WO2017050209A1 - 用于无线通信的基站侧和用户设备侧的装置及方法 - Google Patents

用于无线通信的基站侧和用户设备侧的装置及方法 Download PDF

Info

Publication number
WO2017050209A1
WO2017050209A1 PCT/CN2016/099450 CN2016099450W WO2017050209A1 WO 2017050209 A1 WO2017050209 A1 WO 2017050209A1 CN 2016099450 W CN2016099450 W CN 2016099450W WO 2017050209 A1 WO2017050209 A1 WO 2017050209A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
csi
resource
antenna ports
pattern
Prior art date
Application number
PCT/CN2016/099450
Other languages
English (en)
French (fr)
Inventor
徐瑨
金炳丞
高程
刘思綦
陈晋辉
Original Assignee
索尼公司
徐瑨
金炳丞
高程
刘思綦
陈晋辉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 徐瑨, 金炳丞, 高程, 刘思綦, 陈晋辉 filed Critical 索尼公司
Priority to US15/758,646 priority Critical patent/US10666478B2/en
Priority to CA2998419A priority patent/CA2998419A1/en
Priority to KR1020187011044A priority patent/KR20180057664A/ko
Priority to EP16848090.3A priority patent/EP3352395A4/en
Priority to JP2018510066A priority patent/JP2018534802A/ja
Publication of WO2017050209A1 publication Critical patent/WO2017050209A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0006Combination with other multiplexing techniques with CDM/CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and more particularly to the generation of reference signal patterns, and more particularly to an apparatus and method for base station side and user equipment side for wireless communication.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MIMO Multiple Input Multiple Output
  • OFDM is a spread spectrum technique of adjusting data on a plurality of subcarriers within an OFDM symbol, and the subcarriers are spaced apart at an accurate frequency, which provides orthogonality between subcarriers.
  • a guard interval such as a cyclic prefix (CP) may be added to each OFDM symbol to prevent inter-OFDM interference.
  • CP cyclic prefix
  • the cyclic prefix includes a regular cyclic prefix and an extended cyclic prefix.
  • MIMO is a multi-antenna technology that plays an important role in improving the peak rate and reliability of data transmission, extending coverage, suppressing interference, increasing system capacity, and increasing system throughput. Faced with the increasing demand for rate and spectrum efficiency, the enhancement and optimization of MIMO technology has always been an important direction for the evolution of LTE systems. Limited to the traditional base station antenna architecture, the existing MIMO transmission scheme can generally only control the spatial distribution characteristics of the signal in the horizontal plane, and has not fully utilized the degree of freedom of the vertical dimension in the 3D channel, and has not dig deep into the MIMO technology. The potential to improve the overall efficiency and performance of the mobile communication system and the end user experience.
  • 3D MIMO technology can split each vertical antenna element into multiple layers without changing the existing antenna size, thus developing another vertical direction spatial dimension of MIMO, and then pushing MIMO technology to a higher level.
  • Development phase for LTE transmission technology The performance improvement opens up a wider space, making it possible to further reduce inter-cell interference, improve system throughput and spectrum efficiency.
  • the number of antenna ports that can be used to transmit reference signals in 3D MIMO is increased, so the reference signal pattern is no longer applicable, and a reference signal pattern suitable for more antenna ports of 3D MIMO needs to be developed.
  • an apparatus for a base station side for wireless communication comprising: a sequence generating unit configured to generate a reference signal sequence; and a resource mapping unit configured to be configured to transmit a reference signal
  • the number of antenna ports determines a reference signal pattern formed by the mapping relationship between the antenna port and the resource unit of the physical transmission resource, and maps the reference signal sequence to the resource unit for transmission based on the reference signal pattern, wherein the reference signal pattern includes the antenna Code division multiplexing of resource elements in the frequency domain between ports.
  • an apparatus for user equipment side for wireless communication including: a storage unit, a reference signal pattern formed by a mapping relationship between a predetermined antenna port and a resource unit of a physical transmission resource.
  • a determining unit configured to determine a physical resource unit corresponding to the current reference signal according to the reference signal pattern and related parameters of the reference signal from the base station side; and a measuring unit configured to measure the reference on the determined physical resource unit
  • the signal is used to report the measured information to the base station side, wherein the reference signal pattern includes code division multiplexing of the resource units in the frequency domain between the antenna ports.
  • a method of a base station side in a wireless communication system includes: generating a reference signal sequence; and determining a resource unit of the antenna port and the physical transmission resource according to the number of antenna ports used to transmit the reference signal a reference signal pattern formed by the mapping relationship, and mapping the reference signal sequence to the resource unit for transmission based on the reference signal pattern, wherein the reference signal pattern includes code division of the resource unit in the frequency domain between the antenna ports use.
  • a user equipment side for wireless communication includes: determining, according to the stored reference signal pattern and related parameters of a reference signal from a base station side, a physical resource unit corresponding to a current reference signal, where the reference signal pattern is composed of a predetermined antenna port and a resource unit of a physical transmission resource Constructing a mapping relationship; and measuring a reference signal on the determined physical resource unit to report the measured information to the base station side, wherein the reference signal pattern includes code division multiplexing of the resource unit in the frequency domain between the antenna ports .
  • the power gain can be kept not exceeded when the number of antenna ports for transmitting the reference signal is increased. 6dB (and thus can be implemented with the power amplifier of the current antenna) and reduce power waste.
  • FIG. 1 is a block diagram showing the structure of an apparatus for a base station side for wireless communication according to an embodiment of the present application
  • FIG. 2 is a diagram showing an example of a resource grid of one physical resource block (PRB) when a regular cyclic prefix is used for each OFDM symbol;
  • PRB physical resource block
  • FIG. 3 is a diagram showing an illustrative example of code division multiplexing a resource unit in a frequency domain by a first antenna port and a second antenna port;
  • FIG. 3 is a diagram showing an illustrative example of code-multiplexing a resource unit by a first antenna port and a second antenna port in the time domain and in the frequency domain;
  • FIG. 4 is an explanatory diagram showing a specific multiplexing situation of (b) of FIG. 3;
  • FIG. 5 shows an example of two schemes of a CSI-RS pattern of a frequency division duplex (FDD) frame using a conventional cyclic prefix in the case where the number of antenna ports is 16.
  • FDD frequency division duplex
  • FIG. 6 shows an example of two other schemes of a CSI-RS pattern of an FDD frame using a conventional cyclic prefix in the case where the number of antenna ports is 16.
  • FIG. 7 shows an example of another scheme of a CSI-RS pattern of an FDD frame using a conventional cyclic prefix in the case where the number of antenna ports is 16.
  • FIG. 8 shows an example of a scheme of a CSI-RS pattern of an FDD frame using a conventional cyclic prefix in the case where the number of antenna ports is 32;
  • FIG. 9 shows an example of another scheme of a CSI-RS pattern of an FDD frame using a conventional cyclic prefix in the case where the number of antenna ports is 32;
  • FIG. 10 shows an example of three schemes of a CSI-RS pattern of an FDD frame using a conventional cyclic prefix in the case where the number of antenna ports is 12.
  • 11 shows an example of two schemes of a CSI-RS pattern of an FDD frame using an extended cyclic prefix in the case where the number of antenna ports is 16.
  • FIG. 12 shows an example of another scheme of a CSI-RS pattern of an FDD frame employing an extended cyclic prefix in the case where the number of antenna ports is 16.
  • FIG. 13 shows an example of two schemes of a CSI-RS pattern of an FDD frame employing an extended cyclic prefix in the case where the number of antenna ports is 12.
  • FIG. 14 shows an example of a scheme of a CSI-RS pattern of a TDD (Time Division Duplex) frame using a conventional cyclic prefix in the case where the number of antenna ports is 16.
  • FIG. 15 shows an example of a scheme of a CSI-RS pattern of a TDD frame using a regular cyclic prefix in the case where the number of antenna ports is 12.
  • 16 shows an example of another scheme of a CSI-RS pattern of a TDD frame using a regular cyclic prefix in the case where the number of antenna ports is 16.
  • FIG. 17 shows an example of two schemes of a CSI-RS pattern of a TDD frame employing an extended cyclic prefix in the case where the number of antenna ports is 16.
  • FIG. 18 shows an example of a scheme of a CSI-RS pattern of a TDD frame employing an extended cyclic prefix in the case where the number of antenna ports is 12.
  • FIG. 19 shows an example of a CSI-RS pattern under a regular cyclic prefix on a special subframe DwPTS for a TDD mode
  • 21 is a block diagram showing the structure of a device 200 on the user equipment side for wireless communication according to an embodiment of the present application;
  • 22 is a flowchart showing a method of a base station side in a wireless communication system according to an embodiment of the present application
  • FIG. 23 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 24 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 25 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 26 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 27 is a block diagram of an exemplary structure of a general purpose personal computer in which a method and/or apparatus and/or system in accordance with an embodiment of the present invention may be implemented.
  • FIG. 1 shows a block diagram of a structure of a device 100 on a base station side for wireless communication according to an embodiment of the present application.
  • the apparatus 100 includes: a sequence generating unit 101 configured to generate a reference signal sequence; and a resource mapping unit 102 configured to determine an antenna port and a physical transmission resource according to the number of antenna ports used to transmit the reference signal a reference signal pattern formed by the mapping relationship of the resource units, and mapping the reference signal sequence to the resource unit for transmission based on the reference signal pattern, wherein the reference signal pattern includes a code for the resource unit in the frequency domain between the antenna ports Sub-multiplexing (ie, simultaneous transmission on the same resource unit after orthogonal code processing).
  • a sequence generating unit 101 configured to generate a reference signal sequence
  • a resource mapping unit 102 configured to determine an antenna port and a physical transmission resource according to the number of antenna ports used to transmit the reference signal a reference signal pattern formed by the mapping relationship of the resource units, and mapping the reference signal sequence to the resource unit for transmission based on the reference
  • each frame is divided into 10 equal-sized subframes, each of which includes two consecutive time slots, and the two consecutive time slots correspond to one physical resource block (Physical Resource Block).
  • PRB Physical Resource Block
  • a resource grid may be used to represent a physical transmission resource of a PRB whose length is equal to the length of the subframe, and the resource grid of the PRB is divided into multiple resource units.
  • the PRB includes 12 consecutive subcarriers in the frequency domain, and includes 14 consecutive OFDM symbols when each OFDM symbol adopts a regular cyclic prefix in the time domain, so the PRB is divided into 168 resource elements, and when each OFDM The symbol uses 6 consecutive OFDM symbols when the extended cyclic prefix is used, so the PRB is divided into 144 resource units.
  • FIG. 2 shows, as an example, a resource grid of one PRB for each OFDM symbol using a conventional cyclic prefix, where the horizontal axis represents time and the vertical axis represents frequency. All resource grid diagrams in this application are defined as such, and are not described separately below.
  • the resource mapping unit 102 maps it to the appropriate resource unit for transmission.
  • the resource unit of the physical transmission resource that is, the reference signal pattern.
  • the number of antenna ports for transmitting reference signals is increasing, for example, by the existing 1, 2, 4 and 8 antenna ports to 12, 16, 32 and 64. Antenna ports, etc. Therefore, it is necessary to design a new mapping relationship for the reference signal of the number of antenna port extensions. Since the number or location of resource units used is different when the number of antenna ports is different, the number of different antenna ports corresponds to different mapping relationships.
  • the resource mapping unit 102 determines the reference signal pattern composed of the above mapping relationship according to the number of antenna ports for transmitting the reference signal before performing mapping.
  • resource elements are code-multiplexed between the antenna ports in the frequency domain, for example, two antenna ports collectively multiplex two resource elements in one vertical column shown in FIG. 2.
  • the resource mapping unit 102 is two antenna ports, ie, a first antenna port.
  • the second antenna port configuration corresponds to at least two shared resource units of the same OFDM symbol (ie, located in the same column of FIG. 2), and orthogonal packet codes orthogonal to each other are configured for the first antenna port and the second antenna port, respectively (Orthogonal cover code, OCC) to perform code division multiplexing of resource elements in the frequency domain between antenna ports.
  • FIG. 3 shows an example in which the first antenna port 1 and the second antenna port 2 code-multiplex the resource elements in the frequency domain, it being understood that although in the figure, ports 1 and 2 are shown
  • the neighboring resource units are multiplexed in the frequency domain, but are not limited thereto, and the resource units may also be non-adjacent.
  • the reference signal pattern may further include code division multiplexing of resource elements in the time domain between antenna ports. As shown in (b) of FIG. 3, an example in which the antenna ports 15, 16, 19, and 20 collectively multiplex four "Tian"-shaped resource units is shown, and the specific multiplexing thereof is as shown in FIG. Time domain code division multiplexing and frequency domain code division multiplexing.
  • resource mapping unit 102 configures at least two antenna ports of port numbers having the same parity to code division multiplex in the frequency domain. For example, in the example of (b) of FIG. 3, ports 15 and 19, both of which are odd, are code division multiplexed in the frequency domain, and ports 16 and 20, both of which are even, are code division multiplexed in the frequency domain. Meanwhile, the odd port 15 and the even port 16 are code division multiplexed in the time domain, and the odd port 19 and the even port 20 are code division multiplexed in the time domain, that is, the mixed frequency domain is adopted in the example of (b) of FIG. Code division multiplexing and time domain code division multiplexing.
  • the number of antenna ports for performing code division multiplexing in the frequency domain or code division multiplexing in the time domain may also be more than two, for example, four.
  • resource mapping unit 102 can configure at least one antenna port pair of adjacent odd and even port numbers to code division multiplex in the frequency domain. Still taking (b) of FIG. 3 as an example, the odd port 15 and the even port 16 form an antenna port pair, and the odd port 19 and the even port 20 form an antenna port pair.
  • the code division multiplexing length is 2, for example, each The antenna ports in the antenna port pair are time-division code-multiplexed.
  • the code division multiplexing length is 4, frequency-domain code division multiplexing is also performed on the two antenna port pairs.
  • the resource mapping unit 102 can also be configured to adopt a code division multiplexing manner with a longer code length for a larger number of antenna ports to be compatible with a code division multiplexing manner with a shorter code length under a smaller number of antenna ports.
  • code division multiplexing with a code length of 2 may be used, and when the number of antenna ports is 12, 16, 32, 64, etc., a code length of 4 or more may be used.
  • the long code division multiplexing a description made in conjunction with (b) of Fig. 3, gives an illustrative example of such compatibility, and specifically will be reflected in an example of a reference signal pattern to be shown hereinafter.
  • the resource mapping unit 102 may also determine, for the first antenna port, across the first number, such as The reference signal pattern of the two OFDM symbols determines a reference signal pattern for the second antenna port across the second number, such as four OFDM symbols, to respectively transmit the first and second antenna ports. This can increase the flexibility of resource mapping to take advantage of idle resource elements to transmit reference signals.
