WO2022012446A1 - 一种无线通信的方法及装置 - Google Patents

一种无线通信的方法及装置 Download PDF

Info

Publication number
WO2022012446A1
WO2022012446A1 PCT/CN2021/105635 CN2021105635W WO2022012446A1 WO 2022012446 A1 WO2022012446 A1 WO 2022012446A1 CN 2021105635 W CN2021105635 W CN 2021105635W WO 2022012446 A1 WO2022012446 A1 WO 2022012446A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
communication device
communication
beam hopping
hopping mode
Prior art date
Application number
PCT/CN2021/105635
Other languages
English (en)
French (fr)
Inventor
乔云飞
汪宇
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21841543.8A priority Critical patent/EP4167639A4/en
Publication of WO2022012446A1 publication Critical patent/WO2022012446A1/zh
Priority to US18/155,506 priority patent/US20230156489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and apparatus for wireless communication.
  • Satellite communications and other non-terrestrial networks have significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and freedom from geographical conditions.
  • a mobile terminal provides services. Since traditional terrestrial networks cannot provide seamless coverage, especially in places where base stations cannot be deployed in the sea, desert, and air, non-terrestrial networks are introduced into terrestrial networks such as fifth-generation (5G) systems. Base stations or some base station functions are deployed on high-altitude platforms or satellites to provide seamless coverage for terminal equipment, and high-altitude platforms or satellites are less affected by natural disasters, which can improve the reliability of the 5G system.
  • 5G fifth-generation
  • a single satellite In order to support wide-area coverage, a single satellite is usually equipped with hundreds or even thousands of beams, and the single-satellite payload is large.
  • the beam hopping satellite communication system came into being. Specifically, in the beam-hopping satellite system, a single satellite is only equipped with a small number of beams (such as dozens of beams), and the beams serve all the coverage areas of the single satellite in a time-sharing manner. In the beam hopping scenario, how to obtain the beam distribution for the terminal has become an urgent problem to be solved.
  • Embodiments of the present application provide a method and apparatus for wireless communication, which facilitates the user to obtain the distribution of the beams, and to communicate according to the distribution of the beams.
  • the present application provides a method for wireless communication, including: a first communication device obtains first beam configuration information, determines a first beam hopping mode according to the first beam configuration information, and determines a first beam hopping mode according to the first beam hopping information The mode communicates with the second communication device.
  • the first communication device can determine the first beam hopping mode according to the first beam configuration information, and communicate according to the first beam hopping mode, so as to realize the acquisition of beams in the beam hopping scenario distribution, thus ensuring normal communication.
  • acquiring the first beam configuration information by the first communication device includes: the first communication device receives a radio resource control RRC message sent by the second communication device, where the RRC message includes the first beam configuration information.
  • the RRC message carrying the first beam configuration information may be a message broadcast by the second communication apparatus. Carrying the first beam configuration information in the broadcast RRC message can flexibly cope with changes in beam patterns caused by satellite motion or beam splitting or combining, and can save signaling overhead.
  • the RRC message carrying the first beam configuration information may also be a user-specific (UE-Specific) message unicast by the second communication device to the first communication device.
  • UE-Specific user-specific (UE-Specific) message unicast by the second communication device to the first communication device.
  • a unicast RRC message may be used to carry the first beam configuration information, and corresponding beam configuration information may be delivered for each user.
  • the first beam configuration information includes a beam hopping pattern; the first communication apparatus determines the first beam hopping pattern according to the beam hopping pattern.
  • the first communication device After receiving the first beam configuration information, the first communication device can directly determine the first beam hopping mode without additional steps, which simplifies the operation at the first communication device.
  • the first beam configuration information includes index information; the first communication apparatus determines the first beam hopping mode according to the index information. Specifically: the first communication device stores one or more beam hopping patterns, and selects the first beam hopping pattern from the one or more beam hopping patterns according to the index information.
  • the index used in this method occupies fewer bits.
  • the possible index information may be sent to the terminal by the second communication apparatus through a user-specific message, and it is more accurate and flexible for the UE-Specific message to send the index information to the terminal.
  • the first beam configuration information includes change information of the beam pattern; the first communication apparatus determines the first beam hopping pattern according to the change information of the beam pattern.
  • the change information of the beam pattern may be beam splitting information or beam combining information.
  • the first communication device updates the beam hopping mode according to the change information of the beam mode to determine the first beam hopping mode, which improves the accuracy of communication in the beam hopping scenario.
  • the first communication device communicates with the second communication device according to the first beam hopping mode, including: the first beam hopping mode indicates beam activation information of the second communication device; The activation information of the beam determines the start and end time of the service beam, wherein the service beam is the beam served by the second communication device for the first communication device; the first communication device determines the communication state according to the start and end time of the service beam; wherein the communication state includes connection state or idle state or inactive state.
  • the first communication device determines the start and end times of the serving beam according to the activation information of the beam, the ephemeris information of the satellite, the current position information and the activation information of the beam. For example, the first communication device maintains a connected state during the start and end time of the serving beam, and switches to an idle state or an inactive state during other time periods. In this possible implementation, the first communication device selects the communication timing and adjusts the communication state according to the beam hopping mode, which can achieve the effect of saving power consumption.
  • the first beam hopping pattern includes the beam identifier of the active beam.
  • the first beam hopping mode further includes the initial partial bandwidth BWP and/or power compensation coefficient corresponding to the active beam.
  • the initial BWP is the frequency resource when the user accesses the beam for the first time, which can avoid searching for the access resource when the first communication device accesses the beam and improve the access efficiency;
  • the power compensation coefficient is used to indicate the power of the signal transmitted by the first communication device to avoid Insufficient or excess signal power.
  • the first beam hopping pattern is related to the system frame number SFN.
  • the activation information of the beam indicated by the first beam hopping mode corresponds to the system frame number SFN, specifically: the activated beam indicated by the first beam hopping mode is determined by mod(SFN,n), where n is the change of the beam hopping mode cycle.
  • the beam hopping pattern is linked with the system frame, and the beam hopping pattern is adjusted in units of time, which is convenient for scheduling.
  • the first beam configuration information is determined by a core network device.
  • the core network configures the beam hopping information of each access point (second communication device) in the network, so as to realize the coordination ability of each access point in the network and improve the communication quality of the whole network.
  • an embodiment of the present application further provides a method for wireless communication, including: a second communication device sending first beam configuration information to a first communication device; the first beam configuration information is used to determine a first beam hopping mode; The first beam hopping pattern is used for the first communication device to communicate with the second communication device.
  • the second communication device sends beam configuration information to the first communication device, so that the first communication device determines a first beam hopping pattern, and according to the first beam hopping pattern and the second beam hopping pattern Communication device communicates.
  • the beam distribution is delivered to the second communication device, and normal communication is ensured.
  • the second communication apparatus sends a radio resource control RRC message to the first communication apparatus, where the RRC message includes the first beam configuration information.
  • the RRC message carrying the first beam configuration information may be a message broadcast by the second communication apparatus. Carrying the first beam configuration information in the broadcast RRC message can flexibly cope with changes in beam patterns caused by satellite motion or beam splitting or combining, and can save signaling overhead.
  • the RRC message carrying the first beam configuration information may also be a user-specific (UE-Specific) message unicast by the second communication device to the first communication device.
  • UE-Specific user-specific (UE-Specific) message unicast by the second communication device to the first communication device.
  • a unicast RRC message may be used to carry the first beam configuration information, and corresponding beam configuration information may be delivered for each user.
  • the first beam configuration information includes a beam hopping mode; the beam hopping mode is used to determine the first beam hopping mode.
  • the first beam configuration information includes a specific beam hopping mode. After receiving the first beam configuration information, the first communication device can directly determine the first beam hopping mode without additional steps, which simplifies the process at the first communication device. operate.
  • the first beam configuration information includes index information; the index information is used to determine the first beam hopping mode.
  • the index used in this method occupies fewer bits.
  • the second communication apparatus sends the index information through a user-specific message, and the UE-Specific message sends the index information to the terminal to be more accurate and flexible.
  • the first beam configuration information includes change information of the beam hopping pattern; the change information of the beam pattern is used to determine the first beam hopping pattern.
  • the change information of the beam pattern may be beam splitting information or beam combining information.
  • the second communication device sends the change information of the beam pattern to the first communication device, so that the first communication device updates the beam hopping pattern according to the change information, which improves the communication accuracy in the beam hopping scenario.
  • the first beam hopping mode is used for the first communication device to communicate with the second communication device, including: the first beam hopping mode is used to instruct the second communication device The activation information of the beam; the activation information of the beam is used to determine the start and end time of the service beam, wherein the service beam is the beam served by the second communication device for the first communication device; the start and end time of the service beam for the first communication device to switch a communication state; wherein the communication state includes a connected state or an idle state or an inactive state.
  • the beam configuration information sent by the second communication device is used to determine the first beam hopping mode, so that the first communication device selects the communication timing and adjusts the communication state according to the beam hopping mode, so as to achieve the effect of saving power consumption .
  • the first beam hopping pattern includes the beam identifier of the active beam; possibly, the first beam hopping pattern may also include the initial partial bandwidth BWP corresponding to the active beam and/or the active beam The power compensation factor of the beam.
  • the first beam hopping pattern is related to the system frame number SFN.
  • the activation information of the beam indicated by the first beam hopping mode is related to the system frame number, including: the activation beam in the first beam hopping mode corresponding to the system frame number is determined by mod(SFN,n), where n is Beam hopping pattern factor.
  • the first beam configuration information is determined by a core network device.
  • the second communication apparatus receives the second beam configuration information sent by the core network element, and determines the first beam configuration information sent to the first communication apparatus according to the second beam configuration information.
  • the core network configures beam hopping information of each access point (second communication device) in the network, so as to realize the coordination capability of each access point in the network and improve the communication quality of the whole network.
  • an embodiment of the present application further provides a communication device, which can be used for the first communication device described in the first aspect, and the communication device can be a terminal device, or a device in a terminal device (for example, , chip, or chip system, or circuit), or a device that can be used with the terminal equipment.
  • the communication device may include modules or units corresponding to one-to-one execution of the methods/operations/steps/actions described in the first aspect, and the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device may include a processing unit and a transceiver unit. The processing unit is used for calling the transceiver unit to perform the function of receiving and/or sending. Exemplarily:
  • the transceiver unit is configured to acquire first beam configuration information; the processing unit is configured to determine a first beam hopping mode according to the first beam configuration information, and communicate with the second communication device according to the first beam hopping mode.
  • the transceiver unit is specifically configured to receive a radio resource control RRC message sent by the second communication apparatus, where the RRC message includes the first beam configuration information.
  • the first beam configuration information includes a beam hopping mode; the processing unit is configured to determine the first beam hopping mode according to the beam hopping mode.
  • the first beam configuration information includes index information; the processing unit is configured to determine the first beam hopping mode according to the index information.
  • the first beam configuration information includes change information of the beam pattern; the processing unit is configured to determine the first beam hopping pattern according to the change information of the beam pattern.
  • the first beam hopping mode indicates the activation information of the beam of the second communication device; the processing unit is configured to determine the start and end time of the serving beam according to the activation information of the beam, wherein the serving beam is all
  • the second communication device is a beam served by the first communication device; the processing unit is further configured to determine a communication state according to the start and end times of the serving beam; wherein the communication state includes a connected state, an idle state or an inactive state.
  • the first beam configuration information is determined by a core network device.
  • an embodiment of the present application further provides a communication device, which can be used for the second communication device described in the second aspect, and the communication device can be a network device, or a device in a network device (for example, , chip, or chip system, or circuit), or a device that can be used with network equipment.
  • the communication device may include modules or units corresponding to one-to-one execution of the methods/operations/steps/actions described in the second aspect, and the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device may include a processing unit and a transceiver unit. The processing unit is used for calling the transceiver unit to perform the function of receiving and/or sending. Exemplarily:
  • a processing unit configured to determine first beam configuration information
  • a transceiver unit configured to send the first beam configuration information to a first communication device
  • the first beam configuration information is used to determine a first beam hopping mode
  • the first beam configuration information A beam hopping pattern is used for the first communication device to communicate with the communication device.
  • the transceiver unit is specifically configured to send a radio resource control RRC message to the communication apparatus, where the RRC message includes the first beam configuration information.
  • the first beam configuration information includes a beam hopping mode; the beam hopping mode is used to determine the first beam hopping mode.
  • the first beam configuration information includes index information; the index information is used to determine the first beam hopping mode.
  • the first beam configuration information includes change information of the beam hopping pattern; the change information of the beam pattern is used to determine the first beam hopping pattern.
  • the first beam hopping pattern includes the beam identifier of the active beam.
  • the possible first beam hopping pattern further includes the initial partial bandwidth BWP corresponding to the active beam and/or the power compensation coefficient of the active beam.
  • the first beam configuration information is determined by a core network device.
  • the transceiver unit is further configured to receive the second beam configuration information sent by the core network element.
  • the processing unit is further configured to determine the first beam configuration information according to the second wave number configuration information.
  • an embodiment of the present application also provides a communication device, including a processor, configured to execute a computer program or executable instruction stored in a memory, when the computer program or executable instruction is executed, the device is made to perform as described in Section 1.
  • a communication device including a processor, configured to execute a computer program or executable instruction stored in a memory, when the computer program or executable instruction is executed, the device is made to perform as described in Section 1.
  • processor and the memory are integrated;
  • the memory is located outside the communication device.
  • the communication device also includes a communication interface for the communication device to communicate with other devices, such as the transmission or reception of data and/or signals.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • an embodiment of the present application further provides a communication device, comprising a processor for executing a computer program or executable instruction stored in a memory, and when the computer program or executable instruction is executed, the device is made to The second aspect and the method in each possible implementation of the second aspect.
  • processor and the memory are integrated;
  • the memory is located outside the communication device.
  • the communication device also includes a communication interface for the communication device to communicate with other devices, such as the transmission or reception of data and/or signals.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • an embodiment of the present application further provides a communication device, including an input and output interface and a logic circuit.
  • Input and output interfaces are used for input or output of signals or data.
  • the input and output interfaces are specifically used to obtain the first beam configuration information;
  • the logic circuit is used to execute the method in the first aspect and any possible implementation thereof to determine the first beam hopping mode, and to determine the first beam hopping mode according to the first beam hopping mode and the The second communication device communicates.
  • the input and output interfaces are also used for outputting random access requests.
  • an embodiment of the present application further provides a communication device, including an input and output interface and a logic circuit.
  • Input and output interfaces are used for input or output of signals or data.
  • a logic circuit is configured to perform the method in the above second aspect and any possible implementation thereof to determine the first beam configuration information.
  • the input and output interface is specifically configured to output the first beam configuration information; the first beam configuration information is used to determine the first beam hopping mode.
  • the input and output interface is further used to obtain the second beam configuration information sent by the core network element.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, wherein the computer program is executed by a processor, so that the first aspect and any one of the above-mentioned first aspect and Some or all of the steps of the methods described in this possible implementation, the second aspect, and any possible implementation thereof are performed.
