以避免CSI-RS干扰。因此,通过统计所有相邻小区的CSI-RS的端口使用情况,一般可以获得各个CSI-RS配置的CSI-RS端口的空闲状况。该空闲状况例如包括该CSI-RS配置中哪些CSI-RS端口处于空闲状态的信息。在一个示例中,对于由两个或多个相邻小区使用的CSI-RS配置,将具有最少的CSI-RS空闲端口的相邻小区的CSI-RS配置的空闲CSI-RS端口对应的时频资源的数量作为该CSI-RS配置的空闲CSI-RS端口对应的时频资源的数量。换言之,在CSI-RS配置的空闲CSI-RS端口数量在多个相邻小区中具有多个取值时,取其中的最小值作为该CSI-RS配置的空闲CSI-RS端口数量。
以图1a中所示的CSI-RS配置为例,在小区1要服务的用户设备很多从而期望使用相邻小区未使用的CSI-RS的时频资源用来进行数据传输的情况下,确定单元102确定小区2的CSI-RS端口4-7空闲,小区3的CSI-RS端口4-7空闲,即小区2和3实际上没有利用其CSI-RS配置 的CSI-RS端口4-7对应的时频资源传输CSI-RS。因此,小区1可以使用与这些空闲CSI-RS端口对应的时频资源进行数据传输。如图1b所示,代替用斜线填充,可以用网格来填充这些RE,表示小区1使用这些空闲CSI-RS资源单元来进行数据传输。应该理解,图1b仅是一个示例,对于其他小区而言,可以进行类似的操作。并且,图1a和图1b中仅示出了常规循环前缀(CP)的OFDM子帧作为示例,但是本技术同样可以应用于采用其他类型的OFDM子帧的情形。
在一个示例中,确定单元102可以被配置为根据来自相邻小区的基站的X2信令来获得该相邻小区的CSI-RS端口的使用情况。
例如,X2信令可以为ENB CONFIGURATION UPDATE消息,该ENB CONFIGURATION UPDATE中包括指示该相邻小区的CSI-RS配置中的各个CSI-RS端口的使用状况的信息的信息单元。示例性地,该信息单元可以包括在ENB CONFIGURATION UPDATE消息的信息单元Served Cell Information中,例如在该信息单元中添加新的信息单元Antenna_ports_usage。
例如,该信息单元可以具有位图的形式,位图的比特数根据CSI-RS配置的CSI-RS端口数确定。在CSI-RS配置具有8个CSI-RS端口的情况下,位图可以有8个比特。位图的一个比特为0可以表示相应CSI-RS端口未被使用,位图的一个比特为1表示相应CSI-RS端口正被使用。当然,也可以采用相反的定义。
在另一个示例中,确定单元102可以根据来自中央处理装置的消息获取相邻小区的CSI-RS端口的使用情况。在该示例中,例如设置中央处理装置来收集各个小区的CSI-RS配置的CSI-RS端口的使用情况,并向各个小区提供其相邻小区的CSI-RS配置的CSI-RS端口的使用情况。中央处理装置可以与各个小区的基站通过有线或无线方式通信地耦接。中央处理装置例如可以位于核心网侧或服务器上。
或者,中央处理装置可以对收集的各个小区的CSI-RS配置的CSI-RS端口的使用情况进行更进一步的处理,例如针对一个小区获得各个CSI-RS配置的空闲CSI-RS端口对应的时频资源的信息或者除该小区的CSI-RS配置之外的其他CSI-RS配置的空闲CSI-RS端口对应的时频资源的信息,并将这些信息提供给相应的小区。在这种情况下,确定单 元102可以直接从来自中央处理装置的消息确定各个CSI-RS配置的空闲CSI-RS端口对应的时频资源。
此外,中央处理装置也可以进行进一步处理以针对一个小区获得该小区能够用于进行数据传输的其他CSI-RS配置(或各个CSI-RS配置)的空闲CSI-RS端口对应的时频资源的信息,并将这些信息提供给相应的小区。在这种情况下,确定单元102可以直接从来自中央处理装置的消息确定能够用于进行数据传输的各个CSI-RS配置的空闲CSI-RS端口对应的时频资源。
该电子设备100中的各个单元例如可以通过一个或多个处理电路来实现,该处理电路例如可以实现为芯片。
在本实施例中,电子设备100通过使得小区能够利用其他CSI-RS配置的空闲的CSI-RS端口对应的时频资源进行数据传输,提高了CSI-RS的资源利用效率。
<第二实施例>
如前所述,允许单元101可以基于确定单元102的确定结果来执行操作,也可以基于确定单元102的确定结果来决定是否继续之前的操作或对之前的操作进行相应的改变。
在一个示例中,允许单元101不进行任何判断而允许小区使用其他CSI-RS配置的空闲CSI-RS端口对应的时频资源。或者,允许单元101根据特定条件来允许或禁止小区对其他CSI-RS配置的空闲CSI-RS端口对应的时频资源的使用,下面将参照图4进行描述。
图4示出了根据本申请的一个实施例的电子设备200的功能模块框图,除了图3所示的各个单元之外,电子设备200还包括:判断单元201,被配置为判断空闲CSI-RS端口对应的时频资源是否满足第一预定条件;并且在满足第一预定条件的情况下,允许单元101允许本小区使用空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。
类似地,该电子设备200中的各个单元例如可以通过一个或多个处理电路来实现,该处理电路例如可以实现为芯片。该电子设备200例如 可以位于小区的基站侧,或者与基站以有线或无线方式通信地耦接。
例如,可以仅在空闲CSI-RS资源较多的情况下才允许小区使用空闲CSI-RS资源的一部分或全部进行数据传输。示例性地,第一预定条件为至少一部分CSI-RS配置的、能够由本小区使用的空闲CSI-RS端口对应的时频资源的数量之和超过第一预定阈值。
在一个示例中,第一预定条件为不同于本小区的自身CSI-RS配置的所有CSI-RS配置的所有空闲CSI-RS端口对应的时频资源的数量之和超过第一预定阈值,例如用下式表示:
Figure PCTCN2017077632-appb-000001
其中,Ri表示CSI-RS配置i的空闲资源数量,Th1为第一预定阈值,其中Th1例如取决于信令比特的消耗、利用空闲CSI-RS资源传输数据所提高的数据吞吐量、期望的最高数据吞吐量提升比例等因素。
在另一个示例中,至少一部分CSI-RS配置可以包括其空闲CSI-RS端口的数量超过预定值的CSI-RS配置,称为空闲CSI-RS配置。在本实施例中,能够由本小区使用的空闲CSI-RS端口被限定为非本小区CSI-RS配置的空闲CSI-RS端口。因此,这里的空闲CSI-RS配置指的是满足上述空闲CSI-RS端口数量限定的、非本小区CSI-RS配置的CSI-RS配置。在这种情况下,第一预定条件可以用下式(2)来表示。
Figure PCTCN2017077632-appb-000002
此外,还可以设置为仅允许使用空闲CSI-RS配置的空闲CSI-RS端口对应的时频资源的一部分。例如,每一个空闲CSI-RS配置能够由本小区使用的空闲CSI-RS端口对应的时频资源的数量为小于或等于预定值的固定值。在这种情况下,上述数量之和为空闲CSI-RS配置的数量与固定值的乘积。第一预定条件可以用下式(3)来表示。
Figure PCTCN2017077632-appb-000003
其中,Ci表示空闲CSI-RS配置i的能够被利用的资源的数量,对于每一个空闲CSI-RS配置而言,该值均为C,N为空闲CSI-RS配置的数量。
此外,判断单元201还可以被配置为判断空闲CSI-RS端口对应的时频资源是否满足第二预定条件,并且在满足第二预定条件的情况下,允许单元101禁止本小区使用空闲的CSI-RS端口对应的时频资源进行数据传输。
