WO2019242536A1 - 用于卫星通信的用户设备 - Google Patents

用于卫星通信的用户设备 Download PDF

Info

Publication number
WO2019242536A1
WO2019242536A1 PCT/CN2019/090804 CN2019090804W WO2019242536A1 WO 2019242536 A1 WO2019242536 A1 WO 2019242536A1 CN 2019090804 W CN2019090804 W CN 2019090804W WO 2019242536 A1 WO2019242536 A1 WO 2019242536A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
satellite
transmission power
communication
processing circuit
Prior art date
Application number
PCT/CN2019/090804
Other languages
English (en)
French (fr)
Inventor
张源
呂本舜
张文博
内山博允
Original Assignee
索尼公司
张源
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 张源 filed Critical 索尼公司
Priority to US17/251,821 priority Critical patent/US11595916B2/en
Priority to CN201980019135.3A priority patent/CN111886898A/zh
Priority to EP19822069.1A priority patent/EP3793257A4/en
Publication of WO2019242536A1 publication Critical patent/WO2019242536A1/zh
Priority to US18/161,891 priority patent/US11871365B2/en
Priority to US18/513,696 priority patent/US20240089873A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/288TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account the usage mode, e.g. hands-free, data transmission, telephone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to satellite communications in a mobile communication environment, and particularly to user equipment in satellite communications, satellites that communicate with user equipment, auxiliary equipment that assists user equipment in communicating with satellites, and is used to perform satellite communications in a satellite communication system.
  • Method and computer-readable storage medium are used to perform satellite communications in a satellite communication system.
  • Communications Satellite is a satellite that transmits and amplifies radio communication signals through transponders. It establishes the information channel between transmitting and receiving stations on the ground.
  • Communication satellites can be used in television, telephone, radio, network and military fields. There are more than 2,000 communications satellites in Earth orbit, which are used by private and government agencies. Radio communications use electromagnetic waves to transmit signals. These waves travel in a straight line, so they are blocked by the curved surface of the earth.
  • Communication satellites can achieve long-distance communication on the ground by transmitting signals on the surface of the earth. Radio and microwave bands used by communication satellites have a wide band.
  • the antenna beam can cover a large area of the earth, and the radio wave propagation is not restricted by the terrain, and it can achieve long-distance communication on the ground.
  • communications satellites are also commonly used for mobile communications. For example, ships or airplanes that are far away from land can use communication satellites when they cannot use wired communication. For some data transmission that does not require high real-time performance, communication satellites can also be used for communication.
  • Satellite communication mainly refers to radio communication for signal forwarding between earth stations or between earth stations and spacecraft through communication satellites.
  • Satellite communication mainly includes satellite relay communication, satellite direct broadcast, satellite mobile communication and fixed satellite communication.
  • the first is wireless communication for signal forwarding between the earth station and the spacecraft through a communication satellite
  • the latter three are wireless communication for signal forwarding between earth stations and a communication satellite.
  • No matter what kind of communication it has the advantages of large capacity, high frequency bandwidth, large coverage, cost independent of distance, not affected by geographical conditions, flexible and flexible, reliable and stable performance, and suitable for a variety of services.
  • satellites are far from the ground, satellite communications are only suitable for data transmissions that do not require high real-time performance.
  • the present disclosure relates to user equipment, satellites, auxiliary equipment, methods, and storage media in satellite communications. Even when the transmission power constraints of user equipment cannot meet the transmission power requirements for satellite communications, it is possible to ensure that users and satellites comply with the transmission rate. Or reliability expected data transmission.
  • a user equipment capable of performing satellite communication, comprising: one or more processing circuits configured to perform the following operations: evaluating a transmission power of the user equipment in communication with the satellite Requirements; when the transmit power constraints of the user equipment cannot meet the transmit power requirements, the auxiliary equipment assists the user equipment to perform at least a portion of the communication with the satellite, wherein the processing circuit is further configured to obtain the communication mode to be switched to via the satellite, wherein The processing circuit sends a notification to the satellite indicating that the current communication mode needs to be switched, and the notification includes information indicating that the communication mode needs to be switched to meet the transmission power requirement.
  • an auxiliary device for assisting user equipment to communicate with a satellite including: a receiver for receiving data to be transmitted by the user equipment to the satellite via the auxiliary device; and a transmitter for transmitting data to satellite.
  • a method for satellite communication in a satellite communication system includes: evaluating, by a user equipment, a transmission power requirement for communication with a satellite; and when the transmission power constraint of the user equipment cannot meet the transmission power requirement , A trigger is performed to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to perform a method according to the present disclosure.
  • the user equipment, satellite, auxiliary equipment, method, and storage medium according to the present disclosure, even when the transmission power constraint of the user equipment cannot meet the transmission power requirements for satellite communication, it is possible to ensure that the user and the satellite perform a transmission rate or reliable sexually Expected Data Transmission.
  • FIG. 1A is a schematic diagram showing that a user terminal performs transmission with a reduced transmission rate in order to maintain satellite communication;
  • FIG. 1B is a schematic diagram showing that a user terminal performs transmission with reduced reliability in order to maintain satellite communication
  • FIG. 2A is a schematic diagram illustrating that a user equipment performs satellite communication by using an auxiliary device according to an embodiment of the present disclosure
  • FIG. 2B shows a signaling flowchart of communication between a satellite and a user equipment according to an embodiment of the present disclosure
  • 2C is a signaling flowchart further illustrating communication between a satellite, a user equipment, and an auxiliary device according to an embodiment of the present disclosure
  • 2D is a signaling flowchart illustrating communication between a satellite and a user equipment according to an embodiment of the present disclosure
  • 3A is a schematic diagram illustrating a user equipment re-accessing a satellite after waiting for a delay time according to an embodiment of the present disclosure
  • 3B is a signaling flowchart illustrating that a user equipment re-accesses a satellite after waiting for a delay period according to an embodiment of the present disclosure
  • 3C is a signaling flowchart illustrating a user equipment re-accessing a satellite after waiting for a delay period according to another embodiment of the present disclosure
  • FIG. 4 is a signaling flowchart illustrating a random access procedure according to an embodiment of the present disclosure
  • FIG. 5 is a structural block diagram illustrating a user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram illustrating an auxiliary device according to an embodiment of the present disclosure.
  • FIG. 7 is a block diagram showing a structure of a satellite according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating a method for satellite communication in a satellite communication system according to an embodiment of the present disclosure
  • FIG. 9 is a block diagram showing a first example of a schematic configuration of an eNB (evolution node, base station) or gNB (base station in a 5th generation communication system) applicable to the present disclosure;
  • eNB evolution node, base station
  • gNB base station in a 5th generation communication system
  • FIG. 10 is a block diagram showing a second example of a schematic configuration of an eNB or gNB applicable to the present disclosure
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a smartphone suitable for the present disclosure.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a car navigation device applicable to the present disclosure.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey its scope to those skilled in the art. Numerous specific details are set forth, such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be used, that example embodiments may be implemented in many different forms, and they should not be construed as limiting the scope of the disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • the UE (User Equipment) involved in the present disclosure includes, but is not limited to, terminals having wireless communication functions including satellite communication, such as mobile terminals, computers, and in-vehicle devices. Further, depending on the specifically described functions, the UE involved in the present disclosure may also be the UE itself or a component thereof such as a chip.
  • the auxiliary device involved in the present disclosure is any device having a satellite communication function, including but not limited to a base station, a satellite, and other terminals.
  • the base station serving as the auxiliary device may be, for example, an eNB (evolution node, base station, or evolution node). Base station), or gNB (base station in the 5th generation communication system), or components such as chips in the eNB or gNB.
  • the conventional method is to select the transmit power within the current user terminal's capability for transmission, that is, select the transmit power that does not exceed the maximum allowable transmit power for transmission .
  • users are inevitably required to reduce their requirements for transmission rate or reliability, so that communication between the user and the satellite in a manner that reduces the transmission rate or transmission reliability can be achieved.
  • FIG. 1A and FIG. 1B show a scheme adopted in the prior art when the current data sending capability of the user equipment cannot meet the required transmission power requirement, so that the user terminal can maintain communication with the satellite.
  • FIG. 1A shows a schematic diagram of a user terminal performing transmission with a reduced transmission rate in order to maintain satellite communication.
  • the user equipment shown in FIG. 1A expects to communicate with the satellite at a predetermined fixed data rate, and in order to maintain the data rate, the user equipment is required to have a transmission power suitable for the data rate transmission. Therefore, the user equipment first needs to calculate and The corresponding transmission power for continuous data transmission at this data rate.
  • the required transmission rate can be reduced as shown in FIG. 1A as an example.
  • the data B that should have been sent in one sending process (for a fixed continuous period of time) is divided into two parts and sent in two sending processes. Obviously, the reduction of the data rate has prolonged the data transmission time, resulting in a decrease in user experience. In particular, for those application scenarios with higher delay requirements, this solution cannot even be implemented.
  • FIG. 1B shows a schematic diagram of a user terminal performing transmission with reduced reliability in order to maintain satellite communication.
  • the user equipment shown in FIG. 1B is expected to communicate with the satellite to send all the data that is expected to be transmitted, similar to the case of FIG. 1A.
  • the user equipment In order to be able to send all the data to be transmitted, the user equipment is also required to have the transmission power required to send all the data to be transmitted. Therefore, similarly, the user equipment also needs to first calculate the transmission power required to send all the data to be transmitted.
  • the current data transmission capability of the user equipment cannot meet the calculated required transmission power, it can be as shown in the figure. 1B is shown at the cost of reduced reliability.
  • FIG. 1B only a part of all the data to be transmitted B is transmitted.
  • the loss or loss of data will also cause a decline in user experience (although part of the data is allowed to be lost in some specific applications). In particular, for those application scenarios that require high data integrity, this solution cannot even be achieved. Implementation.
  • the existing satellite communication scheme has many disadvantages.
  • FIG. 2A is a schematic diagram illustrating that a user equipment performs satellite communication by using an auxiliary device.
  • the data bit set B to be transmitted is divided into two parts: B1 and B2.
  • the data bits in the set B2 may be data bits that exceed the transmission capability range of the user due to power limitation.
  • the user equipment sends the data bits in the set B2 to the auxiliary device as shown in the figure, and then the user equipment and the auxiliary device together transmit the data bits in the sets B1 and B2 to the satellite respectively.
  • the satellite receives the data bits in the sets B1 and B2. Data bits, therefore, while ensuring that users and satellite communications meet the transmission rate expectations, the integrity of the data is also guaranteed.
  • this auxiliary process can be understood as a power-based switching process. Therefore, it is not limited to requiring the user terminal to send bits that reach the upper limit of its capability range, but data bits can be configured as needed, such as sending all data bits to satellites via auxiliary equipment (ie, the set B1 is an empty set). of.
  • FIG. 2B shows a signaling flowchart of communication between a satellite and a user equipment according to an embodiment of the present disclosure, which is as follows:
  • step 1 of FIG. 2B the user equipment first calculates a corresponding transmit power requirement for sending data to be transmitted.
  • the transmission power required for sending the data to be transmitted that is, the transmission power requirement
  • I will not repeat them here.
  • step 2 of FIG. 2B the user equipment determines whether the condition for triggering the candidate communication mode is satisfied according to the transmission power requirement calculated in step 1.
  • the trigger is performed.
  • the candidate communication mode that meets the transmission power requirement by switching to the transmission power constraint is switched.
  • the transmission power of the user equipment is constrained to a preset threshold.
  • whether the required transmission power is too high can be determined only by comparing the required transmission power with a preset threshold. Large, without having to consider the transmission capability of the user equipment. Specifically, if P_calculate> Thresh is satisfied, it is determined that the required transmission power is too large, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is the calculated demand by the user equipment.
  • the transmit power, Thresh is a preset threshold.
  • communication delay is also considered as a part of the transmission power constraint, that is, the transmission power constraint of the user equipment is the sum of a preset threshold and a time delay.
  • the Considering the case of hysteresis determine whether the required transmission power is too large, that is, by comparing the required transmission power with a preset threshold and the sum of the hysteresis to determine whether the required transmission power is too large to avoid the hysteresis Considering the deviation, specifically, if P_calculate> Thresh + Hys is satisfied, it is determined that the required transmission power is too large, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is the user The required transmit power calculated by the device. Thresh is the preset threshold and Hys is the hysteresis.
  • the maximum allowable transmit power of the user equipment is also taken as a factor for consideration as part of the transmit power constraint, that is, the transmit power of the user equipment is restricted to a preset threshold and the maximum allowable transmit power of the user equipment. And, in this embodiment, it can be determined whether the required transmission power exceeds the maximum allowed transmission power of the user equipment by taking into account the maximum allowed transmission power of the user equipment, that is, by comparing the required transmission power with The comparison of the preset threshold and the sum of the maximum allowable transmit power of the user equipment to determine whether the required transmit power is too large. Specifically, if P_calculate> Thresh + P_max is satisfied, it is determined that the required transmit power exceeds the maximum allowable of the user equipment.
  • the transmit power is too high, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmit power constraint that satisfies the transmit power requirement, where P_calculate is the required transmit power calculated by the user equipment, Thresh is a preset threshold, and P_max is the user The maximum allowable transmit power of the device.
  • the transmission power of the user equipment is restricted to the sum of the maximum allowed transmission power of the user equipment, the communication delay, and a preset threshold. Specifically, if P_calculate> Thresh + P_max + Hys is satisfied, that is, In the case of considering communication lag, if it is determined that the required transmission power exceeds the maximum allowable transmission power of the user equipment, the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is The required transmission power calculated by the user equipment. Thresh is a preset threshold, P_max is the maximum allowable transmission power of the user equipment, and Hys is the hysteresis.
  • the elements included in the transmit power constraint of the user equipment are not limited to those described above. Any element that may affect satellite communications or need to be considered for various needs can be considered as the transmit power constraint of the user equipment, and According to the judgment manners in the above various embodiments, that is, when the transmission power constraint of the user equipment cannot meet the transmission power requirement, triggering is performed to switch to a candidate communication mode in which the transmission power constraint meets the transmission power requirement.
  • triggering is performed by the user equipment to switch to a candidate communication mode in which the transmission power constraint satisfies the transmission power requirement.
  • the user equipment can select the judgment mode, and then trigger the communication mode switching performed by the user equipment itself.
  • step 3 if it is determined that the triggering condition in step 2 is satisfied, the user equipment informs the satellite of the situation. It can be reported in at least one of the following ways: (1) The existing Power Headroom (PH) definition includes 6 bits and can only represent a positive number. Keep the number of bits in the PH domain unchanged, but redefine the meaning of these 6 bits so that they can represent negative power; (2) expand the definition of PH, in which at least one bit is added to indicate the value of the carried value The remaining bits are used to indicate the magnitude of the absolute value of the carried value. If the bit of the indicator is 0, it means that the value carried is a positive number; if the bit of the indicator is 1, it means that the value carried is a negative number.
  • PH Power Headroom
  • the definition of the indicator bit can also be reversed, that is, if the indicator bit is 1, it means that the carried value is a positive number; if the indicator bit is 0, it means that the carried value is a negative number; (3 ) Introduce a new domain in the UCI domain of the physical layer. There are only two possible values for this domain, denoted as V0 and V1. For example, V0 can be all 0s, V1 can be all 1s, or other encoding methods. If the value of this field is V0, it means that the user's calculated transmit power does not meet the trigger condition; if the value of this field is V1, it means that the user's calculated transmit power meets the trigger condition.
  • step 4 when the satellite receives a report in one of the above ways from the user equipment, the satellite determines whether it is necessary to find an auxiliary device that can help the user transmit data.
  • step 5 the satellite informs the user of the decision result. Instead, the satellite provides the decision result to an auxiliary device such as a base station, which is then forwarded to the user by the base station. And in step 6, the user equipment acts according to the received decision result.
  • auxiliary device such as a base station
  • FIG. 2C further illustrates a signaling flowchart of communications between a satellite, a user equipment, and an auxiliary device according to an embodiment of the present disclosure.
  • FIG. 2C further describes the action performed according to the decision result in step 6 of FIG. 2B.
  • the auxiliary device is selected by the user equipment.
  • the satellite can be configured by the user to find the auxiliary device by himself or the user can determine the auxiliary device from the white list.
  • it is necessary to exchange orbit, speed, capacity, power and other information between adjacent satellites through an X2-like interface, and provide it to users through MIB / SIB / RRC and other methods. .
  • the user equipment If the user equipment is configured to find an auxiliary device that can help it transmit data by itself, the user equipment finds an auxiliary device that can help itself transmit data according to an algorithm, and the data bits of the user equipment that exceed the transmission capability range due to power limitation It is assigned to the auxiliary device, and then the user device transmits data to the satellite together with the auxiliary device.
