WO2021056582A1 - 通信方法、设备及系统 - Google Patents

通信方法、设备及系统 Download PDF

Info

Publication number
WO2021056582A1
WO2021056582A1 PCT/CN2019/109231 CN2019109231W WO2021056582A1 WO 2021056582 A1 WO2021056582 A1 WO 2021056582A1 CN 2019109231 W CN2019109231 W CN 2019109231W WO 2021056582 A1 WO2021056582 A1 WO 2021056582A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
area
information
terminal device
configuration information
Prior art date
Application number
PCT/CN2019/109231
Other languages
English (en)
French (fr)
Inventor
耿婷婷
吴烨丹
严乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19946328.2A priority Critical patent/EP4024903A4/en
Priority to CN201980100696.6A priority patent/CN114424590A/zh
Priority to PCT/CN2019/109231 priority patent/WO2021056582A1/zh
Publication of WO2021056582A1 publication Critical patent/WO2021056582A1/zh
Priority to US17/656,756 priority patent/US20220217561A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication, and in particular to communication methods, equipment and systems.
  • NTN non-terrestrial networks
  • the coverage area provided by base stations or part of the base station functions deployed on high-altitude platforms or satellites can be called NTN cells.
  • the coverage area of an NTN cell is relatively large.
  • the coverage area of an NTN cell may be covered by multiple TN cells at the same time.
  • the multiple TN cells can be understood as the TN cells adjacent to the NTN, that is, the adjacent TN cells of the NTN cell.
  • the terminal equipment needs to measure a large number of frequency points when reselecting the cell, resulting in a large energy consumption of the terminal equipment. Therefore, how to reduce the energy consumption of the terminal equipment is currently urgently needed to be solved. The problem.
  • the embodiments of the present application provide a communication method, device, and system, which can reduce the energy consumption of terminal devices.
  • a communication method is provided.
  • the area configuration information from the network device is received, and the first sub-area is determined according to the area configuration information, and finally according to the information of one or more adjacent frequency points and/or one or more adjacent frequency points corresponding to the first sub-area.
  • Area information is measured.
  • the area configuration information indicates information of multiple sub-regions, the geographic area formed by the multiple sub-regions includes the coverage area of the first cell, and the first sub-region is a sub-region where the terminal device is currently located in the multiple sub-regions.
  • the current first sub-area can be determined from the multiple sub-areas that constitute the first cell according to the area configuration information sent by the network device, and then the first sub-area corresponding to the first sub-area can be determined according to the one or more adjacent frequencies corresponding to the first sub-area. Point information and/or one or more neighboring cell information is measured, therefore, energy consumption can be reduced, and reselection can be speeded up.
  • determining the first sub-area according to the area configuration information includes: obtaining the current geographic location information of the terminal device, and determining the first sub-area according to the current geographic location information and the area configuration information of the terminal device.
  • the area configuration information includes the coordinate information of the center position of each sub-area and the area radius information of each sub-area in the multiple sub-areas; the current geographic location information of the terminal device is the information of the current geographic location of the terminal device. Location coordinate information.
  • the area configuration information includes the user-readable name of each of the multiple sub-areas; determining the first sub-area according to the area configuration information includes: corresponding to the first user-readable name in the area configuration information The sub-region is determined to be the first sub-region, and the first user-readable name is a user-readable name corresponding to the current geographic location of the terminal device.
  • each adjacent frequency point information in the one or more adjacent frequency point information corresponding to the first sub-region includes the absolute wireless channel number ARFCN.
  • each adjacent frequency point information described above further includes one or more of the following: physical cell identity PCI, synchronization signal block measurement time configuration SMTC, SMTC start offset, each adjacent frequency
  • the network identification corresponding to the ARFCN included in the point information the type identification corresponding to the ARFCN included in the information of each adjacent frequency point, the network identification corresponding to the PCI, the type identification corresponding to the PCI, or each adjacent frequency point information The priority corresponding to the ARFCN included in the frequency point information.
  • the communication method further includes: sending a request message to the network device, the request message carrying indication information of the first sub-area, and the request message is used to request one or more phases corresponding to the first sub-area. Adjacent frequency point information. Based on this solution, the network device can only send one or more adjacent frequency point information corresponding to the first sub-region without sending the adjacent frequency point information corresponding to each sub-region, thus saving transmission overhead.
  • the indication information is used to determine one or more of the following: the sub-region identifier of the first sub-region, the coordinates of the center position of the first sub-region, or the user-readable name of the first sub-region.
  • the indication information is the first preamble, and the first preamble corresponds to the first sub-region; or, the indication information is the first preamble and the first access resource, and the first preamble and The first access resources all correspond to the first sub-region.
  • one or more adjacent frequency point information corresponding to the first sub-area can be implicitly requested from the network device, compared to directly sending the identification of the first sub-area, the center position coordinate information of the first sub-area, Or the user-readable name of the first sub-area, which can save transmission overhead.
  • the method and various possible designs described in the first aspect above can be implemented by a terminal device, or can be implemented by a component (such as a chip or a circuit) configurable in the terminal device.
  • a communication method is provided.
  • multiple sub-areas are determined, and the geographic area formed by the multiple sub-areas includes the coverage area of the first cell; area configuration information is sent to the terminal device, and the area configuration information indicates information of the multiple sub-areas.
  • the technical effects brought about by the second aspect can be referred to the technical effects brought about by the above-mentioned first aspect, which will not be repeated here.
  • the area configuration information includes the coordinate information of the center position of each sub-area in the multiple sub-areas and the area radius information of each sub-area.
  • the area configuration information includes the user-readable name of each sub-area in the plurality of sub-areas.
  • the area configuration information includes the coordinate information of the center position of each sub-area in the plurality of sub-areas, the area radius information of each sub-area, and the user-readable name of each sub-area.
  • the area configuration information also includes the area identification of each sub-area.
  • the communication method further includes: sending one or more adjacent frequency point information corresponding to the first sub-region to the terminal device, where the first sub-region is one of the multiple sub-regions.
  • the communication method further includes: receiving a request message from the terminal device, the request message carrying indication information of the first sub-area, and the request message is used to request one or more information corresponding to the first sub-area. Adjacent frequency point information. Based on this solution, it is possible to send only one or more adjacent frequency point information corresponding to the first sub-region to the terminal device without sending the adjacent frequency point information corresponding to each sub-region, thus saving transmission overhead.
  • the indication information is used to determine one or more of the following: the sub-region identifier of the first sub-region, the coordinates of the center position of the first sub-region, or the user-readable name of the first sub-region.
  • the indication information is the first preamble, and the first preamble corresponds to the first sub-region; or, the indication information is the first preamble and the first access resource, the first preamble and the first subregion.
  • An access resource corresponds to the first sub-region.
  • each adjacent frequency point information in the one or more adjacent frequency point information corresponding to the first sub-region includes the absolute wireless channel number ARFCN.
  • each adjacent frequency point information described above further includes one or more of the following: physical cell identity PCI, synchronization signal block measurement time configuration SMTC, SMTC start offset, each adjacent frequency
  • the network identification corresponding to the ARFCN included in the point information the type identification corresponding to the ARFCN included in the information of each adjacent frequency point, the network identification corresponding to the PCI, the type identification corresponding to the PCI, or each adjacent frequency point information The priority corresponding to the ARFCN included in the frequency point information.
  • the method and various possible designs described in the second aspect above can be implemented by a network device, or can be implemented by a component (such as a chip or a circuit) configurable in the network device.
  • a communication method is provided.
  • first configuration information from the network device is received, and the first configuration information is used to deactivate the measurement of the first neighboring cell.
  • the first neighboring cell includes at least one neighboring cell of the first cell; and stopping according to the first configuration information Measure the first neighboring cell, or reduce the priority of the first neighboring cell, or delete the first neighboring cell.
  • the number of measurements for the first neighboring cell can be reduced, thereby reducing energy consumption and speeding up reselection.
  • the first configuration information includes timer information; according to the first configuration information, stop measuring the first neighboring cell, or reduce the priority of the first neighboring cell, or delete the first neighboring cell, including: start timing In the running time of the timer, stop measuring the first neighboring cell, or reduce the priority of the first neighboring cell, or delete the first neighboring cell.
  • the first configuration information further includes one or more of the following: the number of measurements N, the signal quality threshold, and the signal quality difference threshold, where N is a positive integer.
  • starting the timer includes: starting the timer if the first neighboring cell is not measured for N consecutive times; or, if the signal quality of the first neighboring cell is measured for N consecutive times If the signal quality is lower than the signal quality threshold, start the timer; or, if the signal quality of the first neighboring cell measured for N consecutive times is lower than the signal quality threshold, and the i-th measurement
  • the difference between the signal quality of the first neighboring cell and the signal quality of the first neighboring cell measured for the i-1th time satisfies the signal quality difference threshold, and the timer is started, and i is a positive integer ,
  • the value of i is 2 to N; or, if the signal quality of the first neighboring cell measured for N consecutive times is lower than the signal quality threshold, and the difference between the first signal quality and the second signal quality If the difference value meets the signal quality difference threshold, the timer is started, and the first signal quality difference value is the signal quality of the first neighboring cell measured for the i-th time and the signal quality of the first
  • Is the difference between the signal quality of the serving cell, and the second signal quality difference is the signal quality of the first neighboring cell measured for the i-1th time and the signal quality of the first neighboring cell measured for the i-1th time. The difference between the signal quality of the serving cell.
  • the method and various possible designs described in the third aspect described above can be implemented by a terminal device, or can be implemented by a component (for example, a chip or a circuit) configurable in the terminal device.
  • a communication method and corresponding communication device are provided.
  • the first configuration information is determined, and the first configuration information is used to deactivate the priority of the first neighboring cell; and the first configuration information is sent to the terminal device.
  • the technical effects brought about by the fourth aspect can be referred to the technical effects brought about by the above-mentioned third aspect, which will not be repeated here.
  • the first configuration information includes timer information.
  • the first configuration information further includes one or more of the following: the number of measurements N, the signal quality threshold, and the signal quality difference threshold, where N is a positive integer.
  • the method and various possible designs described in the fourth aspect above can be implemented by a network device, or can be implemented by a component (such as a chip or a circuit) configurable in the network device.
  • the methods described in the first aspect and the third aspect described above can be executed individually or in combination.
  • the measurement of at least one of the one or more adjacent frequency points corresponding to the first sub-region is stopped according to the first configuration information, or the measurement of at least one adjacent frequency point corresponding to the first sub-region is reduced. Or the priority of at least one adjacent frequency point among the multiple adjacent frequency points, or delete at least one adjacent frequency point among the one or more adjacent frequency points corresponding to the first sub-region.
  • the methods described in the second aspect and the fourth aspect described above can be executed individually or in combination.
  • the first configuration information in the fourth aspect may be used to deactivate the measurement of at least one of the one or more adjacent frequency points corresponding to the first sub-region.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network equipment in the fourth aspect, or a device including the above-mentioned network equipment, or a device included in the above-mentioned network equipment.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a memory and at least one processor; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device can execute the communication device described in any of the above aspects. method.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network equipment in the fourth aspect, or a device including the above-mentioned network equipment, or a device included in the above-mentioned network equipment.
  • a communication device including: an interface circuit and at least one processor, the interface circuit may be a code/data read-write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in a memory). Wherein, it may be directly read from the memory, or may be transmitted to the processor through other devices; the processor is used to run the computer-executable instructions to execute the method described in any of the foregoing aspects.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network equipment in the fourth aspect, or a device including the above-mentioned network equipment, or a device included in the above-mentioned network equipment.
  • a communication device including: at least one processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any one of the foregoing aspects according to the instruction .
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network equipment in the fourth aspect, or a device including the above-mentioned network equipment, or a device included in the above-mentioned network equipment.
  • a computer-readable storage medium stores instructions that, when run on a communication device, enable the communication device to execute the method described in any of the foregoing aspects.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network equipment in the fourth aspect, or a device including the above-mentioned network equipment, or a device included in the above-mentioned network equipment.
  • a computer program product containing instructions which when running on a communication device, enables the communication device to execute the method described in any of the above aspects.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network equipment in the fourth aspect, or a device including the above-mentioned network equipment, or a device included in the above-mentioned network equipment.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes at least one processor for implementing the functions involved in any of the foregoing aspects.
  • the communication device further includes a memory for storing necessary program instructions and/or data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • the technical effects brought by any one of the design methods from the fifth aspect to the eleventh aspect can be referred to the technical effects brought about by the different design methods in the first aspect or the second aspect or the third aspect or the fourth aspect. , I won’t repeat it here.
  • a communication system which includes the terminal device described in the foregoing aspect and the network device described in the foregoing aspect.
  • Figure 1a is a schematic diagram of the entire coverage area of an existing NTN cell being covered by multiple TN cells;
  • Figure 1b is a schematic diagram of a partial coverage area of an existing NTN cell being covered by multiple TN cells;
  • Fig. 2a is a schematic diagram of a mapping method of an existing ground stationary cell
  • Figure 2b is a schematic diagram of a mapping method of an existing terrestrial mobile cell
  • FIG. 3 is a schematic diagram of the RRC state transition of the existing terminal equipment
  • FIG. 4 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a terminal device and a network device provided by an embodiment of this application;
  • FIG. 6 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 7a is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 7b is a schematic diagram of multiple sub-areas according to an embodiment of this application.
  • FIG. 7c is a schematic diagram of another type of multiple sub-regions provided by an embodiment of the application.
  • FIG. 8a is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 8b is a schematic diagram of an application scenario of a communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • non-terrestrial communication system non-terrestrial network, NTN
  • Non-terrestrial communication systems may include satellite systems. According to the height of the satellite, that is, the height of the satellite orbit, the satellite system can be divided into a highly elliptical orbiting (HEO), a geostationary earth orbit (GEO) satellite, a medium earth orbit (MEO) satellite, and a low orbit satellite. Orbit (low-earth orbit, LEO) satellites.
  • the non-ground communication system may also include a high altitude platform (HAPS) communication system.
  • HAPS high altitude platform
  • GEO satellites are also called geostationary satellites, and their moving speed is the same as the rotation speed of the earth. Therefore, GEO satellites remain stationary relative to the ground.
  • the cells of GEO satellites are also stationary. The coverage of the GEO satellite cell is relatively large, and the diameter of the cell is generally 500km.
  • the LEO satellite moves faster than the ground, about 7Km/s, so the service coverage area provided by the LEO satellite also moves.
  • the satellite cell mapping mode includes the mapping mode of the ground stationary cell and the mapping mode of the ground mobile cell.
  • the mapping method of the ground stationary cell means that the cell position is not moving on the ground, and the moving satellite adjusts its beam to form these cells.
  • cell 1 and cell 2 are covered by the beam of satellite 1
  • cells 3 and 4 are covered by the beam of satellite 2
  • time T2 although both satellite 1 and satellite 2 move to the left, they can still be adjusted Its own beam ensures the coverage of cell 1, cell 2, cell 3 and cell 4
  • time T3 Compared with time T1, satellite 1 and satellite 2 have moved a sufficient distance, and satellite 1 cannot provide cell 2 by adjusting the beam Coverage, satellite 2 cannot provide coverage for cell 4 by adjusting the beam.
  • satellite 2 can provide coverage for cell 2, while satellite 3 can provide coverage for cell 4.
  • the mapping method of the ground mobile cell means that the satellite does not dynamically adjust its beam direction, and the cell covered by the satellite moves on the ground with the movement of the satellite.
  • area 1, area 2, area 3, and area 4 are covered by cell 1 and cell 2 formed by satellite 1, and cell 3 and cell 4 formed by satellite 2, and at time T3, Area 1, area 2, area 3, and area 4 are covered by a cell 2, a cell 3 and a cell 4 formed by a satellite 2, and a cell 5 formed by a satellite 3, respectively.
  • the RRC state of the terminal device includes the following three states: RRC connected state (RRC_CONNECTED), RRC inactive state (RRC_INACTIVE), and RRC idle state (RRC_IDLE). The transition of the three states is shown in Figure 3.
  • the terminal device when the terminal device is in the RRC connection state, the terminal device has established a connection with the access network device and the core network device. When data arrives on the network, it can be directly transmitted to the terminal device; when the terminal device is in the RRC inactive state , A link has been established between the terminal equipment and the access network equipment and the core network equipment, but the link between the terminal equipment and the access network equipment is released. At this time, the terminal equipment and the access network equipment store the terminal equipment In the context of, when there is data to be transmitted, the access network device can quickly restore the link; when the terminal device is in the RRC idle state, no link has been established between the terminal device and the access network device and the core network device. When there is data to be transmitted, a link from the terminal device to the access network device and the core network device needs to be established first.
  • RRC state is only an example, and should not constitute any limitation to this application. This application does not exclude the definition of other possible names in future agreements to replace existing names, but with the same or similar characteristics, or other states may also appear.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not limit the difference.
  • orthogonal frequency-division multiple access OFDMA
  • single carrier frequency-division multiple access single carrier frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • NTN system and other systems.
  • system can be used interchangeably with "network”.
  • the OFDMA system can implement wireless technologies such as evolved universal terrestrial radio access (E-UTRA) and ultra mobile broadband (UMB).
  • E-UTRA is an evolved version of the Universal Mobile Telecommunications System (UMTS).
  • UMTS Universal Mobile Telecommunications System
  • 3rd generation partnership project, 3GPP uses the new version of E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • the fifth generation (5thgeneration, 5G) communication system is the next generation communication system under study.
  • 5G communication systems include non-standalone (NSA) 5G mobile communication systems, standalone (SA) 5G mobile communication systems, or NSA’s 5G mobile communication systems and SA’s 5G mobile communication systems.
  • NSA non-standalone
  • SA standalone
  • 5G mobile communication systems or SA’s 5G mobile communication systems and SA’s 5G mobile communication systems.
  • Communication Systems may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the above-mentioned communication system applicable to the present application is only an example, and the communication system applicable to the present application is not limited to this, and the description is unified here, and the details are not repeated below.
  • the communication system 10 includes at least one network device 30 and one or more terminal devices 40 connected to the network device 30.
  • different terminal devices 40 can communicate with each other.
  • the network device 30 determines multiple sub-areas and sends area configuration information to the terminal device 40.
  • the geographic area range formed by the multiple sub-areas includes the coverage area of the first cell, and the area configuration information indicates information of the multiple sub-areas.
  • the terminal device 40 receives the area configuration information from the network device 30, determines the first sub-area according to the area configuration information, and according to the one or more adjacent frequency point information corresponding to the first sub-area and/or one or more The neighboring cell information is measured, where the first sub-area is a sub-area where the terminal device 40 is currently located among the multiple sub-areas.
  • the terminal device can determine the current first sub-area from among the multiple sub-areas that constitute the first cell according to the area configuration information sent by the network device, and then according to one or more phases corresponding to the first sub-area.
  • the adjacent frequency point information and/or the information of one or more adjacent cells are measured. Therefore, the energy consumption of the terminal device can be reduced, and the reselection of the terminal device can be speeded up.
  • the network device 30 sends the first configuration information to the terminal device 40,
  • the first configuration information is used to deactivate the measurement of the first neighboring cell, and the first neighboring cell includes at least one neighboring cell of the first cell.
  • the terminal device 40 receives the first configuration information from the network device 30, stops measuring the first neighboring cell according to the first configuration information, or reduces the priority of the first neighboring cell, or deletes the first neighboring cell.
  • the terminal device can stop measuring the first neighboring cell according to the first configuration information sent by the network device, or reduce the priority of the first neighboring cell, or delete the first neighboring cell, the quality in the first neighboring cell is poor Or in the case that the first neighboring cell cannot be measured, compared to the prior art scheme of frequently measuring the first neighboring cell, the number of measurements for the first neighboring cell can be reduced, thereby reducing the energy consumption of the terminal equipment and speeding up the terminal Reselection of equipment.
  • the terminal device 40 receives the area configuration information from the network device 30, and determines the first sub-area according to the area configuration information.
  • the measurement is performed according to one or more adjacent frequency point information and/or one or more adjacent cell information corresponding to the first sub-region; in addition, the terminal device 40 also receives the first configuration information from the network device 30,
  • a configuration information is used to deactivate the measurement of at least one neighboring cell of the first sub-region, so that the terminal device 40 stops measuring at least one neighboring cell of the first sub-region according to the first configuration information, or reduces at least one neighboring cell of the first sub-region.
  • the network device 30 in the embodiment of the present application is a device that connects the terminal device 40 to the wireless network, and may be an evolved Node B (eNB or eNodeB) in LTE; or a 5G network Or base stations in the public land mobile network (PLMN), broadband network gateway (BNG), convergence switch or non-third generation partnership project (3rd generation partnership project, 3GPP) in the future evolving public land mobile network (PLMN) Access equipment, etc., which are not specifically limited in the embodiment of the present application.
  • eNB evolved Node B
  • eNodeB evolved Node B
  • BNG broadband network gateway
  • 3GPP non-third generation partnership project
  • PLMN future evolving public land mobile network
  • the base stations in the embodiments of the present application may include base stations in various forms, such as macro base stations, micro base stations (also called small stations), relay stations, access points, next-generation base stations (gNodeB, gNB), and home base stations.
  • Base station for example, home evolved nodeB, or home node B, HNB
  • BBU baseband unit
  • TRP transmission point
  • TP transmission point
  • mobile switching center etc.
  • the network device 30 in the embodiment of the present application may be deployed on a high-altitude platform or a satellite.
  • the network device 30 in the embodiment of the present application may also refer to a centralized unit (CU) or a distributed unit (DU).
  • the network device may also be composed of CU and DU. of.
  • CU and DU can be understood as the division of base stations from the perspective of logical functions.
  • the CU and the DU may be physically separated or deployed together, which is not specifically limited in the embodiment of the present application.
  • the CU and the DU can be connected through an interface, for example, an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • radio resource control For example, radio resource control, RRC protocol layer, service data adaptation protocol stack (service data adaptation protocol, SDAP) protocol layer, and packet data convergence protocol (packet data convergence protocol, PDCP) protocol layer functions are set in the CU, and The functions of the radio link control (RLC) protocol layer, the media access control (MAC) protocol layer, and the physical (PHY) protocol layer are set in the DU.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the CU can be composed of a CU control plane (CU-CP) and a CU user plane (CU-UP).
  • CU-CP and CU-UP can be understood as slave logic functions to the CU The angle is divided.
  • CU-CP and CU-UP can be divided according to the protocol layer of the wireless network.
  • the functions of the PDCP protocol layer corresponding to the RRC protocol layer and the signaling radio bearer (signal radio bearer, SRB) are set in the CU-CP, and the data The function of the PDCP protocol layer corresponding to the data radio bearer (DRB) is set in the CU-UP.
  • DRB data radio bearer
  • the functions of the SDAP protocol layer may also be set in CU-UP.
  • the terminal device 40 in the embodiment of the present application may be a device used to implement wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and wireless communication in a 5G network or a future evolved PLMN.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving (self-driving), wireless terminal in remote medical (remote medical), wireless terminal in smart grid (smart grid), wireless terminal in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal can be mobile or fixed.
  • the network device 30 and the terminal device 40 in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • FIG. 5 a schematic diagram of the structure of the network device 30 and the terminal device 40 provided in this embodiment of the present application.
  • the terminal device 40 includes at least one processor (in FIG. 5 exemplarily includes a processor 401 as an example for illustration) and at least one transceiver (in FIG. 5 exemplarily includes a transceiver 403 as an example for illustration) ).
  • the terminal device 40 may further include at least one memory (in FIG. 5 exemplarily includes a memory 402 for illustration), at least one output device (in FIG. 5 exemplarily includes an output device 404 as an example) For description) and at least one input device (in FIG. 5, one input device 405 is exemplarily described as an example).
  • the processor 401, the memory 402, and the transceiver 403 are connected through a communication line.
  • the communication line may include a path to transmit information between the above-mentioned components.
  • the processor 401 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of this application. Circuit.
  • the processor 401 may also include multiple CPUs, and the processor 401 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 402 may be a device having a storage function. For example, it can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions. Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory 402 may exist independently, and is connected to the processor 401 through a communication line. The memory 402 may also be integrated with the processor 401.
  • the memory 402 is used to store computer execution instructions for executing the solution of the application, and the processor 401 controls the execution.
  • the processor 401 is configured to execute computer-executable instructions stored in the memory 402, so as to implement the communication method described in the embodiment of the present application.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiments of the present application.
  • the transceiver 403 may use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, RAN, or wireless local area networks (WLAN).
  • the transceiver 403 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 404 communicates with the processor 401, and can display information in a variety of ways.
  • the output device 404 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • the input device 405 communicates with the processor 401, and can accept user input in a variety of ways.
  • the input device 405 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the network device 30 includes at least one processor (in FIG. 5 exemplarily includes a processor 301 as an example for illustration), at least one transceiver (in FIG. 5 exemplarily includes a transceiver 303 as an example for illustration), and At least one network interface (in FIG. 5, one network interface 304 is included as an example for illustration).
  • the network device 30 may further include at least one memory (in FIG. 5, one memory 302 is exemplarily described as an example).
  • the processor 301, the memory 302, the transceiver 303, and the network interface 304 are connected through a communication line.
  • the network interface 304 is used to connect to the core network device through a link (for example, the S1 interface), or to connect with the network interface of other network devices (not shown in FIG. 5) through a wired or wireless link (for example, the X2 interface).
  • the application embodiment does not specifically limit this.
  • the processor 301, the memory 302, and the transceiver 303 reference may be made to the description of the processor 401, the memory 402, and the transceiver 403 in the terminal device 40, which will not be repeated here.
  • FIG. 6 is a specific structural form of the terminal device 40 provided in an embodiment of the application.
  • the functions of the processor 401 in FIG. 5 may be implemented by the processor 110 in FIG. 6.
  • the function of the transceiver 403 in FIG. 5 may be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 6.