或者,判断单元201可以被配置为在本小区使用空闲的CSI-RS端口的时频资源进行数据传输期间,判断空闲CSI-RS端口对应的时频资源是否满足第二预定条件,并且在满足第二预定条件的情况下,允许单元101禁止本小区使用空闲的CSI-RS端口对应的时频资源进行数据传输。
例如,在空闲CSI-RS资源较少的情况下禁止小区使用空闲CSI-RS资源进行数据传输。示例性地,第二预定条件为至少一部分CSI-RS配置的、能够由本小区使用的空闲CSI-RS端口对应的时频资源的数量之和低于第二预定阈值。其中,时频资源的数量之和的计算方式可以采用以上所述的各种方式之一,并且可以与进行第一预定条件的判断时的计算方式相同,也可以不同,这并不是限制性的,而是可以取决于实际的应用情况来选择。
第二预定阈值例如取决于信令比特的消耗、利用空闲CSI-RS资源传输数据所提高的数据吞吐量、期望的最小数据吞吐量提升比例等因素。第二预定阈值可以小于第一预定阈值。
此外,在本小区使用空闲的CSI-RS端口的时频资源进行数据传输期间,确定单元102还可以被配置为周期性地更新CSI-RS配置的CSI-RS端口的使用情况。这是因为,各个小区中CSI-RS端口的使用情况是实时变化的,周期性地更新该使用状况能够更准确地获得CSI-RS端口的空闲状态。这样,相应地调整用于数据传输的空闲的CSI-RS端口的时频资源将有助于进一步减轻对相邻小区的CSI-RS的传输的干扰。
应该注意,相邻小区对于分配给它的CSI-RS配置的各个CSI-RS端口的使用是不受本申请的技术的影响的,即,相邻小区可以使用其CSI-RS配置的任何CSI-RS端口,而不管该CSI-RS端口是否正在被其他小区用于数据传输。在一个小区利用相邻小区的空闲CSI-RS资源传输数据时,如果该相邻小区开始使用该空闲CSI-RS资源传输CSI-RS,则由于处理的延迟,可能在一定时间范围内会对本小区当前的数据传输 产生干扰,但是由于受到干扰的数据传输的资源单元仅占一小部分,因此这种干扰在可接受的范围内。随后,在本小区检测到所使用的CSI-RS资源不再空闲后,可以停止使用CSI-RS资源来传输数据或者使用其他相邻小区的空闲CSI-RS资源来继续传输数据。
在本实施例中,通过按照特定条件来使用空闲的CSI-RS资源进行数据传输,可以优化空闲的CSI-RS资源的利用,提高CSI-RS资源的利用效率。
<第三实施例>
图5示出了根据本申请的另一个实施例的电子设备300的功能模块框图,除了图3中所示的允许单元101之外,电子设备300还包括:消息生成单元301,被配置为生成用于向本小区的用户设备指示能够使用的空闲CSI-RS端口对应的时频资源的指示消息。此外,虽然图5中未示出,但是电子设备300还可以包括前文所述的确定单元102、判断单元201中的任意一个。
类似地,该电子设备300中的各个单元例如可以通过一个或多个处理电路来实现,该处理电路例如可以实现为芯片。该电子设备300例如可以位于小区的基站侧,或者与基站以有线或无线方式通信地耦接。
在一个示例中,该指示消息包括各个CSI-RS配置的、用户设备能够使用的空闲CSI-RS端口对应的时频资源的数量的信息。由于基站和用户设备之间对于CSI-RS的端口的使用的规则的理解是一致的,例如用户设备已知要优先使用哪些CSI-RS端口,比如按照固定顺序使用CSI-RS配置的情况下,例如仅需要使用4个端口时,可以首先使用端口0-3。因此,用户设备在获知能够使用的空闲CSI-RS端口对应的时频资源的数量的信息后,即可确定要使用的时频资源单元的位置,从而使用这些时频资源进行数据传输。
其中,用户设备能够使用的空闲CSI-RS端口对应的时频资源可以为所有的空闲CSI-RS资源,也可以仅为其中的一部分,这可以例如由确定单元102根据实际需要或预先规定等确定。例如,可以以与进行第一预定条件的判断时相同的方式来确定用户设备能够使用的空闲 CSI-RS资源。
指示消息的格式可以有多种形式。图6至图9示出了指示消息的形式的示例。图6示出了一种较为完整的指示消息的示例,其中,指示消息包括各个CSI-RS配置是否有能够使用的空闲CSI-RS端口的位图信息,即图中的前X比特。位图的相应比特为0表示相应CSI-RS配置的空闲CSI-RS不可用或者无空闲CSI-RS。此外,在X比特之后,分别用Y比特来表示每一个CSI-RS配置的能够使用的空闲CSI-RS端口对应的时频资源的数量。可以使相应数量为0来表示相应CSI-RS配置的空闲CSI-RS不可用或者无空闲CSI-RS。
其中,位图的比特数由CSI-RS配置的总数确定,比如,在共有5种CSI-RS配置的情况下,位图的比特数X为5。Y的取值由最大允许使用的资源的数量来决定,例如,在CSI-RS配置包括8个端口的情况下,Y取值最大为3就足以表示各种数量情况。
图7示出了一种简化的形式,其中,省略了在前的X个比特。在图7的示例中,假定事先约定了CSI-RS配置的排列顺序,换言之,用户设备已知第一个Y比特对应于哪一个CSI-RS配置,第二个Y比特对应于哪一个CSI-RS配置,以此类推。在这种情况下,对于本小区采用的CSI-RS配置,可以将其可用CSI-RS资源数设置为0(即将其对应的Y比特均设置为0)。
图8示出了另一种简化的形式,其中,X比特后只有一个Y比特。在该示例中,用户设备能够使用的各个CSI-RS配置的空闲CSI-RS端口对应的时频资源的数量是相同的。因此,只需要一个Y比特来表示该数量的信息。X比特仍然用于表示各个CSI-RS配置是否有能够使用的空闲CSI-RS端口的位图信息。
图9示出了对图8的进一步简化的形式,其中,仅包括表示各个CSI-RS配置是否有能够使用的空闲CSI-RS端口的位图信息。在这种情况下,可以事先规定好用户设备将要使用的各个CSI-RS配置的资源的数量,即,该数量对于每个CSI-RS配置而言是固定的。对于不同的CSI-RS配置,该固定数量可以是相同的,也可以是不同的。因此,只需要通知用户设备哪个CSI-RS配置的空闲资源可用即可,而无需后面的指示具体数量的信息比特。
应该理解,以上仅是指示消息的示例,但是其形式并不限于此。此外,还可以设置更为简化的形式,例如仅用1比特来指示,当该1比特为0时,没有任何一个CSI-RS配置的空闲端口可用,当该1比特为1时,对于每一种CSI-RS配置(可以包括本小区采用的CSI-RS配置、也可以不包括本小区采用的CSI-RS配置),均可以使用事先规定好的固定数量的CSI-RS资源用于数据传输,该固定数量对于每一种CSI-RS配置可以相同也可以不同。或者,用一个Y比特来表示预先确定好的若干CSI-RS配置的要使用的资源数量(对所有配置相同)。
此外,消息生成单元301还被配置为生成用于向一个小区的用户设备指示禁止使用空闲CSI-RS端口对应的时频资源的禁止消息。在一个示例中,该禁止消息具有与上述指示消息相同的形式,只是将位图的各个比特设置为表示各个CSI-RS配置均没有可供使用的空闲资源,以及/或者将表示资源数量的比特均设置为0。在另一个示例中,可以将禁止消息生成为1比特的指令。即用户设备收到该指令后即获知被禁止使用空闲的CSI-RS资源。该方式可以有效地降低信令开销。
<第四实施例>
图10示出了根据本申请的一个实施例的信息处理设备400的功能模块框图。该信息处理设备400例如可以为基站或基站的一部分。收发单元401例如可以使用天线或通信接口实现,确定单元402、允许单元403、判断单元404例如可以通过一个或多个处理电路来实现,该处理电路例如可以实现为芯片。