  • a flowchart including three types of entities including satellite, user terminal, and auxiliary equipment is shown in FIG. 2A.
  • the user terminal first determines the auxiliary device; second, the user terminal sends the data bits that need to be assisted (that is, the data bits in the set B2) to the auxiliary device; third, the user terminal sends the data bits within its own capabilities or needs to send itself
  • the data bits that is, the data bits in the set B1 are sent to the satellite, where B1 can be an empty set; fourth, the auxiliary device sends the data bits allocated to itself (that is, the data bits in the set B2) to the satellite.
  • FIG. 2D shows a signaling flowchart of communication between a satellite and a user equipment according to another embodiment of the present disclosure.
  • the user equipment sends data Calculate the corresponding transmit power.
  • the user equipment checks whether the calculated transmission power satisfies a trigger condition.
  • the transmission power of the user equipment is constrained to a preset threshold.
  • whether the required transmission power is too high can be determined only by comparing the required transmission power with a preset threshold. Large, without having to consider the transmission capability of the user equipment. Specifically, if P_calculate> Thresh is satisfied, it is determined that the required transmission power is too large, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is the calculated demand by the user equipment.
  • the transmit power, Thresh is a preset threshold.
  • communication delay is also considered as a part of the transmission power constraint, that is, the transmission power constraint of the user equipment is the sum of a preset threshold and a time delay.
  • the Considering the case of hysteresis determine whether the required transmission power is too large, that is, by comparing the required transmission power with a preset threshold and the sum of the hysteresis to determine whether the required transmission power is too large to avoid the hysteresis Considering the deviation, specifically, if P_calculate> Thresh + Hys is satisfied, it is determined that the required transmission power is too large, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is the user The required transmit power calculated by the device. Thresh is the preset threshold and Hys is the hysteresis.
  • the maximum allowable transmit power of the user equipment is also taken as a factor for consideration as part of the transmit power constraint, that is, the transmit power of the user equipment is restricted to a preset threshold and the maximum allowable transmit power of the user equipment. And, in this embodiment, it can be determined whether the required transmission power exceeds the maximum allowed transmission power of the user equipment by taking into account the maximum allowed transmission power of the user equipment, that is, by comparing the required transmission power with The comparison of the preset threshold and the sum of the maximum allowable transmit power of the user equipment to determine whether the required transmit power is too large.
  • P_calculate> Thresh + P_max determines that the required transmit power exceeds the maximum allowable user equipment The transmit power is too high, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmit power constraint that satisfies the transmit power requirement, where P_calculate is the required transmit power calculated by the user equipment, Thresh is a preset threshold, and P_max is the user The maximum allowable transmit power of the device.
  • the transmission power of the user equipment is restricted to the sum of the maximum allowed transmission power of the user equipment, the communication delay, and a preset threshold. Specifically, if P_calculate> Thresh + P_max + Hys is satisfied, In the case of considering communication lag, if it is determined that the required transmission power exceeds the maximum allowable transmission power of the user equipment, the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is The required transmission power calculated by the user equipment. Thresh is a preset threshold, P_max is the maximum allowable transmission power of the user equipment, and Hys is the hysteresis.
  • the elements included in the transmit power constraint of the user equipment are not limited to those described above. Any element that may affect satellite communications or need to be considered for various needs can be considered as the transmit power constraint of the user equipment, and According to the judgment manners in the above various embodiments, that is, when the transmission power constraint of the user equipment cannot meet the transmission power requirement, triggering is performed to switch to a candidate communication mode in which the transmission power constraint meets the transmission power requirement.
  • triggering is performed by the user equipment to switch to a candidate communication mode in which the transmission power constraint satisfies the transmission power requirement.
  • step 3 if the trigger condition is met, the user can determine the white list of possible auxiliary devices, or the satellite can configure the white list of auxiliary devices for the user through RRC signaling, and then the user device searches for the auxiliary device white list. Auxiliary equipment.
  • step 4 the user equipment requests the satellite to allocate satellite radio resources and transmit power for itself and the auxiliary equipment.
  • step 5 the satellite provides satellite radio resources and transmission power allocated to the user and the auxiliary equipment to the user and the auxiliary equipment.
  • step 6 the user equipment and the auxiliary equipment send data to the satellite together according to the resource allocation result.
  • FIGS. 2A to 2D show various embodiments of a user equipment maintaining communication with a satellite at a desired rate and reliability with the help of the user equipment.
  • the inventors noticed that they can also choose to wait for a certain delay before reconnecting to the original satellite or other satellites that are more conducive to communication.
  • FIG. 3A shows a schematic diagram of user equipment re-accessing a satellite after waiting for a delay time according to an embodiment of the present disclosure.
  • satellite A sends the calculated transmission power to the user at time t. At this time, since satellite A is far from the user, the transmission power requirement exceeds the transmission power constraint of the user equipment.
  • Case 1 As shown in (a) of FIG. 3A, the satellite A has not exceeded the ceiling at time t. As the satellite moves, at time t + ⁇ t, satellite A will come to the top of the user's head. At this time, satellite A is closest to the user, enabling it to meet the transmission rate and reliability requirements within the constraints of the transmit power of the user equipment. Therefore, at this time, satellite A can notify the user to wait for ⁇ t time again, and then satellite A reconfigures the user's transmit power.
  • Case 2 As shown in diagram (b) of FIG. 3A, satellite A has passed the ceiling at time t. As the satellite moves, the distance between satellite A and the user will be further and further. However, at time t + ⁇ t, the next satellite B will arrive at the top of the user's head. At this time, satellite B is closest to the user, enabling it to meet the transmission rate and reliability requirements within the transmission power constraint of the user equipment. Therefore, satellite A can notify the user to wait for ⁇ t time again, and then satellite B can reconfigure the user's transmit power.
  • FIG. 3B shows a signaling flowchart of a user equipment re-accessing a satellite after waiting for a delay period according to an embodiment of the present disclosure.
  • step 1 of FIG. 3B the user equipment first calculates a corresponding transmit power requirement for sending data to be transmitted.
  • step 2 of FIG. 3B the user equipment determines whether the condition for triggering the candidate communication mode is satisfied according to the transmission power requirement calculated in step 1.
  • a trigger is performed to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement.
  • the transmission power of the user equipment is constrained to a preset threshold.
  • whether the required transmission power is too high can be determined only by comparing the required transmission power with a preset threshold. Large, without having to consider the transmission capability of the user equipment. Specifically, if P_calculate> Thresh is satisfied, it is determined that the required transmission power is too large, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is the calculated demand by the user equipment.
  • the transmit power, Thresh is a preset threshold.
  • communication delay is also considered as a part of the transmission power constraint, that is, the transmission power constraint of the user equipment is the sum of a preset threshold and a time delay.
  • the Considering the case of hysteresis determine whether the required transmission power is too large, that is, by comparing the required transmission power with a preset threshold and the sum of the hysteresis to determine whether the required transmission power is too large to avoid the hysteresis Considering the deviation, specifically, if P_calculate> Thresh + Hys is satisfied, it is determined that the required transmission power is too large, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is the user The required transmit power calculated by the device. Thresh is the preset threshold and Hys is the hysteresis.
  • the maximum allowable transmit power of the user equipment is also taken as a factor for consideration as part of the transmit power constraint, that is, the transmit power of the user equipment is restricted to a preset threshold and the maximum allowable transmit power of the user equipment. And, in this embodiment, it can be determined whether the required transmission power exceeds the maximum allowed transmission power of the user equipment by taking into account the maximum allowed transmission power of the user equipment, that is, by comparing the required transmission power with The comparison of the preset threshold and the sum of the maximum allowable transmit power of the user equipment to determine whether the required transmit power is too large. Specifically, if P_calculate> Thresh + P_max is satisfied, it is determined that the required transmit power exceeds the maximum allowable of the user equipment.
  • the transmit power is too high, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmit power constraint that satisfies the transmit power requirement, where P_calculate is the required transmit power calculated by the user equipment, Thresh is a preset threshold, and P_max is the user The maximum allowable transmit power of the device.
  • the transmission power of the user equipment is restricted to the sum of the maximum allowed transmission power of the user equipment, the communication delay, and a preset threshold. Specifically, if P_calculate> Thresh + P_max + Hys is satisfied, that is, In the case of considering communication lag, if it is determined that the required transmission power exceeds the maximum allowable transmission power of the user equipment, the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is The required transmission power calculated by the user equipment. Thresh is a preset threshold, P_max is the maximum allowable transmission power of the user equipment, and Hys is the hysteresis.
  • the elements included in the transmit power constraint of the user equipment are not limited to those described above. Any element that may affect satellite communications or need to be considered for various needs can be considered as the transmit power constraint of the user equipment, and According to the judgment manners in the above various embodiments, that is, when the transmission power constraint of the user equipment cannot meet the transmission power requirement, triggering is performed to switch to a candidate communication mode in which the transmission power constraint meets the transmission power requirement.
  • triggering is performed by the user equipment to switch to a candidate communication mode in which the transmission power constraint satisfies the transmission power requirement.
  • step 3 of FIG. 3B unlike step 3 of FIG. 2B, if the trigger condition is met, power can be sent to the satellite in at least one of the following ways: (1)
  • the existing definition of Power Headroom (PH) includes 6 bits, which can only represent positive numbers. Keep the number of bits in the PH domain unchanged, but redefine the meaning of these 6 bits so that they can represent negative power; (2) expand the definition of PH, in which at least one bit is added to indicate the value of the carried value The remaining bits are used to indicate the magnitude of the absolute value of the carried value.
  • the corresponding negative power value is sent to the satellite through the extended Power Headroom Control Element (CE) field of the MAC layer.
  • CE Power Headroom Control Element
  • step 4 it is determined by the satellite whether the user needs to wait for a certain delay time and restart the transmission.
  • the delay time required for the user equipment to wait and the satellite whitelist on which the user equipment re-accesses can be obtained as follows.
  • the current satellite can use the interactive orbit, speed, capacity, power and other information between adjacent satellites to calculate the delay time that the user equipment needs to wait and the white list of satellites that the user equipment can access. After calculating the delay time required for the user equipment to wait, the current satellite sends the calculated delay time to the user equipment.
  • the satellite whitelist can be provided to the user equipment through MIB / SIB / RRC. As an alternative, the satellite can calculate the delay time
  • the extended delay time and satellite whitelist are provided to auxiliary equipment such as a base station, and then forwarded to the user by the auxiliary equipment. .
  • the satellite may send the delay time to the user equipment by including, but not limited to, one of the following methods: (1) Define a new MAC layer CE, which means that the user waits for a period of time before transmitting, and the waiting The time is indicated by the bit combination of the CE domain, and the maximum waiting time value that can be indicated is at least half the satellite visible time. For example, if the visible duration of the satellite is 10 minutes, the maximum duration of the CE should be at least 5 minutes; (2) It can also be configured through RRC signaling. For example, the system can provide the user with a list of possible waiting times by broadcasting, and then the user can choose according to their channel conditions.
  • Step 6 If configured to wait for a period of time, the user waits for a period of time, and then selects a satellite from the white list to start sending data again. As an alternative, the task of selecting a satellite from the white list can be left to the base station to complete, thereby achieving the purpose of reducing user power consumption.
  • FIG. 3C shows a signaling flowchart of a user equipment re-accessing a satellite after waiting for a delay period according to another embodiment of the present disclosure.
  • the user equipment calculates the corresponding transmit power for the transmitted data.
  • step 2 of FIG. 3C the user equipment determines whether the condition for triggering the candidate communication mode is satisfied according to the transmission power requirement calculated in step 1.
  • a trigger is performed to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement.
  • the transmission power of the user equipment is constrained to a preset threshold.
  • whether the required transmission power is too high can be determined only by comparing the required transmission power with a preset threshold. Large, without having to consider the transmission capability of the user equipment. Specifically, if P_calculate> Thresh is satisfied, it is determined that the required transmission power is too large, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is the calculated demand by the user equipment.
  • the transmit power, Thresh is a preset threshold.
  • communication delay is also considered as a part of the transmission power constraint, that is, the transmission power constraint of the user equipment is the sum of a preset threshold and a time delay.
  • the Considering the case of hysteresis determine whether the required transmission power is too large, that is, by comparing the required transmission power with a preset threshold and the sum of the hysteresis to determine whether the required transmission power is too large to avoid the hysteresis Considering the deviation, specifically, if P_calculate> Thresh + Hys is satisfied, it is determined that the required transmission power is too large, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is the user The required transmit power calculated by the device. Thresh is the preset threshold and Hys is the hysteresis.
  • the maximum allowable transmit power of the user equipment is also taken as a factor for consideration as part of the transmit power constraint, that is, the transmit power of the user equipment is restricted to a preset threshold and the maximum allowable transmit power of the user equipment. And, in this embodiment, it can be determined whether the required transmission power exceeds the maximum allowed transmission power of the user equipment by taking into account the maximum allowed transmission power of the user equipment, that is, by comparing the required transmission power with The comparison of the preset threshold and the sum of the maximum allowable transmit power of the user equipment to determine whether the required transmit power is too large. Specifically, if P_calculate> Thresh + P_max is satisfied, it is determined that the required transmit power exceeds the maximum allowable of the user equipment.
  • the transmit power is too high, and then the user equipment performs a trigger to switch to a candidate communication mode with a transmit power constraint that satisfies the transmit power requirement, where P_calculate is the required transmit power calculated by the user equipment, Thresh is a preset threshold, and P_max is the user The maximum allowable transmit power of the device.
  • the transmission power of the user equipment is restricted to the sum of the maximum allowed transmission power of the user equipment, the communication delay, and a preset threshold. Specifically, if P_calculate> Thresh + P_max + Hys is satisfied, that is, In the case of considering communication lag, if it is determined that the required transmission power exceeds the maximum allowable transmission power of the user equipment, the user equipment performs a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, where P_calculate is The required transmission power calculated by the user equipment. Thresh is a preset threshold, P_max is the maximum allowable transmission power of the user equipment, and Hys is the hysteresis.
  • the elements included in the transmit power constraint of the user equipment are not limited to those described above. Any element that may affect satellite communications or need to be considered for various needs can be considered as the transmit power constraint of the user equipment, and According to the judgment manners in the above various embodiments, that is, when the transmission power constraint of the user equipment cannot meet the transmission power requirement, triggering is performed to switch to a candidate communication mode in which the transmission power constraint meets the transmission power requirement.
  • triggering is performed by the user equipment to switch to a candidate communication mode in which the transmission power constraint satisfies the transmission power requirement.
  • step 3 if the trigger condition is met, the user himself determines the length of time to wait and the satellite whitelist.
  • the user waits for the determined delay time, and then selects a satellite from the satellite whitelist to restart sending data.
  • the satellite white list may also be determined by the satellite and sent to the user equipment.
  • the task of selecting a satellite from the white list can be handed over to the base station, thereby reducing the power consumption of the user.
  • FIG. 4 shows a signaling flowchart of a random access procedure according to an embodiment of the present disclosure.
  • step 1 the user equipment calculates the corresponding transmit power for Msg1 during the random access process.
  • step 2 the user equipment checks whether the calculated transmission power of Msg1 satisfies the trigger condition. If the trigger condition is met, the user can decide to re-access or re-select a satellite from the satellite white list to access.
  • step 3 the user sends Msg1.
  • step 4 the user receives Random Access (RAR).
  • RAR Random Access
  • step 5 the user calculates the corresponding transmit power for sending Msg3.
  • step 6 the user checks whether the calculated transmission power of Msg3 satisfies the trigger condition. If the trigger condition is met, the user can decide to re-access or re-select a satellite from the satellite white list to access.
  • step 7 the user sends Msg3.
  • the trigger condition in the embodiment of FIG. 4 is the same as the trigger condition in the foregoing embodiment, and the satellite whitelist may be determined by the user equipment itself or may be determined by the satellite and sent to the user equipment.
  • a report of communication failure is sent by the user equipment.
  • FIG. 5 shows a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • the user equipment 500 may include a processing circuit 501. It should be noted that the user equipment 500 may include one processing circuit 501 or multiple processing circuits 501.
  • the user equipment 500 further includes a communication unit 502 and a storage unit 503, where the storage unit 503 is configured to store the auxiliary device white list and / or the satellite device white list.
  • the user equipment 500 may further include other circuits.
  • processing circuit 501 may include various discrete functional units to perform various different functions and / or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the processing circuit 501 is configured to at least one of the following: evaluate a transmission power requirement for communication between the user equipment and the satellite, execute a trigger to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement, and acquire a communication mode to switch to via a satellite ; Independently determine the communication method to switch to; select auxiliary equipment from the auxiliary equipment white list; receive auxiliary equipment list; select satellites from the satellite list for access; delay time from receiving satellites; generate satellite lists; receive satellites from satellites List; when the transmit power constraint of the user equipment cannot meet the transmit power requirement, a report of communication failure is sent.