  • the resource mapping unit 102 is configured to determine, in the case where the number of antenna ports for transmitting the reference signal is greater than 8, a reference signal pattern including multiplexing of the resource elements in the frequency domain between the antenna ports for use in Resource mapping.
  • CSI-RS channel state information reference signal
  • FIG. 5 shows an example of two schemes of a CSI-RS pattern of an FDD frame using a conventional cyclic prefix in the case where the number of antenna ports is 16.
  • the antenna port for the CSI-RS is 0-15, but it should be understood that this is merely illustrative and does not represent the actual port serial number used, and may be any other serial number antenna port in practice.
  • the gray-filled resource unit and the black-point-filled resource unit in the figure respectively represent an optional CSI-RS configuration, for example, can be used for one cell. It can be seen that two such configurations are shown in each of the schemes of Fig. 5, so that the multiplexing factor is 2, and the multiplexing factor is reduced compared to the multiplexing factor of 5 in the case of the 8-port.
  • the code division multiplexing port group is: port ⁇ 0, 1, 8, 9 ⁇ , port ⁇ 4, 5, 12, 13 ⁇ , port ⁇ 2, 3, 10, 11 ⁇ and port ⁇ 6, 7, 14 15 ⁇ , respectively, code division multiplexing of length 4 is used.
  • ports 0, 1, 8, and 9 are respectively assigned four orthogonal OCC codes of length 4 to share four resource units.
  • the resource units involved in configuration 0 are distributed on 4 OFDM symbols, and the 4 ports included in each port group can be code-multiplexed only in the horizontal time domain, since each OFDM symbol has 4 resource units are used for CSI-RS of 4 ports, so the power gain when transmitting CSI-RS on one of the ports is 6 dB; and the resource elements involved in configuration 1 are only distributed on 2 OFDM symbols, at each There are 8 antenna ports in the OFDM symbol (for example, ports 0, 4, 8, 12, 2, 6, 10, 14 are located in the same OFDM symbol), if the time domain code division multiplexing is still only used, the power gain cannot be satisfied. More than 6dB and full power utilization are realized.
  • each port group is code-multiplexed in the frequency domain and the time domain, for example, ports 0, 1, 8, and 9 are occupied in the vertical direction.
  • 4 resource units distributed in the frequency domain and the horizontal time domain, whereby the other 6 ports are silent when the ports 0 and 8 are transmitted, and the power gain of 6*2dB 12 dB can be equally divided by the ports 0 and 8, thereby Achieve 6dB power gain per port and full power utilization.
  • the situation in scenario 2 is similar, but it occupies different resource units.
  • the CSI-RS configuration shown in FIG. 5 still utilizes existing resource elements for CSI-RS for re-porting without adding new resource elements.
  • the white-filled cells labeled with the antenna port number in Figure 5 represent the resource elements used by a set of CSI-RS configurations under the original eight ports. In the case of 16 ports, these resource elements are not used.
  • the density of the CSI-RS still maintains 1 resource unit (1RE/port/PRB) per port of each PRB, that is, each set of CSI-RS configurations does not span two PRBs.
  • Reference signal sequence during transmission of CSI-RS Map to complex value symbols by a certain mapping relationship among them Defined by:
  • n s is the slot number in the radio frame
  • l is the OFDM symbol number in the slot
  • c( ⁇ ) is a pseudo-random sequence generated by the pseudo-random sequence generator. Indicates the maximum downstream bandwidth of the system.
  • mapping of the reference signal sequence to the complex-valued symbol is performed according to the following equation, and the complex-valued symbol is used as a reference symbol on the antenna port (this applies to the mapping in each case, and will not be repeated below):
  • the number of resource blocks allocated to the downlink is determined by the downlink bandwidth of the cell.
  • the CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • the CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with black points.
  • the serial number of the antenna port P used herein is the actual antenna port number (15-30 corresponds to 0-15 in Fig. 5, as in the following examples).
  • mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 2 below.
  • the CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • the CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with black points.
  • mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 4 below.
  • the CSI-RS configuration is not limited to this, but other methods may be employed.
  • the CSI-RS pattern may include at least one of: a pattern based on one PRB; a pattern based on adjacent two or more subframes; and a pattern based on two or more adjacent PRBs.
  • FIG. 6 shows an example of two schemes of a CSI-RS pattern of an FDD frame using a regular cyclic prefix obtained by adding a resource unit for a CSI-RS in a PRB in the case where the number of antenna ports is 16.
  • a set of CSI-RS configurations are represented by gray fill, white fill and black dot fill, respectively, and there are three sets of configurations in each scheme, so the reuse factor is 3.
  • Eight resource elements in the 3rd and 4th OFDM symbols are added for CSI-RS transmission.
  • the time domain code division multiplexing with the multiplexing length of 4 is adopted.
  • the white filled CSI-RS configuration adopts a hybrid length of 2 similar to the configuration 1 in FIG.
  • FIG. 7 shows an example of a scheme of a CSI-RS pattern of an FDD frame using a conventional cyclic prefix based on two adjacent subframe designs in the case where the number of antenna ports is 16, respectively, with blank padding, gray padding, and black dot padding.
  • the horizontal line fill and the slash fill show five sets of CSI-RS configurations, ie a reuse factor of five.
  • the CSI-RS pattern in FIG. 7 is composed of 8-port CSI-RS patterns located in two different subframes, where CSI-RS ports 0-7 are located in subframe m, and CSI-RS ports 8-15 are located in subframes. m+1.
  • This CSI-RS pattern design can avoid collisions with other reference signals and control signals in the PDCCH, but its CSI-RS density will drop to 0.5 RE/port/PRB.
  • the code division multiplexing of the odd port and the even port length of the Rel-10 is still used.
  • the code length of the code division multiplexing changes according to the number of subframes on which the CSI-RS pattern is based.
  • the code length of the code division multiplexing is 4, and the number of subframes on which the CSI-RS pattern is based is At 2 o'clock, the code division multiplexing code length is 2.
  • the CSI-RS pattern is a code division multiplexing CSI-RS with a code length of 4.
  • the extension of the pattern in two adjacent sub-frames may be performed based on the two schemes shown in FIG. 6, as shown in FIGS. 8 and 9, wherein the CSI-RS ports 0-15 are located in the subframe m, CSI- The RS port 16-31 is located in the subframe m+1.
  • the physical resource units corresponding to the same port may be separated from each other in the CSI-RS patterns of different cells. This can further reduce the reference signal interference between cells.
  • FIG. 10 shows an example of three schemes of a CSI-RS pattern using a conventional cyclic prefix in the case where the antenna port is 12.
  • the CSI-RS pattern is based on a single PRB, and 36 resource units of the existing 40 CSI-RS resource units are utilized, and a CSI-RS configuration with a multiplexing factor of 3 is obtained (respectively Indicated with gray fill, black dot fill, and slash fill).
  • the odd-numbered port and the even-numbered port use the time-domain code division multiplexing of Rel 10 having a length of 2. It can be seen that when the number of port antennas is 12, the CSI-RS pattern can be obtained by combining three 4-port CSI-RS configurations or one 8-port CSI-RS configuration and one 4-port CSI-RS configuration.
  • mapping formula (2) For the first scheme, the parameters in the mapping formula (2) of the reference signal sequence mapped to the complex-valued symbols are as follows:
  • the CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with black points
  • the CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • the CSI-RS configuration 2 is a diagonal line.
  • the mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 5 below.
  • mapping formula (2) For the second scheme, the parameters in the mapping formula (2) of the reference signal sequence mapped to the complex value symbol are as follows:
  • the CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • the CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with black points
  • the CSI-RS configuration 2 is a diagonal line.
  • the mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 6 below.
  • mapping formula (2) For the third scheme, the parameters in the mapping formula (2) of the reference signal sequence mapped to the complex value symbol are as follows:
  • the CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with black points
  • the CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with a slash
  • the CSI-RS configuration 2 is a gray
  • the mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 7 below.
  • FIG. 11 shows an example of two schemes of a CSI-RS pattern of an FDD frame using an extended cyclic prefix in the case where the number of antenna ports is 16.
  • the gray-filled resource unit and the black-point-filled resource unit in the figure respectively represent an optional CSI-RS configuration, and the multiplexing factor of both schemes is 2.
  • the code division multiplexing port group is: port ⁇ 0, 1, 8, 9 ⁇ , port ⁇ 4, 5, 12, 13 ⁇ , port ⁇ 2, 3, 10, 11 ⁇ and port ⁇ 6, 7 , 14, 15 ⁇ .
  • the length of the mixture is Code division multiplexing in frequency domain and time domain of 2.
  • there is no additional resource unit for CSI-RS transmission compared to the case of 8-port.
  • FIG. 12 shows an example of another scheme of a CSI-RS pattern of an FDD frame using an extended cyclic prefix in the case where the number of antenna ports is 16.
  • a total of 16 resource elements in the 7th and 8th OFDM symbols are newly added for CSI-RS transmission.
  • the configuration of the port group is the same as that in Figure 11.
  • there are three sets of CSI-RS configurations represented by gray padding, black dot padding, and slash padding respectively) with a multiplexing factor of 3.
  • a code division multiplexing of a time domain of length 4 is employed in this scheme.
  • a CSI-RS pattern based on two adjacent subframes may be adopted, and a CSI-RS pattern of each subframe corresponds to an 8-port CSI-RS pattern, for example, port 0-7 is placed in a subframe m.
  • port 8-15 is placed in subframe m+1.
  • antenna ports for example, 32, for example, it may be extended on adjacent subframes based on the pattern of FIG. 11 or FIG. 12, and details are not described herein again.
  • FIG. 13 shows an example of two schemes of a CSI-RS pattern of an FDD frame using an extended cyclic prefix in the case where the number of antenna ports is 12.
  • the CSI-RS pattern is a single PRB-based CSI-RS configuration with a multiplexing factor of 2 (represented by gray padding and black dot padding, respectively). Similar to the case of the conventional cyclic prefix, in the multiplexing mode, the odd-numbered port and the even-numbered port are code-division multiplexed in the time domain of length 2.
  • the CSI-RS pattern can be obtained by combining three 4-port CSI-RS configurations or one 8-port CSI-RS configuration and one 4-port CSI-RS configuration.
  • mapping formula (2) in which the reference signal sequence is mapped to the complex-valued symbol are as follows:
  • CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with black points.
  • the CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with black points
  • the CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 9 below.
  • mapping formula (2) in which the reference signal sequence is mapped to the complex-valued symbol are as follows:
  • CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with black points.
  • CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with black points
  • mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 11 below.
  • FIG. 14 shows an example of a scheme of a CSI-RS pattern of a TDD frame using a regular cyclic prefix in the case where the number of antenna ports is 16.
  • this scheme there is no additional resource unit added compared to the existing CSI-RS pattern. Since there are only 24 R10 CSI-RS resource units in the conventional cyclic prefix TDD frame, it is configured in only one PRB.
  • the code division multiplexing port group is: port ⁇ 0, 1, 4, 5 ⁇ , port ⁇ 8, 9, 12, 13 ⁇ , port ⁇ 2, 3, 6, 7 ⁇ and port ⁇ 10, 11, 14 , 15 ⁇ .
  • mixed frequency domain and time division domain code division multiplexing are used.
  • FIG. 15 shows an example of a scheme of a CSI-RS pattern of a TDD frame using a normal cyclic prefix in the case where the number of antenna ports is 12.
  • this scheme there are two sets of CSI-RS configurations, which are represented by gray fill and black dot fill, respectively, so the reuse factor is 2.
  • odd-numbered ports and even-numbered ports use time-domain code division multiplexing of length 2.
  • the CSI-RS pattern can be obtained by combining three 4-port CSI-RS configurations or one 8-port CSI-RS configuration and one 4-port CSI-RS configuration.
  • mapping formula (2) of the reference signal sequence mapped to the complex-valued symbols are as follows:
  • the configuration of the CSI-RS is configured as CSI-RS 0.
  • CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with black points.
  • mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 13 below.
  • a CSI-RS pattern can also be configured on two adjacent subframes
  • FIG. 16 shows a CSI-RS pattern of a TDD frame using a regular CP based on two adjacent subframes in the case where the number of ports is 16.
  • the pattern consists of an 8-port CSI-RS pattern located in two different subframes, with ports 0-7 in subframe m and ports 8-15 in subframe m+1.
  • There are 3 sets of CSI-RS configurations represented by white fill, gray fill and black dot fill, respectively) with a reuse factor of 3 and a CSI-RS density of 0.5/RE/port/PRB.
  • a mixed time domain code division multiplexing of length 2 and a frequency domain code division multiplexing of length 2 are employed.
  • a CSI-RS pattern based on a 16-port CSI-RS pattern such as the CSI-RS pattern of FIG. 14 on two adjacent subframes may be used.
  • a similar extension can be used to further obtain more CSI-RS patterns of antenna ports such as 64 ports.
  • FIG. 17 shows an example of two schemes of a CSI-RS pattern in a TDD frame using an extended cyclic prefix in the case where the number of antenna ports is 16.
  • the code division multiplexing port group is: port ⁇ 0, 1, 8, 9 ⁇ , port ⁇ 4, 5, 12, 13 ⁇ , port ⁇ 2, 3, 10, 11 ⁇ and port ⁇ 6, 7,14,15 ⁇ .
  • this scheme there is no additional resource unit added compared to the existing CSI-RS pattern, only one set of configuration (indicated by gray padding) with a reuse factor of 1.
  • this CSI-RS configuration mixed frequency domain and time division domain code division multiplexing are used.
  • a total of 24 resource elements in the 5th, 6th, 10th, and 11th OFDM symbols are additionally added for CSI-RS transmission.
  • the code division multiplexing port group is the same as in the first scheme, and adopts mixed frequency domain code division multiplexing and time domain code division multiplexing respectively, that is, four ports share the four resource units corresponding to them. Since there are 4 REs for each CSI-RS in each OFDM symbol, its CSI-RS power gain is 6 dB.
  • mapping formula (2) in which the reference signal sequence is mapped to the complex-valued symbol are as follows:
  • the configuration of the CSI-RS is configured as CSI-RS0.
  • the value of the sequence w p (i) can be obtained by the following Table 14.
  • mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 15 below.
  • the CSI-RS pattern can also be obtained by extending the 8-port CSI-RS pattern on two adjacent subframes, for example, the port 0-7 is located in the sub-frame. In frame m, ports 8-15 are located in subframe m+1. Further, when the antenna port is 32, for example, a CSI-RS pattern of one of the 16 ports shown in FIG. 17 may be extended on two adjacent subframes to obtain a CSI-RS pattern thereof, for example, ports 0-15. Located in subframe m, port 16-31 is located in subframe m+1.
  • FIG. 18 shows an example of a scheme of a CSI-RS pattern of a TDD frame employing an extended cyclic prefix in the case where the number of antenna ports is 12.
  • this scheme there are two sets of configurations, which are represented by gray fill and black dot fill, respectively, so the reuse factor is 2.
  • odd-numbered ports and even-numbered ports use time-domain code division multiplexing of length 2.
  • the CSI-RS pattern can be obtained by combining three 4-port CSI-RS configurations or one 8-port CSI-RS configuration and one 4-port CSI-RS configuration.
  • mapping formula (2) in which the reference signal sequence is mapped to the complex-valued symbol are as follows:
  • the CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • the CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with black points.
  • the mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 16 below.
  • the CSI-RS may be transmitted in the special subframe DwPTS, and the CSI-RS pattern is a pattern based on two adjacent PRBs.
  • FIG. 19 shows a CSI-RS pattern under a regular cyclic prefix on a special subframe DwPTS for a TDD mode. Example.
  • the left-hand diagram of FIG. 19 shows that the number of OFDM symbols occupied by the DwPTS in the special subframe is 11/12, and the upper and lower sides respectively represent one PRB, and the CSI-RS pattern is an 8-port CSI-RS located in two adjacent different PRBs.
  • the pattern is constructed in which CSI-RS ports 0-7 are located in the first PRB, and CSI-RS ports 8-15 are located in the second PRB.
  • the CSI-RS density is 0.5 RE/port/PRB.