在一个示例中,该信息处理设备400包括收发单元401、确定单元402和允许单元403。收发单元401可以被配置为从一个小区的相邻小区的基站接收包含该相邻小区的CSI-RS的端口使用情况的信息,其中,相邻小区为处于本小区的干扰范围内的小区。此外,确定单元402被配置为基于所接收的信息确定相邻小区的CSI-RS的端口使用情况,并基于该端口使用情况确定各个CSI-RS配置的空闲CSI-RS端口对应的时频资源,允许单元403被配置为允许一个小区使用与其CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。本实施例中的确定单元402具有与确定单元102类似的功能, 并且允许单元403具有与允许单元101类似的功能,因此在本实施例的描述中省略了相关的细节。
在该示例中,信息处理设备400还可以包括:判断单元404,被配置为判断空闲CSI-RS端口对应的时频资源是否满足第一预定条件;并且在满足第一预定条件的情况下,允许单元403允许本小区使用空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。判断单元404具有与判断单元201类似的功能,在此不再重复描述。
在该示例中,收发单元401还被配置为向相邻小区的基站发送包含本小区的CSI-RS的端口使用情况的信息。即,相邻小区的基站之间通过例如X2信令来交互有关CSI-RS的端口使用情况的信息。例如,该信息包含在ENB CONFIGURATION UPDATE消息的信息单元Served Cell Information中。关于该信息的具体配置可以参照第一实施例所述,在此不再重复。
在另一个示例中,收发单元401可以被配置为从中央管理装置接收包含小区的相邻小区的CSI-RS的端口使用情况的信息。在该示例中,相邻小区的基站之间不直接进行该信息的交互,而是通过中央管理装置来对该信息进行集中管理和提供。
在又一个示例中,收发单元401可以被配置为从中央管理装置接收与本小区的CSI-RS配置不同的其他CSI-RS配置的空闲CSI-RS端口对应的时频资源的信息,比如时频资源的数量。在该示例中,将由中央管理装置来执行确定单元402的功能,并将确定单元402的确定结果提供给本小区。此时,信息处理设备400可以包括收发单元401、允许单元403和判断单元404。或者,信息处理设备400可以仅包括收发单元401和允许单元403。
在另一个示例中,收发单元401可以被配置为从中央管理装置接收能够由本小区使用的各个CSI-RS配置的空闲CSI-RS端口。在该示例中,将由中央管理装置来执行确定单元402的功能以及判断单元404的功能,并将最终确定的结果提供给本小区。此时,信息处理设备400可以包括收发单元401和允许单元403。
此外,在本实施例中,收发单元401还被配置为向本小区的用户设 备发送指示能够使用的空闲CSI-RS端口对应的时频资源的指示消息。收发单元401还可以向本小区的用户设备发送指示禁止使用空闲CSI-RS端口对应的时频资源的禁止消息,其中,该禁止消息可以是取特定值的指示消息,也可以是专用的禁止消息,如第三实施例中所述。
根据本实施例的信息处理设备能够使得本小区使用其他CSI-RS配置的空闲CSI-RS资源进行数据传输,提高了CSI-RS资源的利用效率。
<第五实施例>
图11示出了根据本申请的一个实施例的电子设备500的功能模块框图,该电子设备500包括:确定单元501,被配置为基于从基站接收的消息确定用户设备能够用来进行数据传输的与所述基站使用的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源;以及反馈生成单元502,被配置为生成包含用户设备反馈的消息。
该电子设备500中的各个单元例如可以通过一个或多个处理电路来实现,该处理电路例如可以实现为芯片。该电子设备500例如可以位于小区的用户设备侧,或者与用户设备以有线或无线方式通信地耦接。
从基站接收到的消息例如为前文所述的包含各个CSI-RS配置的、用户设备能够使用的空闲CSI-RS端口对应的时频资源的数量的信息的指示消息。应该理解,所接收到的消息并不限于此,只要其中包含用户设备能够用于进行数据传输的空闲的CSI-RS端口对应的时频资源的信息即可。
此外,接收的消息还可以为禁止消息,在这种情况下或者在确定的时频资源的数量为0(在广义上也属于禁止消息的一种)的情况下,用户设备被禁止使用空闲的CSI-RS端口对应的时频资源进行数据传输。
无论所接收的消息的内容为何,反馈生成单元502均要生成包含用户设备反馈的消息。用户设备反馈例如包括接受与拒绝中的一种。例如可以定义1比特的信令open_close_response来进行用户设备反馈,比如1表示接受,0表示拒绝,或者采用相反的定义。
在所接收的消息为允许用户设备使用空闲的CSI-RS端口对应的时 频资源进行数据传输的情况下,用户设备反馈接受表示同意利用上述时频资源,用户设备反馈拒绝表示不同意利用上述时频资源。而在所接收的信息为禁止消息时,用户设备反馈接受表示同意不利用上述时频资源,用户设备反馈拒绝表示不同意不利用上述时频资源,例如在用户设备已使用上述时频资源传输数据的情况下,用户设备对禁止消息反馈拒绝意味着用户设备将继续使用上述时频资源。
根据本实施例的电子设备500能够使得用户设备实现对空闲的CSI-RS端口对应的时频资源的利用,提高了CSI-RS资源的利用效率。
<第六实施例>
图12示出了根据本申请的一个实施例的信息处理设备600的功能模块框图,该信息处理设备600包括:收发单元601,被配置为从基站接收消息;确定单元602,被配置为基于所接收的消息确定用户设备能够用来进行数据传输的与基站使用的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源;以及反馈生成单元603,被配置为生成包含用户设备反馈的消息,其中,收发单元601还被配置为向基站发送该包含用户设备反馈的消息。
该信息处理设备600例如可以为用户设备或用户设备的一部分。收发单元601例如可以使用天线或通信接口实现,确定单元602和反馈生成单元603例如可以通过一个或多个处理电路来实现,该处理电路例如可以实现为芯片。
本实施例中的确定单元602具有与确定单元501类似的功能,并且反馈生成单元603具有与反馈生成单元502类似的功能,因此在本实施例的描述中省略了相关的细节。
<第七实施例>
图13示出了根据本申请的一个实施例的电子设备700的功能模块框图,该电子设备700包括:存储单元701,被配置为存储各个小区的CSI-RS的端口使用情况;确定单元702,被配置为针对每一个小区,确 定其相邻小区的CSI-RS的端口使用情况。如前所述,该相邻小区可以为处于所述小区的干扰范围内的小区,或者与所述小区在地理位置上相邻的小区。
该电子设备700例如可以为中央处理装置或中央处理装置的一部分。中央处理装置例如可以在核心网侧实现或者实现为服务器等实体。存储单元701例如可以使用存储器实现,存储器例如包括各种易失性存储器和非易失性存储器。
在一个示例中,确定单元702还可以执行进一步的处理,例如,针对每一个小区,基于其端口使用情况确定与该小区的自身CSI-RS配置不同的CSI-RS配置的空闲CSI-RS端口对应的时频资源。确定单元702的功能与确定单元102的功能相同,在此不再重复。
在该示例中,如图13中的虚线框所示,电子设备700还可以包括:生成单元703,被配置为生成包含与该小区的自身CSI-RS配置不同的CSI-RS配置的空闲CSI-RS端口对应的时频资源的信息的消息。
或者,生成单元703的生成操作是基于一定条件的。如图13中的另一个虚线框所示,电子设备700还可以包括:判断单元704,被配置为针对每一个小区,判断所确定的与该小区的CSI-RS配置不同的CSI-RS配置的CSI-RS端口的空闲状况是否满足第一预定条件,并且在满足第一预定条件的情况下生成上述消息。在该情况下,生成单元703可以直接生成包含相应小区能够使用的空闲CSI-RS资源的信息的消息。