  • the communication unit 502 is configured to perform all operations related to communication, such as all communications in satellite communications and all communications in communications between user equipment and auxiliary equipment.
  • FIG. 6 shows a schematic structural diagram of an auxiliary device according to an embodiment of the present disclosure.
  • the auxiliary device 600 may include a processing circuit 601. It should be noted that the auxiliary device 600 may include one processing circuit 601 or multiple processing circuits 601.
  • the auxiliary device 600 further includes a communication unit 602, where the communication unit 602 is used to perform all operations related to communication, such as all communications in communication between the auxiliary device and the satellite and the auxiliary device and the user equipment.
  • the auxiliary device 600 may include other circuits.
  • the communication unit 602 may include a receiver for receiving data that the user equipment sends to the satellite via the auxiliary device, and a transmitter for sending data to the satellite.
  • the processing circuit 601 is configured to at least one of the following: help the user equipment to evaluate the transmission power requirements for communication with the satellite; obtain the data needed to help the user equipment to send; help the user equipment to receive the satellite whitelist; help the user equipment from the satellite whitelist Select satellite; help user equipment receive delay time from satellite.
  • FIG. 7 shows a schematic structural diagram of a satellite according to an embodiment of the present disclosure.
  • the satellite 700 may include a processing circuit 701. It should be noted that the satellite 700 may include one processing circuit 701 or multiple processing circuits 701.
  • the satellite 700 further includes a communication unit 702, which is used to perform all operations related to communication, such as all communications in the communication between the satellite and the auxiliary equipment and the satellite and the user equipment.
  • the satellite 700 may include other circuits.
  • the communication unit may include a receiver for receiving a notification that the user equipment requests to switch the current communication mode with the satellite, and a transmitter for sending an indication to the user equipment to the handover based on the notification.
  • the processing circuit 701 is configured at least one of: determining whether the user equipment needs auxiliary equipment; determining whether the user equipment needs to wait for a delay to resend data; determining whether the user equipment rerans random access; determining whether the user equipment is to be switched to Communication method; configure user equipment to find auxiliary equipment; generate auxiliary equipment white list; generate satellite white list; determine delay time.
  • FIG. 8 shows a method for satellite communication in a satellite communication system according to an embodiment of the present disclosure.
  • a user equipment evaluates a transmission power requirement for communication with a satellite; in S802, the user equipment can be determined. Whether the transmission power constraint of the transmission device meets the transmission power requirement; when the transmission power constraint of the user equipment can meet the transmission power requirement, go to S803 and transmit according to the current transmission power; when the transmission power constraint of the user equipment cannot meet the transmission power requirement, switch to To S804, triggering is performed by the user equipment to switch to a candidate communication mode with a transmission power constraint that satisfies the transmission power requirement.
  • a large power consumption is generated when a user calculates a transmission power requirement, and thus an auxiliary device such as a base station may be used to help the user calculate the value of the satellite uplink transmission power. If auxiliary equipment such as the assistance of a base station is introduced, the work can be handed over to the base station to achieve the purpose of reducing user power consumption.
  • a computer-readable storage medium may include executable computer instructions that, when executed by a computer, cause the computer A method according to an embodiment of the present disclosure may be performed.
  • the auxiliary device mentioned in the present disclosure may be a base station, which may be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • eNB evolved Node B
  • a small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a pico eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRH) provided at a place different from the main body.
  • a main body also referred to as a base station device
  • RRH remote wireless headends
  • various types of terminals which will be described below, can all work as base stations by temporarily or semi-persistently performing base station functions.
  • the UE mentioned in the present disclosure may be implemented as a mobile terminal (such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable / dongle-type mobile router, and a digital camera device) or a vehicle-mounted terminal (Such as car navigation equipment).
  • the UE may also be implemented as a terminal (also called a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the UE may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the terminals described above.
  • FIG. 9 is a block diagram showing a first example of a schematic configuration of an eNB as a base station to which the technology of the present disclosure can be applied.
  • the eNB 1000 includes one or more antennas 1010 and a base station device 1020.
  • the base station device 1020 and each antenna 1010 may be connected to each other via an RF cable.
  • Each of the antennas 1010 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used for the base station device 1020 to transmit and receive wireless signals.
  • the eNB 1000 may include multiple antennas 1010.
  • multiple antennas 1010 may be compatible with multiple frequency bands used by eNB 1000.
  • FIG. 9 illustrates an example in which the eNB 1000 includes a plurality of antennas 1010, the eNB 1000 may also include a single antenna 1010.
  • a base station as an auxiliary device in addition to the ability to communicate with ground users, it also needs to be capable of communicating with air satellites. This requires that the base station as an auxiliary device is equipped with a conventional earth-facing device.
  • an antenna that transmits and receives signals in the air direction is also required.
  • the base station device 1020 includes a controller 1021, a memory 1022, a network interface 1023, and a wireless communication interface 1025.
  • the controller 1021 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 1020. For example, the controller 1021 generates a data packet according to data in a signal processed by the wireless communication interface 1025, and transmits the generated packet via the network interface 1023. The controller 1021 may bundle data from multiple baseband processors to generate a bundled packet, and pass the generated bundled packet. The controller 1021 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1022 includes a RAM and a ROM, and stores a program executed by the controller 1021 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1023 is a communication interface for connecting the base station device 1020 to the core network 1024.
  • the controller 1021 may communicate with a core network node or another eNB via a network interface 1023.
  • the eNB 1000 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 1023 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1023 is a wireless communication interface, compared to the frequency band used by the wireless communication interface 1025, the network interface 1023 can use a higher frequency band for wireless communication.
  • the wireless communication interface 1025 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of an eNB 1000 via an antenna 1010.
  • the wireless communication interface 1025 may generally include, for example, a baseband (BB) processor 1026 and an RF circuit 1027.
  • the BB processor 1026 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and execute layers (such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and packet data convergence protocols (PDCP)).
  • the BB processor 1026 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1026 may be a memory storing a communication control program or a module including a processor and related circuits configured to execute the program. Updating the program can change the function of the BB processor 1026.
  • the module may be a card or a blade inserted into a slot of the base station device 1020. Alternatively, the module may be a chip mounted on a card or a blade.
  • the RF circuit 1027 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1010.
  • the wireless communication interface 1025 may include multiple BB processors 1026.
  • multiple BB processors 1026 may be compatible with multiple frequency bands used by eNB 1000.
  • the wireless communication interface 1025 may include a plurality of RF circuits 1027.
  • multiple RF circuits 1027 may be compatible with multiple antenna elements.
  • FIG. 9 shows an example in which the wireless communication interface 1025 includes a plurality of BB processors 1026 and a plurality of RF circuits 1027, the wireless communication interface 1025 may also include a single BB processor 1026 or a single RF circuit 1027.
  • FIG. 10 is a block diagram showing a second example of a schematic configuration of an eNB as a base station to which the technology of the present disclosure can be applied.
  • the eNB 1130 includes one or more antennas 1140, a base station device 1150, and an RRH 1160.
  • the RRH 1160 and each antenna 1140 may be connected to each other via an RF cable.
  • the base station equipment 1150 and the RRH 1160 may be connected to each other via a high-speed line such as a fiber optic cable.
  • Each of the antennas 1140 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 1160 to transmit and receive wireless signals.
  • the eNB 1130 may include multiple antennas 1140.
  • multiple antennas 1140 may be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 10 shows an example in which the eNB 1130 includes a plurality of antennas 1140, the eNB 1130 may also include a single antenna 1140.
  • the base station device 1150 includes a controller 1151, a memory 1152, a network interface 1153, a wireless communication interface 1155, and a connection interface 1157.
  • the controller 1151, the memory 1152, and the network interface 1153 are the same as the controller 1021, the memory 1022, and the network interface 1023 described with reference to FIG.
  • the wireless communication interface 1155 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication to a terminal located in a sector corresponding to the RRH 1160 via the RRH 1160 and the antenna 1140.
  • the wireless communication interface 1155 may generally include, for example, a BB processor 1156.
  • the BB processor 1156 is the same as the BB processor 1026 described with reference to FIG. 9 except that the BB processor 1156 is connected to the RRH 1160 via the connection interface 1157.
  • the wireless communication interface 1155 may include a plurality of BB processors 1156.
  • multiple BB processors 1156 may be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 10 illustrates an example in which the wireless communication interface 1155 includes a plurality of BB processors 1156, the wireless communication interface 1155 may include a single BB processor 1156.
  • connection interface 1157 is an interface for connecting the base station device 1150 (wireless communication interface 1155) to the RRH 1160.
  • the connection interface 1157 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1150 (wireless communication interface 1155) to the RRH 1160.
  • the RRH 1160 includes a connection interface 1161 and a wireless communication interface 1163.
  • connection interface 1161 is an interface for connecting the RRH 1160 (wireless communication interface 1163) to the base station device 1150.
  • the connection interface 1161 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1163 transmits and receives wireless signals via the antenna 1140.
  • the wireless communication interface 1163 may generally include, for example, an RF circuit 1164.
  • the RF circuit 1164 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1140.
  • the wireless communication interface 1163 may include a plurality of RF circuits 1164.
  • multiple RF circuits 1164 may support multiple antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 1163 includes a plurality of RF circuits 1164, the wireless communication interface 1163 may include a single RF circuit 1164.
  • the processing circuit 610 described by using FIG. 6 may be implemented by the controller 1021 and / or the controller 1151, and by using the communication unit 620 described by FIG. It may be implemented by the wireless communication interface 1025 and the wireless communication interface 1155 and / or the wireless communication interface 1163. At least a part of the functions may also be implemented by the controller 1021 and the controller 1151. For example, the controller 1021 and / or the controller 1151 may perform a control function by executing instructions stored in a corresponding memory.
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a smartphone 1200 as a user equipment to which the technology of the present disclosure can be applied.
  • the smart phone 1200 includes a processor 1201, a memory 1202, a storage device 1203, an external connection interface 1204, a camera device 1206, a sensor 1207, a microphone 1208, an input device 1209, a display device 1210, a speaker 1211, a wireless communication interface 1212, one or more An antenna switch 1215, one or more antennas 1216, a bus 1217, a battery 1218, and an auxiliary controller 1219.
  • the processor 1201 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 1200.
  • the memory 1202 includes a RAM and a ROM, and stores data and programs executed by the processor 1201.
  • the storage device 1203 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1204 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smartphone 1200.
  • the imaging device 1206 includes an image sensor such as a charge-coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1207 may include a set of sensors such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1208 converts a sound input to the smartphone 1200 into an audio signal.
  • the input device 1209 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1210, and receives an operation or information input from a user.
  • the display device 1210 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1200.
  • the speaker 1211 converts an audio signal output from the smartphone 1200 into a sound.
  • the wireless communication interface 1212 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1212 may generally include, for example, a BB processor 1213 and an RF circuit 1214.
  • the BB processor 1213 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1214 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1216.
  • the wireless communication interface 1212 may be a chip module on which a BB processor 1213 and an RF circuit 1214 are integrated. As shown in FIG.
  • the wireless communication interface 1212 may include multiple BB processors 1213 and multiple RF circuits 1214.
  • FIG. 11 shows an example in which the wireless communication interface 1212 includes a plurality of BB processors 1213 and a plurality of RF circuits 1214, the wireless communication interface 1212 may also include a single BB processor 1213 or a single RF circuit 1214.
  • the wireless communication interface 1212 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1212 may include a BB processor 1213 and an RF circuit 1214 for each wireless communication scheme.
  • Each of the antenna switches 1215 switches a connection destination of the antenna 1216 between a plurality of circuits included in the wireless communication interface 1212 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 1216 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 1212 to transmit and receive wireless signals.
  • the smartphone 1200 may include a plurality of antennas 1216.
  • FIG. 11 illustrates an example in which the smartphone 1200 includes a plurality of antennas 1216, the smartphone 1200 may also include a single antenna 1216.
  • the smartphone 1200 may include an antenna 1216 for each wireless communication scheme.
  • the antenna switch 1215 may be omitted from the configuration of the smartphone 1200.
  • the bus 1217 connects the processor 1201, the memory 1202, the storage device 1203, the external connection interface 1204, the camera 1206, the sensor 1207, the microphone 1208, the input device 1209, the display device 1210, the speaker 1211, the wireless communication interface 1212, and the auxiliary controller 1219 to each other. connection.
  • the battery 1218 supplies power to each block of the smartphone 1200 shown in FIG. 20 via a feeder, which is partially shown as a dotted line in the figure.
  • the auxiliary controller 1219 operates the minimum necessary functions of the smartphone 1200 in the sleep mode, for example.
  • the processing circuit 510 described in FIG. 5 and the obtaining unit 511 and the estimation unit 512 therein may be implemented by the processor 1201 or the auxiliary controller 1219 and described by using FIG. 5.
  • the communication unit 520 may be implemented by the wireless communication interface 1212.
  • At least a part of the functions may also be implemented by the processor 1201 or the auxiliary controller 1219.
  • the processor 1201 or the auxiliary controller 1219 may perform an information acquisition function and an estimation function by executing instructions stored in the memory 1202 or the storage device 1203.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a car navigation device 1320 to which the technology of the present disclosure can be applied.
  • the car navigation device 1320 includes a processor 1321, a memory 1322, a global positioning system (GPS) module 1324, a sensor 1325, a data interface 1326, a content player 1327, a storage medium interface 1328, an input device 1329, a display device 1330, a speaker 1331, and a wireless
  • GPS global positioning system
  • the processor 1321 may be, for example, a CPU or a SoC, and controls a navigation function and another function of the car navigation device 1320.
  • the memory 1322 includes a RAM and a ROM, and stores data and programs executed by the processor 1321.
  • the GPS module 1324 uses a GPS signal received from a GPS satellite to measure the position (such as latitude, longitude, and altitude) of the car navigation device 1320.
  • the sensor 1325 may include a set of sensors such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1326 is connected to, for example, an in-vehicle network 1341 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1327 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1328.
  • the input device 1329 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1330, and receives an operation or information input from a user.
  • the display device 1330 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1331 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1333 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1333 may generally include, for example, a BB processor 1334 and an RF circuit 1335.
  • the BB processor 1334 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1335 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1337.
  • the wireless communication interface 1333 can also be a chip module on which the BB processor 1334 and the RF circuit 1335 are integrated. As shown in FIG.
  • the wireless communication interface 1333 may include a plurality of BB processors 1334 and a plurality of RF circuits 1335.
  • FIG. 12 shows an example in which the wireless communication interface 1333 includes a plurality of BB processors 1334 and a plurality of RF circuits 1335, the wireless communication interface 1333 may also include a single BB processor 1334 or a single RF circuit 1335.
  • the wireless communication interface 1333 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1333 may include a BB processor 1334 and an RF circuit 1335 for each wireless communication scheme.
  • Each of the antenna switches 1336 switches the connection destination of the antenna 1337 between a plurality of circuits included in the wireless communication interface 1333, such as circuits for different wireless communication schemes.
  • Each of the antennas 1337 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 1333 to transmit and receive wireless signals.
  • the car navigation device 1320 may include a plurality of antennas 1337.
  • FIG. 12 shows an example in which the car navigation device 1320 includes a plurality of antennas 1337, the car navigation device 1320 may include a single antenna 1337.
  • the car navigation device 1320 may include an antenna 1337 for each wireless communication scheme.
  • the antenna switch 1336 may be omitted from the configuration of the car navigation device 1320.
  • the battery 1338 supplies power to each block of the car navigation device 1320 shown in FIG. 12 via a feeder line, and the feeder line is partially shown as a dotted line in the figure.
  • the battery 1338 accumulates power provided from the vehicle.
  • the car navigation device 1320 shown in FIG. 12 it is implemented by using the processing circuit 510 described in FIG. 5, and by using the communication unit 520 described in FIG. 5 may be implemented by the wireless communication interface 1333. At least a part of the functions may also be implemented by the processor 1321.
  • the processor 1321 may perform various functions by executing instructions stored in the memory 1322.
  • each component or each step can be disassembled and / or recombined.
  • These decompositions and / or recombinations should be considered as equivalent solutions of the present disclosure.
  • the steps for performing the series of processes described above can be performed naturally in chronological order in accordance with the described order, but need not necessarily be performed in chronological order. Certain steps can be performed in parallel or independently of each other.