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 40 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the terminal device 40.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 can provide applications on the terminal device 40 including wireless local area networks (WLAN) (such as Wi-Fi networks), Bluetooth (bluetooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • Bluetooth blue, BT
  • global navigation satellite system global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 40, which means that the first device includes an NFC chip.
  • the NFC chip can improve the NFC wireless communication function.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 40, which means that the first device includes an electronic tag (such as a radio frequency identification (RFID) tag). ).
  • RFID radio frequency identification
  • the antenna 1 of the terminal device 40 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 40 can communicate with the network and other devices through wireless communication technology.
  • Wireless communication technologies can include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), and broadband code division. Multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), LTE, BT, GNSS, WLAN, NFC, FM, or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the function of the memory 402 in FIG. 5 may be implemented by an external memory (such as a Micro SD card) connected to the internal memory 121 or the external memory interface 120 in FIG. 6.
  • an external memory such as a Micro SD card
  • the function of the output device 404 in FIG. 5 may be implemented by the display screen 194 in FIG. 6.
  • the display screen 194 is used to display images, videos, and so on.
  • the display screen 194 includes a display panel.
  • the function of the input device 405 in FIG. 5 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 6.
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • a pressure sensor 180A a pressure sensor 180A
  • a gyroscope sensor 180B an air pressure sensor 180C
  • a magnetic sensor 180D e.g., a MEMS acceleration sensor 180E
  • a distance sensor 180F e.g., a distance sensor 180F
  • a proximity light sensor 180G e.g., a a proximity light sensor 180G
  • a fingerprint sensor 180H e.g., a fingerprint sensor 180H.
  • the terminal device 40 may also include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, where the audio module 170 can be connected to a speaker 170A (also called a “speaker”), a receiver 170B (also called a “handset”), a microphone 170C (also called a “microphone”, “Microphone”) or the earphone interface 170D, etc., which are not specifically limited in the embodiment of the present application.
  • a speaker 170A also called a “speaker”
  • a receiver 170B also called a “handset”
  • a microphone 170C also called a “microphone”, "Microphone”
  • the earphone interface 170D etc.
  • the structure shown in FIG. 6 does not constitute a specific limitation on the terminal device 40.
  • the terminal device 40 may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the interaction between the network device and the terminal device can also be applied to the interaction between the CU and the terminal device, or the interaction between the DU and the terminal device. It can be understood that the interaction mechanism between the network device and the terminal device in the various embodiments of the present application can be appropriately modified to adapt to the interaction between the CU or DU and the terminal device.
  • the communication method includes the following steps:
  • the network device determines multiple sub-areas.
  • the sub-area represents the actual geographic area range, and the geographic area range formed by multiple sub-areas includes the coverage area of the first cell.
  • the geographic area formed by the multiple sub-areas is the same as the coverage area of the first cell, that is, the coverage area of the first cell may be divided into multiple sub-areas.
  • the solid line represents the coverage area of the first cell
  • the dashed line represents the division of the coverage area of the first cell.
  • the coverage area of the first cell is divided into sub-region 1, sub-region 2, sub-region 3, and sub-region.
  • Region 4 has 4 sub-regions. It should be noted that FIG. 7b is only an exemplary division method, and there may be other division methods in practical applications.
  • the embodiment of the present application does not specifically limit the number of sub-areas and the way of dividing the sub-areas. It is understandable that the sub-area is not equivalent to a cell. For example, as shown in Figure 7b, it cannot be understood as the first cell is divided into 4 cells, but it should be understood that the coverage area of the first cell can be divided into 4 cells. Geographic area. It is understandable that sub-regions can also be considered as logical sub-cells.
  • the geographic area formed by multiple sub-areas may be larger than the coverage area of the first cell.
  • the area formed by the solid line represents the coverage area of the first cell
  • the 4 areas formed by the dashed line represent the sub-area 1, sub-area 2, sub-area 3, and sub-area 4.
  • the 4 areas The area range of is larger than the coverage area of the first cell.
  • the coverage area of the first cell may be divided into multiple sub-areas by the network device, or other network elements (for example, operation administration and maintenance (OAM) network elements)
  • OAM operation administration and maintenance
  • the coverage area of the first cell is divided, and then the information of the multiple sub-areas is sent to the network device, which is not specifically limited in the embodiment of the present application.
  • the terminal device may perform adjacent frequency or adjacent cell measurement according to this division. That is to say, within this period of time, steps S701-S702 in the embodiment of this application can be executed once, and the following steps S703-S704 in the embodiment of this application can be executed multiple times.
  • the first cell is any one of one or more cells under the network device.
  • the area range of each sub-area in the multiple sub-areas may have no overlap or overlap, but the area range of one sub-area cannot completely cover the area range of another sub-area.
  • the first cell may be an NTN cell or a TN cell, which is not specifically limited in the embodiment of the present application, and is described here in a unified manner, and the following embodiments will not be repeated.
  • S702 The network device sends area configuration information to the terminal device.
  • the terminal device receives the area configuration information from the network device.
  • the area configuration information indicates the information of the multiple sub-areas.
  • the first cell is the current serving cell of the terminal device.
  • the network device may send the area configuration information to all terminal devices in the first cell through a broadcast message; or, it may separately send the area configuration information to the terminal equipment in the first cell through a unicast message; or, it may send the area configuration information through a multicast message.
  • the area configuration information is sent to a group of terminal devices in the first cell, which is not specifically limited in the embodiment of the present application.
  • the network device may carry the area configuration information in a system message and send it, or it may carry it in a dedicated RRC message and send it, which is not specifically limited in the embodiment of the present application.
  • the content of the area configuration information may also be different:
  • the area configuration information may include the coordinate information of the center position of each sub-area in the multiple sub-areas and the area radius information of each sub-area; or the area configuration information may include the user-readable name of each sub-area; Alternatively, the area configuration information may include the center position coordinate information of each sub-area, the area radius information of each sub-area, and the user-readable name of each sub-area. In addition, the area configuration information may also include the area identification of each sub-area.
  • the area configuration information may be ⁇ center position coordinate 1, area radius 1 ⁇ , ⁇ center position coordinates 2, area radius 2 ⁇ ; or, when the area configuration information includes the center position coordinate information, area radius information, and sub area identification of each of the multiple sub areas, the area configuration information can be ⁇ sub area 1 , Center position coordinate 1, area radius 1 ⁇ , ⁇ sub-area 2, center position coordinate 2, area radius 2 ⁇ .
  • the area configuration information can directly indicate the area identification of each sub-area, for example, the configuration information is ⁇ sub-area 1, center position coordinate 1, area radius 1 ⁇ ; or, it can also indirectly indicate the area identification of each sub-area, Exemplarily, the order of the sub-areas in the area configuration information is the area identifier of the sub-area.
  • ⁇ center position coordinate 1, area radius 1 ⁇ is the first sub-area information in the area configuration information, which can correspond to the sub-area information.
  • Area 1, ⁇ center position coordinate 2, area radius 2 ⁇ is the second sub-area information in the area configuration information, and can correspond to sub-area 2.
  • the center position coordinate information of each sub-region is different, and the area radius information of each sub-region may be the same or different.
  • the user-readable name of each sub-area can reflect the area scope of the sub-area.
  • the network device divides the first cell into 2 sub-areas, and the center position of the first sub-region is the center of the circle.
  • the radius of the first sub-region is the area within the radius of Huangpu District, Shanghai, then users in the first sub-region
  • the human-readable name can be Shanghai Huangpu District;
  • the center of the second sub-region is the center of the circle, and the area with the radius of the second sub-region as the radius is Shanghai Xuhui District, then the user-readable name of the second sub-region can be Xuhui District, Shanghai; or, the user-readable name of each sub-area can reflect a certain location in the sub-area.
  • the user-readable name of the first sub-area can be the name of a landmark building in Shanghai Huangpu District.
  • the network device determines multiple sub-areas, it can determine the area range of each sub-area (for example, the coordinate information of the center position of each sub-area and the area radius information), but in the area configuration information, it can only carry the information of the sub-area.
  • the network device determines multiple sub-areas, it can determine the area range of each sub-area (for example, the coordinate information of the center position of each sub-area and the area radius information), but in the area configuration information, it can only carry the information of the sub-area.
  • User-readable name for example, the coordinate information of the center position of each sub-area and the area radius information
  • the region configuration information may include the length and width of each subregion in the multiple subregions.
  • the area configuration information may also include the total number of sub-regions in the direction of the longitude line and the total number of sub-regions in the direction of the latitude line.
  • the total number of sub-regions in the direction of the line of longitude is the total number of sub-regions in the direction of the line of longitude corresponding to the coverage of the first cell
  • the total number of sub-regions in the direction of the latitude line is the total number of sub-regions in the direction of the latitude line corresponding to the coverage of the first cell.
  • the product of the total number of subregions in the direction of the longitude line and the total number of subregions in the direction of the latitude line is the number of multiple subregions that constitute the coverage of the first cell in step S701.
  • the area configuration information may also include the user-readable name of each sub-area.
  • the description of the user-readable name refer to the foregoing description, which is not repeated here.
  • the length and width of the same sub-region in the multiple sub-regions may be the same or different.
  • the length and width may both be 200, or the length and width may be 200 and 200, respectively.
  • the length and width of sub-region 1 can be 200 respectively.
  • the length and width of sub-region 2 may be 400 and 300, respectively; or the length and width of sub-region 1 may be 200 and 100, respectively, and the length and width of sub-region 2 are also 200 and 100, respectively.
  • the embodiment of the present application There is no specific restriction on this.
  • the terminal device determines the first sub-area according to the area configuration information.
  • the first sub-area is a sub-area where the terminal device is currently located among the multiple sub-areas.
  • the terminal device determines the first sub-area according to the area configuration information, which may be: the terminal device obtains the current geographic location information of the terminal device, and according to the current geographic location of the terminal device The location information and the area configuration information determine the first sub-area.
  • the area configuration information may be: the terminal device obtains the current geographic location information of the terminal device, and according to the current geographic location of the terminal device The location information and the area configuration information determine the first sub-area.
  • the terminal device determines the first sub-area in a different manner according to the current geographic location information and area configuration information of the terminal device.
  • the terminal device determines the first sub-area in a different manner according to the current geographic location information and area configuration information of the terminal device.
  • the area configuration information includes the coordinate information of the center position of each sub-area in the multiple sub-areas and the area radius information of each sub-area.
  • the current geographic location information of the terminal device acquired by the terminal device may be the location coordinate information of the geographic location where the terminal device is currently located.
  • the first sub-area is a sub-area whose sub-area radius is less than the first straight-line distance, and the first straight-line distance is the difference between the coordinates of the center position of the sub-area corresponding to the radius of the sub-area and the position coordinates of the current geographic location of the terminal device Straight line distance.
  • the terminal device may calculate the linear distance corresponding to each sub-area separately, and then compare the linear distance corresponding to each sub-area with the area radius corresponding to each sub-area; if the linear distance corresponding to a certain sub-area is less than The area radius corresponding to the sub-area, and the terminal device determines that the sub-area is the first sub-area.
  • the straight-line distance corresponding to each sub-area is the straight-line distance between the position coordinates of the geographic location where the terminal device is currently located and the center position coordinates of each sub-area.
  • the sub-region with the smallest difference between the linear distance corresponding to the sub-region and the region radius corresponding to the sub-region is determined as the first sub-region. area.
  • the network device divides the first cell into 2 sub-areas, and the area configuration information includes ⁇ central location coordinate 1, area radius 1 ⁇ , ⁇ central location coordinate 2, area radius 2 ⁇ , the location of the current geographic location of the terminal device
  • the coordinate is the position coordinate 0
  • the linear distance between the center position coordinate 1 and the position coordinate 0 calculated by the terminal device is the distance 1
  • the linear distance between the center position coordinate 2 and the position coordinate 0 is the distance 2 if the distance 1 is greater than the area radius 1.
  • the distance 2 is less than the area radius 2
  • the terminal device determines the sub-area corresponding to ⁇ center position coordinate 2, area radius 2 ⁇ as the first sub-area; or, if the distance 1 is less than the area radius 1, the distance 2 is greater than the area radius 2.
  • the terminal device determines the sub-area corresponding to ⁇ center position coordinate 1, area radius 1 ⁇ as the first sub-area. If distance 1 is less than area radius 1, and distance 2 is also less than area radius 2, the terminal device calculates the difference between distance 1 and area radius 1, and the difference between distance 2 and area radius 2, if the difference between distance 1 and area radius 1 is less than distance 2 If the difference is between the area radius and the area radius 2, the terminal device determines the sub-area corresponding to ⁇ center position coordinate 1, area radius 1 ⁇ as the first sub-area.
  • the area configuration information includes the length of each sub-area and the width of each sub-area in the multiple sub-areas; further, the area configuration information also includes the total number of sub-areas in the direction of the longitude line and the total number of sub-areas in the direction of the latitude line.
  • the length of different sub-areas of the multiple sub-areas is the same, and the width of different sub-areas is the same as an example for description.
  • the area configuration information may also include the area identifier of each sub-area.
  • the current geographic location information of the terminal device acquired by the terminal device may be the location coordinates (x, y) of the geographic location where the terminal device is currently located.
  • x is the distance of the terminal device from the relative reference point of the location system adopted by the terminal device in the longitude direction
  • y is the distance of the terminal device from the relative reference point of the location system in the latitude direction.
  • the position system adopted by the terminal device may be, for example, the Global Positioning System (GPS), or the Beidou satellite system, or other positioning systems; the relative reference point of the position system may be based on the difference of the position system. However, it may be (0, 0) or others, which is not specifically limited in the embodiment of the present application.
  • GPS Global Positioning System
  • Beidou satellite system or other positioning systems
  • the relative reference point of the position system may be based on the difference of the position system.
  • it may be (0, 0) or others, which is not specifically limited in the embodiment of the present application.
  • the terminal device determines the first sub-region according to the current geographic location information and area configuration information of the terminal device, which can be: the terminal device determines the first sub-region according to the distance in the longitude direction, the length of each sub-region, and the sub-region of the longitude line.
  • the total number of areas determine the position of the terminal device in the longitude direction; determine the position of the terminal device in the latitude direction according to the distance in the latitude direction, the width of each sub-area, and the total number of sub-areas in the latitude direction; and then according to the longitude direction
  • the position and the position in the latitude direction determine the sub-area identifier, and the sub-area identified by the sub-area identifier is the first sub-area.
  • the position of the terminal device in the longitude direction may satisfy the following formula (1):
  • the position of the terminal equipment in the latitude direction can satisfy the following formula (2):
  • the sub-region identification can satisfy the following formula (3):
  • zone_id y 1 *Nx+x 1 ;
  • x is the distance of the terminal device from the relative reference point of the position system adopted by the terminal device in the longitude direction
  • y is the distance of the terminal device from the relative reference point of the position system in the latitude direction
  • L is the length of each sub-area
  • Nx is the total number of sub-areas in the direction of longitude lines
  • Ny is the total number of sub-areas in the direction of latitude lines
  • W is the width of each sub-area
  • x 1 is the position of the terminal device in the longitude direction
  • y 1 is the position of the terminal device in the latitude direction.
  • zone_id is the identification of the sub-zone determined by the terminal device, the symbol Means rounding down, and the symbol% means rounding down.
  • the terminal device determines the first sub-area according to the area configuration information, and The method is: the terminal device determines the sub-area corresponding to the first user-readable name in the area configuration information as the first sub-area.
  • the first user-readable name is a user-readable name corresponding to the current geographic location of the terminal device.
  • the user can manually determine the current geographic location of the terminal device.
  • the user can carry the terminal device with him and determine the user's current geographic location as the current geographic location of the terminal device.
  • the terminal device can request a user-readable name corresponding to the current geographic location of the terminal device from the user through the human-computer interaction interface.
  • the terminal device can display the user-readable name of each of the multiple sub-regions on the human-computer interaction interface, and the user (manually) selects the user-readable name corresponding to the current geographic location of the terminal device from the multiple user-readable names .
  • the terminal device determines the sub-region corresponding to the user-readable name as the first sub-region.
  • the user-readable name of the sub-area reflects the area range of the sub-area.
  • the network device divides the first cell into 3 sub-areas, and the user-readable name of each sub-area is ⁇ Shanghai Huangpu District ⁇ , ⁇ Shanghai Xuhui District ⁇ , ⁇ Shanghai Pudong District ⁇ , the terminal device can display the user-readable names of 3 sub-areas on the human-computer interaction interface. If the user determines that the terminal device is currently in Xuhui District, the user selects Shanghai Xuhui District through the human-computer interaction interface, and then, The terminal device determines the sub-area corresponding to ⁇ Shanghai Xuhui District ⁇ as the first sub-area.
  • the user-readable name of the sub-area reflects a certain location of the sub-area
  • the network equipment divides the first cell into 3 sub-areas
  • the user-readable name of each sub-area is ⁇ Landmark 1 ⁇ and ⁇ Landmark Building 2 ⁇ , ⁇ Iconic Building 3 ⁇ , and Landmark Building 1, Landmark Building 2, and Landmark Building 3 respectively belong to 3 sub-areas
  • the terminal device can display the user-readable names of the 3 sub-areas on the human-computer interaction interface If the user determines that the terminal device is currently closest to the landmark building 1, the user selects the landmark building 1 through the human-computer interaction interface, and then the terminal device determines the sub-region corresponding to the ⁇ landmark building 1 ⁇ as the first sub-region.
  • the terminal device performs measurement according to one or more adjacent frequency point information and/or one or more adjacent cell information corresponding to the first sub-region.
  • the one or more adjacent frequency information corresponding to the first sub-region is part of the adjacent frequency information in the multiple adjacent frequency information of the first cell; one or more adjacent frequency information corresponding to the first sub-region
  • the multiple neighboring cell information is part of the neighboring cell information in the multiple neighboring cell information of the first cell.
  • each adjacent frequency information in one or more adjacent frequency information corresponding to the first sub-region includes an absolute radio frequency channel number (ARFCN), and an ARFCN indicates a phase of the first cell. Adjacent frequency points, the ARFCN included in each adjacent frequency point information is different.
  • ARFCN absolute radio frequency channel number
  • ARFCN indicates a phase of the first cell. Adjacent frequency points, the ARFCN included in each adjacent frequency point information is different.
  • the adjacent frequency point of the first cell may be at least one of the same frequency adjacent frequency point, the different frequency adjacent frequency point, or the adjacent frequency point of the different system.
  • the adjacent frequency point information in the embodiment may be at least one of the same frequency adjacent frequency point information, different frequency adjacent frequency point information, or different system adjacent frequency point information, which is not specifically limited in the embodiment of this application. In this unified description, the following embodiments will not be repeated.
  • each adjacent frequency point information in the one or more adjacent frequency point information corresponding to the first sub-region may further include one or more of the following parameters: physical cell identifier (PCI) , PCI-corresponding type identification, PCI-corresponding network identification, synchronization signal block (synchronization signal block, SSB) measurement time configuration (SSB measurement timing configuration, SMTC), SMTC start offset, information included in each adjacent frequency point
  • PCI physical cell identifier
  • SSB synchronization signal block
  • SSB measurement time configuration
  • SMTC SSB measurement timing configuration
  • SMTC start offset information included in each adjacent frequency point
  • the network identifier corresponding to the ARFCN the type identifier corresponding to the ARFCN included in each adjacent frequency point information, or the priority corresponding to the ARFCN included in each adjacent frequency point information.
  • the type information is used to indicate the cell type, such as an NTN cell or a TN cell.
  • the type identifier indicating the NTN cell may be GEO, MEO, LEO, HAPS, etc.
  • the network identification can be a private network identification (non-public network identification, NPN ID) or a public network identification; a private network is a concept relative to the public network, which can be understood as a private network, such as an internal network built by a company, school, or factory ;
  • the private network can also be called a non-public network (NPN); terminal devices that have not signed a contract with the private network are not allowed to access the private network;
  • the private network identifier can include a standalone non-public network (SNPN) ) Identification, closed access group (closed access group, CAG) identification; usually the private network identification can be used to identify the private network type; different terminal devices support different private network identification, and the terminal device can only correspond to the private network identification that it supports The private network of resident resides, and can
  • the SSB can also be understood as a synchronization signal/physical broadcast channel block (synchronization signal/physical broadcasting channel block, SS/PBCH block).
  • the SMTC may include, for example, one or more of the period, duration, and offset during which the terminal device receives the SS/PBCH block.
  • the period of the SMTC is used to determine the start frame for receiving the SS/PBCH block
  • the SMTC start offset is used to determine the start position of the start frame
  • the SMTC offset is used to determine the offset relative to the start position position.
  • the terminal device may receive one or more adjacent frequency point information corresponding to the first sub-region from the network device.
  • the terminal device after determining the first sub-region, sends a request message for requesting information of one or more adjacent frequency points corresponding to the first sub-region to the network device.
  • the request message carries indication information of the first subarea, and the indication information is used to determine one or more of the following: the subarea identifier of the first subarea, the coordinates of the center position of the first subarea, or the first subarea The human-readable name of.
  • the network device After receiving the request message, the network device sends one or more adjacent frequency point information corresponding to the first sub-region to the terminal device.
  • the network device may send one or more adjacent frequency point information corresponding to the first sub-region to the terminal device through a system message or a dedicated RRC message.
  • the indication information may include one or more of the sub-region identifier of the first sub-region, the center position coordinate information of the first sub-region, or the user-readable name of the first sub-region.
  • the indication information may be a first preamble, and the first preamble corresponds to the first sub-region.
  • the terminal device may first receive the correspondence between the first preamble and the first sub-region from the network device. After receiving the first preamble, the network device sends one or more adjacent frequency point information corresponding to the first sub-region to the terminal device. Specifically, the network device may determine, according to the correspondence between the first preamble and the first sub-region, that the terminal device requests one or more adjacent frequency point information corresponding to the first sub-region, so as to set the information corresponding to the first sub-region. One or more adjacent frequency point information is sent to the terminal device.
  • the indication information may be a first preamble and a first access resource, where both the first preamble and the first access resource correspond to the first sub-region, and the first access resource is used for The physical time-frequency resource for sending the first preamble.
  • the terminal device may first receive the correspondence between the first preamble, the first access resource, and the first sub-region from the network device.
  • the terminal device may send the first preamble on the first access resource to request information of one or more adjacent frequency points corresponding to the first sub-region.
  • the network device After receiving the first preamble on the first access resource, the network device sends one or more adjacent frequency point information corresponding to the first sub-region to the terminal device.
  • the network device may determine that the terminal device requests one or more adjacent frequency information corresponding to the first sub-region according to the correspondence between the first preamble, the first access resource, and the first sub-region. , Thereby sending the one or more adjacent frequency point information corresponding to the first sub-region to the terminal device. It should be noted that when the network device receives the first preamble on access resources other than the first access resource, the network device performs other processing, such as random access related processing. For details, please refer to the prior art , I won’t repeat it here.
  • the indication information may be bitmap information, that is, the terminal device may use the bitmap information to indicate the first sub-region.
  • the bitmap information may be 3 bits.
  • One possible way of correspondence is that the first bit corresponds to the first subregion of the 3 subregions, the second bit corresponds to the second subregion of the 3 subregions, and the third bit corresponds to the third subregion of the 3 subregions. Three bits. If the first sub-region determined by the terminal device is the second sub-region among the three sub-regions, the bitmap information may be 010.
  • the network device After the network device receives the bitmap information, it can determine that the terminal device requests one or more adjacent frequency information corresponding to the second sub-region among the three sub-regions, so as to compare one or more adjacent frequency points corresponding to the second sub-region.
  • the adjacent frequency point information is sent to the terminal device.
  • the nth subregion may be determined according to the order of the subregions in the region configuration information, or may be a subregion corresponding to the subregion identifier of the region configuration information.
  • the terminal device may send to the network device a request message for requesting information of one or more adjacent frequency points corresponding to each sub-region in all sub-regions.
  • the network device After receiving the request message, the network device sends one or more adjacent frequency point information corresponding to each sub-area to the terminal device, and the terminal device uses the coordinate information of the center position of the first sub-area, or the sub-area identification, or the user can The read name determines one or more adjacent frequency point information corresponding to the first sub-region from the one or more adjacent frequency point information corresponding to each sub-region.
  • the network device may send the corresponding relationship between the second preamble and the first system message to the terminal device.
  • the terminal device When a terminal device needs to request information about one or more adjacent frequency points corresponding to each sub-region in all sub-regions, the terminal device sends the second preamble. After receiving the second preamble, the network device sends the first system message to For terminal equipment, the first system message carries information about one or more adjacent frequency points corresponding to each sub-region in all sub-regions.
  • the network device may send the corresponding relationship between the second preamble, the second access resource, and the first system message to the terminal device.
  • the terminal device sends a second preamble on the second access resource, and the network device receives it on the second access resource.
  • the first system message is sent to the terminal device, and the first system message carries information about one or more adjacent frequency points corresponding to each sub-region in all sub-regions.
  • the network device performs other processing, such as random access related processing. For details, please refer to the prior art , I won’t repeat it here.
  • the terminal device can explicitly or implicitly request one or more adjacent frequency point information corresponding to the first sub-area from the network device, and obtain the one or more adjacent frequency point information corresponding to the first sub-area, thereby directly Perform measurement according to the information of one or more adjacent frequency points corresponding to the first sub-region; or request the network device for the information of one or more adjacent frequency points corresponding to each sub-region in all sub-regions, and obtain the information of one or more adjacent frequency points in all sub-regions.
  • the information of one or more adjacent frequency points corresponding to each sub-area is then determined from the one or more adjacent frequency points corresponding to each sub-area according to the coordinate information of the center position of the first sub-area, or the sub-area identifier, or the user-readable name.
  • One or more adjacent frequency point information corresponding to the first sub-region is determined from the point information, so that measurement is performed according to the one or more adjacent frequency point information corresponding to the first sub-region.
  • the terminal device does not need to send a request message to the network device, and the network device actively sends one or more adjacent frequency point information corresponding to each of the multiple sub-regions to the terminal device.