  • the embodiments of the present application further provide a computer program product including executable instructions, when the computer program product is run on a user equipment, the above-mentioned first aspect and any possible implementation thereof, the third Some or all of the steps of the method described in the second aspect and any possible implementation thereof are performed.
  • an embodiment of the present application further provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the first aspect and any possible implementation thereof, the second aspect and any possible implementation thereof.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 4 is an example of a beam hopping mode related to a system frame provided by an embodiment of the present application.
  • FIG. 5 is an example of a beam hopping mode involving beam variation provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • Embodiments of the present application provide a method and apparatus for wireless communication, so that a user can obtain the distribution of beams.
  • any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • the meaning of "plurality" refers to two or more. For example, multiple processing units refers to two or more processing units; multiple systems refers to two or more systems.
  • non-terrestrial network non-terrestrial network
  • HAPS high altitude platform station
  • Satellite communication systems can be integrated with traditional mobile communication systems.
  • the mobile communication system may be a fourth generation (4th generation, 4G) communication system, for example, a long term evolution (LTE) system, a worldwide interoperability for microwave access (WiMAX) communication system , 5th generation (5th generation, 5G) communication systems, for example, new radio (new radio, NR) systems, and future mobile communication systems.
  • 4G fourth generation
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5th generation, 5G 5th generation
  • new radio new radio
  • FIG. 1 is an example of a communication system applicable to this embodiment of the present application.
  • the access point uses multiple beams to cover the service area, and different beams can communicate through one or more of time division, frequency division, and space division.
  • the access point is not limited to a satellite base station or a terrestrial base station. Access points can be deployed on high-altitude platforms or satellites.
  • the satellite may be a non-geostationary earth orbit (NGEO) satellite or a geostationary earth orbit (GEO) satellite.
  • NGEO non-geostationary earth orbit
  • GEO geostationary earth orbit
  • the satellite mentioned in the embodiments of this application may also be a satellite base station, or a network side device mounted on the satellite.
  • the access point can be an evolved base station (evolutional Node B, eNB or eNodeB) in LTE; or a base station in a 5G network or a future evolved public land mobile network (public land mobile network, PLMN), a broadband network service gateway (broadband network service gateway). network gateway, BNG), an aggregation switch, or a non-3rd generation partnership project (3GPP) access device, etc., which are not specifically limited in this embodiment of the present application.
  • eNB evolved Node B
  • eNodeB evolved public land mobile network
  • PLMN public land mobile network
  • BNG broadband network service gateway
  • 3GPP non-3rd generation partnership project
  • the base station in this embodiment of the present application may include various forms of base station, for example: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, a next-generation base station (gNodeB, gNB), a transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center and device-to-device (Device-to-Device, D2D), vehicle outreach (vehicle-to-everything, V2X), machine A device that undertakes the function of a base station in machine-to-machine (M2M) communication, etc., is not specifically limited in this embodiment of the present application.
  • M2M machine-to-machine
  • the access point can communicate and interact with core network equipment to provide communication services to terminal equipment.
  • the core network device is, for example, a device in a 5G network core network (core network, CN).
  • core network CN
  • the core network provides an interface to the data network, and provides communication connection, authentication, management, policy control, and bearer of data services for user equipment (UE).
  • CN may further include: access and mobility management network element (Access and Mobility Management Function, AMF), session management network element (Session Management Function, SMF), authentication server network element (Authentication Server Function, AUSF), policy Control node (Policy control Function, PCF), user plane function network element (User Plane Function, UPF) and other network elements.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • SMF authentication server network element
  • Policy control Function Policy control Function
  • PCF user plane function network element
  • UPF User Plane Function
  • the terminals mentioned in the embodiments of this application may be terminal devices, including various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems, and may specifically refer to user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, terminal equipment, terminal, wireless Communication equipment, user agent or user equipment.
  • user equipment user equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, terminal equipment, terminal, wireless Communication equipment, user agent or user equipment.
  • the terminal device may also be a satellite phone, cellular phone, smartphone, wireless data card, wireless modem, machine type communication device, may be a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop loop, WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device or wearable device, virtual reality (virtual reality, VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, Wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, 5G network or future communication network
  • the terminal equipment etc. in this application are not limited.
  • FIG. 2 shows an application scenario applicable to the embodiment of the present application, specifically a network application architecture in which each member of 3GPP integrates satellite communication and 5G technology.
  • the application architecture is not intended to limit the present application.
  • the communication methods provided in the embodiments of the present application can also be applied to scenarios in which other terrestrial communication systems are integrated with satellite communication.
  • the ground mobile terminal is connected to the network through the 5G new air interface, and the satellite acts as a 5G base station and is connected to the ground core network through a wireless link. At the same time, there is a wireless link between satellites to complete signaling interaction and user data transmission between base stations.
  • the various network elements in Figure 2 and their interfaces are described as follows:
  • Terminal device A mobile device that supports 5G new air interface, which can access the satellite network through the air interface and initiate calls, Internet access and other services. For example, it may be various terminal devices as described above, which will not be repeated here.
  • 5G base station It mainly provides wireless access services, dispatches wireless resources to access terminals, and provides reliable wireless transmission protocols and data encryption protocols.
  • 5G core network user access control, mobility management, session management, user security authentication, billing and other services. It consists of multiple functional units, which can be divided into functional entities of the control plane and the data plane.
  • the Access and Mobility Management Unit AMF is responsible for user access management, security authentication, and mobility management.
  • the User Plane Unit UPF is responsible for the management of user plane data transmission, traffic statistics, security eavesdropping and other functions.
  • Ground station responsible for forwarding signaling and business data between the satellite base station and the 5G core network.
  • 5G New Air Interface The wireless link between the terminal and the base station.
  • Xn interface The interface between the 5G base station and the base station is mainly used for signaling interaction such as handover.
  • NG interface The interface between the 5G base station and the 5G core network, which mainly exchanges signaling such as non-access stratum (NAS) signaling of the core network, as well as user service data.
  • NAS non-access stratum
  • the coverage of a satellite can reach thousands or even tens of thousands of kilometers, and the coverage of a beam can reach tens of meters or even thousands of kilometers.
  • a satellite In order to support the wide-area coverage of satellites, a satellite is usually configured with dozens, hundreds, or even more beams.
  • the method of beam hopping can be used to cover the area. That is, a single satellite is equipped with a small number of beams to serve a wider coverage area through time-sharing. Only a small number of beams are used for area coverage in the same time unit, and a wider area is covered by multiple beams used in different time units. In the beam hopping scenario, the terminal needs to obtain the distribution of the beams, and communicate according to the distribution of the beams.
  • the present application provides a method and device for wireless communication: the system defines the beam hopping mode, and sends it to the terminal through the corresponding instruction information, and the terminal obtains the beam hopping mode according to the instruction information to communicate, ensuring that the terminal can communicate in the beam hopping mode. Normal communication in the beam hopping scenario, and the terminal can adjust the communication state according to the beam hopping mode to reduce power consumption.
  • the present application relates to a first communication device and a second communication device.
  • the first communication apparatus may be the aforementioned various types of terminals
  • the second communication apparatus may be the aforementioned various network devices.
  • the following description takes the terminal and the network device as examples.
  • FIG. 3 is a schematic flowchart of a method for providing beam indication according to an embodiment of the present application.
  • the terminal determines the beam hopping mode according to the beam configuration information received from the network device, and communicates with the network device according to the beam hopping mode.
  • the network device determines first beam configuration information.
  • the network device determines the first beam configuration information according to beam hopping patterns of its respective beams.
  • the first beam configuration information is delivered by the core network.
  • the core network element sends the second beam configuration information to the network device, and the network device receives the second beam configuration information sent by the core network element, and determines the first beam configuration information according to the second beam configuration information.
  • Both the first beam configuration information and the second beam configuration information indicate a beam hopping mode, and the representation forms of the configuration information may be the same or different, which are not limited in this application.
  • the first beam configuration information is determined through negotiation between the network device and other network devices.
  • the network device sends the first beam configuration information to the terminal, and correspondingly, the terminal receives the first beam configuration information sent by the network device.
  • the first beam configuration information may include a specific beam hopping mode, or index information of the beam hopping mode, or change information of the beam mode.
  • the different beam configuration information will be described in detail below.
  • the first beam configuration information sent by the network device to the terminal is carried in a radio resource control (radio resource control, RRC) message.
  • RRC radio resource control
  • the RRC message carrying the first beam configuration information may be a message broadcast by the network device.
  • network equipment In satellite communication, network equipment is moving, and terminals may receive beams emitted by different network equipment at different times. The beam patterns of different network equipment are different, and the satellite beams may be split or combined.
  • the broadcasted RRC message carries the first beam configuration. Information is more flexible and signaling overhead can be saved.
  • the RRC message carrying the first beam configuration information may also be a user-specific (UE-Specific) message unicast by the network device to the terminal device.
  • UE-Specific user-specific
  • a unicast RRC message may be used to carry the first beam configuration information.
  • the network device periodically delivers the first beam configuration information. For example, the network device broadcasts a system message based on a preconfigured period, where the system message includes the first beam configuration information. By periodically delivering the first beam configuration information, scheduling signaling between the network device and the terminal can be reduced.
  • the terminal requests the first beam configuration information from the network device.
  • the network device broadcasts system messages based on user request.
  • This kind of system message (on demand other system information, ODOSI) based on user request broadcast stops broadcasting after continuous broadcasting for 2 cycles after the establishment of the cell, and needs to be requested by the terminal again.
  • broadcast For example, the terminal triggers the network device to broadcast ODOSI through a dedicated preamble; or the terminal triggers the network device to broadcast the ODOSI through the RRC system message request message RRC_SYS_INFO_REQ.
  • the network device delivering the first beam configuration information based on the request of the terminal does not need to continuously deliver the beam configuration information, which can reduce the overhead of broadcast resources.
  • the terminal determines a first beam hopping mode according to the first beam configuration information.
  • the first beam configuration information includes a beam hopping mode
  • the terminal determines the beam hopping mode as the first beam hopping mode.
  • the first beam configuration information includes index information
  • the terminal determines the first beam hopping mode according to the index information.
  • the first beam configuration information includes change information of the beam pattern, and the terminal determines the first beam hopping pattern according to the change information.
  • the first beam hopping pattern is used to indicate beam activation information of the network device.
  • the activation information of the beam may include information such as a beam identifier of the activated beam, an initial bandwidth part (BWP) corresponding to the activated beam, and a power compensation coefficient. It may also include beam-specific parameters, such as timing compensation, Doppler frequency shift, polarization direction, etc., which are not limited in this application.
  • the first beam hopping pattern is related to the system frame number.
  • the activation information of the beam indicated by the first beam hopping mode corresponds to the system frame number SFN.
  • the activated beam indicated by the first beam hopping mode is determined by mod(SFN,n), where mod() represents a modulo operation, and SFN is System frame number, n is the change period of the beam hopping mode.
  • the terminal communicates with the network device according to the first beam hopping mode.
  • the terminal determines the start and end time of the serving beam according to the activation information of the beam indicated by the first beam hopping mode, and determines the communication state according to the start and end time of the serving beam, wherein the communication state includes a connected state (connected) or an idle state (idle) or an inactive state (inactive).
  • the terminal determines the start and end time of the serving beam according to the activation information of the beam, the ephemeris information of the satellite, the current position information and the activation information of the beam.
  • the terminal can obtain the current location information through positioning methods such as the Global Navigational Satellite System (GNSS); the terminal can obtain the ephemeris information of the satellite through pre-stored information or system broadcast.
  • GNSS Global Navigational Satellite System
  • This application does not limit the acquisition method of ephemeris information or location information.
  • the terminal determines the time period during which the satellite can provide coverage based on information such as the current location information, the location of the satellite contained in the satellite's ephemeris, and the motion law; and determines the beam activation information indicated by the first beam hopping mode.
  • the terminal determines the communication state according to the start and end times of the serving beam.
  • the start and end time of the serving beam may represent the time period covered by the serving beam at the current location, that is, the serving period of the serving beam.
  • the terminal can maintain the connected state during the service period of the serving beam, and switch to the idle state or the inactive state during the period when there is no service beam coverage, that is, the non-serving period.
  • a random access request is sent to the network device.
  • the network device sends beam configuration information
  • the terminal determines the beam hopping mode according to the beam configuration information
  • the beam hopping pattern can be indicated in different ways.
  • the beam configuration method provided by the embodiment of the present application is described in detail below.
  • the embodiment of the present application provides a beam hopping indication method based on RRC signaling.
  • each beam in the satellite cell performs a beam hopping operation in a system frame unit.
  • the activation information of the beam indicated by the beam hopping mode corresponds to the system frame number.
  • the network device sends the beam hopping pattern (hopping_pattern) by broadcasting RRC signaling, which may include the beam ID (beam ID) of the active beam (Active Beam) corresponding to the system frame, the initial BWP corresponding to the active beam, and the Parameters such as power compensation system.
  • RRC signaling may include the beam ID (beam ID) of the active beam (Active Beam) corresponding to the system frame, the initial BWP corresponding to the active beam, and the Parameters such as power compensation system.
  • the network device may deliver beam configuration information based on a system message (system information block, SIB).
  • SIB system information block
  • the network device delivers beam configuration information based on the SIB_BeamConfig message.
  • the specific format is as follows:
  • Hopping Pattern represents the beam hopping pattern
  • SystemFrame represents the system frame
  • the system frame corresponds to the active beam Active_Beam indicated in the beam hopping pattern.
  • SIB_BeamConfig message also includes the beam identifier of the activated beam: BeamId.
  • the above Hopping Pattern is the first beam hopping pattern.
  • the beam hopping mode may further include the initial partial bandwidth BWP and/or power compensation coefficient corresponding to the active beam.
  • the initial BWP is the frequency resource when the user accesses the beam for the first time, so as to avoid searching for access resources when the user accesses the beam;
  • the power compensation coefficient is used to indicate the power of the signal transmitted by the terminal to avoid insufficient or excessive signal power.
  • the identifier BWP_Id of the initial BWP corresponding to the active beam identifier Hopping_BeamId is included, for example, Hopping_Beam_Id_0 corresponds to BWP_Id_0, and Hopping_Beam_Id_1 corresponds to BWP_Id_1.
  • the power compensation coefficient corresponding to the activated beam is represented by Beam_Power_Adjust and the corresponding value value, such as Beam0_Power_Adjust, Beam1_Power_Adjust and so on.
  • the active beam Active_Beam field can also be represented in the form of a bit sequence to save bit overhead (use fewer fields), for example in the following format:
  • Active_Beam_bitmap is a variable name representing a string of bit sequences, where BIT STRING(SIZE(maxNrofBeamInCell)) represents the length of the bit string, and the length of the bit string is equal to the total number of beams, namely maxNrofBeamInCell.
  • BIT STRING(SIZE(maxNrofBeamInCell)) represents the length of the bit string
  • the length of the bit string is equal to the total number of beams, namely maxNrofBeamInCell.
  • the beam hopping mode includes activation information of beams corresponding to multiple system frames.
  • the beam configuration information in this implementation includes more beam hopping related information, reducing signaling interaction between the network device and the terminal.
  • the beam hopping mode includes activation information of a beam corresponding to one system frame. This implementation can save the bits occupied by the beam configuration information.
  • the network device delivers the beam configuration information including the beam hopping mode to the terminal, where the activation information of the beam indicated by the beam hopping mode is related to the system frame number.
  • the terminal After receiving the beam configuration information sent by the network device, the terminal determines the activation information of the beam indicated by the beam hopping mode according to the system frame number (SFN).
  • SFN system frame number
  • the terminal determines the activation information of the beam indicated by the beam hopping mode through mod(SFN,n). where n is the change period of the beam hopping mode.
  • FIG. 4 is an example of a beam hopping indication provided by an embodiment of the present application.
  • Each beam in the satellite cell performs a beam hopping operation in system frame units.
  • system frame 0 corresponds to activated beams 2 and 6