  • code division multiplexing with odd port and even port length 2 and frequency division multiplexing on the same symbol are used, since there are 4 resource units for CSI-RS in each OFDM symbol. Used, so its CSI-RS power gain is 6dB.
  • the right side diagram of FIG. 19 shows that the number of OFDM symbols occupied by the DwPTS in the special subframe is 9/10, and the upper and lower sides respectively represent one PRB, and the CSI-RS pattern is an 8-port CSI-RS located in two adjacent different PRBs.
  • Pattern composition where ports ⁇ 0,1,4,5 ⁇ , ports ⁇ 2,3,6,7 ⁇ , ports ⁇ 8,9,12,13 ⁇ and ports ⁇ 10,11,14,15 ⁇ are used respectively
  • the code division multiplexing of length 4 means that the four ports share the two resource units corresponding to them. Since there are 4 resource elements for CSI-RS in each OFDM symbol, its CSI-RS power gain is 3 dB. There are three sets of CSI-RS configurations in this scheme, so the reuse factor is 3.
  • FIG. 20 shows an example of extending a CSI-RS pattern under a cyclic prefix on a special subframe DwPTS for a TDD mode.
  • the pattern consists of an 8-port CSI-RS pattern located in two adjacent different PRBs, where CSI-RS ports 0-7 are located in the first PRB pair and CSI-RS ports 8-15 are located in the second PRB.
  • the CSI-RS density is 0.5 RE/port/PRB.
  • code division multiplexing with odd port and even port length 2 and frequency division multiplexing on the same symbol are used, since there are 4 REs in each OFDM symbol. It is used by CSI-RS, so its CSI-RS power gain is 6dB.
  • the CSI-RS reuse factor of this scheme is 4.
  • mapping formula (2) in which the reference signal sequence is mapped to the complex-valued symbol are as follows:
  • CSI-RS configuration 0 is a CSI-RS configuration corresponding to a resource unit filled with a slash
  • CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with gray
  • CSI-RS configuration 2 is a CSI-RS configuration corresponding to a white-filled resource unit
  • CSI-RS configuration 3 is a CSI-RS configuration corresponding to a resource unit filled with black points
  • CSI-RS configuration 4 is filled with a horizontal line.
  • CSI-RS configuration 5 is a CSI-RS corresponding to a resource unit filled with gray.
  • the CSI-RS configuration 6 is a CSI-RS configuration corresponding to a resource unit filled with white
  • the CSI-RS configuration 7 is a CSI-RS configuration corresponding to a resource unit filled with black points.
  • the mapping relationship between the configuration of CSI-RS and (k', l') can be obtained from Table 18 below.
  • CSI-RS configuration 0 is a CSI-RS configuration corresponding to a white-filled resource unit
  • CSI-RS configuration 1 is a CSI-RS configuration corresponding to a resource unit filled with black points
  • CSI-RS Configuration 2 is a CSI-RS configuration corresponding to a resource unit filled with black
  • CSI-RS configuration 3 is a CSI-RS configuration corresponding to a resource unit filled with slashes.
  • the mapping relationship between the configuration of CSI-RS and (k', l ' ) can be obtained from Table 19 below.
  • the apparatus 100 may further include: a notification unit 103 configured to notify the user equipment of related parameters of the CSI-RS through CSI-RS-Config in the RRC signaling.
  • the relevant parameters may include at least one of the following: the number of antenna ports, the mapping relationship between CSI-RS and physical resource units, the subframe offset, the CSI-RS period, and the CSI-RS transmission power.
  • the CSI-RS-Config is an information unit for configuring the CSI-RS. When the number of antenna ports is increased, for example, 16 or 32 antenna ports, a variable supporting the corresponding port number needs to be added therein.
  • the reference signal pattern of the present embodiment can also be applied to other reference signals such as a demodulation reference signal (DMRS) and the like.
  • DMRS demodulation reference signal
  • the apparatus 200 includes: a storage unit 201, and a resource unit storing a predetermined antenna port and a physical transmission resource. a reference signal pattern formed by the mapping relationship; the determining unit 202 is configured to determine a physical resource unit corresponding to the current reference signal according to the reference signal pattern and related parameters of the reference signal from the base station side; and the measuring unit 203 is configured to The reference signal on the determined physical resource unit is measured to report the measured information to the base station side, wherein the reference signal pattern includes code division multiplexing of the resource units in the frequency domain between the antenna ports.
  • the storage unit 201 may store corresponding reference signal patterns for different antenna port numbers, and the reference signal patterns include, but are not limited to, those illustrated in the first embodiment.
  • the user equipment can receive relevant parameters regarding the reference signal from the base station, for example, via RRC signaling.
  • the relevant parameter may include at least one of the following: the number of antenna ports, the mapping relationship between the CSI-RS and the physical resource unit, the subframe offset, the CSI-RS period, and the CSI- RS transmit power.
  • the determining unit 202 determines, for example, the number of antenna ports according to the relevant parameters of the reference signals, and determines the physical resource unit corresponding to the current reference signal according to the reference signal pattern stored by the storage unit 201. Since the determined physical resource unit carries the current reference signal, the measuring unit 203 measures the signals on the resource units and reports the measurement results to the base station side, so that the base station can obtain, for example, downlink channel state information.
  • the reference signal pattern includes code division multiplexing of the resource units in the frequency domain between the antenna ports, so that the power gain can be maintained not more than 6 dB when the number of antenna ports for transmitting the reference signal is increased, and Reduce power waste.
  • embodiments of the base station side and user equipment side devices in a wireless communication system may be implemented partially or completely using hardware and/or firmware, while the methods discussed below may be implemented entirely by computer executable programs, although These methods may also employ hardware and/or firmware of the devices on the base station side and the user equipment side in the wireless communication system.
  • FIG. 22 is a flowchart showing a method of a base station side in a wireless communication system according to an embodiment of the present application, the method including: generating a reference signal sequence (S11); determining according to the number of antenna ports for transmitting a reference signal a reference signal pattern formed by a mapping relationship between the antenna port and a resource unit of the physical transmission resource (S12); and mapping the reference signal sequence to the resource unit for transmission based on the reference signal pattern (S13), wherein the reference signal pattern includes the antenna Code division multiplexing of resource elements in the frequency domain between ports.
  • S11 reference signal sequence
  • S12 determining according to the number of antenna ports for transmitting a reference signal a reference signal pattern formed by a mapping relationship between the antenna port and a resource unit of the physical transmission resource
  • S13 the reference signal pattern includes the antenna Code division multiplexing of resource elements in the frequency domain between ports.
  • step S12 at least two shared resource units corresponding to the same OFDM symbol are configured for the first antenna port and the second antenna port, and the first antenna port and the second antenna port are respectively orthogonal to each other.
  • the orthogonal cover code is used to perform code division multiplexing of resource elements in the frequency domain between antenna ports.
  • At least two antenna ports of a port number having the same parity are configured in step S12 to code division multiplex in the frequency domain.
  • the reference signal pattern may further include code division multiplexing of resource elements in the time domain between antenna ports.
  • the code division multiplexing mode with a longer code length can be used in the number of more antenna ports to be compatible with the code division multiplexing mode with a shorter code length under the number of fewer antenna ports.
  • a reference signal pattern across the first number of OFDM symbols may be determined for the first antenna port, and a second number is determined for the second antenna port.
  • the reference signal is a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • a reference signal pattern including code division multiplexing of resource elements in the frequency domain between antenna ports is determined for resource mapping.
  • the channel state information reference signal pattern may include at least one of: a pattern based on one physical resource block pair; a pattern based on adjacent two or more subframes; and based on two or more adjacent physics The pattern of the resource block.
  • the code length of the code division multiplexing may be changed according to the number of subframes on which the channel state information reference signal pattern is based.
  • the code length of the code division multiplexing is 4, and when the channel state information reference signal pattern When the number of subframes on which basis is 2, the code division multiplexing code length is 2.
  • the CSI-RS pattern may be an extension of the code division multiplexing channel state information reference signal pattern of code length 4 in two adjacent subframes.
  • physical resource units corresponding to the same port may be set away from each other to reduce reference signal interference between cells.
  • the channel state information reference signal may also be transmitted in the special subframe DwPTS, and the channel state information reference signal pattern is a pattern based on two adjacent physical resource blocks.
  • the foregoing method may further include the following step S14: notifying the user equipment of the relevant parameter of the channel state information reference signal by using the CSI-RS-Config in the RRC signaling.
  • the relevant parameters include at least one of the following: the number of antenna ports, the mapping relationship between the channel state information reference signal and the physical resource unit, the subframe offset, the channel state information reference signal period, and the channel state information reference signal transmission power.
  • a method for a user equipment side in a wireless communication system comprising the steps of: determining a physics corresponding to a current reference signal according to the stored reference signal pattern and related parameters of a reference signal from a base station side a resource unit, wherein the reference signal pattern is formed by a mapping relationship between a predetermined antenna port and a resource unit of a physical transmission resource; and measuring a reference signal on the determined physical resource unit to report the measured information to the base station side, where
  • the reference signal pattern includes code division multiplexing of resource elements in the frequency domain between antenna ports.
  • a communication system including a base station and a user equipment, wherein the base station includes the device 100, and the user equipment includes the device 200 is also disclosed.
  • a base station can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB Base Transceiver Station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of terminals can operate as base stations by performing base station functions temporarily or semi-persistently.
  • the user equipment can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal (such as a car navigation device). ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 23 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 is in accordance with signals processed by wireless communication interface 825 The data is generated to generate a data packet and the generated packet is delivered via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 23 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 24 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 23 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 24 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • Figure 24 As shown, the wireless communication interface 863 can include a plurality of RF circuits 864. For example, multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 24 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the notification unit 103 described by using FIG. 1 can be implemented by the wireless communication interface 825 and the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 821 and controller 851.
  • the controller 821 and the controller 851 or the baseband processors 826, 856 can perform the generation of the reference signals by performing the functions of the sequence generating unit 101 and the resource mapping unit 1023.
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 25 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 25 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 25 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the functions of the determining unit 202 and the measuring unit 203 can be performed by the processor 901 and the auxiliary controller 919, and the memory 902 is used.
  • the function of the storage unit 201 is performed to perform measurement of the reference signal.
  • the partial functions of the determining unit 202 and the measuring unit 203 may also be implemented by the wireless communication interface 912.
  • FIG. 26 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 26 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935
  • Line communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 26 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in FIG. 26 via feeders, which are shown partially as dashed lines in the figures. Battery 938 accumulates power supplied from the vehicle.
  • the measurement of the reference signal can be performed by the function of the storage unit 201 by the memory 922 by performing the functions of the determination unit 202 and the measurement unit 203 by the processor 921.
  • the partial functions of the determining unit 202 and the measuring unit 203 may also be implemented by the wireless communication interface 933.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • a sequence generating unit, a resource mapping unit, a storage unit, a determining unit, a measuring unit, and the like in the above-described apparatus may be implemented by one or more processors, for example, for notification.
  • a unit or the like can be realized by circuit components such as an antenna, a filter, a modem, and a codec.
  • the present invention also provides an electronic device (1) comprising: a circuit configured to: generate a reference signal sequence; and determine an antenna port and a physical transmission resource according to a number of antenna ports used to transmit the reference signal a reference signal pattern formed by the mapping relationship of the resource units, and mapping the reference signal sequence to the resource unit for transmission based on the reference signal pattern, wherein the reference signal pattern includes a code division of the resource unit in the frequency domain between the antenna ports Reuse.
  • the present invention also provides an electronic device (2), comprising: a circuit configured to: determine a physical resource unit corresponding to a current reference signal according to the stored reference signal pattern and related parameters of a reference signal from a base station side And wherein the reference signal pattern is formed by a mapping relationship between the predetermined antenna port and the resource unit of the physical transmission resource; and measuring the reference signal on the determined physical resource unit to report the measured information to the base station side, wherein the reference The signal pattern includes code division multiplexing of resource elements in the frequency domain between antenna ports.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 2700 shown in FIG. 27), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 2701 executes various processes in accordance with a program stored in a read only memory (ROM) 2702 or a program loaded from a storage portion 2708 to a random access memory (RAM) 2703.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2701 performs various processes and the like is also stored as needed.
  • the CPU 2701, the ROM 2702, and the RAM 2703 are connected to each other via a bus 2704.
  • Input/output interface 2705 is also coupled to bus 2704.
  • the following components are connected to the input/output interface 2705: an input portion 2706 (including a keyboard, a mouse, etc.), an output portion 2707 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.), Storage portion 2708 (including a hard disk, etc.), Communication portion 2709 (including a network interface card such as a LAN card, a modem, etc.). The communication section 2709 performs communication processing via a network such as the Internet.
  • the driver 2710 can also be connected to the input/output interface 2705 as needed.
  • a removable medium 2711 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 2710 as needed, so that the computer program read therefrom is installed into the storage portion 2708 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 2711.
  • such a storage medium is not limited to the removable medium 2711 shown in FIG. 27 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 2711 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2702, a hard disk included in the storage portion 2708, and the like, in which programs are stored, and distributed to the user together with the device containing them.

