WO2019137308A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2019137308A1
WO2019137308A1 PCT/CN2019/070379 CN2019070379W WO2019137308A1 WO 2019137308 A1 WO2019137308 A1 WO 2019137308A1 CN 2019070379 W CN2019070379 W CN 2019070379W WO 2019137308 A1 WO2019137308 A1 WO 2019137308A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit beams
information
candidate transmit
electronic device
candidate
Prior art date
Application number
PCT/CN2019/070379
Other languages
English (en)
French (fr)
Inventor
徐瑨
李东儒
任文静
杨航
陶小峰
曹建飞
Original Assignee
索尼公司
徐瑨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 徐瑨 filed Critical 索尼公司
Priority to US16/646,153 priority Critical patent/US20200220605A1/en
Priority to CN201980004122.9A priority patent/CN111183597A/zh
Publication of WO2019137308A1 publication Critical patent/WO2019137308A1/zh
Priority to US17/741,450 priority patent/US11711133B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • Embodiments of the present disclosure generally relate to the field of wireless communications, and in particular, to electronic devices, wireless communication methods, and computer readable storage media. More particularly, the present disclosure relates to an electronic device as a network side device in a wireless communication system, an electronic device as a user device in a wireless communication system, and a wireless device executed by a network side device in a wireless communication system A communication method, a wireless communication method performed by a user equipment in a wireless communication system, and a computer readable storage medium.
  • Beamforming is a signal preprocessing technique based on an antenna array. Beamforming produces a directional beam by adjusting the weighting coefficients of each element in the antenna array, so that a significant array gain can be obtained. Therefore, beamforming technology has great advantages in terms of expanding coverage, improving edge throughput, and suppressing interference.
  • the network side device selects the transmit beam from the multiple transmit beams to transmit the downlink information.
  • the appropriate receive beam needs to be selected to receive the downlink information sent by the network side device, thereby obtaining the downlink information.
  • the gain of beamforming In this case, the user equipment needs to know relevant information about the transmit beam, so as to know which receive beam is used to receive the downlink information transmitted by the network side device through the transmit beam. Therefore, how the network side device notifies the user equipment of the relevant information of the transmit beam, and how the user equipment determines the appropriate receive beam is a technical problem that needs to be solved urgently.
  • an electronic device comprising processing circuitry configured to: receive information about N candidate transmit beams from a user equipment, wherein N is an integer greater than one; from the N candidates Selecting a transmit beam for transmitting downlink information to the user equipment, and determining a TCI state of the transport configuration indication according to the selected transmit beam, and transmitting the TCI state to the user equipment.
  • an electronic device comprising processing circuitry configured to: receive a transmission configuration indication TCI state from a network side device; and determine to receive from the network side device according to the TCI state The receive beam of the downlink information.
  • a wireless communication method comprising: receiving information about N candidate transmit beams from a user equipment, wherein N is an integer greater than 1; selecting from the N candidate transmit beams a transmit beam for transmitting downlink information to the user equipment; and determining a transport configuration indication TCI state according to the selected transmit beam, and transmitting the TCI state to the user equipment.
  • a wireless communication method including: receiving a transmission configuration indication TCI state from a network side device; and determining a reception beam for receiving downlink information from the network side device according to the TCI state .
  • a computer readable storage medium comprising executable computer instructions that, when executed by a computer, cause the computer to perform a wireless communication method in accordance with the present disclosure.
  • the network side device may select a transmit beam for transmitting downlink information from the N candidate transmit beams provided by the user equipment, and send the TCI status to the user equipment. Notify information about the selected transmit beam. Further, the user equipment may determine a receive beam for receiving downlink information according to the received TCI status. In this way, the network side device can provide information about the selected transmit beam to the user equipment, so that the user equipment can determine the receive beam corresponding to the transmit beam used by the network side device to receive the downlink information, thereby increasing the gain of the system.
  • FIG. 1 is a schematic diagram showing an application scenario according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing an example of a configuration of an electronic device according to an embodiment of the present disclosure
  • 3(a) is a schematic diagram showing the content of information about N candidate transmit beams, according to an embodiment of the present disclosure
  • FIG. 3(b) is a diagram showing the content of information about N candidate transmit beams, according to another embodiment of the present disclosure.
  • 3(c) is a schematic diagram showing the content of information about N candidate transmit beams, according to still another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram showing a mapping relationship between a TCI (Transmission Configuration Indication) state and resource identification information of an SSB (Synchronization Signal Block) according to an embodiment of the present disclosure
  • FIG. 5 is a signaling flowchart illustrating a mapping relationship between a network side device and a user equipment acquiring a TCI state and resource identification information of an SSB according to an embodiment of the present disclosure
  • FIG. 6 is a block diagram showing an example of a configuration of an electronic device according to another embodiment of the present disclosure.
  • FIG. 7 is a signaling flow diagram illustrating a method of determining a transmit beam and a receive beam, in accordance with an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram showing a first method for reporting a candidate transmit beam, according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing a second method for reporting a candidate transmit beam, in accordance with an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram showing a third method for reporting a candidate transmit beam, according to an embodiment of the present disclosure.
  • FIG. 11(a) is a schematic diagram showing a first mapping table according to an embodiment of the present disclosure.
  • 11(b) is a schematic diagram showing a fourth method for reporting a candidate transmit beam, according to an embodiment of the present disclosure.
  • FIG. 12(a) is a schematic diagram showing a second mapping table according to an embodiment of the present disclosure.
  • 12(b) is a schematic diagram showing a fifth method for reporting a candidate transmit beam, in accordance with an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram showing a process for reporting a candidate transmit beam, according to an embodiment of the present disclosure
  • FIG. 14 is a signaling flowchart illustrating a mapping relationship between a user equipment acquiring SSB resource identification information and a receive beam and a mapping relationship between a TCI state and SSB resource identification information, according to an embodiment of the present disclosure
  • FIG. 15 is a flowchart illustrating a wireless communication method performed by an electronic device, according to an embodiment of the present disclosure
  • FIG. 16 is a flowchart illustrating a wireless communication method performed by an electronic device, according to another embodiment of the present disclosure.
  • FIG. 17 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B);
  • FIG. 18 is a block diagram showing a second example of a schematic configuration of an eNB
  • 19 is a block diagram showing an example of a schematic configuration of a smartphone
  • 20 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
  • FIG. 1 is a schematic diagram showing an application scenario of the present disclosure.
  • eight transmit beams of a gNB (a base station in a fifth-generation communication system) are shown, which are numbered 0-7, respectively, and show UEs (User Equipments) within the coverage of the gNB.
  • the four receive beams are numbered 0-3.
  • the gNB selects the transmit beam numbered 5 to send downlink data to the UE
  • the UE should select the receive beam numbered 2 to be able to match the transmit beam to achieve better reception.
  • the UE needs to acquire information related to the transmit beam of the gNB number 5, and needs to determine that the receive beam numbered 2 is used for downlink data reception.
  • the present disclosure proposes, in such a scenario, an electronic device in a wireless communication system, a wireless communication method performed by an electronic device in a wireless communication system, and a computer readable storage medium to enable a user equipment to transmit a beam according to a network side device Determine the appropriate receive beam to increase the gain of the system.
  • FIG. 1 shows 8 transmit beams of the gNB
  • the gNB may have other numbers of multiple transmit beams
  • FIG. 1 shows 4 receive beams of the UE
  • the UE may also have Other numbers of multiple receive beams. That is, the present disclosure is applicable to all scenarios in which a network side device has multiple transmit beams and a user equipment has multiple receive beams.
  • Both the network side device and the user equipment according to the present disclosure may be included in a wireless communication system, which may be, for example, an NR (New Radio) communication system.
  • a wireless communication system which may be, for example, an NR (New Radio) communication system.
  • the network side device may be any type of TRP (Transmit and Receive Port).
  • the TRP may have a transmitting and receiving function, for example, may receive information from the user equipment and the base station device, or may transmit information to the user equipment and the base station device.
  • the TRP can provide services to the user equipment and be controlled by the base station equipment. That is, the base station device provides a service to the user equipment through the TRP.
  • the network side device described in this disclosure may also be a base station device, and may be, for example, an eNB or a gNB.
  • the user equipment may be a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device, or an in-vehicle terminal such as a car navigation device. ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 2 is a block diagram illustrating an example of a configuration of an electronic device 200 according to an embodiment of the present disclosure.
  • the electronic device 200 herein may be a network side device in a wireless communication system, and specifically may be a base station device or a TRP in a wireless communication system.
  • the electronic device 200 may include a communication unit 210, a selection unit 220, and a determination unit 230.
  • each unit of the electronic device 200 may be included in a processing circuit. It should be noted that the electronic device 200 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the communication unit 210 may receive information about N candidate transmit beams from the user equipment.
  • N is an integer greater than 1.
  • the user device may be a user device for which the electronic device 200 provides services.
  • the user device may be a user device within the coverage of the electronic device 200; when the electronic device 200 is a TRP, the user device may be a user device for which the electronic device 200 provides services.
  • the selection unit 220 may select a transmit beam for transmitting downlink information to the user equipment from among the N candidate transmit beams.
  • the N candidate transmit beams are the transmit beams of the electronic device 200 that can be used to transmit the downlink information, and the selection unit 220 can select the transmit beams for transmitting the downlink information from the N candidate transmit beams reported by the user equipment.
  • the determining unit 230 may determine a transmission configuration indication TCI state according to the selected transmit beam, so that the communication unit 210 may transmit the TCI state to the user equipment.
  • the electronic device 200 may select a transmit beam for transmitting downlink information from the N candidate transmit beams provided by the user equipment, and determine a TCI status notification corresponding to the selected transmit beam. User equipment. In this way, the electronic device 200 can notify the user equipment of the information related to the selected transmit beam by using the TCI state, so that the user equipment can acquire information related to the transmit beam selected by the electronic device 200, and then select an appropriate receive beam.
  • the electronic device 200 may further include a decoding unit 240 for decoding information about the N candidate transmit beams.
  • the decoding unit 240 may determine identification information of N candidate transmit beams according to information about the N candidate transmit beams. That is, the decoding unit 240 may decode information about the N candidate transmit beams, thereby determining identification information of the N candidate transmit beams.
  • the identifier of the transmit beam may be represented by an identifier of a CSI-RS (Channel State Information-Reference Signal) resource.
  • CSI-RS Channel State Information-Reference Signal
  • FIG. 3(a) is a schematic diagram showing the content of information about N candidate transmit beams, according to an embodiment of the present disclosure.
  • the information about the N candidate transmit beams may include the identification information of the N candidate transmit beams.
  • N is 4, and the CSI-RS resource identifier is used to indicate the identity of the candidate transmit beam.
  • CSI-RS resource 1 represents a CSI-RS resource numbered 1
  • a CSI-RS resource 2 represents a CSI-RS resource numbered 2
  • CSI-RS resource 3 represents a CSI numbered 3.
  • the RS resource, CSI-RS resource 4 represents a CSI-RS resource numbered 4, and the four CSI-RS resources respectively correspond to four candidate transmit beams.
  • the decoding unit 240 may determine identification information of N candidate transmit beams as shown in FIG. 3(a).
  • the decoding unit 240 may determine order information of the N candidate transmit beams according to information about the N candidate transmit beams. That is, the decoding unit 240 may decode information about the N candidate transmit beams, thereby determining identification information and order information of the N candidate transmit beams.
  • the manner in which the user equipment reports information about the N candidate transmit beams may be previously agreed between the electronic device 200 and the user equipment. For example, the electronic device 200 may configure such information for the user equipment, which will be described in detail later.
  • the decoding unit 240 may identify the identifiers of the N candidate transmit beams.
  • the coding order is used to determine the order information of the N candidate transmit beams.
  • the decoding unit 240 sequentially decodes the CSI-RS resources 1 and the CSI-RS.
  • the following candidate transmit beams may be considered to be arranged in descending order: candidate transmit beams indicated by CSI-RS resource 1, candidate transmit beams indicated by CSI-RS resource 2, CSI- The candidate transmit beam indicated by RS resource 3 and the candidate transmit beam indicated by CSI-RS resource 4. That is to say, the candidate transmit beam indicated by CSI-RS resource 1 is optimal, and the candidate transmit beam represented by CSI-RS resource 4 is the worst.
  • the selecting unit 220 may select, according to the order information of the N candidate transmit beams, The user equipment sends a transmit beam of downlink information. For example, the selection unit 220 may select an optimal candidate transmit beam among the N candidate transmit beams for transmitting downlink information to the user equipment.
  • the decoding unit 240 may further determine channel quality information between all or a portion of the N candidate transmit beams and the user equipment according to the information about the N candidate transmit beams. That is, the decoding unit 240 may decode information about the N candidate transmit beams, thereby determining identification information of the N candidate transmit beams and all or part of the N candidate transmit beams and the user equipment. Channel quality information.
  • channel quality information may be represented by various parameters, including but not limited to RSRP (Reference Signal Receiving Power), RSRQ (Reference Signal Receiving Quality), and BLER (Reference Signal Receiving Quality). Block Error Rate, block error rate).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • BLER Reference Signal Receiving Quality
  • Block Error Rate Block Error Rate
  • FIG. 3(b) is a diagram showing the content of information about N candidate transmit beams, according to another embodiment of the present disclosure.
  • the information about the N candidate transmit beams may include identification information of the N candidate transmit beams and channel quality information between each of the N candidate transmit beams and the user equipment.
  • N is 4, the CSI-RS resource identifier is used to represent the identifier of the candidate transmit beam, and the RSRP value is used to represent the channel quality between the candidate transmit beam and the user equipment.
  • the RSRP between the candidate transmit beam and the user equipment represented by the CSI-RS resource 1 is an RSRP value of 1
  • the RSRP between the candidate transmit beam and the user equipment represented by the CSI-RS resource 2 is an RSRP value of 2
  • the CSI-RS resource is used.
  • the RSRP between the candidate transmit beam and the user equipment represented by 3 is an RSRP value of 3.
  • the RSRP between the candidate transmit beam and the user equipment indicated by the CSI-RS resource 4 is an RSRP value of 4. That is, FIG. 3(b) shows the case where the information about the N candidate transmit beams includes the channel quality information between each of the N candidate transmit beams and the user equipment.
  • the user equipment reports the channel quality information between each of the N candidate transmit beams and the user equipment when reporting the N candidate transmit beams, and the reporting manner of the user equipment may be referred to as “ The report is completely reported, and the report mode shown in Fig. 3(a) can be called "partial report”.
  • FIG. 3(c) is a diagram showing the content of information about N candidate transmit beams, according to still another embodiment of the present disclosure.
  • the information about the N candidate transmit beams may include identification information of the N candidate transmit beams and channel quality information between a portion of the N candidate transmit beams and the user equipment. This way of reporting can be called “mixed reporting.”
  • N is 4, the CSI-RS resource identifier is used to represent the identifier of the candidate transmit beam, and the RSRP value is used to represent the channel quality between the candidate transmit beam and the user equipment.
  • the RSRP between the candidate transmit beam and the user equipment represented by the CSI-RS resource 2 is an RSRP value of 2
  • the RSRP between the candidate transmit beam and the user equipment indicated by the CSI-RS resource 3 is an RSRP value of 3.
  • the information about the N candidate transmit beams may include only the maximum and minimum values in the channel quality information between the N candidate transmit beams and the user equipment.
  • the RSRP between the candidate transmit beam and the user equipment represented by the CSI-RS resource 2 is the maximum value, which is RSRP.
  • the value 2, the RSRP between the candidate transmit beam and the user equipment represented by the CSI-RS resource 3 is a minimum value, and is an RSRP value of 3.
  • the information about the N candidate transmit beams may include only the identification information of the four candidate transmit beams and RSRP value 2 and RSRP value 3.
  • the selection unit 220 A transmit beam for transmitting downlink information to the user equipment may be selected according to channel quality information between all or part of the candidate transmit beam and the user equipment. For example, the selection unit 220 may select a candidate transmit beam with the best channel quality for transmitting downlink information to the user equipment.
  • the selection unit 220 may select a transmit beam for transmitting downlink information to the user equipment according to information about the N candidate transmit beams. Certain criteria may be followed in the selection process, such as sequence information of N candidate transmit beams, channel candidate information of all candidate transmit beams or partial candidate transmit beams and user equipments among the N candidate transmit beams. Of course, the selection unit 220 may also select a transmit beam according to some other criteria, which is not limited in this disclosure. Here, the selection unit 220 may select only one transmit beam for transmitting downlink information.
  • the determining unit 230 can determine the TCI state according to the selected transmit beam.
  • the determining unit 230 may determine a beam for transmitting the synchronization signal block SSB corresponding to the selected transmission beam.
  • the electronic device 200 may transmit a SSB (including a synchronization signal, such as a primary synchronization signal and a secondary synchronization signal) to the user equipment using a beam. Similar to transmitting a CSI-RS, it uses different resources to transmit the SSB for different beams used to transmit the SSB. That is to say, the beam for transmitting the SSB has a one-to-one correspondence with the SSB resources, so in the present disclosure, the SSB resource identifier can be used to indicate the beam for transmitting the SSB.
  • a synchronization signal such as a primary synchronization signal and a secondary synchronization signal
  • a beam for transmitting an SSB in an initial access process has a spatially radiated range greater than or equal to a radiation range of a transmit beam for transmitting downlink information during data transmission. That is, one or more transmit beams for transmitting downlink information may be included in a range of radiation for transmitting a beam of the SSB, that is, from a spatial point of view, a beam for transmitting the SSB may be one or A plurality of transmit beam components for transmitting downlink information.
  • the determining unit 230 may determine a beam for transmitting the synchronization signal block SSB corresponding to the selected transmission beam, such that the radiation range of the selected transmission beam is located for the corresponding transmission beam.
  • the radiation range of the beam that sends the SSB that is, the determining unit 230 may determine, in the radiation range of the beam for transmitting the SSB, that the selected transmit beam is located, thereby determining that the beam for transmitting the SSB is for transmitting the SSB corresponding to the selected transmit beam.
  • the beam, and the resource identifier of the SSB can be used to represent the beam.
  • the determining unit 230 may determine a TCI state to be transmitted to the user equipment according to a mapping relationship between a TCI state and a beam for transmitting the SSB.
  • FIG. 4 is a schematic diagram showing a mapping relationship between a TCI state and resource identification information of an SSB, according to an embodiment of the present disclosure.
  • Figure 4 shows the beam used to transmit the SSB with the SSB resource identifier.
  • 4 shows 8 SSB resource identifiers, from SSB resource ID (Identification) 1 to SSB resource ID8, so the electronic device 200 can represent the 8 SSB resource identifiers with a 3-bit TCI state, respectively, from 000 to 111.
  • QCL Quasi Co-Location
  • CSI-RS downlink information
  • the relationship is a quasi-co-location relationship, that is, the user equipment can use the same receive beam to receive the beam for transmitting the SSB and the transmit beam for transmitting the downlink information within the beam space. That is, the TCI can be used to indicate that there is a QCL relationship between the synchronization signal in the SSB and the downlink information (eg, CSI-RS) transmitted by the transmit beam. Further, the QCL type in FIG. 4 indicates that the parameter is used for the time domain or the spatial domain, where the QCL type is 4, indicating that such a parameter can be used for the spatial domain.
  • the TCI state to be transmitted may be determined according to the mapping relationship as shown in FIG. 4. For example, assuming that the determining unit 230 determines that the beam for transmitting the SSB corresponding to the selected transmission beam is the beam indicated by the SSB resource ID3, it may be determined that the TCI state to be transmitted is 010.
  • the electronic device 200 may further include an establishing unit 250, which may establish a mapping relationship between a TCI state and a beam for transmitting the SSB after the initial access is completed.
  • the electronic device 200 can establish a mapping relationship as shown in FIG. 4 for each user equipment.
  • the establishing unit 250 may determine all the beams for transmitting the SSB that the user equipment can identify, and determine a TCI state for each beam according to the beams, thereby establishing as shown in FIG. 4 Mapping relationship.
  • the communication unit 210 may further send a mapping relationship between the TCI state and the beam for transmitting the SSB to the user equipment, so that the user equipment may determine a corresponding beam for transmitting the SSB after receiving the TCI state.
  • the electronic device 200 may further include a storage unit 260, which may store a mapping relationship between a TCI state and a beam for transmitting the SSB, so that the determining unit 230 may be configured according to the TCI state stored by the storage unit 260.
  • the mapping relationship between the beams of the SSB determines the TCI state to be sent to the user equipment.
  • FIG. 5 is a signaling flowchart illustrating a mapping relationship between a network side device and a user equipment to acquire a TCI state and a beam for transmitting an SSB, according to an embodiment of the present disclosure.
  • the SSB resource ID is still used in Figure 5 to indicate the beam used to transmit the SSB.
  • step S501 an initial access procedure is performed between the base station and the UE, and the present disclosure does not care about the initial access procedure, and thus the process is not detailed.
  • step S502 the base station establishes a mapping relationship between the TCI state and the SSB resource ID, and stores such a mapping relationship.
  • step S503 the base station transmits a mapping relationship between the TCI state and the SSB resource ID to the UE. In this way, both the base station and the UE can acquire and store the mapping relationship between the TCI state and the resource identification information of the SSB.
  • the TCI state has a mapping relationship with the beam for transmitting the SSB in which the selected transmit beam is located, so the electronic device 200 can utilize the TCI state to notify the user equipment about the selected transmit beam, so that the user equipment can know.
  • an appropriate receive beam can be selected.
  • the electronic device 200 may send a TCI status to the user equipment by using low layer signaling, including but not limited to DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the communication unit 210 may periodically receive information about N candidate transmit beams from a user equipment.
  • the communication unit 210 may also send a request to the user equipment to request the user equipment to report information about the N candidate transmit beams, thereby acquiring information about the N candidate transmit beams. That is to say, the electronic device 200 can configure the manner in which the user equipment is reported to report the N candidate transmit beams.
  • the communication unit 210 may periodically receive information about the N candidate transmit beams as shown in FIG. 3(a) from the user equipment, and may send a request to the user equipment to acquire as shown in the figure. 3(b) and FIG. 3(c) for information on N candidate transmit beams.
  • the electronic device 200 may configure related information about reporting N candidate transmit beams for the user equipment.
  • the electronic device 200 may configure the number of N candidate transmit beams and transmit configuration information about the number of N candidate transmit beams to the user equipment.
  • the electronic device 200 may send configuration information about the number of N candidate transmit beams to the user equipment by using high layer signaling, including but not limited to RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • N can be 2 n and n is a non-negative integer, such as 1, 2, 4, 8.
  • the electronic device 200 may transmit K transmit beams to the user equipment for the user equipment to select N candidate transmit beams from the K transmit beams, where K is an integer greater than or equal to N.
  • K may be 2 k and k is a positive integer, preferably 4, 8, 16, 32, 64.
  • the electronic device 200 may configure content in information about N candidate transmit beams, including full escalation, partial escalation, and hybrid reporting as described above, and transmit N candidate transmissions to the user equipment.
  • Configuration information of the content in the information of the beam Preferably, the electronic device 200 can transmit such configuration information to the user equipment through low layer signaling, including but not limited to DCI.
  • the electronic device 200 can configure a default reporting mode for the user equipment to be partially reported, and trigger partial reporting and hybrid reporting when necessary. In this case, the electronic device 200 can represent such configuration information with 1 bit, for example, 0 for full reporting and 1 for mixed reporting.
  • the electronic device 200 may configure an encoding manner of information about N candidate transmit beams, that is, five reporting methods of the user equipment mentioned hereinafter, and transmit to the user equipment about the N candidate transmit beams.
  • Configuration information of the encoding method of the information Preferably, the electronic device 200 can transmit such configuration information to the user equipment through low layer signaling, including but not limited to DCI.
  • the electronic device 200 can represent such configuration information with 3 bits.
  • the electronic device 200 may configure a report triggering manner for information about N candidate transmit beams, including periodic triggers and event triggers.
  • the electronic device 200 may transmit configuration information about a reporting period of information of N candidate transmit beams to the user equipment; in case of event triggering, the electronic device 200 may send a request to the user equipment to request Information about N candidate transmit beams is reported.
  • the electronic device 200 can configure related information about reporting N candidate transmit beams for the user equipment.
  • the network side device can also set some default configurations. For example, when a periodic report is configured for a user equipment, a partial reporting mode can be configured for the user equipment. When the event reporting is configured for the user equipment, the user equipment can be configured with a full report and a mixed report. The above is merely an illustrative illustration, and the electronic device 200 may also configure other information regarding the reporting of N candidate transmit beams.
  • the TCI state may be used to indicate to the user equipment a receive beam that receives downlink information. That is, the TCI state is information associated with a receive beam that the user equipment receives downlink information.
  • the downlink information may include control information such as a reference signal (including but not limited to CSI-RS).
  • the TCI may be used to indicate that a synchronization signal between the SSB and the downlink information (for example, CSI-RS) transmitted by the transmission beam for transmitting the downlink information included in the radiation range of the beam for transmitting the SSB exists. QCL relationship.
  • the TCI state can be used to indicate the existence of a QCL relationship between the downlink information to be transmitted by the electronic device 200 and the synchronization signal transmitted by the beam for transmitting the SSB in which the selected transmission beam is located. That is, the user equipment may use the same receive beam to receive a transmit beam for transmitting downlink information and a beam for transmitting the SSB corresponding to a transmit beam for transmitting downlink information.
  • the TCI state is information associated with the transmit beam that the electronic device 200 transmits the downlink information, and the user equipment knows the mapping relationship between the transmit beam and the receive beam, so that the TCI state can indirectly indicate to the user equipment that the downlink information is received. Receive beam.