  • the network device can carry one or more adjacent frequency point information and area configuration information corresponding to each sub-area in the same message and send it to the terminal device, or it can carry it in a different message and send it to the terminal device. The embodiment does not specifically limit this.
  • the terminal device performs measurement according to one or more adjacent frequency point information corresponding to the first sub-region.
  • the terminal device may separately measure the frequency point indicated by the ARFCN included in each adjacent frequency point information.
  • the embodiment of the present application does not limit the specific measurement method, and will not be repeated here.
  • step S704 in the embodiment of the present application the terminal device performs measurement according to one or more neighboring cell information corresponding to the first sub-area, which is similar to that the terminal device performs measurement based on one or more neighboring cell information corresponding to the first sub-area.
  • the description of the one or more adjacent frequency point information corresponding to the first sub-region in step S704 can all refer to the one or more neighboring cells corresponding to the first sub-region. For details, please refer to the above-mentioned related descriptions. Go into details again.
  • the terminal device can determine the current first sub-area from the multiple sub-areas that constitute the first cell according to the area configuration information sent by the network device, and then correspond to the first sub-area according to the first sub-area.
  • One or more neighboring frequency information and/or one or more neighboring cell information is measured. Therefore, compared with the prior art solution that requires measurement based on all neighboring frequency information of the first cell, it can reduce Energy consumption of terminal equipment.
  • the network device may be a CU.
  • the method and/or steps implemented by the network device may be implemented by the CU; or, the network device may be the DU.
  • the methods and/or steps implemented by the network equipment may be implemented by DU; or, the network equipment may be composed of CU and DU, then in the embodiments of the present application, the methods and/or steps implemented by the network equipment Or steps can be implemented by CU and/or DU.
  • the CU may determine multiple sub-areas in step S701; when the network device is a DU, the DU may determine multiple sub-areas in step S701; when the network device is composed of CU and DU, in step S701 Multiple sub-regions may be determined by the DU, or multiple sub-regions may be determined by the CU, which is not specifically limited in the embodiment of the present application.
  • the communication method provided in the embodiment of the present application may further include: the DU generates the above-mentioned area configuration information.
  • the DU may send the area configuration information to the CU.
  • the CU may request the area configuration information from the DU.
  • the DU may also send one or more adjacent frequency point information and/or one or more adjacent cell information corresponding to each sub-region to the CU.
  • the CU may request one or more corresponding to each sub-region from the DU Adjacent frequency point information and/or one or more adjacent cell information.
  • the DU may carry the above information in an F1 establishment request message or a gNB-DU configuration update message, or a gNB-CU configuration update confirmation message and send it to the CU.
  • the communication method provided in this embodiment of the present application may further include: the CU generates the above-mentioned region configuration information.
  • the CU may send the area configuration information to the DU.
  • the DU may request the area configuration information from the CU.
  • the CU may also send one or more adjacent frequency point information and/or one or more adjacent cell information corresponding to each sub-region to the DU.
  • the DU may request the CU for one or more adjacent frequency points corresponding to each sub-region. Adjacent frequency point information and/or one or more adjacent cell information.
  • the CU may carry the above information in the F1 establishment response message, or the gNB-CU configuration update message, or the gNB-DU configuration update confirmation message and send it to the DU.
  • the CU or DU may send the area configuration information to the terminal device. Further, in step S704, the CU or DU may send one or more adjacent frequency point information and/or one or more adjacent cell information corresponding to each sub-region to the terminal device, or the CU or DU may send to the terminal device The device sends one or more adjacent frequency point information and/or one or more adjacent cell information corresponding to the first sub-region.
  • the actions of the network device in the above steps S701 to S704 may be called by the processor 301 in the network device 30 shown in FIG. 5 to call the application code stored in the memory 302 to instruct the network device to execute.
  • the action of the terminal device may be called by the processor 401 in the terminal device 40 shown in FIG. 5 to call the application program code stored in the memory 402 to instruct the network device to execute, and this embodiment does not impose any limitation on this.
  • the communication method includes the following steps:
  • the network device determines first configuration information.
  • the first configuration information is used to deactivate the measurement of the first neighboring cell or the first neighboring frequency point; the first neighboring cell includes at least one neighboring cell of the first cell, and the first neighboring frequency point includes the measurement corresponding to the first cell. At least one adjacent frequency point of the frequency point; the first cell is any one of the one or more cells under the network device. That is, the first configuration information may use the cell as the granularity to deactivate the measurement of at least one neighboring cell of the first cell; or it may use the frequency point as the granularity to deactivate the measurement of at least one neighboring frequency of the first cell. .
  • the priority of each neighboring cell in the first neighboring cell may be higher than the priority of the first cell, or lower than the priority of the first cell, and may also be similar to the priority of the first cell. Have the same priority.
  • the priority of each adjacent frequency point in the first adjacent frequency point may be higher than the priority of the frequency point corresponding to the first cell, or may be lower than the priority of the frequency point corresponding to the first cell, and may also be equal to the priority of the frequency point corresponding to the first cell.
  • the priorities of the frequency points corresponding to the cells are the same, which is not specifically limited in the embodiment of the present application.
  • the measurement of the neighboring cell or neighboring frequency point of the first cell by the terminal device can occur in at least one of the following scenarios: the terminal device does not need to consider the quality of the current serving cell, and the high priority Measurement is performed on neighboring cells or frequency points of the same frequency; or, when the quality of the current serving cell meets a certain threshold, the terminal device performs measurement on neighboring cells or frequency points of the same frequency or the same priority or low priority. That is, in at least one of the foregoing scenarios, the terminal device may deactivate the measurement of the first neighboring cell or the first neighboring frequency point according to the first configuration information.
  • the first neighboring cell can be an NTN cell or a TN cell
  • the first cell can be an NTN cell or a TN cell.
  • the embodiment of the present application does not specifically limit this, and is described here in a unified manner. The following embodiments will not be repeated.
  • S802 The network device sends the first configuration information to the terminal device.
  • the terminal device receives the first configuration information from the network device.
  • the first cell is the current serving cell of the terminal device.
  • the network device may send the first configuration information to all terminal devices in the first cell through a broadcast message; or, it may send the first configuration information to the terminal devices in the first cell separately through a unicast message; or, it may send the first configuration information through a group
  • the broadcast message sends the first configuration information to a group of terminal devices in the first cell, which is not specifically limited in the embodiment of the present application.
  • the network device may carry the first configuration information in a system message and send it, or it may carry it in a dedicated RRC message and send it, which is not specifically limited in the embodiment of the present application.
  • the network device may be a CU.
  • the method and/or steps implemented by the network device may be implemented by the CU; or, the network device may be the DU.
  • the methods and/or steps implemented by the network equipment may be implemented by DU; or, the network equipment may be composed of CU and DU, then in the embodiments of the present application, the methods and/or steps implemented by the network equipment Or steps can be implemented by CU and/or DU.
  • the CU may determine the first configuration information in step S801; when the network device is a DU, the DU may determine the first configuration information in step S801; when the network device is composed of CU and DU, step In S801, the DU may determine the first configuration information, or the CU may determine the first configuration information, which is not specifically limited in the embodiment of the present application.
  • the communication method provided in the embodiment of the present application may further include: the DU sends the first configuration information to the CU.
  • the CU may request the first configuration information from the DU.
  • the DU may carry the first configuration information in an F1 establishment request message or a gNB-DU configuration update message, or a gNB-CU configuration update confirmation message and send it to the CU.
  • the communication method provided in this embodiment of the present application may include: the CU sends the first configuration information to the DU.
  • the DU may request the first configuration information from the CU.
  • the CU may carry the first configuration information in the F1 establishment response message, or the gNB-CU configuration update message, or the gNB-DU configuration update confirmation message and send to the DU.
  • step S802 the CU or DU may send the first configuration information to the terminal device.
  • S803 When the first configuration information is used to deactivate the measurement of the first neighboring cell, the terminal device stops measuring the first neighboring cell according to the first configuration information, or lowers the priority of the first neighboring cell, or deletes the first neighboring cell; When the first configuration information is used to deactivate the measurement of the first adjacent frequency point, the terminal device stops measuring the first frequency point according to the first configuration information, or reduces the priority of the first frequency point, or deletes the first frequency point.
  • the first neighboring cell is a neighboring cell among the at least one neighboring cell.
  • the first frequency point is the frequency point in the at least one adjacent frequency point.
  • stopping measuring the first neighboring cell may be understood as the terminal device not measuring the first neighboring cell, or the terminal device not measuring the first neighboring cell for a period of time.
  • reducing the priority of the first neighboring cell may be: setting the priority of the first neighboring cell to be the same as the priority of the first cell Same, or the priority of the first neighboring cell is set to any priority lower than the priority of the first cell, or the priority of the first neighboring cell is set to the lowest priority, or the first neighboring cell is lowered according to a certain delta value.
  • the priority of a neighboring cell for example, if the initial priority of the first neighboring cell is 1, and the delta value is 2, then reducing the priority of the first neighboring cell can be setting the priority of the first neighboring cell to 3; When the priority of the first neighboring cell is lower than the priority of the first cell or the same as the priority of the first cell, reducing the priority of the first neighboring cell may be setting the priority of the first neighboring cell to the lowest priority, Or reduce the priority of the first neighboring cell according to a certain delta value.
  • deleting the first neighboring cell may be understood as deleting the first neighboring cell from the measurement target of the first cell.
  • the foregoing first configuration information may include timer information.
  • the terminal device stops measuring the first neighboring cell according to the first configuration information, or reduces the priority of the first neighboring cell, or deletes the first neighboring cell. During the running time, stop measuring the first neighboring cell, or reduce the priority of the first neighboring cell, or delete the first neighboring cell.
  • the terminal device can start a new timer, and continue to stop measuring the first neighboring cell within the time when the new timer re-runs, or reduce the priority of the first neighboring cell, or Delete the first neighboring cell; or, after the timer expires, the terminal device can continue to measure the first neighboring cell, or restore the priority of the first neighboring cell, or add the first neighboring cell to the measurement target of the terminal device again
  • the embodiments of the present application do not specifically limit this.
  • the terminal equipment stops measuring the first frequency point, or reduces the priority of the first frequency point, or deletes the first frequency point.
  • the instructions for the terminal equipment to stop measuring the first neighboring cell and lower the priority of the first neighboring cell respectively.
  • the related description of the first neighboring cell is deleted, so I won’t repeat it here.
  • the first configuration information may further include one or more of the following: the number of measurements N, the measurement duration T, the signal quality threshold, and the signal quality difference threshold.
  • N is a positive integer.
  • the terminal device can start the timer in the following situations:
  • Case 1 If the terminal device does not measure the first neighboring cell/the first frequency point for N consecutive times, the terminal device starts the timer.
  • N consecutive times can be understood as N consecutive times from the first measurement, or N consecutive times from a certain moment.
  • the area/first frequency point has been measured, or the first neighboring area/first frequency point has not been measured.
  • the embodiment of this application does not specifically limit this, and it will be explained here in a unified manner, and it will not be repeated in the following embodiments .
  • Case 2 If the signal quality of the first neighboring cell measured by the terminal device for N consecutive times is lower than the signal quality threshold, or if the terminal device measures each of the cells under the first frequency point for N consecutive times If the signal quality is lower than the signal quality threshold, the terminal equipment starts the timer;
  • Case 3 If the signal quality of the first neighboring cell measured by the terminal equipment N consecutive times is lower than the signal quality threshold, and the signal quality of the first neighboring cell measured for the i-th measurement is the same as the signal quality of the first neighboring cell measured for the i-1th time.
  • the signal quality difference of the neighboring cells meets the signal quality difference threshold, and the terminal device starts a timer, and i is a positive integer from 2 to N.
  • the difference between the signal quality of the first neighboring cell measured at the i-th time and the signal quality of the first neighboring cell measured at the i-1th time meets the signal quality difference threshold, which can be understood as:
  • the signal quality of a neighboring cell minus the signal quality of the first neighboring cell measured for the i-1th time is less than or equal to the signal quality difference threshold; or it can also be understood as: the signal quality of the first neighboring cell measured for the i-1th time
  • the signal quality minus the signal quality of the first neighboring cell measured at the i-th time is greater than or equal to the signal quality difference threshold; or it can also be understood as: the signal quality of the first neighboring cell measured at the i-th time is different from the signal quality of the first neighboring cell measured at the i-1th time.
  • the absolute value of the measured signal quality difference of the first neighboring cell is greater than or equal to the signal quality difference threshold.
  • the first signal quality difference is the difference between the signal quality of the first neighboring cell measured by the terminal device for the i-th time and the signal quality of the first cell when the terminal device performs the i-th measurement of the first neighboring cell.
  • the second signal quality difference is the difference between the signal quality of the first neighboring cell measured by the terminal device for the i-1th time and the signal quality of the first cell when the terminal device performs the i-1th measurement on the first neighboring cell value.
  • the first signal quality difference value and the second signal quality difference value meet the relevant description of the signal quality difference threshold, refer to the signal quality of the first neighboring cell measured at the i-th time and the signal quality of the i-1th time in the third case above.
  • the measured signal quality difference of the first neighboring cell satisfies the relevant description of the signal quality difference threshold, which will not be repeated here.
  • the terminal device starts the timer.
  • the embodiment of the present application does not limit the measurement times of the first neighboring cell within the measurement time period T from the first time the terminal device measures the first neighboring cell.
  • Case 6 If the terminal device performs M measurements on the first neighboring cell within the measurement time period T since the first neighboring cell is measured for the first time by the terminal device, and the signal quality of the first neighboring cell measured for the M times is low At the signal quality threshold, the terminal device starts a timer, where M is a positive integer.
  • the terminal device starts the timer.
  • Case 7 If the terminal device performs M measurements on the first neighboring cell within the measurement time period T since the first neighboring cell is measured for the first time by the terminal device, and the signal quality of the first neighboring cell measured for the M times is low At the signal quality threshold, and the difference between the signal quality of the first neighboring cell measured at the jth time and the signal quality of the first neighboring cell measured at the j-1th time meets the signal quality difference threshold, the terminal device starts timing , Where j is a positive integer from 2 to M.
  • the difference between the signal quality of the first neighboring cell measured at the jth time and the signal quality of the first neighboring cell measured at the j-1th time satisfies the signal quality difference threshold.
  • Case 8 If the terminal device performs M measurements on the first neighboring cell within the measurement time period T since the first neighboring cell is measured for the first time by the terminal device, and the signal quality of the first neighboring cell measured for the M times is low At the signal quality threshold value, and the third signal quality difference value and the fourth signal quality difference value meet the signal quality difference threshold value, the terminal device starts a timer.
  • the third signal quality difference is the signal quality of the first neighboring cell measured by the terminal device for the jth time within the measurement period T, and the signal quality of the first cell when the terminal device performs the jth measurement on the first neighboring cell.
  • the fourth signal quality difference is the signal quality of the first neighboring cell measured by the terminal device for the j-1th time within the measurement duration T, and the signal quality of the first cell when the terminal device performs the j-1th measurement on the first neighboring cell The difference between the quality.
  • the terminal device can start the timer when the conditions described in any one of the above eight situations are met, or when the conditions obtained by a combination of any of the above eight situations are met, For example, the terminal device starts a timer when the conditions obtained by the combination of case four and case five are met.
  • the terminal device can stop measuring the first neighboring cell/first frequency point according to the first configuration information sent by the network device, or reduce the priority of the first neighboring cell/first frequency point, Or delete the first neighboring cell/first frequency point.
  • the number of the first neighboring cell/frequency point can be reduced. /The number of measurements at the first frequency point, thereby reducing the energy consumption of the terminal equipment.
  • the terminal device 1 is in the coverage area of the NTN cell and is covered by the TN cell at the same time, and the terminal device 2 is in the coverage area of the NTN cell that is not covered by the TN cell at the same time.
  • Theoretically The terminal device 2 does not need to measure the TN neighboring cell of the NTN cell, but because the neighboring cell configuration is based on the cell granularity, the terminal device 2 will actually perform the TN neighboring cell measurement, which wastes a lot of energy consumption.
  • the terminal device 2 can stop measuring the TN neighboring cell, or reduce the priority of the TN neighboring cell, or delete the TN neighboring cell according to the first configuration information, thereby reducing the number of measurements on the TN neighboring cell , Thereby reducing the energy consumption of terminal equipment.
  • the actions of the network device in the above steps S801 to S803 can be called by the processor 301 in the network device 30 shown in FIG. 5 to call the application program code stored in the memory 302 to instruct the network device to execute.
  • the action of the terminal device may be called by the processor 401 in the terminal device 40 shown in FIG. 5 to call the application program code stored in the memory 402 to instruct the network device to execute, and this embodiment does not impose any limitation on this.
  • the communication method shown in FIG. 8a in the embodiment of the present application can be executed separately or on the basis of the communication method shown in FIG. 7a.
  • the first configuration information can be used for deactivation and The measurement of at least one adjacent frequency point among the one or more adjacent frequency points corresponding to the first sub-region, when the terminal device performs measurement according to the information of the one or more adjacent frequency points corresponding to the first sub-region, if continuous If one of the one or more adjacent frequency points corresponding to the first sub-region is not measured for N times, the terminal device starts the timer, and stops measuring the one adjacent frequency point within the running time of the timer. Frequency point, or reduce the priority of the adjacent frequency point, or delete the priority of the adjacent frequency point, at this time, the energy consumption of the terminal device can be further reduced.
  • the terminal device and/or the network device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or various operations. Deformation of the operation. In addition, each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the operations in the embodiment of the present application.
  • the methods and/or steps implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and/or steps implemented by the network device can also be implemented by the terminal device. It can also be implemented by components (such as chips or circuits) that can be used in network devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component that can be used in the terminal device; or, the communication device may be the network device in the foregoing method embodiment, or include the foregoing A device of a network device, or a component that can be used in a network device.
  • the communication device includes hardware structures and/or software modules corresponding to various functions.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 9 shows a schematic structural diagram of a communication device 90.
  • the communication device 90 includes a processing module 901 and a transceiver module 902.
  • the transceiver module 902 may also be referred to as a transceiver unit to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, transceiver, transceiver, or communication interface.
  • the transceiver module 902 may include a receiving module and a sending module, which are respectively used to perform the receiving and sending steps performed by the terminal device in the above method embodiment, and the processing module 901 may be used to perform the terminal device in the above method embodiment. Steps performed by the device except receiving and sending steps.
  • the transceiver module 902 is configured to receive area configuration information from a network device, the area configuration information indicates multiple sub-areas, and the geographic area formed by the multiple sub-areas includes the coverage area of the first cell; processing The module 901 is configured to determine a first sub-area according to the area configuration information, where the first sub-area is a sub-area where the communication device 90 is currently located among the multiple sub-areas; the processing module 901 is also configured to determine a first sub-area according to the One or more adjacent frequency point information and/or one or more adjacent cell information corresponding to the sub-area are measured.
  • the processing module 901 is configured to determine the first sub-region according to the area configuration information, and includes: a processing module 901, configured to obtain current geographic location information of the communication device 90; The current geographic location information and the area configuration information determine the first sub-area.
  • the area configuration information includes the user-readable name of each sub-area in the multiple sub-areas.
  • the processing module 901 is configured to determine the first sub-area according to the area configuration information, and includes: The sub-region corresponding to the first user-readable name is determined as the first sub-region, and the first user-readable name is the user-readable name corresponding to the current geographic location of the communication device 90.
  • the transceiver module 902 is further configured to send a request message to the network device, where the request message carries indication information of the first sub-area, and the request message is used to request one or more adjacent frequencies corresponding to the first sub-area. Point information and/or one or more neighborhood information.
  • the transceiver module 902 is configured to receive first configuration information from the network device, and the first configuration information is used to deactivate the measurement of the first neighboring cell; the processing module 901 is configured to A configuration information stops measuring the first neighboring cell, or lowering the priority of the first neighboring cell, the first neighboring cell includes at least one neighboring cell of the first cell.
  • the first configuration information includes timer information; the processing module 901 is configured to stop measuring the first neighboring cell, or reduce the priority of the first neighboring cell, or delete the first neighboring cell according to the first configuration information , Including: a processing module 901, used to start a timer; within the running time of the timer, the processing module 901, is also used to stop measuring the first neighboring cell, or reduce the priority of the first neighboring cell Level, or delete the first neighborhood.
  • the processing module 901 is used to start the timer, including: if the first neighboring cell is not measured for N consecutive times, the processing module 901 is used to start the timer; or, if the first neighboring cell is measured for N consecutive times If the signal quality of the signal quality is lower than the signal quality threshold, the processing module 901 is used to start the timer; or, if the signal quality of the first neighboring cell measured for N consecutive times is lower than the signal quality threshold, and the i-th time The difference between the measured signal quality of the first neighboring cell and the signal quality of the first neighboring cell measured for the i-1th time satisfies the signal quality difference threshold, and the processing module 901 is configured to start the timer, and i is positive Integer, the value of i is 2 to N; or, if the signal quality of the first neighboring cell measured for N consecutive times is lower than the signal quality threshold, and the difference between the first signal quality and the second signal quality is less than The difference value meets the signal quality difference threshold, and the processing module
  • the processing module 901 is used to start the timer, including: if the first neighboring cell is not measured within the measurement time period T from the first measurement of the first neighboring cell, the processing module 901 is used to start the timer Or, if the first neighboring cell is measured for M times within the measurement time period T from the first measurement of the first neighboring cell, and the signal quality of the first neighboring cell of the first M measurement is lower than the signal
  • the quality threshold, the processing module 901 is used to start a timer; or, if the first neighboring cell is measured for M times within the measurement time period T from the first measurement of the first neighboring cell, and the M times of measurement
  • the signal quality of the first neighboring cell is lower than the signal quality threshold, and the difference between the signal quality of the first neighboring cell measured at the jth time and the signal quality of the first neighboring cell measured at the j-1th time satisfies the signal
  • the quality difference threshold, the processing module 901, is used to start a timer; or, if the first neighbor
  • the communication device 90 may further include a storage module (not shown in FIG. 9) for storing data and/or instructions, and the processing module 901 may read the data or instructions in the storage module to implement the correspondence of the foregoing various embodiments. Methods.
  • the communication device 90 is presented in a form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 90 may take the form of the terminal device 40 shown in FIG. 5.
  • the processor 401 in the terminal device 40 shown in FIG. 5 may invoke the computer execution instruction stored in the memory 402 to make the terminal device 40 execute the communication method in the foregoing method embodiment.
  • the function/implementation process of the processing module 901 and the transceiver module 902 in FIG. 9 may be implemented by the processor 401 in the terminal device 40 shown in FIG. 5 calling the computer execution instructions stored in the memory 402.
  • the function/implementation process of the processing module 901 in FIG. 9 can be implemented by the processor 401 in the terminal device 40 shown in FIG. 5 calling the computer execution instructions stored in the memory 402, and the function of the transceiver module 902 in FIG. 9 /The implementation process can be implemented by the transceiver 403 in the terminal device 40 shown in FIG. 5.
  • the communication device 90 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 10 shows a schematic structural diagram of a communication device 100.
  • the communication device 100 includes a processing module 1001 and a transceiver module 1002.
  • the transceiver module 1002 may also be referred to as a transceiver unit for implementing sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 1002 may include a receiving module and a sending module, which are respectively used to execute the receiving and sending steps performed by the network device in the above method embodiment, and the processing module 1001 may be used to execute the network device in the above method embodiment. Steps performed by the device except receiving and sending steps.
  • the processing module 1001 is used to determine multiple sub-areas, and the geographic area formed by the multiple sub-areas includes the coverage area of the first cell; the transceiver module 1002 is used to send area configuration information to the terminal device, The area configuration information indicates the information of the multiple sub-areas.
  • the transceiver module 1002 is further configured to send one or more adjacent frequency point information corresponding to the first sub-region to the terminal device, where the first sub-region is one of the multiple sub-regions.
  • the transceiver module 1002 is further configured to receive a request message from the terminal device, the request message carrying indication information of the first sub-area, and the request message is used to request one or more corresponding to the first sub-area. Adjacent frequency point information.
  • the processing module 1001 is used to determine first configuration information, and the first configuration information is used to deactivate the measurement of the first neighboring cell; the transceiver module 1002 is used to send the first configuration to the terminal device. information.
  • the communication device 100 may further include a storage module (not shown in FIG. 10) for storing data and/or instructions, and the processing module 1001 may read the data or instructions in the storage module to implement the correspondence of the foregoing various embodiments. Methods.
  • the communication device 100 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 100 may take the form of the network device 30 shown in FIG. 5.
  • the processor 301 in the network device 30 shown in FIG. 5 may invoke the computer execution instructions stored in the memory 302 to make the network device 30 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1001 and the transceiver module 1002 in FIG. 10 may be implemented by the processor 301 in the network device 30 shown in FIG. 5 calling the computer execution instructions stored in the memory 302.
  • the function/implementation process of the processing module 1001 in FIG. 10 can be implemented by the processor 301 in the network device 30 shown in FIG. 5 calling a computer execution instruction stored in the memory 302, and the function of the transceiver module 1002 in FIG. 10 /The implementation process can be implemented by the transceiver 303 in the network device 30 shown in FIG. 5.
  • the communication device 100 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device also includes memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device also includes an interface circuit, the interface circuit is a code/data read-write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in a memory and may be directly downloaded from The memory is read, or possibly through other devices) and transferred to the processor.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、设备及系统,可以降低终端设备的能耗,加快终端设备的重选。该方案中,网络设备确定多个子区域,并向终端设备发送区域配置信息;终端设备接收该区域配置信息,根据区域配置信息确定第一子区域,并根据与第一子区域对应的一个或多个相邻频点信息进行测量。其中,该个子区域构成的地理区域范围包括第一小区的覆盖区域,区域配置信息指示该多个子区域的信息,第一子区域为多个子区域中终端设备当前所处的一个子区域。