Abstract

一种用于卫星通信的用户设备,包括:一个或多个处理电路,处理电路被配置为执行以下操作:评估用户设备与卫星进行通信的发射功率需求;当用户设备的发射功率约束不能满足发射功率需求时,由辅助设备辅助用户设备执行与卫星的通信的至少一部分,其中处理电路还被配置为经由卫星获取要切换到的通信方式,其中,处理电路将指示需要对当前通信方式进行切换的通知发送给卫星,通知包括指示需要切换到满足发射功率需求的通信方式的信息。

Description

用于卫星通信的用户设备
本申请要求于2018年6月19日提交中国专利局、申请号为201810631481.4、发明名称为“用于卫星通信的用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及移动通信环境中的卫星通信,具体地涉及卫星通信中的用户设备、与用户设备进行通信的卫星、辅助用户设备与卫星进行通信的辅助设备、用于在卫星通信系统中进行卫星通信的方法以及计算机可读存储介质。
背景技术
通信卫星(Communications Satelite)是一种通过转发器来传递和放大无线电通信信号的卫星,它建立了地面上发射站与接收站之间的信息通道。通信卫星可用于电视、电话、广播、网络和军事领域。地球轨道上有2,000多颗通信卫星,它们由私人和政府机构使用。无线电通信使用电磁波来传递信号,这些波是直线传播的,因此它们会被地球的弯曲表面挡住。通信卫星能够通过传递地球表面的信号来实现地面远距离的通信。通信卫星使用的无线电和微波的频带较宽。由于卫星轨道离地很高,因此天线波束能覆盖地球广大面积,且电波传播不受地形限制,能实现地面远距离通讯。为了补足海底电缆通信的不足,通信卫星还通常用于移动通信。例如船只或飞机等远离陆地的交通工具,无法使用有线通讯时,可以使用通信卫星。对于一些对实时性要求不高的数据传输,也可以使用通信卫星进行通信。
卫星通信主要是指各地球站之间或地球站跟航天器之间通过通信卫星进行信号转发的无线电通信,卫星通信主要包括了卫星中继通信、卫星直接广播、卫星移动通信和卫星固定通信。第一个是地球站和航天器之间通过通信卫星进行信号转发的无线通信,后面三个是各地球站之间通过通信卫星进行信号转发的无线通信。无论哪种通信,都具有容量大、频带宽、覆盖面大、成本跟距离无关、不受地理条件影响、机动灵活、性能可靠稳定、适用多种业务等优点。 但是,由于卫星距离地面很远,因此卫星通信仅适用于实时性要求不高的数据传输。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开涉及卫星通信中的用户设备、卫星、辅助设备、方法及存储介质,即使在用户设备的发射功率约束不能满足用于卫星通信的发射功率需求时,也可以保证用户与卫星进行符合传输速率或可靠性预期的数据传输。
根据本公开的一方面,提供了.一种能够进行卫星通信的用户设备,包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:评估用户设备与卫星进行通信的发射功率需求;当用户设备的发射功率约束不能满足发射功率需求时,由辅助设备辅助用户设备执行与卫星的通信的至少一部分,其中处理电路还被配置为经由卫星获取要切换到的通信方式,其中,所述处理电路将指示需要对当前通信方式进行切换的通知发送给所述卫星,所述通知包括指示需要切换到满足发射功率需求的通信方式的信息。
根据本公开的另一方面,提供了一种辅助用户设备与卫星进行通信的辅助设备,包括:接收器,用于接收用户设备要经由辅助设备发送到卫星的数据;发送器,将数据发送给卫星。
根据本公开的另一方面,一种用于在卫星通信系统中进行卫星通信的方法,包括:由用户设备评估与卫星进行通信的发射功率需求;当用户设备的发射功率约束不能满足发射功率需求时,执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得计算机执行根据本公开所述的方法。
使用根据本公开的用户设备、卫星、辅助设备、方法及存储介质,即使在用户设备的发射功率约束不能满足用于卫星通信的发射功率需求时,也能够保证用户与卫星进行符合传输速率或可靠性预期的数据传输。
从在此提供的描述中,进一步的适用性区域将会变得明显。这 个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1A是示出用户终端为了维持卫星通信进行降低传输速率的传输的示意图;
图1B是示出用户终端为了维持卫星通信进行降低可靠性的传输的示意图;
图2A是示出根据本公开的实施方式的用户设备借助辅助设备进行卫星通信的示意图;
图2B示出了根据本公开的实施方式的卫星与用户设备间通信的信令流程图;
图2C是进一步示出根据本公开的实施方式的卫星、用户设备和辅助设备间通信的信令流程图;
图2D是示出根据本公开的实施方式的卫星与用户设备间通信的信令流程图;
图3A是示出根据本公开的实施方式的用户设备在等待延时时间后重新接入卫星的示意图;
图3B是示出根据本公开的实施方式的用户设备在等待延时时长后重新接入卫星的信令流程图;
图3C是示出根据本公开的另一实施方式的用户设备在等待延时时长后重新接入卫星的信令流程图;
图4是示出根据本公开的实施方式的随机接入过程的信令流程图;
图5是示出根据本公开的实施方式的用户设备的结构框图;
图6是示出根据本公开的实施方式的辅助设备的结构框图;
图7是示出根据本公开的实施方式的卫星的结构框图;
图8是示出根据本公开的实施方式的用于在卫星通信系统中进行卫星通信的方法的流程图;
图9是示出适用于本公开的eNB(evolution Node Base Station,演进节点基站)或gNB(第5代通信系统中的基站)的示意性配置 的第一示例的框图;
图10是示出适用于本公开的eNB或gNB的示意性配置的第二示例的框图;
图11是示出适用于本公开的智能电话的示意性配置的示例的框图;以及
图12是示出适用于本公开的汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
本公开所涉及的UE(User Equipment,用户设备)包括但不限于移动终端、计算机、车载设备等具有包括卫星通信的无线通信功能的终端。进一步,取决于具体所描述的功能,本公开所涉及的UE还可以是UE本身或其中的部件如芯片。此外,本公开所涉及的辅助设备是具有卫星通信功能的任何设备,包括但不限于基站、卫星、其他终端,其中类似地,作为辅助设备的基站可以例如是eNB(evolution Node Base Station,演进节点基站),也可以是gNB(第5代通信系统中的基站),或者是eNB或gNB中的部件如芯片。
在卫星移动通信系统中,卫星与地面距离非常远,这就使得用 户终端与卫星通信通常要消耗与地面通信相比大得多的功率。由于用户终端的体积受限,其发射功率通常是受限的,很可能出现用于进行卫星通信的计算发射功率大于用户终端的最大允许发射功率的情形。即使在这种情况下,也要保证用户能够与卫星进行符合传输速率或可靠性预期的数据传输。
当为进行卫星通信所需要的发射功率大于用户终端的最大允许发射功率时,常规的方式是选择当前用户终端能力范围内的发射功率进行发射,即选择不超过最大允许发射功率的发射功率进行发射。这样,必然要求用户降低其对于传输速率或者可靠性的要求,才能够实现用户与卫星之间以降低传输速率或降低传输可靠性的方式的通信。
因此,有必要提出一种技术方案,即使在用户设备的发射功率约束不能满足用于卫星通信的发射功率需求时,也可以保证用户与卫星进行符合传输速率或可靠性预期的数据传输。
图1A和图1B示出了现有技术的当用户设备的当前的数据发送能力无法达到所需发射功率的要求时,还要使得用户终端能够维持与卫星的通信所采用的方案。
图1A示出了用户终端为了维持卫星通信进行降低传输速率的传输的示意图。
图1A所示的用户设备期望与卫星进行以预定固定数据速率的通信,而为了保持该数据速率,要求用户设备具备与该数据速率发送相适应的发射功率,因此,用户设备首先需要计算与以该数据速率的持续数据发送相应的发射功率,当用户设备的当前的数据发送能力无法达到计算出的所需发射功率的要求时,则可以如图1A所示地降低要求的传输速率,作为示例,在图1A中,本应在一次发送过程(持续一个固定连续时间段)中发送的数据B,被分成两部分在两次发送过程中发送。显然,数据速率的降低延长了数据发送时间,造成用户体验的下降,特别地,对于那些对延迟要求较高的应用场景,该方案甚至无法得以实施。
图1B示出了用户终端为了维持卫星通信进行降低可靠性的传输的示意图。
图1B所示的用户设备期望与卫星通信以发送期望发送的全部数据,类似于图1A的情况,为了能够发送全部待发送数据,同样 要求用户设备具备为发送全部待发送数据所需的发射功率,因此,类似地,用户设备同样需要首先计算为发送全部待发送数据所需的发射功率,当用户设备的当前的数据发送能力无法达到计算出的所需发射功率的要求时,则可以如图1B所示地以降低可靠性作为代价,作为示例,在图1B中,全部待发送数据B中的仅一部分被发送。显然,数据的丢弃或丢失同样会造成用户体验的下降(虽然在某些特定应用中允许数据的部分丢失),特别地,对于那些对数据完整性要求较高的应用场景,该方案甚至无法得以实施。
因此,在卫星通信中,当用户设备的当前的数据发送能力无法达到进行卫星通信所需的发射功率的要求时,现有的卫星通信方案存在诸多弊端。
图2A是示出用户设备借助辅助设备进行卫星通信的示意图。如图2所示,待传输的数据比特集合B被划分为两个部分:B1和B2。其中,集合B2中的数据比特可以是用户由于功率受限而超出其传输能力范围的数据比特。用户设备将集合B2中的数据比特发送给如图所示的辅助设备,然后由用户设备和辅助设备一起分别向卫星分别传输集合B1和B2中的数据比特,卫星接收到集合B1和B2中的数据比特,因此,在保证用户与卫星通信符合传输速率预期的同时,数据的完整性也得以得到保证。需要说明的是,该辅助过程可以理解为一个基于功率的切换过程。因此,并不限于要求用户终端发送使得达到其能力范围上限的比特,而是可以按照需要配置数据比特,例如经由辅助设备将所有的数据比特发送给卫星(即集合B1为空集),也是可能的。
图2B示出了根据本公开的实施方式的卫星与用户设备间通信的信令流程图,具体如下:
在图2B的步骤1中,首先由用户设备为发送待发送数据计算相应的发射功率需求。对于本领域技术人员来说,在能够获取或已获取卫星和用户设备的相关参数的情况下,能够计算出为发送待发送数据所需的发射功率,即发射功率需求,至于计算的具体过程,在此不加赘述。
接下来,在图2B的步骤2中,用户设备根据在步骤1中计算出的发射功率需求确定是否满足触发候选通信方式的条件,当用户设备的发射功率约束不能满足发射功率需求时,执行触发以切换到发 射功率约束满足发射功率需求的候选通信方式。
根据本公开的一种实施方式,用户设备的发射功率约束为预设阈值,在此实施方式中,可以仅通过所需的发射功率与预设的阈值的比较来确定所需的发射功率是否过大,而不必考虑用户设备的发射能力。具体地,如果满足P_calculate>Thresh,则确定所需的发射功率过大,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值。
根据本公开的一种实施方式,还将通信迟滞作为发射功率约束的一部分作为考量的要素,即,用户设备的发射功率约束为预设阈值和时滞之和,在此实施方式中,可以在考虑迟滞的情况下,确定所需的发射功率是否过大,即,通过将所需的发射功率与预设阈值和迟滞之和的比较来确定所需的发射功率是否过大,以避免迟滞造成的考量偏差,具体地,如果满足P_calculate>Thresh+Hys,则确定所需的发射功率过大,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,Hys为迟滞。
根据本公开的一种实施方式,还将用户设备的最大允许发射功率作为发射功率约束的一部分作为考量的要素,即,用户设备的发射功率约束为预设阈值和用户设备的最大允许发射功率之和,在此实施方式中,可以在考虑用户设备的最大允许发射功率的情况下,确定所需的发射功率是否超出用户设备的最大允许发射功率过多,即,通过将所需的发射功率与预设阈值和用户设备的最大允许发射功率之和的比较来确定所需的发射功率是否过大,具体地,如果满足P_calculate>Thresh+P_max,则确定所需的发射功率超出用户设备的最大允许发射功率过多,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中,P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,P_max为用户设备的最大允许发射功率。
根据本公开的另一实施方式,用户设备的发射功率约束为用户设备的最大允许发射功率、通信迟滞和预设阈值这三者之和,具体地,如果满足P_calculate>Thresh+P_max+Hys,即,在考虑通信迟滞的情况下,确定所需的发射功率超出用户设备的最大允许发射功 率过多,则由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,P_max为用户设备的最大允许发射功率,Hys为迟滞。
当然,用户设备的发射功率约束所包含的要素并不限于上面描述的要素,任何可能影响卫星通信或需要针对各种需求被纳入考虑的要素,都可以作为用户设备的发射功率约束被考虑,并按照如上面各种实施方式的判断方式,即当用户设备的发射功率约束不能满足所述发射功率需求时,执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
因此,在上面的各种实施方式中,当用户设备的发射功率约束不能满足所述发射功率需求时,由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。能够由用户设备选择判断方式,进而实现由用户设备自身执行的对通信方式切换的触发。
在步骤3中,如果确定满足步骤2中的触发条件,则用户设备将该情况告知卫星。可以通过至少下述方式之一进行报告:(1)现有的Power Headroom(PH)定义包括6个比特,只能表示正数。保持PH域的比特数不变,但对这6比特的含义进行重新定义,使之能够表示负功率;(2)对PH的定义进行扩展,其中至少增加一位比特用于指示所携带数值的符号,其余比特用来表示所携带数值的绝对值的大小。如果指示符号的比特为0,则表示所携带数值是一个正数;如果指示符号的比特为1,则表示所携带数值是一个负数。也可以对指示符号的比特进行相反的定义,即如果指示符号的比特为1,则表示所携带数值是一个正数;如果指示符号比特的为0,则表示所携带数值是一个负数;(3)在物理层的UCI域中引入一个新的域,该域的可能取值只有两个,记为V0和V1。例如,V0可以是全0,V1可以是全1,或者其他的编码方式。如果该域的取值为V0,则表示用户的计算发射功率没有满足触发条件;如果该域的取值为V1,则表示用户的计算发射功率满足触发条件。
接下来在步骤4中,当卫星收到用户设备发来的上述方式之一的报告后,由卫星判决是否需要寻找一个可以帮助该用户传输数据的辅助设备。
在步骤5中,卫星将判决结果告知用户,作为替代,卫星将判 决结果提供给辅助设备例如基站,然后由基站转发给用户。并且在步骤6中,用户设备根据收到的判决结果进行动作。
图2C进一步示出了根据本公开的实施方式的卫星、用户设备和辅助设备间通信的信令流程图。
相比于图2B,图2C进一步对图2B的步骤6中的根据判决结果进行的动作进行说明。在图2C的步骤6中,由用户设备选择辅助设备,其中,可以由卫星配置用户自己寻找辅助设备,也可以由用户从白名单中确定辅助设备。其中,为了使当前卫星能够确定卫辅助设备白名单,需要在相邻卫星之间通过类似X2的接口交互运行轨道、速度、容量、功率等信息,并且通过MIB/SIB/RRC等方式提供给用户。如果用户设备被配置为自己寻找可以帮助自己传输数据的辅助设备,则由用户设备根据算法寻找可以帮助自己传输数据的辅助设备,并把该用户设备由于功率受限而超出传输能力范围的数据比特分配给该辅助设备,然后由用户设备与该辅助设备一起向卫星传输数据。具体来说,在图2A中给出了一个包括有卫星、用户终端、辅助设备三类实体的流程图。其中,用户终端首先确定辅助设备;第二,用户终端把需要被帮助的数据比特(即集合B2中的数据比特)发送给辅助设备;第三,用户终端把自己能力范围内的或需要自己发送的数据比特(即集合B1中的数据比特)发送给卫星,其中B1可以为空集;第四,辅助设备把分配给自己的数据比特(即集合B2中的数据比特)发送给卫星。
图2D示出了根据本公开的另一实施方式的卫星与用户设备间通信的信令流程图,作为图2B示出的实施方式的替代,具体地,在步骤1中,用户设备为发送数据计算相应的发射功率。在步骤2,用户设备检查计算发射功率是否满足触发条件。
根据本公开的一种实施方式,用户设备的发射功率约束为预设阈值,在此实施方式中,可以仅通过所需的发射功率与预设的阈值的比较来确定所需的发射功率是否过大,而不必考虑用户设备的发射能力。具体地,如果满足P_calculate>Thresh,则确定所需的发射功率过大,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值。
根据本公开的一种实施方式,还将通信迟滞作为发射功率约束 的一部分作为考量的要素,即,用户设备的发射功率约束为预设阈值和时滞之和,在此实施方式中,可以在考虑迟滞的情况下,确定所需的发射功率是否过大,即,通过将所需的发射功率与预设阈值和迟滞之和的比较来确定所需的发射功率是否过大,以避免迟滞造成的考量偏差,具体地,如果满足P_calculate>Thresh+Hys,则确定所需的发射功率过大,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,Hys为迟滞。