  • the electronic device 200 may select a transmit beam for transmitting downlink information from the N candidate transmit beams provided by the user equipment, and determine a TCI status notification corresponding to the selected transmit beam. User equipment. In this way, the electronic device 200 can notify the user equipment of the information related to the selected transmit beam by using the TCI state, so that the user equipment can acquire information related to the transmit beam selected by the electronic device 200, and then select an appropriate receive beam.
  • FIG. 6 is a block diagram showing a structure of an electronic device 600 serving as a user device in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 600 may include a communication unit 610 and a determination unit 620.
  • various units of the electronic device 600 may be included in the processing circuit. It should be noted that the electronic device 600 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the communication unit 610 may receive a transmission configuration indication TCI state from the network side device.
  • the network side device may be a network side device that provides service to the electronic device 600, and may be implemented by the electronic device 200 described in the foregoing.
  • the determining unit 620 may determine a receive beam for receiving downlink information from the network side device according to the TCI state.
  • the electronic device 600 can determine a receive beam for receiving downlink information according to a TCI status received from the network side device.
  • the TCI status received from the network side device is associated with the selected transmit beam of the network side device, so that the electronic device 600 can select an appropriate receive beam according to the transmit beam, thereby increasing the gain of the system.
  • FIG. 7 is a signaling flow diagram illustrating a method of determining a transmit beam and a receive beam, in accordance with an embodiment of the present disclosure.
  • the UE transmits information about N candidate transmit beams to the base station.
  • the base station selects a transmit beam for transmitting downlink information to the UE from among the N candidate transmit beams.
  • the base station determines a TCI state according to the selected transmit beam and transmits it to the UE.
  • the UE determines a receive beam for receiving downlink information according to the received TCI state.
  • the UE can determine a suitable receive beam according to the transmit beam selected by the base station.
  • the electronic device 600 may receive a TCI state from a network side device through low layer signaling including, but not limited to, DCI.
  • the communication unit 610 may further send information about the N candidate transmit beams to the network side device, for the network side device to select, from the N candidate transmit beams, the transmit for transmitting the downlink information to the electronic device. Beam, and determining a TCI state based on the selected transmit beam, where N is an integer greater than one.
  • the communication unit 610 may receive K transmit beams of the network side device from the network side device.
  • the electronic device 600 may further include a selecting unit 630, configured to determine N candidate transmit beams according to channel quality between the K transmit beams of the network side device and the electronic device 600, where K is An integer greater than or equal to N. That is, the selecting unit 630 can measure the channel quality between each of the K transmit beams and the electronic device 600, and select N transmit beams with better channel quality from the K transmit beams according to the channel quality. Candidate transmit beam.
  • the selection unit 630 may determine the channel quality according to one or more of the following parameters: RSRP, RSRQ, and BLER.
  • each of the foregoing parameters may include multiple parameters, for example, the BLER may include a BLER for a PDCCH (Psylic Downlink Control Channel), and a PDSCH (Pystic Downlink Share Channel). BLER.
  • the selection unit 630 determines the channel quality according to a parameter such as RSRP, for example, the RSRP value between each of the K transmit beams and the electronic device 600 may be separately measured, and Among the K transmit beams, N transmit beams having the largest RSRP value are selected as candidate transmit beams.
  • RSRP a parameter such as RSRP
  • the selection unit 630 may also determine the channel quality according to two parameters. For example, the selection unit 630 may select a transmit beam that satisfies the following two conditions as a candidate transmit beam: the first channel quality parameter between the transmit beam and the electronic device 600 satisfies a condition defined by a first channel quality parameter threshold (eg, first The channel quality parameter is greater than or less than the first channel quality parameter threshold, which depends on the specific representation of the first channel quality parameter. For example, when the first channel quality parameter is RSRP or RSRQ, the first channel quality parameter needs to be greater than the first channel quality parameter.
  • a first channel quality parameter threshold eg, first The channel quality parameter is greater than or less than the first channel quality parameter threshold, which depends on the specific representation of the first channel quality parameter.
  • the first channel quality parameter is RSRP or RSRQ
  • the first channel quality parameter needs to be greater than the first channel quality parameter.
  • the first channel quality parameter needs to be smaller than the first channel quality parameter threshold when the first channel quality parameter is BLER, such a criterion also applies to other channel quality parameters); and the second between the transmit beam and the electronic device 600
  • the channel quality parameter is the optimal top N of the second channel quality parameters of all transmit beams.
  • the selecting unit 630 can implement the above selection by the following steps: First, the selecting unit 630 can select, from the K transmitting beams, the first channel quality parameter between the electronic device 600 that is greater than or less than the first channel quality parameter threshold. a beam; then, the selecting unit 630 may select, from the above-mentioned transmit beams, the top N transmit beams of the second channel quality parameter as the candidate transmit beams.
  • each of RSRP, RSRQ, and BLER may include a plurality of parameters, and thus the transmission beam may need to satisfy more than two conditions.
  • the selection unit 630 may also select a transmit beam that satisfies the following three conditions as a candidate transmit beam: the first channel quality parameter between the transmit beam and the electronic device 600 satisfies a condition defined by a first channel quality parameter threshold; The third channel quality parameter between the beam and the electronic device 600 satisfies a condition defined by the third channel quality parameter threshold (eg, the third channel quality parameter is greater than or less than the third channel quality parameter threshold, depending on the third channel quality parameter Specifically, for example, when the third channel quality parameter is RSRP or RSRQ, the third channel quality parameter needs to be greater than the third channel quality parameter threshold; when the third channel quality parameter is BLER, the third channel quality parameter needs to be smaller than the third channel quality.
  • the parameter threshold) and the second channel quality parameter between the transmit beam and the electronic device 600 is the optimal first N of
  • the selecting unit 630 can implement the above selection by the following steps: First, the selecting unit 630 can select a plurality of transmitting beams from the K transmitting beams that satisfy the following conditions: the first channel quality between the transmitting beam and the electronic device 600 The parameter is greater than or less than the first channel quality parameter threshold and the third channel quality parameter between the transmit beam and the electronic device 600 is greater than or less than the third channel quality parameter threshold; then, the selection unit 630 can obtain multiple transmit beams from the condition The top N transmit beams ranked first in the second channel quality parameter are selected as candidate transmit beams.
  • the BLER for the PDSCH is used as the first channel quality parameter
  • the BLER for the PDCCH is used as the third channel quality parameter
  • the RSRP is used as the second channel quality parameter
  • the threshold of the first channel quality parameter is 10%.
  • the third channel quality parameter threshold is 1%.
  • the selecting unit 630 may select a transmit beam whose BLER for the PDSCH is less than 10% and whose BLER for the PDCCH is less than 1%; then, the selecting unit 630 arranges the transmit beams satisfying the above conditions according to the value of the RSRP from large to small, and selects The sorted first N transmit beams are used as candidate transmit beams.
  • the selection unit 630 selects N candidate transmit beams according to one parameter or two parameters is shown in an exemplary manner.
  • the selection unit 630 can also select N candidate transmit beams according to other criteria, and can also select N candidate transmit beams according to more kinds of parameters, so that the channel quality of the selected N candidate transmit beams is better.
  • the electronic device 600 may report the selected N candidate transmit beams to the network side device.
  • the electronic device 600 may further include an encoding unit 640, configured to encode information of the N candidate transmit beams to generate information about the N candidate transmit beams that are sent to the network side device.
  • an encoding unit 640 configured to encode information of the N candidate transmit beams to generate information about the N candidate transmit beams that are sent to the network side device.
  • information about N candidate transmit beams may include identification information of N candidate transmit beams. Further, the information about the N candidate transmit beams may include order information of the N candidate transmit beams. For example, when the electronic device 600 and the network side device agree to report the N candidate transmit beams in an orderly manner, the coding unit 640 may sequentially encode the information of the N candidate transmit beams in descending or ascending order. Furthermore, as shown in FIG. 3(b) and FIG. 3(c), the information about the N candidate transmit beams may include channel quality information between all or part of the candidate transmit beams and the electronic device 600. .
  • the encoding unit 640 may utilize binary encoding to represent an identification of each of the N candidate transmit beams.
  • FIG. 8 is a schematic diagram showing a first method for reporting a candidate transmit beam, in accordance with an embodiment of the present disclosure.
  • the selecting unit 630 selects four transmit beams from the eight transmit beams (CSI-RS resources 0-7): the transmit beam indicated by the CSI-RS resource 2; a transmit beam represented by CSI-RS resource 4; a transmit beam represented by CSI-RS resource 3; a transmit beam indicated by CSI-RS resource 7, and the four transmit beams are arranged in descending order in the direction indicated by the arrow, ie, CSI-RS
  • the transmit beam indicated by resource 2 is optimal, and the transmit beam indicated by CSI-RS resource 7 is the worst.
  • the encoding unit 640 may determine that the identifier of each candidate transmit beam is represented by 3 bits, that is, the transmit beam indicated by the CSI-RS resource 2 is represented by 010, and the CSI-RS resource 4 is represented by 100.
  • the transmitted beam is represented by 011 to indicate the transmit beam indicated by CSI-RS resource 3, and 111 to represent the transmit beam indicated by CSI-RS resource 7.
  • the encoding unit 640 may connect the identification information of the N candidate transmit beams to form the last reported information. As shown in FIG. 8, the information about the N candidate transmit beams is 010100011111. Furthermore, the information about the N candidate transmit beams shown in FIG. 8 includes the order information of the N candidate transmit beams.
  • the sequence information of the N candidate transmit beams can be acquired when the network side device decodes the information about the N candidate transmit beams. If the four candidate transmit beams shown in FIG. 8 are reported in an unordered manner, the order of the identifier information of the four candidate transmit beams that are encoded may be changed. For example, the reported information may be 010011100111.
  • the encoding unit 640 may utilize a bitmap to represent the identification of the N candidate transmit beams. That is, the encoding unit 640 may determine the number of bits of the bitmap according to the size of K. The bit in the bitmap is 1 indicating that the transmit beam corresponding to the bit is selected as the candidate transmit beam, and the bit in the bitmap A value of 0 indicates that the transmit beam corresponding to the bit is not selected as the candidate transmit beam.
  • FIG. 9 is a schematic diagram showing a second method for reporting a candidate transmit beam, in accordance with an embodiment of the present disclosure.
  • the selection unit 630 selects four transmit beams from the eight transmit beams: the transmit beams represented by the CSI-RS resources 2, 4, 3, and 7, and this The four transmit beams are arranged in descending order in the direction indicated by the arrows.
  • the encoding unit 640 may determine that the 8-bit bitmap is used to represent the identification information of the four candidate transmit beams, that is, the 8 bits of the bitmap correspond to the transmit beams indicated by the CSI-RS resources 0-7, respectively. Then, the bit map as shown in FIG.
  • the information about the N candidate transmit beams shown in FIG. 9 includes only the identification information of the N candidate transmit beams, and does not include the sequence information of the N candidate transmit beams. That is to say, the sequence information of the N candidate transmit beams is not known when the network side device decodes the information about the N candidate transmit beams.
  • the encoding unit 640 may utilize binary coding to represent an identifier of a reference candidate transmit beam among N candidate transmit beams, and utilize candidate transmit beams and other candidate transmit beams other than the reference candidate transmit beams among the N candidate transmit beams.
  • the binary code of the difference of the identity of the reference candidate transmit beam represents the identity of the other candidate transmit beams.
  • the encoding unit 640 may select candidate transmit beams of the candidate transmit beams closest to the middle of all transmit beams as reference candidate transmit beams, and use binary coding to represent the identity of the reference candidate transmit beams. For other candidate transmit beams, a binary code of the difference from the identity of the reference candidate transmit beam is used.
  • the encoding unit 640 may determine the positive and negative of the difference between the identifiers of the other candidate transmit beams and the identifiers of the reference candidate transmit beams based on the coding order of the identifiers of the other candidate transmit beams and the identifiers of the reference candidate transmit beams. For example, encoding unit 640 may determine that the difference between the identification of the candidate transmit beam encoded before the identification of the reference candidate transmit beam and the identity of the reference candidate transmit beam is a negative value, the candidate transmit encoded after the identification of the reference candidate transmit beam The difference between the identity of the beam and the identity of the reference candidate transmit beam is a positive value.
  • FIG. 10 is a schematic diagram showing a third method for reporting a candidate transmit beam, according to an embodiment of the present disclosure.
  • the selection unit 630 selects four transmit beams from the eight transmit beams: the transmit beams represented by the CSI-RS resources 2, 4, 3, and 7, and this The four transmit beams are arranged in descending order in the direction indicated by the arrows.
  • the candidate transmit beam indicated by the CSI-RS resource 3 and the candidate transmit beam indicated by the CSI-RS resource 4 are located at an intermediate position of the 8 candidate transmit beams, the candidate transmit beam or CSI-represented by the CSI-RS resource 3 may be selected.
  • the candidate transmit beam indicated by the RS resource 4 is used as the reference candidate transmit beam.
  • the encoding unit 640 represents the identification information of the candidate transmit beam indicated by the CSI-RS resource 4 in a binary code 100.
  • the coding unit 640 calculates that the difference between the CSI-RS resource 2 and the CSI-RS resource 4 is 2, and is a negative value, so the identification information of the candidate transmit beam represented by the CSI-RS resource 2 is represented by 10, And the identification information should be encoded before the identification information of the reference candidate transmit beam.
  • the coding unit 640 calculates that the difference between the CSI-RS resource 3 and the CSI-RS resource 4 is 1, and is a negative value, so the identification information of the candidate transmit beam represented by the CSI-RS resource 3 is represented by 01, And the identification information should be encoded before the identification information of the reference candidate transmit beam; the coding unit 640 calculates that the difference between the CSI-RS resource 7 and the CSI-RS resource 4 is 3, and is a positive value, so the CSI is represented by 11.
  • the identification information of the candidate transmit beam indicated by the RS resource 7, and the identification information should be encoded after the identification information of the reference candidate transmit beam. As shown in FIG. 10, the information about the N candidate transmit beams finally determined by the coding unit 640 is 100110011.
  • the information about the N candidate transmit beams shown in FIG. 10 includes only the identification information of the N candidate transmit beams, and does not include the sequence information of the N candidate transmit beams. That is to say, the sequence information of the N candidate transmit beams is not known when the network side device decodes the information about the N candidate transmit beams. Further, since the identifier of the reference candidate transmit beam is one bit more than the identifier of the other candidate transmit beams, the network side device may determine the reference candidate transmit beam when receiving information about the N candidate transmit beams, and may The context of the other candidate transmit beams and the reference candidate transmit beams determines the positive and negative of the difference, thereby decoding the identity of all candidate transmit beams.
  • the encoding unit 640 may also cause the number of bits of the identification of the reference candidate transmit beam to be greater than the number of bits of the identification of other candidate transmit beams other than the reference candidate transmit beam. Further, the encoding unit 640 can achieve the above effect by padding 0 in front of the binary code of the identifier of the reference candidate transmit beam. That is, if the encoding unit 640 determines that the number of bits of the identifier of the reference candidate transmit beam is the same as the number of bits of the identifier of the other candidate transmit beams, the encoding unit 640 may fill in the prefix of the binary code of the identifier of the reference candidate transmit beam by 0. The number of bits of the identification of the reference candidate transmit beam is made larger than the number of bits of the identification of the other candidate transmit beams.
  • the electronic device 600 may further include a storage unit 650, configured to store a first mapping table, where the first mapping table stores N selected from K transmit beams of the network side device. The mapping relationship between the combination of candidate transmit beams and the combined identification. Further, the storage unit of the network side device may also store the first mapping table. The first mapping table may be stored in advance in a storage unit of the electronic device 600 and a storage unit of the network side device. In addition, the first mapping table may be established by the network side device and may be sent to the electronic device 600 through high layer signaling, including but not limited to RRC signaling.
  • FIG. 11(a) is a schematic diagram showing a first mapping table according to an embodiment of the present disclosure.
  • the left side shows all combinations of 2 candidate transmit beams from 4 transmit beams, and the right side shows the combined identification corresponding to the combination.
  • the left 1100 indicates that the transmit beam indicated by the CSI-RS resource 0 and the transmit beam indicated by the CSI-RS resource 1 are selected, and the combined identifier corresponding to the combination is 000.
  • the number of bits required for the combined identification can be determined according to the total number of combinations. For example, the total number of combinations can be calculated to be 6 according to the formula C 4 2 , thereby determining that 3 bits are required to represent the combined identification.
  • the encoding unit 640 may determine a combined identifier corresponding to the combination according to the first mapping table and the out-of-order combination of the N candidate transmit beams; and use the combined identifier to represent the identifier of the N candidate transmit beams.
  • 11(b) is a schematic diagram showing a fourth method for reporting a candidate transmit beam, in accordance with an embodiment of the present disclosure.
  • the selection unit 630 selects two transmit beams from the four transmit beams: the transmit beam indicated by the CSI-RS resource 1 and the CSI-RS resource 3 represent The transmit beam, and the two transmit beams are arranged in descending order in the direction indicated by the arrow.
  • the encoding unit 640 may determine that the unordered combination of the transmit beam represented by the CSI-RS resource 1 and the transmit beam represented by the CSI-RS resource 3 is 0101 as shown in FIG.
  • encoding unit 640 can determine that the information about the N candidate transmit beams is 100.
  • the information about the N candidate transmit beams shown in FIG. 11(b) includes only the identification information of the N candidate transmit beams, and does not include the sequence information of the N candidate transmit beams. That is to say, the sequence information of the N candidate transmit beams is not known when the network side device decodes the information about the N candidate transmit beams.
  • the identifiers of the N candidate transmit beams may be determined according to the first mapping table stored in advance.
  • the storage unit 650 may further store a second mapping table, where the second mapping table stores a mapping relationship between an arrangement of the N candidate transmit beams and an arrangement identifier from the K transmit beams of the network side device. . Further, the storage unit of the network side device may also store the second mapping table. The second mapping table may be stored in advance in a storage unit of the electronic device 600 and a storage unit of the network side device. In addition, the second mapping table may be established by the network side device and may be sent to the electronic device 600 through high layer signaling, including but not limited to RRC signaling.
  • FIG. 12(a) is a schematic diagram showing a second mapping table according to an embodiment of the present disclosure.
  • the left side shows all the permutations of the 2 candidate transmit beams from the 4 transmit beams, and the right side shows the permutation marks corresponding to the permutations.
  • the left 00, 01 indicates that the transmit beam indicated by the CSI-RS resource 0 and the transmit beam indicated by the CSI-RS resource 1 are selected, and the transmit beam indicated by the CSI-RS resource 0 and the transmit beam indicated by the CSI-RS resource 1 are selected.
  • the combination identifier corresponding to the arrangement is 0000.
  • the left 00, 10 indicates that the transmit beam indicated by the CSI-RS resource 0 and the transmit beam indicated by the CSI-RS resource 2 are selected, and the transmit beam indicated by the CSI-RS resource 0 and the transmit indicated by the CSI-RS resource 2 are selected.
  • the beams are arranged in descending order, and the combined identifier corresponding to the arrangement is 0001.
  • the number of bits required for arranging the identification can be determined according to the total number of permutations. For example, the total number of permutations can be calculated to be 12 according to the formula A 4 2 , thereby determining that 4 bits are required to represent the permutation identification.
  • the encoding unit 640 may determine an arrangement identifier corresponding to the arrangement according to the second mapping table and the ordered arrangement of the N candidate transmission beams; and use the arrangement identifier to represent the identification and order of the N candidate transmission beams.
  • FIG. 12(b) is a schematic diagram showing a fifth method for reporting a candidate transmit beam, according to an embodiment of the present disclosure.
  • the selection unit 630 selects two transmit beams from the four transmit beams: the transmit beam indicated by the CSI-RS resource 1 and the CSI-RS resource 3 represent The transmit beam, and the two transmit beams are arranged in descending order in the direction indicated by the arrow.
  • the encoding unit 640 may determine that the transmit beam represented by the CSI-RS resource 1 and the ordered beam of the transmit beam represented by the CSI-RS resource 3 are 01, 11 as shown in FIG.
  • encoding unit 640 can determine that the information about the N candidate transmit beams is 0101.
  • the information about the N candidate transmit beams shown in FIG. 12(b) includes not only the identification information of the N candidate transmit beams but also the sequence information of the N candidate transmit beams. That is to say, the sequence information of the N candidate transmit beams can be known when the network side device decodes the information about the N candidate transmit beams. In addition, when the network side device receives such information, the identifier and sequence of the N candidate transmit beams may be determined according to the second mapping table stored in advance.
  • FIGS. 8, 9, 10, 11(b), and 12(b) respectively illustrate five methods for reporting candidate transmit beams, in accordance with an embodiment of the present disclosure.
  • the encoding unit 640 can encode the channel quality information according to any method known in the art. And coding of channel quality information between the candidate transmit beam and the electronic device 600 may be added, which is not described in detail in the present disclosure.
  • the selection unit 630 can select N candidate transmit beams, and the encoding unit 640 can encode the information of the N candidate transmit beams. Further, according to an embodiment of the present disclosure, the selection unit 630 may also select less than N candidate transmit beams.
  • the selecting unit 630 may further determine whether the second channel quality parameter between the N candidate transmit beams and the electronic device 600 satisfies the condition defined by the second channel quality parameter threshold ( For example, the second channel quality parameter is greater than or less than the second channel quality parameter threshold, which depends on a specific representation of the second channel quality parameter, for example, when the second channel quality parameter is RSRP or RSRQ, the second channel quality parameter needs to be greater than the second Channel quality parameter threshold; when the second channel quality parameter is BLER, the second channel quality parameter needs to be smaller than the second channel quality parameter threshold). Further, the selection unit 630 can remove candidate transmit beams of the N candidate transmit beams that do not satisfy the condition defined by the second channel quality parameter threshold.
  • the second channel quality parameter is greater than or less than the second channel quality parameter threshold, which depends on a specific representation of the second channel quality parameter, for example, when the second channel quality parameter is RSRP or RSRQ, the second channel quality parameter needs to be greater than the second Channel quality parameter threshold; when the second channel quality parameter is BLER, the
  • the encoding unit 640 may select the first reporting method, the second reporting method, and the third reporting method to report the candidate transmitting beams. Further, in the first and third reporting methods, the encoding unit 640 may encode the identification information of the removed candidate transmit beam to zero. For example, assuming that the second channel quality parameter of the transmit beam represented by the CSI-RS resource 7 does not satisfy the condition defined by the second channel quality parameter threshold, in the example shown in FIG. 8, the reported information may be 0101000110; In the example shown in FIG. 9, the reported information may be 00111000; in the example shown in FIG. 10, the reported information may be 10011000.
  • the selection unit 630 may further select N candidate transmit beams according to a threshold of the second channel quality parameter, thereby removing those candidate transmit beams with poor channel quality, thereby further reducing overhead.
  • the communication unit 610 may receive configuration information for the number of N candidate transmit beams from the network side device, such as by higher layer signaling (including but not limited to RRC signaling).
  • the communication unit 610 may also send a request to the network side device to request the number of reconfiguration N, and may receive the number of N candidate transmit beams from the network side device, for example, through low layer signaling (including but not limited to DCI). Reconfigure the information.
  • the communication unit 610 may also receive configuration information for the reporting method from the network side device, for example, through higher layer signaling (including but not limited to RRC signaling).
  • higher layer signaling including but not limited to RRC signaling
  • one of the five reporting methods can be represented by 3 bits.
  • the communication unit 610 may also send a request to the network side device to request a reconfiguration reporting method, and may receive reconfiguration information for the reporting method from the network side device, for example, through low layer signaling (including but not limited to DCI).
  • Table 1 shows the overhead required for the above five methods, and the units of the numbers in the table are the number of bits.
  • the fourth method and the fifth method only the number of bits required for reporting the N candidate transmit beams is shown, and the bits required to store the first mapping table and the second mapping table are not shown. number.
  • the network side device may select a method of reporting according to the values of K and N to reduce the overhead required for reporting.
  • the third method can be selected; when N ⁇ 4 and K ⁇ 16, the fourth method can be selected.
  • the foregoing embodiment is merely exemplary, and the network side device may select a reporting method according to actual conditions.
  • the electronic device 600 may periodically transmit information about N candidate transmit beams to the network side device. Further, the electronic device 600 may also transmit information about the N candidate transmit beams to the network side device in response to the request of the network side device. That is, when the request of the network side device is received, information about the N candidate transmit beams is transmitted to the network side device.
  • the electronic device 600 may receive configuration information about content in information of N candidate transmit beams from a network side device, including full report, partial report, and, for example, through low layer signaling (including but not limited to DCI).
  • a network side device including full report, partial report, and, for example, through low layer signaling (including but not limited to DCI).
  • the full report indicates that the identification information of the N candidate transmit beams and the channel quality information between each of the N candidate transmit beams and the electronic device 600 need to be reported, as shown in FIG. 3(b);
  • the identification information of the N candidate transmit beams is reported, as shown in FIG. 3( a );
  • the hybrid report indicates that the identifier information of the N candidate transmit beams needs to be reported, and the channel quality information between the N candidate transmit beams and the electronic device 600 is used.
  • the maximum and minimum values are shown in Figure 3(c).
  • the network side device can configure content, trigger mode, and reporting method in the information about the N candidate transmit beams.
  • the network side device may also configure the foregoing information according to certain criteria. For example, when the electronic device 600 is configured to perform partial reporting, only the first reporting method and the fifth reporting method (ie, an orderly reporting method) can be used; when the electronic device 600 is configured with full reporting and mixed reporting, The second reporting method, the third reporting method, and the fourth reporting method (ie, an unordered reporting method) are adopted.