Description

通信方法、设备及系统 技术领域
本申请涉及通信领域,尤其涉及通信方法、设备及系统。
背景技术
由于传统陆地网络(terrestrial network,TN)不能提供无缝覆盖,特别是在大海、沙漠、空中等无法部署基站的地方,因此,非陆地网络(non-terrestrial network,NTN)被引入通信系统中,NTN指将基站或者部分基站功能部署在高空平台或者卫星上为终端设备提供无缝覆盖的网络。
其中,部署在高空平台或者卫星上的基站或者部分基站功能提供的覆盖区域可以称为NTN小区。通常,NTN小区的覆盖范围较大,一个NTN小区的覆盖区域可能同时被多个TN小区覆盖,该多个TN小区可以理解为NTN相邻的TN小区,也就是说,NTN小区相邻的TN小区较多。例如图1a所示,NTN小区的全部覆盖区域同时被多个TN小区覆盖;或者,如图1b所示,NTN小区的覆盖区域中的部分区域同时被多个TN小区覆盖。在该情况下,当终端设备驻留在NTN小区时,通常希望终端设备可以及时重选到TN小区中。
然而,由于NTN小区相邻的TN小区较多,终端设备进行小区重选时需要测量大量的频点,导致终端设备的能耗较大,因此,如何降低终端设备的能耗,是目前亟待解决的问题。
发明内容
本申请实施例提供一种通信方法、设备及系统,可以降低终端设备的能耗。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法。该方案中,接收来自网络设备的区域配置信息,并根据区域配置信息确定第一子区域,最后根据与第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息进行测量。其中,区域配置信息指示多个子区域的信息,该多个子区域构成的地理区域范围包括第一小区的覆盖区域,第一子区域为该多个子区域中终端设备当前所处的一个子区域。基于该方案,由于可以根据网络设备发送的区域配置信息,从构成第一小区的多个子区域中确定当前所处的第一子区域,进而根据第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息进行测量,因此,可以降低的能耗,加快重选。
在一些可能的设计中,根据区域配置信息确定第一子区域,包括:获取终端设备当前的地理位置信息,并根据终端设备当前的地理位置信息和区域配置信息确定第一子区域。
在一些可能的设计中,区域配置信息包括上述多个子区域中每个子区域的中心位置坐标信息和每个子区域的区域半径信息;终端设备当前的地理位置信息为终端设备当前所处的地理位置的位置坐标信息。
在一些可能的设计中,区域配置信息包括上述多个子区域中每个子区域的用户可读名称;根据区域配置信息确定第一子区域,包括:将区域配置信息中第一用户可读名称对应的子区域确定为第一子区域,第一用户可读名称为终端设备当前的地理位置 对应的用户可读名称。
在一些可能的设计中,上述与第一子区域对应的一个或多个相邻频点信息中的每个相邻频点信息包括绝对无线频道编号ARFCN。
在一些可能的设计中,上述每个相邻频点信息还包括以下一项或多项:物理小区标识PCI、同步信号块测量时间配置SMTC、SMTC起始偏置、所述每个相邻频点信息包括的ARFCN对应的网络标识、所述每个相邻频点信息包括的ARFCN对应的类型标识、所述PCI对应的网络标识、所述PCI对应的类型标识、或者所述每个相邻频点信息包括的ARFCN对应的优先级。
在一些可能的设计中,该通信方法还包括:向网络设备发送请求消息,该请求消息携带第一子区域的指示信息,该请求消息用于请求与第一子区域对应的一个或多个相邻频点信息。基于该方案,网络设备可以仅发送第一子区域对应的一个或多个相邻频点信息,而无需发送每个子区域对应的相邻频点信息,因此可以节省传输开销。
在一些可能的设计中,该指示信息用于确定以下一项或多项:第一子区域的子区域标识、第一子区域的中心位置坐标、或者第一子区域的用户可读名称。
在一些可能的设计中,该指示信息为第一前导码,该第一前导码与第一子区域对应;或者,该指示信息为第一前导码和第一接入资源,第一前导码和第一接入资源均与第一子区域对应。基于该方案,可以隐式地向网络设备请求第一子区域对应的一个或多个相邻频点信息,相比于直接发送第一子区域的标识、第一子区域的中心位置坐标信息、或者第一子区域的用户可读名称,可以节省传输开销。
可以理解的是,上述第一方面所述的方法以及各种可能的设计,可以由终端设备实现,也可以由可配置于终端设备的部件(例如芯片或者电路)实现。
第二方面,提供了一种通信方法。该方案中,确定多个子区域,该多个子区域构成的地理区域范围包括第一小区的覆盖区域;向终端设备发送区域配置信息,该区域配置信息指示多个子区域的信息。其中,第二方面所带来的技术效果可参见上述第一方面所带来的技术效果,此处不再赘述。
在一些可能的设计中,区域配置信息包括多个子区域中每个子区域的中心位置坐标信息和每个子区域的区域半径信息。
在一些可能的设计中,区域配置信息包括多个子区域中每个子区域的用户可读名称。
在一些可能的设计中,区域配置信息包括多个子区域中每个子区域的中心位置坐标信息、每个子区域的区域半径信息、以及所述每个子区域的用户可读名称。
在一些可能的设计中,区域配置信息还包括每个子区域的区域标识。
在一些可能的设计中,该通信方法还包括:向终端设备发送与第一子区域对应的一个或多个相邻频点信息,第一子区域为上述多个子区域中的一个子区域。
在一些可能的设计中,该通信方法还包括:接收来自终端设备的请求消息,该请求消息携带第一子区域的指示信息,该请求消息用于请求与第一子区域对应的一个或多个相邻频点信息。基于该方案,可以仅向终端设备发送第一子区域对应的一个或多个相邻频点信息,而无需发送每个子区域对应的相邻频点信息,因此可以节省传输开销。
在一些可能的设计中,指示信息用于确定以下一项或多项:第一子区域的子区域标 识、第一子区域的中心位置坐标、或者第一子区域的用户可读名称。
在一些可能的设计中,指示信息为第一前导码,第一前导码与第一子区域对应;或者,指示信息为所述第一前导码和第一接入资源,第一前导码和第一接入资源均与所述第一子区域对应。基于该方案,终端设备可以隐式地请求第一子区域对应的一个或多个相邻频点信息,相比于直接发送第一子区域的标识、第一子区域的中心位置坐标信息、或者第一子区域的用户可读名称,可以节省传输开销。
在一些可能的设计中,上述与第一子区域对应的一个或多个相邻频点信息中的每个相邻频点信息包括绝对无线频道编号ARFCN。
在一些可能的设计中,上述每个相邻频点信息还包括以下一项或多项:物理小区标识PCI、同步信号块测量时间配置SMTC、SMTC起始偏置、所述每个相邻频点信息包括的ARFCN对应的网络标识、所述每个相邻频点信息包括的ARFCN对应的类型标识、所述PCI对应的网络标识、所述PCI对应的类型标识、或者所述每个相邻频点信息包括的ARFCN对应的优先级。
可以理解的是,上述第二方面所述的方法以及各种可能的设计,可以由网络设备实现,也可以由可配置于网络设备的部件(例如芯片或者电路)实现。
第三方面,提供了一种通信方法。该方案中,接收来自网络设备的第一配置信息,该第一配置信息用于去激活第一邻区的测量,第一邻区包括第一小区的至少一个邻区;根据第一配置信息停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区。基于该方案,由于可以根据网络设备发送的第一配置信息停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区,在第一邻区的质量较差的情况下,相对于现有技术中频繁对第一邻区进行测量的方案,可以减少对第一邻区的测量次数,从而降低能耗,加快重选。
在一些可能的设计中,第一配置信息包括定时器的信息;根据第一配置信息停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区,包括:启动定时器,在定时器的运行时间内,停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区。
在一些可能的设计中,第一配置信息还包括以下一项或多项:测量次数N、信号质量门限值、信号质量差门限值,N为正整数。
在一些可能的设计中,启动定时器,包括:若连续N次未测量到所述第一邻区,启动所述定时器;或者,若连续N次测量的所述第一邻区的信号质量均低于所述信号质量门限值,启动所述定时器;或者,若连续N次测量的所述第一邻区的信号质量均低于所述信号质量门限值,且第i次测量的所述第一邻区的信号质量与第i-1次测量的所述第一邻区的信号质量的差值满足所述信号质量差门限值,启动所述定时器,i为正整数,i的取值为2至N;或者,若连续N次测量的所述第一邻区的信号质量均低于所述信号质量门限值,且第一信号质量差值与第二信号质量差值的差值满足所述信号质量差门限值,启动所述定时器,所述第一信号质量差值为第i次测量的所述第一邻区的信号质量与进行第i次测量时所述服务小区的信号质量之间的差值,所述第二信号质量差值为第i-1次测量的所述第一邻区的信号质量与进行第i-1次测量时所述服务小区的信号质量之间的差值。
可以理解的是,上述第三方面所述的方法以及各种可能的设计,可以由终端设备实现, 也可以由可配置于终端设备的部件(例如芯片或者电路)实现。
第四方面,提供了一种通信方法及相应的通信装置。该方案中,确定第一配置信息,第一配置信息用于去激活第一邻区的优先级;向终端设备发送第一配置信息。其中,第四方面所带来的技术效果可参见上述第三方面所带来的技术效果,此处不再赘述。
在一些可能的设计中,第一配置信息包括定时器的信息。
在一些可能的设计中,第一配置信息还包括以下一项或多项:测量次数N、信号质量门限值、信号质量差门限值,N为正整数。
可以理解的是,上述第四方面所述的方法以及各种可能的设计,可以由网络设备实现,也可以由可配置于网络设备的部件(例如芯片或者电路)实现。
可以理解的是,上述第一方面和第三方面所述的方法可以单独执行,也可以结合在一起执行。结合执行时,第三方面中,根据第一配置信息停止与第一子区域对应的一个或多个相邻频点中至少一个相邻频点的测量,或者降低与第一子区域对应的一个或多个相邻频点中至少一个相邻频点的优先级,或者删除与第一子区域对应的一个或多个相邻频点中至少一个相邻频点。
可以理解的是,上述第二方面和第四方面所述的方法可以单独执行,也可以结合在一起执行。结合执行时,第四方面中的第一配置信息可以用于去激活与第一子区域对应的一个或多个相邻频点中至少一个相邻频点的测量。
第五方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第六方面,提供了一种通信装置,包括:存储器和至少一个处理器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第七方面,提供了一种通信装置,包括:接口电路和至少一个处理器,该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器;该处理器用于运行所述计算机执行指令以执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第八方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第十方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第十一方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括至少一个处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和/或数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第五方面至第十一方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面或第三方面或第四方面中不同设计方式所带来的技术效果,此处不再赘述。
第十二方面,提供一种通信系统,该通信系统包括上述方面所述的终端设备和上述方面所述的网络设备。
附图说明
图1a为现有的NTN小区的全部覆盖区域被多个TN小区覆盖的示意图;
图1b为现有的NTN小区的部分覆盖区域被多个TN小区覆盖的示意图;
图2a为现有的地面静止小区的映射方式示意图;
图2b为现有的地面移动小区的映射方式示意图;
图3为现有的终端设备的RRC状态转换示意图;
图4为本申请实施例提供的一种通信系统的结构示意图;
图5为本申请实施例提供的一种终端设备和网络设备的结构示意图;
图6为本申请实施例提供的另一种终端设备的结构示意图;
图7a为本申请实施例提供的一种通信方法的流程示意图;
图7b为本申请实施例提供的一种多个子区域的示意图;
图7c为本申请实施例提供的另一种多个子区域的示意图;
图8a为本申请实施例提供的另一种通信方法的流程示意图;
图8b为本申请实施例提供的一种通信方法的应用场景示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
第一、非地面通信系统(non-terrestrial network,NTN)
非地面通信系统可以包括卫星系统。按照卫星高度,即卫星轨位高度,可以将卫星系统分为高椭圆轨道(highly elliptical orbiting,HEO)、高轨(geostationary earth orbit,GEO)卫星、中轨(medium earth orbit,MEO)卫星和低轨(low-earth orbit,LEO)卫星。此外,非地面通信系统还可以包括高空平台(high altitude platform station,HAPS)通信系统。其中,GEO卫星又称静止卫星,其运动速度与地球自转速度相同,因此GEO卫星相对地面保持静止状态,对应的,GEO卫星的小区也是静止的。GEO卫星小区的覆盖较大,一般情况下小区的直径为500km。
其中,LEO卫星相对地面移动较快,大约7Km/s,因此LEO卫星提供的服务覆盖区域也随之移动。
第二、卫星小区映射方式。
卫星小区映射方式包括地面静止小区的映射方式和地面移动小区的映射方式。
其中,地面静止小区的映射方式是指小区的位置在地面是不动的,移动的卫星通过调整其波束形成这些小区。如图2a所示,T1时刻:小区1和小区2由卫星1的波束覆盖,小区3和4由卫星2的波束覆盖;T2时刻:虽然卫星1和卫星2都向左移动,但是依然可以调整自己的波束,保证小区1、小区2、小区3和小区4的覆盖;T3时刻:相比T1时刻,卫星1和卫星2已经移动了足够的距离,卫星1无法通过调整波束再为小区2提供覆盖,卫星2无法通过调整波束为小区4提供覆盖,此时,卫星2可以为小区2提供覆盖,而卫星3可以为小区4提供覆盖。
其中,地面移动小区的映射方式是指,卫星并不动态调整其波束方向,卫星覆盖的小区随着卫星的移动在地面上移动。如图2b所示,T1时刻:区域1、区域2、区域3和区域4分别由卫星1形成的小区1和小区2、以及卫星2形成的小区3和小区4进行覆盖,而在T3时刻,区域1、区域2、区域3和区域4分别由卫星1形成的小区2、卫星2形成的小区3和小区4、以及卫星3形成的小区5进行覆盖。
第三、无线资源控制(radio resource control,RRC)状态。
以新空口(new radio,NR)系统为例,在NR中,终端设备的RRC状态包括如下三种状态:RRC连接态(RRC_CONNECTED)、RRC去活动态(RRC_INACTIVE)和RRC空闲态(RRC_IDLE),三种状态的转换如图3所示。
其中,当终端设备处于RRC连接态时,终端设备与接入网设备以及核心网设备都已经建立了连接,当有数据到达网络时可以直接传输到终端设备;当终端设备处于RRC去活动态时,终端设备和接入网设备以及核心网设备之间建立过链路,但是终端设备和接入网设备之间的链路被释放了,此时,终端设备和接入网设备保存有终端设备的上下文,当有数据需要传输时,接入网设备可以快速地恢复链路;当终端设备处于RRC 空闲态时,终端设备与接入网设备以及核心网设备之间都没有建立过链路,当有数据需要传输时,需要先建立终端设备到接入网设备以及核心网设备的链路。
可以理解的是,上述RRC状态仅为一种举例,不应对本申请构成任何限定。本申请也并不排除在未来的协议中定义其他可能的命名来替代现有命名,但具有相同或相似的特性,或者也有可能出现其他的状态。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“至少一个”是指一个或者多个,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、NTN系统和其它系统等。术语“系统”可以和“网络”相互替换。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved universal terrestrial radio access,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)等无线技术。E-UTRA是通用移动通信系统(universal mobile telecommunications system,UMTS)演进版本。第三代合作伙伴计划(3rd generation partnership project,3GPP)在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的新版本。第五代(5thgeneration,5G)通信系统是正在研究当中的下一代通信系统。其中,5G通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统,独立组网(standalone,SA)的5G移动通信系统,或者,NSA的5G移动通信系统和SA的5G移动通信系统。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
如图4所示,为本申请实施例提供的一种通信系统10。该通信系统10包括至少一个网络设备30,以及与该网络设备30连接的一个或多个终端设备40。可选的,不同的终端设备40之间可以相互通信。
以图4所示的网络设备30与任一终端设备40通信为例,本申请实施例中,一种可能的实现方式中,网络设备30确定多个子区域,向终端设备40发送区域配置信息,该多个子区域构成的地理区域范围包括第一小区的覆盖区域,该区域配置信息指示该多个子区域的信息。进而,终端设备40接收来自网络设备30的区域配置信息,根据 区域配置信息确定第一子区域,并根据与第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息进行测量,其中,第一子区域为该多个子区域中终端设备40当前所处的一个子区域。基于该方案,由于终端设备可以根据网络设备发送的区域配置信息,从构成第一小区的多个子区域中确定当前所处的第一子区域,进而根据第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息进行测量,因此,可以降低终端设备的能耗,加快终端设备的重选。
或者,以图4所示的网络设备30与任一终端设备40通信为例,本申请实施例中,另一种可能的实现方式中,网络设备30向终端设备40发送第一配置信息,该第一配置信息用于去激活第一邻区的测量,该第一邻区包括第一小区的至少一个邻区。进而,终端设备40接收来自网络设备30的第一配置信息,根据第一配置信息停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区。基于该方案,由于终端设备可以根据网络设备发送的第一配置信息停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区,在第一邻区的质量较差或者无法测量到第一邻区的情况下,相对于现有技术中频繁对第一邻区进行测量的方案,可以减少对第一邻区的测量次数,从而降低终端设备的能耗,加快终端设备的重选。
或者,以图4所示的网络设备30与任一终端设备40通信为例,本申请实施例中,终端设备40接收来自网络设备30的区域配置信息,根据区域配置信息确定第一子区域,并根据与第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息进行测量;此外,终端设备40还接收来自网络设备30的第一配置信息,该第一配置信息用于去激活第一子区域的至少一个邻区的测量,从而终端设备40根据第一配置信息停止测量第一子区域的至少一个邻区,或者降低第一子区域的至少一个邻区的优先级,或者删除第一子区域的至少一个邻区。基于该方案,可以进一步降低终端设备的能耗,并进一步加快终端设备的重选。
可选的,本申请实施例中的网络设备30,是一种将终端设备40接入到无线网络的设备,可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);或者5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的网络设备30可以部署于高空平台或者卫星。
一种可能的方式中,本申请实施例中的网络设备30可以也可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU)或者,网络设备也可以是CU和DU组成的。CU和DU可以理解为是对基站从逻辑功能角度的划分。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网 络的协议层划分。例如,radio resource control,RRC协议层、业务数据适配协议栈(service data adaptation protocol,SDAP)协议层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)协议层的功能设置在CU中,而无线链路控制(radio link control,RLC)协议层,媒体接入控制(media access control,MAC)协议层,物理(physical,PHY)协议层等的功能设置在DU中。可以理解,对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分,本申请实施例对此不做具体限定。
可选的,CU可以由CU控制面(CU control plane,CU-CP)和CU用户面(CU user plane,CU-UP)组成,CU-CP和CU-UP可以理解为是对CU从逻辑功能的角度进行划分。其中,CU-CP和CU-UP可以根据无线网络的协议层划分,例如,RRC协议层和信令无线承载(signal radio bearer,SRB)对应的PDCP协议层的功能设置在CU-CP中,数据无线承载(data radio bearer,DRB)对应的PDCP协议层的功能设置在CU-UP中。此外,SDAP协议层的功能也可能设置在CU-UP中。