根据本公开的一种实施方式,还将用户设备的最大允许发射功率作为发射功率约束的一部分作为考量的要素,即,用户设备的发射功率约束为预设阈值和用户设备的最大允许发射功率之和,在此实施方式中,可以在考虑用户设备的最大允许发射功率的情况下,确定所需的发射功率是否超出用户设备的最大允许发射功率过多,即,通过将所需的发射功率与预设阈值和用户设备的最大允许发射功率之和的比较来确定所需的发射功率是否过大,具体地,如果满足P_calculate>Thresh+P_max,则确定所需的发射功率超出用户设备的最大允许发射功率过多,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中,P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,P_max为用户设备的最大允许发射功率。
根据本公开的另一实施方式,用户设备的发射功率约束为用户设备的最大允许发射功率、通信迟滞和预设阈值这三者之和,具体地,如果满足P_calculate>Thresh+P_max+Hys,即,在考虑通信迟滞的情况下,确定所需的发射功率超出用户设备的最大允许发射功率过多,则由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,P_max为用户设备的最大允许发射功率,Hys为迟滞。
当然,用户设备的发射功率约束所包含的要素并不限于上面描述的要素,任何可能影响卫星通信或需要针对各种需求被纳入考虑的要素,都可以作为用户设备的发射功率约束被考虑,并按照如上面各种实施方式的判断方式,即当用户设备的发射功率约束不能满足所述发射功率需求时,执行触发以切换到发射功率约束满足发射 功率需求的候选通信方式。
因此,在上面的各种实施方式中,当用户设备的发射功率约束不能满足所述发射功率需求时,由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
在步骤3中,如果满足触发条件,由用户自己确定可能的辅助设备的白名单,或者由卫星通过RRC信令为用户配置辅助设备的白名单,然后由用户设备从该辅助设备白名单中寻找辅助设备。
在步骤4中,用户设备请求卫星为自己与辅助设备分配卫星无线资源与发射功率。
在步骤5中,卫星将为用户与辅助设备分配的卫星无线资源与发射功率提供给用户及辅助设备。
在步骤6中,用户设备与辅助设备根据资源分配结果一起向卫星发送数据。
如上所述,图2A至图2D示出了用户设备在借助帮助的情况下维持与卫星的期望速率和可靠性的通信的各种实施方式。
除了借助辅助设备传输数据的方式,发明人注意到,还可以选择等待一定的延时时长后重新接入原卫星或其它更利于通信的卫星。
图3A中示出了根据本公开实施方式的用户设备在等待延时时间后重新接入卫星的示意图。
假设用户与卫星正在通信,并且卫星A在时刻t将计算发射功率发送给用户。此时,由于卫星A距离用户很远,使得发射功率需求超过了用户设备的发射功率约束。
情形1:如图3A中的(a)所示,卫星A在时刻t尚未过顶。随着卫星的移动,在t+Δt时刻,卫星A将来到用户的头顶位置。此时,卫星A距离用户最近,使其能在用户设备的发射功率约束范围内达到传输速率和可靠性要求。因此,此时,卫星A可以通知用户再等待Δt时间,然后由卫星A重新对用户的发射功率进行配置。
情形2:如图3A的图(b)所示,卫星A在时刻t已经过顶。随着卫星的移动,卫星A与用户的距离将越来越远。但是,在t+Δt时刻,下一颗卫星B将来到用户的头顶位置,此时卫星B距离用户最近,使其能在用户设备的发射功率约束范围内达到传输速率和可靠性要求。因此,卫星A可以通知用户再等待Δt时间,然后由卫星B重新 对用户的发射功率进行配置。
图3B中示出了根据本公开的一种实施方式的用户设备在等待延时时长后重新接入卫星的信令流程图。
与图2B的步骤1类似地,在图3B的步骤1中,首先由用户设备为发送待发送数据计算相应的发射功率需求。
接下来,与图2B的步骤2类似地,在图3B的步骤2中,用户设备根据在步骤1中计算出的发射功率需求确定是否满足触发候选通信方式的条件,当用户设备的发射功率约束不能满足发射功率需求时,执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
根据本公开的一种实施方式,用户设备的发射功率约束为预设阈值,在此实施方式中,可以仅通过所需的发射功率与预设的阈值的比较来确定所需的发射功率是否过大,而不必考虑用户设备的发射能力。具体地,如果满足P_calculate>Thresh,则确定所需的发射功率过大,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值。
根据本公开的一种实施方式,还将通信迟滞作为发射功率约束的一部分作为考量的要素,即,用户设备的发射功率约束为预设阈值和时滞之和,在此实施方式中,可以在考虑迟滞的情况下,确定所需的发射功率是否过大,即,通过将所需的发射功率与预设阈值和迟滞之和的比较来确定所需的发射功率是否过大,以避免迟滞造成的考量偏差,具体地,如果满足P_calculate>Thresh+Hys,则确定所需的发射功率过大,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,Hys为迟滞。
根据本公开的一种实施方式,还将用户设备的最大允许发射功率作为发射功率约束的一部分作为考量的要素,即,用户设备的发射功率约束为预设阈值和用户设备的最大允许发射功率之和,在此实施方式中,可以在考虑用户设备的最大允许发射功率的情况下,确定所需的发射功率是否超出用户设备的最大允许发射功率过多,即,通过将所需的发射功率与预设阈值和用户设备的最大允许发射功率之和的比较来确定所需的发射功率是否过大,具体地,如果满 足P_calculate>Thresh+P_max,则确定所需的发射功率超出用户设备的最大允许发射功率过多,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中,P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,P_max为用户设备的最大允许发射功率。
根据本公开的另一实施方式,用户设备的发射功率约束为用户设备的最大允许发射功率、通信迟滞和预设阈值这三者之和,具体地,如果满足P_calculate>Thresh+P_max+Hys,即,在考虑通信迟滞的情况下,确定所需的发射功率超出用户设备的最大允许发射功率过多,则由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,P_max为用户设备的最大允许发射功率,Hys为迟滞。
当然,用户设备的发射功率约束所包含的要素并不限于上面描述的要素,任何可能影响卫星通信或需要针对各种需求被纳入考虑的要素,都可以作为用户设备的发射功率约束被考虑,并按照如上面各种实施方式的判断方式,即当用户设备的发射功率约束不能满足所述发射功率需求时,执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
因此,在上面的各种实施方式中,当用户设备的发射功率约束不能满足所述发射功率需求时,由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
在图3B的步骤3中,与图2B的步骤3不同的是,如果满足触发条件,可以通过至少下述方式之一将功率发送给卫星:(1)现有的Power Headroom(PH)定义包括6个比特,只能表示正数。保持PH域的比特数不变,但对这6比特的含义进行重新定义,使之能够表示负功率;(2)对PH的定义进行扩展,其中至少增加一位比特用于指示所携带数值的符号,其余比特用来表示所携带数值的绝对值的大小。通过上述方式之一,将相应的功率负值通过MAC层的扩展的Power Headroom控制元素(CE)域发送给卫星。
在步骤4中,由卫星判决是否需要让用户等待一定的延时时长后重新开始发送。
其中,需要用户设备等待的延时时长以及用户设备重新接入所 依据的卫星白名单可以按照如下方式获得。可以由当前卫星利用相邻卫星之间交互运行轨道、速度、容量、功率等信息,计算出需要用户设备等待的延时时长以及用户设备可以接入的卫星的白名单。当计算出需要用户设备等待的延时时长后,当前卫星将计算出的延时时长发送给用户设备,可以通过MIB/SIB/RRC将卫星白名单提供给用户设备,作为替代,卫星可以将计算出的延时时长和卫星白名单提供给辅助设备例如基站,然后由辅助设备转发给用户。。具体地,卫星可以通过包括但不限于下述方式之一的方式将延时时长发送给用户设备:(1)定义一个新的MAC层CE,其含义为用户等待一段时间后再传输,等待的时间由该CE域的比特组合所指示,所能指示的最大等待时长取值至少为卫星可视时长的一半。例如,如果卫星可视时长为10分钟,则该CE的最大时长取值应该至少为5分钟;(2)也可以通过RRC信令进行配置。例如,系统可以通过广播方式向用户提供一个可能的等待时长的列表,然后由用户根据自己的信道条件进行选择。如果信道条件较好,用户就选择较短的等待时长;如果信道条件较差,用户就选择较长的等待时长。步骤6:如果被配置延时等待一段时间,用户延时等待一段时间,然后从白名单中选择一颗卫星重新开始发送数据。作为替代,可以将从白名单中选择卫星的工作交给基站完成,从而达到减少用户功耗的目的。
图3C示出了根据本公开的另一实施方式的用户设备在等待延时时长后重新接入卫星的信令流程图,作为图3B示出的实施方式的替代,具体地,在步骤1中,用户设备为发送数据计算相应的发射功率。
接下来,与图2B的步骤2类似地,在图3C的步骤2中,用户设备根据在步骤1中计算出的发射功率需求确定是否满足触发候选通信方式的条件,当用户设备的发射功率约束不能满足发射功率需求时,执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
根据本公开的一种实施方式,用户设备的发射功率约束为预设阈值,在此实施方式中,可以仅通过所需的发射功率与预设的阈值的比较来确定所需的发射功率是否过大,而不必考虑用户设备的发射能力。具体地,如果满足P_calculate>Thresh,则确定所需的发射功率过大,然后由用户设备执行触发以切换到发射功率约束满足发 射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值。
根据本公开的一种实施方式,还将通信迟滞作为发射功率约束的一部分作为考量的要素,即,用户设备的发射功率约束为预设阈值和时滞之和,在此实施方式中,可以在考虑迟滞的情况下,确定所需的发射功率是否过大,即,通过将所需的发射功率与预设阈值和迟滞之和的比较来确定所需的发射功率是否过大,以避免迟滞造成的考量偏差,具体地,如果满足P_calculate>Thresh+Hys,则确定所需的发射功率过大,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,Hys为迟滞。
根据本公开的一种实施方式,还将用户设备的最大允许发射功率作为发射功率约束的一部分作为考量的要素,即,用户设备的发射功率约束为预设阈值和用户设备的最大允许发射功率之和,在此实施方式中,可以在考虑用户设备的最大允许发射功率的情况下,确定所需的发射功率是否超出用户设备的最大允许发射功率过多,即,通过将所需的发射功率与预设阈值和用户设备的最大允许发射功率之和的比较来确定所需的发射功率是否过大,具体地,如果满足P_calculate>Thresh+P_max,则确定所需的发射功率超出用户设备的最大允许发射功率过多,然后由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中,P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,P_max为用户设备的最大允许发射功率。
根据本公开的另一实施方式,用户设备的发射功率约束为用户设备的最大允许发射功率、通信迟滞和预设阈值这三者之和,具体地,如果满足P_calculate>Thresh+P_max+Hys,即,在考虑通信迟滞的情况下,确定所需的发射功率超出用户设备的最大允许发射功率过多,则由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式,其中P_calculate为用户设备计算出的所需的发射功率,Thresh为预设阈值,P_max为用户设备的最大允许发射功率,Hys为迟滞。
当然,用户设备的发射功率约束所包含的要素并不限于上面描述的要素,任何可能影响卫星通信或需要针对各种需求被纳入考虑 的要素,都可以作为用户设备的发射功率约束被考虑,并按照如上面各种实施方式的判断方式,即当用户设备的发射功率约束不能满足所述发射功率需求时,执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
因此,在上面的各种实施方式中,当用户设备的发射功率约束不能满足所述发射功率需求时,由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
在步骤3中,如果满足触发条件,由用户自己确定需要延时等待的时长以及卫星白名单。在步骤4中,用户延时等待所确定的延时时长,然后从该卫星白名单中选择一颗卫星重新开始发送数据。在该实施方式中,卫星白名单也可以由卫星确定并发送给用户设备。作为由用户设备从该卫星白名单中选择一颗卫星的替代,可以将从白名单中选择卫星的工作交给基站完成,从而达到减少用户功耗的目的。
图4示出了根据本公开的实施方式的随机接入过程的信令流程图。
在该实施方式中,用户设备在随机接入过程中,如果出现发射功率约束不能满足发射功率需求的情况,可以按照本实施方式的流程进行处理,具体如下:
在步骤1中,用户设备为发送随机接入过程中的Msg1计算相应的发射功率。
在步骤2中,用户设备检查计算Msg1的发射功率是否满足触发条件。如果满足触发条件,用户可以判决重新进行接入,或者从卫星白名单中重新选择一颗卫星进行接入。
在步骤3中,用户发送Msg1。
在步骤4中,用户接收RAR(Random Access Response)。
在步骤5中,用户为发送Msg3计算相应的发射功率。
在步骤6中,用户检查计算Msg3的发射功率是否满足触发条件。如果满足触发条件,用户可以判决重新进行接入,或者从卫星白名单中重新选择一颗卫星进行接入。
在步骤7中,用户发送Msg3。
需要说明的是,图4的实施方式中的触发条件与前述实施方式中的触发条件是相同的,并且卫星白名单可以由用户设备自己确定 也可以由卫星确定并发送给用户设备。
根据本公开的各种实施方式,当用户设备的发射功率约束不能满足所述发射功率需求时,由用户设备发送通信失败的报告。
图5示出了根据本公开的实施方式的用户设备的结构示意图,如图5所示,用户设备500可以包括处理电路501。需要说明的是,用户设备500既可以包括一个处理电路501,也可以包括多个处理电路501。另外,用户设备500还包括通信单元502和存储单元503,其中存储单元503用于存储辅助设备白名单和/或卫星设备白名单。此外,用户设备500还可以包括其它电路。
进一步,处理电路501可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
处理电路501被配置为至少下述之一:评估用户设备与卫星进行通信的发射功率需求,执行触发以切换到发射功率约束满足发射功率需求的候选通信方式;经由卫星获取要切换到的通信方式;自主确定要切换到的通信方式;从辅助设备白名单中选择辅助设备;接收辅助设备名单;从卫星名单中选择卫星进行接入;从卫星接收延时时长;生成卫星名单;从卫星接收卫星名单;当用户设备的发射功率约束不能满足发射功率需求时,发送通信失败的报告。
通信单元502用于执行与通信有关的所有操作,如卫星通信中的所有通信以及用户设备与辅助设备间通信中的所有通信。图6示出了根据本公开的实施方式的辅助设备的结构示意图,如图6所示,辅助设备600可以包括处理电路601。需要说明的是,辅助设备600既可以包括一个处理电路601,也可以包括多个处理电路601。另外,辅助设备600还包括通信单元602,其中,通信单元602用于执行与通信有关的所有操作,如辅助设备与卫星以及辅助设备与用户设备间通信中的所有通信。此外,辅助设备600还可以包括其它电路。其中,通信单元602可以包括用于接收用户设备要经由辅助设备发送到卫星的数据的接收器以及用于将数据发送给卫星的发送器。
处理电路601被配置为至少下述之一:帮助用户设备评估与卫星进行通信的发射功率需求;获取需要帮助用户设备发送的数据;帮助用户设备接收卫星白名单;帮助用户设备从卫星白名单中选择卫星;帮助用户设备从卫星接收延时时长。
图7示出了根据本公开的实施方式的卫星的结构示意图,如图7所示,卫星700可以包括处理电路701。需要说明的是,卫星700既可以包括一个处理电路701,也可以包括多个处理电路701。另外,卫星700还包括通信单元702,通信单元702用于执行与通信有关的所有操作,如卫星与辅助设备以及卫星与用户设备间通信中的所有通信。此外,卫星700还可以包括其它电路。其中,通信单元可以包括用于接收用户设备请求对与卫星的当前通信方式进行切换的通知的接收器以及用于基于通知向用户设备发送对切换的指示的发送器。
处理电路701被配置为至少下述之一:判决用户设备是否需要辅助设备;判决用户设备是否需要等待延时后重新发送数据;判决用户设备是否重新进行随机接入;确定用户设备要切换到的通信方式;配置用户设备寻找辅助设备;生成辅助设备白名单;生成卫星白名单;确定延时时长。