  • the electronic device 600 is configured with a periodic report
  • the electronic device 600 can be configured with a partial report.
  • the electronic device 600 can be configured with a full report and a mixed report.
  • the electronic device 600 may receive indication information indicating a full report or a mixed report from the network side device, for example, indicated by 1-bit information.
  • the electronic device 600 can be configured to be completely reported.
  • the above criteria are merely exemplary preferred ways and are not limiting.
  • Table 2 shows a preferred manner in which the network side device configures the electronic device 600 with the reported information.
  • Reporting method Trigger mode Report content First method (ordered) Periodic Partial report The second method (disorder) Event Fully reported or mixedly reported The third method (disorder) Event Fully reported The fourth method (disorder) Event Fully reported or mixedly reported The fifth method (ordered) Periodic Partial report
  • FIG. 13 is a schematic diagram showing a process for reporting a candidate transmit beam, according to an embodiment of the present disclosure.
  • the UE periodically reports information about the N candidate transmit beams to the base station according to the partially reported manner, so that the base station sends the TCI state to the UE.
  • the base station may also send an indication to the UE to request the aperiodic reporting, for example, the method may be used to indicate whether the full reporting mode or the hybrid reporting mode is used.
  • the UE may report to the base station in a manner of full reporting or mixed reporting in response to such an indication.
  • Information about N candidate transmit beams As described above, FIG. 13 merely shows an exemplary embodiment of the report, and is not restrictive.
  • the process in which the electronic device 600 reports information about the N candidate transmit beams to the network side device is detailed as above, and how the electronic device 600 determines the appropriate receive beam according to the received TCI state will be described in detail below.
  • the determining unit 620 may determine a beam for transmitting the SSB according to a mapping relationship between a TCI state and a beam for transmitting the synchronization signal block SSB.
  • the communication unit 610 may receive a mapping relationship between a TCI state and a beam for transmitting the SSB from the network side device after the initial access is completed. Further, the electronic device 600 may store the mapping relationship between the TCI state and the beam for transmitting the SSB in the storage unit 650. The mapping between the TCI state and the beam used to transmit the SSB is established by the network side device, as shown in FIG. 4 above, and details are not described herein again. For example, when the electronic device 600 receives the TCI status of 100, the beam for transmitting the SSB indicated by the SSB resource ID5 may be determined according to the mapping relationship shown in FIG. 4.
  • the determining unit 620 may determine a receive beam for receiving downlink information from the network side device according to a mapping relationship between a beam for transmitting the SSB and the receive beam.
  • the electronic device 600 may include an establishing unit 660, configured to establish a mapping relationship between a beam for transmitting an SSB and a receiving beam in an initial access procedure.
  • the SSB resource identification information can be used to indicate the beam used to transmit the SSB.
  • the network side device may send the SSB to the electronic device 600, and the electronic device 600 uses the receive beam to receive the SSB sent by the network side device, and may record which receive beam is used to receive which beam for transmitting the SSB. , thereby gradually establishing a mapping relationship between the receive beam and the beam used to transmit the SSB.
  • the electronic device 600 may store the mapping relationship between the beam for transmitting the SSB and the receive beam in the storage unit 650. For example, when the electronic device 600 receives the TCI status of 100, the beam for transmitting the SSB indicated by the SSB resource ID5 may be determined according to the mapping relationship shown in FIG. 4, and may be based on a beam and a receive beam for transmitting the SSB. The mapping relationship between the two determines the corresponding receive beam.
  • FIG. 14 is a signaling flowchart illustrating a mapping relationship between a user equipment acquiring SSB resource identification information and a reception beam and a mapping relationship between a TCI state and SSB resource identification information, according to an embodiment of the present disclosure.
  • Figure 14 shows the beam used to transmit the SSB with the SSB resource identification.
  • the UE in step S1401, the UE establishes a mapping relationship between the SSB resource identifier and the receiving beam in the access process.
  • step S1402 after the access procedure is completed, the base station establishes a mapping relationship between the TCI state and the SSB resource identifier.
  • step S1403 the base station transmits a mapping relationship between the TCI state and the SSB resource identifier to the UE. Therefore, the UE acquires and stores the mapping relationship between the TCI state and the SSB resource identifier and the mapping relationship between the SSB resource identifier and the receiving beam.
  • the electronic device 600 may receive a TCI state from a network side device, the TCI state being related to a transmit beam selected by the network side device, so that the electronic device 600 may determine an appropriate reception according to the TCI state.
  • the beam is such that the determined receive beam matches the transmit beam of the network side device to implement beamforming and improve system gain.
  • the electronic device 200 may serve as a network side device, and the electronic device 600 may serve as a user device, that is, the electronic device 200 may provide a service to the electronic device 600, and thus all embodiments related to the electronic device 200 described in the foregoing Both apply to this.
  • a wireless communication method performed by the electronic device 200 as a network side device in the wireless communication system according to an embodiment of the present disclosure will be described in detail next.
  • FIG. 15 is a flowchart illustrating a wireless communication method performed by an electronic device 200 as a network side device in a wireless communication system, according to an embodiment of the present disclosure.
  • step S1510 information about N candidate transmit beams is received from the user equipment, where N is an integer greater than one.
  • step S1520 a transmit beam for transmitting downlink information to the user equipment is selected from the N candidate transmit beams.
  • step S1530 the transmission configuration indication TCI status is determined according to the selected transmit beam, and the TCI status is sent to the user equipment.
  • the method further comprises: determining identification information of the N candidate transmit beams based on the information about the N candidate transmit beams.
  • the method further comprises: determining order information of the N candidate transmit beams based on information about the N candidate transmit beams; and selecting a transmit beam for transmitting downlink information to the user equipment according to the sequence information of the N candidate transmit beams.
  • the method further comprises: determining channel quality information between all or part of the candidate transmit beams and the user equipment according to the information about the N candidate transmit beams; and transmitting the beam and the user according to all or part of the candidate transmit beams
  • the channel quality information between the devices selects a transmit beam for transmitting downlink information to the user equipment.
  • determining the transmission configuration indication TCI status according to the selected transmit beam comprises: determining a beam corresponding to the selected transmit beam for transmitting the synchronization signal block SSB; and determining, between the TCI state and the beam for transmitting the SSB The mapping relationship determines the TCI status to be sent to the user equipment.
  • determining the beam for transmitting the synchronization signal block SSB corresponding to the selected transmission beam comprises: causing the selected transmission beam to have a radiation range within a radiation range of the beam for transmitting the SSB corresponding to the selected transmission beam .
  • the method further comprises: establishing a mapping relationship between the TCI state and the beam for transmitting the SSB after the initial access is completed; and transmitting a mapping relationship between the TCI state and the beam for transmitting the SSB to the user equipment.
  • the method further comprises: periodically receiving information about the N candidate transmit beams from the user equipment, or transmitting a request to the user equipment to obtain the information about the N candidate transmit beams.
  • the electronic device 200 includes a network side device in a new wireless NR communication system.
  • the main body performing the above method may be the electronic device 200 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 200 are applicable thereto.
  • a wireless communication method performed by the electronic device 600 as a user device in the wireless communication system according to an embodiment of the present disclosure will be described in detail next.
  • FIG. 16 is a flowchart illustrating a wireless communication method performed by an electronic device 600 as a user device in a wireless communication system, according to an embodiment of the present disclosure.
  • step S1610 the transmission configuration indication TCI status is received from the network side device.
  • step S1620 a reception beam for receiving downlink information from the network side device is determined according to the TCI state.
  • the method further includes: transmitting, to the network side device, information about the N candidate transmit beams, for the network side device to select, from the N candidate transmit beams, a transmit beam for transmitting downlink information to the electronic device 600, and according to The selected transmit beam determines the TCI state, where N is an integer greater than one.
  • the method further comprises: determining N candidate transmit beams according to channel quality between the K transmit beams of the network side device and the electronic device 600, where K is an integer greater than or equal to N.
  • the method further comprises: determining channel quality according to one or more of the following parameters: reference signal received power RSRP, reference signal received quality RSRQ, and block error rate BLER.
  • the method further comprises: periodically transmitting information about the N candidate transmit beams to the network side device; or transmitting information about the N candidate transmit beams to the network side device in response to the request of the network side device.
  • the information about the N candidate transmit beams includes identification information of the N candidate transmit beams.
  • the method further comprises: utilizing binary encoding to represent an identification of each of the N candidate transmit beams.
  • the method further comprises: using a bitmap to represent the identification of the N candidate transmit beams.
  • the method further comprises: using binary coding to represent an identifier of a reference candidate transmit beam among the N candidate transmit beams; and utilizing other candidate transmit beams and reference candidate transmit beams other than the reference candidate transmit beam among the N candidate transmit beams
  • the binary code of the difference of the identification identifies the identity of the other candidate transmit beams.
  • the method further comprises: determining, according to the first mapping table and the out-of-order combination of the N candidate transmit beams, a combined identifier corresponding to the combination; and using the combined identifier to represent the identifier of the N candidate transmit beams, wherein the first mapping table
  • the mapping between the combination of the N candidate transmit beams and the combined identifier from the K transmit beams of the network side device is stored, where K is an integer greater than or equal to N.
  • the method further comprises: the information about the N candidate transmit beams comprises sequence information of the N candidate transmit beams.
  • the method further comprises: determining, according to the second mapping table and the ordered arrangement of the N candidate transmit beams, an alignment identifier corresponding to the arrangement; and using the alignment identifier to represent an identifier and an order of the N candidate transmit beams, wherein the second The mapping table stores a mapping relationship between an arrangement of the N candidate transmit beams and an arrangement identifier from the K transmit beams of the network side device, where K is an integer greater than or equal to N.
  • the information about the N candidate transmit beams includes channel quality information between all or part of the N candidate transmit beams and the electronic transmit device 600.
  • determining, according to the TCI state, the receiving beam for receiving downlink information from the network side device comprises: determining a beam for transmitting the SSB according to a mapping relationship between a TCI state and a beam for transmitting the synchronization signal block SSB; The mapping relationship between the beam transmitting the SSB and the receiving beam determines a receiving beam for receiving downlink information from the network side device.
  • the method further comprises: receiving, after the initial access is completed, a mapping relationship between the TCI state and the beam for transmitting the SSB from the network side device.
  • the method further comprises: establishing a mapping relationship between the beam for transmitting the SSB and the receiving beam in the initial access procedure.
  • the method further comprises: receiving configuration information of the number of N candidate transmit beams from the network side device.
  • electronic device 600 includes user equipment in a new wireless NR communication system.
  • the main body performing the above method may be the electronic device 600 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 600 are applicable thereto.
  • the technology of the present disclosure can be applied to various products.
  • the network side device can be implemented as any type of TRP.
  • the TRP may have a transmitting and receiving function, for example, may receive information from the user equipment and the base station device, or may transmit information to the user equipment and the base station device.
  • the TRP can provide services to the user equipment and be controlled by the base station equipment.
  • the TRP may have a structure similar to that of the base station device described below, or may have only a structure related to transmitting and receiving information in the base station device.
  • the network side device can also be implemented as any type of base station device, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • the user device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router and a digital camera device) or an in-vehicle terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the user equipments described above.
  • the eNB 1700 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 1700 includes one or more antennas 1710 and base station devices 1720.
  • the base station device 1720 and each antenna 1710 may be connected to each other via an RF cable.
  • Each of the antennas 1710 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1720 to transmit and receive wireless signals.
  • the eNB 1700 can include multiple antennas 1710.
  • multiple antennas 1710 can be compatible with multiple frequency bands used by eNB 1700.
  • FIG. 17 illustrates an example in which the eNB 1700 includes multiple antennas 1710, the eNB 1700 may also include a single antenna 1710.
  • the base station device 1720 includes a controller 1721, a memory 1722, a network interface 1723, and a wireless communication interface 1725.
  • the controller 1721 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1720. For example, controller 1721 generates data packets based on data in signals processed by wireless communication interface 1725 and communicates the generated packets via network interface 1723. The controller 1721 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1721 may have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1722 includes a RAM and a ROM, and stores programs executed by the controller 1721 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1723 is a communication interface for connecting base station device 1720 to core network 1724. Controller 1721 can communicate with a core network node or another eNB via network interface 1723. In this case, the eNB 1700 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1723 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 1723 is a wireless communication interface, the network interface 1723 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1725.
  • the wireless communication interface 1725 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in the cells of the eNB 1700 via the antenna 1710.
  • Wireless communication interface 1725 may typically include, for example, baseband (BB) processor 1726 and RF circuitry 1727.
  • the BB processor 1726 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1726 may have some or all of the above described logic functions.
  • the BB processor 1726 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 1726 to change.
  • the module can be a card or blade that is inserted into the slot of the base station device 1720. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1727 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1710.
  • the wireless communication interface 1725 can include a plurality of BB processors 1726.
  • multiple BB processors 1726 can be compatible with multiple frequency bands used by eNB 1700.
  • the wireless communication interface 1725 can include a plurality of RF circuits 1727.
  • multiple RF circuits 1727 can be compatible with multiple antenna elements.
  • FIG. 17 illustrates an example in which the wireless communication interface 1725 includes a plurality of BB processors 1726 and a plurality of RF circuits 1727, the wireless communication interface 1725 may also include a single BB processor 1726 or a single RF circuit 1727.
  • the eNB 1830 includes one or more antennas 1840, base station equipment 1850, and RRH 1860.
  • the RRH 1860 and each antenna 1840 may be connected to each other via an RF cable.
  • the base station device 1850 and the RRH 1860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1860 to transmit and receive wireless signals.
  • the eNB 1830 can include multiple antennas 1840.
  • multiple antennas 1840 can be compatible with multiple frequency bands used by eNB 1830.
  • FIG. 18 illustrates an example in which eNB 1830 includes multiple antennas 1840, eNB 1830 may also include a single antenna 1840.
  • the base station device 1850 includes a controller 1851, a memory 1852, a network interface 1853, a wireless communication interface 1855, and a connection interface 1857.
  • the controller 1851, the memory 1852, and the network interface 1853 are the same as the controller 1721, the memory 1722, and the network interface 1723 described with reference to FIG.
  • the wireless communication interface 1855 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication to terminals located in sectors corresponding to the RRH 1860 via the RRH 1860 and the antenna 1840.
  • Wireless communication interface 1855 can generally include, for example, BB processor 1856.
  • the BB processor 1856 is identical to the BB processor 1726 described with reference to FIG. 17 except that the BB processor 1856 is connected to the RF circuit 1864 of the RRH 1860 via the connection interface 1857.
  • the wireless communication interface 1855 can include a plurality of BB processors 1856.
  • multiple BB processors 1856 can be compatible with multiple frequency bands used by eNB 1830.
  • FIG. 18 illustrates an example in which the wireless communication interface 1855 includes a plurality of BB processors 1856, the wireless communication interface 1855 can also include a single BB processor 1856.
  • connection interface 1857 is an interface for connecting the base station device 1850 (wireless communication interface 1855) to the RRH 1860.
  • the connection interface 1857 may also be a communication module for connecting the base station device 1850 (wireless communication interface 1855) to the communication in the above-described high speed line of the RRH 1860.
  • the RRH 1860 includes a connection interface 1861 and a wireless communication interface 1863.
  • connection interface 1861 is an interface for connecting the RRH 1860 (wireless communication interface 1863) to the base station device 1850.
  • the connection interface 1861 may also be a communication module for communication in the above high speed line.
  • Wireless communication interface 1863 transmits and receives wireless signals via antenna 1840.
  • Wireless communication interface 1863 may generally include, for example, RF circuitry 1864.
  • the RF circuit 1864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1840.
  • the wireless communication interface 1863 can include a plurality of RF circuits 1864.
  • multiple RF circuits 1864 can support multiple antenna elements.
  • FIG. 18 illustrates an example in which the wireless communication interface 1863 includes a plurality of RF circuits 1864, the wireless communication interface 1863 may also include a single RF circuit 1864.
  • the selection unit 220, the determining unit 230, the decoding unit 240, the establishing unit 250, and the storage unit 260 described by using FIG. 2 may be controlled by the controller 1721 and/or
  • the controller 1851 is implemented by the communication unit 210 described using FIG. 2 and can be implemented by the wireless communication interface 1725 and the wireless communication interface 1855 and/or the wireless communication interface 1863. . At least a portion of the functionality can also be implemented by controller 1721 and controller 1851.
  • the controller 1721 and/or the controller 1851 can perform the function of selecting a transmit beam and determining a TCI state by executing an instruction stored in a corresponding memory.
  • the smart phone 1900 includes a processor 1901, a memory 1902, a storage device 1903, an external connection interface 1904, an imaging device 1906, a sensor 1907, a microphone 1908, an input device 1909, a display device 1910, a speaker 1911, a wireless communication interface 1912, and one or more.
  • the processor 1901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and other layers of the smart phone 1900.
  • the memory 1902 includes a RAM and a ROM, and stores data and programs executed by the processor 1901.
  • the storage device 1903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1900.
  • USB universal serial bus
  • the image pickup device 1906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1907 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1908 converts the sound input to the smartphone 1900 into an audio signal.
  • the input device 1909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1910, and receives an operation or information input from a user.
  • the display device 1910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1900.
  • the speaker 1911 converts the audio signal output from the smartphone 1900 into sound.
  • the wireless communication interface 1912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1912 may typically include, for example, BB processor 1913 and RF circuitry 1914.
  • the BB processor 1913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1914 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1916.
  • the wireless communication interface 1912 can be a chip module on which the BB processor 1913 and the RF circuit 1914 are integrated. As shown in FIG.
  • the wireless communication interface 1912 can include a plurality of BB processors 1913 and a plurality of RF circuits 1914.
  • FIG. 19 illustrates an example in which the wireless communication interface 1912 includes a plurality of BB processors 1913 and a plurality of RF circuits 1914, the wireless communication interface 1912 may also include a single BB processor 1913 or a single RF circuit 1914.
  • wireless communication interface 1912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1912 can include a BB processor 1913 and an RF circuit 1914 for each wireless communication scheme.
  • Each of the antenna switches 1915 switches the connection destination of the antenna 1916 between a plurality of circuits included in the wireless communication interface 1912, such as circuits for different wireless communication schemes.
  • Each of the antennas 1916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1912 to transmit and receive wireless signals.
  • smart phone 1900 can include multiple antennas 1916.
  • FIG. 19 illustrates an example in which smart phone 1900 includes multiple antennas 1916, smart phone 1900 may also include a single antenna 1916.
  • smart phone 1900 can include an antenna 1916 for each wireless communication scheme.
  • the antenna switch 1915 can be omitted from the configuration of the smartphone 1900.
  • the bus 1917 integrates the processor 1901, the memory 1902, the storage device 1903, the external connection interface 1904, the imaging device 1906, the sensor 1907, the microphone 1908, the input device 1909, the display device 1910, the speaker 1911, the wireless communication interface 1912, and the auxiliary controller 1919 with each other. connection.
  • Battery 1918 provides power to various blocks of smart phone 1900 shown in FIG. 19 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 1919 operates the minimum necessary functions of the smartphone 1900, for example, in a sleep mode.
  • the determining unit 620, the selecting unit 630, the encoding unit 640, the storage unit 650, and the establishing unit 660 described by using FIG. 6 can be implemented by the processor 1901 or the auxiliary controller 1919
  • the communication unit 610 described by using FIG. 6 can be implemented by the wireless communication interface 1912.
  • At least a portion of the functionality may also be implemented by processor 1901 or auxiliary controller 1919.
  • the processor 1901 or the auxiliary controller 1919 can perform the function of determining the receive beam by executing the instructions stored in the memory 1902 or the storage device 1903.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a car navigation device 2020 to which the technology of the present disclosure can be applied.
  • the car navigation device 2020 includes a processor 2021, a memory 2022, a global positioning system (GPS) module 2024, a sensor 2025, a data interface 2026, a content player 2027, a storage medium interface 2028, an input device 2029, a display device 2030, a speaker 2031, and a wireless device.
  • the processor 2021 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 2020.
  • the memory 2022 includes a RAM and a ROM, and stores data and programs executed by the processor 2021.
  • the GPS module 2024 measures the position of the car navigation device 2020 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 2025 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2026 is connected to, for example, the in-vehicle network 2041 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2027 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 2028.
  • the input device 2029 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 2030, and receives an operation or information input from a user.
  • the display device 2030 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 2031 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2033 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2033 may typically include, for example, BB processor 2034 and RF circuitry 2035.
  • the BB processor 2034 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2035 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2037.
  • the wireless communication interface 2033 can also be a chip module on which the BB processor 2034 and the RF circuit 2035 are integrated. As shown in FIG.
  • the wireless communication interface 2033 may include a plurality of BB processors 2034 and a plurality of RF circuits 2035.
  • FIG. 20 illustrates an example in which the wireless communication interface 2033 includes a plurality of BB processors 2034 and a plurality of RF circuits 2035, the wireless communication interface 2033 may also include a single BB processor 2034 or a single RF circuit 2035.
  • wireless communication interface 2033 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 2033 may include a BB processor 2034 and an RF circuit 2035 for each wireless communication scheme.
  • Each of the antenna switches 2036 switches the connection destination of the antenna 2037 between a plurality of circuits included in the wireless communication interface 2033, such as circuits for different wireless communication schemes.
  • Each of the antennas 2037 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2033 to transmit and receive wireless signals.
  • car navigation device 2020 can include multiple antennas 2037.
  • FIG. 20 illustrates an example in which the car navigation device 2020 includes a plurality of antennas 2037, the car navigation device 2020 may also include a single antenna 2037.
  • car navigation device 2020 can include an antenna 2037 for each wireless communication scheme.
  • the antenna switch 2036 can be omitted from the configuration of the car navigation device 2020.
  • Battery 2038 provides power to various blocks of car navigation device 2020 shown in FIG. 20 via feeders, which are partially shown as dashed lines in the figures.
  • the battery 2038 accumulates power supplied from the vehicle.
  • the determining unit 620, the selecting unit 630, the encoding unit 640, the storage unit 650, and the establishing unit 660 described by using FIG. 6 may be implemented by the processor 2021 by using FIG.
  • the described communication unit 610 can be implemented by a wireless communication interface 2033. At least a portion of the functionality can also be implemented by processor 2021.
  • the processor 2021 can perform the function of determining a receive beam by executing an instruction stored in the memory 2022.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 2040 that includes one or more of the car navigation device 2020, the in-vehicle network 2041, and the vehicle module 2042.
  • vehicle module 2042 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 2041.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.
  • the present disclosure may have a configuration as described below.
  • An electronic device comprising a processing circuit configured to:
  • N is an integer greater than one
  • the identification information of the N candidate transmit beams is determined according to information about the N candidate transmit beams.
  • a TCI state to be transmitted to the user equipment is determined according to a mapping relationship between a TCI state and a beam for transmitting the SSB.
  • Receiving the information about the N candidate transmit beams periodically from the user equipment, or
  • the electronic device according to any one of (1) to (8), wherein the electronic device comprises a network side device in a new wireless NR communication system.
  • An electronic device comprising processing circuitry configured to:
  • a receive beam for receiving downlink information from the network side device is determined according to the TCI state.
  • the channel quality is determined according to one or more of the following parameters: reference signal received power RSRP, reference signal received quality RSRQ, and block error rate BLER.
  • Information about the N candidate transmit beams is transmitted to the network side device in response to the request of the network side device.
  • the A mapping table stores a mapping relationship between a combination of the N candidate transmit beams and a combined identifier from K transmit beams of the network side device, where K is an integer greater than or equal to N.
  • the second mapping table stores a mapping relationship between an arrangement of the N candidate transmit beams and an arrangement identifier from the K transmit beams of the network side device, where K is greater than or equal to N. Integer.
  • a receiving beam for receiving downlink information from the network side device is determined according to a mapping relationship between a beam for transmitting the SSB and a receiving beam.
  • the mapping relationship between the TCI state and the beam for transmitting the SSB is received from the network side device.
  • a mapping relationship between a beam for transmitting the SSB and the receive beam is established in the initial access process.
  • the configuration information of the number of the N candidate transmit beams is received from the network side device.
  • a method of wireless communication comprising:
  • N is an integer greater than one
  • a method of wireless communication comprising:
  • a receive beam for receiving downlink information from the network side device is determined according to the TCI state.
  • a computer readable storage medium comprising executable computer instructions that, when executed by a computer, cause the computer to perform the wireless communication method according to (25) or (26).