可选的,本申请实施例中的终端设备40,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备30与终端设备40也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图5所示,为本申请实施例提供的网络设备30和终端设备40的结构示意图。
其中,终端设备40包括至少一个处理器(图5中示例性的以包括一个处理器401为例进行说明)和至少一个收发器(图5中示例性的以包括一个收发器403为例进行说明)。可选的,终端设备40还可以包括至少一个存储器(图5中示例性的以包括一个存储器402为例进行说明)、至少一个输出设备(图5中示例性的以包括一个输出设备404为例进行说明)和至少一个输入设备(图5中示例性的以包括一个输如设备405为例进行说明)。
处理器401、存储器402和收发器403通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器401可以是通用中央处理器(central processing unit,CPU)、微处理器、 特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器401也可以包括多个CPU,并且处理器401可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器402可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器402可以是独立存在,通过通信线路与处理器401相连接。存储器402也可以和处理器401集成在一起。
其中,存储器402用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。具体的,处理器401用于执行存储器402中存储的计算机执行指令,从而实现本申请实施例中所述的通信方法。可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器403可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、RAN、或者无线局域网(wireless local area networks,WLAN)等。收发器403包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备404和处理器401通信,可以以多种方式来显示信息。例如,输出设备404可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备405和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备405可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备30包括至少一个处理器(图5中示例性的以包括一个处理器301为例进行说明)、至少一个收发器(图5中示例性的以包括一个收发器303为例进行说明)和至少一个网络接口(图5中示例性的以包括一个网络接口304为例进行说明)。可选的,网络设备30还可以包括至少一个存储器(图5中示例性的以包括一个存储器302为例进行说明)。其中,处理器301、存储器302、收发器303和网络接口304通过通信线路相连接。网络接口304用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图5中未示出),本申请实施例对此不作具体限定。另外,处理器301、存储器302和收发器303的相关描述可参考终端设备40中处理器401、存储器402和收发器403的描述,在此不再赘述。
结合图5所示的终端设备40的结构示意图,示例性的,图6为本申请实施例提供 的终端设备40的一种具体结构形式。
其中,在一些实施例中,图5中的处理器401的功能可以通过图6中的处理器110实现。
在一些实施例中,图5中的收发器403的功能可以通过图6中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备40中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备40上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备40上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。当终端设备40是第一设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括NFC芯片。该NFC芯片可以提高NFC无线通信功能。当终端设备40是第二设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括电子标签(如射频识别(radio frequency identification,RFID)标签)。其他设备的NFC芯片靠近该电子标签可以与第二设备进行NFC无线通信。
在一些实施例中,终端设备40的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备40可以通过无线通信技术与网络以及其他设备通信。无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),LTE,BT,GNSS,WLAN,NFC,FM,或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS), 准天顶卫星系统(quasi-zenith satellite system,QZSS)或星基增强系统(satellite based augmentation systems,SBAS)。
在一些实施例中,图5中的存储器402的功能可以通过图6中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图5中的输出设备404的功能可以通过图6中的显示屏194实现。其中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图5中的输入设备405的功能可以通过鼠标、键盘、触摸屏设备或图6中的传感器模块180来实现。示例性的,如图6所示,该传感器模块180例如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图6所示,该终端设备40还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图6所示的结构并不构成对终端设备40的具体限定。比如,在本申请另一些实施例中,终端设备40可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合附图,以图4所示的网络设备30与任一终端设备40进行交互为例,对本申请实施例提供的通信方法进行展开说明。
可以理解的,在本申请的各个实施例中,网络设备与终端设备之间的交互,也可以适用到CU与终端设备之间的交互,或者DU与终端设备之间的交互。可以理解的,本申请的各个实施例中网络设备与终端设备交互机制可以进行适当的变形,以适用CU或者DU与终端设备之间的交互。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图7a所示,为本申请实施例提供的一种通信方法,该通信方法包括如下步骤:
S701、网络设备确定多个子区域。其中,子区域表示实际的地理区域范围,多个子区域构成的地理区域范围包括第一小区的覆盖区域。
一种可能的实现方式中,多个子区域构成的地理区域范围与第一小区的覆盖区域相同,也就是说,第一小区的覆盖区域可以划分为多个子区域。如图7b所示,实线表示第一小区的覆盖区域,虚线表示对第一小区的覆盖区域的划分,第一小区的覆盖区域被划分为子区域1、子区域2、子区域3、和子区域4共4个子区域。需要说明的是,图7b仅是示例性的一种划分方式,实际应用中还可以有其他的划分方式。例如,将第一小区划分为多个圆形区域,本申请实施例对子区域的个数以及子区域的划分方式不 做具体限定。可以理解的是,子区域并不等同于小区,例如,图7b所示,并不能理解为第一小区被划分为4个小区,而是应该理解为第一小区的覆盖区域可以被划分为4个地理区域范围。可以理解的是,子区域也可以认为是逻辑上的子小区。
另一种可能的实现方式中,多个子区域构成的地理区域范围可能大于第一小区的覆盖区域。如图7c所示,实线构成的区域表示第一小区的覆盖区域,虚线构成的4个区域表示子区域1、子区域2、子区域3、和子区域4共4个子区域,该4个区域的区域范围大于第一小区的覆盖区域。
可选的,本申请实施例中,可以由网络设备将第一小区的覆盖区域划分为多个子区域,或者也可以由其他网元(例如操作管理维护(operation administration and maintenance,OAM)网元)对第一小区的覆盖区域进行划分,然后将多个子区域的信息发送给网络设备,本申请实施例对此不做具体限定。
可选的,本申请实施例中,在对第一小区的覆盖区域进行一次划分之后的一段时间内,终端设备均可以根据该次划分进行邻频或邻区测量。也就是说,在该段时间内,本申请实施例中的步骤S701-S702可以执行一次,本申请实施例中的下述步骤S703-S704可以执行多次。
其中,第一小区为网络设备下的一个或多个小区中的任意一个小区。
可选的,多个子区域中每个子区域的区域范围可以无重叠,也可以允许有重叠,但是一个子区域的区域范围不能完全覆盖另一个子区域的区域范围。
需要说明的是,本申请实施例中,第一小区可以是NTN小区,也可以是TN小区,本申请实施例对此不做具体限定,在此统一说明,下述实施例不再赘述。S702、网络设备向终端设备发送区域配置信息。相应的,终端设备接收来自网络设备的区域配置信息。
其中,该区域配置信息指示上述多个子区域的信息。
其中,第一小区为终端设备当前的服务小区。
可选的,网络设备可以通过广播消息向第一小区的所有终端设备发送区域配置信息;或者,可以通过单播消息向第一小区的终端设备单独发送区域配置信息;或者,可以通过组播消息向第一小区的一组终端设备发送区域配置信息,本申请实施例对此不做具体限定。
可选的,网络设备可以将区域配置信息携带在系统消息中发送,也可以携带在专用的RRC消息中发送,本申请实施例对此不做具体限定。
可选的,在本申请实施例的不同实现方式下,区域配置信息的内容也可以不同:
一种可能的实现方式中,区域配置信息可以包括多个子区域中每个子区域的中心位置坐标信息和每个子区域的区域半径信息;或者,区域配置信息可以包括每个子区域的用户可读名称;或者,区域配置信息可以包括每个子区域的中心位置坐标信息、每个子区域的区域半径信息以及每个子区域的用户可读名称。此外,区域配置信息还可以包括每个子区域的区域标识。例如,假设网络设备将第一小区划分为2个子区域,区域配置信息包括多个子区域中每个子区域的中心位置坐标信息和区域半径信息时,区域配置信息可以为{中心位置坐标1,区域半径1},{中心位置坐标2,区域半径2};或者,区域配置信息包括多个子区域中每个子区域的中心位置坐标信息、区域半 径信息和子区域标识时,区域配置信息可以为{子区域1,中心位置坐标1,区域半径1},{子区域2,中心位置坐标2,区域半径2}。
可选的,区域配置信息中可以直接指示每个子区域的区域标识,例如配置信息为{子区域1,中心位置坐标1,区域半径1};或者,也可以间接指示每个子区域的区域标识,示例性的,区域配置信息中的子区域的顺序即为子区域的区域标识,例如,{中心位置坐标1,区域半径1}为区域配置信息中的第1个子区域信息,则可以对应为子区域1,{中心位置坐标2,区域半径2}为区域配置信息中的第2个子区域信息,则可以对应为子区域2。
其中,每个子区域的中心位置坐标信息不同,每个子区域的区域半径信息可以相同也可以不同。
其中,每个子区域的用户可读名称可以反映子区域的区域范围。例如网络设备将第一小区划分为2个子区域,以第1个子区域的中心位置坐标为圆心,第1个子区域的区域半径为半径的区域范围为上海黄浦区,则该第1个子区域的用户可读名称可以为上海黄浦区;以第2个子区域的中心位置为圆心,第2个子区域的区域半径为半径的区域范围为上海徐汇区,则该第2个子区域的用户可读名称可以为上海徐汇区;或者,每个子区域的用户可读名称可以反映子区域中的某个位置。例如,第1个子区域为上海黄浦区,则第1个子区域的用户可读名称可以为上海黄浦区的某个标志性建筑名称。
需要说明的是,网络设备确定多个子区域时,可以确定每个子区域的区域范围(例如每个子区域的中心位置坐标信息和区域半径信息),但是在区域配置信息中,可以仅携带子区域的用户可读名称。
另一种可能的实现方式中,区域配置信息可以包括多个子区域中每个子区域的长度和宽度。此外,区域配置信息还可以包括经度线方向的子区域总数和纬度线方向的子区域总数。其中,经度线方向的子区域总数为第一小区的覆盖范围对应的经度线方向的子区域总数,纬度线方向的子区域总数为第一小区的覆盖范围对应的纬度线方向的子区域总数。经度线方向的子区域总数与纬度线方向的子区域总数的乘积为上述步骤S701中构成第一小区的覆盖范围的多个子区域的个数。这种方式下,区域配置信息还可以包括每个子区域的用户可读名称。用户可读名称的描述参考前述说明,此处不再赘述。
其中,多个子区域中同一个子区域的长度和宽度可以相同也可以不同,例如,对于多个子区域中的子区域1,其长度和宽度均可以为200,或者其长度和宽度可以分别为200和100;不同子区域的长度可以相同也可以不同;不同子区域的宽度可以相同也可以不同,例如,对于多个子区域中的子区域1和子区域2,子区域1的长度和宽度可以分别为200和100,子区域2的长度和宽度可以分别为400和300;或者子区域1的长度和宽度可以分别为200和100,子区域2的长度和宽度也分别为200和100,本申请实施例对此不做具体限定。
S703、终端设备根据区域配置信息确定第一子区域。
其中,第一子区域为上述多个子区域中终端设备当前所处的一个子区域。
一种可能的实现方式中,若终端设备具有定位功能,则终端设备根据区域配置信 息确定第一子区域,可以为:终端设备获取该终端设备当前的地理位置信息,并根据终端设备当前的地理位置信息和区域配置信息确定第一子区域。
可选的,在该可能实现方式中,根据区域配置信息的不同,终端设备根据终端设备当前的地理位置信息和区域配置信息,确定第一子区域的方式也不同。示例性的,可以有如下两种方式:
方式一:区域配置信息包括多个子区域中每个子区域的中心位置坐标信息和每个子区域的区域半径信息。
在该方式一下,终端设备获取的该终端设备当前的地理位置信息可以为终端设备当前所处的地理位置的位置坐标信息。第一子区域为子区域半径小于第一直线距离的子区域,第一直线距离为该子区域半径对应的子区域中心位置坐标与终端设备当前所处的地理位置的位置坐标之间的直线距离。
示例性的,终端设备可以分别计算与每个子区域对应的直线距离,然后将与每个子区域对应的直线距离与每个子区域对应的区域半径进行比较;若与某一子区域对应的直线距离小于该子区域对应的区域半径,终端设备确定该子区域为第一子区域。其中,每个子区域对应的直线距离为终端设备当前所处的地理位置的位置坐标和每个子区域的中心位置坐标之间的直线距离。
可选的,若存在大于1个子区域对应的直线距离小于子区域对应的区域半径,则将子区域对应的直线距离与该子区域对应的区域半径之差最小的子区域,确定为第一子区域。
例如,网络设备将第一小区划分为2个子区域,区域配置信息包括{中心位置坐标1,区域半径1},{中心位置坐标2,区域半径2},终端设备当前所处的地理位置的位置坐标为位置坐标0,终端设备计算的中心位置坐标1和位置坐标0之间的直线距离为距离1,中心位置坐标2和位置坐标0之间的直线距离为距离2,若距离1大于区域半径1,距离2小于区域半径2,则终端设备将{中心位置坐标2,区域半径2}对应的子区域确定为第一子区域;或者,若距离1小于区域半径1,距离2大于区域半径2,则终端设备将{中心位置坐标1,区域半径1}对应的子区域确定为第一子区域。若距离1小于区域半径1,距离2也小于区域半径2,则终端设备计算距离1与区域半径1之差以及距离2与区域半径2之差,若距离1与区域半径1之差小于距离2与区域半径2之差,则终端设备将{中心位置坐标1,区域半径1}对应的子区域确定为第一子区域。
方式二、区域配置信息包括多个子区域中每个子区域的长度、每个子区域的宽度;进一步的,区域配置信息还包括经度线方向的子区域总数、以及纬度线方向的子区域总数。
其中,本申请实施例中,以多个子区域中不同子区域的长度相同,且不同子区域的宽度相同为例进行说明。
可选的,区域配置信息中还可以包括每个子区域的区域标识。
在该方式二下,终端设备获取的该终端设备当前的地理位置信息可以为终端设备当前所处的地理位置的位置坐标(x,y)。其中,x为终端设备距离该终端设备采用的位置系统的相对参考点的经度方向的距离,y为终端设备距离该位置系统的相对参考点 的纬度方向的距离。
可选的,终端设备采用的位置系统例如可以为全球定位系统(Global Positioning System,GPS),或者可以为北斗卫星系统,或者可以为其他定位系统;位置系统的相对参考点可以根据位置系统的不同而不同,例如可以为(0,0)或者其他,本申请实施例对此不做具体限定。
在该方式二下:终端设备根据终端设备当前的地理位置信息和区域配置信息确定第一子区域,可以为:终端设备根据其经度方向的距离、每个子区域的长度、以及经度线方向的子区域总数,确定终端设备在经度方向上的位置;根据其纬度方向的距离、每个子区域的宽度、以及纬度线方向的子区域总数,确定终端设备在纬度方向的位置;然后根据经度方向上的位置和纬度方向的位置确定子区域标识,该子区域标识所标识的子区域即为第一子区域。
可选的,终端设备在经度方向上的位置可以满足如下公式(1):
Figure PCTCN2019109231-appb-000001
终端设备在纬度方向上的位置可以满足如下公式(2):
Figure PCTCN2019109231-appb-000002
子区域标识可以满足如下公式(3):
zone_id=y 1*Nx+x 1;  (3)
其中,x为终端设备距离该终端设备采用的位置系统的相对参考点的经度方向的距离,y为终端设备距离该位置系统的相对参考点的纬度方向的距离,L为每个子区域的长度,Nx为经度线方向的子区域总数,Ny为纬度线方向的子区域总数,W为每个子区域的宽度,x 1为终端设备在经度方向上的位置,y 1为终端设备在纬度方向上的位置,zone_id为终端设备确定的子区域标识,符号
Figure PCTCN2019109231-appb-000003
表示向下取整,符号%表示取余。
可以理解的是,公式(3)仅为一种示例,其还可以是zone_id=x 1*Ny+y 1
示例性的,以终端设备当前所处的地理位置坐标为(500,500),经度线方向和纬度线方向的子区域总数均为4(即第一小区被划分为16个子区域),每个子区域的长度和宽度均为200为例,终端设备可以根据上述公式(1)确定x 1=2,根据上述公式(2)确定y 1=2,根据上述公式(3)确定子区域标识为10,则终端设备将16个子区域中区域标识为10的子区域确定为第一子区域。
另一种可能的实现方式中,若终端设备不具备定位功能,且区域配置信息中包括多个子区域中每个子区域的用户可读名称,则终端设备根据区域配置信息确定第一子区域,可以为:终端设备将区域配置信息中第一用户可读名称对应的子区域确定为第一子区域。其中,第一用户可读名称为终端设备当前的地理位置对应的用户可读名称。
可选的,对于不具备定位功能的终端设备,用户可以人工确定终端设备当前的地理位置,例如,用户可以随身携带终端设备,并将用户当前所处的地理位置确定为终端设备当前的地理位置。此外,终端设备可以通过人机交互界面向用户请求终端设备当前的地理位置对应的用户可读名称。例如,终端设备可以在该人机交互界面显示多个子区域中每个子区域的用户可读名称,用户在多个用户可读名称中(人工)选择终端设备当前的地理位置对应的用户可读名称。
其中,若子区域的用户可读名称反映子区域的区域范围,则用户选择终端设备当 前的地理位置对应的区域的用户可读名称;若子区域的用户可读名称反映子区域的某个位置,则用户选择距离终端设备当前的地理位置最近的位置对应的用户可读名称。用户选择当前的地理位置对应的用户可读名称后,终端设备将该用户可读名称对应的子区域确定为第一子区域。
例如,子区域的用户可读名称反映子区域的区域范围,网络设备将第一小区划分为3个子区域,每个子区域的用户可读名称分别为{上海黄浦区}、{上海徐汇区}、{上海浦东区},则终端设备可以在该人机交互界面显示3个子区域的用户可读名称,若用户确定终端设备当前处于徐汇区,则用户通过人机交互界面选择上海徐汇区,进而,终端设备将{上海徐汇区}对应的子区域确定为第一子区域。
例如,子区域的用户可读名称反映子区域的某个位置,网络设备将第一小区划分为3个子区域,每个子区域的用户可读名称分别为{标志性建筑1}、{标志性建筑2}、{标志性建筑3},且标志性建筑1、标志性建筑2、标志性建筑3分别属于3个子区域,则终端设备可以在该人机交互界面显示3个子区域的用户可读名称,若用户确定终端设备当前距离标志性建筑1最近,则用户通过人机交互界面选择标志性建筑1,进而,终端设备将{标志性建筑1}对应的子区域确定为第一子区域。
S704、终端设备根据第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息进行测量。
可选的,该第一子区域对应的一个或多个相邻频点信息为第一小区的多个相邻频点信息中的部分相邻频点信息;该第一子区域对应的一个或多个邻区信息为第一小区的多个邻区信息中的部分邻区信息。
其中,第一子区域对应的一个或多个相邻频点信息中的每个相邻频点信息包括绝对无线频道编号(absolute radio frequency channel number,ARFCN),一个ARFCN指示第一小区的一个相邻频点,每个相邻频点信息包括的ARFCN不同。
需要说明的是,本申请实施例中,第一小区的相邻频点可以是同频相邻频点、异频相邻频点、或者异系统相邻频点的至少一种,从而本申请实施例中的相邻频点信息可以是同频相邻频点信息、异频相邻频点信息、或者异系统相邻频点信息的至少一种,本申请实施例对此不做具体限定,在此统一说明,下述实施例不再赘述。
可选的,第一子区域对应的一个或多个相邻频点信息中的每个相邻频点信息还可以包括如下参数的一项或多项:物理小区标识(physical cell identifier,PCI)、PCI对应的类型标识、PCI对应的网络标识、同步信号块(synchronization signal block,SSB)测量时间配置(SSB measurement timing configuration,SMTC)、SMTC起始偏置、每个相邻频点信息包括的ARFCN对应的网络标识、每个相邻频点信息包括的ARFCN对应的类型标识、或者每个相邻频点信息包括的ARFCN对应的优先级。