  • system frame 1 corresponds to activated beams 3 and 5
  • system frame 2 corresponds to activated beams 1 and 7
  • system frame 3 corresponds to activated beams 4 and 5
  • System frames correspond to active beams 2 and 6, and so on.
  • the beam hopping mode shown in FIG. 4 may be represented by the above-mentioned SIB_BeamConfig.
  • the specific RRC fields are as follows:
  • the active beams corresponding to SystemFrame-0 of No. 0 system are 2 and 6, Active_Beam(2,6); the active beams corresponding to SystemFrame-1 of No.1 system frame are 3 and 5, Active_Beam(3,5).
  • the terminal After receiving the beam configuration information, the terminal determines the active beam indicated by the first beam hopping mode according to the system frame number. For example, mod(SFN,n) is used to determine the active beam. In the scenario shown in Figure 4, n is 4, so when the SFN is 0, 4, 8..., the terminal determines that the active beams are beams 2 and 6; SFN is 1 , 5, 9..., the terminal determines that the activated beams are beams 3 and 5.
  • the network device uses RRC signaling to broadcast the beam hopping configuration information carrying the beam hopping mode, which can flexibly cope with scenarios such as satellite movement and beam change, and save signaling overhead.
  • the beam hopping mode is linked with the system frame, and the beam hopping mode is adjusted in units of time, which is convenient for scheduling.
  • FIG. 5 is another embodiment of the beam hopping indication provided by the embodiment of the present application.
  • Satellite beams may have beam splitting or beam combining.
  • Beam splitting refers to splitting a beam into two or more beams
  • beam combining refers to combining two or more beams into one beam.
  • splitting or merging of beams will cause changes in beam hopping patterns.
  • the network device delivers the above beam hopping change to the terminal, so that the terminal updates the beam hopping mode.
  • the network device may broadcast beam configuration information based on the SIB, where the beam configuration information includes change information of the beam hopping mode. For example, based on the SIB_BeamConfig message, the network device delivers beam configuration information that carries beam hopping mode changes.
  • the specific format is as follows:
  • Beam_splitting_combination represents beam splitting/combination.
  • maxNrofBeamUpdate represents the maximum number of update beams supported by the system;
  • BeamUpdate-Id represents the beam update identifier;
  • Beam_ID represents the beam identifier involved in splitting or merging;
  • Splitting represents beam splitting, a beam can be split into two or more beams, max_splitting_factor Indicates the maximum number of beams that can be split;
  • Combination indicates beam combining, two or more beams can be combined into one beam, and max_combination_factor indicates the maximum number of beams that can be combined.
  • the CHOICE field indicates that beam splitting and beam combining are options, that is, choose one of the two.
  • max_splitting_factor and max_combination_factor can be determined by the manufacturer according to the actual situation, and different manufacturers may adopt different values.
  • the beam configuration information that carries the change of the beam hopping mode sent by the network device based on the SIB_BeamConfig message may be as follows:
  • beam 4 may be split into two sub-beams (not shown in the figure).
  • the beam configuration information carrying beam hopping mode changes delivered by the network device based on the SIB_BeamConfig message may be as follows:
  • the terminal After receiving the beam configuration information carrying the beam hopping mode change information issued by the network device, the terminal updates the beam hopping mode according to the configuration information, and communicates with the terminal according to the updated beam hopping mode.
  • the beam configuration information delivered by the network device to the terminal carries the beam change information, so that the terminal updates the beam hopping mode after receiving the beam change information, so as to realize the matching of beam parameters between the network side and the terminal side, and ensure that the terminal is based on the hopping information.
  • Beam mode for normal communication carries the beam change information, so that the terminal updates the beam hopping mode after receiving the beam change information, so as to realize the matching of beam parameters between the network side and the terminal side, and ensure that the terminal is based on the hopping information.
  • the network device may dynamically indicate the beam hopping mode.
  • the terminal stores one or more beam hopping patterns, the beam hopping patterns are used to indicate beam activation information, and the one or more beam patterns change periodically.
  • the network device delivers beam configuration information carrying index information, and the terminal determines a beam hopping mode to be used in the next cycle from one or more beam modes according to the index information.
  • the index of beam hopping can be represented by two bits, corresponding to four beam hopping modes respectively.
  • the index of the beam hopping and the mapping relationship of the beam hopping mode may be specified by the protocol, or may be determined through negotiation between the network device and the terminal.
  • the terminal stores one or more beam hopping patterns.
  • the network device sends configuration information carrying one or more beam hopping modes to the terminal. For example, it can be configured to the terminal through an RRC message. Possibly, the above-mentioned one or more beam hopping modes may be predefined in the protocol, or may be configured by the network device according to the actual situation.
  • the network device sends the beam configuration information carrying the index information to the terminal, and the terminal receives the beam configuration information carrying the index information sent by the network device.
  • the beam configuration information is delivered through a user-specific (UE-Specific) message.
  • the network device sends the index information through downlink control information (downlink control information, DCI), and specifically, the Bandwidth part indicator field in the DCI can be multiplexed.
  • the network device may also issue the index information through a media access control (Media Access Control control, MAC) layer control signaling MAC control element (MAC control element, MAC CE).
  • the terminal determines the beam hopping pattern used in the next cycle from one or more beam patterns according to the index information. Specifically, the terminal determines the beam hopping mode used in the next cycle according to the index information according to a predetermined mapping relationship.
  • the terminal dynamically acquires the configuration of beam hopping based on the index information. Compared with the specific beam hopping pattern, the index information occupies fewer bits. In addition, it is more accurate and flexible to send the beam configuration information to the terminal through the UE-Specific message.
  • the beam configuration information sent by the network device to the terminal is determined by the core network.
  • the coordination ability of each network device in the network is improved.
  • the core network sends the second beam hopping configuration information to the network device, and after receiving the network device, determines the first beam hopping configuration information according to the second beam hopping configuration information, and delivers the second beam hopping configuration information to the terminal.
  • the core network element transmits the beam hopping configuration information through a Next Generation Application Protocol (NG Application Protocol, NGAP) interface.
  • NG Application Protocol Next Generation Application Protocol
  • a new beam-hopping Beamhopping message is defined to transmit beam-hopping configuration information to the network device.
  • the beam hopping information can be configured through the messages shown in Table 2.
  • the configuration information issued by the core network element may include information elements (information element, IE) such as the system frame number (System Frame Number), the active beam identifier (Active_Beam_ID), the activated initial BWP (Active_Initial_BWP), and the power compensation (Power_Adjust).
  • IE information element
  • the above four information elements in Table 2 are mandatory (M) items, and in another possible implementation, power compensation may be optional.
  • the range of the system frame number can be 0 to 1023, or other ranges.
  • the range of the activated beam identifier is 1 to maxNrofBeamInCell, where maxNrofBeamInCell represents the maximum number of beams in the cell.
  • the above configuration information may also include other information elements, which are not limited in this application.
  • the assigned criticality indicates the processing method used when the corresponding cell cannot be interpreted, which can be Reject IE, ignore and notify the sender (Ignore IE and Notify Sender) Or ignore (Ignore).
  • the importance of the allocation corresponding to each cell shown in Table 2 is "ignored”.
  • the configuration message delivered by the core network element includes some of the columns in Table 2, or other columns are added on the basis of Table 2, which is not limited in this application.
  • the beam configuration information delivered by the network device to the terminal may also be determined through negotiation among various network devices in the network.
  • the network devices negotiate through the Xn Application Protocol (Xn Application Protocol, XnAP) interface.
  • the beam configuration information delivered by the network device to the terminal is determined by the core network or negotiated by each network device in the network, which improves the coordination ability of each network device in the network.
  • the terminal equipment and the network equipment may include hardware structures and/or software modules, and the above-mentioned various functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules.
  • the terminal equipment and the network equipment may include hardware structures and/or software modules, and the above-mentioned various functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules.
  • Features. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • an embodiment of the present application further provides a communication apparatus 600 .
  • the communication apparatus 600 may be a terminal or a network device, that is, a first communication apparatus or a second communication apparatus, or a device in a terminal device or a network device, or a device that can be matched with a terminal device or a network device.
  • the communication apparatus 600 may include modules or units corresponding to each of the methods/operations/steps/actions performed by the terminal in the above method embodiments.
  • the unit may be a hardware circuit, software, or It can be implemented by hardware circuit combined with software.
  • the communication apparatus 600 may include a processing unit 610 and a transceiver unit 620 .
  • the processing unit 610 may be configured to call the transceiver unit 620 to perform functions of receiving and/or sending.
  • the transceiver unit 620 is configured to acquire the first beam configuration information
  • the processing unit 610 is configured to determine the first beam configuration information according to the first beam configuration information.
  • a beam hopping pattern communicating with the second communication device according to the first beam hopping pattern.
  • the processing unit 610 is used to determine the first beam configuration information; the transceiver unit 620 is used to send the first beam configuration information to the first communication apparatus.
  • beam configuration information; the first beam configuration information is used to determine a first beam hopping mode; the first beam hopping mode is used for the first communication device to communicate with the communication device.
  • the transceiver unit 620 is further configured to perform other receiving or sending steps or operations performed by the terminal and the network device in the foregoing method embodiments.
  • the processing unit 610 may also be configured to perform other corresponding steps or operations other than sending and receiving performed by the terminal and network device in the foregoing method embodiments, which will not be repeated here.
  • each functional module or unit in each embodiment of the present application may be integrated in the A processor may also exist physically alone, or two or more modules or units may be integrated into one module or unit.
  • the above-mentioned integrated modules or units may be implemented in the form of hardware, or may be implemented in the form of software function modules.
  • an embodiment of the present application further provides a communication apparatus 700 for implementing the functions of a terminal and a network device in the above method, that is, the functions of a first communication apparatus and a second communication apparatus.
  • the communication device may be a terminal, a network device, or a device in a terminal or a network device, or a device that can be matched and used with the terminal or network device.
  • the communication apparatus 700 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 700 includes at least one processor 710, configured to implement the functions of the terminal and the network device in the method provided in the embodiment of the present application.
  • the communication apparatus 700 may also include a communication interface 720 .
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 720 is used for the apparatus in the communication apparatus 700 to communicate with other devices.
  • the processor 710 may perform the functions performed by the processing unit 610 in the communication apparatus 600 ; the communication interface 720 may be used for performing the functions performed by the transceiver unit 620 in the communication apparatus 600 .
  • the communication interface 720 is used to obtain the first beam configuration information; the processor 710 is used to determine the first beam hopping mode according to the beam configuration information, and according to the determined first beam hopping mode
  • the one-hop beam pattern communicates with the second communication device (network device).
  • the processor 710 is used to determine the first beam configuration information; the communication interface 720 is used to send the first beam configuration information to the first communication apparatus (terminal), so The first beam configuration information is used to determine a first beam hopping mode; the first beam hopping mode is used for the first communication device to communicate with the communication device.
  • the communication interface 720 is further configured to perform other receiving or sending steps or operations performed by the terminal and the network device in the foregoing method embodiments.
  • the processor 710 may also be configured to perform other corresponding steps or operations other than sending and receiving performed by the terminal and network device in the foregoing method embodiments, which will not be repeated here.
  • Communication apparatus 700 may also include at least one memory 730 for storing program instructions and/or data.
  • Memory 730 is coupled to processor 710 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 720 may cooperate with memory 730 .
  • Processor 710 may execute program instructions stored in memory 730 .
  • at least one of the at least one memory may be integrated with the processor.
  • the memory 730 is located outside the communication device 700 .
  • the specific connection medium between the communication interface 720 , the processor 710 , and the memory 730 is not limited in the embodiments of the present application.
  • the memory 730, the processor 710, and the communication interface 720 are connected through a bus 740 in FIG. 7.
  • the bus is represented by a thick line in FIG. 7, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 7, but it does not mean that there is only one bus or one type of bus.
  • the processor 710 may be one or more central processing units (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • the processor 710 may be a single-core CPU or a multi-core CPU .
  • the processor 710 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 730 may include, but is not limited to, a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), a random access memory (Random Access Memory, RAM) , Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), Read-Only Memory (Read-Only Memory, ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM) and so on.
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • an embodiment of the present application further provides an apparatus 800 that can be used to implement the functions of a terminal and a network device in the above method, and the apparatus 800 may be a communication apparatus or a chip in the communication apparatus.
  • the communication device includes:
  • the input-output interface 810 may be an input-output circuit.
  • the logic circuit 820 can be a signal processor, a chip, or other integrated circuits that can implement the method of the present application.
  • At least one input and output interface 810 is used for input or output of signals or data.
  • the input-output interface 810 is used to obtain the first beam configuration information; the input-output interface 810 can also be used to output a random access request.
  • the input/output interface 810 is used to output the first beam configuration information; the input/output interface 810 may also be used to obtain the second beam configuration information sent by the core network element .
  • the logic circuit 820 is configured to execute part or all of the steps of any one of the methods provided in the embodiments of the present application.
  • the logic circuit may implement the functions implemented by the processing unit 610 in the above-mentioned apparatus 600 and the processor 710 in the apparatus 700 .
  • the processing unit 610 in the above-mentioned apparatus 600 and the processor 710 in the apparatus 700 .
  • the logic circuit 820 is used to perform the steps performed by the terminal (the first communication device) in various possible implementation manners in the foregoing method embodiments, for example, the logic circuit 820 is used to perform the steps according to the first
  • the beam configuration information determines the first beam hopping pattern.
  • the device When the device is a network device or is used for a network device, it is used to perform the steps performed by the network device (second communication device) in various possible implementation methods in the above method embodiments, for example, the logic circuit 820 is used to determine the first beam configuration information.
  • the terminal chip When the above communication device is a chip applied to a terminal, the terminal chip implements the functions of the terminal in the above method embodiments.
  • the terminal chip receives information from other modules in the terminal (such as a radio frequency module or an antenna), and the information is sent to the terminal by a network device; or, the terminal chip sends information to other modules in the terminal (such as a radio frequency module or an antenna), This information is sent by the terminal to the network device.
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as radio frequency modules or antennas) in the network device, and the information is sent by the terminal to the network device; or, the network device chip sends information to other modules (such as radio frequency modules or antennas) in the network device ) to send information, the information is sent by the network device to the terminal.
  • modules such as radio frequency modules or antennas
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is executed by hardware (for example, a processor, etc.) to Part or all of the steps of any method executed by any device in the embodiments of the present application are implemented.
  • hardware for example, a processor, etc.
  • the embodiments of the present application also provide a computer program product including instructions, when the computer program product runs on a computer, the computer is made to perform any one of the above aspects. some or all of the steps of the method.
  • the present application also provides a chip or a chip system, and the chip may include a processor.
  • the chip may also include a memory (or a storage module) and/or a transceiver (or a communication module), or the chip may be coupled with a memory (or a storage module) and/or a transceiver (or a communication module), wherein the transceiver (or or communication module) can be used to support the chip to perform wired and/or wireless communication, the memory (or storage module) can be used to store a program, and the processor can call the program to implement any one of the above method embodiments and method embodiments.
  • the chip system may include the above chips, or may include the above chips and other discrete devices, such as memories (or storage modules) and/or transceivers (or communication modules).
  • the present application further provides a communication system, which may include the above terminals and/or network devices.
  • the communication system can be used to implement the operations performed by the terminal or the network device in the foregoing method embodiments and any possible implementation manners of the method embodiments.
  • the communication system may have the structure shown in FIG. 1 or FIG. 2 .
  • the above-described embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, optical disks), or semiconductor media (eg, solid state drives), and the like.
  • magnetic media eg, floppy disks, hard disks, magnetic tapes
  • optical media eg, optical disks
  • semiconductor media eg, solid state drives
  • the disclosed apparatus may also be implemented in other manners.
  • the device embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or integrated to another system, or some features can be ignored or not implemented.
  • the indirect coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or all or part of the technical solution, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信的方法及装置。该方法中第一通信装置获取第一波束配置信息,根据所述第一波束配置信息确定第一跳波束模式,并根据该第一跳波束模式与第二通信装置进行通信。本申请的技术方案能够使得第一通信装置获取波束的分布情况,并根据该波束的分布情况进行通信,从而保证了跳波束场景下的正常通信。