此外,判断单元704还可以被配置为:针对每一个小区,判断所确定的与该小区的CSI-RS配置不同的CSI-RS配置的空闲状况是否满足第二预定条件,并且在满足第二预定条件的情况下生成禁止消息,禁止消息表示所述小区被禁止使用空闲的CSI-RS端口进行数据传输。针对与第二预定条件相关的判断可以是在小区使用空闲的CSI-RS端口进行数据传输期间进行的,也可以是在小区没有使用空闲的CSI-RS端口进行数据传输的情况下进行的。
如图13中的另一个虚线框所示,电子设备700还可以包括:收发单元705,被配置为从基站接收相应小区的CSI-RS的端口使用情况。收发单元705例如可以使用天线或通信接口比如收发器实现,确定单元702、 生成单元703和判断单元704例如可以通过一个或多个处理电路来实现,该处理电路例如可以实现为芯片。
其中,收发单元705还可以被配置为向相应的小区的基站发送相邻小区的CSI-RS的端口使用情况或者发送生成单元703生成的消息。关于第一预定条件、第二预定条件以及消息的内容和格式在前文中已经给出了详细描述,在此不再重复。但是,应该理解,这些并不是限制性的,仅是为了便于理解而给出的示例。
此外,收发单元705还被配置为向相应的小区的基站发送禁止消息,该禁止消息表示小区被禁止使用空闲的CSI-RS端口进行数据传输。该禁止消息例如可以是1比特的信令。
可以看出,电子设备700可以仅收集和提供各个小区的CSI-RS的端口使用情况,也可以对这些端口使用情况进行进一步的处理,以获得相应小区能够使用的空闲CSI-RS资源的信息并将其提供给该小区的基站。
根据该实施例的电子设备700能够辅助小区使用空闲的CSI-RS资源进行数据传输,提高了CSI-RS资源的利用效率。
<第八实施例>
在上文的实施方式中描述电子设备和信息处理设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于电子设备和信息处理设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,电子设备和信息处理设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用电子设备和信息处理设备的硬件和/或固件。
图14示出了根据本申请的一个实施例的用于电子设备的方法的流程图,该方法包括:允许一个小区使用与所述一个小区的自身信道状态信息参考信号CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输(S11)。
如图14中的虚线框所示,该方法还可以包括:确定所述一个小区的相邻小区的CSI-RS的端口使用情况,并基于该端口使用情况确定各个CSI-RS配置的空闲CSI-RS端口对应的时频资源(S12)。此外,虽然图14中示出了步骤S12在步骤S11之前,但是并不限于此,该步骤S12也可以位于步骤S11之后。
此外,在执行步骤S11之前,还可以执行步骤S14:判断空闲CSI-RS端口对应的时频资源是否满足第一预定条件。如果满足第一预定条件(是),则处理进行到步骤S11。并随后执行步骤S17:生成用于向所述一个小区的用户设备指示能够使用的空闲CSI-RS端口对应的时频资源的指示消息。在步骤S18中接收到来自用户设备的反馈,当反馈接受时,用户设备将使用空闲的CSI-RS资源进行数据传输。该方法在步骤S20中判断空闲CSI-RS端口对应的时频资源是否满足第二预定条件,如果不满足第二预定条件,则处理进行到步骤S20,以周期性地更新CSI-RS配置的CSI-RS端口的使用情况。如果满足第二预定条件,则处理进行到步骤S16:禁止所述一个小区使用所空闲的CSI-RS端口对应的时频资源进行数据传输。接着进行到S19:生成用于向所述一个小区的用户设备指示禁止使用空闲CSI-RS端口对应的时频资源的禁止消息。此外,虽然图中未示出,但是在步骤S19之后,还可以包括接收用户设备反馈的步骤。
另一方面,当步骤S14的判断为不满足第一预定条件时,还可以进行步骤S15:判断空闲CSI-RS端口对应的时频资源是否满足第二预定条件。如果满足第二预定条件,则处理进行到步骤S16和S19。如果不满足第二预定条件,则处理可以进行到步骤S13:周期性地更新CSI-RS配置的CSI-RS端口的使用情况,步骤S13的处理与步骤S20的处理相同。此处,如果本小区尚未使用空闲CSI-RS资源进行数据传输,也可以跳过步骤S15的判断,直接回到步骤S13。
应该理解,虽然图14中示出了该方法的一种流程图的示例,但是本申请的方法的步骤并不限于此,本申请的方法可以仅包括其中的部分处理步骤,或者处理步骤的顺序并不限于图示的顺序。例如,步骤S14和S15的顺序可以互换。
作为一个示例,步骤S14中的第一预定条件为至少一部分CSI-RS 配置的、能够由所述一个小区使用的空闲CSI-RS端口对应的时频资源的数量之和超过第一预定阈值。步骤S15中的第二预定条件为至少一部分CSI-RS配置的、能够由所述一个小区使用的空闲CSI-RS端口对应的时频资源的数量之和低于第二预定阈值。
例如,至少一部分CSI-RS配置包括其空闲CSI-RS端口的数量超过预定值的CSI-RS配置,称为空闲CSI-RS配置。示例性地,每一个空闲CSI-RS配置能够由所述一个小区使用的空闲CSI-RS端口对应的时频资源的数量为小于或等于所述预定值的固定值。在这种情况下,数量之和为空闲CSI-RS配置的数量与固定值的乘积。
对于由两个或多个相邻小区使用的CSI-RS配置,可以将具有最少的CSI-RS空闲端口的相邻小区的CSI-RS配置的空闲CSI-RS端口对应的时频资源的数量作为该CSI-RS配置的空闲CSI-RS端口对应的时频资源的数量。
此外,在步骤S17中生成的指示消息包括各个CSI-RS配置的、所述用户设备能够使用的空闲CSI-RS端口对应的时频资源的数量的信息。例如,可以将用户设备能够使用的各个CSI-RS配置的空闲CSI-RS端口对应的时频资源的数量设置为相同。
在一个示例中,指示消息包括表示各个CSI-RS配置是否有能够使用的空闲CSI-RS端口的位图信息。相应数量为0或位图的相应比特为0,表示相应CSI-RS配置的空闲CSI-RS不可用。
在步骤S19中生成的禁止消息可以为具有特定取值的指示消息,也可以为1比特的指令。
在一个示例中,在步骤S13和S20中可以根据来自相邻小区的基站的X2信令来获得该相邻小区的CSI-RS端口的使用情况。X2信令例如为ENB CONFIGURATION UPDATE消息,该ENB CONFIGURATION UPDATE中包括指示该相邻小区的CSI-RS配置中的各个CSI-RS端口的使用状况的信息的信息单元。该信息单元例如具有位图的形式,位图的比特数根据CSI-RS配置的CSI-RS端口数确定,例如,位图的一个比特为0表示相应CSI-RS端口未被使用,位图的一个比特为1表示相应CSI-RS端口正被使用。该信息单元可以包括在ENB CONFIGURATION  UPDATE消息的信息单元Served Cell Information中。
此外,在步骤S13和S20中,也可以通过接收来自中央管理装置的信息来更新CSI-RS端口的使用情况。
相应地,虽然图14中未示出,但是该方法还可以包括接收包含CSI-RS的端口使用情况的信息的步骤。并且,该方法还可以包括向用户设备发送指示消息或禁止消息的步骤。
图15示出了根据本申请的另一个实施例的用于电子设备的方法的流程图,该方法包括:基于从基站接收的消息确定用户设备能够用来进行数据传输的与所述基站使用的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源(S21);以及生成包含用户设备反馈的消息(S22)。例如,该用户设备反馈包括接受与拒绝中的一种。