Abstract

本申请涉及电子设备、无线通信方法和计算机可读存储介质。根据本申请的电子设备包括处理电路,被配置为:从用户设备接收关于N个候选发射波束的信息,其中,N为大于1的整数;从该N个候选发射波束中选取用于向用户设备发送下行信息的发射波束;以及根据所选取的发射波束确定传输配置指示TCI状态,并向用户设备发送该TCI状态。使用根据本申请的电子设备、无线通信方法和计算机可读存储介质,可以使得网络侧设备可以向用户设备通知关于发射波束的信息,从而用户设备能够根据网络侧设备的发射波束确定合适的接收波束,进而提高系统的增益。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2018年1月11日提交中国专利局、申请号为201810026604.1、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信系统中的网络侧设备的电子设备、一种作为无线通信系统中的用户设备的电子设备、一种由无线通信系统中的网络侧设备执行的无线通信方法、一种由无线通信系统中的用户设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。因此,波束赋形技术在扩大覆盖范围、改善边缘吞吐量以及干扰抑止等方面都有很大的优势。
在下行传输中,网络侧设备从多个发射波束中选取发射波束来发送下行信息,当用户设备具备多个接收波束时,需要选取合适的接收波束来接收网络侧设备发送的下行信息,从而获得波束赋形的增益。在这种情况下,用户设备需要知晓关于发射波束的相关信息,从而知晓用哪个接收波束才能接收到网络侧设备通过发射波束发送的下行信息。因此,网络侧设备如何向用户设备通知发射波束的相关信息,以及用户设备如何确定合适的接收波束是急需解决的技术问题。
因此,本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以解决以上技术问题中的至少一种。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以使得用户设备能够根据网络侧设备的发射波束确定合适的接收波束,从而提高系统的增益。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:从用户设备接收关于N个候选发射波束的信息,其中,N为大于1的整数;从所述N个候选发射波束中选取用于向所述用户设备发送下行信息的发射波束;以及根据所选取的发射波束确定传输配置指示TCI状态,并向所述用户设备发送所述TCI状态。
根据本公开的另一方面,提供了一种电子设备,包括处理电路,被配置为:从网络侧设备接收传输配置指示TCI状态;以及根据所述TCI状态确定用于从所述网络侧设备接收下行信息的接收波束。
根据本公开的另一方面,提供了一种无线通信方法,包括:从用户设备接收关于N个候选发射波束的信息,其中,N为大于1的整数;从所述N个候选发射波束中选取用于向所述用户设备发送下行信息的发射波束;以及根据所选取的发射波束确定传输配置指示TCI状态,并向所述用户设备发送所述TCI状态。
根据本公开的另一方面,提供了一种无线通信方法,包括:从网络侧设备接收传输配置指示TCI状态;以及根据所述TCI状态确定用于从所述网络侧设备接收下行信息的接收波束。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,网络侧设备可以从用户设备提供的N个候选发射波束中选取用于发送下行信息的发射波束,并通过TCI状态向用户设备通知关于所选的发射波束的信息。进一步,用户设备可以根据接收到的TCI状态确定用于接收下行信息的接收波束。这样一来,网络侧设备可以向用户设备提供关于所选的发射波束的信息,从而用户设备可以确定与网络侧设备使用的发射波束相对应的接收波束来接收下行信息,进而提高系统的增益。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概 要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的应用场景的示意图;
图2是示出根据本公开的实施例的电子设备的配置的示例的框图;
图3(a)是示出根据本公开的实施例的关于N个候选发射波束的信息的内容的示意图;
图3(b)是示出根据本公开的另一个实施例的关于N个候选发射波束的信息的内容的示意图;
图3(c)是示出根据本公开的又一个实施例的关于N个候选发射波束的信息的内容的示意图;
图4是示出根据本公开的实施例的TCI(Transmission Configuration Indication,传输配置指示)状态与SSB(Synchronization Signal Block,同步信号块)的资源标识信息之间的映射关系的示意图;
图5是示出根据本公开的实施例的网络侧设备和用户设备获取TCI状态与SSB的资源标识信息之间的映射关系的信令流程图;
图6是示出根据本公开的另一个实施例的电子设备的配置的示例的框图;
图7是示出根据本公开的实施例的确定发射波束和接收波束的方法的信令流程图;
图8是示出根据本公开的实施例的用于上报候选发射波束的第一种方法的示意图;
图9是示出根据本公开的实施例的用于上报候选发射波束的第二种方法的示意图;
图10是示出根据本公开的实施例的用于上报候选发射波束的第三种方法的示意图;
图11(a)是示出根据本公开的实施例的第一映射表的示意图;
图11(b)是示出根据本公开的实施例的用于上报候选发射波束的第四种方法的示意图;
图12(a)是示出根据本公开的实施例的第二映射表的示意图;
图12(b)是示出根据本公开的实施例的用于上报候选发射波束的第五种方法的示意图;
图13是示出根据本公开的实施例的用于上报候选发射波束的过程的示意图;
图14是示出根据本公开的实施例的用户设备获取SSB资源标识信息与接收波束之间的映射关系以及TCI状态与SSB资源标识信息之间的映射关系的信令流程图;
图15是示出根据本公开的实施例的由电子设备执行的无线通信方法的流程图;
图16是示出根据本公开的另一个实施例的由电子设备执行的无线通信方法的流程图;
图17是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图18是示出eNB的示意性配置的第二示例的框图;
图19是示出智能电话的示意性配置的示例的框图;以及
图20是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和 方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.网络侧设备的配置示例;
3.用户设备的配置示例;
4.方法实施例;
5.应用示例。
<1.场景的描述>
图1是示出本公开的应用场景的示意图。如图1所示,示出了gNB(第5代通信系统中的基站)的8个发射波束,分别编号为0-7,并且示出了gNB覆盖范围内的UE(User Equipment,用户设备)的4个接收波束,分别编号为0-3。当gNB选择编号为5的发射波束向UE发送下行数据时,UE应当选取编号为2的接收波束才能够与发射波束匹配从而达到更好的接收效果。在这种情况下,UE需要获取与gNB的编号为5的发射波束相关的信息,并且需要确定采用编号为2的接收波束才能进行下行数据的接收。
本公开针对这样的场景提出了一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以使得用户设备能够根据网络侧设备的发射波束确定合适的接收波束,从而提高系统的增益。值得注意的是,虽然图1示出了gNB的8个发射波束,但是gNB还可以具有其它数目的多个发射波束,并且虽然图1示出了UE的4个接收波束,但是UE还可以具有其它数目的多个接收波束。也就是说,本公开适用于网络侧设备具有多个发射波束并且用户设备具有多个接收波束的所有场景。
根据本公开的网络侧设备和用户设备都可以包括在无线通信系统中,这里的无线通信系统例如可以是NR(New Radio,新无线)通信系 统。
根据本公开的网络侧设备可以是任何类型的TRP(Transmit and Receive Port,发送和接收端口)。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在一个示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。也就是说,基站设备通过TRP向用户设备提供服务。此外,在本公开中所述的网络侧设备也可以是基站设备,例如可以是eNB,也可以是gNB。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.网络侧设备的配置示例>
图2是示出根据本公开的实施例的电子设备200的配置的示例的框图。这里的电子设备200可以作为无线通信系统中的网络侧设备,具体地可以作为无线通信系统中的基站设备或TRP。
如图2所示,电子设备200可以包括通信单元210、选择单元220和确定单元230。
这里,电子设备200的各个单元都可以包括在处理电路中。需要说明的是,电子设备200既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,通信单元210可以从用户设备接收关于N个候选发射波束的信息。这里,N为大于1的整数。根据本公开的实施例,用户设备可以是电子设备200为其提供服务的用户设备。例如,当电子设备200是基站设备时,用户设备可以是电子设备200覆盖范围内的用户设备;当电子设备200是TRP时,用户设备可以是电子设备200为其提供服务的用户设备。
根据本公开的实施例,选择单元220可以从N个候选发射波束中选取用于向用户设备发送下行信息的发射波束。这里,N个候选发射波束是电子设备200的可以用于发送下行信息的发射波束,选择单元220可以从用户设备上报的N个候选发射波束中选取用于发送下行信息的发射波束。
根据本公开的实施例,确定单元230可以根据所选取的发射波束确定传输配置指示TCI状态,从而通信单元210可以向用户设备发送TCI状态。
由此可见,根据本公开的实施例的电子设备200,可以从用户设备提供的N个候选发射波束中选取用于发送下行信息的发射波束,并确定与选取的发射波束相对应的TCI状态通知用户设备。这样一来,电子设备200可以利用TCI状态向用户设备通知与选取的发射波束相关的信息,使得用户设备可以获取与电子设备200选取的发射波束相关的信息,进而选取合适的接收波束。
如图2所示,电子设备200还可以包括解码单元240,用于对关于N个候选发射波束的信息进行解码。
根据本公开的实施例,解码单元240可以根据关于N个候选发射波束的信息确定N个候选发射波束的标识信息。也就是说,解码单元240可以对关于N个候选发射波束的信息进行解码,从而确定N个候选发射波束的标识信息。
在本公开中,可以用CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源的标识来表示发射波束的标识。这是因为,针对不同的发射波束,其利用不同的资源来发送CSI-RS。也就是说,发射波束与CSI-RS资源一一对应,因此可以利用CSI-RS资源的标识来表示发射波束的标识。
图3(a)是示出根据本公开的实施例的关于N个候选发射波束的信息的内容的示意图。如图3(a)所示,关于N个候选发射波束的信息可以包括这N个候选发射波束的标识信息。这里,N为4,并且用CSI-RS资源标识来表示候选发射波束的标识。在图3(a)中,CSI-RS资源1表示编号为1的CSI-RS资源,CSI-RS资源2表示编号为2的CSI-RS资源,CSI-RS资源3表示编号为3的CSI-RS资源,CSI-RS资源4表示编号为4的CSI-RS资源,这4个CSI-RS资源分别对应着4个候选发射波束。根据本公开的实施例,解码单元240可以确定出如图3(a)所示的N个 候选发射波束的标识信息。
根据本公开的实施例,解码单元240可以根据关于N个候选发射波束的信息确定N个候选发射波束的顺序信息。也就是说,解码单元240可以对关于N个候选发射波束的信息进行解码,从而确定N个候选发射波束的标识信息和顺序信息。这里,可以在电子设备200和用户设备之间事先约定用户设备上报关于N个候选发射波束的信息的方式,例如电子设备200可以为用户设备配置这样的信息,在后文中将详细描述。当事先约定用户设备上报关于N个候选发射波束的信息是有序的方式,例如按照降序或升序的方式依次上报N个候选发射波束的信息时,解码单元240可以根据N个候选发射波束的标识的编码顺序来确定这N个候选发射波束的顺序信息。
如图3(a)所示,假定电子设备200和用户设备之间事先约定好以降序的方式上报N个候选发射波束的信息,那么解码单元240依次解码出CSI-RS资源1、CSI-RS资源2、CSI-RS资源3和CSI-RS资源4后,可以认为以下候选发射波束按照降序排列:CSI-RS资源1表示的候选发射波束、CSI-RS资源2表示的候选发射波束、CSI-RS资源3表示的候选发射波束、CSI-RS资源4表示的候选发射波束。也就是说,CSI-RS资源1表示的候选发射波束最优,CSI-RS资源4表示的候选发射波束最差。
根据本公开的实施例,在解码单元240根据关于N个候选发射波束的信息确定N个候选发射波束的顺序信息的情况下,选择单元220可以根据N个候选发射波束的顺序信息选取用于向用户设备发送下行信息的发射波束。例如,选择单元220可以选取N个候选发射波束中最优的候选发射波束用于向用户设备发送下行信息。
根据本公开的实施例,解码单元240还可以根据关于N个候选发射波束的信息确定N个候选发射波束中的全部或部分候选发射波束与用户设备之间的信道质量信息。也就是说,解码单元240可以对关于N个候选发射波束的信息进行解码,从而确定N个候选发射波束的标识信息以及这N个候选发射波束中的全部或部分候选发射波束与用户设备之间的信道质量信息。
根据本公开的实施例,可以用各种参数来表示信道质量信息,包括但不限于RSRP(Reference Signal Receiving Power,参考信号接收功率)、RSRQ(Reference Signal Receiving Quality,参考信号接收质量)和BLER(Block Error Rate,误块率)。
图3(b)是示出根据本公开的另一个实施例的关于N个候选发射波束的信息的内容的示意图。如图3(b)所示,关于N个候选发射波束的信息可以包括这N个候选发射波束的标识信息以及N个候选发射波束中的每一个与用户设备之间的信道质量信息。这里,N为4,用CSI-RS资源标识来表示候选发射波束的标识,并且用RSRP值来表示候选发射波束与用户设备之间的信道质量。例如,CSI-RS资源1表示的候选发射波束与用户设备之间的RSRP为RSRP值1,CSI-RS资源2表示的候选发射波束与用户设备之间的RSRP为RSRP值2,CSI-RS资源3表示的候选发射波束与用户设备之间的RSRP为RSRP值3,CSI-RS资源4表示的候选发射波束与用户设备之间的RSRP为RSRP值4。也就是说,图3(b)示出了关于N个候选发射波束的信息包括这N个候选发射波束中的每一个与用户设备之间的信道质量信息的情况。也就是说,用户设备在上报N个候选发射波束时上报了这N个候选发射波束中的每一个与用户设备之间的信道质量信息的情况,用户设备的这种上报方式可以被称为“完全上报”,而图3(a)所示的上报方式可以被称为“部分上报”。
图3(c)是示出根据本公开的又一个实施例的关于N个候选发射波束的信息的内容的示意图。如图3(c)所示,关于N个候选发射波束的信息可以包括这N个候选发射波束的标识信息以及N个候选发射波束中的部分候选发射波束与用户设备之间的信道质量信息,这种上报方式可以被称为“混合上报”。这里,N为4,用CSI-RS资源标识来表示候选发射波束的标识,并且用RSRP值来表示候选发射波束与用户设备之间的信道质量。例如,CSI-RS资源2表示的候选发射波束与用户设备之间的RSRP为RSRP值2,CSI-RS资源3表示的候选发射波束与用户设备之间的RSRP为RSRP值3。
根据本公开的实施例,关于N个候选发射波束的信息可以仅仅包括这N个候选发射波束与用户设备之间的信道质量信息中的最大值和最小值。例如,在图3(c)中,假定在这4个候选发射波束与用户设备之间的RSRP中,CSI-RS资源2表示的候选发射波束与用户设备之间的RSRP是最大值,为RSRP值2,CSI-RS资源3表示的候选发射波束与用户设备之间的RSRP是最小值,为RSRP值3,那么关于N个候选发射波束的信息可以仅仅包括4个候选发射波束的标识信息以及RSRP值2和RSRP值3。
根据本公开的实施例,在解码单元240根据关于N个候选发射波束 的信息确定N个候选发射波束中的全部或部分候选发射波束与用户设备之间的信道质量信息的情况下,选择单元220可以根据全部或部分候选发射波束与用户设备之间的信道质量信息选取用于向用户设备发送下行信息的发射波束。例如,选择单元220可以选取信道质量最好的候选发射波束用于向用户设备发送下行信息。
如上所述,选择单元220可以根据关于N个候选发射波束的信息来选取用于向用户设备发送下行信息的发射波束。在选取的过程中可以遵循一定的准则,例如N个候选发射波束的顺序信息,N个候选发射波束中的全部候选发射波束或部分候选发射波束与用户设备之间的信道质量信息等。当然,选择单元220也可以根据其它一些准则来选取发射波束,本公开对此不做限定。这里,选择单元220可以仅选取一个用于发送下行信息的发射波束。接下来,确定单元230可以根据选取的发射波束确定TCI状态。
根据本公开的实施例,确定单元230可以确定与选取的发射波束相对应的用于发送同步信号块SSB的波束。
根据本公开的实施例,在用户设备的初始接入过程中,电子设备200可以利用波束向用户设备发送SSB(包括同步信号,例如主同步信号和辅同步信号)。与发送CSI-RS类似,针对不同的用于发送SSB的波束,其利用不同的资源来发送SSB。也就是说,用于发送SSB的波束与SSB资源一一对应,因此在本公开中,可以用SSB资源标识来表示用于发送SSB的波束。此外,根据本公开的实施例,在初始接入过程中用于发送SSB的波束在空间上的辐射范围大于或等于在数据传输过程中用于发送下行信息的发射波束的辐射范围。也就是说,在一个用于发送SSB的波束的辐射范围内可以包括一个或多个用于发送下行信息的发射波束,即从空间的角度来看,一个用于发送SSB的波束可以由一个或多个用于发送下行信息的发射波束组成。
根据本公开的实施例,确定单元230可以确定与选取的发射波束相对应的用于发送同步信号块SSB的波束,以使得选取的发射波束的辐射范围位于与选取的发射波束相对应的用于发送SSB的波束的辐射范围内。也就是说,确定单元230可以确定出选取的发射波束位于哪个用于发送SSB的波束的辐射范围内,从而确定该用于发送SSB的波束为与选取的发射波束相对应的用于发送SSB的波束,并可以用SSB的资源标识来表示该波束。
根据本公开的实施例,确定单元230可以根据TCI状态与用于发送SSB的波束之间的映射关系确定要向用户设备发送的TCI状态。
图4是示出根据本公开的实施例的TCI状态与SSB的资源标识信息之间的映射关系的示意图。图4以SSB资源标识来表示用于发送SSB的波束。图4示出了8个SSB资源标识,从SSB资源ID(Identification,标识)1至SSB资源ID8,因此电子设备200可以用3比特的TCI状态来表示这8个SSB资源标识,分别从000至111。在图4中,QCL(Quasi Co-Location,准共址)表示SSB中的同步信号与在用于发送SSB的波束的空间范围内的发射波束所发送的下行信息(例如CSI-RS)之间的关系是准共址的关系,即用户设备可以采用相同的接收波束来接收用于发送SSB的波束和在该波束空间范围内的用于发送下行信息的发射波束。也就是说,TCI可以用于表示SSB中的同步信号与发射波束所发送的下行信息(例如CSI-RS)之间存在QCL关系。进一步,图4中的QCL类型表示该参数用于时间域或空间域,这里的QCL类型为4,表示这样的参数可以用于空间域。根据本公开的实施例,当确定单元230确定出与选取的发射波束对应的用于发送SSB的波束后,可以根据如图4所示的映射关系来确定用发送的TCI状态。例如,假定确定单元230确定出与选取的发射波束相对应的用于发送SSB的波束是SSB资源ID3表示的波束,则可以确定要发送的TCI状态为010。
如图2所示,电子设备200还可以包括建立单元250,可以在初始接入完成后建立TCI状态与用于发送SSB的波束之间的映射关系。这里,电子设备200可以为每个用户设备建立一个如图4所示的映射关系。在用户设备的初始接入完成后,建立单元250可以确定该用户设备能够识别的所有的用于发送SSB的波束,并根据这些波束确定针对每个波束的TCI状态,从而建立如图4所示的映射关系。进一步,通信单元210还可以向用户设备发送TCI状态与用于发送SSB的波束之间的映射关系,以使得用户设备在接收到TCI状态后可以确定出对应的用于发送SSB的波束。
如图2所示,电子设备200还可以包括存储单元260,可以存储TCI状态与用于发送SSB的波束之间的映射关系,从而确定单元230可以根据存储单元260存储的TCI状态与用于发送SSB的波束之间的映射关系确定要向用户设备发送的TCI状态。
图5是示出根据本公开的实施例的网络侧设备和用户设备获取TCI状态与用于发送SSB的波束之间的映射关系的信令流程图。图5中仍然 用SSB资源ID来表示用于发送SSB的波束。如图5所示,在步骤S501中,基站和UE之间执行初始接入过程,本公开并不关心初始接入过程,因此没有详述这个过程。接下来,在步骤S502中,基站建立TCI状态与SSB资源ID之间的映射关系,并存储这样的映射关系。接下来,在步骤S503中,基站将TCI状态与SSB资源ID之间的映射关系发送至UE。由此一来,基站和UE都可以获取并存储TCI状态与SSB的资源标识信息之间的映射关系。
如上所述,TCI状态与选取的发射波束所在的用于发送SSB的波束具有映射关系,因此电子设备200可以利用TCI状态来向用户设备通知关于选取的发射波束的信息,以使得用户设备可以知晓关于选取的发射波束的信息,进而可以选取合适的接收波束。
根据本公开的实施例,电子设备200可以通过低层信令向用户设备发送TCI状态,包括但不限于DCI(Downlink Control Information,下行控制信息)。
根据本公开的实施例,通信单元210可以周期性从用户设备接收关于N个候选发射波束的信息。此外,通信单元210也可以向用户设备发送请求,以请求用户设备上报关于N个候选发射波束的信息,从而获取关于N个候选发射波束的信息。也就是说,电子设备200可以根据需求为用户设备配置上报关于N个候选发射波束的方式。在一个示例性实施例中,通信单元210可以周期性从用户设备接收如图3(a)所示的关于N个候选发射波束的信息,并可以在需要时向用户设备发送请求以获取如图3(b)和图3(c)所示的关于N个候选发射波束的信息。
根据本公开的实施例,电子设备200可以为用户设备配置关于上报N个候选发射波束的相关信息。例如,电子设备200可以配置N个候选发射波束的个数并向用户设备发送关于N个候选发射波束的个数的配置信息。优选地,电子设备200可以通过高层信令,包括但不限于RRC(Radio Resource Control,无线资源控制)信令向用户设备发送关于N个候选发射波束的个数的配置信息。优选地,N可以为2 n,n为非负整数,例如1、2、4、8。
根据本公开的实施例,电子设备200可以向用户设备发送K个发射波束以供用户设备从这K个发射波束中选取N个候选发射波束,其中,K为大于等于N的整数。优选地,K可以为2 k,k为正整数,优选地为4、8、16、32、64。
根据本公开的实施例,电子设备200可以配置关于N个候选发射波束的信息中的内容,包括如前文中所述的完全上报、部分上报和混合上报,并向用户设备发送关于N个候选发射波束的信息中的内容的配置信息。优选地,电子设备200可以通过低层信令,包括但不限于DCI,向用户设备发送这样的配置信息。进一步,电子设备200可以为用户设备配置默认的上报方式为部分上报,有需要时才触发部分上报和混合上报。在这种情况下,电子设备200可以用1个比特来表示这样的配置信息,例如用0表示完全上报,1表示混合上报。
根据本公开的实施例,电子设备200可以配置关于N个候选发射波束的信息的编码方式,即下文中提到的用户设备的五种上报方法,并向用户设备发送关于N个候选发射波束的信息的编码方式的配置信息。优选地,电子设备200可以通过低层信令,包括但不限于DCI,向用户设备发送这样的配置信息。优选地,电子设备200可以用3个比特来表示这样的而配置信息。
根据本公开的实施例,电子设备200可以配置关于N个候选发射波束的信息的上报触发方式,包括周期性触发和事件性触发。在周期性触发的情况下,电子设备200可以向用户设备发送关于N个候选发射波束的信息的上报周期的配置信息;在事件性触发的情况下,电子设备200可以向用户设备发送请求以请求上报关于N个候选发射波束的信息。
由此可见,根据本公开的实施例,电子设备200可以为用户设备配置关于上报N个候选发射波束的相关信息。此外,为了进一步节省开销,网络侧设备还可以设置一些默认配置。例如,当为用户设备配置周期性上报时,可以为用户设备配置部分上报的方式;当为用户设备配置事件性上报时,可以为用户设备配置完全上报和混合上报的方式。以上仅仅是示例性的说明,电子设备200还可以配置关于上报N个候选发射波束的其它信息。
根据本公开的实施例,TCI状态可以用于向用户设备指示接收下行信息的接收波束。也就是说,TCI状态是与用户设备接收下行信息的接收波束相关联的信息。这里,下行信息可以包括诸如参考信号(包括但不限于CSI-RS)的控制信息。具体而言,TCI可以用于表示SSB中的同步信号与用于发送SSB的波束的辐射范围内所包括的用于发送下行信息的发射波束所发送的下行信息(例如CSI-RS)之间存在QCL的关系。换句话说,TCI状态可以用于表示电子设备200要发送的下行信息与选取的发 射波束所在的用于发送SSB的波束所发送的同步信号之间存在QCL的关系。即,用户设备可以采用相同的接收波束来接收用于发送下行信息的发射波束和与用于发送下行信息的发射波束相对应的用于发送SSB的波束。综上,TCI状态是与电子设备200发送下行信息的发射波束相关联的信息,而用户设备知晓发射波束与接收波束之间的映射关系,从而TCI状态可以间接地向用户设备指示接收下行信息的接收波束。
由此可见,根据本公开的实施例的电子设备200,可以从用户设备提供的N个候选发射波束中选取用于发送下行信息的发射波束,并确定与选取的发射波束相对应的TCI状态通知用户设备。这样一来,电子设备200可以利用TCI状态向用户设备通知与选取的发射波束相关的信息,使得用户设备可以获取与电子设备200选取的发射波束相关的信息,进而选取合适的接收波束。
<3.用户设备的配置示例>
图6是示出根据本公开的实施例的无线通信系统中的用作用户设备的电子设备600的结构的框图。如图6所示,电子设备600可以包括通信单元610和确定单元620。
这里,电子设备600的各个单元都可以包括在处理电路中。需要说明的是,电子设备600既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,通信单元610可以从网络侧设备接收传输配置指示TCI状态。这里,网络侧设备可以是为电子设备600提供服务的网络侧设备,并且可以由前文中所述的电子设备200来实现。
根据本公开的实施例,确定单元620可以根据TCI状态确定用于从网络侧设备接收下行信息的接收波束。
由此可见,根据本公开的实施例的电子设备600,可以根据从网络侧设备接收的TCI状态来确定用于接收下行信息的接收波束。如前文所述,从网络侧设备接收的TCI状态与网络侧设备选取的发射波束相关联,从而电子设备600可以根据发射波束选取合适的接收波束,进而提高系统的增益。