Description

一种无线通信的方法及装置
本申请要求于2020年7月17日提交中国国家知识产权局,申请号为202010694226.1,发明名称为“一种无线通信的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线通信的方法及装置。
背景技术
卫星通信等非地面通信网络(non-terrestrial networks,NTN)具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点,其既可为固定终端,也可为各种移动终端提供服务。由于传统地面网络不能提供无缝覆盖,特别是在大海、沙漠、空中等无法部署基站的地方,非陆地网络被引入第五代移动通信(fifth generation,5G)系统等地面网络中,它通过将基站或者部分基站功能部署在高空平台或者卫星上为终端设备提供无缝覆盖,并且高空平台或者卫星受自然灾害影响较小,能提升5G系统的可靠性。
为了支撑广域覆盖,单颗卫星通常要配备几百甚至几千个波束,单星载荷大。为了缓解单星载荷小和覆盖范围广的矛盾,提高卫星系统资源使用效率,跳波束(beam hopping)卫星通信系统应运而生。具体来说,在跳波束卫星系统中,单颗卫星仅配备少量的波束(如几十个波束),波束通过分时的方式服务单星的所有覆盖区域。在跳波束场景下,终端如何获取波束分布成为了亟待解决的问题。
发明内容
本申请实施例提供一种无线通信的方法及装置,便于用户获取波束的分布情况,并根据波束分布进行通信。
第一方面,本申请提供一种无线通信的方法,包括:第一通信装置获取第一波束配置信息,根据所述第一波束配置信息确定第一跳波束模式,并根据所述第一跳波束模式与第二通信装置进行通信。
本申请第一方面提供的无线通信的方法中,第一通信装置能够通过第一波束配置信息确定第一跳波束模式,并根据第一跳波束模式进行通信,实现了在跳波束场景下获取波束的分布情况,从而保证了正常的通信。
一种可能的实现中,第一通信装置获取第一波束配置信息,包括:第一通信装置接收第二通信装置发送的无线资源控制RRC消息,该RRC消息包含所述第一波束配置信息。
携带第一波束配置信息的RRC消息可以是第二通信装置广播的消息。通过广播的RRC消息携带第一波束配置信息能够灵活的应对由于卫星运动或者波束分裂或合成导致的波束模式的变化,且能节省信令开销。
携带第一波束配置信息的RRC消息还可以是第二通信装置向第一通信装置单播的用户特定(UE-Specific)消息。在用户数量较少的场景中可以采用单播的RRC消息携带第一波束配置信息,可针对每个用户下发相应的波束配置信息。
一种可能的实现中,第一波束配置信息中包含跳波束模式;第一通信装置根据所述跳波束模式确定第一跳波束模式。
第一通信装置接收该第一波束配置信息后,可直接确定第一跳波束模式,而不需要额外的步骤,简化了第一通信装置处的操作。
一种可能的实现中,第一波束配置信息中包含索引信息;第一通信装置根据所述索引信息确定第一跳波束模式。具体地:第一通信装置存储有一个或多个跳波束模式,根据索引信息从一个或多个跳波束模式中选择第一跳波束模式。
相比具体的跳波束的信息,该种方式采用的索引占用更少的比特。可能的索引信息可以是第二通信装置通过用户特定的消息发送给终端的,UE-Specific消息向终端发送索引信息更加准确和灵活。
一种可能的实现中,第一波束配置信息中包含波束模式的变动信息;第一通信装置根据所述波束模式的变动信息确定第一跳波束模式。该波束模式的变动信息可以是波束分裂信息,或者波束合并信息。
该种实现方式中,第一通信装置根据该波束模式的变动信息更新跳波束模式以确定第一跳波束模式,提高了跳波束场景下进行通信的准确性。
一种可能的实现中,第一通信装置根据第一跳波束模式与第二通信装置进行通信,包括:第一跳波束模式指示所述第二通信装置的波束的激活信息;第一通信装置根据所述波束的激活信息确定服务波束的起止时间,其中服务波束是第二通信装置为第一通信装置服务的波束;第一通信装置根据服务波束的起止时间确定通信状态;其中该通信状态包括连接态或空闲态或非活动态。
具体地,第一通信装置根据波束的激活信息,卫星的星历信息、当前位置信息以及波束的激活信息确定服务波束的起止时间。举例来说,第一通信装置在服务波束的起止时间内保持连接态,在其他时段转换为空闲态或非活动态。该种可能的实现中,第一通信装置根据跳波束模式选择通信时机、调整通信状态,能够达到节省功耗的效果。
一种可能的实现中,第一跳波束模式包含激活波束的波束标识。可能的,第一跳波束模式还包含所述激活波束对应的初始部分带宽BWP和/或功率补偿系数。
初始BWP是用户首次接入波束时的频率资源,可避第一通信装置接入波束时搜索接入资源,提高接入效率;功率补偿系数用于指示第一通信装置发射信号的功率大小,避免信号功率不足或过剩。
一种可能的实现中,第一跳波束模式与系统帧号SFN相关。举例来说,第一跳波束模式指示的波束的激活信息与系统帧号SFN对应,具体为:第一跳波束模式指示的激活波束通过mod(SFN,n)确定,其中n为跳波束模式变化周期。将跳波束模式与系统帧联系起来,以时间为单位调整跳波束模式,便于调度。
一种可能的实现中,第一波束配置信息由核心网设备确定。核心网配置网络内各个接入点(第二通信装置)的跳波束的信息,以实现网络内各个接入点的协调能力,提高全网的通 信质量。
第二方面,本申请实施例还提供一种无线通信的方法,包括:第二通信装置向第一通信装置发送第一波束配置信息;该第一波束配置信息用于确定第一跳波束模式;第一跳波束模式用于所述第一通信装置与所述第二通信装置进行通信。
本申请第二方面提供的无线通信的方法中,第二通信装置向第一通信装置发送波束配置信息以使得第一通信装置确定第一跳波束模式,并根据该第一跳波束模式与第二通信装置通信。实现了在跳波束场景下向第二通信装置下发波束发分别情况,保证了正常的通信。
一种可能的实现中,第二通信装置向第一通信装置发送无线资源控制RRC消息,该RRC消息包含所述第一波束配置信息。
携带第一波束配置信息的RRC消息可以是第二通信装置广播的消息。通过广播的RRC消息携带第一波束配置信息能够灵活的应对由于卫星运动或者波束分裂或合成导致的波束模式的变化,且能节省信令开销。
携带第一波束配置信息的RRC消息还可以是第二通信装置向第一通信装置单播的用户特定(UE-Specific)消息。在用户数量较少的场景下可以采用单播的RRC消息携带第一波束配置信息,可针对每个用户下发相应的波束配置信息。
一种可能的实现中,第一波束配置信息中包含跳波束模式;所述跳波束模式用于确定第一跳波束模式。
第一波束配置信息中包含具体的跳波束模式,第一通信装置接收该第一波束配置信息后,可直接确定第一跳波束模式,而不需要额外的步骤,简化了第一通信装置处的操作。
一种可能的实现中,所述第一波束配置信息中包含索引信息;所述索引信息用于确定第一跳波束模式。
相比具体的跳波束的相关信息,该种方式采用的索引占用更少的比特。可能的,第二通信装置通过用户特定的消息发送该索引信息,UE-Specific消息向终端发送索引信息更加准确和灵活。
一种可能的实现中,第一波束配置信息中包含跳波束模式的变动信息;该波束模式的变动信息用于确定第一跳波束模式。该波束模式的变动信息可以是波束分裂信息,或者波束合并信息。
该种实现方式中,第二通信装置向第一通信装置发送波束模式的变动信息,以使得第一通信装置根据该变动信息更新跳波束模式,提高了跳波束场景下进行通信的准确性。
一种可能的实现中,所述第一跳波束模式用于所述第一通信装置与所述第二通信装置进行通信,包括:所述第一跳波束模式用于指示所述第二通信装置的波束的激活信息;该波束的激活信息用于确定服务波束的起止时间,其中所述服务波束是所述第二通信装置为所述第一通信装置服务的波束;所述服务波束的起止时间用于所述第一通信装置转换通信状态;其中所述通信状态包括连接态或空闲态或非活动态。
该种可能的实现中,第二通信装置下发的波束配置信息用于确定第一跳波束模式,使得第一通信装置根据跳波束模式选择通信时机、调整通信状态,能够达到节省功耗的效果。
一种可能的实现中,所述第一跳波束模式包含激活波束的波束标识;可能的,所述第一 跳波束模式还可以包含所述激活波束对应的初始部分带宽BWP和/或所述激活波束的功率补偿系数。
一种可能的实现中,所述第一跳波束模式与系统帧号SFN相关。具体地,所述第一跳波束模式指示的波束的激活信息与系统帧号相关,包括:系统帧号对应的第一跳波束模式中的激活波束,通过mod(SFN,n)确定,n为跳波束模式因子。
一种可能的实现中,所述第一波束配置信息由核心网设备确定。具体地,第二通信装置接收核心网网元发送的第二波束配置信息,根据该第二波束配置信息确定向第一通信装置发送的第一波束配置信息。
该种实现方式中,核心网配置网络内各个接入点(第二通信装置)的跳波束的信息,以实现网络内各个接入点的协调能力,提高全网的通信质量。
第三方面,本申请实施例还提供一种通信装置,该通信装置可以用于第一方面所述的第一通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。一种可能的实现中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置可以包括处理单元和收发单元。处理单元用于调用收发单元执行接收和/或发送的功能。示例性地:
收发单元,用于获取第一波束配置信息;处理单元用于根据所述第一波束配置信息确定第一跳波束模式,并根据所述第一跳波束模式与第二通信装置进行通信。
一种可能的实现中,收发单元,具体用于接收第二通信装置发送的无线资源控制RRC消息,所述RRC消息包含所述第一波束配置信息。
一种可能的实现中,第一波束配置信息中包含跳波束模式;处理单元用于根据所述跳波束模式确定第一跳波束模式。
一种可能的实现中,第一波束配置信息中包含索引信息;处理单元用于根据所述索引信息确定第一跳波束模式。
一种可能的实现中,第一波束配置信息中包含波束模式的变动信息;处理单元用于根据所述波束模式的变动信息确定第一跳波束模式。
一种可能的实现中,第一跳波束模式指示所述第二通信装置的波束的激活信息;处理单元用于根据所述波束的激活信息确定服务波束的起止时间,其中所述服务波束是所述第二通信装置为所述第一通信装置服务的波束;处理单元还用于根据所述服务波束的起止时间确定通信状态;其中通信状态包括连接态或空闲态或非活动态。
一种可能的实现中,所述第一波束配置信息由核心网设备确定。
需要说明的是,本申请实施例第三方面提供的通信装置的各个实现方式的有益效果请参考第一方面所述的无线通信的方法的有益效果,此处不再赘述。
第四方面,本申请实施例还提供一种通信装置,该通信装置可以用于第二方面所述的第二通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者 芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。一种可能的实现中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置可以包括处理单元和收发单元。处理单元用于调用收发单元执行接收和/或发送的功能。示例性地:
处理单元,用于确定第一波束配置信息;收发单元,用于向第一通信装置发送所述第一波束配置信息;所述第一波束配置信息用于确定第一跳波束模式;所述第一跳波束模式用于所述第一通信装置与所述通信装置进行通信。
一种可能的实现中,收发单元,具体用于向所述通信装置发送无线资源控制RRC消息,所述RRC消息包含所述第一波束配置信息。
一种可能的实现中,第一波束配置信息中包含跳波束模式;该跳波束模式用于确定第一跳波束模式。
一种可能的实现中,第一波束配置信息中包含索引信息;该索引信息用于确定第一跳波束模式。
一种可能的实现中,第一波束配置信息中包含跳波束模式的变动信息;该波束模式的变动信息用于确定第一跳波束模式。
一种可能的实现中,第一跳波束模式包含激活波束的波束标识。可能的第一跳波束模式还包含所述激活波束对应的初始部分带宽BWP和/或所述激活波束的功率补偿系数。
一种可能的实现中,所述第一波束配置信息由核心网设备确定。具体地,收发单元还用于接收核心网网元发送的第二波束配置信息。处理单元还用于根据该第二波数配置信息确定第一波束配置信息。
需要说明的是,本申请实施例第三方面提供的通信装置的各个实现方式的有益效果请参考第一方面所述的无线通信的方法的有益效果,此处不再赘述。
第五方面,本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序或可执行指令,当计算机程序或可执行指令被执行时,使得该装置执行如第一方面及第一方面各个可能的实现中的方法。
在一种可能的实现中,所述处理器和所述存储器集成在一起;
在另一种可能的实现中,所述存储器位于该通信装置之外。
该通信装置还包括通信接口,所述通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第六方面,本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序或可执行指令,当计算机程序或可执行指令被执行时,使得该装置执行如第二方面及第二方面各个可能的实现中的方法。
在一种可能的实现中,所述处理器和所述存储器集成在一起;
在另一种可能的实现中,存储器位于该通信装置之外。
该通信装置还包括通信接口,所述通信接口用于该通信装置与其他设备进行通信,例如 数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第七方面,本申请实施例还提供一种通信装置,包括输入输出接口和逻辑电路。输入输出接口用于信号或数据的输入或输出。输入输出接口具体用于获取第一波束配置信息;逻辑电路用于执行上述第一方面及其任意一种可能的实现中的方法确定第一跳波束模式,以及用于根据第一跳波束模式与第二通信装置进行通信。
一种可能的实现中,输入输出接口还用于输出随机接入请求。
第八方面,本申请实施例还提供一种通信装置,包括输入输出接口和逻辑电路。输入输出接口用于信号或数据的输入或输出。逻辑电路用于执行上述第二方面及其任意一种可能的实现中的方法以确定第一波束配置信息。输入输出接口具体用于输出第一波束配置信息;所述第一波束配置信息用于确定第一跳波束模式。
一种可能的实现中,输入输出接口还用于获取核心网网元发送的第二波束配置信息。
第九方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十方面,本申请实施例还提供了一种包括可执行指令的计算机程序产品,当所述计算机程序产品在用户设备上运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十一方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
下面将对本申请实施例涉及的一些附图进行说明。
图1是本申请实施例提供的一种通信系统的示意图。
图2是本申请实施例提供的一种应用场景图。
图3是本申请实施例提供的一种无线通信方法的流程示意图。
图4是本申请实施例提供的一种与系统帧相关的跳波束模式的示例。
图5是本申请实施例提供的一种涉及波束变动的跳波束模式的示例。