当从基站接收的消息为禁止消息或者所确定的时频资源的数量为0时,用户设备被禁止使用空闲的CSI-RS端口对应的时频资源进行数据传输。
如图15中的虚线框所示,该方法还可以包括:步骤S23,从基站接收消息;以及步骤S24,向基站发送包含用户设备反馈的消息。
图16示出了根据本申请的又一个实施例的用于电子设备的方法的流程图,该方法包括:存储各个小区的CSI-RS的端口使用情况(S31);以及针对每一个小区,确定其相邻小区的CSI-RS的端口使用情况(S32)。
此外,如图中的虚线框所示,该方法还可以包括步骤S33:从基站接收相应小区的CSI-RS的端口使用情况。
上述方法还可以包括步骤S34:基于端口使用情况确定与所述一个小区的自身CSI-RS配置不同的CSI-RS配置的空闲CSI-RS端口对应的时频资源。可以接着执行步骤S37和步骤S38,其中,步骤S37为生成包含与所述一个小区的自身CSI-RS配置不同的CSI-RS配置的空闲CSI-RS端口对应的时频资源的信息的消息,步骤S38为向相应的小区的基站发送所生成的该消息。此外,在不执行步骤S34的情况下,在步骤S38中还可以发送步骤S32中确定的端口使用情况。
上述方法还可以包括步骤S35:针对每一个小区,判断所确定的与 该小区的CSI-RS配置不同的CSI-RS配置的CSI-RS端口的空闲状况是否满足第一预定条件。如果满足第一预定条件(是),则进行到步骤S37以生成所述消息。如果不满足第一预定条件(否),则进行到步骤S36:针对每一个小区,判断所确定的与该小区的CSI-RS配置不同的CSI-RS配置的空闲状况是否满足第二预定条件。如果满足第二预定条件(是),则进行到步骤S39:生成禁止消息,该禁止消息表示相应小区被禁止使用空闲的CSI-RS端口进行数据传输。如果不满足第二预定条件(否),则返回到步骤S32继续更新相邻小区的CSI-RS的端口使用情况。应该理解,也可以仅进行第一预定条件的判断,当不满足第一预定条件时,即返回步骤S32,或者仅进行第二预定条件的判断。
注意,上述各个方法可以结合或单独使用,其细节在第一至第八实施例中已经进行了详细描述,在此不再重复。
为了便于理解,以下将参照图17示出基站与用户设备间的示例性信息流程。其中基站可以包括前文所述的电子设备100-300或信息处理设备400中的任意一个,用户设备可以包括前文所述的电子设备500或信息处理设备600中的任意一个。应该理解,这些信息流程仅是为了说明的用途,而不是限制性的。
图17示出了基站与用户设备(UE)以及基站之间的信息流程的一个示例。其中,将要利用空闲CSI-RS资源进行数据传输的小区的基站作为基站1,基站1的相邻基站为处于小区1的干扰范围内的小区的基站。注意,图17中虽然示出了一个相邻基站,但是相邻基站的数量并不一定为1,而是可能有多个,这里仅是一个示例。
在图17中,相邻基站向其各个用户设备发送波束赋形CSI-RS,用户设备进行测量之后,向该相邻基站发送CSI反馈,从而该相邻基站能够获得CSI-RS的端口使用情况。随后,该相邻基站向基站1提供该端口使用状况。在图17中通过X2信令ENB CONFIGURATION UPDATE来传递CSI-RS的端口使用情况,具体地,例如可以通过前文所述的在ENB CONFIGURATION UPDATE消息的信息单元Served Cell Information中增加新的信息单元Antenna_ports-usage来承载CSI-RS的端口使用情况的信息,信息单元Antenna_ports-usage例如可以具有位图的形式。基站1在收到ENB CONFIGURATION UPDATE之后,向相 应的相邻基站发送ENB CONFIGURATION UPDATE ACKNOWLEDGE来确认收到该消息。
接下来,基站1对接收到的来自(多个)相邻基站的CSI-RS的端口使用情况进行处理,例如获得各个CSI-RS配置的CSI-RS的空闲端口的数量,并判断CSI-RS端口的空闲状况是否满足第一预定条件。如果满足第一预定条件,则向基站1的用户设备发送指示其能够使用的空闲CSI-RS资源的指示消息Allowed_Reresource,该指示消息相当于开启利用空闲CSI-RS资源的消息。其中,关于第一预定条件和指示消息的描述请参见前文的细节。
基站1的用户设备接收到指示消息后,向基站1发出用户设备反馈Open_close_response,以告知基站1其接受或拒绝上述指示消息指示的开启。比如,在Open_close_response为1时表示接受开启,Open_close_response为0时表示拒绝开启。
图18示出了在基站1使用空闲CSI-RS资源进行数据传输期间,基站与用户设备(UE)以及基站之间的信息流程的一个示例。其中,与图17相比,增加了在基站1使用空闲CSI-RS资源进行数据传输期间,对来自相邻基站的CSI-RS端口的空闲状况进行是否满足第二预定条件的判断。
图18中示出了不满足第二预定条件的情形。此时将向用户设备提供其能够使用的空闲CSI-RS资源的指示消息Allowed_Reresource,以使得用户设备能够继续使用当前空闲的CSI-RS资源进行数据传输。类似地,用户设备还向基站1发送用户设备反馈。
图19示出了在基站1使用空闲CSI-RS资源进行数据传输期间,基站与用户设备(UE)以及基站之间的信息流程的另一个示例。在该示例中,满足第二预定条件,基站1向用户设备发送禁止消息,以禁止用户设备使用空闲的CSI-RS资源进行数据传输。类似地,用户设备还向基站1发送用户设备反馈。
图20-22示出了基站通过中央管理装置来获取有关空闲CSI-RS资源的信息的信息流程的示例。应该注意,在基站与其用户设备侧的流程可以与图17-19中的相同,因此,图中仅示出了与图17的情况相同的部分, 但是图18和图19的情况同样适用于图20-22的基站与其用户设备侧的信息交互部分。
在图20-22中,左侧的基站代表中央管理装置所管理的各个基站,其包括基站1。在图20中,基站1从中央管理装置获取CSI-RS端口的使用状况,并根据该使用状况获得各个CSI-RS配置的空闲的CSI-RS资源,判断是否满足第一预定条件。在满足第一预定条件的情况下,指示用户设备使用空闲的CSI-RS资源进行数据传输。
在图21中,由中央管理装置对CSI-RS端口的使用状况进行进一步处理,以获得各个CSI-RS配置的空闲的CSI-RS资源,并将相关信息提供给基站1。基站1判断是否满足第一预定条件。在满足第一预定条件的情况下,指示用户设备使用空闲的CSI-RS资源进行数据传输。
而在图22中,中央管理装置对各个CSI-RS配置的空闲的CSI-RS资源进行进一步处理,例如进行是否满足第一预定条件等的判断,从而获得基站1能够使用的空闲的CSI-RS资源,并将其提供给基站1。在这种情况下,基站1不需要再进行任何处理,可以直接指示用户设备使用这些CSI-RS资源进行数据传输。
此外,关于本技术的描述同样地适用于使用Cell-Specific波束赋形CSI-RS、UE-Specific波束赋形CSI-RS、非周期波束赋形CSI-RS或其任意组合的情况。
<应用示例>
本公开内容的技术能够应用于各种产品。例如,电子设备700可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。电子设备700可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
此外,以上提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及 设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于基站的应用示例]