图8示出了根据本公开的实施方式的用于在卫星通信系统中进行卫星通信的方法,在S801中,由用户设备评估与卫星进行通信的发射功率需求;在S802中能,确定用户设备的发射功率约束是否满足发射功率需求;当用户设备的发射功率约束能够满足发射功率需求时,转到S803,按照当前发射功率进行发射;当用户设备的发射功率约束不能满足发射功率需求时,转到S804,由用户设备执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
根据本公开的各种实施方式,用户计算发射功率需求时会产生大的功耗,因此可借助辅助设备例如基站帮助用户计算卫星上行链路发射功率的取值。如果引入辅助设备例如基站的辅助,则可以将该工作交给基站完成,从而达到减少用户功耗的目的。
另外,需要说明的是,根据本公开的另一实施例,还提供了一种计算机可读存储介质,该存储介质可以包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得计算机可以执行根据本公开的实施方式的方法。
本公开的技术能够应用于各种产品。例如,本公开中提到的辅助设备可以是基站,该基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替 地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的UE可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。UE还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,UE可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
图9是示出可以应用本公开的技术的作为基站的eNB的示意性配置的第一示例的框图。eNB 1000包括一个或多个天线1010以及基站设备1020。基站设备1020和每个天线1010可以经由RF线缆彼此连接。
天线1010中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1020发送和接收无线信号。如图9所示,eNB 1000可以包括多个天线1010。例如,多个天线1010可以与eNB 1000使用的多个频带兼容。虽然图9示出其中eNB 1000包括多个天线1010的示例,但是eNB 1000也可以包括单个天线1010。对于作为本公开的实施方式的辅助设备的基站来说,除了要有与地面用户通信的能力外,还要能与空中卫星通信的能力,这就要求作为辅助设备的基站除了配备传统的向地面方向收发信号的天线外,还要配备向空中方向收发信号的天线。
基站设备1020包括控制器1021、存储器1022、网络接口1023以及无线通信接口1025。
控制器1021可以为例如CPU或DSP,并且操作基站设备1020的较高层的各种功能。例如,控制器1021根据由无线通信接口1025处理的信号中的数据来生成数据分组,并经由网络接口1023来传递所生成的分组。控制器1021可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1021可以 具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1022包括RAM和ROM,并且存储由控制器1021执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1023为用于将基站设备1020连接至核心网1024的通信接口。控制器1021可以经由网络接口1023而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1000与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1023还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1023为无线通信接口,则与由无线通信接口1025使用的频带相比,网络接口1023可以使用较高频带用于无线通信。
无线通信接口1025支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1010来提供到位于eNB 1000的小区中的终端的无线连接。无线通信接口1025通常可以包括例如基带(BB)处理器1026和RF电路1027。BB处理器1026可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1021,BB处理器1026可以具有上述逻辑功能的一部分或全部。BB处理器1026可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1026的功能改变。该模块可以为插入到基站设备1020的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1027可以包括例如混频器、滤波器和放大器,并且经由天线1010来传送和接收无线信号。
如图9所示,无线通信接口1025可以包括多个BB处理器1026。例如,多个BB处理器1026可以与eNB 1000使用的多个频带兼容。如图9所示,无线通信接口1025可以包括多个RF电路1027。例如,多个RF电路1027可以与多个天线元件兼容。虽然图9示出其中无线通信接口1025包括多个BB处理器1026和多个RF电路1027的示例,但是无线通信接口1025也可以包括单个BB处理器1026或 单个RF电路1027。
图10是示出可以应用本公开的技术的作为基站的eNB的示意性配置的第二示例的框图。eNB 1130包括一个或多个天线1140、基站设备1150和RRH 1160。RRH 1160和每个天线1140可以经由RF线缆而彼此连接。基站设备1150和RRH 1160可以经由诸如光纤线缆的高速线路而彼此连接。
天线1140中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1160发送和接收无线信号。如图10所示,eNB 1130可以包括多个天线1140。例如,多个天线1140可以与eNB 1130使用的多个频带兼容。虽然图10示出其中eNB 1130包括多个天线1140的示例,但是eNB 1130也可以包括单个天线1140。
基站设备1150包括控制器1151、存储器1152、网络接口1153、无线通信接口1155以及连接接口1157。控制器1151、存储器1152和网络接口1153与参照图9描述的控制器1021、存储器1022和网络接口1023相同。
无线通信接口1155支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1160和天线1140来提供到位于与RRH 1160对应的扇区中的终端的无线通信。无线通信接口1155通常可以包括例如BB处理器1156。除了BB处理器1156经由连接接口1157连接到RRH 1160的RF电路1164之外,BB处理器1156与参照图9描述的BB处理器1026相同。如图10所示,无线通信接口1155可以包括多个BB处理器1156。例如,多个BB处理器1156可以与eNB1130使用的多个频带兼容。虽然图10示出其中无线通信接口1155包括多个BB处理器1156的示例,但是无线通信接口1155也可以包括单个BB处理器1156。
连接接口1157为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的接口。连接接口1157还可以为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的上述高速线路中的通信的通信模块。
RRH 1160包括连接接口1161和无线通信接口1163。
连接接口1161为用于将RRH 1160(无线通信接口1163)连接至基站设备1150的接口。连接接口1161还可以为用于上述高速线 路中的通信的通信模块。
无线通信接口1163经由天线1140来传送和接收无线信号。无线通信接口1163通常可以包括例如RF电路1164。RF电路1164可以包括例如混频器、滤波器和放大器,并且经由天线1140来传送和接收无线信号。如图10所示,无线通信接口1163可以包括多个RF电路1164。例如,多个RF电路1164可以支持多个天线元件。虽然图10示出其中无线通信接口1163包括多个RF电路1164的示例,但是无线通信接口1163也可以包括单个RF电路1164。
在图9和图10所示的eNB 1000和eNB 1130中,通过使用图6所描述的处理电路610可以由控制器1021和/或控制器1151实现,并且通过使用图6所描述的通信单元620可以由无线通信接口1025以及无线通信接口1155和/或无线通信接口1163实现。功能的至少一部分也可以由控制器1021和控制器1151实现。例如,控制器1021和/或控制器1151可以通过执行相应的存储器中存储的指令而执行控制功能。
图11是示出可以应用本公开的技术的作为用户设备的智能电话1200的示意性配置的示例的框图。智能电话1200包括处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212、一个或多个天线开关1215、一个或多个天线1216、总线1217、电池1218以及辅助控制器1219。
处理器1201可以为例如CPU或片上系统(SoC),并且控制智能电话1200的应用层和另外层的功能。存储器1202包括RAM和ROM,并且存储数据和由处理器1201执行的程序。存储装置1203可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1204为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1200的接口。
摄像装置1206包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1207可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1208将输入到智能电话1200的声音转换为音频信号。输入装置1209包括例如被配置为检测显示装置1210的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且 接收从用户输入的操作或信息。显示装置1210包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1200的输出图像。扬声器1211将从智能电话1200输出的音频信号转换为声音。
无线通信接口1212支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1212通常可以包括例如BB处理器1213和RF电路1214。BB处理器1213可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1214可以包括例如混频器、滤波器和放大器,并且经由天线1216来传送和接收无线信号。无线通信接口1212可以为其上集成有BB处理器1213和RF电路1214的一个芯片模块。如图11所示,无线通信接口1212可以包括多个BB处理器1213和多个RF电路1214。虽然图11示出其中无线通信接口1212包括多个BB处理器1213和多个RF电路1214的示例,但是无线通信接口1212也可以包括单个BB处理器1213或单个RF电路1214。
此外,除了蜂窝通信方案之外,无线通信接口1212可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1212可以包括针对每种无线通信方案的BB处理器1213和RF电路1214。
天线开关1215中的每一个在包括在无线通信接口1212中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1216的连接目的地。
天线1216中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1212传送和接收无线信号。如图11所示,智能电话1200可以包括多个天线1216。虽然图11示出其中智能电话1200包括多个天线1216的示例,但是智能电话1200也可以包括单个天线1216。
此外,智能电话1200可以包括针对每种无线通信方案的天线1216。在此情况下,天线开关1215可以从智能电话1200的配置中省略。
总线1217将处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入 装置1209、显示装置1210、扬声器1211、无线通信接口1212以及辅助控制器1219彼此连接。电池1218经由馈线向图20所示的智能电话1200的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1219例如在睡眠模式下操作智能电话1200的最小必需功能。
在图11所示的智能电话1200中,通过使用图5所描述的处理电路510以及其中的获取单元511和估计单元512可以由处理器1201或辅助控制器1219实现,并且通过使用图5所描述的通信单元520可以由无线通信接口1212实现。功能的至少一部分也可以由处理器1201或辅助控制器1219实现。例如,处理器1201或辅助控制器1219可以通过执行存储器1202或存储装置1203中存储的指令而执行信息获取功能和估计功能。
图12是示出可以应用本公开的技术的汽车导航设备1320的示意性配置的示例的框图。汽车导航设备1320包括处理器1321、存储器1322、全球定位系统(GPS)模块1324、传感器1325、数据接口1326、内容播放器1327、存储介质接口1328、输入装置1329、显示装置1330、扬声器1331、无线通信接口1333、一个或多个天线开关1336、一个或多个天线1337以及电池1338。
处理器1321可以为例如CPU或SoC,并且控制汽车导航设备1320的导航功能和另外的功能。存储器1322包括RAM和ROM,并且存储数据和由处理器1321执行的程序。
GPS模块1324使用从GPS卫星接收的GPS信号来测量汽车导航设备1320的位置(诸如纬度、经度和高度)。传感器1325可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1326经由未示出的终端而连接到例如车载网络1341,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1327再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1328中。输入装置1329包括例如被配置为检测显示装置1330的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1330包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1331输出导航功能的声音或再现的内容。
无线通信接口1333支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1333通常可以包括例如 BB处理器1334和RF电路1335。BB处理器1334可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1335可以包括例如混频器、滤波器和放大器,并且经由天线1337来传送和接收无线信号。无线通信接口1333还可以为其上集成有BB处理器1334和RF电路1335的一个芯片模块。如图12所示,无线通信接口1333可以包括多个BB处理器1334和多个RF电路1335。虽然图12示出其中无线通信接口1333包括多个BB处理器1334和多个RF电路1335的示例,但是无线通信接口1333也可以包括单个BB处理器1334或单个RF电路1335。
此外,除了蜂窝通信方案之外,无线通信接口1333可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1333可以包括BB处理器1334和RF电路1335。
天线开关1336中的每一个在包括在无线通信接口1333中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1337的连接目的地。
天线1337中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1333传送和接收无线信号。如图12所示,汽车导航设备1320可以包括多个天线1337。虽然图12示出其中汽车导航设备1320包括多个天线1337的示例,但是汽车导航设备1320也可以包括单个天线1337。
此外,汽车导航设备1320可以包括针对每种无线通信方案的天线1337。在此情况下,天线开关1336可以从汽车导航设备1320的配置中省略。
电池1338经由馈线向图12所示的汽车导航设备1320的各个块提供电力,馈线在图中被部分地示为虚线。电池1338累积从车辆提供的电力。
在图12示出的汽车导航设备1320中,通过使用图5所描述的处理电路510实现,并且通过使用图5所描述的通信单元520可以由无线通信接口1333实现。功能的至少一部分也可以由处理器1321实现。例如,处理器1321可以通过执行存储器1322中存储的指令而执行各种功能。
在本公开的系统和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (24)