图6是本申请实施例提供的一种通信装置的结构示意图。
图7是本申请实施例提供的另一种通信装置的结构示意图。
图8是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
本申请实施例提供一种无线通信的方法及装置,以便用户获取波束的分布情况。
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一通信装置和第二通信装置等是用于区别不同的通信装置,而不是用于描述目标对象的特定顺序。在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
本申请的技术方案可以应用于卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)系统。卫星通信系统可以与传统的移动通信系统相融合。例如:所述移动通信系统可以为第四代(4th generation,4G)通信系统,例如,长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)通信系统,例如,新无线(new radio,NR)系统,以及未来的移动通信系统等。
参见图1,图1为适用于本申请实施例的通信系统的示例。如图1,接入点采用多个波束覆盖服务区域,不同的波束可通过时分、频分和空分中的一种或多种进行通信。其中,接入点不限于卫星基站或地面基站。接入点可以部署于高空平台或者卫星。卫星可以是为非静止轨道(non-geostationary earth orbit,NGEO)卫星或静止轨道(geostationary earth orbit,GEO)卫星。本申请实施例中提及的卫星,也可以为卫星基站,或者为搭载在卫星上的网络侧设备。
接入点可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);或者5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,本申请实施例对此不作具体限定。
接入点可以和核心网设备进行通信交互,向终端设备提供通信服务。核心网设备例如为5G网络核心网(core network,CN)中的设备。核心网作为承载网络提供到数据网络的接口,为用户设备(user equipment,UE)提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。其中,CN又进一步可包括:接入和移动管理网元(Access and Mobility Management Function,AMF)、会话管理网元(Session Management Function,SMF),认证服务器网元(Authentication Server Function,AUSF)、策略控制节点(Policy control Function,PCF)、用户面功能网元(User Plane Function,UPF)等网元。
本申请实施例中提及的终端,可以为终端设备,包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端(terminal equipment)、终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络或者未来通信网络中的终端设备等,本申请不作限制。
参见图2,图2示出了适用于本申请实施例的一种应用场景,具体为3GPP各成员融合卫星通信和5G技术的网络应用架构。需要说明的是该应用架构不作为对本申请的限制。本申请实施例所提供的通信方法还可以应用于其他地面通信系统与卫星通信融合的场景。地面移动终端通过5G新空口接入网络,卫星作为5G基站,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图2中的各个网元以及它们的接口说明如下:
终端设备:支持5G新空口的移动设备,可以通过空口接入卫星网络并发起呼叫,上网等业务。例如,可以为如上文所述的各种终端设备,此处不再赘述。
5G基站:主要是提供无线接入服务,调度无线资源给接入终端,提供可靠的无线传输协议和数据加密协议等。
5G核心网:用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它由多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(AMF),负责用户接入管理,安全认证,还有移动性管理。用户面单元(UPF)负责管理用户面数据的传输,流量统计,安全窃听等功能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G新空口:终端和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间接口,主要交互核心网的非接入层(non-access stratum,NAS)信令等信令,以及用户的业务数据。
一个卫星的覆盖范围可达几千甚至几万千米,一个波束的覆盖范围可达几十米甚至几千米。为了支持卫星的广域覆盖,一个卫星通常要配置几十、几百、甚至更多波束。为了缓解单个卫星载荷小且覆盖范围广的矛盾,可以采用跳波束的方式进行区域覆盖。即单颗卫星配备少量的波束,通过分时方式服务较广的覆盖范围。在同一时间单元内只使用较少数量的波束进行区域覆盖,通过在不同时间单元使用的多个波束覆盖较广的区域。在跳波束场景下, 终端需获取波束的分布情况,并根据波束的分布进行通信。
针对跳波束场景,本申请提供无线通信的方法及装置:系统定义跳波束的模式,并通过相应的指示信息下发至终端,终端根据该指示信息获取跳波束的模式进行通信,保证了终端在跳波束场景下的正常通信,同时终端可根据跳波束的模式调整通信状态以降低功耗。
首先需要说明的是,本申请涉及第一通信装置和第二通信装置。第一通信装置可以为前述各种类型的终端,第二通信装置可以为前述各种网络设备。下文中以终端和网络设备为例进行描述。
参见图3,图3为本申请实施例提供波束指示方法的一种流程示意图。本实施例中终端根据从网络设备接收的波束配置信息确定跳波束模式,并根据该跳波束模式与网络设备进行通信。
S300、网络设备确定第一波束配置信息。
网络设备根据其各个波束的跳波束的模式确定第一波束配置信息。
一种可能的实现中,该第一波束配置信息是由核心网下发的。具体地,核心网网元向网络设备发送第二波束配置信息,网络设备接收核心网网元发送的第二波束配置信息,并根据该第二波束配置信息确定所述第一波束配置信息。第一波束配置信息和第二波束配置信息均指示跳波束的模式,配置信息的表示形式可能相同也可能不同,本申请不做限制。
另一种可能的实现中,该第一波束配置信息是由网络设备与其他网络设备协商确定的。
S301、网络设备向终端发送第一波束配置信息,相应的,终端接收网络设备发送的第一波束配置信息。
第一波束配置信息可以包含具体的跳波束模式,或者跳波束模式的索引信息,或者波束模式的变动信息。下文中将详细说明不同的波束配置信息。
一种可能的实现中,网络设备向终端发送的第一波束配置信息,携带在无线资源控制(radio resource control,RRC)消息中。
携带第一波束配置信息的RRC消息可以是网络设备广播的消息。卫星通信中网络设备是运动的,不同时刻终端可能接收不同网络设备发射的波束,不同网络设备的波束模式不同,且卫星波束可能存在分裂或合成的情况,通过广播的RRC消息携带第一波束配置信息更加灵活,且能节省信令开销。
携带第一波束配置信息的RRC消息还可以是网络设备向终端设备单播的用户特定(UE-Specific)消息。在用户数量较少的场景下可以采用单播的RRC消息携带第一波束配置信息。
一种可能的实现中,网络设备周期性下发第一波束配置信息。举例来说,网络设备基于预先配置的周期广播系统消息,该系统消息中包含第一波束配置信息。通过周期性下发第一波束配置信息可以减少网络设备和终端之间的调度信令。
一种可能的实现中,终端向网络设备请求第一波束配置信息。举例来说,网络设备基于用户请求广播系统消息,该种基于用户请求广播的系统消息(on demand other system information,ODOSI)在小区建立后连续广播2个周期后停止广播,需通过终端请求后再次广播。例如,终端通过专用的前导码(preamble)触发网络设备广播ODOSI;或者终端通过 RRC系统消息请求消息RRC_SYS_INFO_REQ触发网络设备广播ODOSI。网络设备基于终端的请求下发第一波束配置信息不需要持续的下发波束配置信息,可以减少广播资源的开销。
S302、终端根据第一波束配置信息确定第一跳波束模式。
一种可能的实现中,第一波束配置信息中包含跳波束模式,终端将该跳波束模式确定为第一跳波束模式。
一种可能的实现中,第一波束配置信息中包含索引信息,终端根据该索引信息确定第一跳波束模式。
一种可能的实现中,第一波束配置信息中包含波束模式的变动信息,终端根据该变动信息确定第一跳波束模式。
第一跳波束模式用于指示网络设备的波束的激活信息。波束的激活信息可以包括激活波束的波束标识、激活波束对应的初始部分带宽(bandwidth part,BWP)、功率补偿系数等信息。还可包括波束特定(Beam-specific)的参数,如定时补偿,多普勒频移,极化方向等,本申请不做限制。
一种可能的实现中,第一跳波束模式与系统帧号相关。第一跳波束模式指示的波束的激活信息与系统帧号SFN对应,具体地,第一跳波束模式指示的激活波束通过mod(SFN,n)确定,其中mod()表示取模运算,SFN为系统帧号,n为跳波束模式变化周期。
S303、终端根据第一跳波束模式与网络设备进行通信。
终端根据第一跳波束模式指示的波束的激活信息确定服务波束的起止时间,并根据服务波束的起止时间确定通信状态,其中通信状态包括连接态(connected)或空闲态(idle)或非活动态(inactive)。
具体地,终端根据波束的激活信息,卫星的星历信息、当前位置信息以及波束的激活信息确定服务波束的起止时间。
需要指出的是,终端可以通过全球导航卫星系统(Global Navigational Satellite System,GNSS)等定位方式获得当前位置信息;终端可以通过预存的信息或者系统广播获得卫星的星历信息。本申请对星历信息或位置信息的获取方式不做限制。
举例来说,终端基于当前的位置信息、卫星的星历中包含的卫星的位置、运动规律等信息确定卫星可以提供覆盖的时间段;并根据第一跳波束模式指示的波束的激活信息,确定卫星提供覆盖时波束的分布情况,进而得到一个或多个服务波束提供服务的时间段。
终端根据服务波束的起止时间确定通信状态。举例来说,服务波束的起止时间可以表示当前位置上具有服务波束覆盖的时间段,即服务波束的服务时段。终端可以在服务波束的服务时段保持连接态,并在没有服务波束覆盖的时段,即非服务时段转换为空闲态或非活动态。一种可能的实现中,终端有通信需求时,在服务波束服务时段的开始时间,向网络设备发送随机接入请求。
图3所示的通信方法中,网络设备下发波束配置信息,终端根据该波束配置信息确定跳波束模式,并根据跳波束模式与网络设备通信,具体地,根据跳波束模式选择通信时机、调整通信状态,以达到节省功耗的效果。
如S301中所述,可以通过不同方式指示跳波束模式。下面详细介绍本申请实施例提供的波束配置方法。
本申请实施例提供了一种基于RRC信令的跳波束指示方法。该方法中卫星小区内的各个波束以系统帧为单位执行跳波束操作。跳波束模式指示的波束的激活信息与系统帧号对应。
网络设备通过广播RRC信令下发波束的跳变模式(hopping_pattern),其中可以包含与系统帧对应的激活波束(Active Beam)的波束标识(beam ID)、激活波束对应的初始BWP、激活波束的功率补偿系统等参数。
本申请提供的一种实施例中,网络设备可以基于系统消息(system information block,SIB)下发波束配置信息。结合图3中的方法,该波束配置信息为第一波束配置信息。
举例来说,网络设备基于SIB_BeamConfig消息下发波束配置信息。具体格式如下:
Figure PCTCN2021105635-appb-000001
其中,Hopping Pattern表示跳波束模式,SystemFrame表示系统帧,系统帧与跳波束模式中指示的激活波束Active_Beam对应。具体地,上述SIB_BeamConfig消息中还包含激活波束的波束标识:BeamId。
需要指出的是,结合图3中的方法,上述Hopping Pattern为第一跳波束模式。
此外,跳波束模式还可以包含激活波束对应的初始部分带宽BWP和/或功率补偿系数。其中,初始BWP是用户首次接入波束时的频率资源,避免用户接入波束时搜索接入资源;功率补偿系数用于指示终端发射信号的功率大小,避免信号功率不足或过剩。
具体地,包含激活波束标识Hopping_BeamId对应的初始BWP的标识BWP_Id,例如Hopping_Beam_Id_0对应BWP_Id_0,Hopping_Beam_Id_1对应BWP_Id_1。激活波束对应的功率补偿系数由Beam_Power_Adjust以及对应的取值value表示,例如Beam0_Power_Adjust,Beam1_Power_Adjust等。
在一种可能的实现中,激活波束Active_Beam字段还可以用比特序列的形式表示,以节省比特开销(使用更少的字段),例如采用以下格式:
Figure PCTCN2021105635-appb-000002
Active_Beam_bitmap是表示一串比特序列的变量名,其中BIT STRING(SIZE(maxNrofBeamInCell))表示比特串的长度,比特串的长度等于波束总数,即maxNrofBeamInCell。 该种实现方式中,比特位的值为1时表示对应波束是激活状态,比特位的值为0时表示对应波未激活,或者,比特位的值为0时表示对应波束是激活状态,比特位的值为1时表示对应波未激活。
一种可能的实现中,跳波束模式中包含多个系统帧对应的波束的激活信息。该种实现中的波束配置信息中包含更多的跳波束相关的信息,减少网络设备和终端之间的信令交互。
另一种可能的实现中,跳波束模式中包含一个系统帧对应的波束的激活信息。该种实现能够节省波束配置信息占用的比特。
网络设备向终端下发上述包含跳波束模式的波束配置信息,其中跳波束模式所指示的波束的激活信息与系统帧号有关。终端接收网络设备下发的波束配置信息后,根据系统帧号(system frame number,SFN)确定跳波束模式指示的波束的激活信息。
举例来说,终端通过mod(SFN,n)确定跳波束模式指示的波束的激活信息。其中n为跳波束模式变化周期。
参见图4,图4为本申请实施例提供的跳波束指示的一种示例。卫星小区内的各个波束以系统帧为单位执行跳波束操作。如图4所示,0号系统帧对应激活波束2和6,1号系统帧对应激活波束3和5,2号系统帧对应激活波束1和7,3号系统帧对应激活波束4,5号系统帧对应激活波束2和6,以此类推。
如图4所示的跳波束模式可以采用上述SIB_BeamConfig表示。示例性的,具体的RRC字段如下:
Figure PCTCN2021105635-appb-000003