Abstract

一种用于无线通信的基站侧和用户设备侧的装置及方法。用于无线通信的基站侧的装置包括:序列生成单元,被配置为生成参考信号序列;以及资源映射单元,被配置为根据用于发送参考信号的天线端口的数目确定天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样,并基于该参考信号图样将参考信号序列映射至资源单元以用于传输,其中,参考信号图样包括天线端口间在频域上对资源单元的码分复用。

Description

用于无线通信的基站侧和用户设备侧的装置及方法
本申请要求于2015年9月24日提交中国专利局、申请号为201510618334.X、发明名称为“用于无线通信的基站侧和用户设备侧的装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及参考信号图样的生成,更具体地涉及一种用于无线通信的基站侧和用户设备侧的装置和方法。
背景技术
LTE系统物理层的基本构架建立在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)和多输入多输出(Multiple Input Multiple Output,MIMO)的基础之上。其中,OFDM是在OFDM符号内的多个子载波上调整数据的扩频技术,子载波以精确的频率被间隔开,该间隔提供子载波之间的正交性。在时域中,可以将保护间隔比如循环前缀(CP)添加到每个OFDM符号以防止OFDM符号间干扰。循环前缀包括常规循环前缀和扩展循环前缀。MIMO即多天线技术,对于提高数据传输的峰值速率与可靠性、扩展覆盖、抑制干扰、增加系统容量、提升系统吞吐量有着重要作用。面对速率与频谱效率需求的不断提升,对MIMO技术的增强与优化始终是LTE系统演进的一个重要方向。受限于传统的基站天线构架,现有的MIMO传输方案一般只能在水平面实现对信号空间分布特性的控制,还没有充分利用3D信道中垂直维度的自由度,更没有深层地挖掘出MIMO技术对于改善移动通信系统整体效率与性能及最终用户体验的潜能。
3D MIMO技术在不改变现有天线尺寸的条件下,可以将每个垂直的天线阵子分割成多个阵子,从而开发出MIMO的另一个垂直方向的空间维度,进而将MIMO技术推向一个更高的发展阶段,为LTE传输技术的 性能提升开拓出更广阔的空间,使得进一步降低小区间干扰、提高系统吞吐量和频谱效率成为可能。
但是,在3D MIMO中可支持的用于发送参考信号的天线端口的数量增加,因此目前参考信号的图样不再适用,需要开发适合于3D MIMO的更多天线端口的参考信号图样。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的基站侧的装置,包括:序列生成单元,被配置为生成参考信号序列;以及资源映射单元,被配置为根据用于发送参考信号的天线端口的数目确定天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样,并基于该参考信号图样将参考信号序列映射至资源单元以用于传输,其中,参考信号图样包括天线端口间在频域上对资源单元的码分复用。
根据本申请的另一个方面,提供了一种用于无线通信的用户设备侧的装置,包括:存储单元,存储有预定的天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样;确定单元,被配置为根据该参考信号图样以及来自基站侧的参考信号的相关参数来确定当前参考信号对应的物理资源单元;以及测量单元,被配置为测量所确定的物理资源单元上的参考信号,以向基站侧上报所测量的信息,其中,该参考信号图样包括天线端口间在频域上对资源单元的码分复用。
根据本申请的一个方面,提供了一种无线通信系统中的基站侧的方法,包括:生成参考信号序列;以及根据用于发送参考信号的天线端口的数目确定天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样,并基于该参考信号图样将参考信号序列映射至资源单元以用于传输,其中,该参考信号图样包括天线端口间在频域上对资源单元的码分复用。
根据本申请的另一个方面,提供了一种用于无线通信的用户设备侧的 方法,包括:根据所存储的参考信号图样以及来自基站侧的参考信号的相关参数来确定当前参考信号对应的物理资源单元,其中,该参考信号图样由预定的天线端口与物理传输资源的资源单元的映射关系构成;以及测量所确定的物理资源单元上的参考信号,以向基站侧上报所测量的信息,其中,该参考信号图样包括天线端口间在频域上对资源单元的码分复用。
依据本发明的其它方面,还提供了用于实现上述无线通信系统中的基站侧和用户设备侧的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述无线通信系统中的基站侧和用户设备侧的方法的计算机程序代码的计算机可读存储介质。
在本申请的实施例中,通过采用天线端口间在频域上对资源单元进行码分复用的参考信号图样,可以在用于发送参考信号的天线端口的数量增多时也保持功率增益不超过6dB(从而能沿用当前天线的功率放大器来实现)并且减少功率浪费。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的上述以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于无线通信的基站侧的装置的结构框图;
图2示出了每个OFDM符号采用常规循环前缀时一个物理资源块(PRB)的资源网格的示例的图;
图3的(a)示出了第一天线端口和第二天线端口在频域上对资源单元进行码分复用的示意性示例的图;
图3的(b)示出了第一天线端口和第二天线端口在时域上和在频域上对资源单元进行码分复用的示意性示例的图;
图4示出了图3的(b)的具体复用情况的说明图;
图5示出了天线端口数为16的情况下,采用常规循环前缀的频分双工(FDD)帧的CSI-RS图样的两种方案的示例;
图6示出了天线端口数为16的情况下,采用常规循环前缀的FDD帧的CSI-RS图样的另两种方案的示例;
图7示出了天线端口数为16的情况下,采用常规循环前缀的FDD帧的CSI-RS图样的另一种方案的示例;
图8示出了天线端口数为32的情况下,采用常规循环前缀的FDD帧的CSI-RS图样的一种方案的示例;
图9示出了天线端口数为32的情况下,采用常规循环前缀的FDD帧的CSI-RS图样的另一种方案的示例;
图10示出了在天线端口数为12的情况下,采用常规循环前缀的FDD帧的CSI-RS图样的三种方案的示例;
图11示出了在天线端口数为16的情况下,采用扩展循环前缀的FDD帧的CSI-RS图样的两种方案的示例;
图12示出了在天线端口数为16的情况下,采用扩展循环前缀的FDD帧的CSI-RS图样的另一种方案的示例;
图13示出了在天线端口数为12的情况下,采用扩展循环前缀的FDD帧的CSI-RS图样的两种方案的示例;
图14示出了在天线端口数为16的情况下,采用常规循环前缀的TDD(时分双工)帧的CSI-RS图样的方案的示例;
图15示出了在天线端口数为12的情况下,采用常规循环前缀的TDD帧的CSI-RS图样的方案的示例;
图16示出了在天线端口数为16的情况下,采用常规循环前缀的TDD帧的CSI-RS图样的另一种方案的示例;
图17示出了在天线端口数为16的情况下,采用扩展循环前缀的TDD帧的CSI-RS图样的两种方案的示例;
图18示出了在天线端口数为12的情况下,采用扩展循环前缀的TDD帧的CSI-RS图样的方案的示例;
图19示出了针对TDD模式在特殊子帧DwPTS上常规循环前缀下的CSI-RS图样的示例;
图20示出了针对TDD模式在特殊子帧DwPTS上扩展循环前缀下的CSI-RS图样的示例;
图21示出了根据本申请的一个实施例的用于无线通信的用户设备侧的装置200的结构框图;
图22示出了根据本申请的一个实施例的无线通信系统中的基站侧的方法的流程图;
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图24是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图25是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图26是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图27是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于无线通信的基站侧的装置100的结构框图。如图1所示,装置100包括:序列生成单元101,被配置为生成参考信号序列;以及资源映射单元102,被配置为根据用于发送参考信号的天线端口的数目确定天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样,并基于该参考信号图样将参考信号序列映射至资源单元以用于传输,其中,参考信号图样包括天线端口间在频域上对资源单元的码分复用(即,利用正交码处理后在相同资源单元上同时传输)。
对于LTE下行链路帧而言,每一个帧划分为10个大小相等的子帧,每个子帧包括两个连续的时隙,这两个连续的时隙对应于一个物理资源块(Physical Resource Block,PRB),可以采用资源网格来代表PRB(其时间长度等于子帧的长度)的物理传输资源,PRB的资源网格被划分为多个资源单元。PRB在频域中包括12个连续的子载波,在时域中当每个OFDM符号采用常规循环前缀时包括14个连续的OFDM符号,因此PRB被划分为168个资源单元,而当每个OFDM符号采用扩展循环前缀时包括6个连续的OFDM符号,因此PRB被划分为144个资源单元。图2示出了作为示例的每个OFDM符号采用常规循环前缀时一个PRB的资源网格,其中,横轴代表时间,纵轴代表频率。本申请中的所有资源网格图均如此定义,以下不再单独说明。
当序列生成单元101生成参考信号序列之后,资源映射单元102将其映射到适当的资源单元上进行传输。为了使得用户设备能够正确接收参考信号以及避免参考信号之间的干扰,需要设定用于发送参考信号的天线端口与物理传输资源的资源单元之间的映射关系、即参考信号图样。如前所述,随着LTE技术的发展,用于发送参考信号的天线端口的数目不断增加,例如,由现有的1、2、4和8个天线端口扩展到12、16、32和64个天线端口等,因此,需要为天线端口数扩展的参考信号设计新的映射关系。由于天线端口数不同时,所使用的资源单元的数量或位置不同,因此不同的天线端口数对应于不同的映射关系。
在本实施例中,资源映射单元102在进行映射之前根据用于发送参考信号的天线端口的数目确定由上述映射关系构成的参考信号图样。在该参考信号图样中,天线端口间在频域上对资源单元进行码分复用,例如两个天线端口共同复用图2中所示的一个纵向列中的两个资源单元。
在一个示例中,资源映射单元102为两个天线端口、即第一天线端口 和第二天线端口配置对应于同一OFDM符号的至少两个共用资源单元(即位于图2的同一列中),以及分别为第一天线端口和第二天线端口配置彼此正交的正交覆盖码(Orthogonal cover code,OCC)以执行天线端口间在频域上对资源单元的码分复用。
图3的(a)示出了第一天线端口1和第二天线端口2在频域上对资源单元进行码分复用的示例,应该理解,虽然在该图中,端口1和2被示出为在频域上复用相邻的资源单元,但是并不限于此,资源单元也可以是不相邻的。
此外,参考信号图样还可以包括天线端口间在时域上对资源单元的码分复用。如图3的(b)所示,示出了天线端口15、16、19和20共同复用四个“田”字形资源单元的示例,其具体复用情况如图4所示,即同时利用了时域的码分复用和频域的码分复用。
在一个示例中,资源映射单元102对具有相同奇偶性的端口序号的至少两个天线端口进行配置以在频域上码分复用。例如,在图3的(b)的示例中,均为奇数的端口15和19在频域上码分复用,而均为偶数的端口16和20在频域上码分复用。同时,奇数端口15和偶数端口16在时域上码分复用,奇数端口19和偶数端口20在时域上码分复用,即图3的(b)的示例中采用了混合的频域码分复用和时域码分复用。当然,进行频域上码分复用或时域上码分复用的天线端口数也可以多于两个,例如为4个等。在另一个示例中,资源映射单元102可以对相邻的奇数和偶数端口序号的至少一个天线端口对进行配置以在频域上码分复用。仍以图3的(b)为例,奇数端口15和偶数端口16组成一个天线端口对,奇数端口19和偶数端口20组成一个天线端口对,当码分复用长度为2时,例如每个天线端口对中的天线端口进行时域的码分复用,当码分复用长度为4时,还对两个天线端口对进行频域的码分复用。
此外,资源映射单元102还可以被配置为在较多天线端口数目下采用码长度较长的码分复用方式以兼容较少天线端口数目下的码长度较短的码分复用方式。例如,在天线端口数为2、4、8时,可采用码长度为2的码分复用,而在天线端口数为12、16、32、64等时,可以采用码长度为4或者更长的码分复用,结合图3的(b)进行的描述给出了这种兼容的一种示意性示例,并且具体地将在下文中要示出的参考信号图样的示例中反映。
此外,资源映射单元102还可以为第一天线端口确定跨第一数量比如 2个的OFDM符号的参考信号图样,为第二天线端口确定跨第二数量比如4个的OFDM符号的参考信号图样以分别传输第一与第二天线端口。这样可以提高资源映射的灵活性,从而充分利用空闲的资源单元来传输参考信号。
在对参考信号图样进行设计时,可以遵循以下原则中的至少一个:使功率增益不超过6dB,从而能够沿用原有的功率放大器;使得尽量减少功率浪费;保证后向兼容性;尽量避免占用其他参考信号已占用的资源单元以避免冲突;复用因子尽可能大。需要说明的是,在一套CSI-RS配置中,对于同一个OFDM符号上分布的n+1个天线端口,其中之一在进行传输时其他的n个天线端口静默,每个静默的天线端口的发射功率被叠加至该传输的天线端口上从而达到全功率利用,同时该传输的天线端口将获得n*2dB的功率增益。然而,随着天线端口数的增加,在同一个OFDM符号上分布的天线端口数量也会相应增加,如何使得功率增益不超过6dB以使能沿用现有的天线功率放大器并且仍然实现全功率利用成为一个值得研究的问题。
下面以信道状态信息参考信号(CSI-RS)为例来说明本实施例的参考信号图样的设计。在一个示例中,资源映射单元102被配置为在用于发送参考信号的天线端口的数目大于8的情况下,确定包括天线端口间在频域上对资源单元复用的参考信号图样以用于资源映射。
图5示出了天线端口数为16的情况下,采用常规循环前缀的FDD帧的CSI-RS图样的两种方案的示例。在该示例中,用于CSI-RS的天线端口为0~15,但是,应该理解,这仅是示意性的,并不代表使用的实际端口序号,在实际中可以是任何其他序号的天线端口。图中灰色填充的资源单元和黑点填充的资源单元分别代表一种可选的CSI-RS配置,例如可用于一个小区。可以看出,图5的每一个方案中示出了两套这样的配置,因此其复用因子为2,与8端口情况下复用因子为5相比,复用因子减小。
其中,码分复用端口组为:端口{0,1,8,9},端口{4,5,12,13},端口{2,3,10,11}和端口{6,7,14,15},分别采用了长度为4的码分复用,例如,端口0、1、8、9分别被赋予正交的4个长度为4的OCC码以共用4个资源单元。需注意,为了简洁起见,在图5以及以后的附图中,申请人没有再如图4对应于图3的(b)一样绘制出每一个端口组中具体的资源复用情况,本领域的技术人员可以根据本发明的主旨及相应文字描述理解并还原出具体复用的网格图。在方案一的灰色填充代表的配置0中,仅利用了时 域的码分复用,而在黑点代表的配置1中,利用了频域和时域的码分复用,并且从图中可以看出,天线端口间在时域复用和频域复用的资源单元并不是相邻的。具体地,配置0涉及的资源单元分布于4个OFDM符号上,每一端口组内包含的4个端口可只在横向的时域上进行码分复用,由于在每个OFDM符号中都有4个资源单元供4个端口的CSI-RS使用,因此在其中一个端口上传输CSI-RS时的功率增益为6 dB;而配置1涉及的资源单元仅分布于2个OFDM符号上,在每个OFDM符号中有8个天线端口(例如端口0、4、8、12、2、6、10、14位于同一OFDM符号),若仍仅采用时域码分复用则无法既满足功率增益不超过6dB又实现全功率利用,本发明的示例方案中每一端口组内包含的4个端口在频域以及时域上进行码分复用,例如端口0、1、8、9共同占用在纵向的频域和横向的时域上分布的4个资源单元,借此,端口0和8在进行传输时其他6个端口静默,6*2dB=12dB的功率增益可以被端口0和8平分,从而实现每端口功率增益为6dB以及全功率利用。方案二的情形类似,只是占用了不同的资源单元。
图5中所示的CSI-RS配置仍利用了现有的用于CSI-RS的资源单元进行重新的端口映射而没有添加新的资源单元。图5中标示出天线端口号的白色填充单元格代表的是原有的8个端口下的一组CSI-RS配置使用的资源单元,在16端口的情况下,这些资源单元并没有被使用。在图5的方案中,CSI-RS的密度仍保持每个PRB每个端口1个资源单元(1RE/port/PRB),即每一套CSI-RS配置均没有横跨两个PRB。
在CSI-RS的传输过程中,参考信号序列
Figure PCTCN2016099450-appb-000001
通过一定的映射关系映射到复值符号
Figure PCTCN2016099450-appb-000002
其中,
Figure PCTCN2016099450-appb-000003
由下式定义:
Figure PCTCN2016099450-appb-000004
其中,ns是无线帧内的时隙编号,l是时隙内的OFDM符号编号,c(·)是伪随机序列,由伪随机序列发生器生成,
Figure PCTCN2016099450-appb-000005
表示系统的最大下行带宽。
参考信号序列到复值符号的映射根据下式进行,复值符号作为天线端口上的参考符号(该式适用于各个情况下的映射,下文中不再重复):
Figure PCTCN2016099450-appb-000006
其中,p代表天线端口号,对于图5中的方案一,式(2)中的参数如下:
Figure PCTCN2016099450-appb-000007
Figure PCTCN2016099450-appb-000008
Figure PCTCN2016099450-appb-000009
Figure PCTCN2016099450-appb-000010
l"=0,1
其中,
Figure PCTCN2016099450-appb-000011
表示分配给下行链路的资源块数,由小区的下行带宽决定。CSI-RS配置0为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由黑点填充的资源单元对应的CSI-RS配置。序列w=wp(i)的值可以通过下表1得到。其中这里所用的天线端口P的序号是实际的天线端口序号(15-30对应于图5中的0-15,以下各个示例中也是如此)。
天线端口P [wp(0) wp(1) wp(2) wp(3)]
15/17/19/21 [+1 +1 +1 +1]
16/18/20/22 [+1 -1 +1 -1]
23/25/27/29 [+1 +1 -1 -1]
24/26/28/30 [+1 -1 -1 +1]
表1
CSI-RS的配置与(k’,l’)的映射关系可以由下表2得到。
  (k',l') ns mod 2
CSI-RS配置0 (9,2) 1
CSI-RS配置1 (11,2) 1
表2
对于图5中的方案二,式(2)中的参数如下:
Figure PCTCN2016099450-appb-000012