  1. 一种能够进行卫星通信的用户设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    评估所述用户设备与卫星进行通信的发射功率需求;
    当所述用户设备的发射功率约束不能满足所述发射功率需求时,由辅助设备辅助所述用户设备执行与所述卫星的通信的至少一部分,其中所述处理电路还被配置为经由所述卫星获取要切换到的通信方式,其中,所述处理电路将指示需要对当前通信方式进行切换的通知发送给所述卫星,所述通知包括指示需要切换到满足发射功率需求的通信方式的信息。
  2. 根据权利要求1所述的用户设备,其中所述处理电路还被配置为,用户设备根据评估需求的结果,确定要切换到的通信方式。
  3. 根据权利要求1所述的用户设备,其中经由PH域或扩展PH域或UCI域发送所述通知。
  4. 根据权利要求1-3之一所述的用户设备,所述处理电路还被配置为从辅助设备白名单中选择所述辅助设备,其中,由所述处理电路确定所述辅助设备白名单或由所述处理电路经由所述卫星获取所述辅助设备名单,并且如果经由所述卫星获取所述辅助设备名单,所述卫星生成所述辅助设备名单并将其发送到所述用户设备。
  5. 根据权利要求1-3之一所述的用户设备,其中,所述处理电路执行一个等待延时时长,执行完成后从卫星名单中选择卫星进行接入,
    其中,由所述处理电路计算所述延时时长或由所述处理电路经由卫星获取所述延时时长,如果经由所述卫星获取所述延时时长,则所述处理电路从所述卫星接收所述延时时长。
  6. 根据权利要求5所述的用户设备,其中,所述处理电路从所述卫星将计算发射功率发送给所述用户设备的时刻起执行所述等待延时时长,在执行完成后从卫星名单中选择距离所述用户设备最近的卫星进行接入。
  7. 根据权利要求5所述的用户设备,其中,所述处理电路还被配置 为经由CE域或RRC接收所述延时时长。
  8. 根据权利要求5所述的用户设备,所述处理电路还被配置为:
    生成所述卫星名单;或,
    从所述卫星获取所述卫星名单。
  9. 根据权利要求1-3之一所述的用户设备,通过随机接入建立与所述卫星的通信的,重新进行随机接入或从卫星名单中选择卫星进行接入。
  10. 根据权利要求8所述的用户设备,其中,所述随机接入为msg1随机接入或msg3随机接入。
  11. 根据权利要求1-3之一所述的用户设备,其中,所述处理电路还被配置为经由MIB、SIB或RRC接收传输对象信息,所述传输对象信息包括卫星名单、辅助设备名单。
  12. 根据权利要求1-3之一所述的用户设备,其中,所述处理电路还被配置为:当所述用户设备的发射功率约束不能满足所述发射功率需求时,发送通信失败的报告。
  13. 根据权利要求1-3之一所述的用户设备,其中,所述发射功率需求为所述用户设备为进行与所述卫星的通信所需的发射功率,所述发射功率约束为下述中的任一项:
    预定阈值;
    所述用户设备的最大允许发射功率与所述预定阈值之和;
    通信迟滞与所述预定阈值之和;
    所述用户设备的最大允许发射功率与所述通信迟滞以及所述预定阈值之和。
  14. 根据权利要求13所述的用户设备,其中,所述用户设备的发射功率约束不能满足所述发射功率需求为以下情况之一:
    所述发射功率需求大于所述预定阈值;
    所述发射功率需求大于所述通信迟滞与所述预定阈值之和;
    所述发射功率需求大于所述用户设备的最大允许发射功率与所述预定阈值之和;
    所述发射功率需求大于所述用户设备的最大允许发射功率与所述通信迟滞以及所述预定阈值之和。
  15. 一种与用户设备进行通信的卫星,包括:
    接收器,用于接收所述用户设备请求对与所述卫星的当前通信方式进行切换的通知;
    发送器,用于基于所述通知向所述用户设备发送对所述切换的指示。
  16. 根据权利要求15所述的卫星,其中,所述接收器还用于经由PH域或扩展PH域或UCI域接收所述通知。
  17. 根据权利要求15所述的卫星,其中所述通知包括指示需要切换到满足发射功率需求的通信方式的信息。
  18. 根据权利要求15-17之一所述的卫星,所述指示包括至少下述之一:
    辅助设备名单;
    卫星名单;
    所述用户设备是否需要使用辅助设备的通知;
    所述用户设备是否需要延时等待的通知和/或延时等待的时长;
    所述用户设备是否需要重新进行随机接入的通知。
  19. 根据权利要求15-17之一所述的卫星,其中所述发送器还用于向所述用户设备和辅助设备发送用于所述通信的资源分配信息。
  20. 根据权利要求15-17之一所述的卫星,其中所述接收器还用于从所述用户设备和/或辅助设备接收数据。
  21. 一种辅助用户设备与卫星进行通信的辅助设备,包括:
    接收器,用于接收所述用户设备要经由所述辅助设备发送到所述卫星的数据;
    发送器,将所述数据发送给所述卫星。
  22. 根据权利要求21所述的辅助设备,其中所述接收器还用于接收针对所述辅助设备的用于所述通信的资源分配信息。
  23. 一种用于在卫星通信系统中进行卫星通信的方法,包括:
    由用户设备评估与卫星进行通信的发射功率需求;
    当用户设备的发射功率约束不能满足所述发射功率需求时,执行触发以切换到发射功率约束满足发射功率需求的候选通信方式。
  24. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求23所述的方法。
PCT/CN2019/090804 2018-06-19 2019-06-12 用于卫星通信的用户设备 WO2019242536A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/251,821 US11595916B2 (en) 2018-06-19 2019-06-12 User equipment for satellite communication
CN201980019135.3A CN111886898A (zh) 2018-06-19 2019-06-12 用于卫星通信的用户设备
EP19822069.1A EP3793257A4 (en) 2018-06-19 2019-06-12 USER DEVICE FOR SATELLITE COMMUNICATION
US18/161,891 US11871365B2 (en) 2018-06-19 2023-01-31 User equipment for satellite communication
US18/513,696 US20240089873A1 (en) 2018-06-19 2023-11-20 User equipment for satellite communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810631481.4A CN110621048A (zh) 2018-06-19 2018-06-19 用于卫星通信的用户设备
CN201810631481.4 2018-06-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/251,821 A-371-Of-International US11595916B2 (en) 2018-06-19 2019-06-12 User equipment for satellite communication
US18/161,891 Continuation US11871365B2 (en) 2018-06-19 2023-01-31 User equipment for satellite communication