图7是示出根据本公开的实施例的确定发射波束和接收波束的方法的信令流程图。如图7所示,在步骤S701中,UE向基站发送关于N个候选发射波束的信息。接下来,在步骤S702中,基站从N个候选发射波束中选取用于向UE发送下行信息的发射波束。接下来,在步骤S703中,基站根据选取的发射波束确定TCI状态并向UE发送。接下来,在步骤S704中,UE根据接收到的TCI状态确定用于接收下行信息的接收波束。由此,UE可以根据基站选取的发射波束确定合适的接收波束。
根据本公开的实施例,电子设备600可以通过低层信令,包括但不限于DCI,从网络侧设备接收TCI状态。
根据本公开的实施例,通信单元610还可以向网络侧设备发送关于N个候选发射波束的信息,以用于网络侧设备从N个候选发射波束中选取用于向电子设备发送下行信息的发射波束,并根据所选取的发射波束确定TCI状态,其中,N为大于1的整数。
根据本公开的实施例,通信单元610可以从网络侧设备接收网络侧设备的K个发射波束。进一步,如图6所示,电子设备600还可以包括选择单元630,用于根据网络侧设备的K个发射波束与电子设备600之间的信道质量来确定N个候选发射波束,其中,K为大于或等于N的整数。也就是说,选择单元630可以测量K个发射波束中的每个发射波束与电子设备600之间的信道质量,并根据信道质量从K个发射波束中选取N个信道质量较好的发射波束作为候选发射波束。
根据本公开的实施例,选择单元630可以根据以下参数中的一种或多种来确定信道质量:RSRP、RSRQ和BLER。这里,上述参数中的每一种都可能包括多个参数,例如BLER可以包括针对PDCCH(Pysical Downlink Control Channel,物理下行控制信道)的BLER;以及针对PDSCH(Pysical Downlink Share Channel,物理下行共享信道)的BLER。
根据本公开的实施例,当选择单元630根据一种参数,例如RSRP来确定信道质量时,例如可以分别测量K个发射波束中的每个发射波束与电子设备600之间的RSRP值,并从K个发射波束中选取RSRP值最大的N个发射波束作为候选发射波束。当用RSRQ和BLER表示信道质量时也是类似的情况。
根据本公开的实施例,选择单元630还可以根据两种参数来确定信道质量。例如,选择单元630可以选取满足以下两个条件的发射波束作为 候选发射波束:该发射波束与电子设备600之间的第一信道质量参数满足以第一信道质量参数阈值限定的条件(例如第一信道质量参数大于或小于第一信道质量参数阈值,这取决于第一信道质量参数的具体表示,例如,当第一信道质量参数为RSRP或RSRQ时第一信道质量参数需要大于第一信道质量参数阈值;当第一信道质量参数为BLER时第一信道质量参数需要小于第一信道质量参数阈值,这样的准则也适用于其它信道质量参数);以及该发射波束与电子设备600之间的第二信道质量参数是所有发射波束的第二信道质量参数中最优的前N个。
这里,选择单元630可以通过以下步骤来实现上述选择:首先,选择单元630可以从K个发射波束中选取与电子设备600之间的第一信道质量参数大于或小于第一信道质量参数阈值的发射波束;然后,选择单元630可以从上述发射波束中选取第二信道质量参数排名靠前的前N个发射波束作为候选发射波束。
根据本公开的实施例,RSRP、RSRQ和BLER中的每一种都可能包括多个参数,因此发射波束需要满足的条件可能多于两个。例如,选择单元630也可以选取满足以下三个条件的发射波束作为候选发射波束:该发射波束与电子设备600之间的第一信道质量参数满足以第一信道质量参数阈值限定的条件;该发射波束与电子设备600之间的第三信道质量参数满足以第三信道质量参数阈值限定的条件(例如第三信道质量参数大于或小于第三信道质量参数阈值,这取决于第三信道质量参数的具体表示,例如,当第三信道质量参数为RSRP或RSRQ时第三信道质量参数需要大于第三信道质量参数阈值;当第三信道质量参数为BLER时第三信道质量参数需要小于第三信道质量参数阈值);以及该发射波束与电子设备600之间的第二信道质量参数是所有发射波束的第二信道质量参数中最优的前N个。
这里,选择单元630可以通过以下步骤来实现上述选择:首先,选择单元630可以从K个发射波束中选取多个满足以下条件的发射波束:该发射波束与电子设备600之间的第一信道质量参数大于或小于第一信道质量参数阈值并且该发射波束与电子设备600之间的第三信道质量参数大于或小于第三信道质量参数阈值;然后,选择单元630可以从满足条件的多个发射波束中选取第二信道质量参数排名靠前的前N个发射波束作为候选发射波束。
下面给出一个具体的示例,将针对PDSCH的BLER作为第一信道 质量参数,将针对PDCCH的BLER作为第三信道质量参数,将RSRP作为第二信道质量参数,第一信道质量参数阈值为10%,第三信道质量参数阈值为1%。首先,选择单元630可以选择针对PDSCH的BLER小于10%并且针对PDCCH的BLER小于1%的发射波束;然后,选择单元630将满足上述条件的发射波束按照RSRP的值从大到小排列,并选取排序后的前N个发射波束作为候选发射波束。
如上所述,以示例性方式示出了选择单元630根据一种参数或两种参数来选择N个候选发射波束的实施例。当然,选择单元630还可以根据其它准则来选择N个候选发射波束,以及还可以根据更多种参数来选择N个候选发射波束,以使得选择的N个候选发射波束的信道质量较好。接下来,电子设备600可以将选择的N个候选发射波束上报到网络侧设备。
如图6所示,电子设备600还可以包括编码单元640,用于对N个候选发射波束的信息进行编码,以生成用于向网络侧设备发送的关于N个候选发射波束的信息。
根据本公开的实施例,如图3(a)所示,关于N个候选发射波束的信息可以包括N个候选发射波束的标识信息。进一步,关于N个候选发射波束的信息可以包括N个候选发射波束的顺序信息。例如,当电子设备600与网络侧设备约定以有序的方式上报N个候选发射波束时,编码单元640可以按照降序或升序的顺序依次对N个候选发射波束的信息进行编码。此外,如图3(b)和图3(c)所示,关于N个候选发射波束的信息可以包括N个候选发射波束中的全部或部分候选发射波束与电子设备600之间的信道质量信息。
根据本公开的实施例,编码单元640可以利用二进制编码来表示N个候选发射波束中的每个候选发射波束的标识。这里,编码单元640可以根据K的大小来确定二进制编码的比特位数,例如,当K=8,即电子设备600从8个发射波束中选取N个候选发射波束时,编码单元640可以利用3比特的二进制编码来表示每个候选发射波束的标识。
图8是示出根据本公开的实施例的用于上报候选发射波束的第一种方法的示意图。如图8所示,假定K=8,N=4,选择单元630从8个发射波束(CSI-RS资源0-7)中选取了4个发射波束:CSI-RS资源2表示的发射波束;CSI-RS资源4表示的发射波束;CSI-RS资源3表示的发射波束;CSI-RS资源7表示的发射波束,并且这4个发射波束按照箭头所示 的方向呈降序排列,即CSI-RS资源2表示的发射波束最优,CSI-RS资源7表示的发射波束最差。根据本公开的实施例,编码单元640可以确定用3比特来表示每个候选发射波束的标识,即,用010来表示CSI-RS资源2表示的发射波束,用100来表示CSI-RS资源4表示的发射波束,用011来表示CSI-RS资源3表示的发射波束,用111来表示CSI-RS资源7表示的发射波束。接下来,编码单元640可以将N个候选发射波束的标识信息相连接以形成最后的上报信息。如图8所示,关于N个候选发射波束的信息为010100011111。此外,图8中所示的关于N个候选发射波束的信息包括了这N个候选发射波束的顺序信息。也就是说,当网络侧设备对关于N个候选发射波束的信息进行解码时可以获取这N个候选发射波束的顺序信息。如果以无序的方式上报图8中所示的4个候选发射波束,则编码后的4个候选发射波束的标识信息的顺序可以改变,例如上报的信息可能为010011100111。
根据本公开的实施例,编码单元640可以利用比特图来表示N个候选发射波束的标识。也就是说,编码单元640可以根据K的大小来确定比特图的位数,比特图中的比特位为1表示与该比特位相对应的发射波束被选取为候选发射波束,比特图中的比特位为0表示与该比特位相对应的发射波束没有被选取为候选发射波束。
图9是示出根据本公开的实施例的用于上报候选发射波束的第二种方法的示意图。如图9所示,仍然假定K=8,N=4,选择单元630从8个发射波束中选取了4个发射波束:CSI-RS资源2、4、3和7表示的发射波束,并且这4个发射波束按照箭头所示的方向呈降序排列。编码单元640可以确定采用8比特的比特图来表示4个候选发射波束的标识信息,即比特图的8个比特位分别对应CSI-RS资源0-7表示的发射波束。则可以确定如图9所示的比特图,从而编码单元640可以确定上报信息为00111001。图9中所示的关于N个候选发射波束的信息仅仅包括了这N个候选发射波束的标识信息,而没有包括N个候选发射波束的顺序信息。也就是说,当网络侧设备对关于N个候选发射波束的信息进行解码时并不知晓这N个候选发射波束的顺序信息。
根据本公开的实施例,编码单元640可以利用二进制编码来表示N个候选发射波束中的基准候选发射波束的标识,并且利用N个候选发射波束中除基准候选发射波束以外的其它候选发射波束与基准候选发射波束的标识的差值的二进制编码来表示其它候选发射波束的标识。这里,编 码单元640可以选取候选发射波束中最靠近所有发射波束的中间的位置的候选发射波束作为基准候选发射波束,并用二进制编码来表示基准候选发射波束的标识。对于其它候选发射波束,利用与基准候选发射波束的标识的差值的二进制编码来表示。进一步,编码单元640可以基于其它候选发射波束的标识与基准候选发射波束的标识的编码顺序来确定其它候选发射波束的标识与基准候选发射波束的标识的差值的正负。例如,编码单元640可以确定在基准候选发射波束的标识之前编码的候选发射波束的标识与基准候选发射波束的标识之间的差值为负值,在基准候选发射波束的标识之后编码的候选发射波束的标识与基准候选发射波束的标识之间的差值为正值。
图10是示出根据本公开的实施例的用于上报候选发射波束的第三种方法的示意图。如图10所示,仍然假定K=8,N=4,选择单元630从8个发射波束中选取了4个发射波束:CSI-RS资源2、4、3和7表示的发射波束,并且这4个发射波束按照箭头所示的方向呈降序排列。这里,由于CSI-RS资源3表示的候选发射波束和CSI-RS资源4表示的候选发射波束位于8个候选发射波束的中间位置,因此可以选取CSI-RS资源3表示的候选发射波束或者CSI-RS资源4表示的候选发射波束作为基准候选发射波束,图10以选取CSI-RS资源4表示的候选发射波束作为基准候选发射波束为例。如图10所示,编码单元640以二进制编码100来表示CSI-RS资源4表示的候选发射波束的标识信息。接下来,编码单元640计算CSI-RS资源2与CSI-RS资源4之间的差值为2,且为负值,因此用10来表示CSI-RS资源2表示的候选发射波束的标识信息,并且该标识信息应当在基准候选发射波束的标识信息之前编码。类似地,编码单元640计算CSI-RS资源3与CSI-RS资源4之间的差值为1,且为负值,因此用01来表示CSI-RS资源3表示的候选发射波束的标识信息,并且该标识信息应当在基准候选发射波束的标识信息之前编码;编码单元640计算CSI-RS资源7与CSI-RS资源4之间的差值为3,且为正值,因此用11来表示CSI-RS资源7表示的候选发射波束的标识信息,并且该标识信息应当在基准候选发射波束的标识信息之后编码。如图10所示,编码单元640最终确定的关于N个候选发射波束的信息为100110011。图10中所示的关于N个候选发射波束的信息仅仅包括了这N个候选发射波束的标识信息,而没有包括N个候选发射波束的顺序信息。也就是说,当网络侧设备对关于N个候选发射波束的信息进行解码时并不知晓这N个候选发射波束的顺序信息。进一步,由于基准候选发射波束的标识比其它 候选发射波束的标识多1个比特位,因此网络侧设备在接收到关于N个候选发射波束的信息时,可以确定出基准候选发射波束,并可以根据其它候选发射波束与基准候选发射波束的前后关系确定出差值的正负,从而解码出所有的候选发射波束的标识。
根据本公开的实施例,编码单元640还可以使得基准候选发射波束的标识的位数比除基准候选发射波束以外的其它候选发射波束的标识的位数多。进一步,编码单元640可以通过在基准候选发射波束的标识的二进制编码前面填0来实现上述效果。也就是说,如果编码单元640确定出基准候选发射波束的标识的位数与其它候选发射波束的标识的位数相同,编码单元640可以在基准候选发射波束的标识的二进制编码前面填0,以使得基准候选发射波束的标识的位数比其它候选发射波束的标识的位数多。
根据本公开的实施例,如图6所示,电子设备600还可以包括存储单元650,用于存储第一映射表,第一映射表存储有从网络侧设备的K个发射波束中选取N个候选发射波束的组合与组合标识之间的映射关系。进一步,网络侧设备的存储单元也可以存储该第一映射表。该第一映射表可以是事先存储在电子设备600的存储单元和网络侧设备的存储单元中的。此外,第一映射表可以由网络侧设备建立,并可以通过高层信令,包括但不限于RRC信令向电子设备600发送。
图11(a)是示出根据本公开的实施例的第一映射表的示意图。图11(a)示出了K=4并且N=2的情形,也就是说,电子设备600需要从4个发射波束(CSI-RS资源0-3)中选取2个候选发射波束。左边示出了从4个发射波束中选取2个候选发射波束的所有组合,右边示出了与组合对应的组合标识。例如,左边的1100表示选取了CSI-RS资源0表示的发射波束和CSI-RS资源1表示的发射波束,与该组合对应的组合标识为000。这里,可以根据组合的总数目来确定组合标识需要的比特数。例如,可以根据公式C 4 2来计算组合的总数目为6,从而确定需要3个比特来表示组合标识。
根据本公开的实施例,编码单元640可以根据第一映射表以及N个候选发射波束的无序组合确定与组合对应的组合标识;以及利用组合标识来表示N个候选发射波束的标识。
图11(b)是示出根据本公开的实施例的用于上报候选发射波束的第四种方法的示意图。如图11(b)所示,假定K=4,N=2,选择单元630 从4个发射波束中选取了2个发射波束:CSI-RS资源1表示的发射波束和CSI-RS资源3表示的发射波束,并且这2个发射波束按照箭头所示的方向呈降序排列。根据本公开的实施例,编码单元640可以确定CSI-RS资源1表示的发射波束和CSI-RS资源3表示的发射波束的无序组合为图11(a)中所示的0101,从而确定与该组合对应的组合标识为100。由此,编码单元640可以确定关于N个候选发射波束的信息为100。图11(b)中所示的关于N个候选发射波束的信息仅仅包括了这N个候选发射波束的标识信息,而没有包括N个候选发射波束的顺序信息。也就是说,当网络侧设备对关于N个候选发射波束的信息进行解码时并不知晓这N个候选发射波束的顺序信息。此外,当网络侧设备接收到这样的信息时,可以根据事先存储的第一映射表确定出N个候选发射波束的标识。
根据本公开的实施例,存储单元650还可以存储第二映射表,第二映射表存储有从网络侧设备的K个发射波束中选取N个候选发射波束的排列与排列标识之间的映射关系。进一步,网络侧设备的存储单元也可以存储该第二映射表。该第二映射表可以是事先存储在电子设备600的存储单元和网络侧设备的存储单元中的。此外,第二映射表可以由网络侧设备建立,并可以通过高层信令,包括但不限于RRC信令向电子设备600发送。
图12(a)是示出根据本公开的实施例的第二映射表的示意图。图12(a)示出了K=4并且N=2的情形,也就是说,电子设备600需要从4个发射波束(CSI-RS资源0-3)中选取2个候选发射波束的有序排列。左边示出了从4个发射波束中选取2个候选发射波束的所有排列,右边示出了与排列对应的排列标识。例如,左边的00,01表示选取了CSI-RS资源0表示的发射波束和CSI-RS资源1表示的发射波束,并且CSI-RS资源0表示的发射波束和CSI-RS资源1表示的发射波束按照降序排列,与该排列对应的组合标识为0000。再如,左边的00,10表示选取了CSI-RS资源0表示的发射波束和CSI-RS资源2表示的发射波束,并且CSI-RS资源0表示的发射波束和CSI-RS资源2表示的发射波束按照降序排列,与该排列对应的组合标识为0001。这里,可以根据排列的总数目来确定排列标识需要的比特数。例如,可以根据公式A 4 2来计算排列的总数目为12,从而确定需要4个比特来表示排列标识。
根据本公开的实施例,编码单元640可以根据第二映射表以及N个候选发射波束的有序排列确定与排列对应的排列标识;以及利用排列标识 来表示N个候选发射波束的标识和顺序。
图12(b)是示出根据本公开的实施例的用于上报候选发射波束的第五种方法的示意图。如图12(b)所示,假定K=4,N=2,选择单元630从4个发射波束中选取了2个发射波束:CSI-RS资源1表示的发射波束和CSI-RS资源3表示的发射波束,并且这2个发射波束按照箭头所示的方向呈降序排列。根据本公开的实施例,编码单元640可以确定CSI-RS资源1表示的发射波束和CSI-RS资源3表示的发射波束的有序排列为图12(a)中所示的01,11,从而确定与该排列对应的排列标识为0101。由此,编码单元640可以确定关于N个候选发射波束的信息为0101。图12(b)中所示的关于N个候选发射波束的信息不仅包括了这N个候选发射波束的标识信息,还包括了N个候选发射波束的顺序信息。也就是说,当网络侧设备对关于N个候选发射波束的信息进行解码时可以知晓这N个候选发射波束的顺序信息。此外,当网络侧设备接收到这样的信息时,可以根据事先存储的第二映射表确定出N个候选发射波束的标识和顺序。
如上所述,图8、图9、图10、图11(b)和图12(b)分别示出了根据本公开的实施例的用于上报候选发射波束的五种方法。在这些上报方法中,仅仅示出了关于N个候选发射波束的标识的编码方法,并未示出关于信道质量信息的编码。进一步,当关于N个候选发射波束的信息包括全部或部分候选发射波束与电子设备600之间的信道质量信息时,编码单元640可以根据本领域中公知的任何一种方法对信道质量信息进行编码,并且可以添加候选发射波束与电子设备600之间的信道质量信息的编码,本公开对此不做详述。
如上所述,选择单元630可以选择N个候选发射波束,并且编码单元640可以对这N个候选发射波束的信息进行编码。进一步,根据本公开的实施例,选择单元630还可以选择少于N个的候选发射波束。例如,选择单元630在选择了N个候选发射波束后,还可以判断这N个候选发射波束与电子设备600之间的的第二信道质量参数是否满足以第二信道质量参数阈值限定的条件(例如第二信道质量参数大于或小于第二信道质量参数阈值,这取决于第二信道质量参数的具体表示,例如,当第二信道质量参数为RSRP或RSRQ时第二信道质量参数需要大于第二信道质量参数阈值;当第二信道质量参数为BLER时第二信道质量参数需要小于第二信道质量参数阈值)。进一步,选择单元630可以去掉N个候选发射波束中不满足以第二信道质量参数阈值限定的条件的候选发射波束。在上 述实施例中,如果选择单元630选出的候选发射波束少于N个,那么编码单元640可以选择第一种上报方法、第二种上报方法和第三种上报方法来上报候选发射波束。进一步,在第一种和第三种上报方法中,编码单元640可以将去掉的候选发射波束的标识信息编码为0。例如,假定CSI-RS资源7表示的发射波束的第二信道质量参数没有满足以第二信道质量参数阈值限定的条件,则在图8所示的示例中,上报的信息可以为0101000110;在图9所示的示例中,上报的信息可以为00111000;在图10所示的示例中,上报的信息可以为10011000。
根据本公开的实施例,选择单元630可以进一步根据第二信道质量参数的阈值来对N个候选发射波束进行选择,从而去掉信道质量不好的那些候选发射波束,进而进一步减少开销。
根据本公开的实施例,通信单元610可以从网络侧设备接收对N个候选发射波束的个数的配置信息,例如通过高层信令(包括但不限于RRC信令)。此外,通信单元610也可以向网络侧设备发送请求以请求重新配置N的数目,并可以例如通过低层信令(包括但不限于DCI)从网络侧设备接收对N个候选发射波束的个数的重新配置信息。
根据本公开的实施例,通信单元610还可以例如通过高层信令(包括但不限于RRC信令)从网络侧设备接收对上报方法的配置信息。这里,可以用3比特来表示五种上报方法中的一种。此外,通信单元610也可以向网络侧设备发送请求以请求重新配置上报方法,并可以例如通过低层信令(包括但不限于DCI)从网络侧设备接收对上报方法的重新配置信息。
表1示出了上述五种方法所需要的开销,表中数字的单位为比特数。这里,对于第四种方法和第五种方法,仅仅示出了在上报关于N个候选发射波束时所需要的比特数,并未示出存储第一映射表和第二映射表所需的比特数。此外,表1仅示出了K=[4,8,16,32,64]并且N=[1,2,4,8],K大于或等于N的情形。
表1
Figure PCTCN2019070379-appb-000001
Figure PCTCN2019070379-appb-000002
根据本公开的实施例,网络侧设备可以根据K和N的值来选取上报的方法,以减小上报所需的开销。优选地,当N/K≥0.5并且K>16时,可以选取第二种方法;当K=N时,可以选取第四种方法;当N≥8、K≥16并且N/K<0.5时,可以选取第三种方法;当N≤4并且K≤16时,可以选取第四种方法。当然,上述实施例仅仅是示例性的,网络侧设备可以根据实际情况来选取上报的方法。
根据本公开的实施例,电子设备600可以周期性向网络侧设备发送关于N个候选发射波束的信息。进一步,电子设备600也可以响应于网络侧设备的请求向网络侧设备发送关于N个候选发射波束的信息。也就是说,当接收到网络侧设备的请求时,向网络侧设备发送关于N个候选发射波束的信息。
根据本公开的实施例,电子设备600可以例如通过低层信令(包括但不限于DCI)从网络侧设备接收关于N个候选发射波束的信息中的内容的配置信息,包括完全上报、部分上报和混合上报。这里,完全上报表示需要上报N个候选发射波束的标识信息以及N个候选发射波束中的每一个与电子设备600之间的信道质量信息,如图3(b)所示;部分上报表示只需要上报N个候选发射波束的标识信息,如图3(a)所示;混合上报表示需要上报N个候选发射波束的标识信息以及N个候选发射波束与电子设备600之间的信道质量信息中的最大值和最小值,如图3(c)所示。
也就是说,网络侧设备可以配置关于N个候选发射波束的信息中的内容、触发方式以及上报方法。此外,为了进一步减少上报的开销,网络侧设备还可以根据一定的准则来配置上述信息。例如,当为电子设备600配置部分上报时,只能采用第一种上报方法和第五种上报方法(即有序的上报方法);当为电子设备600配置完全上报和混合上报时,只能采用第二种上报方法、第三种上报方法和第四种上报方法(即无序的上报方法)。再如,当为电子设备600配置周期性上报时,可以为电子设备600配置部分上报的方式;当为电子设备600配置事件性上报时,可以为电子设备600配置完全上报和混合上报的方式。在这种情况下,电子设备600可以从网络侧设备接收指示完全上报或混合上报的指示信息,例如用1比特信息来指示。进一步,当为电子设备600配置第三种上报方法时,可以为电子设备600配置完全上报的方式。当然,上述准则仅仅是示例性优选的方式,并没有限定作用。
表2示出了网络侧设备为电子设备600配置上报信息的优选方式。
表2
上报方法 触发方式 上报内容
第一种方法(有序) 周期性 部分上报
第二种方法(无序) 事件性 完全上报或混合上报
第三种方法(无序) 事件性 完全上报
第四种方法(无序) 事件性 完全上报或混合上报
第五种方法(有序) 周期性 部分上报
图13是示出根据本公开的实施例的用于上报候选发射波束的过程 的示意图。如图13所示,UE周期性按照部分上报的方式向基站上报关于N个候选发射波束的信息,从而使得基站向UE发送TCI状态。基站也可以向UE发送请求非周期上报的指示,例如可以用1比特来指示采用完全上报的方式还是混合上报的方式,UE可以响应于这样的指示向基站以完全上报或者混合上报的方式来上报关于N个候选发射波束的信息。如上所述,图13仅仅给出了一个上报的示例性实施方式,并非限制性的。
如上详述了电子设备600向网络侧设备上报关于N个候选发射波束的信息的过程,下面将详述电子设备600如何根据接收到的TCI状态确定合适的接收波束。
根据本公开的实施例,确定单元620可以根据TCI状态与用于发送同步信号块SSB的波束之间的映射关系确定用于发送SSB的波束。
根据本公开的实施例,通信单元610可以在初始接入完成后从网络侧设备接收TCI状态与用于发送SSB的波束之间的映射关系。进一步,电子设备600可以将TCI状态与用于发送SSB的波束之间的映射关系存储在存储单元650中。这里的TCI状态与用于发送SSB的波束之间的映射关系是由网络侧设备建立的,如前文的图4所示,在此不再赘述。例如,当电子设备600接收到TCI状态为100时,可以根据图4所示的映射关系确定出SSB资源ID5表示的用于发送SSB的波束。
根据本公开的实施例,确定单元620可以根据用于发送SSB的波束与接收波束之间的映射关系确定用于从网络侧设备接收下行信息的接收波束。
如图6所示,电子设备600可以包括建立单元660,用于在初始接入过程中建立用于发送SSB的波束与接收波束之间的映射关系。同样地,可以用SSB资源标识信息来表示用于发送SSB的波束。在初始接入过程中,网络侧设备可以向电子设备600发送SSB,而电子设备600利用接收波束来接收网络侧设备发送的SSB,并可以记录用哪个接收波束来接收哪个用于发送SSB的波束,从而逐渐建立接收波束与用于发送SSB的波束之间的映射关系。进一步,电子设备600可以将用于发送SSB的波束与接收波束之间的映射关系存储在存储单元650中。例如,当电子设备600接收到TCI状态为100时,可以根据图4所示的映射关系确定出SSB资源ID5表示的用于发送SSB的波束,并可以根据用于发送SSB的波束与接收波束之间的映射关系确定出相应的接收波束。
图14是示出根据本公开的实施例的用户设备获取SSB资源标识信息与接收波束之间的映射关系以及TCI状态与SSB资源标识信息之间的映射关系的信令流程图。图14用SSB资源标识来表示用于发送SSB的波束。如图14所示,在步骤S1401中,UE在接入过程中建立SSB资源标识与接收波束之间的映射关系。接下来,在步骤S1402中,在接入过程完成后,基站建立TCI状态与SSB资源标识之间的映射关系。接下来,在步骤S1403中,基站将TCI状态与SSB资源标识之间的映射关系发送至UE。由此,UE获取并存储了TCI状态与SSB资源标识之间的映射关系以及SSB资源标识与接收波束之间的映射关系。
如上所述,根据本公开的实施例的电子设备600,可以从网络侧设备接收TCI状态,该TCI状态与网络侧设备选取的发射波束相关,从而电子设备600可以根据TCI状态确定出合适的接收波束,以使得确定的接收波束与网络侧设备的发射波束相匹配,实现波束赋形,提高系统增益。
根据本公开的实施例的电子设备200可以作为网络侧设备,电子设备600可以作为用户设备,即电子设备200可以为电子设备600提供服务,因此在前文中描述的关于电子设备200的全部实施例都适用于此。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网络侧设备的电子设备200执行的无线通信方法。
图15是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备200执行的无线通信方法的流程图。
如图15所示,在步骤S1510中,从用户设备接收关于N个候选发射波束的信息,其中,N为大于1的整数。
接下来,在步骤S1520中,从N个候选发射波束中选取用于向用户设备发送下行信息的发射波束。
接下来,在步骤S1530中,根据所选取的发射波束确定传输配置指示TCI状态,并向用户设备发送所述TCI状态。
优选地,方法还包括:根据关于N个候选发射波束的信息确定N个候选发射波束的标识信息。
优选地,方法还包括:根据关于N个候选发射波束的信息确定N个 候选发射波束的顺序信息;以及根据N个候选发射波束的顺序信息选取用于向用户设备发送下行信息的发射波束。