上述字段中,0号系统帧SystemFrame-0对应的激活波束为2和6,Active_Beam(2,6);1号系统帧SystemFrame-1对应的激活波束为3和5,Active_Beam(3,5)。
终端接收波束配置信息后,根据系统帧号确定第一跳波束模式指示的激活波束。举例来 说通过mod(SFN,n)确定激活波束,图4所示的场景中,n为4,因此SFN为0、4、8…时,终端确定激活波束为波束2和6;SFN为1、5、9…时,终端确定激活波束为波束3和5。
该实施例中,网络设备采用RRC信令广播携带跳波束模式的跳波束配置信息,能够灵活应对卫星移动以及波束变动等场景,同时节省信令开销。另外,将跳波束模式与系统帧联系起来,以时间为单位调整跳波束模式,便于调度。
参见图5,图5为本申请实施例提供的跳波束指示的另一种实施例。卫星波束可能存在波束分裂或波束合并的情况。波束分裂指将一个波束分裂为两个或两个以上的波束,波束合并指将两个或两个以上的波束合并为一个波束。在跳波束场景中,波束的分裂或合并将引起跳波束模式的变动。在本实施例中网络设备向终端下发上述跳波束的变动,以使得终端更新跳波束模式。
一种可能的实现中,网络设备可以基于SIB广播波束配置信息,该波束配置信息中包含跳波束模式的变动信息。举例来说,网络设备基于SIB_BeamConfig消息下发携带跳波束模式变动的波束配置信息。具体格式如下:
Figure PCTCN2021105635-appb-000004
其中字段Beam_splitting_combination表示波束分裂/合并。maxNrofBeamUpdate表示系统所支持的最多的更新波束的数量;BeamUpdate-Id表示波束更新标识;Beam_ID表示涉及分裂或合并的波束标识;Splitting表示波束分裂,一个波束可以分裂为两个或更多个波束,max_splitting_factor表示波束可以分裂的最大个数;Combination表示波束合并,两个或更多个波束可以合并为一个波束,max_combination_factor表示可以合并的波束的最大个数。CHOICE字段表示波束分裂Splitting和波束合并Combination为选择项,即二者选一。
需要指出的是,其中max_splitting_factor和max_combination_factor的取值可以由厂商根据实际情况决定,不同厂商可能采用不同的取值。
如图5所示,系统帧号3上,波束4、6和7合并为一个波束4。针对该场景,网络设备基于SIB_BeamConfig消息下发的携带跳波束模式变动的波束配置信息可以为如下所示:
Figure PCTCN2021105635-appb-000005
示例性的,波束4可以分裂为两个子波束(未在图中示出)。针对该场景网络设备基于SIB_BeamConfig消息下发的携带跳波束模式变动的波束配置信息可以为如下所示:
Figure PCTCN2021105635-appb-000006
Figure PCTCN2021105635-appb-000007
终端接收网络设备下发的上述携带跳波束模式变动信息的波束配置信息后,根据该配置信息更新跳波束模式,并根据更新后的跳波束模式与终端进行通信。
该实施例中,网络设备向终端下发的波束配置信息中携带波束变动信息,使得终端接收该波束变动信息后更新跳波束模式,实现网络侧与终端侧波束参数的匹配,保证了终端根据跳波束模式进行正常通信。
本申请提供的另一种实施例中,网络设备可以动态的指示跳波束模式。终端存储有一个或多个跳波束模式,跳波束模式用于指示波束的激活信息,上述一个或多个波束模式周期性的变化。网络设备下发携带索引信息的波束配置信息,终端根据该索引信息从一个或多个波束模式中确定出下一周期中使用的跳波束模式。
举例来说,如表1所示,可通过两个比特表示跳波束的索引,分别对应4种跳波束模式。跳波束的索引以及跳波束模式的映射关系可以是由协议规定的,也可以是网络设备和终端协商确定的。
表1
跳波束的索引 跳波束模式
00 模式1
01 模式2
10 模式3
11 模式4
终端存储有一个或多个跳波束模式。一种可能的实现中,网络设备向终端发送携带一个或多个跳波束模式的配置信息。举例来说,可以通过RRC消息配置给终端。可能的,上述一个或多个跳波束模式可以是协议中预先定义的,也可以是网络设备根据实际情况配置的。
网络设备向终端发送携带索引信息的波束配置信息,终端接收网络设备发送的携带索引信息的波束配置信息。一种可能的实现中,该波束配置信息通过用户特定(UE-Specific)的消息下发。举例来说,网络设备通过下行控制信息(downlink control information,DCI)下发索引信息,具体地,可以复用DCI中的Bandwidth part indicator字段。举例来说,网络设备还可以通过媒体接入控制(Media Access Control control,MAC)层控制信令MAC控制元素(MAC control element,MAC CE)下发索引信息。
终端根据索引信息从一个或多个波束模式中确定出下一周期中使用的跳波束模式。具体地,终端根据索引信息按照预定的映射关系确定下一周期中使用的跳波束模式。
该实施例中,终端基于索引信息动态获取跳波束的配置。相比于具体的跳波束模式,索引信息占用更少的比特。另外,通过UE-Specific消息向终端发送波束配置信息更加准确和灵活。
本申请提供的又一种实施例中,网络设备向终端发送的波束配置信息由核心网确定。核心网通过配置跳波束信息,提升网络内各个网络设备的协调能力。具体地,核心网向网络设备发送第二跳波束配置信息,网络设备接收之后,根据该第二跳波束配置信息确定第一跳波束配置信息,并向终端下发第二跳波束配置信息。
一种可能的实现中,核心网网元通过下一代应用协议(NG Application Protocol,NGAP)接口传输跳波束配置信息。具体地,定义新的跳波束Beamhopping消息,用于向网络设备传输跳波束配置信息。
示例性的,可以通过表2所示的消息配置跳波束信息。核心网网元下发的配置信息可以包括系统帧号(System Frame Number)、激活波束标识(Active_Beam_ID)、激活的初始BWP(Active_Initial_BWP)和功率补偿(Power_Adjust)等信息单元(information element,IE)。表2中上述四个信息单元为必选(M)项,在另一种可能的实现中,功率补偿可以是可选项。系统帧号的范围可以为0~1023,也可以为其他范围。激活波束标识的范围为1~maxNrofBeamInCell,其中maxNrofBeamInCell表示小区内波束数量的最大值。上述配置信息还可以包含其他的信元,本申请不做限制。
需要指出的是,表2所示的分配的重要性(assigned criticality)表示对应信元无法解读时采用的处理方式,可以为拒绝(Reject IE)、忽略并通知发送者(Ignore IE and Notify Sender)或者忽略(Ignore)。在一种可能的实现中表2所示的各信元对应的分配的重要性为“忽略”。
在一些可能的实现中,核心网网元下发的配置消息包含表2的部分列,或者在表2的基础上增加了其他列,本申请不作限制。
表2
Figure PCTCN2021105635-appb-000008
Figure PCTCN2021105635-appb-000009
在另一种可能的实现中,网络设备向终端下发的波束配置信息还可以由网络内各个网络设备之间协商确定的。网络设备之间通过Xn应用协议(Xn Application Protocol,XnAP)接口进行协商。
该实施例中,网络设备向终端下发的波束配置信息由核心网确定或者由网络内各个网络设备协商确定,实现了网络内各个网络设备的协调能力的提升。
为了实现上述本申请实施例提供的方法中的各功能,终端设备、网络设备均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图6所示,基于同一技术构思,本申请实施例还提供了一种通信装置600。该通信装置600可以是终端或网络设备,即第一通信装置或第二通信装置,也可以是终端设备或网络设备中的装置,或者是能够和终端设备、网络设备匹配使用的装置。一种可能的实现中,该通信装置600可以包括执行上述方法实施例中终端执行的方法/操作/步骤/动作所一一对应的模块或单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置600可以包括处理单元610和收发单元620。处理单元610可以用于调用收发单元620执行接收和/或发送的功能。
当通信装置600用于执行终端,即第一通信装置,所执行的操作时,收发单元620,用于获取第一波束配置信息,处理单元610,用于根据所述第一波束配置信息确定第一跳波束模式;根据所述第一跳波束模式与第二通信装置进行通信。
当通信装置600用于执行网络设备,即第二通信装置,所执行的操作时,处理单元610,用于确定第一波束配置信息;收发单元620,用于向第一通信装置发送该第一波束配置信息;第一波束配置信息用于确定第一跳波束模式;该第一跳波束模式用于所述第一通信装置与所述通信装置进行通信。
收发单元620还用于执行上述方法实施例中终端、网络设备执行的其它接收或发送的步骤或操作。处理单元610还可以用于执行上述方法实施例终端、网络设备执行的除收发之外的其它对应的步骤或操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块或单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块或单元集成在一个模块或单元中。上述集成的模块或单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
参见图7,本申请实施例还提供了一种通信装置700,用于实现上述方法中终端、网络设备的功能,即第一通信装置、第二通信装置的功能。该通信装置可以是终端、网络设备,也可以是终端、网络设备中的装置,或者是能够和终端、网络设备匹配使用的装置。其中,该通信装置700可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯 片和其他分立器件。通信装置700包括至少一个处理器710,用于实现本申请实施例提供的方法中终端、网络设备的功能。通信装置700还可以包括通信接口720。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口720用于通信装置700中的装置可以和其它设备进行通信。
处理器710可以执行通信装置600中处理单元610所执行的功能;通信接口720可以用于执行通信装置600中收发单元620所执行的功能。
当通信装置700用于执行终端所执行的操作时,通信接口720,用于获取第一波束配置信息;处理器710用于根据该波束配置信息确定第一跳波束模式,并根据所确定的第一跳波束模式与第二通信装置(网络设备)进行通信。
当通信装置700用于执行网络设备所执行的操作时,处理器710,用于确定第一波束配置信息;通信接口720,用于向第一通信装置(终端)发送第一波束配置信息,所述第一波束配置信息用于确定第一跳波束模式;所述第一跳波束模式用于所述第一通信装置与所述通信装置进行通信。
通信接口720还用于执行上述方法实施例中终端、网络设备执行的其它接收或发送的步骤或操作。处理器710还可以用于执行上述方法实施例终端、网络设备执行的除收发之外的其它对应的步骤或操作,在此不再一一赘述。
通信装置700还可以包括至少一个存储器730,用于存储程序指令和/或数据。存储器730和处理器710耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器720可能和存储器730协同操作。处理器710可能执行存储器730中存储的程序指令。在一种可能的实现中,所述至少一个存储器中的至少一个可以与处理器集成在一起。在另一种可能的实现中,存储器730位于所述通信装置700之外。
本申请实施例中不限定上述通信接口720、处理器710以及存储器730之间的具体连接介质。本申请实施例在图7中以存储器730、处理器710以及通信接口720之间通过总线740连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中,处理器710可以是一个或多个中央处理器(Central Processing Unit,CPU),在处理器710是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。处理器710可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例中,存储器730可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、 可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
参加图8,本申请实施例还提供了一种装置800,可用于实现上述方法中终端、网络设备的功能,该装置800可以是通信装置或者通信装置中的芯片。该通信装置包括:
至少一个输入输出接口810和逻辑电路820。输入输出接口810可以是输入输出电路。逻辑电路820可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。
其中,至少一个输入输出接口810用于信号或数据的输入或输出。举例来说,当该装置为终端或者用于终端时,输入输出接口810用于获取第一波束配置信息;输入输出接口810还可以用于输出随机接入请求。举例来说,当该装置为网络设备或者用于网络设备时,输入输出接口810用于输出第一波束配置信息;输入输出接口810还可以用于获取核心网网元发送的第二波束配置信息。
其中,逻辑电路820用于执行本申请实施例提供的任意一种方法的部分或全部步骤。逻辑电路可以实现上述装置600中的处理单元610、装置700中的处理器710所实现的功能。举例来说,当该装置为终端或者用于终端时,用于执行上述方法实施例中各种可能的实现方式中终端(第一通信装置)执行的步骤,例如逻辑电路820用于根据第一波束配置信息确定第一跳波束模式。当该装置为网络设备或者用于网络设备时,用于执行上述方法实施例中各种可能的实现方法中网络设备(第二通信装置)执行的步骤,例如逻辑电路820用于确定第一波束配置信息。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端的。
基于与上述方法实施例相同构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被硬件(例如处理器等)执行,以实现本申请实施例中由任意装置执行的任意一种方法的部分或全部步骤。