Publications (1)

Publication Number Publication Date
WO2019242536A1 true WO2019242536A1 (zh) 2019-12-26

Family

ID=68920414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090804 WO2019242536A1 (zh) 2018-06-19 2019-06-12 用于卫星通信的用户设备

Country Status (4)

Country Link
US (3) US11595916B2 (zh)
EP (1) EP3793257A4 (zh)
CN (2) CN110621048A (zh)
WO (1) WO2019242536A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7152682B2 (ja) * 2018-08-07 2022-10-13 日本電信電話株式会社 光伝送システム及び伝送モード選択方法
CN114173408A (zh) * 2021-12-21 2022-03-11 Oppo广东移动通信有限公司 一种功耗控制方法及装置、终端、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856787B2 (en) * 2002-02-12 2005-02-15 Mobile Satellite Ventures, Lp Wireless communications systems and methods using satellite-linked remote terminal interface subsystems
CN1788506A (zh) * 2003-05-16 2006-06-14 移动卫星合营公司 用于在基于空间的与地面的无线终端通信之间切换以及监视无线终端上地面复用卫星频率以减少可能干扰的系统和方法
CN1799208A (zh) * 2003-05-01 2006-07-05 Atc科技有限责任公司 用于多频带/多模式卫星无线电话通信系统及方法的集合辐射功率控制
CN104469872A (zh) * 2013-09-13 2015-03-25 中国电信股份有限公司 跨系统的数据业务双向切换方法、系统与双模终端
CN105763241A (zh) * 2014-12-18 2016-07-13 中兴通讯股份有限公司 功率控制方法、装置和终端

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002228208B2 (en) * 2001-02-12 2007-05-10 Ico Services Limited Communication apparatus and method with links to mobile terminals via a satellite or a terrestrial network with partly reuse of the frequency band
US6684057B2 (en) * 2001-09-14 2004-01-27 Mobile Satellite Ventures, Lp Systems and methods for terrestrial reuse of cellular satellite frequency spectrum
FR2872976B1 (fr) * 2004-07-08 2006-09-22 Alcatel Sa Reseau de communication a relayage de signaux radio par des terminaux relais
US8594704B2 (en) * 2004-12-16 2013-11-26 Atc Technologies, Llc Location-based broadcast messaging for radioterminal users
EP2621225B1 (en) * 2012-01-30 2014-09-24 Alcatel Lucent Method, radio access point and computer program for performing a mobility decision for a user equipment
RU2608779C1 (ru) * 2013-01-30 2017-01-24 Телефонактиеболагет Л М Эрикссон (Пабл) Изменение конфигурации или состояния однонаправленного радиоканала
US20180183511A1 (en) * 2014-03-31 2018-06-28 Mitsubishi Electric Corporation Frequency-sharing radio communication system and satellite terminal
US10177837B2 (en) * 2015-06-17 2019-01-08 Hughes Network Systems, Llc Approaches for high speed global packet data services for LEO/MEO satellite systems
US10244453B2 (en) * 2015-10-13 2019-03-26 Qualcomm Incorporated Method and apparatus for inter-satellite handovers in low-earth orbit (LEO) satellite systems
US10477462B2 (en) * 2016-08-08 2019-11-12 Blackberry Limited Method and mobile transceiver having advanced network selection
US10524185B2 (en) * 2016-09-17 2019-12-31 Hughes Network Systems, Llc Radio resource management and routing for fixed data circuits in an NGSO satellite data communications system
US10334611B2 (en) 2016-09-22 2019-06-25 Apple Inc. Device, system, and method for carrier aware scheduling
US10172089B2 (en) * 2016-12-30 2019-01-01 Qualcomm Incorporated Low power location tracking device
JP2018152762A (ja) * 2017-03-14 2018-09-27 富士通コンポーネント株式会社 通信装置及び通信システム
US10298315B2 (en) * 2017-06-30 2019-05-21 Hughes Network Systems, Llc Interference level variation mitigation for satellite communicaton systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856787B2 (en) * 2002-02-12 2005-02-15 Mobile Satellite Ventures, Lp Wireless communications systems and methods using satellite-linked remote terminal interface subsystems
CN1799208A (zh) * 2003-05-01 2006-07-05 Atc科技有限责任公司 用于多频带/多模式卫星无线电话通信系统及方法的集合辐射功率控制
CN1788506A (zh) * 2003-05-16 2006-06-14 移动卫星合营公司 用于在基于空间的与地面的无线终端通信之间切换以及监视无线终端上地面复用卫星频率以减少可能干扰的系统和方法
CN104469872A (zh) * 2013-09-13 2015-03-25 中国电信股份有限公司 跨系统的数据业务双向切换方法、系统与双模终端
CN105763241A (zh) * 2014-12-18 2016-07-13 中兴通讯股份有限公司 功率控制方法、装置和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3793257A4

Also Published As

Publication number Publication date
US20230171710A1 (en) 2023-06-01
CN111886898A (zh) 2020-11-03
EP3793257A4 (en) 2021-08-11
US20240089873A1 (en) 2024-03-14
US20210258893A1 (en) 2021-08-19
US11871365B2 (en) 2024-01-09
US11595916B2 (en) 2023-02-28
CN110621048A (zh) 2019-12-27
EP3793257A1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
US11924878B2 (en) User equipment, network side device, wireless communication method and storage medium for channel occupancy time sharing
US20220408298A1 (en) Electronic device and method for wireless communications
US11871456B2 (en) Electronic device in wireless communication system, and wireless communication method
US11201651B2 (en) Electronic apparatus and server in wireless communication system, and wireless communication method
US11871365B2 (en) User equipment for satellite communication
WO2019242537A1 (zh) 电子设备、用户设备、无线通信方法和存储介质
US20210289401A1 (en) Electronic device and method executed by electronic device
WO2021056582A1 (zh) 通信方法、设备及系统
US10820337B2 (en) Device in wireless communication system, and wireless communication method
JP2022543908A (ja) 電子機器、無線通信方法、及びコンピュータ読み取り可能な記憶媒体
US20200120557A1 (en) Wireless communication method and wireless communication device
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN113994724B (zh) 电子设备、无线通信方法和计算机可读存储介质
US20220321209A1 (en) Electronic device, distributed unit device, wireless communication method, and storage medium
US10028256B2 (en) Apparatus
US20230180308A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2021179982A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2019214493A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
US20230284146A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
WO2021147713A1 (zh) 电子设备、无线通信方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019822069

Country of ref document: EP

Effective date: 20201207

NENP Non-entry into the national phase

Ref country code: DE