(第一应用示例)
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图23所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图23示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线 通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图23所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图23所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图23示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图23所示的eNB 800中,参照图10所描述的收发单元401可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行允许单元101和403、确定单元102和402、判断单元201和404、消息生成单元301的功能来执行能够用于数据传输的空闲CSI-RS资源的确定和通知。
(第二应用示例)
图24是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图24所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图24示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图24描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图24描述的BB处理器826相同。如图24所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图24示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图24所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图24示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单 个RF电路864。
在图24所示的eNB 830中,参照图10所描述的收发单元401可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以控制器851实现。例如,控制器851可以通过执行允许单元101和403、确定单元102和402、判断单元201和404、消息生成单元301的功能来执行能够用于数据传输的空闲CSI-RS资源的确定和通知。
[关于用户设备的应用示例]
(第一应用示例)
图25是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913 和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图25所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图25示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图25所示,智能电话900可以包括多个天线916。虽然图25示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图25所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图25所示的智能电话900中,参照图12所描述的收发单元601 可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行确定单元501或602、反馈生成单元502或603的功能来实现使用空闲CSI-RS资源进行的数据传输或该数据传输的禁止。
(第二应用示例)
图26是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来 传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图26所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图26示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图26所示,汽车导航设备920可以包括多个天线937。虽然图26示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图26所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图26示出的汽车导航设备920中,参照图12所描述的收发单元601可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行确定单元501或602、反馈生成单元502或603的功能来实现使用空闲CSI-RS资源进行的数据传输或该数据传输的禁止。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且 将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图27所示的通用计算机2700)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图27中,中央处理单元(CPU)2701根据只读存储器(ROM)2702中存储的程序或从存储部分2708加载到随机存取存储器(RAM)2703的程序执行各种处理。在RAM 2703中,也根据需要存储当CPU2701执行各种处理等等时所需的数据。CPU 2701、ROM 2702和RAM2703经由总线2704彼此连接。输入/输出接口2705也连接到总线2704。
下述部件连接到输入/输出接口2705:输入部分2706(包括键盘、鼠标等等)、输出部分2707(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2708(包括硬盘等)、通信部分2709(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2709经由网络比如因特网执行通信处理。根据需要,驱动器2710也可连接到输入/输出接口2705。可移除介质2711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2710上,使得从中读出的计算机程序根据需要被安装到存储部分2708中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2711安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图27所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2711。可移除介质2711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2702、存储部分2708中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (36)