基于与上述方法实施例相同构思,本申请实施例还提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述这个计算机执行以上各方面的任意一种方法的部分或者全部步骤。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片可包括处 理器。该芯片还可包括存储器(或存储模块)和/或收发器(或通信模块),或者,该芯片与存储器(或存储模块)和/或收发器(或通信模块)耦合,其中,收发器(或通信模块)可用于支持该芯片进行有线和/或无线通信,存储器(或存储模块)可用于存储程序,该处理器调用该程序可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。该芯片系统可包括以上芯片,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
基于与上述方法实施例相同构思,本申请还提供一种通信系统,该通信系统可包括以上终端和/或网络设备。该通信系统可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。示例性的,该通信系统可具有如图1或图2所示结构。
在上述实施例中,可全部或部分地通过软件、硬件、固件、或其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如光盘)、或者半导体介质(例如固态硬盘)等。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,也可以通过其它的方式实现。例如以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可结合或者可以集成到另一个系统,或一些特征可以忽略或不执行。另一点,所显示或讨论的相互之间的间接耦合或者直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者,也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例的方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计 算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的一些具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可对这些实施例做出另外的变更和修改。因此,所附权利要求意欲解释为包括上述实施例以及落入本申请范围的说是有变更和修改。因此,本申请保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种无线通信的方法,其特征在于,包括:
    第一通信装置获取第一波束配置信息;
    根据所述第一波束配置信息确定第一跳波束模式;
    根据所述第一跳波束模式与第二通信装置进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信装置获取第一波束配置信息,包括:
    所述第一通信装置接收第二通信装置发送的无线资源控制RRC消息,所述RRC消息包含所述第一波束配置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一波束配置信息确定第一跳波束模式,包括:
    所述第一波束配置信息中包含跳波束模式;
    所述第一通信装置根据所述跳波束模式确定第一跳波束模式。
  4. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一波束配置信息确定第一跳波束模式,包括:
    所述第一波束配置信息中包含索引信息;
    所述第一通信装置根据所述索引信息确定第一跳波束模式。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述根据所述第一波束配置信息确定第一跳波束模式,包括:
    所述第一波束配置信息中包含波束模式的变动信息;
    所述第一通信装置根据所述波束模式的变动信息确定第一跳波束模式。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述根据所述第一跳波束模式与第二通信装置进行通信,包括:
    所述第一跳波束模式指示所述第二通信装置的波束的激活信息;
    所述第一通信装置根据所述波束的激活信息确定服务波束的起止时间,其中所述服务波束是所述第二通信装置为所述第一通信装置服务的波束;
    根据所述服务波束的起止时间确定通信状态;
    其中所述通信状态包括连接态或空闲态或非活动态。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,
    所述第一跳波束模式包含激活波束的波束标识。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一跳波束模式还包含所述激活波束对应的初始部分带宽BWP和/或功率补偿系数。
  9. 根据权利要求7或8所述的方法,其特征在于,
    所述第一跳波束模式与系统帧号SFN相关。
  10. 根据权利要求9所述的方法,其特征在于,所述第一跳波束模式与系统帧号SFN相关,包括:
    所述第一跳波束模式指示的激活波束与系统帧号SFN对应,具体为:
    所述第一跳波束模式指示的激活波束通过mod(SFN,n)确定,其中n为跳波束模式变化周期。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,
    所述第一波束配置信息由核心网设备确定。
  12. 一种无线通信的方法,其特征在于,包括:
    第二通信装置确定第一波束配置信息;
    所述第二通信装置向第一通信装置发送所述第一波束配置信息;
    所述第一波束配置信息用于确定第一跳波束模式;
    所述第一跳波束模式用于所述第一通信装置与所述第二通信装置进行通信。
  13. 根据权利要求12所述的方法,其特征在于,所述第二通信装置向第一通信装置发送第一波束配置信息,包括:
    所述第二通信装置向所述通信装置发送无线资源控制RRC消息,所述RRC消息包含所述第一波束配置信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一波束配置信息用于确定第一跳波束模式,包括:
    所述第一波束配置信息中包含跳波束模式;
    所述跳波束模式用于确定第一跳波束模式。
  15. 根据权利要求12或13所述的方法,其特征在于,所述第一波束配置信息用于确定第一跳波束模式,包括:
    所述第一波束配置信息中包含索引信息;
    所述索引信息用于确定第一跳波束模式。
  16. 根据权利要求12至14任一项所述的方法,其特征在于,所述第一波束配置信息用于确定第一跳波束模式,包括:
    所述第一波束配置信息中包含跳波束模式的变动信息;
    所述波束模式的变动信息用于确定第一跳波束模式。
  17. 根据权利要求12至16任一项所述的方法,其特征在于,所述第一跳波束模式用于所述第一通信装置与所述第二通信装置进行通信,包括:
    所述第一跳波束模式用于指示所述第二通信装置的波束的激活信息;
    所述波束的激活信息用于确定服务波束的起止时间,其中所述服务波束是所述第二通信装置为所述第一通信装置服务的波束;
    所述服务波束的起止时间用于所述第一通信装置转换通信状态;
    其中所述通信状态包括连接态或空闲态或非活动态。
  18. 根据权利要求12至17任一项所述的方法,其特征在于,
    所述第一跳波束模式包含激活波束的波束标识。
  19. 根据权利要求18所述的方法,其特征在于,
    所述第一跳波束模式还包含所述激活波束对应的初始部分带宽BWP和/或所述激活波束的功率补偿系数。
  20. 根据权利要求18或19所述的方法,其特征在于,
    所述第一跳波束模式与系统帧号SFN相关。
  21. 根据权利要求20所述的方法,其特征在于,所述第一跳波束模式与系统帧号SFN相关,包括:
    所述第一跳波束模式指示的波束的激活信息与系统帧号SFN对应,具体为:
    所述第一跳波束模式指示的激活波束通过mod(SFN,n)确定,其中n为跳波束模式变化周期。
  22. 根据权利要求12至21任一项所述的方法,其特征在于,
    所述第一波束配置信息是由核心网设备下发的。
  23. 一种通信装置,其特征在于,包括:
    收发单元,用于获取第一波束配置信息;
    处理单元,用于根据所述第一波束配置信息确定第一跳波束模式;
    根据所述第一跳波束模式与第二通信装置进行通信。
  24. 根据权利要求23所述的装置,其特征在于,
    所述收发单元,具体用于接收第二通信装置发送的无线资源控制RRC消息,所述RRC消息包含所述第一波束配置信息。
  25. 根据权利要求23或24所述的装置,其特征在于,所述根据所述第一波束配置信息确定第一跳波束模式,包括:
    所述第一波束配置信息中包含跳波束模式;
    所述处理单元用于根据所述跳波束模式确定第一跳波束模式。
  26. 根据权利要求23或24所述的装置,其特征在于,所述根据所述第一波束配置信息确定第一跳波束模式,包括:
    所述第一波束配置信息中包含索引信息;
    所述处理单元用于根据所述索引信息确定第一跳波束模式。
  27. 根据权利要求23至25任一项所述的装置,其特征在于,所述根据所述第一波束配置信息确定第一跳波束模式,包括:
    所述第一波束配置信息中包含波束模式的变动信息;
    所述处理单元用于根据所述波束模式的变动信息确定第一跳波束模式。
  28. 根据权利要求23至27任一项所述的装置,其特征在于,所述根据所述第一跳波束模式与第二通信装置进行通信,包括:
    所述第一跳波束模式指示所述第二通信装置的波束的激活信息;
    所述处理单元用于根据所述波束的激活信息确定服务波束的起止时间,其中所述服务波束是所述第二通信装置为所述第一通信装置服务的波束;
    根据所述服务波束的起止时间确定通信状态;
    其中所述通信状态包括连接态或空闲态或非活动态。
  29. 根据权利要求23至28任一项所述的装置,其特征在于,
    所述第一波束配置信息由核心网设备确定。
  30. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一波束配置信息;
    收发单元,用于向第一通信装置发送所述第一波束配置信息;
    所述第一波束配置信息用于确定第一跳波束模式;
    所述第一跳波束模式用于所述第一通信装置与所述通信装置进行通信。
  31. 根据权利要求30所述的装置,其特征在于,所述向通信装置发送第一波束配置信息,包括:
    所述收发单元,具体用于向所述通信装置发送无线资源控制RRC消息,所述RRC消息包含所述第一波束配置信息。
  32. 根据权利要求30或31所述的装置,其特征在于,所述第一波束配置信息用于确定第一跳波束模式,包括:
    所述第一波束配置信息中包含跳波束模式;
    所述跳波束模式用于确定第一跳波束模式。
  33. 根据权利要求30或31所述的装置,其特征在于,所述第一波束配置信息用于确定第一跳波束模式,包括:
    所述第一波束配置信息中包含索引信息;
    所述索引信息用于确定第一跳波束模式。
  34. 根据权利要求30至32任一项所述的装置,其特征在于,所述第一波束配置信息用于确定第一跳波束模式,包括:
    所述第一波束配置信息中包含跳波束模式的变动信息;
    所述波束模式的变动信息用于确定第一跳波束模式。
  35. 根据权利要求30至34任一项所述的装置,其特征在于,
    所述第一跳波束模式包含激活波束的波束标识。
  36. 根据权利要求35所述的装置,其特征在于,
    所述第一跳波束模式还包含所述激活波束对应的初始部分带宽BWP和/或所述激活波束的功率补偿系数。
  37. 根据权利要求30至36任一项所述的装置,其特征在于,
    所述第一波束配置信息是由核心网设备下发的。
  38. 一种通信装置,其特征在于,包括处理器,用于执行计算机程序,当所述计算机程序被执行时,使得所述装置
    执行如权利要求1至11任一项所述的方法;或者
    执行如权利要求12至22任一项所述的方法。
  39. 根据权利要求35所述的通信装置,其特征在于,还包括存储器,用于存储所述计算机程序。
  40. 一种计算机可读存储介质,其特征在于,包括计算机程序,当其在计算机上执行时,使得
    权利要求1至11任一项所述的方法被执行;或者
    权利要求12至22任一项所述的方法被执行。
  41. 一种通信装置,其特征在于,包括输入输出接口和逻辑电路,所述输入输出接口用于获取第一波束配置信息,所述逻辑电路用于根据所述第一波束配置信息,通过权利要求1至11任一项所述的方法确定第一跳波束模式。
  42. 一种通信装置,其特征在于,包括输入输出接口和逻辑电路,所述逻辑电路用于根据权利要求12至22任一项所述的方法确定第一波束配置信息,所述输入输出接口用于输出所述第一波束配置信息。
  43. 一种通信装置,用于执行权利要求1至11任一项所述的方法。
  44. 一种通信装置,用于执行权利要求12至22任一项所述的方法。
  45. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得权利要求1至11任一项所述的方法被执行;或者,使得权利要求12至22任一项所述的方法被执行。
  46. 一种计算机程序,当其在计算机上运行时,使得权利要求1至11任一项所述的方法被执行;或者,使得权利要求12至22任一项所述的方法被执行。
  47. 一种通信系统,其特征在于,包括权利要求23至29任一项所述的通信装置和权利要求30至37任一项所述的通信装置。
PCT/CN2021/105635 2020-07-17 2021-07-10 一种无线通信的方法及装置 WO2022012446A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21841543.8A EP4167639A4 (en) 2020-07-17 2021-07-10 WIRELESS COMMUNICATION METHOD AND DEVICE
US18/155,506 US20230156489A1 (en) 2020-07-17 2023-01-17 Wireless communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010694226.1A CN113950112A (zh) 2020-07-17 2020-07-17 一种无线通信的方法及装置
CN202010694226.1 2020-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/155,506 Continuation US20230156489A1 (en) 2020-07-17 2023-01-17 Wireless communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022012446A1 true WO2022012446A1 (zh) 2022-01-20