l=l'+l"
Figure PCTCN2016099450-appb-000013
Figure PCTCN2016099450-appb-000014
l"=0,1
其中,CSI-RS配置0为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由黑点填充的资源单元对应的CSI-RS配置。序列w=wp(i)的值可以通过下表3得到。
天线端口P [wp(0) wp(1) wp(2) wp(3)]
15/17/19/21 [+1 +1 +1 +1]
16/18/20/22 [+1 -1 +1 -1]
23/25/27/29 [+1 +1 -1 -1]
24/26/28/30 [+1 -1 -1 +1]
表3
CSI-RS的配置与(k’,l’)的映射关系可以由下表4得到。
  (k',l') ns mod 2
CSI-RS配置0 (9,5) 0/1
CSISI-RS配置1 (11,2) 1
表4
但是,CSI-RS配置并不限于此,而是可以采用其他方式。例如,CSI-RS图样可以包括如下中的至少一种:基于一个PRB的图样;基于相邻两个或更多个子帧的图样;以及基于相邻两个或更多个PRB的图样。
图6示出了天线端口数为16的情况下,通过增加PRB中用于CSI-RS的资源单元而获得的采用常规循环前缀的FDD帧的CSI-RS图样的两种方案的示例。在这两种方案中,分别用灰色填充、白色填充和黑点填充代表一组CSI-RS配置,每个方案中有三组配置,因此复用因子均为3。在第3个和第4个OFDM符号中的8个资源单元被增加用于CSI-RS传输。在方案一中,均采用了复用长度为4的时域码分复用,在方案二中,白色填充的CSI-RS配置采用了和图5中配置1类似的混合的长度为2的时域码分复用和长度为2的频域码分复用,灰色填充和黑点填充的CSI-RS配置采用了复用长度为4的时域码分复用。与图5的方案相同,也可以类似地用公式(2)来表达CSI-RS与资源单元的映射关系,在此不再详述。
图7示出了天线端口数为16的情况下,基于相邻两个子帧设计的采用常规循环前缀的FDD帧的CSI-RS图样的方案的示例,分别用空白填充、灰色填充、黑点填充、横线填充和斜线填充示出了5组CSI-RS配置,即复用因子为5。图7中的CSI-RS图样是由位于两个不同子帧的8端口CSI-RS图样构成的,其中CSI-RS端口0-7位于子帧m中,CSI-RS端口8-15位于子帧m+1中。这种CSI-RS图样设计可以很好地避免与其他参考信号以及PDCCH中的控制信号产生冲突,但是其CSI-RS密度会下降为0.5 RE/port/PRB。在CSI-RS的复用方式上,依然沿用Rel-10的奇数端口与偶数端口的长度为2的码分复用。
因此,码分复用的码长度根据CSI-RS图样所基于的子帧的数目而改变。在天线端口数为16的情况下,当CSI-RS图样所基于的子帧的数目为1时,码分复用的码长度为4,而当CSI-RS图样所基于的子帧的数目为2时,码分复用的码长度为2。
而对于更多端口数比如32端口的情况,可以类似地采用基于两个相邻子帧的设计方式,例如,CSI-RS图样为码长度为4的码分复用CSI-RS 图样在两个相邻子帧中的扩展。作为一个示例,可以基于图6所示的两种方案进行在两个相邻子帧上的扩展,如图8和9所示,其中CSI-RS端口0-15位于子帧m中,CSI-RS端口16-31位于子帧m+1中。当然,也可以基于图5的方案进行扩展。对于更多的端口,相应地可以在更多相邻子帧上进行扩展。
此外,在进行CSI-RS图样设计时,还可以使得在不同小区的CSI-RS图样中,同一端口对应的物理资源单元彼此远离。这样可以进一步降低小区间的参考信号干扰。
此外,还可以采用12个天线端口进行CSI-RS传输。图10示出了在天线端口为12的情况下,采用常规循环前缀的CSI-RS图样的三种方案的示例。在这三种方案中,CSI-RS图样是基于单个PRB的,利用了已有的40个CSI-RS资源单元中的36个资源单元,得到了复用因子为3的CSI-RS配置(分别用灰色填充、黑点填充和斜线填充表示)。在复用方式上,奇数端口和偶数端口采用Rel 10的长度为2的时域的码分复用。可以看出,在端口天线数为12时,可通过合并3个4端口CSI-RS配置或者1个8端口CSI-RS配置和1个4端口CSI-RS配置得到CSI-RS图样。
对于方案一,参考信号序列映射到复值符号的映射公式(2)中的参数如下:
Figure PCTCN2016099450-appb-000015
l=l'+l"
Figure PCTCN2016099450-appb-000016
Figure PCTCN2016099450-appb-000017
Figure PCTCN2016099450-appb-000018
Figure PCTCN2016099450-appb-000019
其中,CSI-RS配置0为由黑点填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置2为由斜线填充的资源单元对应的CSI-RS配置。CSI-RS的配置与(k’,l’)的映射关系可以由下表5得到。
  (k',l') ns mod 2
CSI-RS配置0 (9,5)/(10,2) 0/1
CSI-RS配置1 (8,5)/(9,2) 0/1
CSI-RS配置2 (8,2) 1
表5
对于方案二,参考信号序列映射到复值符号的映射公式(2)中的参数如下:
Figure PCTCN2016099450-appb-000020
l=l'+l"
Figure PCTCN2016099450-appb-000021
Figure PCTCN2016099450-appb-000022
Figure PCTCN2016099450-appb-000023
Figure PCTCN2016099450-appb-000024
其中,CSI-RS配置0为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由黑点填充的资源单元对应的CSI-RS配置,CSI-RS配置2为由斜线填充的资源单元对应的CSI-RS配置。CSI-RS的配置与(k’,l’)的映射关系可以由下表6得到。
  (k',l') ns mod 2
CSI-RS配置0 (9,5)/(6,2) 0/1
CSI-RS配置1 (11,2) 1
CSI-RS配置2 (9,2) 1
表6
对于方案三,参考信号序列映射到复值符号的映射公式(2)中的参数如下:
Figure PCTCN2016099450-appb-000025
l=l'+l"
Figure PCTCN2016099450-appb-000026
Figure PCTCN2016099450-appb-000027
l"=0,1
Figure PCTCN2016099450-appb-000028
其中,CSI-RS配置0为由黑点填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由斜线填充的资源单元对应的CSI-RS配置,CSI-RS配置2为由灰色填充的资源单元对应的CSI-RS配置。CSI-RS的配置与(k’,l’)的映射关系可以由下表7得到。
  (k',l') ns mod 2
CSI-RS配置0 (9,5) 0/1
CSI-RS配置1 (11,2) 1
CSI-RS配置2 (8,2) 1
表7
以上示出了采用常规循环前缀的FDD帧的CSI-RS图样的示例。以下将给出采用扩展循环前缀的FDD帧的CSI-RS图样的示例。
图11示出了天线端口数为16的情况下,采用扩展循环前缀的FDD帧的CSI-RS图样的两种方案的示例。图中灰色填充的资源单元和黑点填充的资源单元分别代表一种可选的CSI-RS配置,这两种方案的复用因子均为2。与前述相同,码分复用端口组为:端口{0,1,8,9},端口{4,5,12,13},端口{2,3,10,11}和端口{6,7,14,15}。在这两种方案中,采用了混合的长度为 2的频域和时域上的码分复用。在图11的方案中,与8端口的情况相比,没有额外添加用于CSI-RS传输的资源单元。
图12示出了天线端口数为16的情况下,采用扩展循环前缀的FDD帧的CSI-RS图样的另一种方案的示例。在该方案中,新添加了第7个和第8个OFDM符号中共16个资源单元用于CSI-RS传输。端口组的配置与图11中的相同,该方案中共有三组CSI-RS配置(分别用灰色填充、黑点填充和斜线填充表示),复用因子为3。但是,在该方案中采用了长度为4的时域的码分复用。
此外,类似地,还可以采用基于相邻两个子帧的CSI-RS图样,每一个子帧的CSI-RS图样对应于8端口的CSI-RS图样,例如将端口0-7置于子帧m中,将端口8-15置于子帧m+1中。而对于更多天线端口数比如32个,例如可以基于图11或图12的图样在相邻子帧上进行扩展,在此不再详述。
图13示出了天线端口数为12的情况下,采用扩展循环前缀的FDD帧的CSI-RS图样的两种方案的示例。在图13的方案中,CSI-RS图样是基于单个PRB的、复用因子为2的CSI-RS配置(分别用灰色填充和黑点填充表示)。与常规循环前缀的情况类似,在复用方式上,奇数端口和偶数端口采用长度为2的时域的码分复用。并且可通过合并3个4端口CSI-RS配置或者1个8端口CSI-RS配置和1个4端口CSI-RS配置来得到CSI-RS图样。
对于图11和图13的方案一,参考信号序列映射到复值符号的映射公式(2)中的参数如下:
Figure PCTCN2016099450-appb-000029
l=l'+l",l"+6
Figure PCTCN2016099450-appb-000030
Figure PCTCN2016099450-appb-000031
l"=0,1
其中,当天线端口数为16时,CSI-RS配置0为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由黑点填充的资源单元对应的CSI-RS配置。序列w=wp(i)的值可以通过下表8得到。
天线端口P [wp(0) wp(1) wp(2) wp(3)]
15/17/19/21 [+1 +1 +1 +1]
16/18/20/22 [+1 -1 +1 -1]
23/25/27/29 [+1 +1 -1 -1]
24/26/28/30 [+1 -1 -1 +1]
表8
当天线端口为12时,CSI-RS配置0为由黑点填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由灰色填充的资源单元对应的CSI-RS配置,序列w=wl"可以表示为:
Figure PCTCN2016099450-appb-000032
CSI-RS的配置与(k’,l’)的映射关系可以由下表9得到。
  (k',l') ns mod 2
CSI-RS配置0 (11,4) 0
CSI-RS配置1 (10,4) 1
表9
对于图11和图13的方案二,参考信号序列映射到复值符号的映射公式(2)中的参数如下:
Figure PCTCN2016099450-appb-000033
l=l'+l"
Figure PCTCN2016099450-appb-000034
Figure PCTCN2016099450-appb-000035
l"=0,1
其中,当天线端口数为16时,CSI-RS配置0为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由黑点填充的资源单元对应的CSI-RS配置。序列w=wl"可以由下表10得到。
天线端口P [wp(0) wp(1) wp(2) wp(3)]
15/17/19/21 [+1 +1 +1 +1]
16/18/20/22 [+1 -1 +1 -1]
23/25/27/29 [+1 +1 -1 -1]
24/26/28/30 [+1 -1 -1 +1]
表10
当天线端口数为12时,其中,CSI-RS配置0为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由黑点填充的资源单元对应的CSI-RS配置,序列w=wl"可以表示为:
Figure PCTCN2016099450-appb-000036
CSI-RS的配置与(k’,l’)的映射关系可以由下表11得到。
  (k',l') ns mod 2
CSI-RS配置0 (11,4)/(10,4) 0/1
CSI-RS配置1 (9,4) 0/1
表11
以上给出了在FDD模式下,采用不同数量的天线端口用于CSI-RS传输的CSI-RS图样的示例,下面将以类似的方式给出在TDD模式下对于不同天线端口数的CSI-RS图样的示例。
图14示出了在天线端口数为16的情况下,采用常规循环前缀的TDD帧的CSI-RS图样的方案的示例。在该方案中,相比于现有的CSI-RS图样,没有额外添加新的资源单元,由于采用常规循环前缀TDD帧中的R10CSI-RS资源单元只有24个,因此在仅在一个PRB中配置16端口的CSI-RS的情况下,只有一组配置(用灰色填充表示),其复用因子为1。其中,码分复用端口组为:端口{0,1,4,5},端口{8,9,12,13},端口{2,3,6,7}和端口{10,11,14,15}。在该CSI-RS配置中,使用了混合的频域和时域上的码分复用。
图15示出了在天线端口数为12的情况下,采用常规循环前缀的TDD帧的CSI-RS图样的方案的示例。在该方案中,有两组CSI-RS配置,分别用灰色填充和黑点填充表示,因此复用因子为2。在复用方式上,奇数端口和偶数端口采用长度为2的时域的码分复用。并且可通过合并3个4端口CSI-RS配置或者1个8端口CSI-RS配置和1个4端口CSI-RS配置来得到CSI-RS图样。
对于图14和图15的方案,参考信号序列映射到复值符号的映射公式(2)中的参数如下:
Figure PCTCN2016099450-appb-000037
l=l'+2l"
Figure PCTCN2016099450-appb-000038
Figure PCTCN2016099450-appb-000039
l"=0,1
其中,当天线端口数为16时,CSI-RS的配置作为CSI-RS配置0。序列w=wp(i)的值可以通过下表12得到。
天线端口P [wp(0) wp(1) wp(2) wp(3)]
15/17/23/25 [+1 +1 +1 +1]
16/18/24/26 [+1 -1 +1 -1]
19/21/27/29 [+1 +1 -1 -1]
20/22/28/30 [+1 -1 -1 +1]
表12
当天线端口数为12时,CSI-RS配置0为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由黑点填充的资源单元对应的CSI-RS配置。序列w=wl"可以表示为:
Figure PCTCN2016099450-appb-000040
CSI-RS的配置与(k’,l’)的映射关系可以由下表13得到。
  (k',l') ns mod 2
CSI-RS配置0 (11,1) 1
CSI-RS配置1(仅用于12端口) (8,1) 1
表13
此外,还可以在相邻两个子帧上配置CSI-RS图样,图16示出了端口数为16的情况下,基于相邻两个子帧的采用常规CP的TDD帧的CSI-RS图样。该图样由位于两个不同子帧的8端口CSI-RS图样构成的,其中,端口0-7位于子帧m中,端口8-15位于子帧m+1中。共有3套CSI-RS配置(分别用白色填充、灰色填充和黑点填充表示),复用因子为3,CSI-RS密度为0.5/RE/port/PRB。在复用方式上,采用混合的长度为2的时域码分复用和长度为2的频域码分复用。
对于32端口的情况,可以采用基于16端口的CSI-RS图样比如图14的CSI-RS图样在两个相邻子帧上的扩展来获得CSI-RS图样。并且可以通过类似的扩展来进一步获得更多天线端口比如64端口的CSI-RS图样。
图17示出了在天线端口数为16的情况下,采用扩展循环前缀的TDD帧中CSI-RS图样的两种方案的示例。在方案一中,码分复用端口组为:端口{0,1,8,9},端口{4,5,12,13},端口{2,3,10,11}和端口{6,7,14,15}。在该方案中,相比于现有的CSI-RS图样,没有额外添加新的资源单元,只有一组配置(用灰色填充表示),其复用因子为1。在该CSI-RS配置中,使用了混合的频域和时域上的码分复用。
在方案二中,额外添加了第5个、第6个、第10个和第11个OFDM符号中共有24个资源单元用于CSI-RS传输。该方案中有三组CSI-RS配置,分别用白色填充、灰色填充和斜线填充表示,因此其复用因子为3。码分复用端口组为与方案一中相同,分别采用了混合的频域码分复用和时域码分复用,即4个端口共享它们所对应的4个资源单元。由于在每个OFDM符号中,都有4个RE供CSI-RS使用,因此其CSI-RS功率增益为6dB。
对于图17中的方案一,参考信号序列映射到复值符号的映射公式(2)中的参数如下:
Figure PCTCN2016099450-appb-000041
l=l'+l"
Figure PCTCN2016099450-appb-000042
Figure PCTCN2016099450-appb-000043
l"=0,1
其中,CSI-RS的配置作为CSI-RS配置0。序列wp(i)的值可以通过下表14得到。
天线端口P [wp(0) wp(1) wp(2) wp(3)]
15/17/19/21 [+1 +1 +1 +1]
16/18/20/22 [+1 -1 +1 -1]
23/25/27/29 [+1 +1 -1 -1]
24/26/28/30 [+1 -1 -1 +1]
表14
CSI-RS的配置与(k’,l’)的映射关系可以由下表15得到。
  (k',l') ns mod 2
CSI-RS配置0 (11,1) 1
表15
此外,当天线端口为16时,类似于FDD帧中的情形,还可以通过在相邻两个子帧上扩展8端口的CSI-RS图样来获得CSI-RS图样,例如,端口0-7位于子帧m中,端口8-15位于子帧m+1中。进一步地,当天线端口为32时,例如可以基于图17所示的其中一个16端口的CSI-RS图样在两个相邻子帧上进行扩展来获得其CSI-RS图样,例如端口0-15位于子帧m中,端口16-31位于子帧m+1中。
图18示出了在天线端口数为12的情况下,采用扩展循环前缀的TDD帧的CSI-RS图样的方案的示例。在该方案中,有两组配置,分别用灰色填充和黑点填充表示,因此复用因子为2。在复用方式上,奇数端口和偶数端口采用长度为2的时域的码分复用。并且可通过合并3个4端口CSI-RS配置或者1个8端口CSI-RS配置和1个4端口CSI-RS配置来得到CSI-RS图样。
对于图18中的方案,参考信号序列映射到复值符号的映射公式(2)中的参数如下:
Figure PCTCN2016099450-appb-000044
l=l'+l"
Figure PCTCN2016099450-appb-000045
Figure PCTCN2016099450-appb-000046
l"=0,1
Figure PCTCN2016099450-appb-000047
其中,CSI-RS配置0为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由黑点填充的资源单元对应的CSI-RS配置。CSI-RS的配置与(k’,l’)的映射关系可以由下表16得到。
  (k',l') ns mod 2
CSI-RS配置0 (11,1) 1
CSI-RS配置1 (5,1) 1
表16