其中,类型信息用于指示小区类型,例如NTN小区或者TN小区,可选的,指示NTN小区的类型标识可以为GEO、MEO、LEO、HAPS等。网络标识可以为私网标识(non-public network identification,NPN ID)或公网标识;私网是相对于公网的一个概念,可以理解为私密的网络,例如公司、学校或者工厂搭建的内部网络;私网也可以称为非公网(non-public network,NPN);未与私网签约的终端设备不允许接入私网;私网标识可以包括独立私网(standalone non-public network,SNPN)标识、封闭 访问组(closed access group,CAG)标识;通常可以通过私网标识来识别私网类型;不同的终端设备支持不同的私网标识,终端设备仅可以在其支持的私网标识对应的私网驻留,并且仅可以在其签约的私网标识对应的私网发起业务。
其中,SSB也可以理解为同步信号/物理广播信道块(synchronization signal/physical broadcasting channel block,SS/PBCH block)。SMTC中例如可以包括终端设备接收SS/PBCH block的周期、持续长度和偏移量中的一项或多项。SMTC的周期用于确定接收SS/PBCH block的起始帧,SMTC起始偏置用于确定所述起始帧的起始位置,SMTC偏移量用于确定相对所述起始位置的偏移位置。
可选的,终端设备根据第一子区域对应的一个或多个相邻频点信息进行测量之前,可以接收来自网络设备的与第一子区域对应的一个或多个相邻频点信息。
一种可能的实现方式中,终端设备确定第一子区域后,向网络设备发送用于请求与第一子区域对应的一个或多个相邻频点信息的请求消息。其中,该请求消息携带第一子区域的指示信息,该指示信息用于确定以下一项或多项:第一子区域的子区域标识、第一子区域的中心位置坐标、或者第一子区域的用户可读名称。网络设备接收到该请求消息后,向终端设备发送与第一子区域对应的一个或多个相邻频点信息。
可选的,网络设备可以通过系统消息或者专用RRC消息将与第一子区域对应的一个或多个相邻频点信息发送给终端设备。
可选的,该指示信息可以包括第一子区域的子区域标识、第一子区域的中心位置坐标信息、或者第一子区域的用户可读名称中的一项或多项。
或者,可选的,该指示信息可以为第一前导码,该第一前导码与第一子区域对应。在该情况下,终端设备可以先接收来自网络设备的第一前导码和第一子区域的对应关系。网络设备接收到第一前导码后,将与第一子区域对应的一个或多个相邻频点信息发送给终端设备。具体的,网络设备可以根据第一前导码和第一子区域的对应关系,确定终端设备请求与第一子区域对应的一个或多个相邻频点信息,从而将与第一子区域对应的一个或多个相邻频点信息发送给终端设备。
或者,可选的,该指示信息可以为第一前导码和第一接入资源,该第一前导码和第一接入资源均与第一子区域对应,该第一接入资源为用于发送第一前导码的物理时频资源。在该情况下,终端设备可以先接收来自网络设备的第一前导码、第一接入资源、第一子区域三者之间的对应关系。终端设备可以在第一接入资源上发送第一前导码来请求与第一子区域对应的一个或多个相邻频点信息。网络设备在第一接入资源上接收到第一前导码后,将与第一子区域对应的一个或多个相邻频点信息发送给终端设备。具体的,网络设备可以根据第一前导码、第一接入资源、第一子区域三者之间的对应关系,确定终端设备请求与第一子区域对应的一个或多个相邻频点信息,从而将与第一子区域对应的一个或多个相邻频点信息发送给终端设备。需要说明的是,当网络设备在除第一接入资源之外的其他接入资源上接收到第一前导码时,网络设备进行其他处理,比如随机接入相关处理,具体可参考现有技术,在此不再赘述。
或者,可选的,该指示信息可以为位图信息,即终端设备可以用位图信息来指示第一子区域。例如,网络设备将第一小区划分为3个子区域,则该位图信息可以为3个比特。一种可能的对应方式为,第一个比特对应3个子区域中的第一个子区域,第二个比特对应 3个子区域中的第二个子区域,第三个比特对应3个子区域中的第三个比特。若终端设备确定的第一子区域为3个子区域中的第二个子区域,则该位图信息可以为010。网络设备接收到该位图信息后,可以确定终端设备请求3个子区域中的第二个子区域对应的一个或多个相邻频点信息,从而将与第二个子区域对应的一个或多个相邻频点信息发送给终端设备。可以理解的是,第n个子区域可以根据区域配置信息中的子区域的顺序确定,或者为区域配置信息的子区域标识对应的子区域。
另一种可能的实现方式中,终端设备可以向网络设备发送用于请求全部子区域中每个子区域对应的一个或多个相邻频点信息的请求消息。网络设备接收到该请求消息后,将每个子区域对应的一个或多个相邻频点信息发送给终端设备,终端设备根据第一子区域的中心位置坐标信息,或子区域标识,或用户可读名称从每个子区域对应的一个或多个相邻频点信息中确定第一子区域对应的一个或多个相邻频点信息。
可选的,网络设备可以向终端设备发送第二前导码与第一系统消息的对应关系。当终端设备需要请求全部子区域中每个子区域对应的一个或多个相邻频点信息时,终端设备发送第二前导码,网络设备收到第二前导码后,将第一系统消息发送给终端设备,该第一系统消息中携带全部子区域中每个子区域对应的一个或多个相邻频点信息。
或者,可选的,网络设备可以向终端设备发送第二前导码、第二接入资源和第一系统消息的对应关系。当终端设备需要请求全部子区域中每个子区域对应的一个或多个相邻频点信息时,终端设备在第二接入资源上发送第二前导码,网络设备在第二接入资源上收到第二前导码后,将第一系统消息发送给终端设备,该第一系统消息中携带全部子区域中每个子区域对应的一个或多个相邻频点信息。需要说明的是,当网络设备在除第二接入资源之外的其他接入资源上接收到第二前导码时,网络设备进行其它处理,比如随机接入相关处理,具体可参考现有技术,在此不再赘述。
可见,终端设备可以显式或者隐式地向网络设备请求第一子区域对应的一个或多个相邻频点信息,获取第一子区域对应的一个或多个相邻频点信息,从而直接根据第一子区域对应的一个或多个相邻频点信息进行测量;或者也可以向网络设备请求全部子区域中每个子区域对应的一个或多个相邻频点信息,获取全部子区域中每个子区域对应的一个或多个相邻频点信息,再根据第一子区域的中心位置坐标信息,或子区域标识,或用户可读名称从每个子区域对应的一个或多个相邻频点信息中确定第一子区域对应的一个或多个相邻频点信息,从而根据第一子区域对应的一个或多个相邻频点信息进行测量。
再一种可能的实现方式中,终端设备无需向网络设备发送请求消息,网络设备主动将多个子区域中每个子区域对应的一个或多个相邻频点信息发送给终端设备。其中,网络设备可以将每个子区域对应的一个或多个相邻频点信息与区域配置信息携带在同一消息中发送给终端设备,也可以将携带在不同的消息中发送给终端设备,本申请实施例对此不做具体限定。
可选的,终端设备根据第一子区域对应的一个或多个相邻频点信息进行测量,例如可以为:终端设备分别测量每个相邻频点信息包括的ARFCN所指示的频点。其中,本申请实施例对于具体的测量方式不做限定在此不再赘述。
需要说明的是,本申请实施例中步骤S704中,终端设备根据第一子区域对应的一个或多个邻区信息进行测量的实现类似于终端设备根据第一子区域对应的一个或多个 相邻频点信息进行测量的实现。其中,步骤S704中对第一子区域对应的一个或多个相邻频点信息的说明均可援引到第一子区域对应的一个或多个邻区,具体可参考上述相关描述,在此不再赘述。
基于本申请实施例提供的通信方法,由于终端设备可以根据网络设备发送的区域配置信息,从构成第一小区的多个子区域中确定当前所处的第一子区域,进而根据第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息进行测量,因此,相对于现有技术中需要根据第一小区的所有相邻频点信息进行测量的方案,可以降低终端设备的能耗。
此外,在本申请实施例的一种实施场景下,网络设备可以是CU,则本申请实施例中,由网络设备实现的方法和/或步骤,可以由CU实现;或者,网络设备可以是DU,则本申请实施例中,由网络设备实现的方法和/或步骤,可以由DU实现;或者,网络设备可以由CU和DU组成,则本申请实施例中,由网络设备实现的方法和/或步骤,可以由CU和/或DU实现。
示例性的,网络设备为CU时,步骤S701中可以由CU确定多个子区域;网络设备为DU时,步骤S701中可以由DU确定多个子区域;网络设备由CU和DU组成时,步骤S701中可以由DU确定多个子区域,也可以由CU确定多个子区域,本申请实施例对此不做具体限定。
一种可能的实现方式中,当步骤S701中由DU确定多个子区域时,在步骤S702之前,本申请实施例提供的通信方法还可以包括:DU生成上述区域配置信息。可选的,DU可以将该区域配置信息发送给CU。可选的,在DU将区域配置信息发送给CU之前,CU可以向DU请求该区域配置信息。
进一步的,DU还可以向CU发送每个子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息。可选的,在DU向CU发送每个子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息之前,CU可以向DU请求该每个子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息。
可选的,DU可以将上述信息携带在F1建立请求消息或者gNB-DU配置更新消息,或者gNB-CU配置更新确认消息中发送给CU。
另一种可能的实现方式中,当步骤S701中由CU确定多个子区域时,在步骤S702之前,本申请实施例提供的通信方法还可以包括:CU生成上述区域配置信息。可选的,CU可以将该区域配置信息发送给DU。可选的,在CU将区域配置信息发送给DU之前,DU可以向CU请求该区域配置信息。
进一步的,CU还可以向DU发送每个子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息。可选的,在CU向DU发送每个子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息之前,DU可以向CU请求该每个子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息。
可选的,CU可以将上述信息携带在F1建立响应消息,或者gNB-CU配置更新消息,或者gNB-DU配置更新确认消息中发送给DU。
可以理解的是,在上述两种可能的情况下,步骤S702中,可以由CU或DU向终端设备发送该区域配置信息。进一步的,在步骤S704中,可以由CU或DU向终端设 备发送每个子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息,或者可以由CU或DU向终端设备发送第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息。
可以理解的是,上述方法可以适用于存在NTN小区的场景,但不应对本申请构成任何限定,本申请还可以适用于其他场景,例如可以适用于存在覆盖范围比较大的小区的场景。
其中,上述步骤S701至S704中的网络设备的动作可以由图5所示的网络设备30中的处理器301调用存储器302中存储的应用程序代码以指令该网络设备执行,上述步骤S701至S704中的终端设备的动作可以由图5所示的终端设备40中的处理器401调用存储器402中存储的应用程序代码以指令该网络设备执行,本实施例对此不作任何限制。如图8a所示,为本申请实施例提供的另一种通信方法,该通信方法包括如下步骤:
S801、网络设备确定第一配置信息。
其中,第一配置信息用于去激活第一邻区或者第一相邻频点的测量;第一邻区包括第一小区的至少一个邻区,第一相邻频点包括第一小区对应的频点的至少一个相邻频点;第一小区为网络设备下的一个或多个小区中的任意一个小区。也就是说,第一配置信息可以以小区为粒度,去激活第一小区的至少一个邻区的测量;或者也可以以频点为粒度,去激活第一小区的至少一个相邻频点的测量。
需要说明的是,本申请实施例中,第一邻区中每个邻区的优先级可以高于第一小区的优先级,也可以低于第一小区的优先级,还可以与第一小区的优先级相同。第一相邻频点中每个相邻频点的优先级可以高于第一小区对应的频点的优先级,也可以低于第一小区对应的频点的优先级,还可以和第一小区对应的频点的优先级相同,本申请实施例对此不做具体限定。
需要说明的是,本申请实施例中,终端设备对第一小区的邻区或者相邻频点的测量,可以发生在如下至少一种场景:终端设备无需考虑当前服务小区的质量,对高优先级的邻区或频点进行测量;或者,当前服务小区的质量满足某一门限时,终端设备对同频或同优先级或低优先级的邻区或频点进行测量。也就是说,在上述至少一种场景下,终端设备可以根据第一配置信息去激活第一邻区或第一相邻频点的测量。
需要说明的是,第一邻区可以是NTN小区,也可以是TN小区,第一小区可以是NTN小区,也可以是TN小区,本申请实施例对此不做具体限定,在此统一说明,下述实施例不再赘述。
S802、网络设备向终端设备发送第一配置信息。
相应的,终端设备接收来自网络设备的第一配置信息。
其中,第一小区为该终端设备当前的服务小区。
可选的,网络设备可以通过广播消息向第一小区的所有终端设备发送第一配置信息;或者,可以通过单播消息向第一小区的终端设备单独发送第一配置信息;或者,可以通过组播消息向第一小区的一组终端设备发送第一配置信息,本申请实施例对此不做具体限定。
可选的,网络设备可以将第一配置信息携带在系统消息中发送,也可以携带在专用的RRC消息中发送,本申请实施例对此不做具体限定。
此外,在本申请实施例的一种实施场景下,网络设备可以是CU,则本申请实施例中,由网络设备实现的方法和/或步骤,可以由CU实现;或者,网络设备可以是DU,则本申请实施例中,由网络设备实现的方法和/或步骤,可以由DU实现;或者,网络设备可以由CU和DU组成,则本申请实施例中,由网络设备实现的方法和/或步骤,可以由CU和/或DU实现。
示例性的,网络设备为CU时,步骤S801中可以由CU确定第一配置信息;网络设备为DU时,步骤S801中可以由DU确定第一配置信息;网络设备由CU和DU组成时,步骤S801中可以由DU确定第一配置信息,也可以由CU确定第一配置信息,本申请实施例对此不做具体限定。
一种可能的实现方式中,当步骤S801中可以由DU确定第一配置信息时,可选的,本申请实施例提供的通信方法还可以包括:DU将该第一配置信息发送给CU。可选的,在DU将第一配置信息发送给CU之前,CU可以向DU请求该第一配置信息。
可选的,DU可以将第一配置信息携带在F1建立请求消息或者gNB-DU配置更新消息,或者gNB-CU配置更新确认消息中发送给CU。
另一种可能的实现方式中,当步骤S801中由CU确定第一配置信息时,可选的,本申请实施例提供的通信方法可以包括:CU将该第一配置信息发送给DU。可选的,在CU将第一配置信息发送给DU之前,DU可以向CU请求该第一配置信息。
可选的,CU可以将第一配置信息携带在F1建立响应消息,或者gNB-CU配置更新消息,或者gNB-DU配置更新确认消息发送给DU。
可以理解的是,在上述两种可能的情况下,步骤S802中,可以由CU或DU向终端设备发送该第一配置信息。
S803、第一配置信息用于去激活第一邻区的测量时,终端设备根据第一配置信息,停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区;第一配置信息用于去激活第一相邻频点的测量时,终端设备根据第一配置信息,停止测量第一频点,或者降低第一频点的优先级,或者删除第一频点。
其中,第一邻区为上述至少一个邻区中的邻区。第一频点为上述至少一个相邻频点中的频点。
可选的,停止测量第一邻区可以理解为终端设备不测量第一邻区,或者,终端设备在一段时间内不测量第一邻区。
可选的,当第一邻区的优先级高于第一小区的优先级时,降低第一邻区的优先级可以为:将第一邻区的优先级设置为和第一小区的优先级相同,或者将第一邻区的优先级设置为低于第一小区的优先级的任意一个优先级,或者将第一邻区的优先级设置为最低优先级,或者根据一定的delta值降低第一邻区的优先级,例如,若第一邻区的初始优先级为1,delta值为2,则降低第一邻区的优先级可以为将第一邻区的优先级设置为3;当第一邻区的优先级低于第一小区的优先级或者与第一小区的优先级相同时,降低第一邻区的优先级可以为将第一邻区的优先级设置为最低优先级,或者根据一定的delta值降低第一邻区的优先级。
可选的,删除第一邻区可以理解为将第一邻区从第一小区的测量目标中删除。可选的,上述第一配置信息可以包括定时器的信息。在该情况下,终端设备根据第一配置信息停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区,可以为:终端设备 启动该定时器,在定时器的运行时间内,停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区。
可以理解的是,在定时器超时后,终端设备可以启动新的定时器,在新的定时器重新运行的时间内,继续停止测量第一邻区,或者降低第一邻区的优先级,或者删除第一邻区;或者,在定时器超时后,终端设备也可以继续测量第一邻区,或者恢复第一邻区的优先级,或者重新将第一邻区添加到终端设备的测量目标中,本申请实施例对此不做具体限定。
可以理解的,终端设备停止测量第一频点,或者降低第一频点的优先级,或者删除第一频点的说明可参考分别终端设备停止测量第一邻区、降低第一邻区的优先级、删除第一邻区的相关描述,在此不再赘述。
进一步地,第一配置信息还可以包括以下一项或多项:测量次数N、测量时长T、信号质量门限值、信号质量差门限值。其中,N为正整数。在该情况下,终端设备可以在如下几种情况下启动定时器:
情况一:若终端设备连续N次未测量到第一邻区/第一频点,终端设备启动定时器。
需要说明的是,本申请实施例中,连续N次可以理解为从第一次测量开始的连续N次,也可以理解为从某一时刻开始的连续N次,该时刻之前可能对第一邻区/第一频点进行过测量,也可能未对第一邻区/第一频点进行测量,本申请实施例对此不做具体限定,在此统一说明,下述实施例中不再赘述。
情况二、若终端设备连续N次测量的第一邻区的信号质量均低于信号质量门限值,或者,若终端设备对第一频点下的全部小区中每个小区连续N次测量的信号质量均低于信号质量门限值,终端设备启动定时器;
情况三、若终端设备连续N次测量的第一邻区的信号质量均低于信号质量门限值,且第i次测量的第一邻区的信号质量与第i-1次测量的第一邻区的信号质量的差值满足信号质量差门限值,终端设备启动定时器,i为2至N的正整数。
其中,第i次测量的第一邻区的信号质量与第i-1次测量的第一邻区的信号质量的差值满足信号质量差门限值,可以理解为:第i次测量的第一邻区的信号质量减去第i-1次测量的第一邻区的信号质量小于或等于信号质量差门限值;或者也可以理解为:第i-1次测量的第一邻区的信号质量减去第i次测量的第一邻区的信号质量大于或等于信号质量差门限值;或者还可以理解为:第i次测量的第一邻区的信号质量与第i-1次测量的第一邻区的信号质量的差值的绝对值大于或等于信号质量差门限值。
可以理解的,若第一频点下的全部小区中每个小区的信号质量全部符合上述情况三的描述,终端设备启动定时器。
情况四、若终端设备连续N次测量的第一邻区的信号质量均低于信号质量门限值,且第一信号质量差值与第二信号质量差值满足信号质量差门限值,终端设备启动定时器。
其中,第一信号质量差值为终端设备第i次测量的第一邻区的信号质量,与终端设备对第一邻区进行第i次测量时第一小区的信号质量之间的差值。第二信号质量差值为终端设备第i-1次测量的第一邻区的信号质量,与终端设备对第一邻区进行第i-1次测量时第一小区的信号质量之间的差值。
其中,第一信号质量差值与第二信号质量差值满足信号质量差门限值的相关说明,可参考上述情况三中第i次测量的第一邻区的信号质量与第i-1次测量的第一邻区的信号质量 的差值满足信号质量差门限值的相关描述,在此不再赘述。
可以理解的,若第一频点下的全部小区中每个小区的信号质量全部符合上述情况四的描述,终端设备启动定时器。
情况五、若从终端设备第一次测量第一邻区开始的测量时长T内,终端设备未测量到第一邻区,终端设备启动定时器。
其中,本申请实施例对终端设备从第一次测量第一邻区开始的测量时长T内,对第一邻区的测量次数不进行限制。
可以理解的,若第一频点下的全部小区中每个小区的信号质量全部符合上述情况五的描述,终端设备启动定时器。
情况六、若从终端设备第一次测量第一邻区开始的测量时长T内,终端设备对第一邻区进行了M次测量,且该M次测量的第一邻区的信号质量均低于信号质量门限值,终端设备启动定时器,其中,M为正整数。
可以理解的,若第一频点下的全部小区中每个小区的信号质量全部符合上述情况六的描述,终端设备启动定时器。
情况七、若从终端设备第一次测量第一邻区开始的测量时长T内,终端设备对第一邻区进行了M次测量,且该M次测量的第一邻区的信号质量均低于信号质量门限值,且第j次测量的第一邻区的信号质量与第j-1次测量的第一邻区的信号质量的差值满足信号质量差门限值,终端设备启动定时器,其中,j为2至M的正整数。
其中,第j次测量的第一邻区的信号质量与第j-1次测量的第一邻区的信号质量的差值满足信号质量差门限值可参考上述情况三中的相关说明,在此不再赘述。
可以理解的,若第一频点下的全部小区中每个小区的信号质量全部符合上述情况七的描述,终端设备启动定时器。
情况八、若从终端设备第一次测量第一邻区开始的测量时长T内,终端设备对第一邻区进行了M次测量,且该M次测量的第一邻区的信号质量均低于信号质量门限值,且第三信号质量差值与第四信号质量差值满足信号质量差门限值,终端设备启动定时器。
其中,第三信号质量差值为终端设备在测量时长T内第j次测量的第一邻区的信号质量,与终端设备对第一邻区进行第j次测量时第一小区的信号质量之间的差值。第四信号质量差值为终端设备在测量时长T内第j-1次测量的第一邻区的信号质量,与终端设备对第一邻区进行第j-1次测量时第一小区的信号质量之间的差值。
其中,第三信号质量差值与第四信号质量差值满足信号质量差门限值的相关说明,可参考上述情况三中的相关说明,在此不再赘述。
可以理解的是,终端设备可以在上述八种情况中任意一种情况所述的条件满足时启动定时器,也可以在上述八中情况中任意多种情况组合得到的条件满足时启动定时器,例如终端设备在情况四和情况五组合得到的条件满足时启动定时器。
基于本申请实施例提供的通信方法,由于终端设备可以根据网络设备发送的第一配置信息停止测量第一邻区/第一频点,或者降低第一邻区/第一频点的优先级,或者删除第一邻区/第一频点,在第一邻区/第一频点的质量较差或者无法测量到第一邻区/第一频点的情况下,可以减少对第一邻区/第一频点的测量次数,从而降低终端设备的能耗。