优选地,方法还包括:根据关于N个候选发射波束的信息确定N个候选发射波束中的全部或部分候选发射波束与用户设备之间的信道质量信息;以及根据全部或部分候选发射波束与用户设备之间的信道质量信息选取用于向用户设备发送下行信息的发射波束。
优选地,根据所选取的发射波束确定传输配置指示TCI状态包括:确定与选取的发射波束相对应的用于发送同步信号块SSB的波束;以及根据TCI状态与用于发送SSB的波束之间的映射关系确定要向用户设备发送的TCI状态。
优选地,确定与选取的发射波束相对应的用于发送同步信号块SSB的波束包括:使得选取的发射波束的辐射范围位于与选取的发射波束相对应的用于发送SSB的波束的辐射范围内。
优选地,方法还包括:在初始接入完成后建立TCI状态与用于发送SSB的波束之间的映射关系;以及向用户设备发送TCI状态与用于发送SSB的波束之间的映射关系。
优选地,方法还包括:周期性从用户设备接收关于N个候选发射波束的信息,或者向用户设备发送请求以获取所述关于N个候选发射波束的信息。
优选地,电子设备200包括新无线NR通信系统中的网络侧设备。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备200,因此前文中关于电子设备200的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的作为用户设备的电子设备600执行的无线通信方法。
图16是示出根据本公开的实施例的由无线通信系统中的作为用户设备的电子设备600执行的无线通信方法的流程图。
如图16所示,在步骤S1610中,从网络侧设备接收传输配置指示TCI状态。
接下来,在步骤S1620中,根据TCI状态确定用于从网络侧设备接 收下行信息的接收波束。
优选地,方法还包括:向网络侧设备发送关于N个候选发射波束的信息,以用于网络侧设备从N个候选发射波束中选取用于向电子设备600发送下行信息的发射波束,并根据所选取的发射波束确定TCI状态,其中,N为大于1的整数。
优选地,方法还包括:根据网络侧设备的K个发射波束与电子设备600之间的信道质量来确定N个候选发射波束,其中,K为大于或等于N的整数。
优选地,方法还包括:根据以下参数中的一种或多种来确定信道质量:参考信号接收功率RSRP、参考信号接收质量RSRQ和误块率BLER。
优选地,方法还包括:周期性向网络侧设备发送关于N个候选发射波束的信息;或者响应于网络侧设备的请求向网络侧设备发送关于N个候选发射波束的信息。
优选地,关于N个候选发射波束的信息包括N个候选发射波束的标识信息。
优选地,方法还包括:利用二进制编码来表示N个候选发射波束中的每个候选发射波束的标识。
优选地,方法还包括:利用比特图来表示N个候选发射波束的标识。
优选地,方法还包括:利用二进制编码来表示N个候选发射波束中的基准候选发射波束的标识;以及利用N个候选发射波束中除基准候选发射波束以外的其它候选发射波束与基准候选发射波束的标识的差值的二进制编码来表示其它候选发射波束的标识。
优选地,方法还包括:根据第一映射表以及N个候选发射波束的无序组合确定与组合对应的组合标识;以及利用组合标识来表示N个候选发射波束的标识,其中,第一映射表存储有从网络侧设备的K个发射波束中选取N个候选发射波束的组合与组合标识之间的映射关系,其中,K为大于或等于N的整数。
优选地,方法还包括:关于N个候选发射波束的信息包括N个候选发射波束的顺序信息。
优选地,方法还包括:根据第二映射表以及N个候选发射波束的有序排列确定与排列对应的排列标识;以及利用排列标识来表示N个候选 发射波束的标识和顺序,其中,第二映射表存储有从网络侧设备的K个发射波束中选取N个候选发射波束的排列与排列标识之间的映射关系,其中,K为大于或等于N的整数。
优选地,关于N个候选发射波束的信息包括N个候选发射波束中的全部或部分候选发射波束与电子设备600之间的信道质量信息。
优选地,根据TCI状态确定用于从网络侧设备接收下行信息的接收波束包括:根据TCI状态与用于发送同步信号块SSB的波束之间的映射关系确定用于发送SSB的波束;以及根据用于发送SSB的波束与接收波束之间的映射关系确定用于从网络侧设备接收下行信息的接收波束。
优选地,方法还包括:在初始接入完成后从网络侧设备接收TCI状态与用于发送SSB的波束之间的映射关系。
优选地,方法还包括:在初始接入过程中建立用于发送SSB的波束与接收波束之间的映射关系。
优选地,方法还包括:从网络侧设备接收对N个候选发射波束的个数的配置信息。
优选地,电子设备600包括新无线NR通信系统中的用户设备。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备600,因此前文中关于电子设备600的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
网络侧设备可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与如下所述的基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
网络侧设备也可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地, 基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1700包括一个或多个天线1710以及基站设备1720。基站设备1720和每个天线1710可以经由RF线缆彼此连接。
天线1710中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1720发送和接收无线信号。如图17所示,eNB 1700可以包括多个天线1710。例如,多个天线1710可以与eNB 1700使用的多个频带兼容。虽然图17示出其中eNB 1700包括多个天线1710的示例,但是eNB 1700也可以包括单个天线1710。
基站设备1720包括控制器1721、存储器1722、网络接口1723以及无线通信接口1725。
控制器1721可以为例如CPU或DSP,并且操作基站设备1720的较高层的各种功能。例如,控制器1721根据由无线通信接口1725处理的信号中的数据来生成数据分组,并经由网络接口1723来传递所生成的分组。控制器1721可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1721可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1722包括RAM和ROM,并且存储由控制器1721执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1723为用于将基站设备1720连接至核心网1724的通信接口。控制器1721可以经由网络接口1723而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1700与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1723还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1723为无线通信接口,则与由无线通信接口1725使用的频带相比,网络接口1723可以使用较高频带用于无线通信。
无线通信接口1725支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1710来提供到位于eNB 1700的小区中的终端的无线连接。无线通信接口1725通常可以包括例如基带(BB)处理器1726和RF电路1727。BB处理器1726可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1721,BB处理器1726可以具有上述逻辑功能的一部分或全部。BB处理器1726可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1726的功能改变。该模块可以为插入到基站设备1720的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1727可以包括例如混频器、滤波器和放大器,并且经由天线1710来传送和接收无线信号。
如图17所示,无线通信接口1725可以包括多个BB处理器1726。例如,多个BB处理器1726可以与eNB 1700使用的多个频带兼容。如图17所示,无线通信接口1725可以包括多个RF电路1727。例如,多个RF电路1727可以与多个天线元件兼容。虽然图17示出其中无线通信接口1725包括多个BB处理器1726和多个RF电路1727的示例,但是无线通信接口1725也可以包括单个BB处理器1726或单个RF电路1727。
(第二应用示例)
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1830包括一个或多个天线1840、基站设备1850和RRH 1860。RRH 1860和每个天线1840可以经由RF线缆而彼此连接。基站设备1850和RRH 1860可以经由诸如光纤线缆的高速线路而彼此连接。
天线1840中的每一个均包括单个或多个天线元件(诸如包括在 MIMO天线中的多个天线元件)并且用于RRH 1860发送和接收无线信号。如图18所示,eNB 1830可以包括多个天线1840。例如,多个天线1840可以与eNB 1830使用的多个频带兼容。虽然图18示出其中eNB 1830包括多个天线1840的示例,但是eNB 1830也可以包括单个天线1840。
基站设备1850包括控制器1851、存储器1852、网络接口1853、无线通信接口1855以及连接接口1857。控制器1851、存储器1852和网络接口1853与参照图17描述的控制器1721、存储器1722和网络接口1723相同。
无线通信接口1855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1860和天线1840来提供到位于与RRH 1860对应的扇区中的终端的无线通信。无线通信接口1855通常可以包括例如BB处理器1856。除了BB处理器1856经由连接接口1857连接到RRH 1860的RF电路1864之外,BB处理器1856与参照图17描述的BB处理器1726相同。如图18所示,无线通信接口1855可以包括多个BB处理器1856。例如,多个BB处理器1856可以与eNB 1830使用的多个频带兼容。虽然图18示出其中无线通信接口1855包括多个BB处理器1856的示例,但是无线通信接口1855也可以包括单个BB处理器1856。
连接接口1857为用于将基站设备1850(无线通信接口1855)连接至RRH 1860的接口。连接接口1857还可以为用于将基站设备1850(无线通信接口1855)连接至RRH 1860的上述高速线路中的通信的通信模块。
RRH 1860包括连接接口1861和无线通信接口1863。
连接接口1861为用于将RRH 1860(无线通信接口1863)连接至基站设备1850的接口。连接接口1861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1863经由天线1840来传送和接收无线信号。无线通信接口1863通常可以包括例如RF电路1864。RF电路1864可以包括例如混频器、滤波器和放大器,并且经由天线1840来传送和接收无线信号。如图18所示,无线通信接口1863可以包括多个RF电路1864。例如,多个RF电路1864可以支持多个天线元件。虽然图18示出其中无线通信接口1863包括多个RF电路1864的示例,但是无线通信接口1863也可以包括单个RF电路1864。
在图17和图18所示的eNB 1700和eNB 1830中,通过使用图2所描述的选择单元220、确定单元230、解码单元240、建立单元250和存储单元260可以由控制器1721和/或控制器1851实现,通过使用图2所描述的通信单元210可以由无线通信接口1725以及无线通信接口1855和/或无线通信接口1863实现。。功能的至少一部分也可以由控制器1721和控制器1851实现。例如,控制器1721和/或控制器1851可以通过执行相应的存储器中存储的指令而执行选取发射波束以及确定TCI状态的功能。
<关于终端设备的应用示例>
(第一应用示例)
图19是示出可以应用本公开内容的技术的智能电话1900的示意性配置的示例的框图。智能电话1900包括处理器1901、存储器1902、存储装置1903、外部连接接口1904、摄像装置1906、传感器1907、麦克风1908、输入装置1909、显示装置1910、扬声器1911、无线通信接口1912、一个或多个天线开关1915、一个或多个天线1916、总线1917、电池1918以及辅助控制器1919。
处理器1901可以为例如CPU或片上系统(SoC),并且控制智能电话1900的应用层和另外层的功能。存储器1902包括RAM和ROM,并且存储数据和由处理器1901执行的程序。存储装置1903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1900的接口。
摄像装置1906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1908将输入到智能电话1900的声音转换为音频信号。输入装置1909包括例如被配置为检测显示装置1910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1900的输出图像。扬声器1911将从智能电话1900输出的音频信号转换为声音。
无线通信接口1912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1912通常可以包括例如BB处理 器1913和RF电路1914。BB处理器1913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1914可以包括例如混频器、滤波器和放大器,并且经由天线1916来传送和接收无线信号。无线通信接口1912可以为其上集成有BB处理器1913和RF电路1914的一个芯片模块。如图19所示,无线通信接口1912可以包括多个BB处理器1913和多个RF电路1914。虽然图19示出其中无线通信接口1912包括多个BB处理器1913和多个RF电路1914的示例,但是无线通信接口1912也可以包括单个BB处理器1913或单个RF电路1914。
此外,除了蜂窝通信方案之外,无线通信接口1912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1912可以包括针对每种无线通信方案的BB处理器1913和RF电路1914。
天线开关1915中的每一个在包括在无线通信接口1912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1916的连接目的地。
天线1916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1912传送和接收无线信号。如图19所示,智能电话1900可以包括多个天线1916。虽然图19示出其中智能电话1900包括多个天线1916的示例,但是智能电话1900也可以包括单个天线1916。
此外,智能电话1900可以包括针对每种无线通信方案的天线1916。在此情况下,天线开关1915可以从智能电话1900的配置中省略。
总线1917将处理器1901、存储器1902、存储装置1903、外部连接接口1904、摄像装置1906、传感器1907、麦克风1908、输入装置1909、显示装置1910、扬声器1911、无线通信接口1912以及辅助控制器1919彼此连接。电池1918经由馈线向图19所示的智能电话1900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1919例如在睡眠模式下操作智能电话1900的最小必需功能。
在图19所示的智能电话1900中,通过使用图6所描述的确定单元620、选择单元630、编码单元640、存储单元650和建立单元660可以由由处理器1901或辅助控制器1919实现,通过使用图6所描述的通信单元 610可以由无线通信接口1912实现。功能的至少一部分也可以由处理器1901或辅助控制器1919实现。例如,处理器1901或辅助控制器1919可以通过执行存储器1902或存储装置1903中存储的指令而执行确定接收波束的功能。
(第二应用示例)
图20是示出可以应用本公开内容的技术的汽车导航设备2020的示意性配置的示例的框图。汽车导航设备2020包括处理器2021、存储器2022、全球定位系统(GPS)模块2024、传感器2025、数据接口2026、内容播放器2027、存储介质接口2028、输入装置2029、显示装置2030、扬声器2031、无线通信接口2033、一个或多个天线开关2036、一个或多个天线2037以及电池2038。
处理器2021可以为例如CPU或SoC,并且控制汽车导航设备2020的导航功能和另外的功能。存储器2022包括RAM和ROM,并且存储数据和由处理器2021执行的程序。
GPS模块2024使用从GPS卫星接收的GPS信号来测量汽车导航设备2020的位置(诸如纬度、经度和高度)。传感器2025可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2026经由未示出的终端而连接到例如车载网络2041,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2027再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2028中。输入装置2029包括例如被配置为检测显示装置2030的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2030包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2031输出导航功能的声音或再现的内容。
无线通信接口2033支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2033通常可以包括例如BB处理器2034和RF电路2035。BB处理器2034可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2035可以包括例如混频器、滤波器和放大器,并且经由天线2037来传送和接收无线信号。无线通信接口2033还可以为其上集成有BB处理器2034和RF电路2035的一个芯片模块。如图20所示,无线通 信接口2033可以包括多个BB处理器2034和多个RF电路2035。虽然图20示出其中无线通信接口2033包括多个BB处理器2034和多个RF电路2035的示例,但是无线通信接口2033也可以包括单个BB处理器2034或单个RF电路2035。
此外,除了蜂窝通信方案之外,无线通信接口2033可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2033可以包括BB处理器2034和RF电路2035。
天线开关2036中的每一个在包括在无线通信接口2033中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2037的连接目的地。
天线2037中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2033传送和接收无线信号。如图20所示,汽车导航设备2020可以包括多个天线2037。虽然图20示出其中汽车导航设备2020包括多个天线2037的示例,但是汽车导航设备2020也可以包括单个天线2037。
此外,汽车导航设备2020可以包括针对每种无线通信方案的天线2037。在此情况下,天线开关2036可以从汽车导航设备2020的配置中省略。
电池2038经由馈线向图20所示的汽车导航设备2020的各个块提供电力,馈线在图中被部分地示为虚线。电池2038累积从车辆提供的电力。
在图20示出的汽车导航设备2020中,通过使用图6所描述的确定单元620、选择单元630、编码单元640、存储单元650和建立单元660可以由处理器2021实现,通过使用图6所描述的通信单元610可以由无线通信接口2033实现。功能的至少一部分也可以由处理器2021实现。例如,处理器2021可以通过执行存储器2022中存储的指令而执行确定接收波束的功能。
本公开内容的技术也可以被实现为包括汽车导航设备2020、车载网络2041以及车辆模块2042中的一个或多个块的车载系统(或车辆)2040。车辆模块2042生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2041。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于 以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
此外,本公开可以具有如下所述的配置。
(1)一种电子设备,包括处理电路,被配置为:
从用户设备接收关于N个候选发射波束的信息,其中,N为大于1的整数;
从所述N个候选发射波束中选取用于向所述用户设备发送下行信息的发射波束;以及
根据所选取的发射波束确定传输配置指示TCI状态,并向所述用户设备发送所述TCI状态。
(2)根据(1)所述的电子设备,其中,所述处理电路还被配置为:
根据关于所述N个候选发射波束的信息确定所述N个候选发射波束的标识信息。
(3)根据(2)所述的电子设备,其中,所述处理电路还被配置为:
根据关于所述N个候选发射波束的信息确定所述N个候选发射波束的顺序信息;以及
根据所述N个候选发射波束的顺序信息选取用于向所述用户设备发送下行信息的发射波束。
(4)根据(2)所述的电子设备,其中,所述处理电路还被配置为:
根据关于所述N个候选发射波束的信息确定所述N个候选发射波束中的全部或部分候选发射波束与所述用户设备之间的信道质量信息;以及
根据所述全部或部分候选发射波束与所述用户设备之间的信道质量信息选取用于向所述用户设备发送下行信息的发射波束。
(5)根据(1)所述的电子设备,其中,所述处理电路还被配置为:
确定与选取的发射波束相对应的用于发送同步信号块SSB的波束;以及
根据TCI状态与用于发送SSB的波束之间的映射关系确定要向所述用户设备发送的TCI状态。
(6)根据(5)所述的电子设备,其中,选取的发射波束的辐射范围位于与选取的发射波束相对应的用于发送SSB的波束的辐射范围内。
(7)根据(5)所述的电子设备,其中,所述处理电路还被配置为:
在初始接入完成后建立TCI状态与用于发送SSB的波束之间的映射关系;以及
向所述用户设备发送TCI状态与用于发送SSB的波束之间的映射关系。
(8)根据(1)所述的电子设备,其中,所述处理电路还被配置为:
周期性从用户设备接收所述关于N个候选发射波束的信息,或者
向所述用户设备发送请求以获取所述关于N个候选发射波束的信息。
(9)根据(1)-(8)中任一项所述的电子设备,其中,所述电子设备包括新无线NR通信系统中的网络侧设备。
(10)一种电子设备,包括处理电路,被配置为:
从网络侧设备接收传输配置指示TCI状态;以及
根据所述TCI状态确定用于从所述网络侧设备接收下行信息的接收波束。
(11)根据(10)所述的电子设备,其中,所述处理电路还被配置为:
向所述网络侧设备发送关于N个候选发射波束的信息,以用于所述网络侧设备从所述N个候选发射波束中选取用于向所述电子设备发送下行信息的发射波束,并根据所选取的发射波束确定TCI状态,其中,N 为大于1的整数。
(12)根据(10)所述的电子设备,其中,所述处理电路还被配置为:
根据所述网络侧设备的K个发射波束与所述电子设备之间的信道质量来确定所述N个候选发射波束,其中,K为大于或等于N的整数。
(13)根据(12)所述的电子设备,其中,所述处理电路还被配置为:
根据以下参数中的一种或多种来确定信道质量:参考信号接收功率RSRP、参考信号接收质量RSRQ和误块率BLER。
(14)根据(11)所述的电子设备,其中,所述处理电路还被配置为:
周期性向所述网络侧设备发送关于N个候选发射波束的信息;或者
响应于所述网络侧设备的请求向所述网络侧设备发送关于N个候选发射波束的信息。
(15)根据(11)所述的电子设备,其中,所述关于N个候选发射波束的信息包括所述N个候选发射波束的标识信息。
(16)根据(15)所述的电子设备,其中,所述处理电路还被配置为以以下任意一种方式来表示所述N个候选发射波束的标识:
利用二进制编码来表示所述N个候选发射波束中的每个候选发射波束的标识;
利用比特图来表示所述N个候选发射波束的标识;
利用二进制编码来表示所述N个候选发射波束中的基准候选发射波束的标识,并且利用所述N个候选发射波束中除所述基准候选发射波束以外的其它候选发射波束与所述基准候选发射波束的标识的差值的二进制编码来表示所述其它候选发射波束的标识;以及
根据第一映射表以及所述N个候选发射波束的无序组合确定与所述组合对应的组合标识,并且利用所述组合标识来表示所述N个候选发射波束的标识,其中,所述第一映射表存储有从所述网络侧设备的K个发射波束中选取所述N个候选发射波束的组合与组合标识之间的映射关系,其中,K为大于或等于N的整数。
(17)根据(15)所述的电子设备,其中,所述关于N个候选发射波束的信息包括所述N个候选发射波束的顺序信息。
(18)根据(17)所述的电子设备,其中,所述处理电路还被配置为:
根据第二映射表以及所述N个候选发射波束的有序排列确定与所述排列对应的排列标识;以及
利用所述排列标识来表示所述N个候选发射波束的标识和顺序,
其中,所述第二映射表存储有从所述网络侧设备的K个发射波束中选取所述N个候选发射波束的排列与排列标识之间的映射关系,其中,K为大于或等于N的整数。
(19)根据(15)所述的电子设备,其中,所述关于N个候选发射波束的信息包括所述N个候选发射波束中的全部或部分候选发射波束与所述电子设备之间的信道质量信息。
(20)根据(10)所述的电子设备,其中,所述处理电路还被配置为:
根据TCI状态与用于发送同步信号块SSB的波束之间的映射关系确定用于发送SSB的波束;以及
根据用于发送SSB的波束与接收波束之间的映射关系确定用于从所述网络侧设备接收下行信息的接收波束。
(21)根据(20)所述的电子设备,其中,所述处理电路还被配置为:
在初始接入完成后从所述网络侧设备接收TCI状态与用于发送SSB的波束之间的映射关系。
(22)根据(20)所述的电子设备,其中,所述处理电路还被配置为:
在初始接入过程中建立用于发送SSB的波束与接收波束之间的映射关系。
(23)根据(11)所述的电子设备,其中,所述处理电路还被配置为:
从所述网络侧设备接收对所述N个候选发射波束的个数的配置信息。
(24)根据(10)-(23)中任一项所述的电子设备,其中,所述电子设备包括新无线NR通信系统中的用户设备。
(25)一种无线通信方法,包括:
从用户设备接收关于N个候选发射波束的信息,其中,N为大于1的整数;
从所述N个候选发射波束中选取用于向所述用户设备发送下行信息的发射波束;以及
根据所选取的发射波束确定传输配置指示TCI状态,并向所述用户设备发送所述TCI状态。
(26)一种无线通信方法,包括:
从网络侧设备接收传输配置指示TCI状态;以及
根据所述TCI状态确定用于从所述网络侧设备接收下行信息的接收波束。
(27)一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据(25)或(26)所述的无线通信方法。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (27)