此外,在无线通信采用TDD模式的情况下,可以在特殊子帧DwPTS中发送CSI-RS,CSI-RS图样为基于相邻两个PRB的图样。图19示出了针对TDD模式在特殊子帧DwPTS上常规循环前缀下的CSI-RS图样的 示例。
图19的左侧图表示在特殊子帧中DwPTS所占的OFDM符号数为11/12,上下分别表示一个PRB,CSI-RS图样是由位于相邻两个不同PRB中的8端口CSI-RS图样构成,其中CSI-RS端口0-7位于第一个PRB中,CSI-RS端口8-15位于第二个PRB中。CSI-RS密度为0.5 RE/port/PRB。在复用方式上,采用的是奇数端口和偶数端口长度为2的码分复用以及同个符号上的频分复用,由于在每个OFDM符号中,有4个资源单元供CSI-RS使用,因此其CSI-RS功率增益为6dB。该方案中共有5组CSI-RS配置,因此复用因子为5。
图19的右侧图表示在特殊子帧中DwPTS所占的OFDM符号数为9/10,上下分别表示一个PRB,CSI-RS图样是由位于相邻两个不同PRB中的8端口CSI-RS图样构成,其中端口{0,1,4,5}、端口{2,3,6,7}、端口{8,9,12,13}和端口{10,11,14,15}分别采用了长度为4的码分复用,即这4个端口共享它们所对应的2个资源单元。由于在每个OFDM符号中,都有4个资源单元供CSI-RS使用,因此其CSI-RS功率增益为3dB。该方案中共有3组CSI-RS配置,因此复用因子为3。
图20示出了针对TDD模式在特殊子帧DwPTS上扩展循环前缀下的CSI-RS图样的示例。该图样由位于相邻两个不同PRB的8端口CSI-RS图样构成,其中CSI-RS端口0-7位于第一个PRB对中,CSI-RS端口8-15位于第二个PRB中。其中CSI-RS密度为0.5 RE/port/PRB。在CSI-RS的复用方式上,采用的是奇数端口和偶数端口长度为2的码分复用以及同个符号上的频分复用,由于在每个OFDM符号中,都有4个RE供CSI-RS使用,因此其CSI-RS功率增益为6dB。该方案的CSI-RS复用因子为4。
对于图19和图20中的方案,参考信号序列映射到复值符号的映射公式(2)中的参数如下:
Figure PCTCN2016099450-appb-000048
l=l'+l"
Figure PCTCN2016099450-appb-000049
Figure PCTCN2016099450-appb-000050
Figure PCTCN2016099450-appb-000051
Figure PCTCN2016099450-appb-000052
Figure PCTCN2016099450-appb-000053
序列wp(i)的值可以通过下表17得到。
天线端口P [wp(0) wp(1) wp(2) wp(3)]
15/17/23/25 [+1 +1 +1 +1]
16/18/24/26 [+1 -1 +1 -1]
19/21/27/29 [+1 +1 -1 -1]
20/22/28/30 [+1 -1 -1 +1]
表17
其中,对于图19的左侧图的方案,CSI-RS配置0为由斜线填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由灰色填充的资源单元对应的CSI-RS配置,CSI-RS配置2为由白色填充的资源单元对应的CSI-RS配置,CSI-RS配置3为由黑点填充的资源单元对应的CSI-RS配置,CSI-RS配置4为由横线填充的资源单元对应的CSI-RS配置。对于图19的右侧图的方案,CSI-RS配置5为由灰色填充的资源单元对应的CSI-RS 配置,CSI-RS配置6为由白色填充的资源单元对应的CSI-RS配置,CSI-RS配置7为由黑点填充的资源单元对应的CSI-RS配置。CSI-RS的配置与(k’,l’)的映射关系可以由下表18得到。
  (k',l') ns mod 2/nPRB mod 2
CSI-RS配置0 (9,2) 0/0,1
CSI-RS配置1 (11,5) 0/0,1
CSI-RS配置2 (9,5) 0/0,1
CSI-RS配置3 (7,5) 0/0,1
CSI-RS配置4 (9,2) 1/0,1
CSI-RS配置5 (9,2) 0/0,1
CSI-RS配置6 (8,2) 0/0,1
CSI-RS配置7 (7,2) 0/0,1
表18
其中,对于图20的方案,CSI-RS配置0为由白色填充的资源单元对应的CSI-RS配置,CSI-RS配置1为由黑点填充的资源单元对应的CSI-RS配置,CSI-RS配置2为由黑色填充的资源单元对应的CSI-RS配置,CSI-RS配置3为由斜线填充的资源单元对应的CSI-RS配置。CSI-RS的配置与(k’,l)的映射关系可以由下表19得到。
  (k',l') ns mod 2/nPRB mod 2
CSI-RS配置0 (11,2) 0/0,1
CSI-RS配置1 (10,2) 0/0,1
CSI-RS配置2 (11,4) 0/0,1
CSI-RS配置3 (9,4) 0/0,1
表19
此外,如图1中的虚线框所示,装置100还可以包括:通知单元103,被配置为通过RRC信令中的CSI-RS-Config向用户设备通知CSI-RS的相关参数。例如,相关参数可以包括以下中的至少一个:天线端口的数目,CSI-RS与物理资源单元的映射关系,子帧偏移量,CSI-RS周期,CSI-RS发射功率。其中,CSI-RS-Config是用于对CSI-RS进行配置的信息单元,当天线端口数增多时,比如为16或32个天线端口时,需要在其中增加支持相应端口数的变量。
注意,以上虽然以CSI-RS为例进行了描述,但是本实施例的参考信号图样也可以应用于其他参考信号,比如解调参考信号(DMRS)等。
<第二实施例>
图21示出了根据本申请的一个实施例的用于无线通信的用户设备侧的装置200的结构框图,装置200包括:存储单元201,存储有预定的天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样;确定单元202,被配置为根据该参考信号图样以及来自基站侧的参考信号的相关参数来确定当前参考信号对应的物理资源单元;以及测量单元203,被配置为测量所确定的物理资源单元上的参考信号,以向基站侧上报所测量的信息,其中,该参考信号图样包括天线端口间在频域上对资源单元的码分复用。
其中,存储单元201可以针对不同的天线端口数存储相应的参考信号图样,这些参考信号图样包括但不限于第一实施例中所例示的那些。用户设备例如可以通过RRC信令从基站接收关于参考信号的相关参数。在参考信号为CSI-RS的情况下,相关参数可以包括以下中的至少一个:天线端口的数目,CSI-RS与物理资源单元的映射关系,子帧偏移量,CSI-RS周期,CSI-RS发射功率。确定单元202根据这些参考信号的相关参数确定例如天线端口数目,并根据存储单元201存储的参考信号图样确定当前参考信号对应的物理资源单元。由于所确定的物理资源单元上承载了当前参考信号,因此测量单元203对这些资源单元上的信号进行测量并且向基站侧上报测量结果,从而使得基站可以获得例如下行信道状态信息。
在本实施例中,参考信号图样包括天线端口间在频域上对资源单元的码分复用,从而可以在用于发送参考信号的天线端口的数量增多时也保持功率增益不超过6dB,并且减少功率浪费。
<第三实施例>
在上文的实施方式中描述无线通信系统中的基站侧和用户设备侧的装置的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述无线通信系统中的基站侧和用户设备侧的装置的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,无线通信系统中的基站侧和用户设备侧的装置的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用无线通信系统中的基站侧和用户设备侧的装置的硬件和/或固件。
图22示出了根据本申请的一个实施例的无线通信系统中的基站侧的方法的流程图,该方法包括:生成参考信号序列(S11);根据用于发送参考信号的天线端口的数目确定天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样(S12);以及基于参考信号图样将参考信号序列映射至资源单元以用于传输(S13),其中,参考信号图样包括天线端口间在频域上对资源单元的码分复用。
在一个示例中,在步骤S12中,为第一天线端口以及第二天线端口配置对应于同一OFDM符号的至少两个共用资源单元,以及分别为第一天线端口及第二天线端口配置彼此正交的正交覆盖码以执行天线端口间在频域上对资源单元的码分复用。
在一个示例中,在步骤S12中对具有相同奇偶性的端口序号的至少两个天线端口进行配置以在频域上码分复用。此外,参考信号图样还可以包括天线端口间在时域上对资源单元的码分复用。
其中,可以在较多天线端口数目下采用码长度较长的码分复用方式以兼容较少天线端口数目下的码长度较短的码分复用方式。
在步骤S12中,为了提高资源映射灵活性以充分利用空闲资源传输参考信号,可以为第一天线端口确定跨第一数量的OFDM符号的参考信号图样,为第二天线端口确定跨第二数量的OFDM符号的参考信号图样以分别传输第一与第二天线端口。
作为一个示例,参考信号为信道状态信息参考信号(CSI-RS)。在步骤S12中,可以在用于发送CSI-RS的天线端口的数目大于8的情况下, 确定包括天线端口间在频域上对资源单元码分复用的参考信号图样以用于资源映射。
例如,信道状态信息参考信号图样可以包括如下中的至少一种:基于一个物理资源块对的图样;基于相邻两个或更多个子帧的图样;以及基于相邻两个或更多个物理资源块的图样。
其中,码分复用的码长度可以根据信道状态信息参考信号图样所基于的子帧的数目改变。
示例性地,在天线端口数为16的情况下,当信道状态信息参考信号图样所基于的子帧的数目为1时,码分复用的码长度为4,而当信道状态信息参考信号图样所基于的子帧的数目为2时,码分复用的码长度为2。
此外,在天线端口数为32的情况下,CSI-RS图样可以为码长度为4的码分复用信道状态信息参考信号图样在两个相邻子帧中的扩展。
在不同小区的信道状态信息参考信号图样中,同一端口对应的物理资源单元可以设置为彼此远离,以减小小区间的参考信号干扰。
此外,在无线通信采用TDD模式的情况下,还可以在特殊子帧DwPTS中发送信道状态信息参考信号,该信道状态信息参考信号图样为基于相邻两个物理资源块的图样。
如图22中的虚线框所示,上述方法还可以包括如下步骤S14:通过RRC信令中的CSI-RS-Config向用户设备通知信道状态信息参考信号的相关参数。
例如,相关参数包括以下中的至少一个:天线端口的数目,信道状态信息参考信号与物理资源单元的映射关系,子帧偏移量,信道状态信息参考信号周期,信道状态信息参考信号发射功率。
相应地,还提供了一种用于无线通信系统中的用户设备侧的方法,包括如下步骤:根据所存储的参考信号图样以及来自基站侧的参考信号的相关参数来确定当前参考信号对应的物理资源单元,其中,参考信号图样由预定的天线端口与物理传输资源的资源单元的映射关系构成;以及测量所确定的物理资源单元上的参考信号,以向基站侧上报所测量的信息,其中,该参考信号图样包括天线端口间在频域上对资源单元的码分复用。
注意,上述各个方法可以结合或单独使用,其细节在第一和第二实施例中已经进行了详细描述,在此不再重复。
此外,在以上的描述中,还公开了一种通信系统,包括基站和用户设备,其中基站包括装置100,用户设备包括装置200。
本公开内容的技术能够应用于各种产品。例如,基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图23所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图23示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中 的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图23所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图23所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图23示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图24是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图24所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB830使用的多个频带兼容。虽然图24示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图23描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图23描述的BB处理器826相同。如图24所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图24示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图24 所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图24示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图23和图24所示的eNB 800和eNB 830中,通过使用图1所描述的通知单元103可以由无线通信接口825以及无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器821和控制器851实现。例如,控制器821和控制器851或者基带处理器826、856可以通过执行序列生成单元101、资源映射单元1023的功能来执行参考信号的生成。
[关于用户设备的应用示例]
(第一应用示例)
图25是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图25所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图25示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图25所示,智能电话900可以包括多个天线916。虽然图25示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图25所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图25所示的智能电话900中,例如,可以通过由处理器901、辅助控制器919执行确定单元202、测量单元203的功能,由存储器902来 执行存储单元201的功能来执行参考信号的测量。其中,确定单元202和测量单元203的部分功能还可以由无线通信接口912来实现。
(第二应用示例)
图26是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图26所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图26示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无 线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图26所示,汽车导航设备920可以包括多个天线937。虽然图26示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图26所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图26示出的汽车导航设备920中,例如,可以通过由处理器921执行确定单元202、测量单元203的功能,由存储器922来执行存储单元201的功能来执行参考信号的测量。其中,确定单元202和测量单元203的部分功能还可以由无线通信接口933来实现。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
本领域的技术人员可以理解,上文所述的装置中的例如序列生成单元、资源映射单元、存储单元、确定单元、测量单元等,可以由一个或更多个处理器来实现,而例如通知单元等,可以由天线、滤波器、调制解调器及编解码器等电路元器件实现。
因此,本发明还提出了一种电子设备(1),包括:一种电路,被配置为:生成参考信号序列;以及根据用于发送参考信号的天线端口的数目确定天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样,并基于该参考信号图样将参考信号序列映射至资源单元以用于传输,其中,参考信号图样包括天线端口间在频域上对资源单元的码分复用。
本发明还提出了一种电子设备(2),包括:一种电路,被配置为:根据所存储的参考信号图样以及来自基站侧的参考信号的相关参数来确定当前参考信号对应的物理资源单元,其中,参考信号图样由预定的天线端口与物理传输资源的资源单元的映射关系构成;以及测量所确定的物理资源单元上的参考信号,以向基站侧上报所测量的信息,其中,该参考信号图样包括天线端口间在频域上对资源单元的码分复用。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图27所示的通用计算机2700)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图27中,中央处理单元(CPU)2701根据只读存储器(ROM)2702中存储的程序或从存储部分2708加载到随机存取存储器(RAM)2703的程序执行各种处理。在RAM 2703中,也根据需要存储当CPU 2701执行各种处理等等时所需的数据。CPU 2701、ROM 2702和RAM 2703经由总线2704彼此连接。输入/输出接口2705也连接到总线2704。
下述部件连接到输入/输出接口2705:输入部分2706(包括键盘、鼠标等等)、输出部分2707(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2708(包括硬盘等)、 通信部分2709(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2709经由网络比如因特网执行通信处理。根据需要,驱动器2710也可连接到输入/输出接口2705。可移除介质2711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2710上,使得从中读出的计算机程序根据需要被安装到存储部分2708中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2711安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图27所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2711。可移除介质2711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2702、存储部分2708中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (17)