Family

ID=79326818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105635 WO2022012446A1 (zh) 2020-07-17 2021-07-10 一种无线通信的方法及装置

Country Status (4)

Country Link
US (1) US20230156489A1 (zh)
EP (1) EP4167639A4 (zh)
CN (1) CN113950112A (zh)
WO (1) WO2022012446A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024025107A1 (en) * 2022-07-25 2024-02-01 Samsung Electronics Co., Ltd. Method and apparatus for beam information

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116866959B (zh) * 2023-08-10 2024-02-09 四川创智联恒科技有限公司 一种优化低轨卫星基站信令波束扫描的方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204107A (zh) * 2005-05-11 2008-06-18 诺基亚西门子通信有限责任两合公司 无线电通信系统中的跳波束
US20180006712A1 (en) * 2016-03-29 2018-01-04 Space Systems/Loral, Llc Satellite system beam to beam handover
WO2020030317A1 (en) * 2018-08-09 2020-02-13 Panasonic Intellectual Property Corporation Of America Flexible repetition of pusch mini-slots within a slot

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115242B2 (en) * 2018-04-13 2021-09-07 Qualcomm Incorporated Uplink multi-beam operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204107A (zh) * 2005-05-11 2008-06-18 诺基亚西门子通信有限责任两合公司 无线电通信系统中的跳波束
US20180006712A1 (en) * 2016-03-29 2018-01-04 Space Systems/Loral, Llc Satellite system beam to beam handover
WO2020030317A1 (en) * 2018-08-09 2020-02-13 Panasonic Intellectual Property Corporation Of America Flexible repetition of pusch mini-slots within a slot

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167639A4
THALES: "Considerations on satellite beam management, control loops and feeder", 3GPP DRAFT; R1-1913131, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820320 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024025107A1 (en) * 2022-07-25 2024-02-01 Samsung Electronics Co., Ltd. Method and apparatus for beam information

Also Published As

Publication number Publication date
CN113950112A (zh) 2022-01-18
EP4167639A4 (en) 2023-12-13
US20230156489A1 (en) 2023-05-18
EP4167639A1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
US11997725B2 (en) Satellite communication method, apparatus, and system
US20230134248A1 (en) Electronic equipment, user equipment, wireless communication method, and storage medium
CN112887004B (zh) 一种通信方法及装置
US20230156489A1 (en) Wireless communication method and apparatus
WO2021056582A1 (zh) 通信方法、设备及系统
WO2022199430A1 (zh) 测量及上报方法、装置及系统
CN112584545B (zh) 数据传输方法及装置
EP4307767A1 (en) Wireless communication method, apparatus and system
WO2022021130A1 (zh) 选择初始带宽部分bwp的方法、终端设备和网络设备
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
WO2023185615A1 (zh) 通信方法和装置
US20230163836A1 (en) Beam information indication method and apparatus
WO2022127806A1 (zh) 一种无线通信的方法及装置
WO2022198432A1 (zh) 无线通信的方法及设备
CN112702800B (zh) 一种通信方法及装置
CN116368859A (zh) 连接方法及相关装置
US20230292275A1 (en) Transceiver device, network entity and base station
WO2022062823A1 (zh) 波束管理方法、装置及系统
US11924893B2 (en) Method for establishing connection, and terminal device
WO2024114794A1 (zh) 一种随机接入资源的确定方法及通信装置
WO2023185686A1 (zh) 卫星通信方法和装置
US20230370922A1 (en) Method for entering connected mode, and terminal device
WO2022032539A1 (zh) 中继方法和终端
WO2023283942A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021208022A1 (zh) 一种波束管理方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021841543

Country of ref document: EP

Effective date: 20230110

NENP Non-entry into the national phase

Ref country code: DE