  1. 一种电子设备,包括:
    处理电路,该处理电路被配置为:
    允许一个小区使用与所述一个小区的自身信道状态信息参考信号CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    确定所述一个小区的相邻小区的CSI-RS的端口使用情况,并基于该端口使用情况确定各个CSI-RS配置的空闲CSI-RS端口对应的时频资源。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    判断所述空闲CSI-RS端口对应的时频资源是否满足第一预定条件;并且
    在满足所述第一预定条件的情况下允许所述一个小区使用所述空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。
  4. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    判断所述空闲CSI-RS端口对应的时频资源是否满足第二预定条件,并且
    在满足所述第二预定条件的情况下,禁止所述一个小区使用所述空闲的CSI-RS端口对应的时频资源进行数据传输。
  5. 根据权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    在所述一个小区使用所述空闲的CSI-RS端口的时频资源进行数据传输期间,判断所述空闲CSI-RS端口对应的时频资源是否满足第二预 定条件,并且
    在满足所述第二预定条件的情况下,禁止所述一个小区使用所述空闲的CSI-RS端口对应的时频资源进行所述数据传输。
  6. 根据权利要求3所述的电子设备,其中,所述第一预定条件为至少一部分CSI-RS配置的、能够由所述一个小区使用的空闲CSI-RS端口对应的时频资源的数量之和超过第一预定阈值。
  7. 根据权利要求4所述的电子设备,其中,所述第二预定条件为至少一部分CSI-RS配置的、能够由所述一个小区使用的空闲CSI-RS端口对应的时频资源的数量之和低于第二预定阈值。
  8. 根据权利要求6或7所述的电子设备,其中,所述至少一部分CSI-RS配置包括其空闲CSI-RS端口的数量超过预定值的CSI-RS配置,称为空闲CSI-RS配置。
  9. 根据权利要求8所述的电子设备,其中,每一个所述空闲CSI-RS配置能够由所述一个小区使用的空闲CSI-RS端口对应的时频资源的数量为小于或等于所述预定值的固定值。
  10. 根据权利要求9所述的电子设备,其中,所述数量之和为所述空闲CSI-RS配置的数量与所述固定值的乘积。
  11. 根据权利要求2所述的电子设备,其中,对于由两个或多个相邻小区使用的CSI-RS配置,将具有最少的CSI-RS空闲端口的相邻小区的CSI-RS配置的空闲CSI-RS端口对应的时频资源的数量作为该CSI-RS配置的空闲CSI-RS端口对应的时频资源的数量。
  12. 根据权利要求1至7中的任意一项所述的电子设备,其中,所述处理电路还被配置为在所述一个小区使用所述空闲的CSI-RS端口的时频资源进行数据传输期间,周期性地更新所述CSI-RS配置的CSI-RS端口的使用情况。
  13. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    生成用于向所述一个小区的用户设备指示能够使用的空闲CSI-RS端口对应的时频资源的指示消息。
  14. 根据权利要求13所述的电子设备,其中,所述指示消息包括各个CSI-RS配置的、所述用户设备能够使用的空闲CSI-RS端口对应的时频资源的数量的信息。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为将所述用户设备能够使用的各个CSI-RS配置的空闲CSI-RS端口对应的时频资源的数量设置为相同。
  16. 根据权利要求15所述的电子设备,其中,所述指示消息包括表示各个CSI-RS配置是否有能够使用的空闲CSI-RS端口的位图信息。
  17. 根据权利要求4或5所述的电子设备,其中,所述处理电路还被配置为生成用于向所述一个小区的用户设备指示禁止使用所述空闲CSI-RS端口对应的时频资源的禁止消息。
  18. 一种信息处理设备,包括:
    天线,被配置为从一个小区的相邻小区的基站接收包含该相邻小区的CSI-RS的端口使用情况的信息;以及
    处理电路,被配置为:
    基于所述天线接收的所述信息确定所述相邻小区的CSI-RS的端口使用情况,并基于该端口使用情况确定各个CSI-RS配置的空闲CSI-RS端口对应的时频资源;以及
    允许所述一个小区使用与所述一个小区的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。
  19. 根据权利要求18所述的信息处理设备,其中,所述天线还被配置为向所述相邻小区的基站发送包含所述一个小区的CSI-RS的端口使用情况的信息。
  20. 根据权利要求18所述的信息处理设备,其中,所述天线还被配置为向所述一个小区的用户设备发送指示能够使用的空闲CSI-RS端口对应的时频资源的指示消息。
  21. 根据权利要求18所述的信息处理设备,其中,所述天线还被配置为向所述一个小区的用户设备发送指示禁止使用所述空闲CSI-RS端 口对应的时频资源的禁止消息。
  22. 一种电子设备,包括:
    处理电路,被配置为:
    基于从基站接收的消息确定用户设备能够用来进行数据传输的与所述基站使用的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源;以及
    生成包含用户设备反馈的消息。
  23. 根据权利要求22所述的电子设备,其中,所述用户设备反馈包括接受与拒绝中的一种。
  24. 根据权利要求22所述的电子设备,其中,当从基站接收的消息为禁止消息或者所确定的时频资源的数量为0时,所述用户设备被禁止使用所述空闲的CSI-RS端口对应的时频资源进行数据传输。
  25. 一种信息处理设备,包括:
    天线,被配置为从基站接收消息;
    处理电路,被配置为:
    基于所述天线接收的所述消息确定用户设备能够用来进行数据传输的与所述基站使用的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源;以及
    生成包含用户设备反馈的消息,
    其中,所述天线还被配置为向所述基站发送所述包含用户设备反馈的消息。
  26. 一种电子设备,包括:
    存储器,被配置为存储各个小区的CSI-RS的端口使用情况;
    处理电路,被配置为针对每一个小区,确定其相邻小区的CSI-RS的端口使用情况。
  27. 根据权利要求26所述的电子设备,其中,所述处理电路还被配置为针对每一个小区,基于其端口使用情况确定与所述小区的自身 CSI-RS配置不同的CSI-RS配置的空闲CSI-RS端口对应的时频资源。
  28. 根据权利要求26所述的电子设备,其中,所述处理电路还被配置为生成包含与所述小区的自身CSI-RS配置不同的CSI-RS配置的空闲CSI-RS端口对应的时频资源的信息的消息。
  29. 根据权利要求28所述的电子设备,其中,所述处理电路还被配置为:针对每一个小区,判断所确定的与该小区的CSI-RS配置不同的CSI-RS配置的CSI-RS端口的空闲状况是否满足第一预定条件,并且在满足所述第一预定条件的情况下生成所述消息。
  30. 根据权利要求28或29所述的电子设备,其中,所述处理电路还被配置为:针对每一个小区,判断所确定的与该小区的CSI-RS配置不同的CSI-RS配置的空闲状况是否满足第二预定条件,并且在满足所述第二预定条件的情况下生成禁止消息,所述禁止消息表示所述小区被禁止使用所述空闲的CSI-RS端口进行数据传输。
  31. 根据权利要求28所述的电子设备,还包括:
    收发器,被配置为从基站接收相应小区的CSI-RS的端口使用情况。
  32. 根据权利要求31所述的信息处理设备,其中,所述收发器还被配置为向相应的小区的基站发送所述处理电路生成的所述消息或者其相邻小区的CSI-RS的端口使用情况。
  33. 根据权利要求31所述的信息处理设备,其中,所述收发器还被配置为向相应的小区的基站发送禁止消息,所述禁止消息表示所述小区被禁止使用所述空闲的CSI-RS端口进行数据传输。
  34. 一种用于电子设备的方法,包括:
    允许一个小区使用与所述一个小区的自身信道状态信息参考信号CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源的至少一部分进行数据传输。
  35. 一种用于电子设备的方法,包括:
    基于从基站接收的消息确定用户设备能够用来进行数据传输的与所述基站使用的自身CSI-RS配置不同的CSI-RS配置的空闲的CSI-RS端口对应的时频资源;以及
    生成包含用户设备反馈的消息。
  36. 一种用于电子设备的方法,包括:
    存储各个小区的CSI-RS的端口使用情况;
    针对每一个小区,确定其相邻小区的CSI-RS的端口使用情况。
PCT/CN2017/077632 2016-04-01 2017-03-22 电子设备和用于电子设备的方法、信息处理设备 WO2017167082A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17773112.2A EP3439392A4 (en) 2016-04-01 2017-03-22 ELECTRONIC DEVICE, METHOD FOR APPLICATION TO AN ELECTRONIC DEVICE AND DATA PROCESSING DEVICE
US16/066,390 US10951289B2 (en) 2016-04-01 2017-03-22 Electronic device, method applied to electronic device, and data processing device for reusing idle CSI-RS ports of an adjacent cell
AU2017243530A AU2017243530B2 (en) 2016-04-01 2017-03-22 Electronic device, method applied to electronic device, and data processing device
KR1020187017673A KR102369564B1 (ko) 2016-04-01 2017-03-22 전자 디바이스, 전자 디바이스에 적용되는 방법, 및 데이터 처리 디바이스
CN201780005027.1A CN108432320A (zh) 2016-04-01 2017-03-22 电子设备和用于电子设备的方法、信息处理设备
CA3018265A CA3018265A1 (en) 2016-04-01 2017-03-22 Electronic device, method applied to electronic device, and data processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610204474.7 2016-04-01
CN201610204474.7A CN107294687A (zh) 2016-04-01 2016-04-01 电子设备和用于电子设备的方法、信息处理设备