  1. 一种用于无线通信的基站侧的装置,包括:
    序列生成单元,被配置为生成参考信号序列;以及
    资源映射单元,被配置为根据用于发送参考信号的天线端口的数目确定天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样,并基于所述参考信号图样将所述参考信号序列映射至资源单元以用于传输,
    其中,所述参考信号图样包括天线端口间在频域上对资源单元的码分复用。
  2. 根据权利要求1所述的装置,其中,所述资源映射单元为第一天线端口以及第二天线端口配置对应于同一正交频分复用符号的至少两个共用资源单元,以及分别为所述第一天线端口及所述第二天线端口配置彼此正交的正交覆盖码以执行天线端口间在频域上对资源单元的码分复用。
  3. 根据权利要求1所述的装置,其中,所述资源映射单元对具有相同奇偶性的端口序号的至少两个天线端口进行配置以在频域上码分复用。
  4. 根据权利要求1-3任一项所述的装置,其中,所述参考信号为信道状态信息参考信号,所述资源映射单元被配置为在用于发送参考信号的天线端口的数目大于8的情况下,确定包括天线端口间在频域上对资源单元码分复用的参考信号图样以用于资源映射。
  5. 根据权利要求1所述的装置,其中,所述参考信号图样还包括所述天线端口间在时域上对资源单元的码分复用。
  6. 根据权利要求4所述的装置,其中,所述信道状态信息参考信号图样包括如下中的至少一种:基于一个物理资源块的图样;基于相邻两个或更多个子帧的图样;以及基于相邻两个或更多个物理资源块的图样。
  7. 根据权利要求6所述的装置,其中,码分复用的码长度根据所述信道状态信息参考信号图样所基于的子帧的数目改变。
  8. 根据权利要求7所述的装置,其中,在天线端口数为16的情况下,当所述信道状态信息参考信号图样所基于的子帧的数目为1时,所述码分 复用的码长度为4,而当所述信道状态信息参考信号图样所基于的子帧的数目为2时,所述码分复用的码长度为2。
  9. 根据权利要求8所述的装置,其中,在天线端口数为32的情况下,所述CSI-RS图样为码长度为4的码分复用信道状态信息参考信号图样在两个相邻子帧中的扩展。
  10. 根据权利要求1所述的装置,其中,所述资源映射单元在较多天线端口数目下采用码长度较长的码分复用方式以兼容较少天线端口数目下的码长度较短的码分复用方式。
  11. 根据权利要求1所述的装置,其中,所述资源映射单元为第一天线端口确定跨第一数量的正交频分复用符号的参考信号图样,为第二天线端口确定跨第二数量的正交频分复用符号的参考信号图样以分别传输第一与第二天线端口。
  12. 根据权利要求4所述的装置,其中,在所述无线通信采用时分双工模式的情况下,在特殊子帧DwPTS中发送信道状态信息参考信号,所述信道状态信息参考信号图样为基于相邻两个物理资源块的图样。
  13. 根据权利要求4所述的装置,其中,在不同小区的信道状态信息参考信号图样中,同一端口对应的物理资源单元彼此远离。
  14. 根据权利要求4所述的装置,还包括:
    通知单元,被配置为通过RRC信令中的CSI-RS-Config向用户设备通知信道状态信息参考信号的相关参数。
  15. 根据权利要求14所述的装置,其中,所述相关参数包括以下中的至少一个:所述天线端口的数目,信道状态信息参考信号与物理资源单元的映射关系,子帧偏移量,信道状态信息参考信号周期,信道状态信息参考信号发射功率。
  16. 一种用于无线通信的基站侧的方法,包括:
    生成参考信号序列;以及
    根据用于发送参考信号的天线端口的数目确定天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样,并基于所述参考信号图样将所述参考信号序列映射至资源单元以用于传输,
    其中,所述参考信号图样包括天线端口间在频域上对资源单元的码分复用。
  17. 一种用于无线通信的用户设备侧的装置,包括:
    存储单元,存储有预定的天线端口与物理传输资源的资源单元的映射关系所构成的参考信号图样;
    确定单元,被配置为根据所述参考信号图样以及来自基站侧的参考信号的相关参数来确定当前参考信号对应的物理资源单元;以及
    测量单元,被配置为测量所确定的物理资源单元上的参考信号,以向基站侧上报所测量的信息,
    其中,所述参考信号图样包括天线端口间在频域上对资源单元的码分复用。
PCT/CN2016/099450 2015-09-24 2016-09-20 用于无线通信的基站侧和用户设备侧的装置及方法 WO2017050209A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/758,646 US10666478B2 (en) 2015-09-24 2016-09-20 Device used at wireless communication base station side and user equipment side, and method
CA2998419A CA2998419A1 (en) 2015-09-24 2016-09-20 Device used at wireless communication base station side and user equipment side, and method
KR1020187011044A KR20180057664A (ko) 2015-09-24 2016-09-20 무선 통신 기지국 측 및 사용자 장비 측에서 이용되는 디바이스 및 방법
EP16848090.3A EP3352395A4 (en) 2015-09-24 2016-09-20 Device used at wireless communication base station side and user equipment side, and method
JP2018510066A JP2018534802A (ja) 2015-09-24 2016-09-20 無線通信の基地局側及びユーザー装置側で用いられる装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510618334.X 2015-09-24
CN201510618334.XA CN106559162B (zh) 2015-09-24 2015-09-24 用于无线通信的基站侧和用户设备侧的装置及方法