示例性的,如图8b所示,假设终端设备1处于NTN小区的覆盖范围中同时被TN小区覆盖的位置,终端设备2处于NTN小区的覆盖范围中没有同时被TN小区覆盖的位置,理论上终端设备2不需要测量NTN小区的TN邻区,但是由于邻区配置是以小区为粒度的,因此终端设备2实际也会进行TN邻区的测量,从而浪费大量能耗。
基于本申请实施例提供的通信方法,终端设备2可以根据第一配置信息,停止测量TN邻区,或者降低TN邻区的优先级,或者删除TN邻区,从而减少对TN邻区测量的次数,进而降低终端设备的能耗。
可以理解的是,上述方法可以适用于存在NTN小区的场景,但不应对本申请构成任何限定,本申请还可以适用于其他场景,例如可以适用于存在覆盖范围比较大的小区的场景。
其中,上述步骤S801至S803中的网络设备的动作可以由图5所示的网络设备30中的处理器301调用存储器302中存储的应用程序代码以指令该网络设备执行,上述步骤S801至S803中的终端设备的动作可以由图5所示的终端设备40中的处理器401调用存储器402中存储的应用程序代码以指令该网络设备执行,本实施例对此不作任何限制。
需要说明的是,本申请实施例中如图8a所示的通信方法可以单独执行,也可以在如图7a所示的通信方法的基础上执行,例如,第一配置信息可以用于去激活与第一子区域对应的一个或多个相邻频点中至少一个相邻频点的测量,当终端设备根据与第一子区域对应的一个或多个相邻频点信息进行测量时,若连续N次未测量到与第一子区域对应的一个或多个相邻频点中的一个相邻频点,则终端设备启动定时器,在该定时器的运行时间内,停止测量该一个相邻频点,或者降低该一个相邻频点的优先级,或者删除该一个相邻频点的优先级,此时,可以进一步降低终端设备的能耗。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬 件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置实现上述方法实施例中的终端设备的步骤为例。图9示出了一种通信装置90的结构示意图。该通信装置90包括处理模块901和收发模块902。所述收发模块902,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块902,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由终端设备执行的接收和发送类的步骤,处理模块901,可以用于执行上述方法实施例中由终端设备执行的除接收和发送类步骤之外的其他步骤。
一种可能的实现方式中,收发模块902,用于接收来自网络设备的区域配置信息,该区域配置信息指示多个子区域,该多个子区域构成的地理区域范围包括第一小区的覆盖区域;处理模块901,用于根据该区域配置信息确定第一子区域,该第一子区域为该多个子区域中通信装置90当前所处的一个子区域;处理模块901,还用于根据与该第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息进行测量。
可选的,处理模块901,用于根据该区域配置信息确定第一子区域,包括:处理模块901,用于获取通信装置90当前的地理位置信息;处理模块901,还用于根据通信装置90当前的地理位置信息和区域配置信息确定第一子区域。
可选的,区域配置信息包括多个子区域中每个子区域的用户可读名称,处理模块901,用于根据该区域配置信息确定第一子区域,包括:处理模块901,用于将区域配置信息中第一用户可读名称对应的子区域确定为第一子区域,第一用户可读名称为通信装置90当前的地理位置对应的用户可读名称。
可选的,收发模块902,还用于向网络设备发送请求消息,该请求消息携带第一子区域的指示信息,该请求消息用于请求与第一子区域对应的一个或多个相邻频点信息和/或一个或多个邻区信息。
另一种可能的实现方式中,收发模块902,用于接收来自网络设备的第一配置信息,该第一配置信息用于去激活第一邻区的测量;处理模块901,用于根据该第一配置信息停止测量第一邻区,或者降低该第一邻区的优先级,该第一邻区包括第一小区的至少一个邻区。
可选的,第一配置信息包括定时器的信息;处理模块901,用于根据该第一配置信息停止测量第一邻区,或者降低该第一邻区的优先级,或者删除第一邻区,包括:处理模块901,用于启动定时器;在该定时器的运行时间内,所述处理模块901,还用于停止测量所述第一邻区,或者降低所述第一邻区的优先级,或者删除第一邻区。
可选的,处理模块901,用于启动定时器,包括:若连续N次未测量到第一邻区,处 理模块901,用于启动定时器;或者,若连续N次测量的第一邻区的信号质量均低于信号质量门限值,处理模块901,用于启动定时器;或者,若连续N次测量的第一邻区的信号质量均低于信号质量门限值,且第i次测量的第一邻区的信号质量与第i-1次测量的第一邻区的信号质量的差值满足信号质量差门限值,处理模块901,用于启动所述定时器,i为正整数,i的取值为2至N;或者,若连续N次测量的第一邻区的信号质量均低于信号质量门限值,且第一信号质量差值与第二信号质量差值的差值满足信号质量差门限值,处理模块901,用于启动定时器。
可选的,处理模块901,用于启动定时器,包括:若从第一次测量第一邻区开始的测量时长T内,未测量到第一邻区,处理模块901,用于启动定时器;或者,若从第一次测量第一邻区开始的测量时长T内,对第一邻区进行了M次测量,且该M次测量第一的第一邻区的信号质量均低于信号质量门限值,处理模块901,用于启动定时器;或者,若从第一次测量第一邻区开始的测量时长T内,对第一邻区进行了M次测量,且该M次测量的第一邻区的信号质量均低于信号质量门限值,且第j次测量的第一邻区的信号质量与第j-1次测量的第一邻区的信号质量的差值满足信号质量差门限值,处理模块901,用于启动定时器;或者,若从第一次测量第一邻区开始的测量时长T内,对第一邻区进行了M次测量,且该M次测量的第一邻区的信号质量均低于信号质量门限值,且第三信号质量差值与第四信号质量差值满足信号质量差门限值,处理模块901,用于启动定时器。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
可选的,通信装置90还可以包括存储模块(图9中未示出),用于存储数据和/或指令,处理模块901可以读取存储模块中的数据或者指令,实现上述各个实施例对应的方法。
可以理解的是,上述各个模块可以独立设置,也可以集成,本申请实施例对此不做限定。
一种可能的方式中,该通信装置90以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置90可以采用图5所示的终端设备40的形式。
比如,图5所示的终端设备40中的处理器401可以通过调用存储器402中存储的计算机执行指令,使得终端设备40执行上述方法实施例中的通信方法。
具体的,图9中的处理模块901和收发模块902的功能/实现过程可以通过图5所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现。或者,图9中的处理模块901的功能/实现过程可以通过图5所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现,图9中的收发模块902的功能/实现过程可以通过图5所示的终端设备40中的收发器403来实现。
由于本实施例提供的通信装置90可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置实现上述方法实施例中的网络设备的步骤为例。图10 示出了一种通信装置100的结构示意图。该通信装置100包括处理模块1001和收发模块1002。所述收发模块1002,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块1002,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由网络设备执行的接收和发送类的步骤,处理模块1001,可以用于执行上述方法实施例中由网络设备执行的除接收和发送类步骤之外的其他步骤。
一种可能的实现方式中,处理模块1001,用于确定多个子区域,该多个子区域构成的地理区域范围包括第一小区的覆盖区域;收发模块1002,用于向终端设备发送区域配置信息,该区域配置信息指示所述多个子区域的信息。
可选的,收发模块1002,还用于向终端设备发送与第一子区域对应的一个或多个相邻频点信息,该第一子区域为该多个子区域中的一个子区域。
可选的,收发模块1002,还用于接收来自该终端设备的请求消息,该请求消息携带第一子区域的指示信息,该请求消息用于请求与该第一子区域对应的一个或多个相邻频点信息。
另一种可能的实现方式中,处理模块1001,用于确定第一配置信息,该第一配置信息用于去激活第一邻区的测量;收发模块1002,用于向终端设备发送第一配置信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
可选的,通信装置100还可以包括存储模块(图10中未示出),用于存储数据和/或指令,处理模块1001可以读取存储模块中的数据或者指令,实现上述各个实施例对应的方法。
可以理解的是,上述各个模块可以独立设置,也可以集成,本申请实施例对此不做限定。
一种可能的方式中,该通信装置100以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置100可以采用图5所示的网络设备30的形式。
比如,图5所示的网络设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得网络设备30执行上述方法实施例中的通信方法。
具体的,图10中的处理模块1001和收发模块1002的功能/实现过程可以通过图5所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图10中的处理模块1001的功能/实现过程可以通过图5所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图10中的收发模块1002的功能/实现过程可以通过图5所示的网络设备30中的收发器303来实现。
由于本实施例提供的通信装置100可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一 种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。在另一种可能的设计中,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的区域配置信息,所述区域配置信息指示多个子区域的信息,所述多个子区域构成的地理区域范围包括第一小区的覆盖区域;
    根据所述区域配置信息确定第一子区域,所述第一子区域为所述多个子区域中终端设备当前所处的一个子区域;
    根据与所述第一子区域对应的一个或多个相邻频点信息进行测量。
  2. 根据权利要求1所述的方法,其特征在于,根据所述区域配置信息确定第一子区域,包括:
    获取所述终端设备当前的地理位置信息;
    根据所述终端设备当前的地理位置信息和所述区域配置信息确定所述第一子区域。
  3. 根据权利要求2所述的方法,其特征在于,所述区域配置信息包括所述多个子区域中每个子区域的中心位置坐标信息和所述每个子区域的区域半径信息;所述终端设备当前的地理位置信息为所述终端设备当前所处的地理位置的位置坐标信息。
  4. 根据权利要求1所述的方法,其特征在于,所述区域配置信息包括所述多个子区域中每个子区域的用户可读名称;根据所述区域配置信息确定第一子区域,包括:
    将所述区域配置信息中第一用户可读名称对应的子区域确定为所述第一子区域,所述第一用户可读名称为所述终端设备当前的地理位置对应的用户可读名称。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述一个或多个相邻频点信息中的每个相邻频点信息包括绝对无线频道编号ARFCN。
  6. 根据权利要求5所述的方法,其特征在于,所述每个相邻频点信息还包括以下一项或多项:
    物理小区标识PCI、同步信号块测量时间配置SMTC、SMTC起始偏置、所述每个相邻频点信息包括的ARFCN对应的网络标识、所述每个相邻频点信息包括的ARFCN对应的类型标识、所述PCI对应的网络标识、所述PCI对应的类型标识、或者所述每个相邻频点信息包括的ARFCN对应的优先级。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送请求消息,所述请求消息携带所述第一子区域的指示信息,所述请求消息用于请求与所述第一子区域对应的一个或多个相邻频点信息。
  8. 根据权利要求7所述的方法,其特征在于,所述指示信息用于确定以下一项或多项:所述第一子区域的子区域标识、所述第一子区域的中心位置坐标、或者所述第一子区域的用户可读名称。
  9. 根据权利要求7或8所述的方法,其特征在于,所述指示信息为第一前导码,所述第一前导码与所述第一子区域对应;或者,
    所述指示信息为所述第一前导码和第一接入资源,所述第一前导码和所述第一接入资源均与所述第一子区域对应。
  10. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的第一配置信息,所述第一配置信息用于去激活第一邻区的测量,所述第一邻区包括第一小区的至少一个邻区;
    根据所述第一配置信息停止测量第一邻区,或者降低所述第一邻区的优先级,或者删除第一邻区。
  11. 根据权利要求10所述的方法,其特征在于,所述第一配置信息包括定时器的信息;根据所述第一配置信息停止测量所述第一邻区,或者降低所述第一邻区的优先级,或者删除第一邻区,包括:
    启动所述定时器,在所述定时器的运行时间内,停止测量所述第一邻区,或者降低所述第一邻区的优先级,或者删除第一邻区。
  12. 根据权利要求11所述的方法,其特征在于,所述第一配置信息还包括以下一项或多项:测量次数N、信号质量门限值、信号质量差门限值,N为正整数。
  13. 根据权利要求12所述的方法,其特征在于,启动所述定时器,包括:
    若连续N次未测量到所述第一邻区,启动所述定时器;或者,
    若连续N次测量的所述第一邻区的信号质量均低于所述信号质量门限值,启动所述定时器;或者,
    若连续N次测量的所述第一邻区的信号质量均低于所述信号质量门限值,且第i次测量的所述第一邻区的信号质量与第i-1次测量的所述第一邻区的信号质量的差值满足所述信号质量差门限值,启动所述定时器,i为正整数,i的取值为2至N;或者,
    若连续N次测量的所述第一邻区的信号质量均低于所述信号质量门限值,且第一信号质量差值与第二信号质量差值的差值满足所述信号质量差门限值,启动所述定时器,所述第一信号质量差值为第i次测量的所述第一邻区的信号质量与进行第i次测量时所述服务小区的信号质量之间的差值,所述第二信号质量差值为第i-1次测量的所述第一邻区的信号质量与进行第i-1次测量时所述服务小区的信号质量之间的差值。
  14. 一种通信方法,其特征在于,所述方法包括:
    确定多个子区域,所述多个子区域构成的地理区域范围包括第一小区的覆盖区域;
    向终端设备发送区域配置信息,所述区域配置信息指示所述多个子区域的信息。
  15. 根据权利要求14所述的方法,其特征在于,所述区域配置信息包括所述多个子区域中每个子区域的中心位置坐标信息和所述每个子区域的区域半径信息;或者,
    所述区域配置信息包括所述每个子区域的用户可读名称;或者,
    所述区域配置信息包括所述多个子区域中每个子区域的中心位置坐标信息、所述每个子区域的区域半径信息、以及所述每个子区域的用户可读名称。
  16. 根据权利要求15所述的方法,其特征在于,所述区域配置信息还包括:所述每个子区域的区域标识。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送与第一子区域对应的一个或多个相邻频点信息,所述第一子区域为所述多个子区域中的一个子区域。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的请求消息,所述请求消息携带第一子区域的指示信息,所述请求消息用于请求与所述第一子区域对应的一个或多个相邻频点信息。
  19. 根据权利要求18所述的方法,其特征在于,所述指示信息用于确定以下一项或多项:所述第一子区域的子区域标识、所述第一子区域的中心位置坐标、或者所述第一子 区域的用户可读名称。
  20. 根据权利要求18或19所述的方法,其特征在于所述指示信息为第一前导码,所述第一前导码与所述第一子区域对应;或者,
    所述指示信息为所述第一前导码和第一接入资源,所述第一前导码和所述第一接入资源均与所述第一子区域对应。
  21. 根据权利要求17-20任一项所述的方法,其特征在于,所述一个或多个相邻频点信息中的每个相邻频点信息包括绝对无线频道编号ARFCN。
  22. 根据权利要求21所述的方法,其特征在于,所述每个相邻频点信息还包括以下一项或多项:
    物理小区标识PCI、同步信号块测量时间配置SMTC、SMTC起始偏置、所述每个相邻频点信息包括的ARFCN对应的网络标识、所述每个相邻频点信息包括的ARFCN对应的类型标识、所述PCI对应的网络标识、所述PCI对应的类型标识、或者所述每个相邻频点信息包括的ARFCN对应的优先级。
  23. 一种通信方法,其特征在于,所述方法包括:
    确定第一配置信息,所述第一配置信息用于去激活第一邻区的测量,所述第一邻区包括第一小区的至少一个邻区;
    向终端设备发送所述第一配置信息。
  24. 根据权利要求23所述的方法,其特征在于,所述第一配置信息包括定时器的信息。
  25. 根据权利要求24所述的方法,其特征在于,所述第一配置信息还包括以下一项或多项:测量次数N、信号质量门限值、信号质量差门限值,N为正整数。
  26. 一种通信装置,其特征在于,所述通信装置包括:处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述处理器执行所述计算机执行指令时,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者,以使所述通信装置执行如权利要求10-13中任一项所述的方法,或者,以使所述通信装置执行如权利要求14-23中任一项所述的方法,或者,以使所述通信装置执行如权利要求23-25中任一项所述的方法。
  27. 一种通信装置,其特征在于,所述通信装置包括:处理器和接口电路;
    所述接口电路,用于接收计算机执行指令并传输至所述处理器;
    所述处理器用于执行所述计算机执行指令,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者,以使所述通信装置执行如权利要求10-13中任一项所述的方法,或者,以使所述通信装置执行如权利要求14-22中任一项所述的方法,或者,以使所述通信装置执行如权利要求23-25中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在通信装置上运行时,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者,以使所述通信装置执行如权利要求10-13中任一项所述的方法,或者,以使所述通信装置执行如权利要求14-22中任一项所述的方法,或者,以使所述通信装置执行如权利要求23-25中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,包括指令,当所述指令在通信装置上运 行时,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者,以使所述通信装置执行如权利要求10-13中任一项所述的方法,或者,以使所述通信装置执行如权利要求14-22中任一项所述的方法,或者,以使所述通信装置执行如权利要求23-25中任一项所述的方法。
  30. 一种通信系统,其特征在于,所述通信系统包括:终端设备和网络设备;
    所述网络设备,用于确定多个子区域,并向所述终端设备发送区域配置信息;
    所述终端设备,用于接收来自网络设备的所述区域配置信息,并根据所述区域配置信息确定第一子区域;
    所述终端设备,还用于根据与所述第一子区域对应的一个或多个相邻频点信息进行测量;
    其中,所述多个子区域构成的地理区域范围包括第一小区的覆盖区域,所述区域配置信息指示所述多个子区域的信息,所述第一子区域为所述多个子区域中所述终端设备当前所处的一个子区域;
    或者,
    所述网络设备,用于确定第一配置信息,并向所述终端设备发送第一配置信息,所述第一配置信息用于去激活第一邻区的测量,所述第一邻区包括第一小区的至少一个邻区;
    所述终端设备,用于接收来自所述网络设备的所述第一配置信息,并根据所述第一配置信息停止测量所述第一邻区,或者降低所述第一邻区的优先级,或者删除第一邻区。
PCT/CN2019/109231 2019-09-29 2019-09-29 通信方法、设备及系统 WO2021056582A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19946328.2A EP4024903A4 (en) 2019-09-29 2019-09-29 COMMUNICATION METHOD, DEVICE AND SYSTEM
CN201980100696.6A CN114424590A (zh) 2019-09-29 2019-09-29 通信方法、设备及系统
PCT/CN2019/109231 WO2021056582A1 (zh) 2019-09-29 2019-09-29 通信方法、设备及系统
US17/656,756 US20220217561A1 (en) 2019-09-29 2022-03-28 Communication method, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109231 WO2021056582A1 (zh) 2019-09-29 2019-09-29 通信方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/656,756 Continuation US20220217561A1 (en) 2019-09-29 2022-03-28 Communication method, device, and system