Publications (1)

Publication Number Publication Date
WO2017167082A1 true WO2017167082A1 (zh) 2017-10-05

Family

ID=59963484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077632 WO2017167082A1 (zh) 2016-04-01 2017-03-22 电子设备和用于电子设备的方法、信息处理设备

Country Status (7)

Country Link
US (1) US10951289B2 (zh)
EP (1) EP3439392A4 (zh)
KR (1) KR102369564B1 (zh)
CN (2) CN107294687A (zh)
AU (1) AU2017243530B2 (zh)
CA (1) CA3018265A1 (zh)
WO (1) WO2017167082A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096271A1 (zh) * 2017-11-17 2019-05-23 中兴通讯股份有限公司 信道状态信息csi编码方法及装置、存储介质和处理器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112010B1 (ko) * 2017-05-03 2020-05-18 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 수신하기 위한 방법 및 이를 위한 장치
CN110999456B (zh) 2017-08-11 2023-05-05 高通股份有限公司 具有可配置带宽的csirs的传输、接收和配置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647751A (zh) * 2011-02-17 2012-08-22 上海贝尔股份有限公司 协同多点传输中确定信道状态的方法
CN103155456A (zh) * 2010-08-11 2013-06-12 株式会社泛泰 发送静默信息的装置和方法以及利用其获取信道状态的装置和方法
WO2014051374A1 (en) * 2012-09-27 2014-04-03 Lg Electronics Inc. Method and apparatus for transmitting or receiving reference signal in wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873615A (zh) * 2009-04-27 2010-10-27 松下电器产业株式会社 无线通信系统及其下行链路接收功率检测方法
CN102195741A (zh) * 2010-03-10 2011-09-21 华为技术有限公司 信道状态信息参考信号的传输方法和装置
CN101867457B (zh) * 2010-06-21 2016-01-20 中兴通讯股份有限公司 信道状态信息的处理方法及用户设备
US8675558B2 (en) * 2011-01-07 2014-03-18 Intel Corporation CQI definition for transmission mode 9 in LTE-advanced
KR20120093026A (ko) * 2011-02-14 2012-08-22 주식회사 팬택 무선통신 시스템에서의 참조신호 할당방법과 할당장치, 및 그를 이용한 참조신호 수신방법과 장치
US9094855B2 (en) * 2012-05-30 2015-07-28 Intel Corporation Measurement of nodes in coordinated multipoint (CoMP) systems
EP2946587A4 (en) * 2013-01-17 2016-09-28 Intel Ip Corp CENTRALIZED PARTITIONING OF USER DEVICES IN A HETEROGENIC WIRELESS NETWORK
US9980314B2 (en) * 2013-09-24 2018-05-22 Zte Wistron Telecom Ab Method and apparatus for irregular signal transmission in a system with reception gaps
US10236951B2 (en) * 2015-04-10 2019-03-19 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155456A (zh) * 2010-08-11 2013-06-12 株式会社泛泰 发送静默信息的装置和方法以及利用其获取信道状态的装置和方法
CN102647751A (zh) * 2011-02-17 2012-08-22 上海贝尔股份有限公司 协同多点传输中确定信道状态的方法
WO2014051374A1 (en) * 2012-09-27 2014-04-03 Lg Electronics Inc. Method and apparatus for transmitting or receiving reference signal in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439392A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096271A1 (zh) * 2017-11-17 2019-05-23 中兴通讯股份有限公司 信道状态信息csi编码方法及装置、存储介质和处理器
US11601176B2 (en) 2017-11-17 2023-03-07 Zte Corporation Channel state information encoding method and apparatus, storage medium and processor

Also Published As

Publication number Publication date
AU2017243530A1 (en) 2018-04-26
CN108432320A (zh) 2018-08-21
KR20180132601A (ko) 2018-12-12
KR102369564B1 (ko) 2022-03-03
CN107294687A (zh) 2017-10-24
US10951289B2 (en) 2021-03-16
AU2017243530B2 (en) 2022-03-10
EP3439392A1 (en) 2019-02-06
US20190020395A1 (en) 2019-01-17
EP3439392A4 (en) 2019-04-03
CA3018265A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2017050209A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
WO2017050210A1 (zh) 无线通信系统中的电子设备和无线通信方法
KR102640011B1 (ko) 무선 통신 시스템에서의 장치 및 방법, 및 컴퓨터-판독가능 저장 매체
WO2017166538A1 (zh) 无线通信系统中的电子设备和通信方法
WO2017076250A1 (zh) 无线通信设备和无线通信方法
US11356153B2 (en) Device and method in radio communication system, and computer-readable storage medium
WO2017076178A1 (zh) 基站侧和用户设备侧的装置及方法、无线通信系统
WO2019137308A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN109314553A (zh) 无线通信系统中的电子设备和方法以及无线通信系统
WO2019096239A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN110506428B (zh) 频谱管理装置和方法、频谱协调装置和方法以及电子设备
WO2016155571A1 (zh) 用于无线通信的装置和方法
WO2019001374A1 (zh) 用于无线通信的电子设备和方法
JP7131549B2 (ja) 無線通信システムにおける電子機器、及び方法
TWI654895B (zh) Communication control device, communication control method, and terminal device
WO2017167082A1 (zh) 电子设备和用于电子设备的方法、信息处理设备
WO2018223982A1 (zh) 无线通信系统中的装置和方法
WO2018205963A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US10862561B2 (en) Electronic device and method for network control terminal and network node
WO2023185562A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022156608A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021185111A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2024027676A1 (zh) 用于分层联邦学习网络中的切换的装置、方法和介质
WO2023208043A1 (zh) 用于无线通信系统的电子设备、方法和存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017243530

Country of ref document: AU

Date of ref document: 20170322

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187017673

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3018265

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773112

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773112

Country of ref document: EP

Kind code of ref document: A1