  1. 一种电子设备,包括处理电路,被配置为:
    从用户设备接收关于N个候选发射波束的信息,其中,N为大于1的整数;
    从所述N个候选发射波束中选取用于向所述用户设备发送下行信息的发射波束;以及
    根据所选取的发射波束确定传输配置指示TCI状态,并向所述用户设备发送所述TCI状态。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据关于所述N个候选发射波束的信息确定所述N个候选发射波束的标识信息。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    根据关于所述N个候选发射波束的信息确定所述N个候选发射波束的顺序信息;以及
    根据所述N个候选发射波束的顺序信息选取用于向所述用户设备发送下行信息的发射波束。
  4. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    根据关于所述N个候选发射波束的信息确定所述N个候选发射波束中的全部或部分候选发射波束与所述用户设备之间的信道质量信息;以及
    根据所述全部或部分候选发射波束与所述用户设备之间的信道质量信息选取用于向所述用户设备发送下行信息的发射波束。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    确定与选取的发射波束相对应的用于发送同步信号块SSB的波束;以及
    根据TCI状态与用于发送SSB的波束之间的映射关系确定要向所述 用户设备发送的TCI状态。
  6. 根据权利要求5所述的电子设备,其中,选取的发射波束的辐射范围位于与选取的发射波束相对应的用于发送SSB的波束的辐射范围内。
  7. 根据权利要求5所述的电子设备,其中,所述处理电路还被配置为:
    在初始接入完成后建立TCI状态与用于发送SSB的波束之间的映射关系;以及
    向所述用户设备发送TCI状态与用于发送SSB的波束之间的映射关系。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    周期性从用户设备接收所述关于N个候选发射波束的信息,或者
    向所述用户设备发送请求以获取所述关于N个候选发射波束的信息。
  9. 根据权利要求1-8中任一项所述的电子设备,其中,所述电子设备包括新无线NR通信系统中的网络侧设备。
  10. 一种电子设备,包括处理电路,被配置为:
    从网络侧设备接收传输配置指示TCI状态;以及
    根据所述TCI状态确定用于从所述网络侧设备接收下行信息的接收波束。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    向所述网络侧设备发送关于N个候选发射波束的信息,以用于所述网络侧设备从所述N个候选发射波束中选取用于向所述电子设备发送下行信息的发射波束,并根据所选取的发射波束确定TCI状态,其中,N为大于1的整数。
  12. 根据权利要求11所述的电子设备,其中,所述处理电路还被配置为:
    根据所述网络侧设备的K个发射波束与所述电子设备之间的信道质量来确定所述N个候选发射波束,其中,K为大于或等于N的整数。
  13. 根据权利要求12所述的电子设备,其中,所述处理电路还被配 置为:
    根据以下参数中的一种或多种来确定信道质量:参考信号接收功率RSRP、参考信号接收质量RSRQ和误块率BLER。
  14. 根据权利要求11所述的电子设备,其中,所述处理电路还被配置为:
    周期性向所述网络侧设备发送关于N个候选发射波束的信息;或者
    响应于所述网络侧设备的请求向所述网络侧设备发送关于N个候选发射波束的信息。
  15. 根据权利要求11所述的电子设备,其中,所述关于N个候选发射波束的信息包括所述N个候选发射波束的标识信息。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路还被配置为以以下任意一种方式来表示所述N个候选发射波束的标识:
    利用二进制编码来表示所述N个候选发射波束中的每个候选发射波束的标识;
    利用比特图来表示所述N个候选发射波束的标识;
    利用二进制编码来表示所述N个候选发射波束中的基准候选发射波束的标识,并且利用所述N个候选发射波束中除所述基准候选发射波束以外的其它候选发射波束与所述基准候选发射波束的标识的差值的二进制编码来表示所述其它候选发射波束的标识;以及
    根据第一映射表以及所述N个候选发射波束的无序组合确定与所述组合对应的组合标识,并且利用所述组合标识来表示所述N个候选发射波束的标识,其中,所述第一映射表存储有从所述网络侧设备的K个发射波束中选取所述N个候选发射波束的组合与组合标识之间的映射关系,其中,K为大于或等于N的整数。
  17. 根据权利要求15所述的电子设备,其中,所述关于N个候选发射波束的信息包括所述N个候选发射波束的顺序信息。
  18. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    根据第二映射表以及所述N个候选发射波束的有序排列确定与所述排列对应的排列标识;以及
    利用所述排列标识来表示所述N个候选发射波束的标识和顺序,
    其中,所述第二映射表存储有从所述网络侧设备的K个发射波束中选取所述N个候选发射波束的排列与排列标识之间的映射关系,其中,K为大于或等于N的整数。
  19. 根据权利要求15所述的电子设备,其中,所述关于N个候选发射波束的信息包括所述N个候选发射波束中的全部或部分候选发射波束与所述电子设备之间的信道质量信息。
  20. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    根据TCI状态与用于发送同步信号块SSB的波束之间的映射关系确定用于发送SSB的波束;以及
    根据用于发送SSB的波束与接收波束之间的映射关系确定用于从所述网络侧设备接收下行信息的接收波束。
  21. 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为:
    在初始接入完成后从所述网络侧设备接收TCI状态与用于发送SSB的波束之间的映射关系。
  22. 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为:
    在初始接入过程中建立用于发送SSB的波束与接收波束之间的映射关系。
  23. 根据权利要求11所述的电子设备,其中,所述处理电路还被配置为:
    从所述网络侧设备接收对所述N个候选发射波束的个数的配置信息。
  24. 根据权利要求10-23中任一项所述的电子设备,其中,所述电子设备包括新无线NR通信系统中的用户设备。
  25. 一种无线通信方法,包括:
    从用户设备接收关于N个候选发射波束的信息,其中,N为大于1的整数;
    从所述N个候选发射波束中选取用于向所述用户设备发送下行信息 的发射波束;以及
    根据所选取的发射波束确定传输配置指示TCI状态,并向所述用户设备发送所述TCI状态。
  26. 一种无线通信方法,包括:
    从网络侧设备接收传输配置指示TCI状态;以及
    根据所述TCI状态确定用于从所述网络侧设备接收下行信息的接收波束。
  27. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求25或26所述的无线通信方法。
PCT/CN2019/070379 2018-01-11 2019-01-04 电子设备、无线通信方法和计算机可读存储介质 WO2019137308A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/646,153 US20200220605A1 (en) 2018-01-11 2019-01-04 Electronic device, wireless communication method and computer readable storage medium
CN201980004122.9A CN111183597A (zh) 2018-01-11 2019-01-04 电子设备、无线通信方法和计算机可读存储介质
US17/741,450 US11711133B2 (en) 2018-01-11 2022-05-11 Electronic device, wireless communication method and computer readable storage medium related to transmission configuration indication (TCI) state