Publications (1)

Publication Number Publication Date
WO2021056582A1 true WO2021056582A1 (zh) 2021-04-01

Family

ID=75165473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109231 WO2021056582A1 (zh) 2019-09-29 2019-09-29 通信方法、设备及系统

Country Status (4)

Country Link
US (1) US20220217561A1 (zh)
EP (1) EP4024903A4 (zh)
CN (1) CN114424590A (zh)
WO (1) WO2021056582A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193184A1 (zh) * 2022-04-07 2023-10-12 Oppo广东移动通信有限公司 小区测量方法、装置、设备、存储介质及程序产品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11303353B2 (en) 2019-11-07 2022-04-12 Qualcomm Incorporated Systems and methods for supporting satellite access from mobile devices to public land mobile networks
US11811488B2 (en) 2019-11-07 2023-11-07 Qualcomm Incorporated Systems and methods for support of a 5G satellite radio access technology
US11696106B2 (en) * 2019-11-07 2023-07-04 Qualcomm Incorporated Configuration of fixed tracking areas and fixed cells for a 5G satellite rat
US20230292155A1 (en) * 2020-08-06 2023-09-14 Beijing Xiaomi Mobile Software Co., Ltd. Cell measurement processing method and device
WO2024029882A1 (en) * 2022-08-01 2024-02-08 Samsung Electronics Co., Ltd. Method and apparatus for cell selection and cell reselection in non-terrestrial network (ntn)
CN115996402B (zh) * 2023-02-01 2024-02-02 上海移远通信技术股份有限公司 用于无线通信的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102224745A (zh) * 2008-11-20 2011-10-19 诺基亚公司 基于通过用户设备的位置定位的无线系统改进
CN108040351A (zh) * 2017-12-22 2018-05-15 京信通信系统(中国)有限公司 一种邻区自动添加方法及设备
WO2019170866A1 (en) * 2018-03-09 2019-09-12 Ipcom Gmbh & Co. Kg Predictive measurement for non-terrestrial communication

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2390777B (en) * 2002-06-26 2004-05-05 Motorola Inc Method system and apparatus for mobile communications
CN101540987B (zh) * 2008-03-19 2011-01-05 中国移动通信集团公司 一种更新邻区列表的方法、装置及系统
CN102131220B (zh) * 2010-01-15 2013-06-05 鼎桥通信技术有限公司 一种邻区配置错误的识别与处理方法
CN103563450A (zh) * 2011-04-13 2014-02-05 交互数字专利控股公司 异构网络中用于小型小区发现的方法和装置
US9204354B2 (en) * 2011-08-11 2015-12-01 Mediatek Inc. Method for small cell discovery in heterogeneous network
US10542447B2 (en) * 2014-12-30 2020-01-21 Lg Electronics Inc. Method and device for reporting measurement result by terminal in coverage expansion area
CN108810920B (zh) * 2017-04-28 2021-01-15 中国移动通信有限公司研究院 一种测量参数的配置方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102224745A (zh) * 2008-11-20 2011-10-19 诺基亚公司 基于通过用户设备的位置定位的无线系统改进
CN108040351A (zh) * 2017-12-22 2018-05-15 京信通信系统(中国)有限公司 一种邻区自动添加方法及设备
WO2019170866A1 (en) * 2018-03-09 2019-09-12 Ipcom Gmbh & Co. Kg Predictive measurement for non-terrestrial communication

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Considerations on NTN mobility", 3GPP TSG-RAN WG3 #102 R3-186368, 16 November 2018 (2018-11-16), XP051482518 *
CATT: "Considerations on NTN mobility", 3GPP TSG-RAN WG3 #103 R3-190242, 1 March 2019 (2019-03-01), XP051604185 *
HUAWEI ET AL.: "Discussion on cell measurement for mobility management in NTN", 3GPP TSG RAN WG1 MEETING #96BIS R1-1904002, 12 April 2019 (2019-04-12), XP051691222 *
See also references of EP4024903A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193184A1 (zh) * 2022-04-07 2023-10-12 Oppo广东移动通信有限公司 小区测量方法、装置、设备、存储介质及程序产品

Also Published As

Publication number Publication date
EP4024903A1 (en) 2022-07-06
CN114424590A (zh) 2022-04-29
EP4024903A4 (en) 2022-08-31
US20220217561A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2021056582A1 (zh) 通信方法、设备及系统
WO2021218820A1 (zh) 测量方法、装置及系统
US20230132815A1 (en) Report transmission method, apparatus, and system
US20230164685A1 (en) Access Control Method and Apparatus for Terminal Device
US20230083152A1 (en) Method for wireless communication and network device
JP2020505889A (ja) 通信方法および通信デバイス
EP4185029A1 (en) Information processing method, terminal device, and network device
WO2022012446A1 (zh) 一种无线通信的方法及装置
WO2020037660A1 (zh) 数据传输方法和装置
US20230047970A1 (en) Power adjustment method, apparatus, and system
WO2019242536A1 (zh) 用于卫星通信的用户设备
US20170127456A1 (en) Apparatus, method, and program
US20220182892A1 (en) Communication Method and Apparatus
WO2023087325A1 (zh) 一种确定小区的卫星类型的方法及其装置
WO2022027831A1 (zh) 一种移动性测量方法及装置
CN114175840A (zh) 随机接入方法和装置
US20230370922A1 (en) Method for entering connected mode, and terminal device
US11924893B2 (en) Method for establishing connection, and terminal device
US20220338093A1 (en) Communication method, device, and system
WO2023060429A1 (zh) 通信方法及通信装置
US20230180308A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2023039829A1 (zh) 无线通信方法、终端设备以及网络设备
WO2022062823A1 (zh) 波束管理方法、装置及系统
WO2022061526A1 (zh) 信息发送方法、装置及系统
WO2023164838A1 (zh) 无线通信的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019946328

Country of ref document: EP

Effective date: 20220331