Publications (1)

Publication Number Publication Date
WO2017050209A1 true WO2017050209A1 (zh) 2017-03-30

Family

ID=58385652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099450 WO2017050209A1 (zh) 2015-09-24 2016-09-20 用于无线通信的基站侧和用户设备侧的装置及方法

Country Status (7)

Country Link
US (1) US10666478B2 (zh)
EP (1) EP3352395A4 (zh)
JP (1) JP2018534802A (zh)
KR (1) KR20180057664A (zh)
CN (1) CN106559162B (zh)
CA (1) CA2998419A1 (zh)
WO (1) WO2017050209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516113A (ja) * 2017-04-28 2020-05-28 華為技術有限公司Huawei Technologies Co.,Ltd. 基準信号送信方法、基準信号受信方法、ネットワークデバイス、および端末デバイス

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
WO2017111494A1 (en) * 2015-12-22 2017-06-29 Samsung Electronics Co., Ltd. Scheme for configuring reference signal and communicating channel state information in a wireless communication system using multiple antenna ports
CN108604919B (zh) * 2016-02-05 2022-04-08 索尼公司 终端装置、基础设施设备、方法和集成电路
CN109687947B (zh) * 2017-05-05 2020-03-10 华为技术有限公司 一种参考信号图样的传输方法及其装置
US11139876B2 (en) * 2017-05-05 2021-10-05 Apple Inc. Signaling of a channel state information reference signal (CSI-RS) mapping configuration for a new radio (NR) system
CN108989008B (zh) * 2017-06-05 2021-12-14 华为技术有限公司 参考信号的传输方法、装置和设备
CN109039530A (zh) * 2017-06-09 2018-12-18 索尼公司 无线通信系统中的装置和方法
JP7242161B2 (ja) * 2017-06-14 2023-03-20 ソニーグループ株式会社 通信装置、通信制御方法及びコンピュータプログラム
CN109391448B (zh) 2017-08-11 2021-10-01 华为技术有限公司 一种信息传输方法及装置
CN109587659B (zh) * 2017-09-29 2022-05-27 中兴通讯股份有限公司 一种信号的发送方法和系统
CN110138519A (zh) * 2018-02-02 2019-08-16 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
CN110198207B (zh) * 2018-02-26 2020-09-15 维沃移动通信有限公司 无线通信的方法和网络设备
CN111988074A (zh) * 2019-05-24 2020-11-24 普天信息技术有限公司 下行导频方法和基站
CN112019311B (zh) * 2019-05-31 2022-04-12 华为技术有限公司 通信方法和装置
WO2021062608A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 用于确定信道状态信息参考信号资源映射的方法及装置
CN117376814A (zh) * 2022-07-01 2024-01-09 索尼集团公司 用于无线通信系统中的电子设备和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412840A (zh) * 2011-09-21 2012-04-11 香港应用科技研究院有限公司 超低电压的自动调零的多阶段高速cmos比较器
CN102437987A (zh) * 2010-09-29 2012-05-02 中兴通讯股份有限公司 信道状态信息参考信号序列的生成和映射方法及装置
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013502139A (ja) * 2009-08-14 2013-01-17 エルジー エレクトロニクス インコーポレイティド 多重アンテナを支援する無線通信システムにおいてダウンリンク参照信号を伝送する方法及び装置
US8824384B2 (en) * 2009-12-14 2014-09-02 Samsung Electronics Co., Ltd. Systems and methods for transmitting channel quality information in wireless communication systems
KR101754970B1 (ko) * 2010-01-12 2017-07-06 삼성전자주식회사 무선 통신 시스템의 채널 상태 측정 기준신호 처리 장치 및 방법
CN102594516A (zh) * 2011-01-07 2012-07-18 中兴通讯股份有限公司 一种信道状态信息参考信号的处理方法和系统
EP3110221B1 (en) * 2011-03-18 2018-05-09 LG Electronics, Inc. Method and device for communicating device-to-device
US9814030B2 (en) * 2012-09-27 2017-11-07 Lg Electronics Inc. Method and apparatus for transmitting or receiving reference signal in wireless communication system
TWI617148B (zh) * 2012-09-28 2018-03-01 內數位專利控股公司 用於報告回饋的無線發射/接收單元及方法
JP6114153B2 (ja) * 2013-09-26 2017-04-12 株式会社Nttドコモ 基地局、移動局、参照信号送信方法及びチャネル品質測定方法
US20160094326A1 (en) * 2014-09-26 2016-03-31 Electronics And Telecommunications Research Institute Method and apparatus for transmitting channel state information reference signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437987A (zh) * 2010-09-29 2012-05-02 中兴通讯股份有限公司 信道状态信息参考信号序列的生成和映射方法及装置
CN102412840A (zh) * 2011-09-21 2012-04-11 香港应用科技研究院有限公司 超低电压的自动调零的多阶段高速cmos比较器
CN103944685A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 扩展参考信号的方法、设备和通信系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "CSI-RS design for 12 and 16 ports", 3GPP TSG RAN MEETING #82, R1-153792, 24 August 2015 (2015-08-24) - 28 August 2015 (2015-08-28), XP050993354 *
See also references of EP3352395A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516113A (ja) * 2017-04-28 2020-05-28 華為技術有限公司Huawei Technologies Co.,Ltd. 基準信号送信方法、基準信号受信方法、ネットワークデバイス、および端末デバイス
US11329782B2 (en) 2017-04-28 2022-05-10 Huawei Technologies Co., Ltd. Reference signal sending method, reference signal receiving method, network device, and terminal device
US11784765B2 (en) 2017-04-28 2023-10-10 Huawei Technologies Co., Ltd. Reference signal sending method, reference signal receiving method, network device, and terminal device

Also Published As

Publication number Publication date
CN106559162A (zh) 2017-04-05
CN106559162B (zh) 2020-03-06
KR20180057664A (ko) 2018-05-30
JP2018534802A (ja) 2018-11-22
US20180234278A1 (en) 2018-08-16
US10666478B2 (en) 2020-05-26
CA2998419A1 (en) 2017-03-30
EP3352395A4 (en) 2018-10-24
EP3352395A1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
WO2017050209A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
US10306589B2 (en) Hybrid reference signals for wireless communication
US11824806B2 (en) Apparatus and method in wireless communication system and computer readable storage medium
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
CN108886792B (zh) 无线通信系统中的电子设备和通信方法
EP3506667A1 (en) Apparatus and method in wireless communication system
US10708941B2 (en) Apparatus for acquiring and reporting power allocation
US20200336181A1 (en) Apparatus and method in wireless communication system, and computer-readable storage medium
EP4060926B1 (en) Wireless communication electronic device and method, and computer readable storage medium
US11356153B2 (en) Device and method in radio communication system, and computer-readable storage medium
JP2018026623A (ja) 通信装置、通信方法、及びプログラム
US20210136845A1 (en) Electronic device and method for wireless communications
WO2017152715A1 (zh) 用于具有多个天线的通信装置的电子设备和通信方法
JPWO2016067690A1 (ja) 通信制御装置、無線通信装置、通信制御方法、無線通信方法及びプログラム
JP2018110358A (ja) 端末装置、基地局装置、方法及び記録媒体
US10951289B2 (en) Electronic device, method applied to electronic device, and data processing device for reusing idle CSI-RS ports of an adjacent cell
KR20210108960A (ko) 무선 통신에 이용되는 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체
WO2021190435A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11425710B2 (en) Multiple access technologies in a new radio system
WO2022156608A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018510066

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 15758646

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2998419

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011044

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016848090

Country of ref document: EP