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810026604.1 2018-01-11
CN201810026604.1A CN110034798A (zh) 2018-01-11 2018-01-11 电子设备、无线通信方法和计算机可读存储介质

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/646,153 A-371-Of-International US20200220605A1 (en) 2018-01-11 2019-01-04 Electronic device, wireless communication method and computer readable storage medium
US17/741,450 Continuation US11711133B2 (en) 2018-01-11 2022-05-11 Electronic device, wireless communication method and computer readable storage medium related to transmission configuration indication (TCI) state

Publications (1)

Publication Number Publication Date
WO2019137308A1 true WO2019137308A1 (zh) 2019-07-18

Family

ID=67218862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070379 WO2019137308A1 (zh) 2018-01-11 2019-01-04 电子设备、无线通信方法和计算机可读存储介质

Country Status (3)

Country Link
US (2) US20200220605A1 (zh)
CN (2) CN110034798A (zh)
WO (1) WO2019137308A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11057089B2 (en) * 2018-06-29 2021-07-06 Qualcomm Incorporated Multi-beam simultaneous transmissions
US11606819B2 (en) * 2018-11-02 2023-03-14 Qualcomm Incorporated Indexing of random access occasions for channel state information reference signal based random access procedures
WO2020102975A1 (en) * 2018-11-20 2020-05-28 Qualcomm Incorporated Random access channel (rach) -less procedure
US20200245157A1 (en) * 2019-01-24 2020-07-30 Qualcomm Incorporated Techniques for indicating a preferred beam in wireless communication random access
US11627505B2 (en) * 2019-11-18 2023-04-11 Samsung Electronics Co., Ltd. Method and apparatus for beam management for inter-cell mobility
CN113746606B (zh) * 2020-05-27 2022-12-02 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918196A (zh) * 2011-09-16 2014-07-09 三星电子株式会社 用于在无线通信系统中的波束分配的方法及装置
WO2014178687A1 (en) * 2013-05-02 2014-11-06 Samsung Electronics Co., Ltd. Precoder selection method and apparatus for performing hybrid beamforming in wireless communication system
CN104782056A (zh) * 2012-09-12 2015-07-15 瑞典爱立信有限公司 用于选择波束候选的网络节点中的方法、用户设备中的方法、网络节点及用户设备
CN106374984A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种波束更新的方法和装置
WO2017184303A1 (en) * 2016-04-19 2017-10-26 Qualcomm Incorporated Beam reference signal based narrowband channel measurement and cqi reporting

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447344B2 (en) * 2010-03-25 2013-05-21 Motorola Mobility Llc Uplink power control for channel aggregation in a communication network
GB2506886A (en) * 2012-10-10 2014-04-16 Broadcom Corp A cellular communications system supporting local area cells and device-to-device communications
US20150195849A1 (en) * 2014-01-06 2015-07-09 Intel IP Corporation Systems, methods and devices for multiple signal co-existence in multiple-use frequency spectrum
US9930515B2 (en) 2014-05-15 2018-03-27 Lg Electronics Inc. Method for detecting discovery signal in wireless communication system, and device for same
KR102462764B1 (ko) 2016-09-29 2022-11-03 삼성전자 주식회사 4g와 5g 공존 시스템에서 통신 방법 및 그 장치
CN108696889B (zh) * 2017-03-30 2021-09-10 财团法人工业技术研究院 波束测量和反馈的方法及使用所述方法的基站与用户设备
US10644777B2 (en) * 2017-05-05 2020-05-05 Huawei Technologies Co., Ltd. Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
EP3664311B1 (en) * 2017-08-02 2022-11-02 LG Electronics Inc. Method and device for measuring and reporting signal in wireless communication system
US11323892B2 (en) 2017-09-29 2022-05-03 Lg Electronics Inc. Method for transmitting and receiving data on basis of QCL in wireless communication system, and device therefor
US11743879B2 (en) 2017-11-03 2023-08-29 Futurewei Technologies, Inc. System and method for indicating wireless channel status
FI3711411T3 (fi) * 2017-11-15 2023-10-04 Interdigital Patent Holdings Inc Säteen hallinta langattomassa verkossa
US10797927B2 (en) 2017-12-12 2020-10-06 Charter Communications Operating, Llc Methods and apparatus for supporting use of multiple beams for communications purposes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918196A (zh) * 2011-09-16 2014-07-09 三星电子株式会社 用于在无线通信系统中的波束分配的方法及装置
CN104782056A (zh) * 2012-09-12 2015-07-15 瑞典爱立信有限公司 用于选择波束候选的网络节点中的方法、用户设备中的方法、网络节点及用户设备
WO2014178687A1 (en) * 2013-05-02 2014-11-06 Samsung Electronics Co., Ltd. Precoder selection method and apparatus for performing hybrid beamforming in wireless communication system
CN106374984A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种波束更新的方法和装置
WO2017184303A1 (en) * 2016-04-19 2017-10-26 Qualcomm Incorporated Beam reference signal based narrowband channel measurement and cqi reporting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Rl-1720890 ''Beam indication, Measurements and Reporting", 3GPP TSG RAN WG1 MEETING #91, 18 November 2017 (2017-11-18), XP051370282 *

Also Published As

Publication number Publication date
US20220278732A1 (en) 2022-09-01
CN111183597A (zh) 2020-05-19
US11711133B2 (en) 2023-07-25
US20200220605A1 (en) 2020-07-09
CN110034798A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
US10630363B2 (en) Electronic device in wireless communication system, and wireless communication method
US11757510B2 (en) Electronic devices and communication methods
WO2019137308A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
US20230102698A1 (en) Network device, user equipment, wireless communication method and storage medium
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US20220094501A1 (en) Terminal device, base station device, method, and recording medium
CN113382449A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020020025A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
WO2020031645A1 (ja) 通信装置、通信方法及び記録媒体
US20220182847A1 (en) Base station device, communication method and storage medium
US10951289B2 (en) Electronic device, method applied to electronic device, and data processing device for reusing idle CSI-RS ports of an adjacent cell
US20220338023A1 (en) Electronic device, wireless communication method, and computer readable storage medium
CN113453271A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2018028245A1 (zh) 一种接收定时的配置方法及通信设备
WO2023143216A1 (zh) 用户设备、电子设备、无线通信方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738972

Country of ref document: EP

Kind code of ref document: A1